

Game Engine
Gems 3

This page intentionally left blankThis page intentionally left blank

Edited by Eric Lengyel

Game Engine
Gems 3

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20160201

International Standard Book Number-13: 978-1-4987-5566-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
www.copyright.com

 v

Contents

Preface xiii

Part I Graphics and Rendering 1

Chapter 1 The Open Game Engine Exchange Format 3

Eric Lengyel

1.1 Introduction 3
1.2 OpenDDL 8
1.3 Scene Structure 12
1.4 Object Data 14
1.5 Animation 18
References 21

Chapter 2 Realistic Blending of Skies, Water, and Terrain 23

Frank Kane

2.1 The Problem 23
2.2 Blending Terrain with the Sky 26
2.3 Applying Visibility Effects to Distant Clouds 30
2.4 Creating Realistic Ocean Horizons 31
2.5 Putting it All Together 33
References 34

Chapter 3 Fog with a Linear Density Function 37

Eric Lengyel
3.1 Introduction 37

vi Contents

3.2 Fog Factor Calculation 38
3.3 Visibility Culling 44
References 52

Chapter 4 Vegetation Management in Leadwerks Game Engine 4 53

Josh Klint

4.1 Introduction 53
4.2 The Problem 54
4.3 The Idea 55
4.4 Culling 56
4.5 Rendering 61
4.6 Level of Detail 62
4.7 Physics 65
4.8 Future Development 70
References 71

Chapter 5 Smooth Horizon Mapping 73

Eric Lengyel

5.1 Introduction 73
5.2 Horizon Map Generation 75
5.3 Rendering with Horizon Maps 79
References 83

Chapter 6 Buffer-Free Generation of Triangle Strip Cube Vertices 85

Don Williamson

6.1 Introduction 85
6.2 Generating Cube Vertices 86
6.3 Wireframe Cubes 89

Chapter 7 Edge-Preserving Smoothing Filter for Particle Based Rendering 91

Kin-Ming Wong and Tien-Tsin Wong

7.1 Introduction 91
7.2 Guided Image Filtering 91
7.3 GLSL Implementation 94
7.4 Results and Performance 97
Acknowledgements 99
References 99

Contents vii

Chapter 8 Variable Precision Pixel Shading for Improved Power Efficiency 101

Rahul P. Sathe
8.1 Introduction and Background 101
8.2 Algorithm 102
8.3 Results 107
8.4 Discussion 107
Acknowledgements 109
References 109

Chapter 9 A Fast and High-Quality Texture Atlasing Algorithm 111

Manny Ko

9.1 Introduction 111
9.2 Background 112
9.3 Chart Segmentation 113
9.4 Atlas Packing 115
9.5 Atlas-Aware Filtering 118
Acknowledgements 119
References 120

Part II Physics 121

Chapter 10 Rotational Joint Limits in Quaternion Space 123

Gino van den Bergen

10.1 Introduction 123
10.2 3D Rotations 124
10.3 Unit Quaternions 128
10.4 Quaternions vs. Exponential Map 129
10.5 Swing-Twist Limits 130
10.6 Volumetric Limits 137
References 138

Chapter 11 Volumetric Hierarchical Approximate Convex Decomposition 141

Khaled Mamou
11.1 Introduction 141
11.2 Convex Approximation 142
11.3 Volumetric Hierarchical Approximate Convex Decomposition 145

viii Contents

References 157

Chapter 12 Simulating Soft Bodies Using Strain Based Dynamics 159
Muhammad Mobeen Movania

12.1 Introduction 159
12.2 Position Based Dynamics 160
12.3 Strain based Dynamics 162
12.4 Implementation Details 166
12.5 Implementing Cloth Simulation 169
12.6 Implementing Tetrahedral Mesh Simulation 172
12.7 Barycentric Interpolation 175
12.8 Experimental Evaluation 176
12.9 Future Work 179
References 181

Part III General Programming 183

Chapter 13 Generic, Lightweight, and Fast Delegates in C++ 185
Stefan Reinalter

13.1 Background 186
13.2 The Delegate Technique 188
13.3 Toward a Generic Solution 191
13.4 Embracing C++11 193
13.5 Extensions 195
13.6 Source Code 195

Chapter 14 Compile-Time String Hashing in C++ 197
Stefan Reinalter

14.1 Background 198
14.2 The Hash Technique 199
14.3 Toward a Generic Hash Function 201
14.4 Implementation Notes 204
14.5 Source Code 205

Chapter 15 Static Reflection in C++ Using Tuples 207
Nicolas Guillemot

15.1 Rethinking Composition Using Tuples 208

Contents ix

15.2 Recursive Member Iteration 210
15.3 Practical Concerns 215

Chapter 16 Portable SIMD Programs Using ISPC 219

Nicolas Guillemot and Marc Fauconneau Dufresne

16.1 The Problem 220
16.2 ISPC Basics 222
16.3 ISPC Example Programs 222
16.4 Integration in a Game Engine 224
16.5 Tips & Tricks 227
References 228

Chapter 17 Shared Network Arrays as an Abstraction of
Network Code from Game Code Logic 229

João Lucas Guberman Raza

17.1 Introduction 229
17.2 How SNAs Work 230
17.3 How a Gameplay Programmer Uses SNAs 232
17.4 How a Network Programmer Uses SNAs 234
17.5 Further Discussion 236
References 236

Part IV Character Control and Artificial Intelligence 237

Chapter 18 Vision Based Local Collision Avoidance 239

Teófilo Bezerra Dutra, Ricardo Marques, Julien Pettré, and Jan Ondřej

18.1 Introduction 239
18.2 Local Path Planning in Games 240
18.3 Vision Based Obstacle Avoidance 242
18.4 Purely Reactive Technique 244
18.5 Gradient Based Technique 247
18.6 Final Considerations 250
Acknowledgements 252
References 252

x Contents

Chapter 19 A Programming Framework for Autonomous NPCs 255

Artur de Oliveira da Rocha Franco, José Gilvan Rodrigues Maia, and
Fernando Antonio de Carvalho Gomes

19.1 Introduction 255
19.2 CordéIS Overview 257
19.3 Implementing CordéIS for Electronic RPGs 261
19.4 About the Demo 265
References 265

Chapter 20 Beyond Smart Objects: Behavior-Oriented Programming
for NPCs in Large Open Worlds 267

Martin Černý, Tomáš Plch, and Cyril Brom

20.1 Introduction 267
20.2 A Little Bit of Context 269
20.3 Behavior Objects 270
20.4 Integration Within an AI System 271
20.5 Implementation in Kingdom Come: Deliverance 273
20.6 Lessons Learned 277
Acknowledgements 279
References 279

Chapter 21 A Control System for Enhancing Entity Behavior 281

Mike Ramsey

21.1 Controller Basics 282
21.2 PID Implementation 284
21.3 Use Cases and Strategies for a PID Controller 285
References 288

Chapter 22 A Control System Based Approach to Entity Behavior 289

Mike Ramsey

22.1 A Single Control System 289
22.2 Hierarchical Control System Basics 291
22.3 A Hierarchical Control System for Following 291
References 294

Contents xi

Contributor Biographies 295

Index 305

This page intentionally left blankThis page intentionally left blank

 xiii

Preface

This book is the third volume of the Game Engine Gems series, and it contains a
new collection of clever techniques and practical advice on the subject of game
engine development. A group of 26 experienced professionals, several of whom
also contributed to the first or second volume, have written the 22 chapters that
follow and have filled them with expert knowledge and wisdom.

 The topics covered in this book vary somewhat widely within the subject of
game engine development and have been divided into the following four broad
categories:

■ Graphics and rendering,

■ Physics,

■ General programming, and

■ Character control and artificial intelligence.

Audience

The intended audience for this book includes professional game developers, stu-
dents of computer science programs, and practically anyone possessing an inter-
est in how the pros tackle specific problems that arise during game engine
development. Many of the chapters assume a basic knowledge of computer archi-
tecture as well as some knowledge of the high-level design of current-generation
game consoles, such as the PlayStation 4 and Xbox One. The level of mathemat-
ics used in the book rarely exceeds that of basic trigonometry and calculus.

xiv Preface

The Website

The official website for the Game Engine Gems series can be found at the follow-
ing address:

 http://www.gameenginegems.com/

Supplementary materials for many of the gems in this book are posted on this
website, and they include demos, source code, and examples. For chapters that
include project files, the source code can be compiled using Microsoft Visual
Studio.
 Any corrections to the text that may arise will also be posted on the website.
Announcements about the next volume in the Game Engine Gems series will ap-
pear here as well.

http://www.gameenginegems.com/

 1

Part I

Graphics and Rendering

This page intentionally left blankThis page intentionally left blank

 3

1
The Open Game Engine
Exchange Format

Eric Lengyel
Terathon Software

1.1 Introduction
The Open Game Engine Exchange (OpenGEX) format is a text-based file format
designed to facilitate the transfer of complex scene data between applications
such as modeling tools and game engines. OpenGEX was created in order to pro-
vide a clean, well-specified format that supports the modeling and animation fea-
tures needed by game developers while retaining conciseness and generality. The
OpenGEX specification [Lengyel 2015] was first released in September 2013
along with export plugins for Maya and 3ds Max. OpenGEX version 1.1.2, the
latest as of this writing, was released in December 2014 along with updated
plugins for Maya, 3ds Max, and Blender.
 OpenGEX directly supports the following concepts, and it has an extension
mechanism that can be used to add new application-specific types of information
to an OpenGEX file.

■ Hierarchical scene organization through the use of node trees.
■ Factored node transforms that may, for example, be split into position, rota-

tion, and scale to assist animation.
■ Object instancing, meaning that multiple nodes can reference the same object

and share its data.
■ Geometry objects, light objects, and camera objects.
■ Multiple materials per mesh with independent binding per instance.
■ Multiple vertex colors and texture coordinate sets per mesh.
■ Skinned meshes, including support for skeletons, bind-pose transforms, and

bone influence data.

4 1. The Open Game Engine Exchange Format

■ Morphed meshes, also known as blend shapes or shape keys.
■ Key frame animation for all node transforms and morph weights.
■ Linear, Bézier, and tension-continuity-bias (TCB) animation curves.
■ Standard material colors and textures (diffuse, specular, normal, emission,

opacity, and transparency).
■ Texture coordinate transforms.

 This chapter provides an overview of the design of OpenGEX, the structures
that compose an OpenGEX file, and the basic syntax upon which those structures
are built. At the most basic level, an OpenGEX file consists of a node hierarchy,
a set of objects, a set of materials, and some additional information about global
units and axis orientation. The various node, object, and material structures con-
tain all of the details such as geometric data and animation tracks within a hierar-
chy of additional types of structures defined by OpenGEX. The relationships
among all of these structures are shown in Figure 1.1. The data itself is formatted
using the syntax defined by the Open Data Description Language (OpenDDL),
which arose during the process of developing OpenGEX.
 A near-minimal example of a complete OpenGEX file describing a green
cube is shown in Listing 1.1. It begins with a group of Metric structures that de-
fine the units of measurement and the global up direction. Those are followed by
a single GeometryNode structure that provides the name and transform for the
cube. The geometric data for the cube is stored in the GeometryObject structure
that is referenced by the geometry node. The geometry object structure contains a
single mesh of triangle primitives that includes per-vertex positions, normals, and
texture coordinates. Finally, the Material structure at the end of the file contains
the green diffuse reflection color.

Additional Information

More detailed information about OpenGEX can be found on the official website
at the following address:

 http://opengex.org/

This website is home to the latest specification and export plugins for the various
supported modeling applications. It also hosts a generic import template written
in C++ that can be used as a starting point for the development of an OpenGEX
import module for a game engine’s art pipeline.

http://opengex.org/

1.1 Introduction 5

Figure 1.1. This diagram illustrates the relationships among the structures defined by the
OpenGEX format. The purple arrows point from each of the structures to the specific
substructures they are allowed to contain. (Substructures that are simply OpenDDL data types
have been omitted.) The circular orange nodes serve only to combine paths in order to simplify the
diagram where common relationships exist.

GeometryNodeLightNodeCameraNodeBoneNodeNode

Metric

Extension

Clip

ObjectRef MaterialRef

MorphWeight

Transform

Translation

Rotation

Scale

Animation

Track

Time Value

Key

Name

Material Texture

Color

ParamLightObject

CameraObject

GeometryObject

Atten

Mesh

Morph

VertexArray

IndexArray

Skin Skeleton

BoneRefArrayBoneCountArray BoneIndexArray BoneWeightArray

6 1. The Open Game Engine Exchange Format

Listing 1.1. This is an example of a very simple OpenGEX file containing the data for a green
cube. It consists of a single geometry node that references a geometry object and a material.

Metric (key = "distance") {float {0.01}}

Metric (key = "angle") {float {1}}

Metric (key = "time") {float {1}}

Metric (key = "up") {string {"z"}}

GeometryNode $node1

{

 Name {string {"Cube"}}

 ObjectRef {ref {$geometry1}}

 MaterialRef {ref {$material1}}

 Transform

 {

 float[16]

 {

 {0x3F800000, 0x00000000, 0x00000000, 0x00000000, // {1, 0, 0, 0

 0x00000000, 0x3F800000, 0x00000000, 0x00000000, // 0, 1, 0, 0

 0x00000000, 0x00000000, 0x3F800000, 0x00000000, // 0, 0, 1, 0

 0x42480000, 0x42480000, 0x00000000, 0x3F800000} // 50, 50, 0, 1}

 }

 }

}

GeometryObject $geometry1 // Cube

{

 Mesh (primitive = "triangles")

 {

 VertexArray (attrib = "position")

 {

 float[3]

 {

 {0xC2480000, 0xC2480000, 0x00000000}, {0xC2480000, 0x42480000, 0x00000000},

 {0x42480000, 0x42480000, 0x00000000}, {0x42480000, 0xC2480000, 0x00000000},

 {0xC2480000, 0xC2480000, 0x42C80000}, {0x42480000, 0xC2480000, 0x42C80000},

 {0x42480000, 0x42480000, 0x42C80000}, {0xC2480000, 0x42480000, 0x42C80000},

 {0xC2480000, 0xC2480000, 0x00000000}, {0x42480000, 0xC2480000, 0x00000000},

 {0x42480000, 0xC2480000, 0x42C80000}, {0xC2480000, 0xC2480000, 0x42C80000},

 {0x42480000, 0xC2480000, 0x00000000}, {0x42480000, 0x42480000, 0x00000000},

 {0x42480000, 0x42480000, 0x42C80000}, {0x42480000, 0xC2480000, 0x42C80000},

 {0x42480000, 0x42480000, 0x00000000}, {0xC2480000, 0x42480000, 0x00000000},

 {0xC2480000, 0x42480000, 0x42C80000}, {0x42480000, 0x42480000, 0x42C80000},

 {0xC2480000, 0x42480000, 0x00000000}, {0xC2480000, 0xC2480000, 0x00000000},

 {0xC2480000, 0xC2480000, 0x42C80000}, {0xC2480000, 0x42480000, 0x42C80000}

 }

 }

 VertexArray (attrib = "normal")

1.1 Introduction 7

 {

 float[3]

 {

 {0x00000000, 0x00000000, 0xBF800000}, {0x00000000, 0x00000000, 0xBF800000},

 {0x00000000, 0x00000000, 0xBF800000}, {0x00000000, 0x00000000, 0xBF800000},

 {0x00000000, 0x00000000, 0x3F800000}, {0x00000000, 0x00000000, 0x3F800000},

 {0x00000000, 0x00000000, 0x3F800000}, {0x00000000, 0x00000000, 0x3F800000},

 {0x00000000, 0xBF800000, 0x00000000}, {0x00000000, 0xBF800000, 0x00000000},

 {0x00000000, 0xBF800000, 0x00000000}, {0x80000000, 0xBF800000, 0x00000000},

 {0x3F800000, 0x00000000, 0x00000000}, {0x3F800000, 0x00000000, 0x00000000},

 {0x3F800000, 0x00000000, 0x00000000}, {0x3F800000, 0x00000000, 0x00000000},

 {0x00000000, 0x3F800000, 0x00000000}, {0x00000000, 0x3F800000, 0x00000000},

 {0x00000000, 0x3F800000, 0x00000000}, {0x80000000, 0x3F800000, 0x00000000},

 {0xBF800000, 0x00000000, 0x00000000}, {0xBF800000, 0x00000000, 0x00000000},

 {0xBF800000, 0x00000000, 0x00000000}, {0xBF800000, 0x00000000, 0x00000000}

 }

 }

 VertexArray (attrib = "texcoord")

 {

 float[2]

 {

 {0x3F800000, 0x00000000}, {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000},

 {0x00000000, 0x00000000}, {0x00000000, 0x00000000}, {0x3F800000, 0x00000000},

 {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000}, {0x00000000, 0x00000000},

 {0x3F800000, 0x00000000}, {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000},

 {0x00000000, 0x00000000}, {0x3F800000, 0x00000000}, {0x3F800000, 0x3F800000},

 {0x00000000, 0x3F800000}, {0x00000000, 0x00000000}, {0x3F800000, 0x00000000},

 {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000}, {0x00000000, 0x00000000},

 {0x3F800000, 0x00000000}, {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000}

 }

 }

 IndexArray

 {

 unsigned_int32[3]

 {

 {0, 1, 2}, {2, 3, 0}, {4, 5, 6}, {6, 7, 4}, {8, 9, 10},

 {10, 11, 8}, {12, 13, 14}, {14, 15, 12}, {16, 17, 18},

 {18, 19, 16}, {20, 21, 22}, {22, 23, 20}

 }

 }

 }

}

Material $material1

{

 Name {string {"Green"}}

 Color (attrib = "diffuse") {float[3] {{0, 1, 0}}}

}

8 1. The Open Game Engine Exchange Format

1.2 OpenDDL
During the development of OpenGEX, a generic syntax for expressing different
types of data arose and became known as the Open Data Description Language
(OpenDDL). This language is designed to store strongly-typed data in a human-
readable text format that is similar to the variable initialization syntax of C/C++.
The data can be composed of arrays of values and arrays of arrays, making it
very suitable for storing information that arises in 3D graphics, such as vertex
positions, texture coordinates, and transformation matrices.
 An OpenDDL file is composed of a sequence of structures. A single struc-
ture consists of a type identifier followed by an optional name, an optional list of
properties, and then its data payload enclosed in braces. This general syntax is
illustrated by the railroad diagram shown in Figure 1.2. There are two general
types of structures, those with built-in types that contain primitive data such as
integers or strings, and those that represent custom data structures defined by a
derivative file format such as OpenGEX. As an example, suppose that a particu-
lar format defined a data type called Vertex that contains the 3D coordinates of a
single vertex position. This could be written as follows.

Vertex
{
 float {1.0, 2.0, 3.0}
}

Figure 1.2. An OpenDDL file contains a sequence of structures that follow the produc-
tion rule shown here.

data-type name { data-list }

[integer-literal] name { data-array-list }

identifier name (property

,

) { structure }

structure

1.2 OpenDDL 9

 The Vertex identifier represents a custom data structure defined by the file
format, and it contains another structure of type float, which is a built-in primi-
tive data type. The data in the float structure consists of the three values 1.0,
2.0, and 3.0. In general, raw data values in a primitive data structure are always
specified as a comma-separated array of unbounded size. In the case that only a
single value needs to be specified, the array simply has a size of one element.
 The raw data inside a primitive data structure may also be specified as a
comma-separated array of subarrays of values. Each subarray has the same size,
and this size is specified by placing a positive integer value inside brackets im-
mediately following the primitive type identifier, preceding the structure’s name
if it has one. Each value contained in the primitive data structure is then written
as a comma-separated array of values enclosed in braces. The OpenGEX format
defines a structure called VertexArray that contains an array of vertex attributes.
In the case that the attribute is the position of the vertex, each subarray would
typically contain three floating-point values that are written as follows.

VertexArray (attrib = "position")
{
 float[3]
 {
 {1.0, 2.0, 3.0}, {0.5, 0.0, 0.5}, {0.0, -1.0, 4.0}
 }
}

 OpenDDL defines the primitive data types listed in Table 1.1. When used as
the identifier for a data structure, each entry in this table indicates that the struc-
ture is a primitive structure and that its data payload is composed of an array of
literal values. Any other identifier used for a data structure indicates that it does
not contain primitive data, but instead that it contains other data structures as al-
lowed by the particular format. The identifier itself can be composed of upper-
case and lowercase letters, numerical digits, and the underscore character, but it
cannot begin with a number. The OpenGEX format defines 39 specific data
structure identifiers to organize the information that it supports.
 Any structure in an OpenDDL file can have a name assigned to it. Names are
used when it is necessary to refer to one structure from another structure. For ex-
ample, an animation track in the OpenGEX format specifies the transform that it
modifies by referencing the name of the target structure containing the transform
data. When a structure has a name, that name begins with either a dollar sign or

10 1. The Open Game Engine Exchange Format

Type Description

bool A boolean type that can have the value true or false.

int8 An 8-bit signed integer that can have values in the range [72 , 72 1].

int16 A 16-bit signed integer that can have values in the range [152 , 152 1].

int32 A 32-bit signed integer that can have values in the range [312 , 312 1].

int64 A 64-bit signed integer that can have values in the range [632 , 632 1].

unsigned_int8 An 8-bit unsigned integer that can have values in the range [0, 82 1].

unsigned_int16 A 16-bit unsigned integer that can have values in the range [0, 162 1].

unsigned_int32 A 32-bit unsigned integer that can have values in the range [0, 322 1].

unsigned_int64 A 64-bit unsigned integer that can have values in the range [0, 642 1].

half A 16-bit floating-point type conforming to the S1-E5-M10 format.

float A 32-bit floating-point type conforming to the S1-E8-M23 format.

double A 64-bit floating-point type conforming to the S1-E11-M52 format.

string A double-quoted character string with contents encoded in UTF-8.

ref A sequence of structure names, or the keyword null.

type A type having values that are type names in the first column of this table.

Table 1.1. These are the primitive data types defined by OpenDDL.

percent sign and is written immediately after the structure identifier as in the fol-
lowing example taken from the OpenGEX format.

Rotation %xrot (kind = "x")
{
 float {1.5708}
}

Here, the name of this particular Rotation structure is “xrot”. The percent sign
indicates that it is a local name, meaning that it is only visible within the scope
containing the Rotation structure. Names that begin with a dollar sign, on the
other hand, have global scope and are visible throughout the entire file.

1.2 OpenDDL 11

 A reference value is used to form a link to a specific structure within an
OpenDDL file. If the target structure has a global name, then the value of a refer-
ence to it is simply the name of the structure, beginning with the dollar sign char-
acter. If the target structure has a local name, then the value of a reference to it
depends on the scope in which the reference appears. If the reference appears in a
structure that is a sibling of the target structure, then its value is the name of the
target structure, beginning with the percent sign character. Continuing with the
previous example, a Track structure that is part of an OpenGEX animation can
reference the above Rotation structure as follows.

Animation (begin = 0.0, end = 2.0)
{
 Track (target = %xrot)
 {
 ...
 }
}

 In this case, the reference to “xrot” appears in a property of the Track struc-
ture. (Properties are described below.) References can also appear in the data
payloads of ref structures, and this is used in OpenGEX when a node refers to
the object that it instances, as in the following example.

GeometryNode $node5
{
 Name {string {"Cylinder"}}
 ObjectRef {ref {$geometry2}}
 ...
}

 A non-primitive data structure may define one or more properties that can be
specified separately from the data that the structure contains. Every property has
a specific type that is defined by the derivative file format but not explicitly in-
cluded in the file itself. Properties are written in a comma-separated list inside
parentheses following the name of the structure, or just following the structure
identifier if there is no name. Each property is composed of a property identifier
followed by an equals character (=) and the value of the property. In the above

12 1. The Open Game Engine Exchange Format

examples, the Rotation structure has a kind property of type string, and the
Track structure has a target property of type ref.
 The exact format of the various primitive data types supported by OpenDDL
are described in detail on the openddl.org website and in the OpenGEX specifica-
tion. The formats are intended to be unsurprising to those familiar with popular
programming languages such as C++.

1.3 Scene Structure
In OpenGEX (and in many modeling programs), an individual item in a scene is
represented by a node, and the raw data referenced by any particular item appear-
ing in the scene is encapsulated inside an object. The relationships among nodes
and objects form the overall scene structure.

Nodes and Objects

Nodes are organized into trees that form a transformation hierarchy, and refer-
ences between nodes and objects form an instance graph. An OpenGEX file may
contain any number of nodes at the root level, and each node may contain any
number of child nodes. There is no limit to how many nodes may reference a par-
ticular object.
 The OpenGEX structures that participate in scene organization are listed in
Table 1.2. The types of nodes that can be present in a scene include geometry
nodes, light nodes, camera nodes, and bone nodes. OpenGEX also supports ge-
neric nodes that are used only for grouping other nodes in the scene and trans-
forming them as a whole.
 The geometric data and other parameters belonging to geometries, lights, and
cameras without regard for placement in the scene are stored in a flat set of ob-
ject structures. An OpenDDL reference is used to make the connection between
each node and the object that it instances. Material information is stored in a flat
set of material structures that can be referenced by geometry nodes.

Transforms

Each node in the hierarchy may contain one or more of the transformation struc-
tures listed in Table 1.3. The set of these transformation structures contained di-
rectly inside a particular node structure collectively defines that node’s local
transform.
 Each transformation structure can be designated as either a node transform or
an object transform (based on the value of its object property), and these divide

http://openddl.org

1.3 Scene Structure 13

Structure Description

Node A generic node used only for grouping other nodes and trans-
forming the group as a whole.

GeometryNode A node that references a geometry object. This node may also
reference materials and contain morph weights.

LightNode A node that references a light object.

CameraNode A node that references a camera object.

BoneNode A node that represents a bone belonging to a skeleton used by a
skinned mesh.

ObjectRef Inside a geometry node, light node, or camera node, contains a
reference to a geometry object, light object, or camera object.

MaterialRef Inside a geometry node, contains a reference to a material.

GeometryObject An object that contains mesh data for a geometry.

LightObject An object that contains parameters for an infinite light, point
light, or spot light.

CameraObject An object that contains parameters for a camera.

Table 1.2. These are the OpenGEX structures that define the node hierarchy and specify
the objects that appear in a scene.

the complete local transform into two factors. The node transform is inherited by
subnodes, meaning that the local transform of a subnode is relative only to the
node transform factor of its parent node. The object transform is applied only to
the node to which it belongs and is not inherited by any subnodes. This is a spe-
cial feature of OpenGEX that supports concepts such as pivot points in a general
manner.
 The node transform is calculated by converting all of the transforms having
an object property value of false to a 4 4 matrix and multiplying them to-
gether in the order that they appear inside the node structure. Similarly, the object
transform is calculated by multiplying matrices together for the transforms hav-
ing an object property value of true in the order that they appear inside the
node structure. Any interleaving of transforms having different object property
values has no meaning.

14 1. The Open Game Engine Exchange Format

Structure Description

Transform Contains a 4 4 transformation matrix.

Translation Contains a three-dimensional translation vector.

Rotation Contains a rotation that is expressed as a quaternion, an angle
about a given axis, or an angle about the x, y, or z axis.

Scale Contains either a three-dimensional scale applied to all three
axes or a one-dimensional scale applied to the x, y, or z axis.

Table 1.3. These are the OpenGEX structures that specify transformations.

1.4 Object Data
There are three types of objects defined by OpenGEX: geometry objects, light
objects, and camera objects. These structures contain the data that defines the
appearance and properties of these items in their own local coordinate systems
without regard for how they might be transformed by the nodes that reference
them.

Geometry Objects

Geometry objects contain a set of mesh structures, one for each level of detail,
that each contain vertex and primitive information as well as optional skinning
data. Each mesh structure typically contains several arrays of per-vertex data and
one or more index arrays as shown in Listing 1.2.

Listing 1.2. This mesh structure contains per-vertex positions, normals, and texture coordinates,
and it contains an index array that determines how triangle primitives are assembled. The letters
appearing in the arrays are placeholders for what would actually be numerical data in a real file.

Mesh (primitive = "triangles")
{
 VertexArray (attrib = "position")
 {
 float[3] {{x, y, z}, {x, y, z}, ...}
 }

 VertexArray (attrib = "normal")

1.4 Object Data 15

 {
 float[3] {{x, y, z}, {x, y, z}, ...}
 }

 VertexArray (attrib = "texcoord")
 {
 float[2] {{u, v}, {u, v}, ...}
 }

 IndexArray (material = 0)
 {
 unsigned_int16[3] {{i, j, k}, {i, j, k}, ...}
 }
}

 A mesh may be segmented into multiple pieces to which different materials
can be applied by including multiple index arrays having different values for
their material properties. The materials themselves are specified by the geome-
try nodes referencing the geometry object that contains the mesh. This makes it
possible to apply different materials to different instances of the same geometry
object.

Skinning

A mesh structure may include skinning information, in which case it contains all
of the structures listed in Table 1.4. A typical skin structure is shown in
Listing 1.3, and it exemplifies how the skeleton and per-vertex bone influences
are specified. The details about how this information is used to calculate skinned
vertex positions and normals are provided in the OpenGEX specification.
 The skeleton contains a list of references to the nodes in the scene that act as
the bones, and it specifies an array of transformation matrices that represent the
configuration of those bones in the bind pose. The skinning calculations require
the inverses of the bind-pose matrices, so other exchange formats typically store
those instead. However, it is common for scale adjustments and coordinate axis
permutations (such as changing the up direction) to be applied when importing
data into a game engine, and these would need to be applied to the non-inverted
matrices, so for this reason, OpenGEX does not store the inverses.

16 1. The Open Game Engine Exchange Format

Structure Description

Skin Contains information about a skeleton and the per-vertex bone
influence data.

Skeleton Inside a skin structure, contains information about the bones
belonging to a skeleton.

BoneRefArray Inside a skeleton structure, contains a list of references to the
bone nodes.

BoneCountArray Inside a skin structure, contains an array of bone counts specify-
ing how many bones influence each vertex.

BoneIndexArray Inside a skin structure, contains an array of bone indexes speci-
fying which bones influence each vertex.

BoneWeightArray Inside a skin structure, contains an array of weights specifying
how strongly each bone influences each vertex.

Table 1.4. These are the OpenGEX structures that specify the skeleton and bone influ-
ence data for a skinned mesh.

Listing 1.3. A Skin structure is required to contain the substructures shown here.

Skin
{
 Skeleton
 {
 BoneRefArray // References to the bone nodes.
 {
 ref {$bone1, $bone2, ...}
 }

 Transform // Bind-pose transforms for all bones.
 {
 float[16]
 {
 ...
 }
 }
 }

1.4 Object Data 17

 BoneCountArray // Number of bones influencing each vertex.
 {
 unsigned_int8 {...}
 }

 BoneIndexArray // Bone index per influence per vertex.
 {
 unsigned_int8 {...}
 }

 BoneWeightArray // Weight per influence per vertex.
 {
 float {...}
 }
}

Morphing

Each vertex array stored in a mesh structure may specify a morph target index.
This makes it possible to define multiple shapes with the same number of verti-
ces but different positions, normals, colors, texture coordinates, etc., for each
morph target. Morph targets are blended together using morph weights that are
stored with the geometry nodes that reference the geometry object containing the
morph data. Different geometry nodes can blend the morph targets in different
ways and may even utilize different subsets of the available morph targets. The
details about how morphed vertex attributes are calculated are provided by the
OpenGEX specification.

Materials

Each geometry node in a scene can reference a set of materials that are applied to
the geometry object that it instances. OpenGEX defines several basic material
parameters, colors, and texture maps that can be used to construct a proper shader
to be applied when rendering a geometry. This information is stored in a material
structure. An exporter may also include custom properties that are not explicitly
defined by OpenGEX. A game engine has considerable freedom in how it choos-
es to utilize the information included in a material structure.
 The standard set of colors defined by the OpenGEX specification are diffuse,
specular, emission, opacity, and transparency. There is one standard scalar pa-
rameter defined by the specification, and that is the specular power appearing in

18 1. The Open Game Engine Exchange Format

the conventional Phong shading model. This parameter, and each of the standard
colors listed above are also defined as standard texture maps along with one more
texture map that contains tangent-space normal vectors.
 A texture map structure may contain a set of transformation structures. These
specify a transform to be applied to a mesh’s texture coordinates before they are
used to sample the texture map.

Light Objects

OpenGEX supports three types of light sources: infinite (directional) lights,
points lights, and spot lights. Light objects contain information about a light’s
color, intensity, and attenuation functions. In the case of a spot light, a light ob-
ject may also specify a texture map to be used as a projection.
 For point lights and spot lights, OpenGEX supports a variety of general at-
tenuation functions that are designed to fit intensity fall-off models commonly
used by game engines and various modeling applications. These functions are
specified by one or more attenuation structures contained within the light object.
If more than one attenuation structure is present, then the effective intensity fall-
off model is given by the product of the individual functions at any particular
distance from the light source.

Camera Objects

A camera object contains a small amount of information about a camera having a
perspective projection. A camera object can specify the horizontal field of view
angle and the distance to the near and far clipping planes. When any of these are
missing, an application is free to use its own default values.

1.5 Animation
Node transformations, morph weights, and texture coordinate transformations
may all be animated through the inclusion of animation structures inside node
structures and texture structures. A complete transformation may be decomposed
into multiple components, such as rotations about one or more axes followed by a
translation, and an animation may contain several tracks that animate each com-
ponent separately. An OpenGEX file may contain multiple animation clips, and
each animation structure identifies which clip it belongs to. Information about a
complete animation clip is stored inside a clip structure that can appear at the top
level of the file. The OpenGEX structures involved in animation are summarized
in Table 1.5.

1.5 Animation 19

Structure Description

Animation Contains a set of animation tracks that control one or more tar-
get structures.

Clip Contains information about a single animation clip.

Track Inside an animation structure, contains animation key data for a
single transformation structure or morph weight structure.

Time Inside a track structure, contains key time data.

Value Inside a track structure, contains key value data.

Key Inside a time or value structure, contains the data that defines an
animation curve.

Table 1.5. These are the OpenGEX structures that contain animation data.

 All animation data in OpenGEX is specified in terms of key frames in which
information about the overall shape of an animation curve is given at many dis-
crete times. The values of the animation curve in between consecutive time keys
are determined by a specific method of interpolation. OpenGEX supports three
widely used interpolation methods: linear, Bézier, and TCB (tension-continuity-
bias). The Bézier and TCB methods require additional information beyond
the curve’s value at each time key. The details about the exact calculations
used to implement each interpolation method are provided in the OpenGEX
specification.
 The example shown in Listing 1.4 demonstrates how animation tracks are
typically used to modify the position and rotation of a node over a short time in-
terval. The values of the animation curves are specified at three key times, and
the transforms at other times are determined through Bézier interpolation using
the control point data supplied in the track structures.

20 1. The Open Game Engine Exchange Format

Listing 1.4. The animation tracks in this example move the node along the x axis while rotating it
about the z axis, and then they move the node along the z axis.

GeometryNode
{
 Translation %xpos (kind = "x")
 {
 float {-0.47506}
 }

 Translation %zpos (kind = "z")
 {
 float {0}
 }

 Rotation %zrot (kind = "z")
 {
 float {0}
 }

 Animation (begin = 0, end = 1)
 {
 Track (target = %xpos)
 {
 Time (curve = "bezier")
 {
 Key {float {0, 0.666667, 1}}
 Key (kind = "-control") {float {0, 0.444467, 0.8889}}
 Key (kind = "+control") {float {0.2222, 0.777767, 1}}
 }

 Value (curve = "bezier")
 {
 Key {float {-0.47506, 413.657, 413.657}}
 Key (kind = "-control") {float {-0.47506, 413.657, 413.657}}
 Key (kind = "+control") {float {-0.47506, 413.657, 413.657}}
 }
 }

 Track (target = %zpos)
 {

References 21

 Time (curve = "bezier")
 {
 Key {float {0, 0.666667, 1}}
 Key (kind = "-control") {float {0, 0.444467, 0.8889}}
 Key (kind = "+control") {float {0.2222, 0.777767, 1}}
 }

 Value (curve = "bezier")
 {
 Key {float {0, 0, 158.682}}
 Key (kind = "-control") {float {0, 0, 158.682}}
 Key (kind = "+control") {float {0, 0, 158.682}}
 }
 }

 Track (target = %zrot)
 {
 Time (curve = "bezier")
 {
 Key {float {0, 0.666667, 1}}
 Key (kind = "-control") {float {0, 0.444467, 0.8889}}
 Key (kind = "+control") {float {0.2222, 0.777767, 1}}
 }

 Value (curve = "bezier")
 {
 Key {float {0, 3.14582, 3.14582}}
 Key (kind = "-control") {float {0, 3.14582, 3.14582}}
 Key (kind = "+control") {float {0, 3.14582, 3.14582}}
 }
 }
 }
}

References
[Lengyel 2015] Eric Lengyel. Open Game Engine Exchange Specification, Version 1.1.2.

Terathon Software, 2015.

This page intentionally left blankThis page intentionally left blank

 23

2

Realistic Blending of Skies,
Water, and Terrain

Frank Kane
Sundog Software LLC

Atmospheric scattering is often applied inconsistently between dynamic skies,
terrain, water, and clouds, leading to unrealistic horizons and distant scenery in
large, expansive outdoor scenes. Shaders tend to be specialized for these different
scene elements, making it difficult to produce realistic results when they come
together in the background. This chapter explains the origin of the problem, of-
fers several solutions, and discusses the tradeoffs they entail.

2.1 The Problem
Figure 2.1 illustrates one manifestation of the problem. In this scene, fog is ap-
plied to the terrain, but the fog color on the distant mountains is inconsistent with
the sky color behind them. This leads to the unnatural result of mountains look-
ing like out-of-place cutouts against the sky.
 Skies are often prerendered sky boxes or sky domes. In this case, if the fog
density of the scene is known to be fixed, the sky textures may be retouched to
better match the terrain. However, many engines built for outdoor scenes will
include a procedural sky shader (such as one using the Preetham model [Preeth-
am et al. 1999] or Hosek-Wilkie model [Hosek et al. 2012]) that can handle con-
tinual changes in time of day. These sky models produce sky colors from a
function of the sun position, atmospheric turbidity, and position on the sky de-
rived from fitting functions to experimentally obtained data. This is likely a very
different approach from the algorithm used to apply fog or atmospheric scattering
to your terrain, and the two are unlikely to produce consistent results on their
own. Simpler models that just darken or color-shift skies based on time of day
suffer from the same problem, as they still assume a given visibility.

24 2. Realistic Blending of Skies, Water, and Terrain

Figure 2.1. Atmospheric scattering on terrain without a matching sky color looks unnatural.

 Figure 2.2 illustrates the challenges of handling reduced visibility on 3D
clouds in the sky. Fundamentally, this is the same issue seen with terrain. The fog
equation applied to the clouds doesn’t match how the sky model handles visibil-
ity. As a result, the clouds appear to take on an unnatural color. Even if their fog
color is physically realistic, if it doesn’t match the sky behind them, your brain
latches onto that discontinuity and declares the scene to be unreal.
 Figure 2.3 shows an even more challenging problem in ocean scenes. In ad-
dition to the fog problem we described with terrain, the color of water is highly
dependent on local surface normal vectors that determine the blend of reflection
and refraction based on the Fresnel equations. Near the horizon, this detail is lost
or averaged out in unrealistic manners. This can lead to distant water appearing
overly reflective and matching the sky above it, while in real life there is a dis-
tinct line visible at the horizon of the ocean in clear conditions. Only a perfectly
calm ocean, which doesn’t exist in nature, would blend smoothly into the sky at
the horizon when visibility is high.
 Fortunately, several methods of varying complexity exist to smoothly blend
distant terrain and clouds with the sky. Proper shading of distant water waves
also has a simple solution.

2.1 The Problem 25

Figure 2.2. Poorly chosen fog colors results in distant clouds being more visible, instead of less.

Figure 2.3. Incorrect handling of distant surface normal vectors yields an indistinct horizon line.

26 2. Realistic Blending of Skies, Water, and Terrain

2.2 Blending Terrain with the Sky

The sky behind your terrain is not a fixed color, and this is the fundamental prob-
lem. Especially at sunrise and sunset, there can be very sharp gradients in sky
color as a function of sky elevation and sky azimuth. The reddest parts of the sky
will be near the sun and near the horizon. A realistic sky model must simulate the
location of the sun and how much atmosphere direct sunlight passes through in
order to reach you (the atmospheric mass) as well as the molecules and particles
that scatter that sunlight along the way. Figure 2.4 illustrates how the amount of
atmosphere sunlight must traverse can vary greatly depending on the time of day
due to the nature of our atmosphere and the curvature of Earth.

 If you are applying a simple exponential fog equation to your terrain, it as-
sumes a fixed fog color fC and produces a final color C using the equation

  1i ff f  C C C

where df e  . Here, d is the distance from the eye-point to the terrain,  is a
constant that controls the density of the fog, and iC is the incident, unfogged ter-
rain color. This fog equation has no hope of blending with a realistic sky, which
may vary in color from light blue to deep orange around the horizon at sunset.

 More sophisticated atmospheric scattering approaches simulate Rayleigh
scattering as light passes from terrain to the eye, and blend your terrain color
with the sky color in a more realistic manner [Ebert 2003]. However, there is still
the problem of choosing an appropriate sky color at each vertex or fragment that
matches the sky behind it.

 One may be tempted to just use the same atmospheric scattering model for
both the terrain and the sky to resolve these discrepancies. However, that’s much
easier said than done. Fog models intended for terrain will degrade to a constant
color given large distances, so you can’t simply treat your sky as an infinitely
distant object because you’ll end up with a flat, fog-colored sky. Trying to figure
out the distance a ray of light will traverse before “leaving the atmosphere” of
your sky won’t do you any good, either. Because the density of the atmosphere
changes as a function of altitude, it’s not that simple. Recall from Figure 2.4 that
the shape of the atmosphere also matters. Even if you could properly account for
those effects, realistic sky colors also depend on modeling the scattered sunlight,
reflections from the ground, air pollution, Mie scattering, amount of water vapor,
and many other factors. This is why procedural sky shaders must resort to non-
linear regressions for realistic results, instead of actually trying to model these

2.2 Blending Terrain with the Sky 27

Figure 2.4. Sunlight arriving near the horizon must pass through more atmosphere than
sunlight from overhead, yielding different sky colors.

different phenomena in real time. These procedural models are only appropriate
for skies, and not terrain.
 Still, one of the earliest analytic models of the sky attempted to use the same
algorithms to apply atmospheric scattering to the terrain. It looks good under cer-
tain visibility conditions, but not in the general case. In fact, Figure 2.1 imple-
ments the Preetham / Hoffman model for atmospheric extinction [Hoffman and
Preetham 2002] on terrain that accompanies the Preetham sky model used. But
hand-tuning of constants is still required to produce good results for a given visi-
bility condition.
 All hope is not lost, however. There are some simple solutions that may pro-
duce visually satisfying results.

Blending the Sky Toward a Fixed Horizon Color

The simplest solution is to force a constant color in the sky near the horizon,
which matches the fog color used for your terrain. Our SilverLining Sky SDK
[Sundog] applies this in its sky shaders like this:

float fogDistance = volumeDistance / costheta;
float f = exp(-(fogDensity * fogDistance));
finalColor = mix(fogColor, skyColor, min(f, 1.0));

Here, volumeDistance represents the modeled visibility distance at the horizon,
and costheta is the cosine of the angle between the zenith and a given point on

28 2. Realistic Blending of Skies, Water, and Terrain

the sky dome. This has the effect of fading in the desired fog color near the hori-
zon in a reasonably realistic manner. The result is a more consistent sky color
near the horizon, which does not vary with azimuth and varies little with eleva-
tion behind distant mountains. A good choice for the fog color is the computed
sky color near the horizon in the view direction, before this additional fog is
applied.
 There is some physical basis to this approach. Fog tends to settle near the
ground, and so foggy conditions will result in heavy scattering near the horizon
but less so directly overhead. As a result, your brain will accept the resulting sce-
ne as natural looking.
 This is a simple and fast way to eliminate anomalies resulting from fogged
terrain against a realistic sky, but it does give up some realism at sunrise and sun-
set when you would expect the sky to look different at different azimuths. It is,
however, the lesser of two evils.

Choosing a Better Fixed Fog Color

Another solution is to still use a completely analytic model for the sky, but
choose your fixed fog color for the terrain more wisely. If your field of view isn’t
unrealistically wide, the variation in sky color as a function of azimuth usually
won’t be all that much within your view frustum. You can take advantage of this
to still use a single fog color for your scene that matches your sky well enough in
most situations.
 What’s needed is to implement the same algorithms in your sky shader on the
CPU, so you can query the sky color for a given point on the sky and use that for
the fog color in your scene. Choosing the correct point on the sky to sample is
often the hard part in this approach. Analytic models can reach a discontinuity
exactly at the horizon, which should be avoided. The distant mountains you are
blending with the sky will be drawn just above the horizon line, not exactly on it,
so you’ll want to choose a point that is a degree or so above the horizon in the
direction the camera is facing. Here’s our code for choosing an azimuth angle to
sample from the sky dome, given a view matrix:

Color Sky::GetAverageHorizonColor(double elevation)
{
 Matrix4 mv;
 Vector3 lookAt;

 Renderer::GetInstance()->GetModelviewMatrix(&mv);

2.2 Blending Terrain with the Sky 29

 mv = mv * Renderer::GetInstance()->GetInverseBasis4x4();

 if (Renderer::GetInstance()->GetIsRightHanded())
 {
 lookAt = Vector3(-mv.elem[2][0], -mv.elem[2][1], -mv.elem[2][2]);
 }
 else
 {
 lookAt = Vector3(mv.elem[2][0], mv.elem[2][1], mv.elem[2][2]);
 }

 double azimuth = DEGREES(atan2(lookAt.x, -lookAt.z));
 return GetAverageHorizonColor(azimuth, elevation);
}

 This code assumes the presence of our own framework, but it conveys the
general idea. The “inverse basis” matrix this code references simply handles dif-
ferences between the sky’s native coordinate system and the coordinate system
used by the scene, if any. The z vector is extracted from the resulting view ma-
trix, and the atan2() function is used to determine the azimuth angle the view is
pointing towards.
 While this approach may produce satisfying results during most times of day,
it will still present problems near sunset and sunrise. If you’re rotating the cam-
era, the fog color will change noticeably as the camera goes across the area
where the sun is because this is the part of the sky that changes the most as a
function of azimuth. Seeing the fog color on the same bit of terrain change as a
function of view angle isn’t right. You can mitigate this by instead sampling sev-
eral sky colors above the horizon from a range of azimuths centered on the view
direction, and averaging them together. We’ve gotten satisfactory results by av-
eraging eight sky colors across the scene’s field of view. This smooths out fog
color changes enough in most cases while still providing a good match between
the sky and terrain for the scene as a whole.
 This technique may be combined with the previous one. The fog color cho-
sen in this manner may also be blended into your sky near the horizon to avoid
any color inconsistencies at the horizon.

Using a Cube Map

The most accurate solution is to render your sky to a cube map, and modify your
terrain shaders to sample this cube map to determine the best fog color at each

30 2. Realistic Blending of Skies, Water, and Terrain

vertex or fragment. All you need is the world-space vector from the eye to the
terrain point to properly sample this cube map. When used with Rayleigh scatter-
ing shaders on terrain, this can produce wonderful results, as the “sky color” you
are blending toward is known and consistent with the actual sky being displayed
behind it.

 This approach isn’t always practical, though. Rendering the sky to six faces
of a cube map can be expensive enough to cause dropped frames in some situa-
tions. If your application features continuous time of day changes, then the sky’s
cube map needs to be updated frequently, and that cost is incurred constantly.
Rendering only one face per frame is one way to help spread out that cost.

 One saving grace is that any 3D clouds in your scene, which would be the
most expensive part of your sky, aren’t needed for the purpose of creating a cube
map for fog colors. So, any clouds in your scene may be omitted while generat-
ing the cube map. Not only does this make the cube map generation faster, but it
also removes objects in the sky that move relative to the eye-point in your cube
map. So you don’t need to regenerate it as the camera moves, and you may use
the same cube map to compute the fog colors for any object in your scene regard-
less of its position.

 Your engine may already maintain a cube map of the sky for use as an envi-
ronment map for reflections. If so, reusing this cube map to drive your fog colors
is a simple choice.

2.3 Applying Visibility Effects to Distant Clouds

If your engine features 3D volumetric clouds, fogging them in a realistic manner
against a dynamic sky background is even more challenging than with terrain.
You can’t assume they’re near the horizon like your terrain is, plus they’re at an
altitude where atmospheric scattering behaves differently than it does near the
ground.

 The same issue seen with terrain exists when choosing an appropriate fog
color for your clouds. You may use the same trick of sampling the sky color on
the CPU at the location of each cloud and using that for the fog color, but there’s
an even better and simpler trick.

 Assuming there are no large objects above the clouds in your scene, don’t
use a fog color at all on your clouds. Instead, fade them out as a function of their
fog value. This gives you a perfect match with the sky colors behind them.

 We compute a simple exponential-squared fog equation for our clouds. But
instead of using the resulting fog value to interpolate between the cloud color and

2.4 Creating Realistic Ocean Horizons 31

the fog color, we compute (1.0 - fog) and apply the result as the alpha value
on the clouds.
 It is worth noting that you generally don’t want to apply the same fog density
value to your clouds as you do to your terrain. Cumulus clouds are generally
around 6 km high, and so typical fog density values seen near the ground would
result in the clouds disappearing entirely with our scheme. While mathematically
correct, it’s not physically correct. The fog that affects your terrain may not exist
at all, or at least be much thinner, at the altitude the clouds are at. As such, it’s
entirely reasonable to use a much smaller fog density value for your clouds than
you use on your terrain.
 In practice, choosing a separate fog density for your clouds by hand will
yield the desired results with the least effort. But a slightly more principled ap-
proach may be followed if we assume that the fog affecting your terrain is uni-
form and underneath a fixed altitude. For example, the following code models a
fog volume up to a given altitude, and assumes that typical eye points will be
viewing the clouds at roughly a 45-degree angle through it. It then computes an
appropriate adjusted fog density value for the clouds, which becomes smaller as
the eye moves up toward the top of the fog volume. In the case where the eye is
above the fog, a sufficiently small fog density for the clouds of your choosing
should be applied as a default.

double distanceToEdgeOfFog = (fogHeight- eyeAltitude) * 1.414;
if (distanceToEdgeOfFog > 0.0)
{
 double cloudFogDensity = distanceToEdgeOfFog * fogDensity
 / cloudLayerAltitude;

 // Apply this fog density to your clouds, instead of some
 // small default density.
}

2.4 Creating Realistic Ocean Horizons
The same techniques discussed above for choosing realistic fog colors for terrain
apply to oceans as well. But there’s more to realistic ocean colors near the hori-
zon than just fog. In addition to fog, the color of water is driven by a combination
of reflected and refracted light, as given by the Fresnel equations. The reflectivity
of the water may be accurately computed by the following GLSL code.

32 2. Realistic Blending of Skies, Water, and Terrain

const float IOR = 1.33333;

vec3 P = reflect(vNorm, nNorm);
vec3 S = refract(P, nNorm, 1.0 / IOR);

float cos_theta1 = dot(P, nNorm);
float cos_theta2 = -dot(S, nNorm);

float Fp = (cos_theta1 - IOR * cos_theta2) /
 (IOR * cos_theta2 + cos_theta1);
float Fs = (cos_theta2 - IOR * cos_theta1) /
 (IOR * cos_theta1 + cos_theta2);

Fp = Fp * Fp;
Fs = Fs * Fs;

float reflectivity = clamp((Fs + Fp) * 0.5, 0.0, 1.0);

 Here, vNorm is the normalized view vector to a fragment on the water, and
nNorm is the surface normal. The resulting reflectivity value is used to blend be-
tween the color of reflected and refracted light at each fragment of the ocean
surface.
 As you can see, this result is highly dependent on the surface normal at each
fragment. The refracted color in a deep ocean is usually a dark blue, while the
reflected color is a lighter blue or gray sky color. Different surface normals can
result in highly contrasting water colors.
 What does this have to do with blending water into the sky? Well, think
about just how quickly the surface normals on an ocean change. Every little wave
has a huge effect on these normals, and as the water gets further away toward the
horizon, these waves will be even smaller than your fragments or the resolution
of your surface normal data. As such, properly averaging these normals when
shading distant fragments is crucial to realistic results.
 For color information, that’s what mipmapping is for. But mipmaps don’t
work as well for normal maps. Unless the normals are all identical, averaging or
interpolating normals will result in a vector with a length less than one. However,
there’s a simple fix:

1. Make sure your surface normals on the ocean are stored as simple  , ,x y z
normal vectors applied to the RGB channels of a texture.

2.5 Putting it All Together 33

2. Enable mipmapping on that normal map.
3. When sampling the normal map in your shader, just renormalize the resulting

vectors before using them in the Fresnel equations.

While this may all seem like an obvious thing to do, ocean rendering that is based
on fast Fourier transforms (such as that described by [Tessendorf 2001]) actually
lends itself to storing surface normals not as unit-length normal vectors, but in-
stead as slopes in the x and y directions. Mipmapping that information doesn’t
produce the correct results at all and ends up producing perfectly reflective water
in the distance even in rough seas. When using real normal maps instead and
renormalizing their mipmapped samples, the water at the horizon will get darker
as the waves get rougher, which is what happens in the real world as more re-
fracted light is seen from the waves that are facing you.
 Incidentally, you want to use the raw, mipmapped normal vector in your
lighting equations without rescaling to unit length, or else aliasing may result
from specular highlights. Having smaller normal vectors in the distance is a de-
sirable effect when doing things like bump-mapping because bumpy surfaces
should appear smoother when viewed from very far away. The problem of specu-
lar aliasing is treated in much more detail by Nvidia [Toksvig 2005] and by the
LEAN Mapping technique [Olano and Baker 2010], if you’re interested. It is also
relevant to the topic of realistic depictions of distant objects.

2.5 Putting it All Together
Figure 2.5 shows the end result of applying all of these techniques. Note the
smooth blending of clouds, terrain, and sky as well as the distinct horizon line
over the ocean.
 Inconsistent application of visibility effects on outdoor scenes is one of those
things that lead to scenes just looking “wrong” even if the user can’t quite articu-
late why. By paying attention to these details, your expansive terrains, skies, and
oceans will become more believable and immersive.

34 2. Realistic Blending of Skies, Water, and Terrain

Figure 2.5. Consistent visibility effects on distant terrain, clouds, and water yields believable
scenes with reduced visibility.

References
[Ebert 2003] David S. Ebert. Texturing & Modeling: A Procedural Approach. Morgan

Kaufmann, 2003.

[Hoffman and Preetham 2002] Nathaniel Hoffman and Arcot J. Preetham. “Rendering
outdoor light scattering in real time”. Proceedings of Game Developers Confer-
ence 2002, pp. 337–352.

[Hosek et al. 2012] Lukas Hosek and Alexander Wilkie. “An analytic model for full spec-
tral sky-dome radiance”. ACM Transactions on Graphics, Vol. 31, No. 4 (July
2012), Article 95.

[Olano and Baker 2010] Marc Olano and Dan Baker. “LEAN mapping”. Proceedings of
the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games,
pp. 181–188.

[Preetham et al. 1999] Arcot J. Preetham, Peter Shirley, and Brian Smits. “A practical
analytic model for daylight”. Proceedings of the 26th annual conference on com-
puter graphics and interactive techniques, 1999, pp. 91–100.

[Sundog] Sundog Software website, http://www.sundog-soft.com/

http://www.sundog-soft.com/

References 35

[Tessendorf 2001] Jerry Tessendorf. “Simulating ocean water”. Proceedings of SIG-
GRAPH 2001.

[Toksvig 2005] Michael Toksvig. “Mipmapping normal maps”. Journal of graphics,
GPU, and game tools, Vol. 10, No. 3 (2005), pp. 65–71.

This page intentionally left blankThis page intentionally left blank

 37

3

Fog with a Linear Density Function

Eric Lengyel
Terathon Software

3.1 Introduction
In this chapter, we consider a fog volume inside which the density of the fog is a
linear function of distance along some given direction. This naturally gives rise
to a halfspace bounded by a plane where the density function is zero. On one side
of the plane, the fog grows thicker as the distance from the plane increases, and
on the other side of the plane, there is no fog at all. Such a fog volume has many
uses in games ranging from heavy mist trapped in a valley to murky waters in a
swamp. An example outdoor scene is shown in Figure 3.1.
 We first derive a unified formula that allows us to render halfspace fog for all
possible configurations in which the camera position and point being shaded are
inside or outside the fog volume. Then, we examine the problem of determining
which objects in the scene can be skipped when rendering because they are either
too deep or too far away inside the fog volume to be visible.
 The mathematics in this chapter are written in terms of four-dimensional
Grassmann algebra. This means that we are using homogeneous coordinates and
making a distinction between vectors and points. A vector  , , ,0x y zV V VV is
written in bold style and always has a w coordinate of zero. A point

 , , ,1x y zP P P is written in script style and always has a w coordinate of one.
A plane is represented by a trivector  , , ,x y z wF F F FF that we also write in the
bold style. A plane F can be multiplied by a vector V or a point  using the
wedge product to produce a scalar as follows:

x x y y z z

x x y y z z w

F V F V F V

F P F P F P F

   

    

F V

F  . (3.1)

38 3. Fog with a Linear Density Function

Figure 3.1. This is an example of a fog volume that uses a linear density function. The
fog plane (at which the density is zero) lies at a small distance above the camera position.

 If the plane F is normalized, meaning that 2 2 2 1x y zF F F   , then the product
F  gives the signed perpendicular distance between the plane F and the point

. As illustrated in Figure 3.2, the normal direction of our fog plane points out-
ward from the fog volume, so 0 F  for points  below the fog plane in the
fogged halfspace, and 0 F  for points  above the fog plane in the unfogged
halfspace.

3.2 Fog Factor Calculation
The fog factor f determines how the shaded color calculated on a surface is mixed
with the fog color before it is finally output from a fragment shader. For fog hav-
ing a constant density ρ, the fog factor is typically calculated with the formula

 ρdf e  , (3.2)

where d is the distance between the point being shaded and the camera position.
Once the fog factor has been calculated, it is clamped to the range  0,1 , and the

3.2 Fog Factor Calculation 39

Figure 3.2. A point  in the fogged halfspace forms a negative wedge product with the
fog plane F, and a point  in the unfogged halfspace forms a positive wedge product.

fragment’s final color finalK is blended with a constant fog color fogK to produce
the color K that is written the frame buffer using the formula

  final fog1K f K f K   . (3.3)

What follows is the derivation for the case that a linear density function  ρ  ,
depending on the point  being shaded, is used instead of a constant density
[Lengyel 2007]. We account for the fact that the distance d is no longer neces-
sarily equal to the total distance to the camera because the point  and the cam-
era position may lie on opposite sides of the fog plane.

Derivation

Let the density function  ρ  be defined as

    ρ a  F  (3.4)

for some positive constant a, and let dg represent the contribution to the fog fac-
tor exponent along a differential length ds, given by the product

  dg ρ ds  . (3.5)

By integrating over the portion of the path that lies beneath the fog plane between
the shaded point  and the camera position , we obtain a function  g  that
can be substituted for the product ρd in Equation (3.2).





F

Unfogged halfspace

Fogged halfspace

40 3. Fog with a Linear Density Function

 Let the function

  t t  V  (3.6)

represent the line segment connecting the shaded point  with the camera posi-
tion , where  0,1t and the traditional view direction V is defined as

. V   The differential distance ds can be expressed in terms of t as
ds dt V . We need to consider the four possible configurations of the points 
and  with respect to the boundary plane, as illustrated in Figure 3.3. Of course,
if F  and F  are both positive, then no part of the line segment travels
through the fog volume, and   0g  . In the case that 0 F  and 0 F  ,
we integrate over the entire distance between  and  to obtain

    

 

1

0

2

g dg ρ t dt

a

 

    

  V

V F F




 

  . (3.7)

Figure 3.3. For a surface point  and a camera position , there are four distinct config-
urations to consider when integrating over the portion of the path between them that lies
within the fogged halfspace.

 F


F





 F

 

F



(a) (b)

(c) (d)

3.2 Fog Factor Calculation 41

 In the two remaining cases, in which F  and F  have opposite signs,
we must integrate over only the part of the path that lies inside the fog volume.
The parameter planet at which the line segment  t passes through the fog plane
is given by

 planet


 


F

F V


, (3.8)

and this becomes one of the limits of integration. In the case that only 0 F  ,
we have

    

 

plane

0

2

,
2

t

g ρ t dt

a








 V

F
V

F V

 


 (3.9)

and in the case that only 0 F  , we have

    

 
plane

1

2

2

t

g ρ t dt

a



 
       

 V

F
V F F

F V

 

  . (3.10)

 The following table summarizes the fog functions  g  for the four possible
cases shown in Figure 3.3. Our goal is to combine these into a single formula that
produces the correct fog function in all cases without expensive branches or other
conditional code in a fragment shader.

Case F  F  Fog Function  g 

(a) Positive Positive 0

(b) Negative Positive
  2

2

a 


F
V

F V



(c) Positive Negative
  2

2

a  
      

F
V F F

F V

 

(d) Negative Negative  
2

a
   V F F 

42 3. Fog with a Linear Density Function

 First, we can make use of the fact that F V is always positive in case (b)
and always negative in case (c). By applying an absolute value to F V, we can
merge cases (b) and (c) into one formula and write  g  as

       2

2

a
g k

 
       

F
V F F

F V

   , (3.11)

where the constant k is defined as

1, if 0;

0, otherwise.
k

  


F 
 (3.12)

In order to incorporate case (d) into this formula, we need to eliminate the last
term inside the brackets whenever F  and F  have the same sign. This can
be accomplished by replacing F  with     min sgn ,0 F F  in the last
term to arrive at the formula

          2min sgn ,0

2

a
g k

  
       

F F
V F F

F V

    . (3.13)

This formula also works for case (a) because both terms are eliminated when
F  and F  are both positive, so we have found a single unified fog function

that can be used in all cases. It may look complicated, but it is inexpensive to
evaluate in a shader because  and V are the only values that vary.
 Note that in Equation (3.13), if the quantity F V is zero, then it is always
true that the numerator of the last term is also zero. Although in practice a zero-
divided-by-zero situation is rare enough to be ignored, a small positive ε can be
added to F V in the denominator to guarantee that a NaN is not produced
without affecting the fog function’s value significantly.

Implementation

A fragment shader implementation of the unified fog function  g  given by
Equation (3.13) is shown in Listing 3.1. We can calculate the quantities V, F V,
 k   F F  , and    sgn F F  in the vertex shader and interpolate

them during triangle rasterization. This leaves only a somewhat small amount of
computation to be performed in the fragment shader. The fog factor f is calculat-
ed as

   ln 2sat 2 gf   , (3.14)

3.2 Fog Factor Calculation 43

Listing 3.1. This GLSL fragment shader code implements the unified fog function given by
Equation (3.13), calculates the fog factor using Equation (3.14), and uses the fog factor to
interpolate between the shader’s final color and the fog color.

uniform float density; // a / (2 ln 2)
uniform vec3 fogColor;

in vec3 V; // V = C - P
in float FV; // F ^ V
in float c1; // k * (F ^ P + F ^ C)
in float c2; // (F ^ P) * sgn(F ^ C)

void main()
{
 vec4 color = ...; // Final shaded surface color.

 // Calculate g(P) using Equation (3.13).
 float g = min(c2, 0.0);
 g = length(V) * (c1 - g * g / abs(FV)) * density;

 // Calculate fog factor and apply.
 float f = clamp(exp2(g), 0.0, 1.0);

 color.rgb = color.rgb * f + fogColor * (1.0 - f);
 ...
}

where the sat function clamps to the range  0,1 . The negative signs appearing in
front of the right side of Equation (3.13) and in the exponent of Equation (3.14)
cancel each other, so neither appears in the code.

Infinite Geometry

For geometry rendered at infinity, such as a skybox, vertices are no longer repre-
sented by homogeneous points  having an implicit one in the w coordinate, but
are instead given by direction vectors D having an implicit zero in the w coordi-
nate. In this case, a fragment is always fully fogged whenever 0 F D , regard-
less of the value of F , because the ray given by

  t t  D  (3.15)

44 3. Fog with a Linear Density Function

travels an infinite distance through the fog volume. The only nontrivial case is
the one in which 0 F D and 0 F  , where the camera is inside the fog vol-
ume, and the direction D to the fragment being rendered points upward out of the
fog volume.
 To formulate the function  g  for infinite geometry, we need to integrate
from the camera position  to the point where  t crosses the fog plane. This
point is given by the parameter

 planet


 


F

F D


, (3.16)

and thus, the integral defining our fog function is

    

 

plane

0

2

.
2

t

g ρ t dt

a








 D

F
D

F D

 


 (3.17)

In order to use this function in all cases, we can clamp the fog factor calculation
using bounds derived from F  and F D to obtain

   ln 2clamp 2 , ,gf u v  , (3.18)

where u and v are defined as

1, if 0 and 0;

0, otherwise;

1, if 0;

0, otherwise.

u

v

    


  


F F D

F D



 (3.19)

If 0 F D , in which case the ray  t must enter the fog volume at some point,
then both u and v are zero, and the pixel being shaded is always fully fogged. If

0 F D , then the fog factor can be less than one only if 0 F  , correspond-
ing to the case that the camera is inside the fog volume.

3.3 Visibility Culling
When rendering a scene with fog, objects can be far enough away from the cam-
era to become imperceptible even though the fog factor f never reaches zero in a

3.3 Visibility Culling 45

strictly mathematical sense. For example, a fog factor of 1 256 is too small for
the light reflected from an object to make any difference when the display uses
8-bit color channels, and the rendered output would be 100% fog color. If we can
calculate the distance at which the fog factor becomes this small, then we can
cull any objects lying beyond that distance because they won’t be visible. Due to
the way the human visual system works, a significantly larger factor can be used
to calculate the cutoff distance when the fog color has a bright intensity.
 If we calculate the exact surface at which the fog factor reaches some small
constant for a given camera position, then we get a shape such as the one shown
in Figure 3.4, with some variation depending on the camera depth in the fog vol-
ume. (The formula for this curve is derived below.) Culling objects directly
against this surface would be impractical, so we instead calculate the maximum
distances at which objects would be visible in a couple different directions and
place culling planes at those locations relative to the camera. First, we determine
the vertical depth beneath the camera position within the fog volume at which
objects become fully fogged and place a culling plane there that is parallel to the
fog plane. This involves a simple, straightforward calculation. Second, we deter-
mine the horizontal distance (parallel to the fog plane) at which objects would be
culled at all depths and place a culling plane at that distance from the camera
aligned to be perpendicular to the camera’s view direction. This calculation turns
out to be much more complicated, but it has an elegant solution [Lengyel 2015].

Figure 3.4. The green curve represents the exact surface at which the fog factor reaches a
small constant value given the camera position (red dot) beneath the fog plane at the top
of the graph.

46 3. Fog with a Linear Density Function

 In both cases, we determine the distance to the culling plane by setting the
fog factor  gf e   to a constant c small enough to be considered the cutoff val-
ue for perceptibility (such as 1 256c ). This means that  g  can be treated as
the constant value

   lng c  (3.20)

in any of the fog function equations in the previous section.

Vertical Depth

To cull objects by vertical depth, we need to find the distance d directly beneath
the camera, opposite the normal direction of the fog plane, at which an object
becomes completely fogged within the tolerance set by Equation (3.20). We as-
sume that the camera is inside the fog volume, which means 0 F  . In the
case that the camera is above the fog plane, we can just set 0 F  because it
wouldn’t change the amount of fog through which a ray pointing straight down
from the camera would pass.
 Starting with Equation (3.7) and recognizing that dV , we have

    
2

a
g d    F F   . (3.21)

For a point  lying directly below the camera position such that the vector  
is perpendicular to the fog plane, we have d    F F , and we can thus
make the substitution

  2 d     F F F   . (3.22)

This leads us to the quadratic equation

  2 2 0d d m   F  , (3.23)

where we have set  2m g a  . The solution providing a positive distance d is
then given by

   2d m    F F  . (3.24)

A plane parallel to the fog plane can be placed at this distance below the camera
position to safely cull objects that are too deep in the fog volume to be visible.

3.3 Visibility Culling 47

Horizontal Distance

To cull objects in the horizontal direction, we need to find the minimum distance
parallel to the fog plane beyond which objects are completely fogged (again,
within tolerance) at all depths in the fog volume. This requires that we somehow
find the maximum horizontal distance d for which Equation (3.7) holds true for a
given constant  g  , where d is the length of the projection of V onto the fog
plane. Some examples of the distance d are shown in Figure 3.5, which also illus-
trates how the culling surfaces can be classified into three general varieties that
are discussed below.
 The problem of finding the correct culling distance d becomes much easier to
tackle if we write F  as a multiple of F  so we can make the substitution

  t  F F  . (3.25)

Equation (3.7) can then be written as

     1
2

a
g t   V F  . (3.26)

The vector V still depends on the point , but its length can be expressed in
terms of the horizontal distance d and the depth of the camera position  by con-
sidering the right triangle shown in Figure 3.6, giving us

    2 22 2 1d t   V F  . (3.27)

We can now rewrite Equation (3.26) as

         2 221 1
2

a
g t d t      F F   , (3.28)

and this depends only on the known quantities  g  and F .
 Solving Equation (3.28) for 2d produces the function

   

   
2

2 22
2 2

1
1

m
d t

t
   

 
F

F
 (3.29)

that returns the squared culling distance for any input t representing the depth of
a point , where we have again set  2m g a  . We can find the local maxima
for the squared distance by taking a derivative of this function with respect to t
and setting it equal to zero. After some simplification, we end up with the quartic
equation

48 3. Fog with a Linear Density Function

Figure 3.5. The horizontal culling distance d is equal to the maximum distance parallel to
the fog plane beyond which objects are completely fogged. The green curves represent
the exact culling surfaces that can be classified into three cases depending on the value of
h, defined by Equation (3.31).

d

d

d

(a)

(b)

(c)

3.3 Visibility Culling 49

Figure 3.6. The length of the vector V can be expressed in terms of the distance d and the
depths of the points  and  .

   4 32 2 1 0q t t t t h      , (3.30)

where we have named the polynomial  q t and defined

 

2

4

m
h 

F  . (3.31)

 A typical plot of the quartic function  q t in Equation (3.30) is shown in Fig-
ure 3.7. There are a couple of important properties that we can identify about this
function. First, it is always the case that  1q h , and h is a positive number.
Second, if we take a derivative to get

   3 24 6 2q t t t    , (3.32)

then we see that  1
2 0q  , which means that  q t always has a local minimum at

1
2t  . If the actual value of  q t is negative at 1

2t  , then  q t must have a root in
the range  1

2 ,1 , and this is the value of t that we are looking for. By evaluating
 1

2q , we see that this root exists precisely when 27 16h  , and this corresponds
to cases (b) and (c) in Figure 3.5.
 It may be tempting to find the roots of  q t by using an analytical solution,
but in this case, the root in which we are interested can be found much more effi-
ciently and accurately by using Newton’s method with an initial value of 0 1t  .



F



50 3. Fog with a Linear Density Function

Figure 3.7. This is a plot of the function   4 32 2 1q t t t t h     with   ln 256g  ,
0.1a  , and 10  F  , giving an approximate value of 1.23h  .

Recall that Newton’s method refines an approximation it of a root using the
formula

 
 1

i
i i

i

q t
t t

q t
  


. (3.33)

We know right at the beginning that  1q h and  1 8q  , so the first iteration of
Newton’s method can be explicitly calculated with ease to obtain

 1 1
8

h
t   . (3.34)

One or two more iterations are all that are needed to produce an extremely accu-
rate result that can be plugged back into Equation (3.29) to calculate the culling
distance d.
 If 1h  , then 2 0d  when 0t  , and it may be the case that the largest hori-
zontal distance to the culling surface occurs on the fog plane itself. This corre-
sponds to cases (a) and (b) in Figure 3.5. When 0t  , the distance d is given by

   1d h   F  , (3.35)

where we have been careful to negate F  when factoring it out of the radical
after taking square roots of both sides in Equation (3.29).
 If  27

161,h , then the distance given by the root of Equation (3.30) and the
distance given directly by Equation (3.35) are both valid, and the larger must be

0.5 10.25

−0.5

−0.25

0.25

0.5

0.75

1

0.75

3.3 Visibility Culling 51

chosen as the horizontal culling distance. This corresponds to case (b) in
Figure 3.5. Otherwise, only one of the distances can be calculated and is thus the
only choice for the horizontal culling distance. Listing 3.2 implements the dis-
tance calculations and handles all three of the possible cases.

Listing 3.2. This C++ code implements the horizontal culling distance calculations for a given
value of F  passed in the F_wedge_C parameter. The constant kFogCutoff is the value of c in
Equation (3.20), and the constant kFogDensity is the value of a in Equation (3.4).

float CalculateHorizontalCullingDistance(float F_wedge_C)
{
 // Calculate m using Equation (3.20) for g(P).
 float m = -2.0F * log(kFogCutoff) / kFogDensity;
 float m2 = m * m;

 float d = 0.0F;
 float z2 = F_wedge_C * F_wedge_C;
 float zinv = 1.0F / F_wedge_C;
 float zinv2 = zinv * zinv;

 // Calculate h using Equation (3.31).
 float h = m2 * zinv2 * zinv2;
 if (h < 1.6875F)
 {
 // Here, h < 27/16, so a root to q(t) exists.

 // Explicitly calculate first iteration of Newton's method.
 float t = 1.0F - h * 0.125F;
 float t2 = t * t;

 // Apply Newton's method one more time.
 t -= (((t + 2.0F) * t2 - 2.0F) * t + (h - 1.0F)) /
 ((t * 4.0F + 6.0F) * t2 - 2.0F);

 // Plug root back into Equation (3.29).
 float tp = t + 1.0F;
 float tm = t - 1.0F;
 d = sqrt(m2 * zinv2 / (tp * tp) - tm * tm * z2);
 }

52 3. Fog with a Linear Density Function

 if (h > 1.0F)
 {
 // Calculate the distance on the fog plane using Equation (3.35).
 // If both solutions exist, take the larger distance.
 d = max(-F_wedge_C * sqrt(h - 1.0F), d);
 }

 return (d);
}

References
[Lengyel 2007] Eric Lengyel. “Unified Distance Formulas for Halfspace Fog”. Journal of

Graphics Tools, Vol. 12, No. 2 (2007), pp. 23–32.

[Lengyel 2015] Eric Lengyel. “Game Math Case Studies”. Game Developers Conference,
2015. Available at http://www.terathon.com/gdc15_lengyel.pdf.

http://www.terathon.com/gdc15_lengyel.pdf

 53

4

Vegetation Management in
Leadwerks Game Engine 4

Josh Klint
Leadwerks Software

4.1 Introduction
Although rendering capabilities of graphics hardware have increased substantial-
ly over the last generation, a specialized system for managing vegetation render-
ing and physics still performs an order of magnitude faster than a general purpose
object management system and can use a small fraction of the memory that
would otherwise be required. These optimizations are possible due to the unique
characteristics of vegetation.
 First, trees, bushes, and plants tend to be highly repetitive in nature, at least
to the casual observer. One pine tree looks pretty much like any other. Variations
in rotation, scale, and color are enough to convince the viewer that an entire for-
est made up of only a few unique tree models contains infinite variety.
 Second, plants tend to be distributed in a roughly uniform manner. Areas
with optimal conditions for growth tend to be filled with plant life, while inhospi-
table conditions (e.g., a steep cliff side) tend to be barren. Individual instances of
plants repel one another as they compete for resources, resulting in a roughly uni-
form distribution. An extreme manmade example of this is an orchard where
trees are planted in rows of equal spacing to make maximum use of the earth.
 Finally, plants grow along the surface of the earth, which for practical pur-
poses can be considered a 2D plane with a height offset. This means that their
position in 3D space can be predicted and described in a compact manner.
 These characteristics provide the opportunity for unique optimizations that
can manage a larger volume of plant instances than a general-purpose object
management system is capable of. This chapter describes our implementation of

54 4. Vegetation Management in Leadwerks Game Engine 4

Figure 4.1. A sample scene demonstrating several vegetation layers for different types of objects.
This scene is included with the demo on the book’s website.

such a system to handle both rendering and physics of large volumes of vegeta-
tion. The visual results of our implementation are shown in Figure 4.1, rendered
in real time.

4.2 The Problem
In Leadwerks Game Engine 2, vegetation instances were stored in the scene file
as a sequence of 4 4 matrices. Instances were read into memory and placed into
a quadtree data structure. Chunks of instances were merged into single surfaces
made of quads. A series of 2D images of the vegetation object was rendered at
run time and displayed on the merged surfaces when the quadtree node reached a
certain distance from the camera. Quadtree nodes closer than the billboard dis-
tance were iterated through, and all instances were individually culled and dis-
played as full-resolution 3D models. For physics, a specialized collision type was
employed that accepted an array of 4 4 matrices and a scale factor for each axis.
 This system allowed large, expansive landscapes to be rendered in real time
with fast performance, but it also presented two problems. First, the rendering

4.3 The Idea 55

system involved significant CPU overhead. This was particularly taxing when
performing frustum culling on quadtree nodes that were closer than the billboard
LOD distance because each instance had to be tested individually. Second, each
vegetation instance required the storage of a 4 4 matrix in two places (for phys-
ics and in the quadtree structure) plus a scaling factor for physics. Although 140
bytes per instance may seem minimal, the memory requirements became quite
large in densely packed scenes and could grow to several hundred megabytes of
data. This requirement seemed unnecessary, and it limited the ability of our vege-
tation system to scale.
 Since our future plans involve expanded game worlds beyond the bounds of
32-bit floating point precision, it makes sense to build a more scalable vegetation
management system now. At the beginning of our implementation of a new vege-
tation management system for Leadwerks Game Engine 4, we set out with the
following design parameters:

■ Fast rendering and physics performance.
■ Low-or-no marginal memory consumption per instance.
■ Ability to dynamically add and remove vegetation instances instantly (to

provide better support for farm simulators and other games that alter the
landscape).

We targeted hardware that supports OpenGL 4.0, which is equivalent to Di-
rectX 11 and includes both discrete and integrated GPUs from Nvidia, AMD, and
Intel.

4.3 The Idea

The Sierra Nevada mountain range in the western United States provides ample
opportunities for hiking, mountain biking, and camping, with nine national for-
ests and three national parks to visit. If you’ve ever hiked through the Sierras,
you know that the view is pretty much “trees, everywhere”. Trees do not grow
directly on top of each other, and no good spot goes bare for long before some-
thing grows there.
 The simplest approximation of this experience we could design would be a
grid of tree instances that surround the camera, stretching out to the maximum
view distance. This arrangement of trees lacks the apparent randomness found in
nature, but if we use the tree’s  ,x z position as a seed value, it should be possi-
ble to procedurally generate a rotation and scale for a more natural appearance.
An additional offset can be generated to break up the appearance of the grid dis-

56 4. Vegetation Management in Leadwerks Game Engine 4

tribution and make it appear more random while retaining the roughly constant
density of natural vegetation. A texture lookup on the terrain height map can then
be used to retrieve the y (vertical) position of the tree on the landscape.
 An initial test application was easily implemented and indicated that this
gave a satisfactory appearance, but a full vegetation system with culling, LOD,
and physics based on this idea was quite another thing to implement. The first
challenge was to devise a system that would produce identical procedural noise
on both the GPU and CPU.
 The first attempt used a pseudorandom noise function in GLSL to generate
unique results from each instance’s  ,x z position. There were two problems with
this idea. First, the performance penalty for using this to generate rotated 4 4
matrices for each vertex would be significant. Second, it was feared that small
discrepancies in floating-point computations between different graphics hardware
and CPU architectures could result in a misalignment of the procedural data cal-
culated for graphics and physics.
 To solve these issues, a small grid of instance data was generated. Each grid
space stores a 4 4 matrix with the color contained in the right-hand column as
follows.

00 01 02

10 11 12 13

20 21 22 23

30 31 32

m m m brightness

m m m m

m m m m

m m m scale

 
 
 
 
 
 

This data is enough to provide a rotation, scale, color, and a small offset value to
add to the position. The data is sent to the culling and rendering shaders as a tex-
ture. The data was tiled repeatedly across the vegetation field, in the same man-
ner as a tiling texture applied to a surface. It was found that a 16 16 grid was
sufficient to eliminate any tiling appearance, especially when variations in the
terrain height were present. With this completed, the second requirement for our
design was met because the memory usage of additional instances was zero.
 Originally, we planned to combine this procedural distribution with the quad-
tree design of the Leadwerks 2 vegetation system. However, another technique
came to our attention that promised to entirely eliminate the CPU overhead of the
vegetation rendering system.

4.4 Culling
Instance cloud reduction is an established technique for modern hardware that
efficiently culls large numbers of objects entirely on the GPU [Rákos 2010,

4.4 Culling 57

Shopf et al. 2008]. The technique works by passing all possible instances to the
GPU and discarding instances that are culled by the camera frustum in a geome-
try shader (see Figure 4.2). Unlike a traditional shader, no fragment output is
generated, and the results of the geometry shader are output to a texture buffer. A
GPU query is used to retrieve the number of rendered primitives, which corre-
sponds to the number of rendered instances. Visible geometry is rendered in a
second pass by using the results of the query as the number of instances drawn
and by reading the texture buffer that was populated in the culling pass. This
technique seemed to offer the greatest promise for eliminating the overhead of
our vegetation rendering system.
 Rather than passing transformation data to the culling shader, we wanted to
generate the transformation data entirely on the GPU. Our repeating grid tech-
nique detailed in the previous section was easily integrated into the culling

Figure 4.2. Instance cloud reduction is a GPU culling technique that works by writing visible
instance IDs into a texture buffer, and then rendering visible objects in an additional pass.

Terrain
Heightmap

Variation
Map

Geometry Shader Vertex Shader

Texture Buffer

Primitives
Drawn Query

Culling Pass Rendering Pass

58 4. Vegetation Management in Leadwerks Game Engine 4

shader. Unlike previous implementations that outputted a 4 4 matrix into the
texture buffer, we instead wrote out a 32-bit unsigned integer specifying the in-
stance ID.
 Uniform values are sent to the culling shader to specify the grid position,
size, and distribution density. The instance ID is used to calculate the x and z co-
ordinates of each instance according to the following formula.

float x = floor(gl_InstandID / gridsize.x);
float z = gl_InstandID - x * gridsize.y;
x += gridoffset.x;
z += gridoffset.y;

The instance 4 4 matrix is then calculated according to the following formula,
where texture5 is the 16 16 pixel variation map that we generated.

mat4 mat;

float sy = 1.0 / variationmapresolution;
float sx = sy * 0.0625;

mat[0][0] = texture(texture5, vec2((x * 16.0 + texcoord.x + 0.0) * sx,
 texcoord.y + z * sy)).r;
mat[0][1] = texture(texture5, vec2((x * 16.0 + texcoord.x + 1.0) * sx,
 texcoord.y + z * sy)).r;
mat[0][2] = texture(texture5, vec2((x * 16.0 + texcoord.x + 2.0) * sx,
 texcoord.y + z * sy)).r;
mat[0][3] = texture(texture5, vec2((x * 16.0 + texcoord.x + 3.0) * sx,
 texcoord.y + z * sy)).r;

mat[1][0] = texture(texture5, vec2((x * 16.0 + texcoord.x + 4.0) * sx,
 texcoord.y + z * sy)).r;
mat[1][1] = texture(texture5, vec2((x * 16.0 + texcoord.x + 5.0) * sx,
 texcoord.y + z * sy)).r;
mat[1][2] = texture(texture5, vec2((x * 16.0 + texcoord.x + 6.0) * sx,
 texcoord.y + z * sy)).r;
mat[1][3] = texture(texture5, vec2((x * 16.0 + texcoord.x + 7.0) * sx,
 texcoord.y + z * sy)).r;

mat[2][0] = texture(texture5, vec2((x * 16.0 + texcoord.x + 8.0) * sx,

4.4 Culling 59

 texcoord.y + z * sy)).r;
mat[2][1] = texture(texture5, vec2((x * 16.0 + texcoord.x + 9.0) * sx,
 texcoord.y + z * sy)).r;
mat[2][2] = texture(texture5, vec2((x * 16.0 + texcoord.x + 10.0) * sx,
 texcoord.y + z * sy)).r;
mat[2][3] = texture(texture5, vec2((x * 16.0 + texcoord.x + 11.0) * sx,
 texcoord.y + z * sy)).r;

mat[3][0] = texture(texture5, vec2((x * 16.0 + texcoord.x + 12.0) * sx,
 texcoord.y + z * sy)).r;
mat[3][1] = texture(texture5, vec2((x * 16.0 + texcoord.x + 13.0) * sx,
 texcoord.y + z * sy)).r;
mat[3][2] = texture(texture5, vec2((x * 16.0 + texcoord.x + 14.0) * sx,
 texcoord.y + z * sy)).r;
mat[3][3] = texture(texture5, vec2((x * 16.0 + texcoord.x + 15.0) * sx,
 texcoord.y + z * sy)).r;

mat[3][0] += x * density;
mat[3][2] += z * density;

vec2 texcoords = vec2((mat[3][0] + TerrainSize * 0.5) / TerrainSize +
 1.0 / TerrainResolution * 0.5, (mat[3][2] + TerrainSize * 0.5) /
 TerrainSize + 1.0 / TerrainResolution * 0.5);

mat[3][1] = texture(texture6, texcoords).r * TerrainHeight;

This shader could be optimized further by using an RGBA floating-point texture
that combines matrix rows into a single texture lookup.
 The first three elements of the fourth matrix row holds the instance’s position
in global space. We first check to see if the instance position is beyond the
bounds of the terrain as follows.

if (mat[3][0] < -TerrainSize * 0.5) return;
if (mat[3][0] > TerrainSize * 0.5) return;
if (mat[3][2] < -TerrainSize * 0.5) return;
if (mat[3][2] > TerrainSize * 0.5) return;

We then calculate the distance to the camera and discard instances that are too far
away from the camera to be seen:

60 4. Vegetation Management in Leadwerks Game Engine 4

if (dist >= viewrange.y) return;

We added slope and height constraints. This can be used to ensure that trees only
appear above sea level, or to prevent plants from growing on steep cliff faces.

if (slope < sloperange.x) return;
if (slope > sloperange.y) return;
if (mat[3][1] < heightrange.x) return;
if (mat[3][1] > heightrange.y) return;

Finally, we calculate the actual center of the object’s axis-aligned bounding box
(AABB) and radius as follows.

vec3 scale = vec3(length(mat[0].xyz), length(mat[1].xyz),
 length(mat[2].xyz));
scale = scalerange.x + (scale - 1.0) * (scalerange.y - scalerange.x);

vec3 aabbcenter = aabbmin + (aabbmax - aabbmin) * 0.5;
size = aabbmax - aabbmin;
float radius = length(size * scale);

vec3 center = mat[3].xyz;
center.x += aabboffset.x * scale.x;
center.y += aabboffset.y * scale.y;
center.z += aabboffset.z * scale.z;

 Then, we perform an intersection test between the camera frustum and a
sphere that completely encloses the instance. The PADDING macro can be set to
1.0 to shift the sides of the frustum volume inward and visually confirm that the
algorithm is working correctly. The frustum plane uniforms are the six planes
that define the camera frustum volume. If a point lies outside of any of these
planes, then by definition it does not intersect the camera frustum volume and is
not visible.

#define PADDING 0.0

if (PlaneDistanceToPoint(frustumplane0, center) > radius - PADDING) return;

4.5 Rendering 61

if (PlaneDistanceToPoint(frustumplane1, center) > radius - PADDING) return;
if (PlaneDistanceToPoint(frustumplane2, center) > radius - PADDING) return;
if (PlaneDistanceToPoint(frustumplane3, center) > radius - PADDING) return;
if (PlaneDistanceToPoint(frustumplane4, center) > radius - PADDING) return;
if (PlaneDistanceToPoint(frustumplane5, center) > radius - PADDING) return;

Finally, once all our tests have passed, we write the instance ID into the texture
buffer and emit a vertex:

transformfeedback0 = ex_instanceID[0];
EmitVertex();

The outputted instance IDs are read by the vertex shader during the next step.

4.5 Rendering

Visible rendering of the instances takes place in a second pass. The results of the
primitive count query are retrieved, and this tells us the number of instances to
render. The texture buffers written in the culling pass are used to retrieve the ID
of each rendered instance.
 By default, our system uses two levels of detail, one that draws the full po-
lygonal models (the near instances) and another that displays billboard represen-
tations of the models (the far instances). It quickly became apparent to us that
two culling passes are necessary, one to collect the IDs of all near instances, and
another for all far instances. The results are written into two separate texture
buffers. A separate query object is used during each pass to retrieve the number
of rendered primitives.
 The necessity to synchronize with the GPU is a potential problem with this
design. To reduce this problem, we perform vegetation culling at the beginning
of the camera render function, and we perform the visible render pass toward the
end, leaving as much activity between the two steps as possible. We found it was
possible to reverse this order in the shadow rendering pass, so that rendering re-
sults were always one frame behind. This could also be done in the visible ren-
dering pass, but quick movements of the camera resulted in very noticeable
glitches, so this was reverted.
 The demo accompanying this chapter on the book’s website shows our sys-
tem using three vegetation layers for trees, bushes, and grass. Source code for the
vegetation class is included. Performance on discrete Nvidia and AMD GPUs

62 4. Vegetation Management in Leadwerks Game Engine 4

Figure 4.3. Performance is shown for the example scene running on Nvidia, AMD, and
Intel graphics hardware.

was surprisingly fast with heavy loads in spite of the synchronization issue (Fig-
ure 4.3). Intel hardware performed at a comparatively slower speed, but this is to
be expected for an integrated graphics chip. The use of atomic counters (availa-
ble in GLSL 4.3) promises to provide a mechanism to avoid CPU/GPU synchro-
nization, but this was not implemented in our first pass since our minimum
system requirements are OpenGL 4.0 hardware.

4.6 Level of Detail

An efficient culling system capable of managing hundreds of thousands of vege-
tation instances requires an equally efficient detail reduction system, since so
many objects can be drawn at once, and the vast majority of them are far away
from the viewer. In Leadwerks 4, we opted to use a simple billboard system to
draw vegetation instances that were positioned an adjustable distance from the
camera. Instances closer than the billboard distance are rendered as full polygo-
nal meshes with no intermediate LOD stages. This simplifies the engine work-
flow and limits the number of required culling passes to two, or to a single pass
for layers that do not use billboarding (e.g., small plants and rocks).
 We started by performing a series of 16 orthographic renders of the vegeta-
tion model. The diffuse, normal, and emission channels of the camera buffer pro-
vided a convenient mechanism to store the billboard data. Render results were
copied into a single texture as shown in Figure 4.4. To provide some depth to the
billboards when viewed from above, we performed an additional top-down ren-
der of the object and added a second upwards-facing quad to each billboard.

301 FPS

142 FPS

15 FPS

Nvidia GeForce GTX 780

AMD Radeon R9 290

Intel HD Graphics 4000

3 Vegetation Layers 1024 × 768 Resolution

Culled instances:

Rendered instances:

8750

1597

4.6 Level of Detail 63

Figure 4.4. A series of 16 orthographic views are rendered to the billboard texture. The closest
two views are interpolated between based on camera position.

This remains stationary and provides a better appearance than camera-facing
billboards.
 The Leadwerks 2 vegetation system suffered from severe “popping” when
models transitioned to billboard and when billboard views were switched based
on the camera viewing angle. Creating a smooth transition between detail levels
and billboard faces was a priority.
 In the following billboard vertex shader, the relative angle of the camera po-
sition to the billboard’s local space is calculated with the code below. The vary-
ing output stage represents the index of the billboard image to display, and the
blend value is used to interpolate between the current and next stage.

float a = (atan(hdiff.y, hdiff.x) + pi) / (2.0 * pi) - 0.25;
a -= GetYaw(id);
a = mod(a, 1.0);
float stage = floor(a * billboardviews);
blend = a * billboardviews - stage;

Texture coordinates for the two nearest stages are calculated and outputted in
varying vec2 values as follows.

ex_texcoords0 = vertex_texcoords0;
ex_texcoords0.x /= billboardviews;
ex_texcoords0.x += stage / billboardviews;

stage = ceil(a * billboardviews);
if (stage >= billboardviews) stage = 0.0;
ex_texcoords1 = vertex_texcoords0;
ex_texcoords1.x /= billboardviews;
ex_texcoords1.x += stage / billboardviews;

64 4. Vegetation Management in Leadwerks Game Engine 4

 In the following fragment shader, a dissolve effect is used to smoothly transi-
tion between billboard stages based on the blend varying value. This works by
generating a pseudorandom floating-point value using the screen coordinate as a
seed value, and comparing it to the blend value. The same technique is also used
to smoothly fade billboards in and out with distance. When combined with mul-
tisampling, this produces results similar to alpha blending but retains accurate
lighting information for the deferred renderer.

// Generate psuedorandom value
float f = rand(gl_FragCoord.xy / buffersize * 1.0 +
 gl_SampleID * 37.45128 + ex_normal.xy);

// Diffuse
vec4 outcolor = ex_color;
vec4 color0 = texture(texture0, ex_texcoords0);
vec4 color1 = texture(texture0, ex_texcoords1);

vec4 normalcolor;
vec4 normalcolor0 = texture(texture1, ex_texcoords0);
vec4 normalcolor1 = texture(texture1, ex_texcoords1);

vec4 emission;
vec4 emission0 = texture(texture2, ex_texcoords0);
vec4 emission1 = texture(texture2, ex_texcoords1);

// Dissolve blending
if (f > blend)
{
 outcolor = color0;
 normalcolor = normalcolor0;
 emission = emission0;
}
else
{
 outcolor = color1;
 normalcolor = normalcolor1;
 emission = emission1;
}

4.7 Physics 65

Figure 4.5. When an instance reaches a certain distance from the camera (positioned on
the left), the billboard object begins to fade in using a dissolve effect. Once the billboard
is completely visible, the model begins to fade out. This provides a smooth transition
between LOD stages. The billboard also fades out as the maximum view range is
reached.

 As the distance from an instance reaches the billboard rendering distance, the
billboard begins dissolving in. At the distance where the billboard is completely
solid, the 3D model begins dissolving out. Finally, when the maximum view dis-
tance is reached, the billboard is dissolved out over a short distance. See
Figure 4.5 for an illustration of these transitions.
 The billboard orientation we used, combined with the dissolve effect for dis-
tance fading and billboard view blending, results in smooth transitions and accu-
rate lighting that eliminate the “popping” artifacts observed in our previous
vegetation system.

4.7 Physics

Leadwerks Game Engine uses the Newton Game Dynamics library to simulate
physics. Newton was chosen due to its accuracy, stability, and ease of implemen-
tation. One of the useful features Newton provides is a mechanism for specifying
a user-defined collision mesh. This works by invoking a user-defined callback
function any time an object intersects a specified bounding box. The callback
builds a mesh dynamically for all mesh faces within the volume that the colliding

Billboard
fades in

Billboard
fades out

Model
fades out

66 4. Vegetation Management in Leadwerks Game Engine 4

object occupies. This can be used for efficient collisions with height map terrain
or voxel geometry. In our case, the system allowed us to provide vegetation colli-
sion data to the physics simulator without having to actually store all the 4 4
matrices for each vegetation instance in memory.
 A function to get all vegetation instances in an arbitrary AABB was imple-
mented as follows.

int VegetationLayer::GetInstancesInAABB(const AABB& aabb,
 std::vector<Mat4>& instances, const float padding)
{
 int count = 0;
 iVec2 gridmin;
 iVec2 gridmax;
 float r = 0.0;
 Mat4 mat, identity;
 Vec3 scale;
 Vec3 center;
 AABB instanceaabb;

 if (model)
 {
 r = Vec2(model->recursiveaabb.size.x,
 model->recursiveaabb.size.z).Length() +
 Vec2(model->recursiveaabb.center.x,
 model->recursiveaabb.center.z).Length();
 }

 gridmin.x = floor((aabb.min.x - scalerange[1] * r) / density - 0.5);
 gridmin.y = floor((aabb.min.z - scalerange[1] * r) / density - 0.5);
 gridmax.x = ceil((aabb.max.x + scalerange[1] * r) / density + 0.5);
 gridmax.y = ceil((aabb.max.z + scalerange[1] * r) / density + 0.5);

 for (int x = gridmin.x; x <= gridmax.x; x++)
 {
 for (int y = gridmin.y; y <= gridmax.y; y++)
 {
 mat = GetInstanceMatrix(x, y);
 instanceaabb = Transform::AABB(model->recursiveaabb, mat,
 identity, false);

4.7 Physics 67

 if (instanceaabb.IntersectsAABB(aabb, padding))
 {
 instanceaabb = Transform::AABB(model->recursiveaabb, mat,
 identity, true);

 if (instanceaabb.IntersectsAABB(aabb, padding))
 {
 count++;
 instances.push_back(mat);
 }
 }
 }
 }

 return count;
}

 The same function that retrieves an instance matrix in GLSL was implement-
ed in C++ as follows.

Mat4 VegetationLayer::GetInstanceMatrix(const int x, const int z)
{
 Mat4 mat;

 int ix = Math::Mod(x, variationmapresolution);
 int iz = Math::Mod(z + variationmapresolution / 2,
 variationmapresolution);
 int offset = (iz * variationmapresolution + ix) * 16;

 if (variationmatrices.size() == 0)
 {
 BuildVariationMatrices();
 }

 mat[0][0] = variationmatrices[offset + 0];
 mat[0][1] = variationmatrices[offset + 1];
 mat[0][2] = variationmatrices[offset + 2];
 mat[0][3] = 0.0;

68 4. Vegetation Management in Leadwerks Game Engine 4

 mat[1][0] = variationmatrices[offset + 4];
 mat[1][1] = variationmatrices[offset + 5];
 mat[1][2] = variationmatrices[offset + 6];
 mat[1][3] = 0.0;

 mat[2][0] = variationmatrices[offset + 8];
 mat[2][1] = variationmatrices[offset + 9];
 mat[2][2] = variationmatrices[offset + 10];
 mat[2][3] = 0.0;

 mat[3][0] = variationmatrices[offset + 12] + x * density;
 mat[3][2] = variationmatrices[offset + 14] + z * density;
 mat[3][1] = terrain->GetElevation(mat[3][0], mat[3][2]);
 mat[3][3] = 1.0;

 float scale = scalerange.x + variationmatrices[offset + 15] *
 (scalerange.y - scalerange.x);
 mat[0] *= scale;
 mat[1] *= scale;
 mat[2] *= scale;
 return mat;
}

 In the Newton collision callback function, all the intersecting instances are
retrieved. Their vertex positions and normals are transformed to global space and
added to arrays that are returned to the physics simulator. The FastMath class
functions are optimized inline functions designed for demanding real-time opera-
tions like the following.

int count = layer->GetInstancesInAABB(aabb,
 layer->instances[threadNumber]);

// Merge all intersecting instances into vertex / indice arrays
for (int n = 0; n < count; n++)
{
 for (int p = 0; p < vert_count; p++)
 {
 offset = p * 3;

4.7 Physics 69

 pos.x = layer->vertexpositions[offset + 0];
 pos.y = layer->vertexpositions[offset + 1];
 pos.z = layer->vertexpositions[offset + 2];

 FastMath::Mat4MultiplyVec3(layer->instances[threadNumber][n],
 pos, result);

 offset = ((n * (vert_count + tris_count)) + p) * 3;
 layer->collisionsurfacevertices[threadNumber][offset + 0]
 = result.x;
 layer->collisionsurfacevertices[threadNumber][offset + 1]
 = result.y;
 layer->collisionsurfacevertices[threadNumber][offset + 2]
 = result.z;
 }

 for (int p = 0; p < tris_count; p++)
 {
 offset = p * 3;
 pos.x = layer->facenormals[offset + 0];
 pos.y = layer->facenormals[offset + 1];
 pos.z = layer->facenormals[offset + 2];

 FastMath::Mat3MultiplyVec3(Mat3(layer->instances[threadNumber][n]),
 pos, result);

 float m = 1.0F / result.Length();
 offset = ((n * (vert_count + tris_count)) + vert_count + p) * 3;
 layer->collisionsurfacevertices[threadNumber][offset + 0]
 = result.x * m;
 layer->collisionsurfacevertices[threadNumber][offset + 1]
 = result.y * m;
 layer->collisionsurfacevertices[threadNumber][offset + 2]
 = result.z * m;
 }

 // Add indices
 memcpy(&layer->collisionsurfaceindices[threadNumber]
 [n * layer->indices.size()], &layer->indices[0],
 layer->indices.size() * sizeof(int));

70 4. Vegetation Management in Leadwerks Game Engine 4

 // Offset indices
 index_offset = n * (collisionsurface->CountVertices() +
 collisionsurface->CountTriangles());

 for (int p = 0; p < tris_count; p++)
 {
 offset = n * layer->indices.size() + p * 9;

 layer->collisionsurfaceindices[threadNumber][offset + 0]
 += index_offset;
 layer->collisionsurfaceindices[threadNumber][offset + 1]
 += index_offset;
 layer->collisionsurfaceindices[threadNumber][offset + 2]
 += index_offset;
 layer->collisionsurfaceindices[threadNumber][offset + 4]
 += index_offset;
 layer->collisionsurfaceindices[threadNumber][offset + 5]
 += index_offset;
 layer->collisionsurfaceindices[threadNumber][offset + 6]
 += index_offset;
 layer->collisionsurfaceindices[threadNumber][offset + 7]
 += index_offset;
 }
}

 Although iterating through and transforming vertices is not an optimal de-
sign, in practice it has proven to be fast enough for production use. In the future,
a new collision type could be implemented in Newton that retrieves an array of
4 4 matrices of all intersecting instances.

 With this step complete, we finally have a system with parity between the
instance orientations generated on both the CPU and GPU without actually hav-
ing to store the data for each individual instance. Although it is not present in this
implementation, a filter map can easily be added to discard instances at specific
grid positions and allow dynamic insertion and deletion of instances.

4.8 Future Development

Because Leadwerks Game Engine 4 is a commercial product already on the mar-
ket, system requirements are locked on OpenGL 4.0 hardware. In the future, an

References 71

implementation using atomic counters could eliminate CPU/GPU synchroniza-
tion when OpenGL 4.3-compliant drivers are detected.
 Implementation of an “instance cloud” collision type in Newton Game Dy-
namics would provide better performance than dynamically constructing a mesh
from transformed vertices.
 Although this system does an excellent job of producing natural spacing
among vegetation instances, different vegetation layers have no communication
of the spaces they occupy. Multiple dense layers can easily appear on top of one
another in unnatural arrangements, like a tree in the middle of a rock. As our
worlds get bigger, the need for intelligent placement of instances will become
more important.
 Our culling algorithm only performs simple frustum culling on vegetation
instances, which loses the advantages of the hierarchical occlusion system our
standard object management system uses. In the future, nearby occluding vol-
umes could be sent to the culling shader and used to discard occluded vegetation
instances.
 Our system is suited for geometry that is generally arranged on a 2D surface,
but it could be adapted to 3D to handle things like a dense procedurally generated
asteroid field.

References
[Rákos 2010] Daniel Rákos. “Instance Culling Using Geometry Shaders”. RasterGrid

Blog, 2010. Available at http://rastergrid.com/blog/2010/02/instance-culling-
using-geometry-shaders/

[Shopf et al. 2008] Jemery Shopf, Joshua Barczak, Christopher Oat, and Natalya Tatar-
chuk. “March of the Froblins: Simulation and Rendering Massive Crowds of Intel-
ligent and Detailed Creatures on GPU”. ACM SIGGRAPH 2008: Proceedings of
the conference course notes, Advances in Real-Time Rendering in 3D Graphics
and Games, pp. 52–101.

http://rastergrid.com/blog/2010/02/instance-culling-using-geometry-shaders/
http://rastergrid.com/blog/2010/02/instance-culling-using-geometry-shaders/

This page intentionally left blankThis page intentionally left blank

 73

5

Smooth Horizon Mapping

Eric Lengyel
Terathon Software

5.1 Introduction
Normal mapping has been a staple of real-time rendering ever since the first
graphics processors with programmable fragment pipelines became available.
The technique varies the normal direction at each texel to make it appear that a
smooth surface actually has a more complex geometric shape. Because the nor-
mal direction changes, the intensities of the diffuse and specular reflections also
change, and this produces an effective illusion. But it is an illusion that could be
taken further by accounting for the fact that some of the incoming light would be
occluded if the more complex geometry really existed.
 Horizon mapping is a technique, first proposed by [Max 1988] for offline
rendering, that uses an additional texture map to store information about the
height of the normal-mapped geometry in several directions within a neighbor-
hood around each texel. Given the direction to the light source at each texel, the
information in the horizon map can be used to cast convincing dynamic shadows
for the high-resolution geometric detail encoded in the normal map.
 This chapter describes the process of creating a horizon map and provides the
details for a highly efficient real-time rendering method that adds soft shadows to
normal-mapped surfaces. The rendering method works in tangent space and thus
fits well into existing normal mapping shaders. Furthermore, it does not require
newer hardware features, so it can be used across a wide range of GPUs.
 An example application of horizon mapping on a stone wall is shown in Fig-
ure 5.1. A conventional diffuse color map and normal map are used to render a
cube having flat sides in Figure 5.1(e). A four-channel horizon map with two
layers encodes horizon information for eight light directions, and this horizon
map is used to render shadows on the same cube in Figure 5.1(f).

74 5. Smooth Horizon Mapping

(a)

(e)

(b)

(c)

(f)

(d)

Figure 5.1. The conventional diffuse color map (a) and normal map (b) are augmented by
eight channels of horizon mapping information in (c) and (d). A cube rendered only with
ordinary normal mapping is shown in (e). Horizon mapping has been applied in (f).

5.2 Horizon Map Generation 75

 A variety of materials rendered with and without shadows generated by hori-
zon maps are shown in Figure 5.2. The shadows make a significant contribution
to the illusion that the surfaces are anything but flat. This is especially true if the
light source is in motion and the shadows are changing dynamically. Even
though the horizon map contains height information for only eight distinct tan-
gent directions (every 45 degrees about the normal), linearly interpolating that
information for other directions is quite sufficient for rendering convincing shad-
ows. In Figure 5.3, the same material is rendered nine times as the direction to
the light source rotates about the surface normal by 15-degree increments.

5.2 Horizon Map Generation

A horizon map contains eight channels of information, each corresponding to a
tangent direction beginning with the positive x axis of the normal map and con-
tinuing at 45-degree increments counterclockwise. (In Figure 5.1, the alpha
channels of the two layers of the horizon map are not visible, so a total of six
channels can be seen as RGB color.) The intensity value in each channel is equal
to the sine of the maximum angle made with the tangent plane for which a light
source would be occluded in the direction corresponding to that channel. This is
the horizon. As illustrated in Figure 5.4, a light source is unoccluded precisely
when the direction to the light makes an angle having a larger sine. Otherwise,
the pixel being shaded with the particular texel from the horizon map is in shad-
ow. Given the tangent-space unit-length direction vector L to the light source in a
shader, determining whether a pixel is in shadow is simply a matter of comparing

zL to the value in the horizon map. The details about calculating this value for
any light direction are discussed in the next section.
 To construct a horizon map, we must calculate appropriate sine values for the
horizon in eight directions. If the graphics hardware supports array textures, then
the horizon map can be stored as a 2D texture image array with two layers. Oth-
erwise, the horizon map must be stored as two separate 2D texture images at the
tiny expense of needing to bind an additional texture map when rendering. In
both cases, the texture images contain RGBA data with 8-bit channels. When the
texture maps are sampled, the data is returned by the hardware as floating-point
values in the range  0,1 , which is a perfect match for the range of sine values that
we need to store.
 Using the raw height map as input, there are many valid ways of generating a
horizon map. What follows is a description of the method used in the source code
accompanying this chapter on the book’s website. For each texel in the output

76 5. Smooth Horizon Mapping

Figure 5.2. A variety of horizon mapping examples. In the left column, only ordinary normal
mapping is applied. In the right column, shadows are added by horizon mapping.

5.2 Horizon Map Generation 77

Figure 5.3. This flat disk is illuminated from nine different angles ranging from 60  to 60  in
15-degree increments. Shadows are dynamically rendered using information stored in the eight
channels of the horizon map.

78 5. Smooth Horizon Mapping

Figure 5.4. The horizon information for the central texel (green) in the direction to the
right is given by the maximum angle α determined by the heights of other texels in a local
neighborhood. The value stored in the horizon map is sin α, and this is compared against

zL when rendering to determine whether the pixel being shaded is illuminated. If
sinzL α , then light reaches the pixel; otherwise, the pixel is in shadow.

horizon map, we examine a neighborhood having a 16-texel radius in the height
map and look for heights larger than that of the central texel under consideration.
Each time a larger height is found, we calculate the squared tangent of the angle
α made with the central texel as

 

   

2
02

2 2
0 0

tan
h h

α
x x y y




  
, (5.1)

where h is the height of the texel found at the location  ,x y in the height map,
and 0h is the height of the central texel at the location  0 0,x y .
 The maximum squared tangent is recorded for a array of 32 directions around
the central texel, and after all of the texels in the neighborhood have been pro-
cessed, the sine value for each direction is computed with

2

1
sin

1
1

tan

α

α




. (5.2)

The affected directions in the array are determined by the position of the texel
and its angular size relative to the central texel. It is possible for texels near the
center to affect multiple entries in the array due to their larger angular sizes.
 For each of the eight directions for which sine values are stored in the hori-
zon map, the nearest five sine values in the array of 32 directions are simply av-
eraged together. The sine values corresponding to the directions making angles

α Base height

N

L

zL
1

5.3 Rendering with Horizon Maps 79

0 , 45, 90, and 135 with the x axis are stored in the red, green, blue, and alpha
channels of the first layer of the horizon map, respectively. The sine values cor-
responding to the angles 180, 225, 270, and 315 are stored in the red, green,
blue, and alpha channels of the second layer.
 Because the calculations are independent for each texel, the horizon map
generation process is highly parallelizable. The horizon map can be sliced into
subrectangles that are processed by different threads on the CPU, or each texel
can be assigned to a thread to be processed by a GPU compute shader.

5.3 Rendering with Horizon Maps

Horizon mapping is applied in a shader by first calculating the color due to the
contribution of a light source in the ordinary manner and then multiplying this
color by an illumination factor derived from the information in the horizon map.
The illumination factor is a value that is zero for pixels that are in shadow and
one for pixels that are fully illuminated. We use a small trick to make the illumi-
nation factor change smoothly near the edge of the shadow to give it a soft
appearance.
 The horizon map stores the sine value corresponding to the horizon angle in
eight tangent directions. For an arbitrary tangent-space direction vector L to the
light source, we interpolate between the horizon map’s sine values for the two
tangent directions nearest the projected light direction  ,x yL L and compare the
interpolated value to zL in order to determine whether a pixel is in shadow.
 It would be expensive to decide which channels of the horizon map contrib-
ute to the sine value and to calculate the interpolation factors in the fragment
shader. However, it is possible and quite convenient to store the interpolation
factors for all eight channels of the horizon map in a special cube texture map
that is accessed directly with the vector L. We can encode factors for eight direc-
tions in a four-channel cube map by taking advantage of the fact that if a factor is
nonzero for one direction, then it must be zero for the opposite direction. This
allows us to use positive factors when referring to channels in the first layer of
the horizon map and negative factors when referring to channels in the second
layer. (We remap factors in the  1,1 range to  0,255 when constructing the cu-
be map so that we can use ordinary 8-bit RGBA color.) For a value f sampled
from the cube map with four components returned by the hardware in the range
 0,1 , we can compute the horizon sine value s as

    0 1max 2 1,0 max 2 1,0s       f h f h , (5.3)

80 5. Smooth Horizon Mapping

Figure 5.5. When sampled with coordinates given by the tangent-space direction to light
vector, this cube texture map returns the channel factors to be applied to the information
stored in the horizon map.

where 0h and 1h are the four-channel sine values read from layers 0 and 1 of the
horizon map, and the max function is applied componentwise.
 The cube texture map containing the channel factors has the appearance
shown in Figure 5.5. This texture is included in the materials accompanying this
chapter on the book’s website along with code for generating it. We have found
that a cube texture having a resolution of only 16 16 texels per side is sufficient,
and it requires a mere six kilobytes of storage.
 Once the interpolated sine value s has been calculated with Equation (5.3)
using the information sampled from the horizon map, we can compare it to the
sine of the angle that the direction to light L makes with the tangent plane, which
is simply given by zL when L is normalized. If zL s , then the light source is
above the horizon, and the pixel being shaded is therefore illuminated. If we were
to compute an illumination factor F that is one when zL s and zero otherwise,
then the shadow would be correct, but the shadow’s edge would be hard and jag-
ged as shown in Figure 5.6(a). We would instead like to have F smoothly transi-
tion from one to zero at the shadow’s edge to produce the soft appearance shown
in Figure 5.6(b). This can be accomplished by calculating

   1zF k L s   (5.4)

and clamping it to the range  0,1 . The value of F is always one, corresponding to
a fully illuminated pixel, when zL s . The value of F is always zero, correspond-
ing to a fully shadowed pixel, when 1zL s k  . The constant k is a positive

5.3 Rendering with Horizon Maps 81

(a) (b)

Figure 5.6. This close-up comparison shows the difference between a hard shadow and a soft
shadow for a stone wall. (a) The illumination factor F is exactly one or zero, depending on
whether zL s . (b) The illumination factor F is given by Equation (5.4) with 8.0k  .

number that determines how gradual the transition from light to shadow is. The
transition takes place over a sine value range of 1 k, so smaller values of k pro-
duce softer shadows.
 The fragment shader code in Listing 5.1 implements the horizon mapping
technique described in this chapter. It assumes that the shading contribution from
a particular light source has already been computed, possibly with larger-scale
shadowing applied, and stored in the variable color. The code calculates the in-
terpolated sine value for the horizon using Equation (5.3) and multiplies the RGB
components of color by the illumination factor F given by Equation (5.4). (In-
stead of using the max function that appears in Equation (5.3), the code clamps to
the range  0,1 because many GPUs are able to saturate the result of multiply and
multiply-add operations at no additional cost.) An ambient contribution would
typically be added to color before it is output by the shader.

82 5. Smooth Horizon Mapping

Listing 5.1. This GLSL fragment shader code implements the horizon mapping technique. The
texture horizonMap is a two-layer 2D array texture map that contains the eight channels of the
horizon map. The texture factorCube is the special cube texture map that contains the channel
factors for every light direction L. The interpolant texcoord contains the ordinary 2D texture
coordinates used to sample the diffuse color map, normal map, etc. The interpolant ldir contains
the tangent-space direction to the light source, which needs to be normalized before its z
component can be used in Equation (5.4).

const float kShadowHardness = 8.0;

uniform sampler2DArray horizonMap;
uniform samplerCube factorCube;

in vec2 texcoord; // 2D texture coordinates.
in vec3 ldir; // Tangent-space direction to light.

void main()
{
 // The direction to light must be normalized.
 vec3 L = normalize(ldir);

 vec4 color = ...; // Shading contribution from light source.

 // Read horizon channel factors from cube map.
 float4 factors = texture(factorCube, L);

 // Extract positive factors for horizon map layer 0.
 float4 f0 = clamp(factors * 2.0 - 1.0, 0.0, 1.0);

 // Extract negative factors for horizon map layer 1.
 float4 f1 = clamp(factors * -2.0 + 1.0, 0.0, 1.0);

 // Sample the horizon map and multiply by the factors for each layer.
 float s0 = dot(texture(horizonMap, vec3(texcoord, 0.0)), f0);
 float s1 = dot(texture(horizonMap, vec3(texcoord, 1.0)), f1);

 // Finally, multiply color by the illumination factor based on the
 // difference between Lz and the value derived from the horizon map.
 color.xyz *= clamp((L.z - (s0 + s1)) * kShadowHardness + 1.0, 0.0, 1.0);
}

References 83

References
[Max 1988] Nelson L. Max. “Horizon mapping: shadows for bump-mapped surfaces”.

The Visual Computer, Vol. 4, No. 2 (March 1988), pp. 109–117.

This page intentionally left blankThis page intentionally left blank

 85

6

Buffer-Free Generation of
Triangle Strip Cube Vertices

Don Williamson
Celtoys

6.1 Introduction
Buffer-free rendering can be used to simplify interaction between the CPU and
GPU or improve performance where reading from source data buffers becomes a
bottleneck. A common example is generating a quad in the vertex shader without
any inputs beyond the vertex ID, as shown in the following code.

float4 QuadPosition(uint vertex_id)
{
 // Triangle strip screen-space quad.
 float x = (vertex_id & 1) ? -1 : 1;
 float y = (vertex_id & 2) ? 1 : -1;
 return float4(x, y, 0, 1);
}

 No data buffers are required, making the shader simpler to setup, call, and
reuse. There are no branches, and the required constants can be encoded directly
in the shader’s load operations, thus requiring no trips through the data pipeline.
This code can be instanced and used everywhere from full-screen quad genera-
tion to particle quad expansion.
 If your mesh can be encoded as a single strip with no restarts and no vertex
reuse, like the simple case here, then there is no benefit to indexing the data in an
attempt to take advantage of the post-transform cache. The GPU will only call
the vertex shader once for each vertex.

86 6. Buffer‐Free Generation of Triangle Strip Cube Vertices

6.2 Generating Cube Vertices
Consider a cube with the vertex index layout shown in Figure 6.1. The origin-
centered positions of the cube can be quickly generated with the following code.

float3 CubePosition(uint vertex_id)
{
 float x = (vertex_id & 1) ? 1 : -1;
 float y = (vertex_id & 2) ? 1 : -1;
 float z = (vertex_id & 4) ? 1 : -1;
 return float3(x, y, z);
}

If an index buffer is being used, then this code immediately eliminates the need
to store vertex positions in the vertex buffer, reducing the amount of data that
needs to be loaded. In the case that no other per-vertex attributes are present, then
the vertex buffer can be completely eliminated.
 Geometry shaders are limited by the number of vertices they are allowed to
create. When generating cubes from such shaders it helps to emit cube vertices in
the smallest representation possible. An unwrapped cube can be triangle-stripped
such that only 14 vertices are created rather than 36 for a triangle list, as shown
in Figure 6.2.

Vertex
Index

Vertex Position
x y z

0 −1 −1 −1
1 +1 −1 −1
2 −1 +1 −1
3 +1 +1 −1
4 −1 −1 +1
5 +1 −1 +1
6 −1 +1 +1
7 +1 +1 +1

Figure 6.1. The numbering used for the cube vertices and the associated vertex positions.

0
1

2
3

4
5

6 7

x

y
z

6.2 Generating Cube Vertices 87

Figure 6.2. The 14 vertex indices used to generate a triangle strip for a cube.

 The cube can be rendered in a single triangle strip draw call using the pro-
vided indices. After placing the cube origin at  0.5,0.5,0.5 and making the sides
length 1.0, the vertex positions for a triangle-stripped cube are shown in
Table 6.1.

Index x y z

6 0 1 1
7 1 1 1
2 0 1 0
3 1 1 0
1 1 0 0
7 1 1 1
5 1 0 1
6 0 1 1
4 0 0 1
2 0 1 0
0 0 0 0
1 1 0 0
4 0 0 1
5 1 0 1

Table 6.1. The vertex positions for the triangle-stripped cube shown in Figure 6.2.

A

B

C D

E

F

G

H

I J

K

L

0 1

2 3

4

44

5

5

6

66

7

7

Triangle strip indices
6 7 2 3 1 7 5 6 4 2 0 1 4 5

88 6. Buffer‐Free Generation of Triangle Strip Cube Vertices

 After looking at the data in this form it’s immediately obvious that there are
three lookup tables with 1-bit entries that are entirely representable in 16-bit
integers:

X: b0010100001111010 = 0x287A

Y: b0000001010101111 = 0x02AF

Z: b0011000111100011 = 0x31E3

It’s now simple to generate triangle-stripped cube positions in the shader using
only the vertex ID, as shown in the following code.

float3 TriStripCubePosition(uint vertex_id)
{
 uint x = (0x287A >> vertex_id) & 1;
 uint y = (0x02AF >> vertex_id) & 1;
 uint z = (0x31E3 >> vertex_id) & 1;
 return float3(x, y, z);
}

 The generated microcode for the GCN architecture, shown in the following
listing, reveals that there are no trips through any kind of memory and that all of
the constants are encoded in the instructions themselves.

; v0 = vertex_id
v_lshr_b32 v1, 0x287A, v0
v_lshr_b32 v2, 0x02AF, v0
v_lshr_b32 v0, 0x31E3, v0
v_and_b32 v1, 1, v1
v_and_b32 v2, 1, v2
v_and_b32 v0, 1, v0
; <x, y, z> = <v1, v2, v0>

 While this shares most of the benefits of the original quad example, there are
six vertices that are referenced more than once in the strip, making less efficient
use of previously transformed vertices than indexed lists would. There are also
GPUs, such as Nvidia’s Kepler series, that demonstrably perform worse at varia-
ble shifts than others; a property that can be attributed to lack of a hardware bar-
rel shifter. As with everything, it’s best to measure first and make the call as to

6.3 Wireframe Cubes 89

whether the agility of this code outweighs any instances in which it might be
slower.

6.3 Wireframe Cubes
Drawing a wireframe cube as a line strip requires retracing some lines. Tracing a
line through a connected graph without retracing edges, starting and ending at the
same vertex, is called an Eulerian circuit. This is only possible if all vertices in
the graph have even degree, but a cube’s vertices have degree 3.
 Alternatively, we can just draw the cube as a line list with the following
lookup tables:

X: b001110111000000001111110 = 0x3B807E
Y: b100011100000011111111000 = 0x8E07F8
Z: b111000111110000111100000 = 0xE3E1E0

Each pair of bits represents start and end positions for a single line that can be
indexed in a shader by vertex ID. Replacing the constants in the TriStrip-
CubePosition() function is all that’s needed. The larger size of the constants,
however, may require more instructions on some architectures.

This page intentionally left blankThis page intentionally left blank

 91

7

Edge-Preserving Smoothing Filter for
Particle Based Rendering

Kin-Ming Wong
Tien-Tsin Wong
Shenzhen Research Institute
Department of Computer Science and Engineering
The Chinese University of Hong Kong

7.1 Introduction

The level of photorealism delivered by the latest game visuals is quickly match-
ing what was once possible only with off-line rendering techniques. Particle
based rendering effects like flint, smoke, and particle trails in most computer
games still suffer from grainy artifacts caused by an insufficient number of parti-
cles, but this artifact can often be reliably suppressed by using edge-preserving
filters such as the bilateral filter. Unfortunately, the bilateral filter is often too
expensive for a real-time rendering pipeline. In this chapter, we introduce a high-
ly efficient edge-preserving filter to the game development community.

7.2 Guided Image Filtering

Shown in Figure 7.1, guided image filtering is a technique introduced by com-
puter vision researchers a few years ago and has quickly become a popular drop-
in replacement for the bilateral filter. Best known for its efficient edge-preserving
power, the guided image filter relies on integral images known as summed area
tables [Crow 1984] for its unmatched performance, and this makes it a perfect
candidate for modern real-time image processing pipelines because summed area
tables have already been widely adopted for fast filtering purposes in games. This
chapter demonstrates the guided image filter and discusses how it can be imple-

92 7. Edge‐Preserving Smoothing Filter for Particle Based Rendering

Figure 7.1. Before and after guided image filtering.

mented quickly in shading languages for summed-area-table-enabled image pro-
cessing pipelines.
 The guided image filter is designed to serve multiple purposes, and a detailed
discussion of it is beyond the scope of this chapter. Interested readers may refer
to the original paper [He et al. 2010] for a complete theoretical formulation and
additional applications, which include refining a compositing matte and other
interesting image processing uses.
 In order to understand the guided image filter without going through its
mathematics in detail, we explain the intuition of its design. As an edge-
preserving filter, its main goal is to identify edges efficiently and preserve the
intensity of the original pixels on the edge as much as possible. As illustrated in
Figure 7.2, for any guided image filtered patch, we may consider the pixels inside
as a linear blend of two components. The first component represents the original
pixel values on the unfiltered patch, and the second component represents the
average value of all pixels in the patch.
 Based on the simple formula shown in Figure 7.2, it becomes easy to under-
stand how the guided image filter preserves edges. It relies on a good estimation
of the value of A. If an image patch covers an area with an edge, then the value of
A in the above formula should be close to one. If the patch covers an area with no
edge, then the value of A should be close to zero, and the whole patch should be
smoothly filtered. We will now explain how the guided image filter uses a two-
stage approach to estimate the value of A to achieve its edge-preserving filtering.

7.2 Guided Image Filtering 93

Filtered patch = A × original patch + (1 − A) × patch’s mean.

Figure 7.2. How guided image filter works for edge-preserving smoothing.

Per-patch variance evaluation

The first step of the guided image filter is to determine whether an edge exists in
each patch within a given image. The size of a patch is given by the parameter ω
defining the total number of pixels (often evaluated from a given width for con-
venience) on the patch in a local neighborhood around each pixel in the image.
The filter identifies edges by measuring the statistical variance of the pixel inten-
sity values I inside the patch. So for a patch of size ω centered on pixel k, this
statistical variance kσ is given by the following formula:

 2 21

k

k j k
j ω

σ I μ
ω 

 
  
 
 ,

where kω is the set of pixels in the patch, jI is the intensity of pixel j, and kμ is
the mean intensity inside the patch.
 It is fairly obvious that for a patch containing an edge, the statistical variance
of pixel intensity values will be high due to the polarized intensities of pixels that
define the edge. In the case where there is no visual edge, the statistical variance
of pixel intensity values should be low because intensity values should span a
narrow range. Computation of this per-patch variance and mean can both be ac-
celerated by using summed area tables for both the intensity and squared intensi-
ty values in the image.
 Once the patch’s variance is computed, the value of A, or more precisely,
what we call the per-patch kA , is given by the formula

 k
k

k

σ
A

σ ε



.

= A × + (1 − A) ×

filtered original average

94 7. Edge‐Preserving Smoothing Filter for Particle Based Rendering

Here, we have a second user parameter ε that allows users to control the mini-
mum edge strength that they want to preserve. If the value of this parameter is
very small, the value of kA will be close to one for any value of variance, so the
whole patch will be preserved. If ε is large, only strong edges will be preserved.
 With per-patch kA defined, we may write the formula for a filtered patch kI
in formally as

   1k k k k kI A I A μ  

 or k k k kI A I B  , where  1k k kB A μ  .

Per-pixel filtering

Our discussion so far focuses on individual image patches, but we have to be
aware that each pixel is actually member of multiple image patches. As every
patch includes ω pixels, it is not hard to see that each single pixel contributes to
the same number of image patches. In order to obtain the final filtered value of a
given pixel kp , we take the average value of per-patch kA and kB of all image
patches that include pixel kp and then apply the formula



Ω

Ω

1

Ω

1
,

Ω

k

k

k k k k

k i
i

k i
i

p A p B

A A

B B





 









where Ωk defines the set of patches that include the pixel kp . Obviously, this fi-
nal filtering step can be similarly accelerated by using summed area tables of per-
patch kA and kB .

7.3 GLSL Implementation
As described in previous section, the guided image filtering operation is divided
into two steps, and computation for pixel value variance and mean in both stages
can be easily accelerated by using summed area tables. Once the image data has
been transformed into summed area tables, computation of the rest of the filter is
embarrassingly parallel, and this explains why we believe the guided image filter
is a perfect edge-preserving smoothing filter for modern GPU based graphics
pipeline.

7.3 GLSL Implementation 95

 For illustration purposes, we implemented the filter as GLSL fragment
shaders for an OpenGL pipeline (see Listings 7.1 and 7.2). We assume that
summed area table code is readily available in the pipeline. The filter can be
summarized as a simple two-stage process:

1. Per-patch computation. First compute summed area tables of intensity I and
squared intensity 2I of the input image. Then compute the per-patch kA and

kB as shown in Listing 7.1.
2. Per-pixel computation. First compute summed area tables of per-patch kA

and kB . Then compute the average of kA and kB for each pixel and the final
filtered value as shown in Listing 7.2.

Listing 7.1. GLSL fragment shader for per-patch kA and kB computation.

#version 430 core

layout(binding = 0) uniform sampler2D sat_I2;
layout(binding = 1) uniform sampler2D sat_I;
layout(location = 0) out vec4 Ak;
layout(location = 1) out vec4 Bk;

uniform int r;
uniform float epsilon;

void main(void)
{
 vec2 s = 1.0 / textureSize(sat_I2, 0);
 vec2 coord = gl_FragCoord.xy;

 int r1 = -r - 1;
 vec2 P0 = s * (coord + vec2(r1, r1));
 vec2 P1 = s * (coord + vec2(r1, r));
 vec2 P2 = s * (coord + vec2(r, r1));
 vec2 P3 = s * (coord + vec2(r, r));

 float patchWidth = r + r + 1;
 float omega = 1.0 / (patchWidth * patchWidth);

 vec3 a, b, c, d;

96 7. Edge‐Preserving Smoothing Filter for Particle Based Rendering

 a = textureLod(sat_I2, P0, 0).rgb;
 b = textureLod(sat_I2, P1, 0).rgb;
 c = textureLod(sat_I2, P2, 0).rgb;
 d = textureLod(sat_I2, P3, 0).rgb;
 vec3 ui2 = vec3(omega) * (a - b - c + d);

 a = textureLod(sat_I, P0, 0).rgb;
 b = textureLod(sat_I, P1, 0).rgb;
 c = textureLod(sat_I, P2, 0).rgb;
 d = textureLod(sat_I, P3, 0).rgb;
 vec3 ui = vec3(omega) * (a - b - c + d);

 vec3 var = ui2 - (ui * ui);
 vec3 ak = var / (vec3(epsilon) + var);
 vec3 bk = ui * (vec3(1.0) - ak);

 Ak = vec4(ak.rgb, 1.0);
 Bk = vec4(bk.rgb, 1.0);
}

Listing 7.2. GLSL fragment shader for per-pixel computation.

#version 430 core

layout(binding = 0) uniform sampler2D input_image;
layout(binding = 1) uniform sampler2D Ak;
layout(binding = 2) uniform sampler2D Bk;
layout(location = 0) out vec4 color;

uniform int r;

void main(void)
{
 vec2 s = 1.0 / textureSize(input_image, 0);
 vec2 C = gl_FragCoord.xy;

 int r1 = -r - 1;
 vec2 P0 = s * (vec2(C) + vec2(r1, r1));
 vec2 P1 = s * (vec2(C) + vec2(r1, r));

7.4 Results and Performance 97

 vec2 P2 = s * (vec2(C) + vec2(r, r1));
 vec2 P3 = s * (vec2(C) + vec2(r, r));

 float patchWidth = r + r + 1;
 float omega = 1.0 / (patchWidth * patchWidth);

 vec3 a, b, c, d;

 a = textureLod(Ak, P0, 0).rgb;
 b = textureLod(Ak, P1, 0).rgb;
 c = textureLod(Ak, P2, 0).rgb;
 d = textureLod(Ak, P3, 0).rgb;
 vec3 A = vec3(omega) * (a - b - c + d);

 a = textureLod(Bk, P0, 0).rgb;
 b = textureLod(Bk, P1, 0).rgb;
 c = textureLod(Bk, P2, 0).rgb;
 d = textureLod(Bk, P3, 0).rgb;
 vec3 B = vec3(omega) * (a - b - c + d);

 vec3 res = A * textureLod(input_image, C * s, 0).rgb + B;
 color = vec4(res.rgb, 1.0);
}

7.4 Results and Performance

We have benchmarked the performance of the filter fragment shaders on an
Nvidia GTX 760 graphics card with an OpenGL 4.5 compatible driver on the
Windows platform. A floating-point RGB image of size 1024 × 1024 was used in
benchmarking and a summed area table compute shader published in [Sellers et
al. 2013] was used in our pipeline.
 Table 7.1 summarizes the results, and because the filter relies heavily on
summed area table data structure for its performance, the overall speed is natural-
ly determined by summed area table computation. The good thing about it is that
any speed boost achieved by improved the summed area table component of the
graphics pipeline can immediately benefit the guided image filter shader.
 Figure 7.3 demonstrates the impact of patch size. As this parameter deter-
mines the size of the neighborhood for smoothing, we can see the smoothed halo
effect is more spread out when the patch width is larger.

98 7. Edge‐Preserving Smoothing Filter for Particle Based Rendering

Shader Per-call time (ms) Number of calls Total time (ms)

Squared intensity 0.61 1 0.63

Summed area table 2.46 4 9.84

Per-patch kA and kB 1.75 1 1.75

Per-pixel result 0.88 1 0.88

 TOTAL 13.1

Table 7.1. GPU timing result for an image of resolution 1024 × 1024.

 Figure 7.4 shows the use of the edge strength control parameter ε . This pa-
rameter determines the minimum edge strength to be preserved, and we can see
most edge-like features are better preserved when its value is relatively small.
 Apart from being a GPU friendly edge-preserving filter, the guided image
filter performs equally well on multicore architectures. We have seen fully multi-
threaded and vectorized CPU implementation provide a satisfactory interactive
rendering rate.

Figure 7.3. Using different patch width with same 0.25ε  .

Acknowledgements 99

Figure 7.4. Using different ε with same patch width = 21.

Acknowledgements
This work is partially supported by NSFC (Project No. 61272293) and the Re-
search Grants Council of the Hong Kong Special Administrative Region under
RGC General Research Fund (Project No. CUHK417913 and CUHK14200915).

References
[Crow 1984] Franklin C. Crow. “Summed-area tables for texture mapping”. Proceedings

of the 11th annual conference on Computer graphics and interactive techniques,
1984, pp. 207–212.

[He et al. 2010] Kaiming He, Jian Sun, and Xiaoou Tang. “Guided image filtering”. Pro-
ceedings of the 11th European conference on Computer Vision: Part I, 2010, pp.
1–14.

[Sellers et al. 2013] Graham Sellers, Richard S. Wright Jr., and Nicholas Haemel. “Com-
pute Shaders”. OpenGL SuperBible, 6th edition, Addison-Wesley, 2013.

This page intentionally left blankThis page intentionally left blank

 101

8

Variable Precision Pixel Shading
for Improved Power Efficiency

Rahul P. Sathe
Intel

We propose a technique for selectively reducing the pixel shader precision for the
purpose of efficient rendering in a low-power environment. Typically, pixel
shading consumes the largest percentage of the power on GPUs [Pool 2012].
Modern APIs like Direct3D 11.1 allow users to reduce the shading precision to
meet the low power requirements, but they don’t allow doing so adaptively. Ren-
dering at reduced precision can potentially produce artifacts in the rendered im-
age. These artifacts are most noticeable where the user’s attention is focused,
which is typically at the center of the screen or, in the case of an eye tracking
device, at the point provided as input by such a device. This chapter presents a
scheme to render the scene at the highest precision where user’s attention is fo-
cused and gradually reduce the precision at the points farther away from the focal
point.

8.1 Introduction and Background
Image artifacts are more acceptable in some parts of the screen than others.
Techniques proposed in the past like foveated 3D graphics [Guenter et al. 2012],
coarse pixel shading [Vaidyanathan et al. 2014], and extending the graphics pipe-
line with adaptive, multirate shading [He et al. 2014] try to exploit this observa-
tion by reducing the sampling rate in less important parts of the screen. But none
of these techniques propose reducing the shading precision. One can write a pixel
shader that dynamically chooses the precision depending on the region of the
screen that is being shaded. However, such a shader is less efficient because of
the reduced SIMD usage due to the presence of dynamic control flow.

102 8. Variable Precision Pixel Shading for Improved Power Efficiency

 Forward shading refers to a technique where pixel shading is done immedi-
ately after rasterization (or after early and hierarchical Z/stencil testing, when
applicable). Forward shading typically suffers from the issue of overdrawing the
same pixel multiple times. Deferred shading overcomes the overdraw issue by
decoupling the visibility determination and the shading. In the first pass, it writes
out the pixel shader input (interpolated attribute values) into a buffer commonly
called the G-buffer (Geometry buffer). In the second pass (a full-screen pass or a
compute shader), it loads the G-buffer values and evaluates shading.
 The key to lowering the pixel shader precision while shading certain parts of
the screen is the ability to bind a lower precision shader while shading those pix-
els. With forward shading, one does not know where the polygons being shaded
will land at the time that the pixel shader is bound. One can avoid shading re-
gions that need different precision with the use of Z-buffer or stencil mask, but to
shade the parts that require a different precision in a separate pass, the entire ge-
ometry processing stage needs to be done again. As a result, it is not efficient to
use a specialized low-precision shader with the forward rendering. During the
shading phase of the deferred shading process, one can bind a shader with a par-
ticular precision for shading the relevant portions of the screen. One can then
repeat this with a different precision for different portions of the screen without
processing the geometry multiple times. As a result, variable precision pixel
shading fits well in the deferred rendering pipeline. We propose using our tech-
nique in conjunction with the tiled deferred renderer proposed by [Lau-
ritzen 2010].
 Texturing is one area that could be very sensitive to the precision. A small
change in  ,u v values as a result of lowering the precision could mean vastly
different looking texels. This is more likely to happen for large textures. Fortu-
nately, texturing is typically done during the forward pass where we continue to
use standard full-precision shading.

8.2 Algorithm

G-Buffer Generation

Just like in a normal deferred shading engine, our algorithm starts off by generat-
ing a G-buffer by writing out shading inputs at the pixel center. The G-buffer
stores the derivatives of the view-space depth values in addition to the other sur-
face data (position, normal, UVs, TBN basis, etc.) required for evaluating the
BRDF during the shading pass. View-space depth derivatives are calculated by
first multiplying the position with the camera-world-view matrix and evaluating

8.2 Algorithm 103

the ddx_coarse() and ddy_coarse() functions. We use spherical encoding to
store the surface normal as a float2 to save some G-buffer space and bandwidth.
We pack the specular intensity and the specular power in the other two compo-
nents to occupy a full float4. The G-buffer layout is given by the following
structure.

struct GBuffer
{
 float4 normal_specular : SV_Target0; // normal and specular params
 float4 albedo : SV_Target1; // albedo
 float2 positionZGrad : SV_Target3; // ddx, ddy of view-space depth
 float positionZ : SV_Target4; // view-space depth
};

Shading Passes

Normally, deferred shading has only one shading pass. But because we propose
using different precisions while shading different parts of the screen, we have to
perform multiple shading passes, one corresponding to each precision level. The
compute shader is launched such that one thread group processes one region of
the screen, henceforth referred to as a tile. Figure 8.1 shows how we statically
mark the regions on the screen. Region A corresponds to the center region where
image artifacts would be most noticeable. As a result, that needs to be shaded at
the highest available precision. Regions B and C are further away from the center
of the screen, so artifacts are progressively less noticeable in those regions.
 Starting with DirectX 11.1 on Windows 8, new HLSL data types were intro-
duced that allow applications to use lower precision, namely min16float and
min10float. One can find out which types are supported on a given GPU by us-
ing the following snippet.

D3D11_FEATURE_DATA_SHADER_MIN_PRECISION_SUPPORT minPrec;

hr = pd3dDevice->CheckFeatureSupport(
 D3D11_FEATURE_SHADER_MIN_PRECISION_SUPPORT, &minPrec, sizeof(minPrec));

if (FAILED(hr)) memset(&minPrec, 0, sizeof(minPrec));

104 8. Variable Precision Pixel Shading for Improved Power Efficiency

Figure 8.1. The screen is statically partitioned into the elliptical regions A, B, and C.
Axis dimensions for region A are chosen arbitrarily and can be set to the desired values
with the experimentation.

 The value of minPrec in the above code tells the user what precisions are
supported by the GPU for different shader types. If available, we compile three
separate versions of the deferred shader, the one with the full precision for region
A, the one with min16float precision for region B and the one with min10float
precision for region C. If the min10float type is not supported, then we just use
min16float for region C and full precision for regions A and B. The major and
minor axes for elliptical regions corresponding to region A are a function of
viewing distance. Since we use a compute shader for deferred shading, we do not
mark these regions in the stencil buffer to selectively shade those regions. In-
stead, we check whether the tile on the screen is within the region of interest that
is being shaded. We simply skip rendering if the tile is outside of region being
shaded and free the corresponding hardware resources. Since the regions of inter-
est are elliptical in shape, we use the following equation to test whether a point
 ,x y is inside an ellipse centered at  ,h k with the major and minor axis lengths a
and b.

   2 2

2 2
1

x h y k

a b

 
 

 We perform the test at the each of the tile corners, and we shade all the pixels
of the tile only if all the corners of the tile are within the region being shaded. If
multisampling is enabled during the G-buffer generation pass, one should be
careful to evaluate the above equation at the corners of the tile and not at the cen-

Region A

Region B

Region C

8.2 Algorithm 105

ters of the corner pixels. The reason for doing this is the fact that the sample loca-
tions can vary from one hardware vendor to another and only way to guarantee
that all the samples in the tile are in a particular region is to do the in-out test at
the tile corners. If multisampling is enabled during the G-buffer generation pass,
one should use the technique discussed in [Lauritzen 2010] during the lighting
pass in order to shade at the sample rate only when necessary.
 After the in-out test for the entire tile, the compute shader is conceptually
divided into the following phases:

1. Light tiling phase.
2. Analysis phases (if multisampling is enabled).
3. Pixel shading phase.
4. Sample shading phase (if multisampling is enabled).

At the end of each phase, the threads within the thread group synchronize. The
details of the phases can be found in [Lauritzen 2010]. Listing 8.1 shows the
pseudocode for the shading pass.

Listing 8.1. Pseudocode for the shading pass. It has four phases: the light tiling phase, the analysis
phase, the pixel shading phase, and the sample shading phase. Phases are separated by a call to
Groupsync().

#define GROUP_DIM 16
#define GROUP_SIZE (GROUP_DIM * GROUP_DIM)

groupshared uint sMinZ, sMaxZ; // Z-min and max for the tile.

// Light list for the tile.
groupshared uint sTileLightIndices[MAX_LIGHTS];
groupshared uint sTileNumLights;

[numthreads(GROUP_DIM, GROUP_DIM, 1)] // Coarse pixel is NxN.

void ComputeShaderTileCS(...)
{
 // Check to see if each of the corners of the tile lie within the
 // region being shaded. Proceed only if the tile lies inside.
 Groupsync();

106 8. Variable Precision Pixel Shading for Improved Power Efficiency

 // Load the surface data for all the pixels within NxN.
 // Calculate the Z-bounds within the coarse pixel.
 // Calculate min and max for the entire tile and store as sMinZ, sMaxZ.

 // One thread processes one light.
 for (lightIndex = groupIndex..totalLights)
 {
 // If light intersects the tile append it to sTileLightIndices[].
 }

 Groupsync();

 // Read the lights that touch this tile from the groupshared memory.
 // Evaluate and accumulate lighting for every light for top left pixel.

 // Check to see if per sample lighting is required.
 bool perSampleShading = IsPerSampleShading(surfaceSamples);
 if (perSampleShading)
 {
 // Atomically increment sNumPerSamplePixels with the read back.
 // Append the pixel to the sPerSamplePixels[].
 }
 else
 {
 // Store the results in the intermediate buffer in groupshared or
 // global memory OR if no per pixel component, splat the top-left
 // pixel's color to other pixels in NxN.
 }

 GroupSync();

 uint globalSamples = sNumPerSamplePixels * (N * N - 1);
 for (sample = groupIndex..globalSamples..sample += GROUP_SIZE)
 {
 // Read the lights that touch this tile from the groupshared memory.
 // Accumulate the lighting for the sample.
 // Write out the results.
 }

 GroupSync();

8.3 Results 107

}

8.3 Results
We measured the image quality on Intel Core i7-6700K 8M Skylake Quad-Core
running at 4.0 GHz. Intel hardware does not support min10float, so our screen
was divided in two regions. Regions A and B were shaded with the full-precision
shader, and region C was shaded with the half-precision shader. We used the as-
sets that we thought were representative of real game assets. We distributed 1024
lights in our scenes.
 Figure 8.2 shows images produced at different shading precisions. The top
row of the Figure 8.2 shows the images rendered at 1600 1200 resolution with a
full-precision shader used for the rendering pass. The second row shows the same
scenes rendered with the half-precision shader used for shading every pixel on
the screen. The third row shows the images where region B was shaded with full
precision and region C was shaded with half precision during the rendering pass.
The last row shows scaled (100 times) image differences between screenshots
with full precision and mixed precision (rows 1 and 3). The PSNR for the mixed
precision with respect to full precision was 41.22 for the power plant scene and
38.02 for the Sponza scene.

8.4 Discussion
Following the trajectory of the evolving GPU languages, dynamic binding in the
shaders is a real possibility in the near future. With dynamic shader binding,
there won’t be a need to bind a specialized shader prior to the draw or dispatch
call. With this restriction removed, the technique could be used during forward
shading as well, but one has to be mindful of texture sampling issues and SIMD
efficiency when using such a technique with forward rendering.

108 8. Variable Precision Pixel Shading for Improved Power Efficiency

Figure 8.2. Images in the top row were rendered entirely with the full-precision shader,
and images in the second row were rendered entirely with the half-precision shader. The
third row shows the images when screen was partitioned into regions B and C as per Fig-
ure 8.1, region B was shaded at full precision, and region C was shaded at half precision.
The last row shows the differences between rows 1 and 3 scaled 100 times.

Acknowledgements 109

Acknowledgements
Thanks to Tomas Akenine-Möller and Karthik Vaidyanathan for their help with
writing this chapter. Tomas Akenine-Möller is a Royal Swedish Academy of Sci-
ences Research Fellow supported by a grant from the Knut and Allice Wallen-
berg foundation.

References
[Guenter et al. 2012] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John

Snyder. “Foveated 3D Graphics”. ACM Transactions on Graphics, Vol 31, No. 6
(November 2012), Article 164.

[Vaidyanathan et al. 2014] Karthik Vaidyanathan, Marco Salvi, Robert Toth, Tim Foley,
Tomas Akenine-Möller, Jim Nilsson, Jacob Munkberg, Jon Hasselgren,
Masamichi Sugihara, Petrik Clarberg, Tomasz Janczak, and Aaron Lefohn.
“Coarse Pixel Shading”. High Performance Graphics, 2014.

[Lauritzen 2010] Andrew Lauritzen. “Deferred Rendering for Current and Future Render-
ing Pipelines”. Beyond Programmable Shading, Siggraph Course, 2010.

[Pool 2012] Jeff Pool. “Energy-Precision Tradeoffs in the Graphics Pipeline”. PhD dis-
sertation, 2012.

[He et al. 2014] Yong He, Yan Gu, and Kayvon Fatahalian. “Extending the graphics
pipeline with adaptive, multi-rate shading”. ACM Transactions on Graphics, Vol.
33, No. 4 (July 2014), Article 142.

This page intentionally left blankThis page intentionally left blank

 111

9

A Fast and High-Quality Texture
Atlasing Algorithm

Manny Ko
Activision Blizzard Inc.

We introduce a fast atlasing algorithm that is good at filling holes and can handle
highly irregular shapes. It produces much tighter packing than the popular Tetris
method. We also address the various issues stemming from texture filtering, in-
cluding a means to filter across charts robustly. Our method has been implement-
ed as a Maya plugin and used successfully in several Sony first-party games.

9.1 Introduction

Texture mapping requires  ,u v texture coordinates (UVs) to be assigned to ver-
tices of a mesh. It is usually a three step process of segmentation, parameteriza-
tion, and packing [Lévy et al. 2002]. In games, segmentation is usually a labor-
intensive manual process of unwrapping, which involves unfolding the mesh at
seams. The resulting disk-like pieces are what we call charts. The charts are
packed into an atlas to optimize the use of texture memory and reduce the num-
ber of draw calls that would be necessary due to intervening state changes. Nvid-
ia’s white paper demonstrates the importance of batching in real-time rendering
[Kwatra et al. 2004].
 This chapter addresses the third step in the process, that of packing. We dis-
cuss an efficient algorithm that can generate high-quality atlases out of arbitrari-
ly-shaped charts. The algorithm is also very simple to implement and does not
involve complicated components like nonlinear solvers. The atlasing algorithm is
very good at filling holes and can reserve borders around charts to handle the
bilinear filtering kernels used in real-time rendering. To minimize the filtering
artifacts, we also introduce a novel approach to blending texels across shared

112 9. A Fast and High‐Quality Texture Atlasing Algorithm

chart boundaries before they are moved by the atlasing code. The algorithm is
inspired by Sibley’s poster [Sibley and Taubin 2004], which uses rasterization to
reconstruct the chart adjacencies. We instead use the chart’s topology to reliably
establish adjacency, which is critical for reliable filtering.
 From the point of view of game production, the problem is even a little more
general. We are trying to pack a given set of textures that the artists have applied
to a set of models into a limited set of texture objects. The total size of the set of
texture is limited by available texture memory, and the sizes are usually limited
to powers of two and a very limited set of dimensions. Those limits are frequent-
ly associated with the game’s texture management scheme. From an algorithmic
point of view, this is the classic bin packing problem.

9.2 Background

When I was researching the packing problem a few years back, I was surprised to
find very little relevant work in CG research. The problem has been well studied
in operations research [Chen et al. 2003] and even in the fabric industry as the
stock cutting problem. In graphics, Lévy’s work on least-square conformal map-
ping (LSCM) [Lévy et al. 2002] is one of the few attempts at tackling all three
phases of the problem, although the heart of their work concerns the parameteri-
zation step. For packing, they proposed a Tetris algorithm that is often used by
other works.
 There is a large and interesting body of work on parameterization. In game
production, automatic unwrap and parameterization is seldom used because art-
ists want exact control in order to optimize the precious texture memory. Atlas
packing, on the other hand, is needed for the purely technical requirements of the
real-time engine. As such, it is tedious and most appropriate for automation, es-
pecially when generating light maps.
 Maya has a simple atlasing algorithm that seems to treat charts as rectangles
and pack them using a variant of a descending first-fit heuristic. DirectX also has
a UVAtlas tool that appears to produce tighter maps than Maya’s but still leaves
many holes that our algorithm can fill in.
 The other well-known algorithm for atlasing is the Tetris algorithm by Lévy
et al. [Lévy et al. 2002] as part of LSCM. Tetris tracks an irregular front and
hence, can pack better than algorithms that model the canvas and shape as bound-
ing rectangles. However, front tracking cannot capture many holes created during
the course of packing. Hole-filling is a critical attribute of a good atlasing algo-
rithm because holes can be created in the course of packing irregular shapes. In
Figure 9.1, one can imagine the empty space surrounding the large circular chart

9.3 Chart Segmentation 113

Figure 9.1. Output of the atlas packer. (a) No border pixels. (b) One-pixel borders.

after it has been placed in the atlas. If the atlasing algorithm only treats shapes as
bounding rectangles, then all of that precious space is left empty. Our algorithm
successfully packs a lot of thin shapes into that space.

9.3 Chart Segmentation

For segmentation, we followed the general idea of Lévy to break the mesh at
creases. Creases are defined by angles across adjacent faces greater than a user
defined tolerance. In addition, we also split charts based on shader/material and
UV discontinuity. The rest is a standard application of a fast equivalent class al-
gorithm. The best approach is to use path compression, which supports constant-
time find and union queries. (The details are given in standard data structure
books.) We do not attempt to trace crease lines as performed by Lévy et al., but
instead we simply try to capture the unwrapped face connectivity that is already
in the mesh.
 Conceptually, each face is initially in its own set. Sets are joined when the
IsSameChart() function in Listing 9.1 indicates they should be in the same
chart. After one pass through the faces, path compression is applied to the Par-
titionSet object, during which each parent link is replaced by the root link.
Both steps are  O n operations since Union() is a constant time operation. The
final loop adds all the faces to the charts they belong to using the Find() opera-
tor, which is also an  O n operation since Find() is a constant time operation in
a path-compressed partition set. The IsSameChart() function is typically im-
plemented with a topology class using half-edges.

114 9. A Fast and High‐Quality Texture Atlasing Algorithm

Listing 9.1. This code computes charts using path compression.

void GenerateTextureCharts(const Topology& topology)
{
 PartitionSet pset(numFaces);
 for (j = 0; j < numFaces; ++j)
 {
 const Face *tface = topology.GetFace(j);
 HalfEdge *firste = tface->FirstEdge(), *edgeiter = firste;
 do
 {
 const HalfEdge *pair = edgeiter->GetPair(); // Half-edge buddy.
 const Face *adjface = pair->GetFace(); // Neighboring face.
 if (adjface)
 {
 // Test for shared UVs and materials.
 if (IsSameChart(tface, adjface))
 {
 pset.Union(j, adjface->m_faceId); // Union is O(1).
 }
 }

 edgeiter = edgeiter->Next(); // Next edge for the face.
 } while (edgeiter != firste);
 }

 pset.CompressPath(); // Every parent is replaced by the bin #.
 for (j = 0; j < numFaces; ++j)
 {
 // Add faces to their charts.
 const Face *tface = topology.GetFace(j);
 if (tface->IsValid())
 {
 (*charts)[pset.Find(j)].AddFace(j); // Find is O(1).
 }
 }
}

9.4 Atlas Packing 115

9.4 Atlas Packing
Our atlas packing algorithm separates the problem into three steps:

1. Generating candidate positions for a chart.
2. A quick check to see if the proposal is a valid one.
3 A goodness metric that measures how good the proposed position is.

This decomposition allows us to use many different heuristics in Step 1 and share
the time-critical implementation in Step 2. We encode the metric in a strategy
object for loose coupling. This enables great flexibility in accommodating the
different needs of studios and games.

Canvas and Shapes

The heart of the algorithm is Step 2, and this is the most time consuming step.
The key is to design an efficient representation for the canvas and the shapes.
Our algorithm is based on rasterizing the UV-triangles into a bitmap at the reso-
lution of the target texture. The bitmap is converted into a shape encoded in a
bitset. The rasterization should be performed accurately to reproduce the address-
ing and coverage calculation of the target GPU. One can either directly use the
target GPU to render these shapes or exactly reproduce the logic in software. The
key data structure used by the packer is a canvas that is another 2D bitset mirror-
ing the dimension of our texture. This representation enables us to very quickly
determine whether a given position in the canvas is already occupied by a previ-
ously placed chart. The checks consist of simple boolean ANDs and bit counting.
A chart only has to be rasterized once and can be quickly placed in many pro-
posed points until we decide that we have to change the scale.
 If we want to implement back-tracking, then removing a shape from the can-
vas is simple and efficient. We just have to clear all the bits occupied by the
shape. The history can be compactly encoded as a pair of  ,x y offsets. We
choose to store these offsets with the shapes since we only have one active posi-
tion for each shape. If you need to store multiple candidate positions (e.g., in a
genetic algorithm), then the offsets can easily be stored in separate arrays. These
offsets are needed by the atlas-aware blending so that split charts can find each
other’s edges.
 We do not need to track a complicated geometric relationship like the front in
the Tetris algorithm. Front tracking also limits the ability of Tetris to handle
holes. Our algorithm is much freer to explore the entire search space and can do
it very efficiently.

116 9. A Fast and High‐Quality Texture Atlasing Algorithm

Shape Dilation

If the user requests border pixels to be reserved, then we simply apply an image
dilation operator to our shapes before attempting to place them onto the 2D can-
vas. The code shown in Listing 9.2 is a simple, nonrecursive implementation.

Listing 9.2. This code dilates a shape by identifying any pixels having the property that at least
one of their eight neighbors belong to the original shape.

void ShapekBuilder::Dilate(ShapeMask *shape, int border)
{
 ShapeMask& shapemask = *shape;

 int origin[2];
 shape->m_rect.GetOrigin(origin);

 ShapeMask edges;
 edges.Init(origin[0], origin[1], shape->Width(), shape->Height());

 int x, y;

 // Grow region.
 for (int p = 0; p < border; p++)
 {
 shapemask.FirstFree(&x, &y); // First empty pixel.
 while (!shapemask.IsEnd(x, y))
 {
 // Do we have an 8-connected neighbor that is set?

 if (shapemask.HasNeighbor8(x, y))
 {
 edges.Add(x, y);
 }

 shapemask.NextFree(&x, &y); // Next empty pixel.
 }

 shapemask += edges;
 }
}

9.4 Atlas Packing 117

Canvas Packing

The canvas packing logic is straightforward, as shown in Listing 9.3. We encap-
sulate the heuristic for picking the next chart in an oracle. (We have implemented
several oracles.) The classic descending first-fit, where we sort the shapes by
height, works surprising well. We also experimented with versions that sort by
area or by width with and without randomization.
 For the goodness metric, after some experimentation, we found a very simple
metric that works surprising well:

number of occupied pixels

utilization
bounding rect of shapes

 .

 This simple greedy packing approach might feel like it is too obvious to dis-
cuss. Readers can compare its output with those of LSCM and the DirectX
SDK’s atlas packer and see that it outperforms them by a significant margin in
most cases. Its ability to fill holes very effectively is seldom matched in other
popular methods. See Figure 9.2 for an example of it in action.

Listing 9.3. This code implements canvas packing.

for (int c = 0; c < numCharts; c++)
{
 chart = charts[c];
 oracle->NextPosition(pos, 0);
 while (!packed && pos.IsValid())
 {
 MoveChart(chart, pos);
 if (canvas.Fits(chart))
 {
 canvas.Add(chart);
 packed = true;
 }
 else
 {
 oracle->NextPosition(pos, chart);
 }
 }
}

118 9. A Fast and High‐Quality Texture Atlasing Algorithm

Figure 9.2. Output of the atlas packer for a dragon model.

 The simple greedy method’s main weakness shows up when it is presented
with a few very large shapes or when the canvas (light map) is very small. If this
is an important case for your game, you can add a simple annealing step to im-
prove the solution when the degree of freedom available to the packer is small.

9.5 Atlas-Aware Filtering

Sibley’s poster [Sibley and Taubin 2004] introduces an interesting idea of using
microedges to perform Laplacian diffusion across chart boundaries. A microedge
is a shared edge in the original UV map before segmentation and packing have
been applied. When the texture filtering kernel is placed over that edge, its foot-
print includes pixels inside one chart as well as pixels in the empty space we
have reserved for border pixels. If those border pixels are left as black, then the
reconstructed color would be wrong. The desired result should be one where the
filter is placed over the original unsplit map. That is clearly not possible because
the other side of the chart’s edge is likely to be far away in the texture. We do the
next best thing, which is to blend the texels across the microedges to simulate the
correct filtering result.
 We directly build on top of their idea with one refinement. The original pro-
posal uses rasterization and pixel classification to derive the microedges, for
which it is not always easy to produce a consistent neighborhood structure. In-
stead, we obtain them directly from the topology data structure that we built for
chart segmentation. In Laplacian and anisotropic diffusion, it is critical for

Acknowledgements 119

Figure 9.3. Output of atlas-aware diffusion.

neighbors to have a consistent neighborhood structure. If a pixel’s neighbor fails
to recognize the pixel as its neighbor, the energy flow becomes one-way, and
serious artifacts are generated.
 The microedges are stored in a list by the chart segmentation module. Next,
we iterate through every texel in the canvas, checking to see if each texel is with-
in the filter kernel that touches a border texel. These are the only texels we want
to be involved in the blending. For texels that overlap the kernel, we find the
nearest microedge using a 2D distance check, given in Listing 9.4. For the dis-
tance check, we use PerpDot [Hill 1994], which is an elegant and efficient way
to compute the perpendicular distance to a line segment. Once we have located
the nearest edge we compute the t value along the edge that is used for the linear
interpolation needed to reconstruct the center pixel for the kernel. Please refer to
[Sibley and Taubin 2004] for details. A sample output of the diffusion process is
shown in Figure 9.3. One can build a search structure to accelerate this, but a
carefully implemented linear search was good enough for an interactive Maya
plugin.

Acknowledgements
The author would like to thank Peter Sibley for his helpful discussions and
Naughty Dog for their support during this report.

120 9. A Fast and High‐Quality Texture Atlasing Algorithm

Listing 9.4. This code calculates the 2D distance from the point p to the line passing through v0
and v1.

float Distance2Line(const Vec2& v0, const Vec2& v1, const Vec2& p)
{
 Vec2 a = v1 - v0; // v0 + t * a
 return PerpDot(a, p - v0) / Length(a);
}

References
[Chen et al. 2003] Ping Chen, Zhaohui Fu, Andrew Lim, and Brian Rodrigues. “Two

dimensional packing for irregular shaped objects”. Proceedings of the 36th Hawaii
International Conference on System Sciences, 2003.

[Degener and Klein 2007] Patrick Degener and Reinhard Klein. “Texture atlas generation
for inconsistent meshes and point sets”. International Conference on Shape Model-
ing and Applications, 2007.

[Hill 1994] F. S. Hill, Jr. “The Pleasures of ‘Perp Dot’ Products”. Graphics Gems IV,
edited by Paul S. Heckbert. Morgan Kaufmann, 1994.

[Kwatra et al. 2004] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. “Im-
proving Batching Using Texture Atlases”. Nvidia SDK Whitepaper, July 2004.

[Lévy et al. 2002] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot.
“Least squares conformal maps for automatic texture atlas generation”. ACM
Transactions on Graphics, Vol. 21, No. 3 (July 2002).

[Ray and Lévy 2003] Nicolas Ray and Bruno Lévy. “Hierarchical least squares confor-
mal map”. Proceedings of the 11th Pacific Conference on Computer Graphics and
Applications, 2003, p. 263.

[Sander et al. 2003] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe.
“Multi-chart geometry images”. Proceedings of the 2003 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pp. 146–155.

[Sibley and Taubin 2004] P.G. Sibley and Garbiel Taubin. “Atlas aware Laplacian
smoothing”. IEEE Visualization, Poster Session, 2004.

[Van Horn and Turk 2008] R. Brooks Van Horn III and Greg Turk. “Antialiasing proce-
dural shaders with reduction maps”. IEEE Transactions on Visualization and
Computer Graphics, Vol. 14, No. 3 (2008), pp. 539–550.

 121

Part II

Physics

This page intentionally left blankThis page intentionally left blank

 123

10

Rotational Joint Limits in
Quaternion Space

Gino van den Bergen
Dtecta

10.1 Introduction

The motions of an animated game character are generally controlled by a hierar-
chy of coordinate transformations. The coordinate transformations represent the
skeletal bones. Except for the root bone, each bone is the child of exactly one
parent bone. Game characters are animated by changing the relative placement of
a child bone with respect to its parent bone over time. Character animation can be
controlled manually by smoothly interpolating key frames, which are character
poses at given instances of time. These key frames are either created by an ani-
mator or recorded using motion capture.
 Characters can also be animated procedurally. The relative bone placements
are then solved in real-time according to kinematic and dynamic rules (e.g.,
ragdoll physics). The rules describe restrictions on the relative motion of a child
bone with respect to its parent, and the relative motions are determined by the
joint type. A joint type defines one or more degrees of freedom (DOFs) between
a child bone and its parent. The number of DOFs represent the number of param-
eters that are required for defining the configuration of a joint. Parameters often
have a limited range. For example, door hinges have one DOF and usually have a
range close to 180.
 The joints that connect the bones are in most practical cases idealized as
purely rotational joints, but this is a simplification of reality. For example, a hu-
man knee combines a rotational movement with a slight translational movement.
We can often get away with ignoring the translational component. It is safe to

124 10. Rotational Joint Limits in Quaternion Space

assume that for our character models, or organic models in general, all we need
are rotational joints.
 An unrestricted bone has three rotational DOFs. In mechanical devices, joints
that have all three rotational DOFs are not very common. Examples are ball
joints used for connecting the front wheel suspension of an automobile. In human
or animal skeletons, ball joints, or rather ball-and-socket joints, are quite com-
mon. A human skeleton houses ball-and-socket joints in the shoulders and the
hips.
 Ball-and-socket joints have a limited range of admissible relative orienta-
tions. Enforcing joint limits in a ball-and-socket joint is tricky because of two
reasons:

1. Parameterization of the three rotational DOFs is not intuitive and is prone to
including singularities.

2. Human shoulder and hip range bounds are oddly shaped manifolds and are
hard to represent in our chosen parameterization.

This chapter discusses how to define the joint limits for ball-and-socket joints
and how to enforce them procedurally.

10.2 3D Rotations

Contrary to translations, the result of a sequence of rotations is order dependent.
A series of translations can be executed in any order, and the resulting translation
will always be the same. This is not the case for rotations. For example, a
90-degree rotation of a bunny over the Y axis followed by a 90-degree rotation
over the Z axis gives a different orientation than a 90-degree rotation over the Z
axis followed by a 90-degree rotation over the Y axis, as shown in Figure 10.1.
 Nevertheless, independent of the number of consecutive rotations we apply
to orient a 3D object, the resulting orientation can be reached by a single rotation
from the initial orientation about a suitable 3D axis that is not necessarily one of
the coordinate axes. This is known as Euler’s rotation theorem. Consequently,
we can, and often do, identify an orientation by a single rotation about a particu-
lar 3D axis.
 A 3D coordinate system is defined by the position vector of its local origin
plus three vectors that represent its basis. As a result, a 3D coordinate system has
twelve degrees of freedom, three for the position and nine for the basis vectors. If
we restrict ourselves to rigid body transformations, the three basis vectors have
unit length and are mutually orthogonal. By imposing these restrictions, we lose

10.2 3D Rotations 125

(a) Initial

(b) Rotate about Y axis

(c) Rotate about Z axis

(d) Initial

(e) Rotate about Z axis

(f) Rotate about Y axis

Figure 10.1. Consecutive rotations do not commute.

six degrees of freedom. A rigid body transformation has three rotational and
three translational degrees of freedom. This means that we need at least three
parameters to define a relative orientation in 3D.
 So, how do we parameterize 3D rotations? A common choice is to define an
orientation by a sequence of three rotations over predefined axes. Here, the pa-
rameters are the angles of rotation about the chosen axes, and they are referred to
as Euler angles. The choice of axes is arbitrary, as long as no two consecutive
axes in the sequence are the same. For example, XYZ, ZYX, XZX, YXY, etc., are
proper sequences of axes. In fact, there are 12 possible sequences1 of coord-
inate axes leading to 12 different Euler-angle parameterizations of the same
orientation.
 Orientations can be intuitively controlled by Euler angles, since they have a
mechanical interpretation as three nested gimbals, as depicted in Figure 10.2.
However, use of Euler-angle parameterization for limiting rotational movement

1 Negative coordinate axes are excluded. We have three choices for the first axis, and two
choices for the second and third axes.

126 10. Rotational Joint Limits in Quaternion Space

Figure 10.2. Euler angles are intuitively interpreted as three nested gimbals.

can be troublesome, notably when the underlying mechanics of the rotation is not
a stack of gimbals, such as is the case for our ball-and-socket joint.
 Limiting each of the three Euler angles independently is a bad idea for ball-
and-socket joints. The manifold formed by the boundary of admissible angle tri-
ples often shows sharp corners. When clamping out-of-bounds angles to their
allowed range under procedural animation, the bone can get temporarily stuck at
a corner orientation. Furthermore, if the first and third axes are close to being
aligned, the corresponding angles pretty much cancel each other out, resulting in
a range of angle triples matching the same orientation. This singularity in the pa-
rameterization, better known as gimbal lock, may cause an orientation to be
reachable only by following an implausible path through the volume of admissi-
ble angle triples.
 There is a better parameterization of relative orientations that also uses three
parameters. Euler’s rotation theorem states that any orientation can be reached
using a single rotation about a suitable axis. This rotation is usually expressed as
an axis-angle pair, where the axis is a unit 3D vector representing the direction of
the rotation axis, and the angle is the amount of rotation about that axis. Axis-
angle pairs have a singularity for the zero orientation, since the zero orientation
can be constructed from any direction and an angle that is a multiple of 2 radi-
ans (360), including an angle of zero.

10.2 3D Rotations 127

 We can get rid of the singularity for the zero angle by combining axis and
angle into a single 3D vector that is the axis scaled by the angle. Given a normal-
ized vector u and angle  , we obtain a 3D vector r combining the two by setting

 r u.

In this way, the zero orientation is uniquely identified by the zero vector. This
parameterization as a 3D vector is called the exponential-map parameterization
[Grassia 98].

 The exponential-map parameterization still has a singularity for angles of
2k , where k is an integer not equal to zero. However, for our purpose, we can
steer clear of this singularity by imposing that the vector length (angle of rota-
tion) lies in the range  0,2 . We still have a double covering of the space of ori-
entations, since for an axis u and angle  we see that u and   2  u result
in the same orientation. Further restriction of the maximum vector length to 
clears us of the double covering except for rotations over an angle of  radians
(180) itself.

 The exponential map offers a better parameterization for imposing rotational
joint limits. It offers a singularity-free spherical subspace that encloses the range
of all orientations generated by a ball-and-socket joint. The set of admissible ori-
entations is defined by a volume inside the sphere. Identification of out-of-
bounds orientations boils down to testing the exponential-map vector for con-
tainment inside that volume. Joint limits can be enforced by mapping out-of-
bounds orientations to the closest admissible orientation in the volume. The Eu-
clidean metric that we use for measuring the distance between points can also be
used for measuring the distance between orientations. Using this metric to define
the closest admissible orientation may not accurately give us the admissible ori-
entation that requires the shortest angle of rotation to reach. However, in practical
cases, the errors are small, and thus the Euclidean metric suffices to map an out-
of-bounds orientation back to the admissible volume in a plausible manner.

 What stops the exponential map from being our parameterization of choice
when checking and enforcing joint limits is the fact that conversions between
exponential-map vectors and matrices or quaternions is computationally expen-
sive and susceptible to numerical error. Ideally, we would like to use the same
parameterization for enforcing joint limits as we do for our other computations
with rotations. The most promising candidate parameterization would be the
space of unit quaternions.

128 10. Rotational Joint Limits in Quaternion Space

10.3 Unit Quaternions
A lot has been written about quaternions, and yet their math remains somewhat
elusive. Let’s recap the basics and try to build some intuition for the math.
 The quaternion number system extends the complex numbers by defining
three imaginary units i, j, and k whose multiplication rules are given by the fol-
lowing table, where a unit from the left column is multiplied by a unit from the
top row.

 i j k

i 1 k j

j k 1 i

k j i 1

A quaternion is denoted as

 w x y z   q i j k,

where w, x, y, and z are real numbers. w is the real or scalar part, and  , ,x y z is
the imaginary or vector part. In scalar-vector notation, quaternion multiplication
is given by

     1 1 2 2 1 2 1 2 1 2 2 1 1 2, , ,w w w w w w     v v v v v v v v ,

giving us an expression in terms of the familiar and possibly more comfortable
vector dot and cross products.
 The conjugate of a complex number is straightforwardly extended to a qua-
ternion. The conjugate of quaternion q, denoted by q , is defined by

    , ,w w  v v .

Multiplication of a quaternion by its conjugate yields its squared magnitude:

 2 2 2 2 2w w x y z        qq q q v v .

Let’s think of quaternions as points  , , ,w x y z in four-dimensional space. Then,
the set of unit quaternions, i.e., quaternions having a magnitude of one, form a
hypersphere. This hypersphere is a three-dimensional manifold, just as a sphere
in 3D space is a two-dimensional manifold, and a circle in 2D is a one-

10.4 Quaternions vs. Exponential Map 129

dimensional manifold. Moreover, the multiplication of two unit quaternions al-
ways yields another unit quaternion. Unit quaternions form a multiplicative sub-
group with 1 as the identity and the conjugate as the inverse.
 Rotations map to unit quaternions and vice versa in a manner that is free of
singularities. A rotation of  radians about unit vector u is represented by the unit
quaternion

 cos ,sin
2 2

      
         

u .

Many operations involving rotations can be executed directly in quaternion space
using quaternion multiplication. For example, the image of a vector after rotation
is computed using the so-called sandwich product,

  v qvq .

Here, the vector v is regarded as a pure imaginary quaternion. We see that the
conjugate indeed performs an inverse rotation.
 However, 3D orientations and quaternions do not match one-to-one. We see
that rotations of  and 2  result in the same orientation. However, they do
not result in the same quaternion, but rather in two opposing quaternions. Our
quaternion space is a double covering of orientation space, since for any quater-
nion q, the negated quaternion q represents the same orientation.

10.4 Quaternions vs. Exponential Map
Quaternion space is parameterized by four dependent parameters, where three
should suffice. Moreover, the double covering of orientation space may compli-
cate matters in defining and enforcing joint limits. However, let us not despair
because things are not as bad as they appear.
 Since we only consider unit quaternions, we can always find the fourth pa-
rameter less a sign, given the other three parameters. Given a vector part v, we
know that for the scalar part w the following must hold:

 1w    v v.

Moreover, the full orientation space fits in the hemisphere of unit quaternions
with nonnegative w. Indeed, any quaternion whose scalar part is negative can be
negated to land it in the positive hemisphere without changing the orientation it
represents. By restricting rotation angles to a maximum of  radians, we can still
cover the full orientation space.

130 10. Rotational Joint Limits in Quaternion Space

 Any rotation with angle  in the range  ,  is mapped to a quaternion
whose scalar part is nonnegative. Under the assumption that w is nonnegative, we
can identify any orientation by the vector part only. This means that we have a
parameterization of orientation space using three independent parameters. Any
3D vector whose length is at most one can be mapped to a 3D orientation. This
parameterization is free of any singularities. However, double covering of orien-
tations identified by 180 rotations exist. These orientations are represented by
pairs of opposing vectors of length one.
 The parameterization as unit-quaternion vector parts closely matches the ex-
ponential-map parameterization. Both parameterizations are given by a 3D ball.
The quaternion-vector ball has radius one, whereas the exponential-map ball has
radius  . Both parameterizations are singularity free and have double covering
only for orientations represented by vectors on the surface of the ball. There is a
one-to-one mapping from quaternion vectors to exponential-map vectors. For a
quaternion vector v, the corresponding exponential-map vector is

 2arcsin v

v
v

,

where v is the length of v. The mapping changes only the length of the vector.
The directions of the vectors are the same.
 As can be seen in Figure 10.3, the arcsine mapping shows extreme warping
towards the surface of the ball. This is something we need to take into account
when imposing joint limits. Geometry close to the boundary requires prewarping
to create a proper joint-limit manifold in rotation space. However, for rotation
angles less than, say 2

3 radians (120), we can pretty much regard the mapping
as linear without introducing a huge error. In the next section, we examine a typi-
cal model for limiting ball-and-socket joints.

10.5 Swing-Twist Limits

In the swing-twist model, the relative rotation is decomposed into two rotations,
and each component is limited independently. The twist component represents
the rotation about the arm, and the swing component represents the rotation or-
thogonal to the arm. Assuming the arm is given by the local X axis, we decom-
pose the rotation quaternion as a product of a rotation about the X axis and a
rotation about an axis that lies in the local YZ plane. Optionally, when traversing
from shoulder to elbow, we may choose to first apply the twist before applying
the swing as depicted in Figure 10.4(a). However, in most practical cases the

10.5 Swing‐Twist Limits 131

Figure 10.3. Lengths of quaternion vectors plotted against lengths of exponential map
vectors.

twist follows the swing as depicted in Figure 10.4(b). Let w x y z   q i j k be
our relative rotation (with 0w ). This rotation is decomposed into a swing and
twist component as

 swing twistq q q .

Here, swingq has a zero i term and twistq has zero j and k terms. Both are unit qua-
ternions with nonnegative scalar parts. The unique decomposition is given by

 swing
wy xz wz xy

s
s s

 
  q j k

and

 twist
w x

s s
 q i,

where

 2 2s w x  ,

as can be verified by writing out the multiplication.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

132 10. Rotational Joint Limits in Quaternion Space

(a) Twist before swing. (b) Swing before twist.

Figure 10.4. Two ways to decompose a rotation into a swing and twist component.

 In the less common case, where twist is applied before swing,

 twist swingq q q .

In this case, the decomposition results in the same twist component twistq . The
swing component, however, differs from the previous case and is given by

 swing
wy xz wz xy

s
s s

 
  q j k.

Notice the flipped addition and subtraction operations in the imaginary terms
with respect to the swing-before-twist case.
 The decomposition is unique except for the case where the rotation q is a
pure swing rotation of  radians, in which case w and x, and therefore also s, are
zero. In this case, the arm, or local X axis, is rotated 180 and aligns with the par-
ent’s negative X axis. This is a singularity, since any orientation that is the result
of a full flip of the X axis can be obtained by flipping 180 over a different axis in
the YZ plane and twisting the orientation into place. For the singularity case, we
assume a twist angle of zero and take swingq to be equal to q.
 Each component is limited by mapping the vector part to the desired range
and then computing the scalar part accordingly. Limiting the twist component
simply boils down to clamping the twist angle to the desired range. The twist an-
gle, i.e., the angle of twist rotation about the local X axis, can be mapped straight-
forwardly to the twist vector part. Let  min max,  be the angle range for the twist,
where min max       . Then, the vector part of the twist rotation is clamped
to the range

10.5 Swing‐Twist Limits 133

 min maxsin ,sin
2 2

     
        

.

Let xi be the result after clamping. Then, the twist scalar component w is simply
21 x .

2D Joint Limits

The swing component is a quaternion whose vector part lies in the YZ plane in-
side the unit disk. Basically, any shape contained by the unit disk can be used as
joint limit for swing. For a proper behavior in procedural animation, smooth con-
vex shapes seem to be the most useful, although concave star-shaped polygons
have been applied [Wilhelms and Gelder 01].
 Blow proposes convex polygons as the limiting shape [Blow 2002], allowing
for a simple containment test while preserving maximum flexibility. Polygons
often have sharp corners in which clamped orientations may get stuck temporari-
ly, showing odd behavior in the simulation. In order to prevent this from happen-
ing, or at least to reduce the effect, we either need to increase the number of
vertices in the polygon or use quadratic or higher-order shapes. Increasing the
number of vertices negatively affects performance and makes tweaking the limits
harder, so we’ll opt for a simple quadratic shape.
 In this chapter, we use an ellipse as limiting shape. Joint limits are enforced
by clamping points outside the ellipse to their closest point on the ellipse. We
define an ellipse in quaternion vector space. Note that due to the warped mapping
of quaternion vectors to exponential-map vectors, an ellipse in quaternion space
may not map to an ellipse in exponential-map space.
 Figure 10.5 shows two ellipses in quaternion vector space. Figure 10.5(a)
bounds the horizontal component to a 120 angle and the vertical component to a
60 angle. As can be seen, the mapping to exponential maps has some minor
warping artifacts but otherwise pretty much resembles an ellipse. If we increase
the horizontal component to the maximum angle of 180, as shown in
Figure 10.5(b), we see that the mapped curve in exponential map space no longer
resembles a smooth ellipse. The curve has an eye shape due to the excessive
warping of angles close to 180, as we saw in Figure 10.3.
 In cases where angular joint limits need to be an exact ellipse in exponential-
map space, we have to transform to exponential-map vectors and back. However,
in most practical cases, the shape obtained by mapping an ellipse in quaternion
space suffices for representing the joint limits. Note that the ellipse is already an
idealization of the limits obtained from human anatomy. A simple shape is cho-
sen as a representation of a complex manifold such as a human shoulder or hip to

134 10. Rotational Joint Limits in Quaternion Space

(a) 120 60  (b) 180 60 

Figure 10.5. Ellipses mapped from quaternion vector space (inner curve) to exponential-
map space (outer curve).

simplify the computational model. From that perspective, choosing an ellipse in
quaternion vector space or in exponential-map space does not make a huge dif-
ference. Either way, in both cases we need to clamp a 2D point against an ellipti-
cal disk.

Clamping 2D Points to an Elliptical Disk

An axis-aligned elliptical disk is defined implicitly by the set of point  ,x y for
which the function

  
2 2

, 1
x y

f x y
a b

        
   

is at most zero. Here, a and b are the maximum coordinates on the X and Y axes,
respectively. Clamping a point to the disk boils down to computing the point on
the disk closest to query point.
 Let  ,x y be a point outside the disk. Then, necessarily  , 0f x y  , and the
line segment connecting the point to its closest point on the disk is normal to the
ellipse, as is shown in Figure 10.6 and proven in [Eberly 2013].
 The normal at point  ,x y is given by the partial derivatives of the implicit
function

2 2

2 2
, ,

f f x y

x y a b

           
.

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

10.5 Swing‐Twist Limits 135

Figure 10.6. The line segment connecting the point on an ellipse closest to a point out-
side the ellipse is normal to the tangent at the closest point. The furthest point is the only
other point on the ellipse for which this holds.

We are interested only in the direction of the normal, so we may remove the fac-
tor 2 in both components. The closest point can be defined as the point  ,x y  on
the ellipse (where  , 0f x y  ), such that

    2 2
, , ,

x y
x y t x y

a b

      
 

for some parameter t. In other words, the line through the point along the point’s
normal has to pass through our query point for the closest point. As we saw in
Figure 10.6, this is also the case for the furthest point, so we impose 0t  to keep
only the closest. After some rewriting, we find an explicit expression for  ,x y 
in the form of

  
2 2

2 2
, ,

a x b y
x y

t a t b
       

.

The parameter t is the only unknown, and it can be found by requiring  ,x y  to
be a point on the ellipse. By substituting x and y into f, we obtain our generating
function

136 10. Rotational Joint Limits in Quaternion Space

    
2 2

2 2
, 1

ax by
g t f x y

t a t b
              

.

We need to solve for a t such that   0g t  . A closed-form solution requires us to
solve a quartic (fourth order) polynomial function. Solving quadric polynomials
is computationally expensive and sensitive to numerical error. Figure 10.7 shows
a plot of  g t . As the plot suggests, root finding for this function just screams for
applying Newton’s method.
 The iteration step is given by

 
 1

n
n n

n

g t
t t

g t
  


.

The function g is strictly convex on the domain 0t  . This means that for t such
that   0g t  , the inequality 10 n nt t t    holds for any n. The first derivative
 g t is given by

      
2 2 2 2

2 3 2 3

2 2a x b y
g t

t a t b
   

 
.

Figure 10.7. Root finding by Newton’s method. Start with 0 0t  and iteratively compute
each new 1nt  as the intersection of the tangent line at nt and the X axis.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5

2

10.6 Volumetric Limits 137

In the accompanying example code, the first derivative is not coded explicitly.
Instead, the code applies a dual number trick to simultaneously compute  g t and
 g t [van den Bergen 2009].

10.6 Volumetric Limits

The swing-twist model is popular in physics and inverse kinematics due to its
simple mechanical interpretation. However, as with the Euler-angle limits, the
swing-twist model may not reflect to reality very well. For example, in a human
shoulder, swing and twist are not independent. The amount of twist varies de-
pending on the swing pose. This suggests that relative rotations should be con-
strained by a volume in quaternion vector space.
 It turns out that the actual volume that models the full range of a human
shoulder is not as nice of a shape as we would like it to be. Herda et al. propose
modeling the volume by an implicit surface [Herda et al. 2003]. The proposed
implicit surface that models the motion range is defined by a small number of
spherical primitives.
 Evaluation of the implicit function and its partial derivatives is computation-
ally expensive. Often, we do not need this level of sophistication in modeling
joint limits. A simple solution that generalizes from the elliptic swing-cone mod-
el is clamping of quaternion vectors to an ellipsoidal volume.
 The solution is a straightforward generalization of the 2D case. We have an
ellipsoid whose surface is the set of points  , ,x y z such that

  
2 2 2

, y,z 1
x y z

f x
a b c

             
     

is at most zero, where a, b, and c are the maximum coordinates on the X, Y, and Z
axes, respectively. Again, through the computation of the partial derivatives we
find the clamped point  , ,x y z   to be

     2 2 2
, , , , , ,

x y z
x y z x y z t

a b c

        
 

,

solved for positive t such that  , , 0f x y z    . This t is the positive root for

    
2 2 2

2 2 2
, , 1

ax by cz
g t f x y z

t a t b t c
                       

.

Again, we apply Newton’s method to approximate t for which   0g t  .

138 10. Rotational Joint Limits in Quaternion Space

 Another useful limiting shape is an elliptic cylinder. The component along
the axis of the cylinder (usually the X axis) is clamped to the desired range, simi-
lar to the clamping after swing-twist decomposition. Only in this case, the X axis
is generally not a pure rotation about the arm, nor is it a pure rotation about the
parent’s arm. The quaternion vector part is limited as a whole, and thus swing
and twist are not independent. For a shoulder joint, we generally do not care
about independence. Dropping the swing-twist decomposition and performing
the clamping directly on the quaternion vector part saves us a few cycles and of-
ten shows acceptable results.
 In the end, pretty much any smooth volume enclosed by the unit ball can be
used as limiting shape. All that is required is an operation to test for point con-
tainment and for mapping points outside the volume to their closest point on the
volume’s surface. For convex shapes, we have the option of using GJK [Gilbert
et al. 1988, van den Bergen 1999]. GJK is an iterative method for approximating
the closest point of an arbitrary convex shape. It is mainly used for collision de-
tection of convex shapes and has found its use in many modern physics libraries,
so chances are you are already using it. GJK supports many convex shape types,
such as convex polyhedra, cones, cylinders, ellipsoids. We do however give pref-
erence to the algorithm employing Newton’s method for ellipsoids, as GJK is a
somewhat heavier iterative method.

References
[Blow 2002] Jonathan Blow. “Inverse Kinematics with Joint Limits”. Game Developer,

Vol. 4, No. 12 (2002), pp. 16–18.

[Eberly 2013] David Eberly. “Distance from a Point to an Ellipse, an Ellipsoid, or a Hy-
perellipsoid”. 2013. Available at http://www.geometrictools.com/ Documenta-
tion/DistancePointEllipseEllipsoid.pdf.

[Gilbert et al. 1988] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. “A Fast Procedure
for Computing the Distance Between Complex Objects in Three-Dimensional
Space”. IEEE Journal of Robotics and Automation, Vol. 4, No. 2 (April 1988), pp.
193–203.

[Grassia 1998] F. Sebastian Grassia. “Practical parameterization of rotations using the
exponential map”. Journal of Graphics Tools, Vol. 3, No. 3 (March 1998), pp. 29–
48.

[Herda et al. 2003] Lorna Herda, Raquel Urtasun, and Pascal Fua. “Automatic determina-
tion of shoulder joint limits using quaternion field boundaries”. International
Journal of Robotics Research Vol. 22, No. 6 (June 2003), pp. 419–438.

http://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
http://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf

References 139

[van den Bergen 1999] Gino van den Bergen. “A Fast and Robust GJK Implementation
for Collision Detection of Convex Objects”. Journal of Graphics Tools Vol. 4, No.
2 (March 1999), pp. 7–25.

[van den Bergen 2009] Gino van den Bergen. “Dual Numbers: Simple Math, Easy C++
Coding, and Lots of Tricks”. Game Developers Conference Europe, 2009.

[Wilhelms and Gelder 2001] Jane Wilhelms and Allen Van Gelder. “Fast and Easy
Reach-cone Joint Limits”. Journal of Graphics Tools, Vol. 6, No. 2 (2001), pp.
27–41.

This page intentionally left blankThis page intentionally left blank

 141

11

Volumetric Hierarchical
Approximate Convex Decomposition

Khaled Mamou
AMD

11.1 Introduction
Fast and precise collision detection is the cornerstone of realistic physics simula-
tion in video games, virtual reality, and robotics. A rich literature has been dedi-
cated to this topic [Weller 2013], and efficient algorithms have been devised
especially for convex polyhedra [Gilbert et al. 1988, Mirtich 1998, van den Ber-
gen 1999]. In order to leverage such algorithms, 3D models are usually approxi-
mated by a set of convex shapes such as ellipsoids, capsules, and convex hulls
(see Figure 11.1). Manually computing such convex approximations is tedious
and time consuming, and this makes automatic approximate convex decomposi-
tion algorithms highly desirable.
 In this chapter, we propose an efficient fully-automatic algorithm that com-
putes convex approximations of arbitrary 3D meshes. An open source implemen-
tation of the proposed algorithm, referred to as volumetric hierarchical convex
decomposition (V-HACD), is publicly available1 and has been already adopted
by a wide range of game engines and physics simulation SDKs. In the first sec-
tion of this chapter, we introduce the convex approximation problem and link it
to the approximate convex decomposition research field. Next, we present the
proposed convex approximation technique and evaluate its performance.

1 https://code.google.com/p/v-hacd/

https://code.google.com/p/v-hacd/

142 11. Volumetric Hierarchical Approximate Convex Decomposition

Original mesh

(20K tri.)
1 convex hull

(60 tri.)
5 convex hulls

(300 tri.)
26 convex hulls

(1166 tri.)

Figure 11.1. Convex approximations with different accuracy and complexity levels.

11.2 Convex Approximation
Given an arbitrary polyhedron P, convex approximation algorithms aim at com-
puting the smallest set of N convex polyhedra  | 0, , 1iC i N  such that the
volume determined by the union 1

0
N

ii C
 contains P and approximates it with a

certain precision ε . Formally, the objective of convex approximation is to solve
the minimization problem

  and ,

min
P C d P C ε

N
 

, (11.1)

where

■ 1
0

N
iiC C

  ,
■  | 0, , 1iC i N  are convex polyhedra, and
■  ,d P C is a distance measuring the approximation accuracy.

In this chapter, the distance  ,d P C is defined as

  ,d P C C P  , (11.2)

where A represents the volume of A.
 As defined in Equation (11.1), the convex approximation problem is tightly
related to the exact convex decomposition (ECD) problem [Chazelle 1984] and
the approximate convex decomposition (ACD) problem [Lien and Amato 2004].

11.2 Convex Approximation 143

 ECD aims at partitioning a polyhedron P into a minimum set of convex pol-
yhedra. In [Chazelle 1984], the authors prove that ECD is NP-hard and discuss
various heuristics to address it.
 [Lien and Amato 2004] claim that ECD algorithms produce intractable con-
vex decompositions with a high number of clusters (shown in Figure 11.2) and
propose computing an approximate convex decomposition instead. The main
idea is to relax the exact convexity constraint by allowing the clusters to be al-
most convex. More precisely, ACD aims at decomposing a polyhedron P into a
minimum number of polyhedra  Γ | 0, , 1i i N  such that the concavity of
each polyhedron Γi is lower than a predefined threshold ε . (The definition of con-
cavity is discussed later.)
 The convex approximation  | 0, , 1iC i N  associated with the convex
decomposition  Γ | 0, , 1i i N  is defined as

  Γi iC CH , (11.3)

where  ΓiCH is the convex hull of Γi.
 In order to avoid the higher computational complexity associated with volu-
metric representations, the convex decomposition algorithms described in [Cha-
zelle 1984] and [Lien and Amato 2004] operate on the polyhedral surface S of P
instead of computing a convex decomposition of the volume defined by P. Here,
the surface S is decomposed into convex or near-convex patches
 Ψ | 0, , 1i i N  , as shown in Figure 11.2. The convex approximation
 Π | 0, , 1i i N  associated with the approximate convex decomposition  Ψi
of S is given by

  Π Ψi iCH , (11.4)

where  ΨiCH is the convex hull of Ψi. Note that  Π i is guaranteed to include
the surface S (i.e., 1

0 ΠN
iiS 

 ) but not necessarily the entire volume of P, which
is usually sufficient for collision detection purposes.
 Several approximate convex decomposition algorithms have been recently
proposed [Lien and Amato 2007, Ghosh et al. 2013, Attene et al. 2008, Kreavoy
et al. 2007, Mamou 2010, Ren et al. 2011], and some implementations are public-
ly available.2
 The hierarchical approximate convex decomposition (HACD) algorithm has
been very popular and was adopted by various physics libraries (e.g., Bullet and
PhysX) and game engines (e.g., Unreal Engine). As in [Lien and Amato 2004],

2 http://sourceforge.net/projects/hacd/

http://sourceforge.net/projects/hacd/

144 11. Volumetric Hierarchical Approximate Convex Decomposition

Original mesh

(20K tri.)
ECD [Chazelle 1984]

(2043 patches)
ACD [Mamou 2010]

(13 patches)
ACD-based convex

approximation
(13 convex hulls)

Figure 11.2. ECD, ACD, and ACD-based convex approximation.

the HACD algorithm computes an approximate convex decomposition of the
polyhedral surface S. HACD exploits a bottom-up greedy approach, which con-
sists of successively merging the input mesh triangles based on concavity (i.e.,
distance between the surface patch and its convex hull) and aspect ratio criteria.
The success of the HACD algorithm is mainly explained by its simplicity and
generality in being able to handle open and closed manifold and non-manifold
meshes of arbitrary genus.
 However, HACD suffers from several limitations. First, HACD may generate
intersecting convex hulls (visible in Figure 11.2), which makes the obtained con-
vex approximations unsuitable for destruction effects. The computational com-
plexity of the HACD algorithm may be prohibitive if applied to dense 3D
meshes. In practice, a decimation process is applied to the input mesh before the
decomposition stage, which may have a significant impact on the precision of the
derived convex approximations. Finally, the HACD algorithm may also suffer
from numerical instabilities when dealing with poorly sampled input meshes.
 In order to overcome the HACD limitations, we propose a new convex de-
composition algorithm, so-called V-HACD, that offers accurate convex decom-
positions while guaranteeing non-overlapping convex hulls. V-HACD overcomes
the numerical instability issues related to the input mesh sampling and to the
concavity distance criterion by operating on a voxelized or tetrahedralized ver-
sion of the input mesh and by introducing a more stable volumetric concavity
measure.

11.3 Volumetric Hierarchical Approximate Convex Decomposition 145

11.3 Volumetric Hierarchical Approximate Convex
Decomposition

Figure 11.3 provides an overview of the proposed V-HACD algorithm. V-HACD
takes as input the polyhedral surface S of the polyhedron P and computes an ap-
proximate convex decomposition of P. The algorithm proceeds as follows. First,
a voxelization or tetrahedralization process is applied in order to approximate the
volume defined by P with a set of either voxels or tetrahedra. The computed
primitives (i.e., voxels or tetrahedra) are then recursively split according to a top-
down hierarchical approach. This splitting process is successively applied to the
generated subparts until a concavity threshold is reached. In order to guarantee

Figure 11.3. Overview of the proposed V-HACD algorithm.

Polyhedral surface

Voxelization or
tetrahedralization

Hierarchical
segmentation

Convex hull
merging

Convex hull
adaptive sampling

Convex approximation

Voxel / tetrahedron set

Convex hulls

Merged convex hulls

146 11. Volumetric Hierarchical Approximate Convex Decomposition

non-overlapping convex hulls, V-HACD splits the object according to a set of
clipping planes based on concavity, balance, and symmetry criteria. V-HACD
leverages a greedy, highly parallelizable algorithm in order to determine the best
clipping plane at each stage. This process could be efficiently accelerated by lev-
eraging both CPU and GPU multithreading. Because of its greedy nature, the
splitting process may produce over-segmentation. An optional post processing
step may be applied in order to successively merge the generated convex hulls
under a maximum concavity criterion. Finally, the obtained convex hulls are
resampled in order to minimize their complexity (i.e., the number of triangles
they are made of) while preserving the approximation accuracy.

Voxelization and Tetrahedralization

The V-HACD algorithm is independent from the voxelization or tetrahedraliza-
tion algorithm (e.g., [Huang et al. 1998] or [Si 2015]) used to generate the volu-
metric representation of the input polyhedron P. The user can either apply his
custom voxelization or tetrahedralization algorithm to the polyhedral surface S
and directly feed the obtained voxels or tetrahedra into the hierarchical segmenta-
tion stage or leverage the default algorithms shipped with the V-HACD library.
The default voxelization algorithm used by V-HACD proceeds as follows. First,
the bounding box of the model is computed and uniformly split according to a
regular grid of voxels. The voxels intersecting the surface S are then marked as
belonging to the boundary B of P. Voxels inside the volume bound by B are
marked as interior voxels. The set of interior voxels is denoted by I. An approxi-
mate tetrahedralized version of P could be obtained by splitting each voxel into a
set of tetrahedra.

Hierarchical Segmentation

The hierarchical segmentation module proceeds according to the algorithm de-
scribed in Listing 11.1. The input primitive set generated by the voxelization or
tetrahedralization stage is recursively split until the concavity of each subpart is
lower than a user-defined maximum concavity parameter ε or a maximum recur-
sion depth is reached. The concavity measure and clipping plane strategy are de-
scribed in the following subsections.

Concavity Measure

Unlike other measures such as volume and area, the concavity of a polyhedron
does not have a standard definition, but various concavity measures have been

11.3 Volumetric Hierarchical Approximate Convex Decomposition 147

Listing 11.1. Hierarchical segmentation algorithm.

// Input: Primitive set inputPSet
// Output: Vector of primitive sets output
// Parameters:
// * Maximum recursion depth maxDepth
// * Maximum allowed concavity ϵ
// * Clipping cost parameters α and β

vector<PrimitiveSet *> output;
vector<PrimitiveSet *> toProcess;
vector<PrimitiveSet *> processed;

int sub = 0;
double volumeCH0 = inputPSet->ComputeConvexHullVolume();
toProcess.push_back(inputPSet);

while (sub++ < maxDepth && toProcess.size() > 0)
{
 for (size_t p = 0; p < toProcess.size(); ++p)
 {
 PrimitiveSet *pset = inputParts[p];
 double concavity = ComputeConcavity(pset) / volumeCH0;
 if (concavity > ϵ)
 {
 Plane bestClipPlane = ComputeBestClippingPlane(pset, α, β);
 PrimitiveSet *bestLeftPSet;
 PrimitiveSet *bestLeftPSet;
 pset->Clip(bestClipPlane, bestLeftPSet, bestRightPSet);
 processed.push_back(bestLeftPSet);
 processed.push_back(bestRightPSet);
 }
 else
 {
 output.push_back(pset);
 }
 }

 toProcess = processed;
 processed.clear();
}

148 11. Volumetric Hierarchical Approximate Convex Decomposition

proposed in the literature. In [Lien and Amato 2004], the authors define the con-
cavity of a polyhedron P as the maximum concavity of the points located on its
polyhedral surface S. The concavity of a point M of S is defined as the length of
the path travelled by M during the process of balloon inflation of the polyhedron
P until it assumes the shape of its convex hull  CH P . This is shown in
Figure 11.4.
 Inspired by [Lien and Amato 2004], the authors in [Mamou 2010] define the
concavity of a point M by the Euclidian distance   2M M between M and
its projection onto the polyhedral surface of  CH P , with respect to the ray hav-
ing origin M and direction normal to S at M. While this later concavity measure
is able to capture the important features of P well, it suffers from numerical in-
stabilities especially in the case of degenerate or poorly sampled surfaces.
 In this chapter, we propose using the difference between the volume of a
primitive set and its convex hull as a concavity measure, which corresponds to an
approximated version of accuracy measure described in Equation (11.2). The
volume of the primitive set is computed by summing the volumes of all the prim-
itives. The volume of the convex hull is computed by using the algorithm de-
scribed in [Allgower and Schmidt 1986]. In practice, this new volume-based
concavity measure offers a more numerically stable alternative to the concavity
measure defined in [Mamou 2010].

Figure 11.4. Concavity of a point M measured as the length of the path travelled during
the process of balloon inflation. (a) Initial non-convex polyhedron P. During the inflation
process, the points of the polyhedral surface S are pushed toward  CH P . (b) P after
inflation.

 CH P  CH P

P P

M

M

M

(a) (b)

11.3 Volumetric Hierarchical Approximate Convex Decomposition 149

Clipping Plane Selection Strategy

Let K be the primitive set to be clipped and let leftK and rightK be the left and right
subparts generated after clipping against a plane p. The V-HACD algorithm aims
at finding, for each splitting stage, the best clipping plane by solving the minimi-
zation problem

 

 
3

arg min ,E K




p
p p



, (11.5)

where

■  3 is the linear space of the planes of 3 , and
■  ,E K p is an energy function measuring the concavity, the balance and the

symmetry of leftK and rightK .

More formally, the energy  ,E K p is defined as follows:

        con bal sym, , , ,E K E K αE K βE K  p p p p , (11.6)

where

■ conE , balE , and symE are the connectivity, balance, and symmetry components
of E, and

■ α and β are the weighting coefficients associated with balE and symE , respec-
tively.

conE is given by the normalized sum of the concavities of leftK and rightK :

        left left right right
con

0

, ,
,

d K CH K d K CH K
E K

V


p , (11.7)

where

■  0V CH S is the volume of the convex hull of S, and
■  ,d   is the accuracy measure described in Equation (11.2).

 The energy component balE favors the clipping planes that result in balanced
subparts where leftK and rightK have comparable volumes. balE is defined as

150 11. Volumetric Hierarchical Approximate Convex Decomposition

    left right
bal

0

abs
,

K K
E K

V


p , (11.8)

where  abs x is the absolute value of x and K is the volume of the primitive
set K.
 symE is introduced in order to penalize clipping planes orthogonal or almost
orthogonal to a potential revolution axis δ. symE is given by

    sym ,E K w p δ p , (11.9)

where δ is a potential revolution axis, and w is a weighting coefficient describing
how close δ is to an actual revolution axis.
 In order to determine δ and w, the V-HACD algorithm proceeds as follows.
First, the primitive set is centered around its barycenter and a singular value de-
composition is applied to its covariance matrix in order to extract both the eigen-
vectors  , ,x y ze e e and their associated eigenvalues  , ,x y zλ λ λ . The potential
revolution axis is determined by looking for the two closest eigenvalues. For in-
stance, if y z x zλ λ λ λ   and y z x yλ λ λ λ   , then xe is considered as the
potential revolution axis δ. In this case, the weighting coefficient w is given by

 
 

2

2
1 y z

y z

λ λ
w

λ λ


 


. (11.10)

Note that if y zλ λ , which corresponds to the case of a perfect revolution axis,
then w reaches its maximum value of 1. The more yλ and zλ are different (i.e., δ is
far from being a revolution axis), the smaller w is, and the smaller the contribu-
tion of symE is to the overall energy E.
 In order to solve the nonlinear minimization problem described in
Equation (11.5), the V-HACD restricts the search space  3 to the discrete
subset  3

res  of axis-aligned planes passing through the centers of the primi-
tives composing the set K. Moreover, a hierarchical search strategy is applied in
order to further reduce the computational complexity. The idea is to apply first a
coarse search by computing the energy E for a subset of  3

res  in order to de-
termine the best clipping plane δ (i.e., the one with the lowest energy E). This
coarse solution is then refined by applying a second search while considering the
neighbors of δ in  3

res  located within a predefined distance.

Merging Convex Hulls

The objective of the convex hulls merging module is to eliminate potential over-
segmentations generated by the hierarchical segmentation stage. The algorithm

11.3 Volumetric Hierarchical Approximate Convex Decomposition 151

consists of successively merging convex hulls under a maximum concavity con-
straint. At each iteration, two convex hulls 1H and 2H are selected, and the con-
cavity  η H of their union 1 2H H H  is computed as

     
0

,d H CH H
η H

V
 . (11.11)

If  η H is lower than a user-defined parameter γ, then 1H and 2H are merged.
This process is iterated until no more convex hulls can be merged.

Adaptive Convex Hull Resampling

The convex hulls generated so far could exhibit an arbitrary number of triangles
and vertices, which may unnecessarily increase the computational complexity of
collision detection queries. The V-HACD library addresses this issue by applying
an optional postprocessing stage during which the convex hulls are resampled in
order to generate a lower number of triangles and vertices while preserving their
shapes. More precisely, a slightly modified version of the iterative convex hull
algorithm described in [Clarkson and Shor 1989] is applied.
 The algorithm proceeds as follows. First, four non-coplanar vertices of the
initial convex hull CH are selected in order to construct a tetrahedron T. T is con-
sidered as the first approximation 0A of CH. 0A is then iteratively refined by suc-
cessively including the remaining vertices. At each stage, a new vertex iv is
included. The associated approximation iA is computed by generating the convex
hull of 1i iA v  . In [Clarkson and Shor 1989], the vertices  iv are introduced in
an arbitrary order. The V-HACD algorithm introduces, at each stage, the vertex

iv  that results in the approximation iA with the largest volume. This process is
applied until the volume difference between iA and 1iA

 is lower than a user-
defined threshold ζ or the number of vertices and triangles of iA is higher than a
user-defined parameter τ . Figure 11.5 shows various ACDs generated for differ-
ent values of ζ and τ .

Implementation Optimizations

The computation times of the V-HACD are mainly dominated (more than 95% of
the total time) by the hierarchical segmentation stage, and more precisely by the
ComputeBestClippingPlane() function in Listing 11.1. By parallelizing this
process on both CPU and GPU, the V-HACD computation times can be signifi-
cantly reduced (see Table 11.1). The main idea is to exploit multiple CPU threads
to compute the energy E of the potential clipping planes in parallel and find a

152 11. Volumetric Hierarchical Approximate Convex Decomposition

Original mesh

(35966 tri.)

0ζ 
τ  

(1328 tri.)

5
010ζ V 

256τ 
(1328 tri.)

4
010ζ V 

64τ 
(728 tri.)

3
010ζ V 

64τ 
(336 tri.)

2
010ζ V 

64τ 
(130 tri.)

Figure 11.5. Impact of the threshold ζ on the adaptive convex hulls resampling process.

Model Single threaded Multithreaded
(CPU only)

Multithreaded
(CPU and GPU)

Block 199 s 71 s 49 s
Camel 383 s 129 s 77 s
Chair 389 s 124 s 84 s

Elephant 390 s 122 s 86 s

Feline 477 s 157 s 113 s

Sword 359 s 124 s 75 s

Table 11.1. Impact of CPU and GPU multithreading on the V-HACD computation times. Results
generated on a MacBook Pro equipped with 2.5 GHz Intel Core i7, 16 GB 1600 MHz DDR3
RAM and AMD Radeon R9 M370X 2048 MB.

11.3 Volumetric Hierarchical Approximate Convex Decomposition 153

minimal energy plane p solution of the minimization problem described in
Equation (11.5). Computing the energy of each potential clipping plane p re-
quires computing

■ the volumes leftK and rightK of the two subparts generated after clipping, and
■ their associated convex hulls  leftCH K and  rightCH K .

In the case of a voxel-based representation, the volumes leftK and rightK require
computing the number of voxels on the left and right sides of the clipping plane.
This process can be GPU-accelerated by leveraging a reduction-based approach.
 Computing the convex hulls  leftCH K and  rightCH K is accelerated by con-
sidering only the primitives located on the boundary of the object, as illustrated
in Figure 11.6. In practice, the V-HACD algorithm keeps track of the interior and
boundary primitives during the clipping process.
 The complexity of computing  leftCH K and  rightCH K can be further re-
duced by considering only a subset of the boundary primitives as shown in Fig-
ure 11.6(c). More precisely, let sub

leftK and sub
rightK be subsampled versions of the

Figure 11.6. Computing the convex hulls  leftCH K and  rightCH K . (a) The primitive set
K, its convex hull  CH K (black), the vertices of  CH K (orange), the two subparts leftK
(dark green/blue) and rightK (light green/blue), boundary primitives (blue), and interior
primitives (green). (b) Computing the convex hulls  leftCH K and  rightCH K while con-
sidering only boundary primitives. (c) Computing an approximated version of  leftCH K
and  rightCH K while considering a subset of the boundary primitives. (d) Improving the
accuracy of (c) by considering the vertices of  CH K .

Clipping plane
leftK rightK

 CH K  leftCH K

 leftCH K

 rightCH K

 rightCH K
Approximated Approximated

 leftCH K  rightCH K
Approximated Approximated

(a) (b)

(c) (d)

154 11. Volumetric Hierarchical Approximate Convex Decomposition

boundary primitives of leftK and rightK .  leftCH K and  rightCH K are approximat-
ed by computing  sub

leftCH K and  sub
rightCH K , which offers significant computation

time reduction at the cost of potentially introducing approximation errors.
 The approximation accuracy can be improved by considering the vertices of

 CH K while computing  sub
leftCH K and  sub

rightCH K , as shown in Figure 11.6(d).
Here, the vertices of  CH K are first segmented into two sets left

CHK and right
CHK cor-

responding to the vertices located on the left and right sides of the clipping plane.
 leftCH K and  rightCH K are then approximated by computing the convex hulls
 sub

left left
CHCH K K and  sub

right right
CHCH K K instead of  sub

leftCH K and  sub
rightCH K .

Since  CH K usually has a limited number of vertices, this later approximation
has almost the same computational complexity while providing more accurate
results.

Experimental Evaluation

Figures 11.7 and 11.8 visually compare the ACDs generated by V-HACD to
those obtained by the popular HACD technique. Note that the ACDs computed
by V-HACD are able to better capture the models’ symmetry and provide more
accurate approximations with a lower or comparable number of convex hulls.
HACD generates poor ACDs for some of the models in the figures, specifically
those highlighted in red, due to numerical instability issues related to the con-
cavity measure computation. V-HACD is able to overcome such issues and usu-
ally offers more consistent results.

11.3 Volumetric Hierarchical Approximate Convex Decomposition 155

V-HACD HACD V-HACD HACD

18 convex hulls 66 convex hulls 18 convex hulls 26 convex hulls

18 convex hulls 26 convex hulls 26 convex hulls 28 convex hulls

16 convex hulls 19 convex hulls 18 convex hulls 22 convex hulls

24 convex hulls 20 convex hulls 46 convex hulls 54 convex hulls

22 convex hulls 27 convex hulls 16 convex hulls 15 convex hulls

Figure 11.7. Experimental Evaluation: V-HACD vs. HACD (part 1).

156 11. Volumetric Hierarchical Approximate Convex Decomposition

V-HACD HACD V-HACD HACD

13 convex hulls 10 convex hulls 36 convex hulls 34 convex hulls

25 convex hulls 28 convex hulls 47 convex hulls 51 convex hulls

17 convex hulls 17 convex hulls 9 convex hulls 10 convex hulls

23 convex hulls 28 convex hulls 42 convex hulls 42 convex hulls

18 convex hulls 18 convex hulls 35 convex hulls 37 convex hulls

Figure 11.8. Experimental Evaluation: V-HACD vs. HACD (part 2).

References 157

References
[Allgower and Schmidt 1986] Eugene L. Allgower and Phillip H. Schmidt. “Computing

Volumes of Polyhedra”. Mathematics of Computation, Vol. 46, No. 173 (January
1986), pp. 171–174.

[Attene et al. 2008] Marco Attene, Michela Mortara, Michela Spagnuolo, and Bianca
Falcidieno. “Hierarchical convex approximation of 3D shapes for fast region selec-
tion”. Proceedings of the Symposium on Geometry Processing, 2008, pp. 1323-
1332.

[Chazelle 1984] Bernard Chazelle. “Convex Partitions of Polyhedra: a Lower Bound and
Worst-Case Optimal Algorithm”. SIAM Journal on Computing, Vol. 13, No. 3
(1984), pp. 488–507.

[Clarkson and Shor 1989] Kenneth L.Clarkson and Peter W. Shor. “Applications of ran-
dom sampling in computational geometry, II”. Discrete and Computational Geom-
etry, Vol. 4, No. 1 (October 1989), pp. 387–421.

[Ghosh et al. 2013] Mukulika Ghosh, Nancy M. Amato, Yanyan Lu, and Jyh-Ming Lien.
“Fast Approximate Convex Decomposition Using Relative Concavity”. Computer-
Aided Design, Vol. 45, No. 2 (February 2013), pp. 494–504.

[Gilbert et al. 1988] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. “A fast procedure
for computing the distance between complex objects in three-dimensional space”.
IEEE Journal of Robotics and Automation, Vol. 4, No. 2 (April 1988), pp. 193–
203.

[Huang et al. 1998] Jian Huang, Roni Yagel, Vassily Filippov, and Yair Kurzion, “An
Accurate Method for Voxelizing Polygon Meshes”. Proceedings of the 1998 IEEE
symposium on Volume visualization, pp. 119–126.

[Kreavoy et al. 2007] V. Kreavoy, D. Julius, A. Sheffer, “Model Composition from Inter-
changeable Components”. 15th Pacific Conference on Computer Graphics and
Applications, 2007, pp. 129–138.

[Lien and Amato 2004] Jyh-Ming Lien and Nancy M. Amato. “Approximate Convex
Decomposition”. ACM Symposium Computational Geometry, 2004, pp. 457–458.

[Lien and Amato 2007] Jyh-Ming Lien and Nancy M. Amato. “Approximate Convex
Decomposition of Polyhedra”. ACM Symposium on Solid and Physical Modeling,
2007.

[Mamou 2010] Khaled Mamou. “Approximate Convex Decomposition for Real-Time
Collision Detection”. Game Programming Gems 8, edited by Adam Lake. Cen-
gage Learning, 2010.

158 11. Volumetric Hierarchical Approximate Convex Decomposition

[Mirtich 1998] Brian Mirtich, “V-clip: fast and robust polyhedral collision detection”.
ACM Transactions on Graphics, Vol. 17, No. 3 (July 1998), pp. 177–208.

[Ren et al. 2011] Zhou Ren, Junsong Yuan, Chunyuan Li, and Wenyu Liu. “Minimum
Near-Convex Decomposition for Robust Shape Representation”. 2011 IEEE Inter-
national Conference on Computer Vision, pp. 303–310.

[Si 2015] Hang Si. “TetGen, A Delaunay-Based Quality Tetrahedral Mesh Generator”.
ACM Transactions on Mathematical Software, Vol. 41, No. 2 (January 2015), Ar-
ticle 11.

[van den Bergen 1999] Gino van den Bergen. “A fast and robust GJK implementation for
collision detection of convex objects”. Journal of Graphics Tools, Vol. 4, No. 2
(March 1999), pp. 7–25.

[Weller 2013] René Weller. “A Brief Overview of Collision Detection”. New Geometric
Data Structures for Collision Detection and Haptics, Part I. Springer, 2013.

 159

12

Simulating Soft Bodies Using
Strain Based Dynamics

Muhammad Mobeen Movania
DHA Suffa University

12.1 Introduction
Games and interactive simulation environments like surgical simulators require
modeling of soft bodies. Over the years, several methods have been proposed to
simulate such bodies in computer graphics [Nealen 2006]. These methods may be
generally classified into physically based or nonphysically based methods. The
physically based methods generate an approximate representation of the simulat-
ed object using finite element discretization. Then, forces and velocities are inte-
grated for each finite element. The deformations estimated by these methods are
accurate; however, significant processing time is required, making application of
these methods challenging in a real-time environment.
 On the contrary, nonphysically based methods like position based dynamics
[Jakobsen 2001, Mathias 2007] produce physically plausible simulations by ap-
proximating deformations using constraints. This method compromises accuracy
for speed, and therefore, it is extremely useful in games and interactive simula-
tion scenarios. Most of the commercial physics engines like Havok, Nvidia
PhysX, and Bullet use this method.
 Strain based dynamics [Mathias 2014] is a recent extension of the position
based dynamics model for simulating real-time soft bodies. Rather than solving
each constraint individually, strain based dynamics projects constraints for each
finite element. For example, in case of triangular meshes, rather than solving
three separate distance constraints for the three edges of a given triangle, strain
based dynamics solves a single triangle constraint. Similarly, for a tetrahedral
element, a tetrahedral constraint is solved rather than solving separate distance
and bending constraints.

160 12. Simulating Soft Bodies Using Strain Based Dynamics

Figure 12.1. Real-time soft body simulation using strain based dynamics showing several
frames from the deformation of the Stanford bunny dataset.

 Stress and strain values are evaluated, and anisotropic behavior is introduced
by augmenting additional stress and strain coefficients. This chapter provides a
simple and straightforward implementation of strain based dynamics for both
surface (cloth) and mesh models (tetrahedral mesh). A snapshot from an imple-
mentation of the technique described in this chapter is shown in Figure 12.1.

12.2 Position Based Dynamics
A general physically based simulation system simulates dynamics using a set of
ordinary differential equations (ODEs). These ODEs are solved to obtain the new
positions and velocities given the old positions and velocities. In position based
dynamics (PBD), a number of constraints are introduced along with the ODEs.
These constraints are projected one by one using a number of Gauss-Seidel itera-
tions. The basic position based dynamics approach may be elaborated through the
following algorithm. (Throughout this chapter, the subscript i refers to the time
step index.)

Basic position based dynamics algorithm

1. Loop for N particles:
 a. Initialize initial positions ix and velocities iv .
2. End loop.
3. Loop while simulation is running:
 a. Loop for N particles:
 i. Calculate iv using explicit integration.
 ii. Apply dampening on iv .
 iii. Calculate projection positions ip using iv .
 b. End loop.
 c. Generate M collision constraints.

12.2 Position Based Dynamics 161

 d. Loop for K solver iterations:
 i. Loop over each constraint iC :
 I. Solve iC using ip .
 ii. End loop.
 e. End loop.
 f. Loop for N particles:
 i. Calculate ip using iv and ix .
 ii. Assign ip to ix .
 g. End Loop.
4. End loop.

 The basic PBD algorithm first calculates the current velocity iv using explicit
Euler integration. Given the current time step Δt, the mass im , and external force

if , the in-place update of the current velocity iv is given as

 Δ i
i i

i

t
m

 
f

v v .

Using the newly calculated velocity iv , the projected position ip is obtained using
semi-implicit Euler integration as

 Δi i it p x v .

A set of M constraints (for example, distance constraints or collision constraints)
are then enforced on the projected positions ip using K Gauss-Seidel iterations to
obtain valid positions ip . Finally, the constraint-relaxed positions ip are assigned
to the new positions 1ix . These are also used to obtain the updated velocities 1iv
as follows:

 1

1

Δ
i i

i

i i

t




 




p x
v

x p

 Mathias et al. [Mathias 2007] identify a set of constraints and their positional
corrections Δ ip . For example, the distance constraint C between two particles at
positions 1x and 2x with a rest length d may be given as

  1 2 1 2,C d  x x x x .

For this constraint, the positional corrections 1Δp and 2Δp are given as

162 12. Simulating Soft Bodies Using Strain Based Dynamics

 

 

1 1 2
1 1 2

1 2 1 2

2 1 2
2 1 2

1 2 1 2

Δ

Δ

w
d

w w

w
d

w w

 
  

 


  

 

p p
p p p

p p

p p
p p p

p p
,

where 1w and 2w are the inverse masses of the particles.
 The PBD algorithm uses explicit integration to get an estimate of the current
positions and velocities. The new velocities are not blindly used to calculate the
new positions. Instead, additional constraints are enforced using a number of
Gauss-Seidel iterations on the new positions to ensure that they remain valid for
the given configuration. Finally, once all constraints are satisfied, the projected
positions are used to calculate the new velocities and positions.

12.3 Strain based Dynamics
The strain based dynamics approach uses the same basic framework of PBD. The
difference from PBD is that instead of enforcing distance constraints on each
edge of the mesh element, a single constraint is identified for each mesh element
(tetrahedron for tetrahedral meshes and triangle for triangular meshes).

Tetrahedral Constraint Formulation

Given the projected positions  0 1 2 3, , ,p p p p and initial, nonsimulated positions
 0 1 2 3, , ,q q q q of a tetrahedron, the current and initial positions may be given in
new coordinate systems having 0p and 0q as their origins. Two 3 3 matrices P
and Q are then constructed as

 
 

1 0 2 0 3 0

1 0 2 0 3 0

   

   

P p p p p p p

Q q q q q q q .

The continuum mechanics formulation defines the deformation gradient F as

 1F PQ .

Using the deformation gradient F, the Green-St Venant strain tensor G may be
given as

T
 

S F F

G S I.

12.3 Strain based Dynamics 163

The matrix G is a 3 3 matrix, and I is the 3 3 identity matrix. The diagonal en-
tries iiG contain stretch values for the current tetrahedron, whereas the off-
diagonal entries of G contain shear values. The stretch and shear constraints may
be given as follows

   
   

stretch 0 1 2 3

shear 0 1 2 3

, , , , , 0,1,2 and ;

, , , , , 0,1,2 and ;
ij i

ij

C S s i j i j

C S i j i j

   
  

p p p p

p p p p

where is are rest stretches (typically one) that are additional input parameters to
control initial deformation of the current tetrahedral element.

Triangular Constraint Formulation

For triangular constraints, the matrices P and Q are non-square, and hence, their
inverses are undefined. The Q matrix (which stores the rest state of a triangle) is
obtained using the 2D texture coordinates assigned to the triangle. The matrix P
is given as

  1 0 2 0  P p p p p .

Let 1u , 2u , and 3u be the 2D texture coordinates of a triangle. The matrix Q may
then be given in terms of these coordinates as

  1 0 2 0  Q u u u u .

A new matrix T containing two tangent vectors in world coordinates may then be
given as

    11
1 0 2 0 1 0 2 0

     T PQ p p p p u u u u .

The matrix T is a 2 3 matrix. The two tangent vectors are converted to the local
triangle frame by first normalizing the two tangent vectors and then multiplying
them with the matrix P as follows:

0 1

0 1

T

,

.

 
  
 

 

T T
N

T T

T N P

The matrix T is used to transform positions from global coordinates to the trian-
gle’s material coordinates.

164 12. Simulating Soft Bodies Using Strain Based Dynamics

Bending Constraint Formulation

Additional constraints called bending constraints are identified for both triangular
and tetrahedral mesh configurations. These constraints help maintain the initial
shape of the mesh element and prevent it from collapsing onto itself. For each
bending element, there are four positions: 0p , 1p , 2p , 3p . These are the four tetra-
hedral vertices for a tetrahedral mesh. For a triangular mesh, the four positions
come from the two adjacent triangles  0 2 3, ,p p p and  1 3 2, ,p p p . First, the two
triangle normals 1n and 2n are obtained using the following set of equations

   
   
   
   

2 0 3 0
1

2 0 3 0

3 1 2 1
2

3 1 2 1

.

  


  

  


  

p p p p
n

p p p p

p p p p
n

p p p p

The dihedral angle φ is then obtained by using the following equation

  1 2arccosφ  n n .

The dihedral angles for all bending elements are precalculated at initialization.
The spatial derivatives of dihedral angle with respect to each position are ob-
tained through the following set of equations

   

   

0

1

2

3

3 2

1

2

0 3 1 3
1 2

2 0 2 1
1 2

φ

φ

φ

φ

 
 

 

   
  

   
  

p

p

p

p

e p p

e n

e n

p p e p p e
n n

e e

p p e p p e
n n

e e
.

Finally, the spatial derivatives are used to obtain the positional corrections Δ ip as

 2

0

2

1 (arccos)
Δ k

k k

j jj

w d d φ

w

 
 


p q

q
,

where kw is the inverse mass of k-th particle, d is the dot product 1 2n n of the
two normals for the current bending element, 0φ is the dihedral angle of the cur-

12.3 Strain based Dynamics 165

rent bending element, and kq represents the material coordinates of the k-th parti-
cle. The corrected positions are then used to obtain the new position and velocity.

Volume/Area Conservation Constraint Formulation

Apart from the bending constraints, volume and area conservation constraints are
also enforced for tetrahedral and triangular meshes, respectively, which ensure
that the deforming element maintains its initial size. For a given tetrahedron, the
volume conservation constraint is given as

  volume 0 1 2 3 0 1 2 3, , , , , , , det detC  p p p p q q q q P Q.

The spatial derivatives of the volume constraint with respect to the element posi-
tions are obtained as follows:

   
   
   
 

1

2

3

0 1 2 3

volume 2 0 3 0

volume 3 0 1 0

volume 1 0 2 0

volume volume volume volume

C

C

C

C C C C

    

    

    

     

p

p

p

p p p p

p p p p

p p p p

p p p p

.

For a triangular element, the area conservation constraint is given as follows:

          2 2
area 0 1 2 0 1 2 1 0 2 0 1 0 2 0, , , , ,C        p p p q q q p p p p q q q q .

The spatial derivatives of area conservation constraints with respect to the ele-
ment positions are obtained as follows:

      
      
 

1

2

0 1 2

area 2 0 1 0 2 0

area 1 0 2 0 1 0

area area area

2

2

.

C

C

C C C

      

      

    

p

p

p p p

p p p p p p

p p p p p p

For both volume and area conservation constraints, the particle projections for
i-th particle are obtained using

volume/area

2
volume/area

volume/areaΔ ,

i

i

ii

i i

C
λ

w C

λw C




  
 p

pp

166 12. Simulating Soft Bodies Using Strain Based Dynamics

where,  0,1,2i for a triangular mesh and  0,1,2,3i for a tetrahedral mesh.
The positional corrections Δ ip are then added to the current position to obtain the
new positions. The new positions are then used to get the new velocities.

12.4 Implementation Details

The strain based dynamics is augmented in the PBD framework by applying ad-
ditional constraints. The implementation details for modeling a cloth mesh and a
tetrahedral mesh are discussed in this section. In the accompanying demo appli-
cation, area and volume conservation constraints are not enforced, but adding
these constraints should not be difficult.
 In the demo framework provided with this chapter, a StepPhysics() func-
tion is defined, as shown in Listing 12.1. This function is called every frame to
advance the real-time physics simulation, and it is given the elapsed time dt as a
parameter. It first calculates all external forces, such as the gravitational force,
wind forces, etc. Then, it performs the explicit Euler integration step. Next, a set
of constraints that includes distance and bending constraints is satisfied, and posi-
tional corrections are obtained using a number of Gauss-Seidel iterations. Finally,
the current velocities are integrated using the calculated positional corrections,
and the new positions are obtained.
 The ComputeForces() function is defined as shown in Listing 12.2. This
function simply sums the gravitational force if the mass of the particle is greater
than zero.

Listing 12.1. The StepPhysics() function definition.

void StepPhysics(float dt)
{
 ComputeForces();
 IntegrateExplicitWithDamping(dt);
 UpdateInternalConstraints();
 UpdateExternalConstraints();
 Integrate(dt);
}

12.4 Implementation Details 167

Listing 12.2. The ComputeForces() function definition.

void ComputeForces(void)
{
 for (size_t i = 0; i < total_points; i++)
 {
 F[i] = gravity * masses[i];
 }
}

 The IntegrateExplicitWithDamping() function is defined as shown in
Listing 12.3. This function first calculates the current velocity using an explicit
Euler integration step and then dampens the current velocity. The previous posi-
tion corrections dp are accumulated with the dampened velocities. Next, the
dampened position corrections are subtracted from the current velocities. Finally,
using the corrected velocities, the new positions are predicted.

Listing 12.3. The IntegrateExplicitWithDamping() function definition.

void IntegrateExplicitWithDamping(float deltaTime)
{
 float sumVN = 0.0F;

 for (size_t i = 0; i < total_points; i++)
 {
 V[i] = V[i] + (F[i] * deltaTime) * W[i];
 V[i] *= global_dampening;

 float lenDP = glm::length(dp[i]);
 if (lenDP > EPSILON)
 {
 sumVN = sumVN + glm::dot(V[i], dp[i] / lenDP);
 }
 }

 for (size_t i = 0; i < total_points; i++)
 {
 float lenDP = glm::length(dp[i]);
 if (lenDP > EPSILON)

168 12. Simulating Soft Bodies Using Strain Based Dynamics

 {
 V[i] = V[i] - kDamp * sumVN * dp[i] / lenDP;
 }
 }

 for (size_t i = 0; i < total_points; i++)
 {
 if (W[i] <= 0.0F)
 {
 tmp_X[i] = X[i];
 }
 else
 {
 tmp_X[i] = X[i] + V[i] * deltaTime;
 }
 }
}

 The UpdateExternalConstraints() function is responsible for updating
the collision constraints such as the collision of a soft body with an object. In the
demo application, the UpdateExternalConstraints() function is implemented
as shown in Listing 12.4. This function checks each particle for collision, first
against an oriented ellipsoid and then against the ground plane. If there is a colli-
sion, the particle is displaced to a position in which it is no longer in a colliding
state.

Listing 12.4. The UpdateExternalConstraints() function definition.

void EllipsoidCollision(void)
{
 for (size_t i = 0; i < total_points; i++)
 {
 glm::vec4 X_0 = (inverse_ellipsoid * glm::vec4(tmp_X[i], 1));
 glm::vec3 delta0 = glm::vec3(X_0.x, X_0.y, X_0.z) - center;

 float distance = glm::length(delta0);
 if (distance < 1.0F)
 {
 delta0 = (radius - distance) * delta0 / distance;

12.5 Implementing Cloth Simulation 169

 glm::vec3 delta = glm::vec3(ellipsoid * glm::vec4(delta0, 0));
 tmp_X[i] += delta;
 V[i] = glm::vec3(0);
 }
 }
}

void UpdateExternalConstraints(void)
{
 EllipsoidCollision();
 GroundCollision();
}

 The UpdateInternalConstraints() function is responsible for updating
the triangle constraint (for a cloth mesh) or tetrahedral constraint (for a tetrahe-
dral mesh). It also updates the distance and bending constraints. The implementa-
tion of strain based dynamics for a cloth or tetrahedral mesh differs in how the
UpdateInternalConstraints() function is implemented. The following sec-
tions detail how this function is implemented for each case individually.

12.5 Implementing Cloth Simulation

For cloth simulation, the UpdateInternalConstraints() function is imple-
mented as shown in Listing 12.5. The function first loops through all triangle
constraints and updates them. Next, it loops through all bending constraints and
updates them.

Listing 12.5. The UpdateInternalConstraints() function definition for cloth simulation.

void UpdateInternalConstraints(void)
{
 memset(&dp[0].x, 0, sizeof(glm::vec3) * total_points);

 for (size_t si = 0; si < solver_iterations; ++si)
 {
 for (size_t i = 0; i < t_constraints.size(); ++i)
 {
 UpdateTriangleConstraint(i);
 }

170 12. Simulating Soft Bodies Using Strain Based Dynamics

 for (size_t i = 0; i < b_constraints.size(); i++)
 {
 UpdateBendingConstraint(i);
 }
 }
}

 In each update of the triangle constraint, the current shear and stress values
are calculated. These are then used to obtain the positional correction dp for each
triangle vertex. For space concerns, the definitions of UpdateTriangleCon-
straint() and UpdateBendingConstraint() functions have been omitted. The
readers are referred to the Cloth.cpp file in the accompanying demo source code
for details. For a cloth model, the triangle and bending constraints are generated
at initialization as shown in Listing 12.6.

Listing 12.6. Code snippet showing generation of triangle and bending constraints.

void AddTriangleConstraint(int pa, int pb, int pc, float k)
{
 TriangleConstraint c;

 c.p1 = pa; c.p2 = pb; c.p3 = pc;
 t_constraints.push_back(c);
}

void AddBendingConstraint(int pa, int pb, int pc, int pd, float k)
{
 BendingConstraint c;

 c.p1 = pa; c.p2 = pb; c.p3 = pc; c.p4 = pd;
 c.k_prime = 1.0F - pow((1.0F - k), 1.0F / solver_iterations);
 if (c.k_prime > 1.0F)
 {
 c.k_prime = 1.0F;
 }

 b_constraints.push_back(c);
}

12.5 Implementing Cloth Simulation 171

for (size_t i = 0; i < indices.size(); i += 3)
{
 int i0 = indices[i];
 int i1 = indices[i + 1];
 int i2 = indices[i + 2];
 AddTriangleConstraint(i0, i1, i2, kStretch);
}

for (int i = 0; i < v - 1; ++i)
{
 for (int j = 0; j < u - 1; ++j)
 {
 int p1 = i * (numX+1) + j;
 int p2 = p1 + 1;
 int p3 = p1 + (numX+1);
 int p4 = p3 + 1;
 if ((j + i) & 1)
 {
 AddBendingConstraint(p3, p2, p1, p4, kBend);
 }
 else
 {
 AddBendingConstraint(p4, p1, p3, p2, kBend);
 }
 }
}

 The inverse of the Q matrix is precalculated at initialization as shown in
Listing 12.7.

Listing 12.7. Code snippet showing calculation of the Q inverse matrix.

for (size_t i = 0; i < indices.size(); i += 3)
{
 int i0 = indices[i];
 int i1 = indices[i + 1];
 int i2 = indices[i + 2];

 glm::vec3 x0 = X[i0];

172 12. Simulating Soft Bodies Using Strain Based Dynamics

 glm::vec3 x1 = X[i1];
 glm::vec3 x2 = X[i2];
 glm::vec2 u0 = UV[i0];
 glm::vec2 u1 = UV[i1];
 glm::vec2 u2 = UV[i2];

 glm::mat2x3 P = glm::mat2x3(x1 - x0, x2 - x0);
 glm::mat2x2 U = glm::mat2x2(u1 - u0, u2 - u0);
 glm::mat2x2 Uinv = glm::inverse(U);

 glm::mat2x3 T = P * Uinv;
 glm::vec3 n1(T[0]);
 glm::vec3 n2(T[1]);
 n1 = glm::normalize(n1);
 n2 = glm::normalize(n2);

 glm::mat2x2 C = glm::transpose(glm::mat2x3(n1, n2)) * P;
 Qinv[count] = glm::inverse(C);
 count++;
}

 The cloth simulation calls the StepPhysics() function every frame and then
passes the updated positions to the rendering function to display the deformed
cloth.

12.6 Implementing Tetrahedral Mesh Simulation

For tetrahedral mesh simulation, the UpdateInternalConstraints() function is
implemented as shown in Listing 12.8. The function first loops through all tetra-
hedral constraints and updates them. Next, it loops through all bending con-
straints and updates those. A set of tetrahedral constraints is generated at
initialization as shown in Listing 12.9.

12.6 Implementing Tetrahedral Mesh Simulation 173

Listing 12.8. The UpdateInternalConstraints() function definition for the tetrahedral mesh
simulation.

void UpdateInternalConstraints(void)
{
 memset(&dp[0].x, 0, sizeof(glm::vec3) * total_points);

 for (size_t si = 0; si < solver_iterations; ++si)
 {
 for (size_t i = 0; i < t_constraints.size(); ++i)
 {
 UpdateTetrahedralConstraint(i);
 }

 for (size_t i = 0; i < b_constraints.size(); i++)
 {
 UpdateBendingConstraint(i);
 }
 }
}

Listing 12.9. Code snippet showing generation of tetrahedral constraints.

for (size_t i = 0; i < tetraIndices.size(); i += 4)
{
 int i0 = tetraIndices[i];
 int i1 = tetraIndices[i + 1];
 int i2 = tetraIndices[i + 2];
 int i3 = tetraIndices[i + 3];

 glm::vec3 p0 = X[i0];
 glm::vec3 p1 = X[i1];
 glm::vec3 p2 = X[i2];
 glm::vec3 p3 = X[i3];

 glm::mat3 Q(p1 - p0, p2 - p0, p3 - p0);
 glm::mat3 Qinv = glm::inverse(Q);
 glm::vec3 c1(Qinv[0]);
 glm::vec3 c2(Qinv[1]);
 glm::vec3 c3(Qinv[2]);

174 12. Simulating Soft Bodies Using Strain Based Dynamics

 TetrahedralConstraint t;

 t.c1 = c1; t.c2 = c2; t.c3 = c3;
 t.p0 = i0; t.p1 = i1; t.p2 = i2; t.p3 = i3;
 t_constraints.push_back(t);
}

 For each tetrahedron, the barycentric coordinates are also obtained to find the
nearest surface vertex so that the tetrahedral deformation can be transferred to the
surface mesh. These are calculated in the FindBarycentricMapping() function
as shown in Listing 12.10.

Listing 12.10. Code snippet showing generation of barycentric coordinates.

void FindBarycentricMapping(void)
{
 glm::vec3 *pVertices = mesh.GetPositionPointer();

 for (size_t j = 0; j < mesh.GetVerticesSize(); ++j)
 {
 TetraMap tmap;

 float minDist = 0.0F;
 for (size_t i = 0; i < tetraIndices.size(); i += 4)
 {
 int i0 = tetraIndices[i];
 int i1 = tetraIndices[i + 1];
 int i2 = tetraIndices[i + 2];
 int i3 = tetraIndices[i + 3];

 glm::vec3 p0 = X[i0];
 glm::vec3 p1 = X[i1];
 glm::vec3 p2 = X[i2];
 glm::vec3 p3 = X[i3];
 glm::vec3 b = ComputeBarycentricCoordinates(pVertices[j],
 p0, p1, p2, p3);

 if (b.x >= 0.0F && b.y >= 0.0F && b.z >= 0.0F &&
 (b.x + b.y + b.z) <= 1.0F)

12.7 Barycentric Interpolation 175

 {
 tmap.tetraIndex = i;
 tmap.barycentricCoords = b;
 break;
 }

 float dist = 0.0F;
 if (b.x + b.y + b.z > 1.0F) dist = b.x + b.y + b.z - 1.0F;
 if (b.x < 0.0F) dist = (-b.x < dist) ? dist : -b.x;
 if (b.y < 0.0F) dist = (-b.y < dist) ? dist : -b.y;
 if (b.z < 0.0F) dist = (-b.z < dist) ? dist : -b.z;
 if (i == 0 || dist < minDist)
 {
 minDist = dist;
 tmap.tetraIndex = i;
 tmap.barycentricCoords=b;
 }
 }

 mapping.push_back(tmap);
 }
}

 In each update of the tetrahedral constraint, the current shear and stress val-
ues are obtained. These are then used to calculate the positional correction dp for
each tetrahedral vertex. For space concerns, the UpdateTetrahedralCon-
straint() and UpdateBendingConstraint() function definitions have been
omitted. The readers are referred to the TetrahedralMesh.cpp file in the ac-
companying demo source code for details.

12.7 Barycentric Interpolation

Once the updated tetrahedral vertex positions have been calculated, the obtained
deformations are transferred to the surface enclosing the tetrahedral mesh. To
accomplish this, barycentric coordinates are used. Each tetrahedral vertex is mul-
tiplied by its barycentric coordinates with respect to the current triangle vertex to
obtain the interpolated position. The current surface mesh vertex position is then
updated with the interpolated position. All of this is calculated in the Up-
dateMesh() function as shown in Listing 12.11.

176 12. Simulating Soft Bodies Using Strain Based Dynamics

Listing 12.11. Code snippet showing calculation of interpolated vertex position calculated from
the deformed tetrahedra using barycentric interpolation.

void UpdateMesh(void)
{
 glm::vec3 *pVertices = mesh.GetPositionPointer();
 for (size_t i = 0; i < mapping.size(); ++i)
 {
 TetraMap tmap = mapping[i];
 int index = tmap.tetraIndex;
 int i0 = tetraIndices[index];
 int i1 = tetraIndices[index + 1];
 int i2 = tetraIndices[index + 2];
 int i3 = tetraIndices[index + 3];

 glm::vec3 p0 = X[i0];
 glm::vec3 p1 = X[i1];
 glm::vec3 p2 = X[i2];
 glm::vec3 p3 = X[i3];
 glm::vec3 b = tmap.barycentricCoords;
 glm::vec3 temp = p0 * b.x + p1 * b.y + p2 * b.z +
 p3 * (1.0F - b.x - b.y - b.z);

 pVertices[i].x = temp.x;
 pVertices[i].y = temp.y;
 pVertices[i].z = temp.z;
 }

 mesh.CalcNormals();
}

12.8 Experimental Evaluation

The strain based dynamics technique detailed in this chapter was evaluated on
two machines:

1. A laptop ASUS K56CB with an Intel Core i7-3537U CPU @ 2 GHz with
4 GB RAM on a Windows 7 64-bit operating system. The laptop was
equipped with an Nvidia GeForce GT 740M GPU.

12.8 Experimental Evaluation 177

2. A desktop PC with an Intel Core i7-4790K CPU @ 4 GHz with 16 GB RAM
on a Windows 8.1 64-bit operating system. The desktop was equipped with
an Nvidia GeForce Titan Black GPU.

For the cloth model, a set of cloth meshes with different mesh resolutions ranging
from 21 21 vertices to 128 128 vertices were used.
 Rendering results showing the cloth meshes during deformation with differ-
ent anisotropic shear and stretch coefficients are shown in Figure 12.2. Varying
the values of the stress and shear coefficients introduces anisotropic behavior.
The cloth stretches and shears differently according to the values of the stretch
and shear coefficients as can be seen in the middle and right columns in
Figure 12.2.
 Along with the anisotropic behavior, the overall performance of the method
is also critical. Therefore, the experiments were extended to note the total time
(including both deformation and rendering time) for cloth meshes. These are de-
tailed in Table 12.1. As can be seen from the table, as the mesh resolution in-
creases, the frame time also increases. The performance is comparable on both
machines used in testing. The reason for this is that there is less geometry to pro-
cess, and the entire simulation is implemented on the CPU using single-threaded
code without taking advantage of additional CPU cores or the GPU.

Dataset Total Vertices Total Triangles

Total Time
(ms per frame)

Machine 1 Machine 2

Cloth (21 21) 441 2646 6.44 6.38

Cloth (41 41) 1681 10086 9.54 9.21

Cloth (64 64) 4096 24576 16.20 14.88

Cloth (128 128) 16384 98304 53.14 43.84

Table 12.1. Performance of strain based dynamics for cloth mesh.

178 12. Simulating Soft Bodies Using Strain Based Dynamics

(0.1, 0.1, 1.0) (0.1,1.0,0.1) (0.1,1.0,1.0)

(1.0,0.1,0.1) (1.0,0.1,1.0) (1.0,1.0,0.1)

(1.0,1.0,1.0)

Figure 12.2. Rendering results of a cloth mesh using different values of stretch and shear
coefficients to introduce anisotropic behavior. The values of the three coefficients, two
stretch coefficients and one shear coefficient, are written as a tuple  , ,xx yy xykS kS kS be-
low each image.

12.9 Future Work 179

(a) (b) (c) (d) (e)

Figure 12.3. The different meshes used in the experimental evaluation: (a) frog, (b) bunny,
(c) torus, (d) armadillo, and (e) Suzanne.

 Additional experiments were carried out to incorporate tetrahedral meshes
generated from the polygonal meshes shown in Figure 12.3. The meshes were
downloaded from the Stanford 3D scanning repository. The tetrahedral approxi-
mations were obtained using the PhysXViewer application provided with the
PhysX 2.8.4 SDK and stored in a separate file. Details about the mesh datasets
are listed in Table 12.2. The total time required for deformation, barycentric in-
terpolation, and rendering (in milliseconds per frame) is shown in Table 12.3.
 The barycentric mapping step is carried out only once at initialization. In this
process, for each tetrahedral vertex, the nearest polygonal mesh vertex is found
and its barycentric coordinates are obtained. These coordinates are finally used to
transfer the deformation from the tetrahedral mesh to the polygonal mesh through
barycentric interpolation. As can be seen from the results shown in Table 12.3,
the performance of strain based dynamics varies considerably as the number of
tetrahedra increases. The main reason for this is that the entire deformation pro-
cess is implemented on the CPU.

12.9 Future Work
A number of extensions are possible for the method discussed in this chapter.
The first extension is utilizing the GPU for both deformation and barycentric in-
terpolation. For deformation, the transform feedback mechanism could be used to
implement strain based dynamics entirely on the GPU. The entire deformation
may also be offloaded to the compute API (OpenCL, CUDA, or compute shaders
in OpenGL or DirectX). The barycentric mapping and interpolation could also be
carried out in the vertex or geometry shader stages of the GPU. Additional per-
formance improvements may be achieved by calculating the deformation on a
lower-resolution triangular or tetrahedral mesh, and then the obtained defor-
mation could be transferred to the finer-resolution rendering mesh.

180 12. Simulating Soft Bodies Using Strain Based Dynamics

Dataset Surface Mesh Tetrahedral Mesh

 Total Vertices Total Triangles Total Vertices Total Tetrahedra

Frog 4010 7694 187 461

Bunny 4098 8192 1113 3614

Torus 1729 3458 1363 4387

Armadillo 106289 212574 1518 5094

Suzanne 7830 15492 1004 3229

Table 12.2. Datasets used in the performance assessment.

Dataset Time (ms per frame)

 Machine 1 Machine 2

Barycentric

mapping

Deformation +
Barycentric

Interpolation +
Rendering

Barycentric
mapping

Deformation +
Barycentric

Interpolation +
Rendering

Frog 41.58 7.15 30.14 6.94

Bunny 451.09 16.44 288.64 14.419

Torus 205.14 18.17 142.96 16.331

Armadillo 13781.60 28.56 9753.42 25.29

Suzanne 651.17 15.05 495.89 13.858

Table 12.3. Performance of strain based dynamics for tetrahedral mesh model.

References 181

References
[Jakobsen 2001] Thomas Jakobsen, “Advanced Character Physics”. Game Developers

Conference, 2001.

[Nealen 2006] Andrew Nealen, Mathias Müller, Richard Keiser, Eddie Boxerman, and
Mark Carlson. “Physically Based Deformable Models in Computer Graphics”.
Computer Graphics Forum, Vol. 25, No. 4 (December 2006), pp: 809–836.

[Mathias 2007] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff.
“Position based Dynamics”. Journal of Visual Communication and Image Repre-
sentation, Vol. 18, No. 2 (April 2007), pp. 109–118.

[Mathias 2014] Mathias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Mack-
lin. “Strain Based Dynamics”. Eurographics / ACM SIGGRAPH Symposium on
Computer Animation, 2014.

This page intentionally left blankThis page intentionally left blank

 183

Part III

General Programming

This page intentionally left blankThis page intentionally left blank

 185

13

Generic, Lightweight, and
Fast Delegates in C++

Stefan Reinalter
Molecular Matters

In game programming, we often have the need to couple two or more completely
unrelated classes at a higher level, making one of them call into the other. While
engine and game systems should be isolated at a lower level as much as possible,
sooner or later these systems have to talk to each other by some means. As an
example, consider a character walking through a 3D environment. While the
skeletal animation is driven by the animation system, playing footstep sounds
would be the responsibility of the sound system, but neither of the systems in
question should know about the existence of the other.
 In theory, this could be achieved by introducing interfaces as a bridge be-
tween unrelated classes. In practice, this is often frowned upon, because it creates
coupling between the implementation and the corresponding interface and can
have additional unwanted side effects. Furthermore, it leads to more boilerplate
code being written and incurs extra function call overhead.
 In languages that treat functions as first-class citizens, this problem can be
solved easily by passing around functions among all parties that somehow need
to communicate. Since C++11, std::function offers such a general-purpose
mechanism for passing around, storing, and invoking functions, supporting
lambdas, member functions, and other function objects.
 While std::function is a welcome addition to the standard C++ library,
this gem showcases a different solution to the underlying problem of tying unre-
lated types into a common interface. Most notably, this gem offers the following
features, making it stand out from other implementations:

186 13. Generic, Lightweight, and Fast Delegates in C++

■ Lightweight. The size of a delegate is typically between 8 and 16 bytes, de-
pending on the compiler and the platform. The size of a delegate is always
constant for a given compiler and platform no matter what function it is
bound to.

■ Fast. Calling a function bound to the delegate is as fast as calling a function
through a pointer in all situations. In many cases, the invocation can even be
optimized into a direct function call.

■ No dynamic memory allocation. The delegate never needs to allocate any
additional memory.

■ No virtual function call overhead. The implementation does not rely on
virtual function dispatch.

■ No C++11 or C++14 required. The implementation does not make use of
newer C++ features from the C++11 and C++14 standards. It works on older
compilers not supporting C++11.

■ Standard C++. The implementation uses standard-conformant, legal C++.
No platform-specific hacks, assembly language programming, etc., are need-
ed.

■ No third-party dependencies. There is no requirement for STL, Boost, or
any other third-party libraries.

■ Generic. The delegate can be bound to both free functions and member func-
tions that each accept an arbitrary number of arguments of any type.

13.1 Background
A delegate should lend itself to being bound to both free functions as well as
member functions. This means that internally, the implementation needs to be
able to accept both as a target, storing each through some kind of abstraction.
C++ pointers-to-function and pointers-to-member-function would seem like
promising candidates for getting the job done if it weren’t for the C++ language
throwing a monkey wrench in. Pointers-to-function and pointers-to-member-
function are fundamentally different types! Neither of them can be converted into
the other, nor can either of them be converted into a pointer to void. All such
casts are illegal because pointers to functions are not necessarily represented in
the same way as pointers to data. Furthermore, the size of a pointer-to-member-
function might depend on the function to which it is pointing.1
 The prevalent solution to this problem is to employ a technique known as
type erasure. This erases the type of an object through a base class interface,

1 This is the case for Microsoft’s Visual C++ compiler (see also the /vmm, /vms, and /vmv
compiler options).

13.1 Background 187

while making use of the concrete type in derived classes. To see how this works,
consider the exemplary Delegate class implementation shown in Listing 13.1.
This class is able to hold both a pointer-to-function as well as a pointer-to-
member-function for any class as long as the function takes and returns an int.

Listing 13.1. Type erasure in action. Constructors, destructors, operators, and assertions have been
removed for clarity.

class Delegate
{
 struct Wrapper
 {
 virtual int Invoke(int) = 0;
 };

 struct FunctionWrapper : public Wrapper
 {
 typedef int (*Function)(int);

 virtual int Invoke(int value)
 {
 return (*m_function)(value);
 }

 Function m_function;
 };

 template <class T>
 struct MemFunctionWrapper : public Wrapper
 {
 typedef int (T::*MemFunction)(int);

 virtual int Invoke(int value)
 {
 return (m_instance->*m_function)(value);
 }

 MemFunction m_function;
 T *m_instance;
 };

188 13. Generic, Lightweight, and Fast Delegates in C++

 public:

 void Bind(int (*function)(int))
 {
 m_wrapper = new FunctionWrapper(function);
 }

 template <class T>
 void Bind(int (T::*memFunction)(int), T *instance)
 {
 m_wrapper = new MemFunctionWrapper<T>(memFunction, instance);
 }

 int Invoke(int value)
 {
 return m_wrapper->Invoke(value);
 }

 private:

 Wrapper *m_wrapper;
};

 Note how by using the Wrapper class we can hide the fact that pointers-to-
function and pointers-to-member-function are incompatible types and have dif-
ferent invocation syntax. Derived classes know how to store and invoke the re-
spective function objects, while the delegate implementation internally only uses
the base interface. All differences between pointers to free functions and pointers
to member functions have effectively been erased.
 This works in the same spirit as the technique employed by std::function.
However, there is a way to achieve the same effect without having to resort to
type erasure.

13.2 The Delegate Technique
One of the lesser used (or known) features of C++ is the ability to pass a pointer-
to-function and pointer-to-member-function as non-type template arguments,2 as
shown in Listing 13.2.

2 See the C++ standard, §14.1 Template parameters.

13.2 The Delegate Technique 189

Listing 13.2. Passing a pointer-to-function as non-type template argument.

template <int (*function)(int)>
int CallMe(int value)
{
 return (*function)(value);
}

CallMe<&Add>(10);

 While this feature seems inapplicable in the context of the example given in
the previous section, it allows us to reconcile pointers-to-function and pointers-
to-member-function and their differing syntax with one common signature, ex-
emplified in Listing 13.3.

Listing 13.3. Two proxy functions for calling free functions and member functions using function
pointers, but both sharing the same signature.

template <int (*function)(int)>
int FunctionProxy(void *instance, int value)
{
 return (*function)(value);
}

template <class C, int (C::*memFunction)(int)>
int MemFunctionProxy(void *instance, int value)
{
 return (static_cast<C *>(instance)->*memFunction)(value);
}

 There are three things worth noting here. First, both FunctionProxy() and
MemFunctionProxy() share the same signature, namely int (void *, int).
This means that we can store a pointer-to-function to either of them internally, no
longer having to distinguish between the two of them.

 Second, don’t let the void * used for passing around the instance fool you.
This does not compromise type safety in any way because the delegate imple-
mentation only deals with concrete (template) types. The given instance is cast to
void * only for storage, and it is later cast back to its original type for perform-

190 13. Generic, Lightweight, and Fast Delegates in C++

ing the member function call. Casting to and from void * is legal and explicitly
allowed by the C++ standard.3
 Third, note that passing the pointer-to-function and pointer-to-member-
function as template arguments offers excellent optimization opportunities to the
compiler. As an example, when binding a small member function to a delegate,
the compiler is able to inline the member function call into the proxy function,
resulting in overhead similar to only that of an ordinary function call. Larger
functions cannot be inlined, and thus have to make an extra jump through the
delegate’s proxy function.
 Listing 13.4 shows a simplified Delegate class implementation incorporat-
ing the fundamental ideas of this chapter.

Listing 13.4. The fundamental technique in action.

class Delegate
{
 typedef int (*ProxyFunction)(void *, int);

 template <int (*Function)(int)>
 static int FunctionProxy(void *, int arg0)
 {
 return (Function)(arg0);
 }

 template <class C, int (C::*Function)(int)>
 static int MethodProxy(void *instance, int arg0)
 {
 return (static_cast<C *>(instance)->*Function)(arg0);
 }

 template <class C, int (C::*Function)(int) const>
 static int ConstMethodProxy(void *instance, int arg0)
 {
 return (static_cast<const C *>(instance)->*Function)(arg0);
 }

 public:

3 See the C++ standard, §4.10 Pointer Conversions and §5.2.9 Static cast.

13.3 Toward a Generic Solution 191

 template <int (*Function)(int)>
 void Bind(void)
 {
 m_instance = nullptr;
 m_proxy = &FunctionProxy<Function>;
 }

 template <class C, int (C::*Function)(int)>
 void Bind(C *instance)
 {
 m_instance = instance;
 m_proxy = &MethodProxy<C, Function>;
 }

 template <class C, int (C::*Function)(int) const>
 void Bind(const C *instance)
 {
 m_instance = const_cast<C *>(instance);
 m_proxy = &ConstMethodProxy<C, Function>;
 }

 int Invoke(int arg0) const
 {
 return m_proxy(m_instance, arg0);
 }

 private:

 void *m_instance;
 ProxyFunction m_proxy;
};

13.3 Toward a Generic Solution

So far, the delegate can only cope with functions that accept a single int parame-
ter and return an int. In order to make the delegate accept an arbitrary number of
parameters and return any type, we have to resort to partial template specializa-
tion. By using a base template that accepts only a single template argument, we
can partially specialize the class template on different signatures, as shown in
Listing 13.5. Note that the syntax of the class specialization expects us to pass a

192 13. Generic, Lightweight, and Fast Delegates in C++

function signature as the template argument rather than individual types. This is
illustrated in Listing 13.6.
 The implementation shown in Listing 13.4 could serve as an implementation
for the partial specialization class Delegate<R (ARG0)> shown in Listing 13.5
as long as all return values of type int are replaced by R, and all parameters of
type int are replaced by ARG0.

Listing 13.5. Partial template specialization allows the delegate to accept an arbitrary number of
parameters of any type.

// Base template.
template <typename T>
class Delegate {};

template <typename R>
class Delegate<R ()>
{
 // Implementation for zero arguments, omitted.
};

template <typename R, typename ARG0>
class Delegate<R (ARG0)>
{
 // Implementation for one argument, omitted.
};

template <typename R, typename ARG0, typename ARG1>
class Delegate<R (ARG0, ARG1)>
{
 // Implementation for two arguments, omitted.
};

// More partial specializations for 3, 4, or more arguments.

Listing 13.6. Using the Delegate class.

int AddOne(int value)
{
 return value + 1;

13.4 Embracing C++11 193

}

Delegate<int (int)> del;

del.Bind<&AddOne>();
int value = del.Invoke(10); // value == 11

13.4 Embracing C++11

When using a compiler that supports the variadic template feature introduced in
C++11, we can omit all of the partial specializations and simply write one variad-
ic template specialization instead. This is illustrated in Listing 13.7.

Listing 13.7. Delegate class implementation using variadic templates.

// Base template.
template <typename T>
class Delegate {};

// Variadic specialization.
template <typename R, typename... Args>
class Delegate<R (Args...)>
{
 typedef R (*ProxyFunction)(void *, Args...);

 template <R (*Function)(Args...)>
 static R FunctionProxy(void *, Args... args)
 {
 return Function(std::forward<Args>(args)...);
 }

 template <class C, R (C::*Function)(Args...)>
 static R MethodProxy(void *instance, Args... args)
 {
 return (static_cast<C *>(instance)->*Function)
 (std::forward<Args>(args)...);
 }

194 13. Generic, Lightweight, and Fast Delegates in C++

 template <class C, R (C::*Function)(Args...) const>
 static R ConstMethodProxy(void *instance, Args... args)
 {
 return (static_cast<const C *>(instance)->*Function)
 (std::forward<Args>(args)...);
 }

 public:

 template <R (*Function)(Args...)>
 void Bind(void)
 {
 m_instance = nullptr;
 m_proxy = &FunctionProxy<Function>;
 }

 template <class C, R (C::*Function)(Args...)>
 void Bind(C *instance)
 {
 m_instance = instance;
 m_proxy = &MethodProxy<C, Function>;
 }

 template <class C, R (C::*Function)(Args...) const>
 void Bind(const C *instance)
 {
 m_instance = const_cast<C *>(instance);
 m_proxy = &ConstMethodProxy<C, Function>;
 }

 R Invoke(Args... args) const
 {
 return m_proxy(m_instance, std::forward<Args>(args)...);
 }

 private:

 void *m_instance;
 ProxyFunction m_proxy;
};

13.5 Extensions 195

13.5 Extensions
In its current implementation, the delegate does not take ownership of the in-
stance used in the call to Bind(). If that poses a problem, the delegate could be
extended to also accept the std:: family of pointers, which includes types such
as std::shared_ptr. Furthermore, depending on the use cases, it might be
worthwhile to implement comparison operators as well as a function call
operator.

13.6 Source Code
A complete implementation of the technique described in this chapter can be
found in Delegate.h (pre-C++11 version) and Delegate11.h (C++11 version)
on the book’s website. These are both made available under the MIT license.

This page intentionally left blankThis page intentionally left blank

 197

14

Compile-Time String Hashing in C++

Stefan Reinalter
Molecular Matters

Every now and then in game programming, there comes a need to look up some
entity, component, or resource by name. Even though true string-based lookups
are mostly avoided where possible, there are situations where they are the best
solution to the problem at hand. Examples include looking up certain bones in an
animated rig in order to attach special effects, or looking up hardcoded assets
such as meshes or textures in case a resource is missing or could not be loaded
correctly.
 In professional game engines, expensive string operations such as strcmp(),
strlen(), and others are avoided where possible in run-time code. Thus, the
prevalent technique for performing string-based lookups is to use hash-based
lookups instead. Note that this does not imply that a hash-based data structure is
used for storing the data, but instead refers to the fact that all string-based identi-
fiers such as resource names have been hashed by the engine’s content pipeline
in an offline process.
 The benefits of this approach are two-fold. First, a hash is a single integer
value of fixed size, which simplifies the data and memory layout. Second,
lookups in the engine code can be performed by using integer comparisons rather
than costly string comparisons, as exemplified in Listing 14.1.
 While this approach is a vast improvement over using std::string or
const char * for lookup purposes, there is still overhead present, namely in all
code that calls functions that accept a hash as an argument, as shown in
Listing 14.2. Every time the FindBoneIndex() function is called, a hash must be
generated at run time from a given string first.

198 14. Compile‐Time String Hashing in C++

Listing 14.1. Hash-based lookup of bones in an animated skeleton with hashes stored in a flat
array.

uint32_t Skeleton::FindBoneIndex(uint32_t hash)
{
 // Look up the bone index based on the hash of the bone's name.
 uint32_t *p = std::find(arrayOfHashes, arrayOfHashes + arraySize, hash);
 return (p - arrayOfHashes);
}

Listing 14.2. Hashing the string literal “neck” using a HashString() function.

uint32_t index = skeleton.FindBoneIndex(HashString("neck"));

 One way to get rid of the run-time overhead is to let the compiler calculate
hash values at compile time. This also opens up new possibilities like using the
resulting values as case constants in switch statements or as template arguments.
This chapter showcases a solution for generating hash values for string literals
and character arrays at compile time.

14.1 Background
Before delving into the realm of C++ template programming, a suitable hash
function needs to be defined first. This chapter works with the FNV-1a hash
function,1 but other functions would also be appropriate. A 32-bit implementation
of the FNV-1a hash function in C++ is shown in Listing 14.3.
 The implementation in Listing 14.3 can be used for strings of arbitrary
lengths, and it allows chaining of hash values. It starts with an offset basis of
2166136261, and uses 16777619 as the prime value. The evaluation of the hash
value only uses exclusive-or and multiplication operations, which makes it fast
while maintaining a low collision rate.
 Turning the hash function shown above into a compile-time construct using
templates would not be hard if it weren’t for the fact that C++ does not allow ob-
jects with internal linkage to be used as non-type template arguments.2 C++11

1 Named after Glenn Fowler, Landon C. Noll, and Phong Vo. See http://www.isthe.com/
chongo/tech/comp/fnv/index.html.
2 See C++ standard, §14.1 Template parameters.

http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html

14.2 The Hash Technique 199

Listing 14.3. The FNV-1a hash function.

uint32_t Fnv1aHash(uint32_t hash, const char *str, size_t length)
{
 for (size_t i = 0; i < length; ++i)
 {
 const uint32_t value = static_cast<uint32_t>(*str++);
 hash ^= value;
 hash *= 16777619u;
 }

 return hash;
}

uint32_t Fnv1aHash(const char *str, size_t length)
{
 return Fnv1aHash(2166136261u, str, length);
}

uint32_t Fnv1aHash(const char *str)
{
 return Fnv1aHash(str, strlen(str));
}

has lifted this restriction in certain cases but still does not allow string literals to
be used as non-type template arguments.3 This means that the code in
Listing 14.4 will not compile. Keep in mind that the intrinsic type of a narrow
string literal such as “abc” in this example is not const char *, but an array of
N const char where N is the number of characters plus a terminating '\0'
character.4

14.2 The Hash Technique
The solution to this problem is to make use of the C++11 constexpr keyword,
instead of trying to somehow cram string literals into non-type template parame-
ters. The particular implementation shown in this chapter also possesses addi-
tional features that prove to be beneficial even in pre-C++11 environments.

3 See C++ standard, §14.3.2 Template non-type arguments.
4 See C++ standard, §2.13.5 String literals.

200 14. Compile‐Time String Hashing in C++

Listing 14.4. Two non-working alternatives.

template <const char *>
struct Hash
{
 // Implementation omitted.
};

Hash<"abc">; // Does not compile.

template <size_t N, const char [N]>
struct Hash
{
 // Implementation omitted.
};

Hash<4, "abc">; // Does not compile.

 One key realization is that by starting with the last rather than the first char-
acter in the string, the iterative process of evaluating the hash function can be
turned into a recursion. This in turn can be expressed using a small template met-
aprogram, as shown in Listing 14.5.

Listing 14.5. Template metaprogram for calculating the FNV-1a hash of a string literal at compile
time.

template <size_t I>
struct Hash
{
 template <size_t N>
 constexpr static uint32_t Generate(const char (&str)[N])
 {
 return (Hash<I - 1>::Generate(str) ^ str[I - 1]) * 16777619u;
 }
};

template <>
struct Hash<0u>
{

14.3 Toward a Generic Hash Function 201

 template <size_t N>
 constexpr static uint32_t Generate(const char (&str)[N])
 {
 return 2166136261u;
 }
};

 Starting with the last character in the string literal, the metaprogram works its
way until it reaches the first character at index I == 0, which will end the recur-
sion due to the corresponding specialization of the Hash struct. The following
illustration breaks down the evaluation of the hash value for the string literal
"abc" into single steps.

Hash<3>::Generate("abc") =

(Hash<2>::Generate("abc") ^ 'c') * 16777619 =

(((Hash<1>::Generate("abc") ^ 'b') * 16777619) ^ 'c') * 16777619 =

(((((Hash<0>::Generate("abc") ^ 'a') * 16777619) ^ 'b') *

 16777619) ^ 'c') * 16777619 =

(((((2166136261u ^ 'a') * 16777619) ^ 'b') * 16777619) ^ 'c') *

 16777619

14.3 Toward a Generic Hash Function

In its current form, the implementation accepts string literals and arrays of con-
stant and non-constant characters as arguments, but not const char * or
std::string. While such runtime strings cannot be hashed at compile time, the
implementation should be able to cope with these types as well in order to make
the use of string hashes ubiquitous.
 What is needed is a helper function that correctly forwards a given argument
to either the run-time or compile-time variant of our implementation, based on
the type of the argument. Alas, a simple function with two overloads does not
suffice, as shown in Listing 14.6.

202 14. Compile‐Time String Hashing in C++

Listing 14.6. A nonworking attempt at a generic GenerateHash() function.

uint32_t GenerateHash(const char *str)
{
 return Fnv1aHash(str);
}

template <size_t N>
constexpr uint32_t GenerateHash(const char (&str)[N])
{
 return Hash<N - 1>::Generate(str);
}

// Calls (const char *) overload!
uint32_t hash = GenerateHash("abc");

 This might come as a surprise, but it is the outcome dictated by the C++
standard. Even though the template overload provides a perfect match for the
type of argument given, the compiler considers the non-template overload to be a
better match, due to the associated rank5 of the array-to-pointer conversion6 that
is necessary in order to call the non-template overload. This effect can be by-
passed by introducing a helper class template, along with necessary specializa-
tions, as exemplified in Listing 14.7.

Listing 14.7. A generic GenerateHash() function using a helper template.

template <typename T>
struct HashHelper {};

template <>
struct HashHelper<const char *>
{
 static uint32_t Generate(const char *str)
 {
 return Fnv1aHash(str);
 }

5 See C++ standard, §13.3.3.1.1 Standard conversion sequences, Table 11.
6 See C++ standard, §4.2 Array-to-pointer conversion.

14.3 Toward a Generic Hash Function 203

};

template <size_t N>
struct HashHelper<char [N]>
{
 constexpr static uint32_t Generate(const char (&str)[N])
 {
 return Hash<N - 1>::Generate(str);
 }
};

template <typename T>
constexpr static uint32_t GenerateHash(const T& str)
{
 return HashHelper<T>::Generate(str);
}

 There are four things worth noting here. First, the GenerateHash() function
accepts a constant reference to ensure that no array-to-pointer decay takes place
when passing arguments.
 Second, note that HashHelper offers a specialization for char [N], and not
const char (&)[N]. This is owed to the fact that the type T is being deduced as
char [N] when a string literal (of type const char [N]) is passed as an argu-
ment to GenerateHash().
 Third, using the generic function allows users to pass both string literals as
well as runtime strings into the function, and the compiler “does the right thing”.
String literals and character arrays are hashed at compile time, while other strings
are hashed at run time.
 Fourth, note that for strings hashed at compile time, the resulting value is
marked as being constexpr, which makes it possible to use the result of Gener-
ateHash("abc"), for example, as case constant in a switch statement or as non-
type template argument. In a sense, this provides the functionality to make tem-
plates accept strings (or at least their hashes) as well as provide specializations
for specific string literals, something that is otherwise impossible to do in C++
without jumping through additional hoops.

204 14. Compile‐Time String Hashing in C++

14.4 Implementation Notes

Even on platforms that do not support the C++11 constexpr keyword, the com-
piler is often smart and aggressive enough to fold the computation of the hash
value into a single constant in the executable, given proper optimization settings.
The implementation in this chapter was written specifically to give the compiler a
great amount of optimization opportunities.
 In a production environment, appropriate measures should be taken to ensure
that no hash collisions occur among strings which are hashed by a call to Gener-
ateHash(). This can most easily be accomplished by introducing an auxiliary
class that is used for passing around hash values, as shown in Listing 14.8.
 By using a non-explicit constructor, code that expects a hash value (such as
the FindBoneIndex() function) can be called with string literals as well as run-
time strings as arguments, without the user having to care or know about any of
the underlying details. The technique still works the exact same way as described
above.

Listing 14.8. An auxiliary class used as aid in checking string hashes for collisions.

class StringHash
{
 public:

 template <typename T>
 StringHash(const T& str) : m_hash(GenerateHash(str))
 {
 // Check against database of string hashes.
 }

 uint32_t Get(void) const
 {
 return m_hash;
 }

 private:

 const uint32_t m_hash;
};

14.5 Source Code 205

uint32_t Skeleton::FindBoneIndex(StringHash hash)
{
 uint32_t *p = std::find(arrayOfHashes, arrayOfHashes + arraySize,
 hash.Get());
 return (p - arrayOfHashes);
}

14.5 Source Code
A complete implementation of the technique described in this chapter can be
found in StringHash.h on the book’s website. This is made available under the
MIT license.

This page intentionally left blankThis page intentionally left blank

 207

15

Static Reflection in C++
Using Tuples

Nicolas Guillemot
Intel

It is common for game engines to be built with C++, and these C++ engines often
need to convert objects from their C++ representation to alternate representa-
tions. For example, one may want to convert a C++ object member-by-member
into a JavaScript object using a JSON encoding. One may also want to send an
object through a network protocol which requires a byte order swap of each
member of the object. It might also be interesting to check if a given object has a
member with a specific name.
 All of the above operations could be implemented in general ways if the C++
programming language allowed us to perform the generic operation of iterating
over the members of an object. In order to minimize run-time overhead, it is de-
sirable to perform these operations compile time, and this would require that we
have the ability to statically inspect the structure of objects. In other words, we
would require static reflection (as opposed to reflection in languages like Java or
C#, which is generally done at run time.)
 Although the C++ programming language does not currently have a built-in
feature to inspect the members of objects in a generic way, such a feature is cur-
rently being designed for a future version of C++. Don’t hold your breath—we
would be lucky to have this feature in C++ in the distant year 2020. Instead, let’s
see how far we can get using today’s compilers. This gem explores a solution
using the C++11 std::tuple class as an alternative implementation of static
reflection in the absence of proper language support.

208 15. Static Reflection in C++ Using Tuples

15.1 Rethinking Composition Using Tuples
Instead of just spoiling the solution, let’s work our way through the thought pro-
cess that leads to it. Our quest is to answer the following question. Given a class
type, how can we iterate over its members? It might sound like it should be easy,
but C++ has no built-in facilities for such an operation. We could generate the
code using a library like libclang,1 but it would be nice to accomplish this goal
within the language instead of through extra build tools.
 With C++11 and C++14, many new interesting features were added to the
language. Among these features is variadic templates, which make it possible to
declare a template that accepts a variable number of template arguments. Using
this feature, a new standard library type was added: std::tuple. This type is
similar to std::pair, but uses variadic templates to have a variable number of
members instead of being restricted to two members as std::pair is. For exam-
ple, std::tuple can be used like std::tuple<int, float, std::string>,
which declares a tuple containing three members of the listed types.
 In C++11, accessing members of a tuple was done using integer indices. For
example, to access the first member of a tuple, one would use
std::get<0>(tup). Similarly, to access the second member of a tuple, one
would use std::get<1>(tup), and so on. This opens a solution to our earlier
problem. Instead of declaring composite types as structs, we can use tuples, as in
Listing 15.1.
 After defining the object’s type as a std::tuple, we can access its members
using indices as shown earlier. Unfortunately, this solution has many problems:

Listing 15.1. Comparison of a struct and tuple that store two members.

// As a struct
struct Person
{
 std::string Name;
 int Age;
};

// As a tuple (using a typedef)
using Person = std::tuple<std::string, int>;

1 See “libclang: C Interface to Clang”. http://clang.llvm.org/doxygen/group__CINDEX.
html

http://clang.llvm.org/doxygen/group__CINDEX.html
http://clang.llvm.org/doxygen/group__CINDEX.html

15.1 Rethinking Composition Using Tuples 209

■ Accessing members by index makes for unreadable code. “What was index 3
again?” A matching list of named constants can fix this at the cost of more
boilerplate.

■ The declaration of the tuple is hard to understand. “What is the meaning of
that int?”

■ The tuple declaration is verbose, which motivates a typedef.

Furthermore using a simple typedef is not enough: We can’t safely overload
functions with the typedef due to the possibility of two different objects having
the same actual type. For example, std::tuple<std::string, int> could rep-
resent something other than a Person.
 Fortunately, C++14 introduced a feature that enables a solution to many of
these problems, std::get<T>. This function is used to access members of a tuple
based on their type instead of their index. For example, we can call
std::get<std::string>(person) to access the name of a person. This re-
moves the need of accessing tuple members using magic numbers, but doesn’t
yet solve all our problems: Now we’re using magic types instead of magic num-
bers with the added restriction that no two members of a tuple have the same
type. As a solution to this problem, we create a new type for each member, as in
Listing 15.2.
 With this new design, it is now possible to access the properties of person in
a readable way. For example, we can access its name using
std::get<Name>(person). This tuple now closely resembles a C struct, but
has the added feature of iteration over its members thanks to its std::tuple na-
ture. (Iteration will be discussed later in this chapter.) Finally, the
std::tuple<Name, Age> type can itself be wrapped in a struct (as shown in
Listing 15.3), allowing functions to be overloaded unambiguously on the Person
type. This also enables generic recursive traversals of objects thanks to the nam-
ing convention of the value member (as explained in the next section). This is
the basis of this chapter’s static reflection system.

Listing 15.2. Tuple elements are given unique types to facilitate accessing them through
std::get<T>.

struct Name {std::string value;};
struct Age {int value;};

std::tuple<Name, Age> person{Name{"Alfred"}, Age{31}};

210 15. Static Reflection in C++ Using Tuples

Listing 15.3. Creating a unique type for Person makes it possible to overload functions on the
Person type and makes it possible to apply recursive functions on the value member of objects
represented this way.

struct Name {std::string value;};
struct Age {int value;};

struct Person
{
 std::tuple<Name, Age> value;
};

Person person{std::make_tuple(Name{"Alfred"}, Age{31})};

 The use of std::make_tuple in Listing 15.3 may be considered ugly, as it
would be more concise to initialize it with braces as in Listing 15.2. There exists
a proposal to fix this with a library solution.2

15.2 Recursive Member Iteration
One basic application of this design is to load and save an object through a JSON
representation, which can be done by traversing an object recursively and reading
or writing its members. This recursive traversal can be implemented with func-
tion overloading. In our case, a function named SaveJSON() will be overloaded
to serialize any given type into an equivalent JSON representation. To start with
something simple, Listing 15.4 shows the implementations of SaveJSON() for
the built-in int and std::string types, which are straightforward.
 The int and std::string overloads required no recursion, since they are
leaf types. On the other hand, implementing SaveJSON() for arrays or objects
requires recursive calls in order to print their members. We’ll tackle the array
implementation first because it is easier. The implementation for arrays is shown
in Listing 15.5. Note that this function can be generalized for a std algorithm-
style pair of iterators, which can be reused to implement other array-like contain-
ers such as std::array and std::vector.

2 See document number N4387, The C++ Standards Committee. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2015/n4387.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html

15.2 Recursive Member Iteration 211

Listing 15.4. Translating basic types into JSON.

void SaveJSON(std::ostream& os, int x)
{
 os << x;
}

void SaveJSON(std::ostream& os, const std::string& s)
{
 os << "\"" << s << "\"";
}

Listing 15.5. Converting a C array into a JSON array.

template <class T, size_t N>
void SaveJSON(std::ostream& os, const T(&a)[N])
{
 os << "[";
 for (size_t i = 0; i < N; i++)
 {
 if (i != 0)
 {
 os << ",";
 }

 SaveJSON(os, a[i]);
 }

 os << "]";
}

 Next, we’ll implement SaveJSON() for objects. According to the object sys-
tem described in this chapter, an object is a type that has one member variable
called value. If the type of value is std::tuple, then this object represents a
composition of named subobjects that will be represented as key/value pairs in a
JSON object. The implementation of SaveJSON() for these objects is shown in
Listing 15.6.

212 15. Static Reflection in C++ Using Tuples

Listing 15.6. Converting a tuple (made out of types that represent object members) into a JSON
object.

template <class... Ts>
void SaveJSON(std::ostream& os, const std::tuple<Ts...>& tup)
{
 os << "{";
 bool first = true;
 auto saveOne = [&first, &os](const auto& x)
 {
 if (!first)
 {
 os << ",";
 }
 else
 {
 first = false;
 }

 SaveJSON(os, x);
 };

 int saveAll[] = {0, (saveOne(std::get<Ts>(tup)), 0)...};
 os << "}";
}

 From a high-level view, this function is simple. It simply applies the function
saveOne() to each member of the tuple, which outputs the members with proper
comma separation. However, the saveAll statement deserves some explanation.
The goal here is to iterate over members of a tuple and apply a function on each
one, so let’s step through the thought process.
 One might think that it’s possible to iterate over the members of a tuple by
simply using the ellipsis (...) operator to expand the variadic argument, result-
ing in a statement as in Listing 15.7.

Listing 15.7. An incorrect first guess of how to apply a function over a tuple.

saveOne(std::get<Ts>(tup))...;

15.2 Recursive Member Iteration 213

 Unfortunately, this notation is not a valid use of parameter pack expansion as
far as the current C++ grammar is concerned. Besides, if saveOne() happened to
have a return value, this use would be throwing them away, which is not ideal.
One place where parameter pack expansion is valid is in array initialization,
which conveniently also allows us to store the return values and guarantee left-to-
right order of execution (as opposed to expanding it within a function call, simi-
larly to std::make_tuple(f(args)...)). This leads us to the second attempt in
Listing 15.8.

Listing 15.8. An almost valid application of a function on a tuple, if the type wasn't void.

void saveAll[] = {saveOne(std::get<Ts>(tup))...};

 Unfortunately, arrays of type void are not allowed. This wouldn’t be a prob-
lem if saveOne() didn’t have a void return type, but in this case we have to
switch the type of the expression. One way to do this is to use the comma opera-
tor, as in Listing 15.9.

Listing 15.9. Applying a function that returns void to a tuple.

int saveAll[] = {(saveOne(std::get<Ts>(tup)), 0)...};

 There’s one last problem. If the tuple is empty, then this statement fails to
compile due to zero size arrays being disallowed. This can be fixed by adding a
placeholder value as in Listing 15.10, which completes the implementation.

Listing 15.10. Adding a placeholder makes the array size never be zero, so this works with empty
tuples.

int saveAll[] = {0, (saveOne(std::get<Ts>(tup)), 0)...};

 This idiom is a relatively convenient and reusable way to map a function
over a tuple. It doesn’t require any fancy metaprogramming libraries and doesn’t
require potentially tricky/inefficient recursion. If saveOne() did return a result,
this would also be a convenient way to access it. Also, note that if saveOne()

214 15. Static Reflection in C++ Using Tuples

returns a different type based on its operand, the result could be stored in a
std::tuple instead of an array.
 To complete the implementation of SaveJSON(), two more functions will be
defined. First, the default overload of SaveJSON() will be considered to be oper-
ating on a type that represents an object’s member. JSON’s object property nota-
tion will be used to serialize object members, which consists of the member’s
name followed by a colon and its value. This is complemented by a SaveJSON-
TopLevel() function, which creates the entry representing the whole object be-
ing serialized. Their implementations are available in Listing 15.11.
 You might have noticed that the code calls GetJSONName() on each object.
This is a function that must be defined for each type passed to the system. For
example, one could define it for the earlier Name class as in Listing 15.12. Since
C++ has no portable way to get a class’s name, this binding may require manual
work. A macro system could be used to automatically convert the class’s name to
a string, but it’s worth considering if this one-to-one mapping is really what you

Listing 15.11. Converting object members and top-level objects into JSON.

template <class T>
void SaveJSON(std::ostream& os, const T& obj)
{
 os << "\"" << GetJSONName(obj) << "\": ";
 SaveJSON(os, obj.value);
}

template <class T>
void SaveJSONTopLevel(std::ostream& os, const T& obj)
{
 os << "{";
 SaveJSON(os, obj);
 os << "}";
}

Listing 15.12. A simple way to associate a string to a C++ type.

const char *GetJSONName(const Name&)
{
 return "name";
}

15.3 Practical Concerns 215

want in any practical cases. In the simple Name example, the level of indirection
allows us to switch to a JavaScript naming convention (“camelCase”), and also
makes it possible to modify the C++ class’s name without breaking backwards
compatibility with the schema of previously written JSON files. If you’re looking
for a quick non-portable way to get a class’s name, consider using C++’s RTTI,
typeid(x).name(). Better static reflection in C++’s future could make it easier
to automate this.3

15.3 Practical Concerns
This way of designing objects may be an unfamiliar way of thinking, and it does
require a good level of language mastery due to its metaprogramming nature.
One immediate source of confusion in this design is the fact that C++ types are
now used for two purposes. Some represent classic C++ data-types such as
std::string, and others represent member names (e.g., Name and Age). Depend-
ing on your use, keeping this distinction in mind is necessary to correctly build
types. For example, consider the correct and incorrect uses in Listing 15.13. The
incorrect solution uses Point as if it was a data type, which is wrong because
Point is supposed to be the name of an object’s member. If you look at the out-
put of SaveJSON(), it’s immediately noticeable that something is wrong.
 Naturally, the approach presented in this chapter is not the only way to im-
plement a recursively traversable type system using tuples. Programmers seeking
to use a similar solution are encouraged to explore the design space and, in the
future, consider how newer versions of C++ can improve this kind of design.
 As an additional practical concern, it seems unreasonable to suggest that eve-
ry class in a project be written this way, but this technique can still be applied in
a single subsystem where its features are worth the extra complexity. One of the
most important things to take from this chapter is that it is possible to iterate over
tuples to perform generic operations on objects, opening up new interesting
designs.
 There are many other possible extensions of this technique. A scripting lan-
guage could be automatically hooked up to C++ objects, or the layout of objects
could be switched between struct-of-arrays and array-of-structs. A more ambi-
tious use is an embedded DSL for statically typed SQL-like relational algebra
operations on containers. For example, an SQL query like SELECT Name FROM
people WHERE Age = 30 could be implemented by extracting the Name member

3 For example, see document number N4451, The C++ Standards Committee. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf

216 15. Static Reflection in C++ Using Tuples

of a list of Person objects and applying a filter based on the value of the Age
member.
 Techniques using the tuple-based designs shown in this chapter will be facili-
tated more as the C++ programming language is improved, and we may find our-
selves one day totally abandoning tuple-based designs for a true static reflection
system.4 Until then, this solution ought to be a decent option.

Listing 15.13. Example of the error caused by using a type representing a member as if it were a
normal data type.

// Deceivingly incorrect design.
// -------------------------------

struct Point {float value[2];};
struct Quad {Point value[4];};

// SaveJSONTopLevel output (pretty printed):
// {
// "quad":
// [
// "point": [0,0],
// "point": [0,1],
// "point": [1,1],
// "point": [1,0]
//]
// }

// One possible correct design.
// -------------------------------

struct TopLeft {float value[2];};
struct BottomLeft {float value[2];};
struct BottomRight {float value[2];};
struct TopRight {float value[2];};

struct Quad {std::tuple<TopLeft, BottomLeft, BottomRight, TopRight> value;}

4 In addition to N4451, see document number N4447, The C++ Standards Committee.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4447.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4447.pdf

15.3 Practical Concerns 217

// SaveJSONTopLevel output (pretty printed):
// {
// "quad":
// {
// "topLeft": [0,0],
// "bottomLeft": [0,1],
// "bottomRight": [1,1],
// "topRight": [1,0]
// }
// }

This page intentionally left blankThis page intentionally left blank

 219

16

Portable SIMD Programs
Using ISPC

Nicolas Guillemot
Marc Fauconneau Dufresne
Intel

Before it became accelerated in hardware in the late 1990s, games did vertex
transformation and lighting in software on the CPU. As 3D gaming became
mainstream, SIMD (Single Instruction Multiple Data) instruction sets like SSE
(Streaming SIMD Extensions) were added to CPUs to accelerate geometry pro-
cessing and other computationally expensive tasks. Unlike regular floating-point
instructions that perform scalar operations, SSE instructions perform vector op-
erations that can operate on groups of four floating-point numbers in parallel, as
in Figure 16.1. SSE’s wide applicability in game programming made such SIMD
instruction sets an essential part of any high-performance game engine. SIMD
instruction sets have since seen great evolution, but an open question remains:
How can we best take advantage of SIMD instruction sets?
 This gem’s topic is ISPC. ISPC stands for “Intel SPMD Program Compiler”,
and SPMD stands for “Single Program Multiple Data”. ISPC allows you to write
portable, maintainable, and efficient SIMD code. Note that despite the Intel
branding, ISPC is not exclusive to Intel’s architectures. ISPC is an LLVM-based
open-source compiler currently hosted on GitHub, and it is supported on

            
 

1 2 3 4 5 6 7 8 1 5 2 6 3 7 4 8

6 8 10 12

     



Figure 16.1. An example of parallel addition.

220 16. Portable SIMD Programs Using ISPC

Windows, Mac OS X, and Linux. ISPC can target various instruction sets includ-
ing SSE2, AVX2, and NEON. It also features an experimental PlayStation 4
cross-compiler for Windows. A detailed technical introduction can be found in an
InPar 2012 paper [Pharr and Mark 2012]. The project is hosted at
https://ispc.github.io/.

16.1 The Problem

Since SIMD was introduced to home PCs, more and more SIMD instruction sets
have been added to processors over the years. Depending on how recent a CPU
is, it may or may not support some of these instruction sets, which can make it
hard to write portable SIMD code. One solution used by game developers [Fred-
riksson 2015] is to target the SSE2 (Streaming SIMD Extensions 2) instruction
set, which has existed since the early 2000s and is currently supported ubiqui-
tously by hardware used by PC gamers [Valve 2015]. While this allows game
developers to use SIMD with few portability problems, it means that perfor-
mance is left on the table for users with more advanced CPUs.
 In addition to the portability issues, it is also difficult to write SIMD code
using currently available tools. Some commonly used approaches are:

■ Assuming your C/C++ compiler automagically transforms scalar code into
vector code.

■ Using 3D linear algebra classes that use SIMD for their operations (e.g.,
float4, matrix4x4).

■ Using intrinsics, special functions recognized by the compiler and converted
directly into SIMD instructions.

Unfortunately, all of these methods have major issues:

■ Compilers cannot reliably apply auto-vectorization, as small changes to your
code can break it. Ideally, we would like a guarantee that vectorization is
happening.

■ 3D linear algebra classes like float4 expose limited parallelism due to their
array-of-structs nature, as opposed to struct-of-arrays (see Listing 16.1). Stor-
ing the x, y, z, and w components of a float4 sequentially in memory makes
ineffective use of SIMD in common operations like the dot product [Fredrik-
sson, 2015]. The approach also doesn’t scale to instruction sets with wider
vectors.

https://ispc.github.io/

16.1 The Problem 221

■ Intrinsics are not portable. Also, while explicit control of generated assembly
might help improve your tightest loops at a micro scale, it becomes more dif-
ficult to implement algorithmic improvements at macro scale due to the de-
crease in productivity.

 Ideally, we would like to write programs that make good use of current (and
future) instruction sets. This code should be maintainable, easy to write, and un-
compromising in performance whenever practical. To this end, we introduce
ISPC, a compiler for a C-like language that makes it easy to write portable and
efficient code using SIMD through a thin abstraction layer.

Listing 16.1. Comparison of array-of-structs design and struct-of-arrays design. The struct-of-
arrays design tends to lend itself better to SIMD operations.

// Array-of-structs design.
struct float4
{
 float x;
 float y;
 float z;
 float w;
};

float4 mystructs[N];

// Struct-of-arrays design.
struct Float4Arrays
{
 float xs[N];
 float ys[N];
 float zs[N];
 float ws[N];
};

Float4Arrays myarrays;

222 16. Portable SIMD Programs Using ISPC

16.2 ISPC Basics

The SPMD programming model is similar to GPU shaders. Programs are written
as if they operate on a single value, but the program is actually being executed
many times in parallel. ISPC implements this efficiently using SIMD
instructions.
 In ISPC terms, each execution of the program is called a program instance,
and the group of all simultaneously executing programs is called a gang. In
ISPC, the size of the gang is known at compile time and is based on the target
SIMD instruction set. When writing ISPC code, algorithms are described from
the view of a single program instance.
 ISPC is syntactically similar to C with some added semantics. For example,
ISPC adds the uniform and varying qualifiers, which are used in variable decla-
rations. These qualifiers describe how the variable behaves across program in-
stances. A uniform variable has the same value in each program instance of the
gang, and a varying variable has an independent value in each program instance.
This difference has an interesting effect because varying variables can cause con-
trol flow to diverge between program instances.
 To implement divergent control flow with SIMD instructions, ISPC uses
predication. All possible paths of control flow are taken, but ISPC keeps track of
which set of program instances satisfy the conditions at any point in the code.
Side effects are only executed for this set of program instances, and the results
are merged when control flow converges. Predication is also used to handle the
case of a loop’s iteration count not being a multiple of the program instance
count.

16.3 ISPC Example Programs

As an introduction, we give a walkthrough of the simple.ispc program in List-
ing 16.2. This program should be mostly intuitive to C programmers, since the
equivalent C program is almost identical. The only differences between this pro-
gram and the C equivalent are:

■ The export keyword, which tells ISPC to generate a C entry point for the
function to which it’s applied.

■ The uniform keyword on inputs, since inputs come from C where everything
is uniform.

■ The foreach loop, which runs multiple instances of the loop in parallel.

16.3 ISPC Example Programs 223

Listing 16.2. A simple ISPC program: simple.ispc.

export void simple(uniform float vin[], uniform float vout[],
 uniform int count)
{
 foreach (index = 0 ... count)
 {
 float v = vin[index];
 if (v < 3)
 {
 v = v * v;
 }
 else
 {
 v = sqrt(v);
 }

 vout[index] = v;
 }
}

 The foreach loop deserves more explanation. It generates a varying variable
named index. Because the index is varying, it has a different value in each pro-
gram instance. For example, if the program instance count is 4, then index would
be [0 1 2 3] in the first iteration. Thus, reading vin[index] actually reads up
to four floats into v (which is a varying float.) The computation is carried out
on these four floats in parallel, and they are then written into vout. Due to the
if...else inside the loop, some program instances will square v, and others will
compute its square root. These results are merged using predication.
 When compiling this program, a header is created that contains the declara-
tion in Listing 16.3. This function can be called by using the example C code in
Listing 16.4.

Listing 16.3. Declaration of simple in the header generated by compiling simple.ispc.

extern void simple(float vin[], float vout[], int32_t count);

224 16. Portable SIMD Programs Using ISPC

Listing 16.4. Example invocation of the simple.ispc program.

#include <stdio.h>
#include "simple.h"

int main()
{
 float vin[16], vout[16];

 for (int i = 0; i < 16; ++i)
 {
 vin[i] = i;
 }

 simple(vin, vout, 16);

 for (int i = 0; i < 16; ++i)
 {
 printf("%d: simple(%f) = %f\n", i, vin[i], vout[i]);
 }
}

 As a more practical example of the language, consider the ISPC code in List-
ing 16.5. This code takes a list of spheres and six frustum planes as input and
computes for each sphere whether it is outside the frustum. This code can be used
to detect objects outside the camera’s field of view, which is a very effective
basic culling technique. The most interesting thing about this program is its
demonstration of the power of struct-of-arrays. If the sphere coordinates were
supplied as a single array (as array-of-structs), then it wouldn’t be possible to
perform the dot product in the inner loop as efficiently because it would be pro-
cessing one sphere at a time rather than many. The advantages of the struct-of-
arrays approach for dot products are further explained in [Fredriksson 2015].

16.4 Integration in a Game Engine

ISPC can be used for various tasks in a game, game engine, or game asset pipe-
line. The most common use is computationally heavy algorithms because ISPC
makes it easier to generate SIMD code by automating tedious constructs like
conditional execution and the ends of loops.

16.4 Integration in a Game Engine 225

Listing 16.5. ISPC code to frustum cull a list of spheres.

export void FrustumCull(uniform int numSpheres,
 uniform const float sphereCenterXs[],
 uniform const float sphereCenterYs[],
 uniform const float sphereCenterZs[],
 uniform const float sphereRadii[],
 uniform const float frustumPlaneEqns[6][4],
 uniform int cullingOutput[])
{
 foreach (sphereIdx = 0 ... numSpheres)
 {
 int culled = 0;

 for (uniform int planeIdx = 0; planeIdx < 6; planeIdx++)
 {
 float outsideDistanceFromPlane
 = sphereCenterXs[sphereIdx] * frustumPlaneEqns[planeIdx][0]
 + sphereCenterYs[sphereIdx] * frustumPlaneEqns[planeIdx][1]
 + sphereCenterZs[sphereIdx] * frustumPlaneEqns[planeIdx][2]
 + frustumPlaneEqns[planeIdx][3];

 if (outsideDistanceFromPlane > sphereRadii[sphereIdx])
 {
 culled = 1;
 }
 }

 cullingOutput[sphereIdx] = culled;
 }
}

 It’s tempting to offload heavy computations to the GPU, but using ISPC in-
stead for shader-like workloads has some distinct advantages. Because it runs on
the CPU, ISPC directly shares data structures with your C/C++ program. In addi-
tion, ISPC allows you to use the CPU’s low latency, in contrast to using the
GPU’s latency hiding mechanisms. You can efficiently call a short ISPC function
from C++ or make a callback from ISPC into C++ code, and these are the kinds
of workloads that put GPUs to shame.

226 16. Portable SIMD Programs Using ISPC

 Since the same ISPC code can be compiled for different architectures, it
makes effective use of a heterogeneous server farm used for compiling assets,
where code can be compiled to exploit any given processor’s SIMD capabilities.
You can even share the same ISPC code between your game and your asset
pipeline.
 Adding ISPC to an existing C/C++ project is easy. ISPC builds .obj files
that can be simply linked into your binary, and it also generates a header that you
can simply #include in order to call exported functions.
 As a quick setup guide, ISPC can be integrated in a Visual Studio project as
follows:

1. Download ispc.exe from http://ispc.github.io/.
2. Put ispc.exe into your project’s directory.
3. Add your .ispc source file to your project.
4. Right click on your .ispc file in Visual Studio, and choose Properties.
5. Under “Configuration Properties > General”, set “Item Type” to “Custom

Build Tool”.
6. Under “Configuration Properties > Custom Build Tool > General”, configure

similarly to that shown in Figure 16.2.

The target architecture, the instruction set, and the description of the task may be
freely changed. In a project that uses ISPC heavily, or on various platforms, it
might be interesting to automate this process. This automation can be done
through a higher level build system, or by associating the .ispc extension to a
custom build step in Visual Studio.

Figure 16.2. Options for adding an ISPC file to a Visual Studio project. This can be
made automatic with a custom build step.

http://ispc.github.io/

16.5 Tips & Tricks 227

16.5 Tips & Tricks

What follows are some tips for getting the most out of ISPC, based on our expe-
rience using it.

Prefer uniform, and don’t use varying unless you need to

Since varying is the default qualifier for variables, it’s possible to accidentally
use a varying variable in a case where all program instances have the same value.
Using varying in that case will yield worse performance than explicitly marking
it as uniform.

Build for all instruction sets, and choose the best available at runtime

The same ISPC program can be compiled for many target instruction sets simul-
taneously, and all of these different compiled programs can be linked together
into the same executable. This makes it possible to dynamically decide which
instruction set to use at runtime, which is interesting for things like PC games
where your users have a wide variety of hardware capabilities. This is imple-
mented automatically by passing multiple comma-separated targets to the ISPC
command line. The generated entry points for the exported functions will check
your CPU’s capabilities and invoke the most appropriate implementation.

Consider the effects of divergence

SPMD can interact poorly with algorithms that use branching. Consider the case
of an algorithm that iteratively refines its results. The core of the algorithm is a
loop that ends either when the value converges or after a maximum number of
iterations. When running the loop, some program instances of an SPMD gang of
size N will converge earlier than others. It is possible for the loop to keep iterat-
ing even if only a single program instance is active, which means that the other

1N  program instances are waiting for reconvergence. For this reason, algo-
rithms should be designed to minimize divergence in order to achieve higher
throughput. Advanced solutions exist to handle divergence by refilling lanes that
have converged early.

Avoid gathers

Load/store using varying indices may result in gather/scatter operations. When
this happens, ISPC will generate a performance warning because those are inher-
ently slow operations. This affects the balance in performance between table
lookups and computation. It can often be slower to lookup the result of a function

228 16. Portable SIMD Programs Using ISPC

in a table, due to the required gather operation, than to compute the function.
Finding creative ways to convert tables into equivalent functions can yield per-
formance benefits, despite the seemingly redundant computation.

References
[Fredriksson 2015] Andreas Fredriksson. “SIMD at Insomniac Games: How We Do the

Shuffle”. Game Developers Conference 2015. Available at
http://www.gdcvault.com/play/1022249/SIMD-at-Insomniac-Games-How.

[Pharr and Mark 2012] Matt Pharr and William R. Mark. “ispc: A SPMD Compiler for
High-Performance CPU Programming. Innovative Parallel Computing”. Innova-
tive Parallel Computing, 2012.

[Valve 2015] Valve Steam Hardware & Software Survey, July 2015. Available at
http://store.steampowered.com/hwsurvey/.

http://www.gdcvault.com/play/1022249/SIMD-at-Insomniac-Games-How
http://store.steampowered.com/hwsurvey/

 229

17

Shared Network Arrays as an
Abstraction of Network Code
from Game Code Logic

João Lucas Guberman Raza
Microsoft

17.1 Introduction
This chapter discusses the concept of a shared network array (SNA), a data struc-
ture aimed at abstracting underlying network code while one writes game logic
code. This comes from the fact that SNAs synchronize their nodes’ data across
all clients while still allowing a developer to use them as if they were a local ar-
ray. As an example of their applicability, in multiplayer games it is common for
game logic code to iterate over objects that are shared across all clients. This oc-
curs when each client iterates over the list of enemies and players present in a
map to determine their visibility and rendering effects. This also occurs when a
server iterates over a list of projectiles to determine collisions.
 As each client and server retrieves and/or updates the state for these objects,
a host of underlying network operations need to ensue, such as broadcasting, up-
dating, and refreshing state changes across all clients. Historically, games have
kept all clients and server data structures coordinated via numerous mechanisms,
such as through reliable messages [Brownlow 2005]. Although such mechanisms
are functional in themselves, they rely on tight integration between the network
stack and the game logic. Consequently, this forces tight coordination among the
involved teams that own those corresponding components.
 SNAs serve as a method for abstracting these interdependencies. Suppose a
developer is writing game logic code to check whether enemies are near any
player, and if so, alert the corresponding player. With SNAs, a developer could
write the following code.

230 17. Shared Network Arrays as an Abstraction of Network Code from Game Code Logic

while (true) // core game loop
{
 /* players is an object of type SharedNetworkArray<CPlayer> */
 for (int i = 0; i < players.ARRAY_SIZE; i++)
 {
 if (players[i]->isNearEnemies())
 {
 players[i]->alert();
 /* ... do extra game logic when near an enemy ... */
 players[i]->propagateChange();
 }
 }

 /* ... perform rest of game logic ... */
}

 This example highlights the key advantages to using SNAs. The first one is
that the developer does not need to understand how clients synchronize data. The
SNA framework automatically propagates any changes to the objects across all
clients. The second advantage is that SNAs use templates, allowing the gameplay
programmer to construct an SNA out of any game object. The third advantage is
that SNAs allow a developer to write algorithms as if the objects are all local,
thus simplifying their implementation.
 The remainder of this chapter focuses on how the internals of SNAs work.
Source code for a C++ implementation using Winsock is available on the book’s
website.

17.2 How SNAs Work

Each SNA contains an array composed of nodes that the application can access
linearly. Each node contains metadata that details the node’s age (used for syn-
chronization disputes), its index in the array, and its propagation state (set to false
by default). Each node also contains an object, which is an instance of the pro-
vided template object from the application. Each SNA also has an identifier that
is equal across all SNA instances on each machine. This is so that when synchro-
nizing data, the framework knows to which SNA the new data pertains.
 SNAs rely on connection manager classes to propagate and synchronize
changes. There are two types of connection managers, the client connection man-
ager and the server connection manager. The client connection manager runs on

17.2 How SNAs Work 231

each client instance (the game running on users’ machines), while the server
connection manager runs on the game host (the server). Each client and server
needs only one connection manager for all its SNAs. Each client must also regis-
ter its SNA (i.e., keep an internal pointer to the SNA) with its local connection
manager so that automatic synchronizations may occur.
 The client connection manager is responsible for uploading local changes
that the client has made to the server connection manager. It is also responsible
for establishing and maintaining a connection with the machine that is running
the server connection manager. Whenever the client connection manager detects
that an SNA’s node propagation state is set to true, it sends an “update request”
message to the server connection manager with the new state of the node’s ob-
ject. That message also contains the node’s age from the client as well as its in-
dex so that the server connection manager may assess to which node the message
pertains. Lastly, the client connection manager also locally merges data that the
server connection manager has sent whenever it receives a “node update” mes-
sage. Clients treat “node update” messages from the server as law—whatever the
server says the state of a node is, the client accepts as is by overriding its local
value. When a client successfully sends an “update request” message to the serv-
er, it resets the propagation state for the corresponding node.
 The server connection manager is responsible for receiving update requests
from the client connection manager. It is also responsible for accepting and regis-
tering incoming connections from all machines that are running a client connec-
tion manager. Whenever the server connection manager receives an “update
request” message from a client, it checks the node to which the message pertains.
(The servers contains a local copy of the SNA as a main reference.) If its age is
equal to or younger than the received message, then the server adds the “update
request” to its internal update backlog. If the server receives a new “update re-
quest” for a node that already has an “update request” in its update backlog, the
server connection manager compares the ages of the messages. Whichever has
the youngest age wins and remains in the update backlog. The server connection
manager discards the older message. If both messages have the same age, then
the server discards the newly received message in favor of the one currently in
the backlog.
 The server connection manager also periodically broadcasts the contents
from its update backlog to all registered clients. It sends, for each connected cli-
ent, an “update node” message, which contains the node’s new age, its new state
as reflected in the server, and its index. Messages that are successfully sent are
removed from the update backlog. The ages of their nodes are also increased by
one, both locally (on the resident SNA on the server) and on all clients.

232 17. Shared Network Arrays as an Abstraction of Network Code from Game Code Logic

Figure 17.1. Connection manager interactions.

 The diagram shown in Figure 17.1 serves to illustrate the connection manag-
er interactions and topology.

17.3 How a Gameplay Programmer Uses SNAs

To help exemplify how SNAs work in real world scenarios, this section and the
next highlight how to use the SNA framework provided in the accompanying
source code.
 When creating a new SNA, a developer supplies an identifier that must be
equal across the instances of that SNA on all clients. The SNA framework en-
forces this by having the developer provide the SNA identifier at its instantiation
as follows.

Client

Client

SNA

SNA

ID

......

SNA

Client Connection Manager

Client

SNA

SNA

ID

......

SNA

Server Connection Manager

Server

Update Node

Update Request

Metadata

Object

Node

Metadata

Object

Node

17.3 How a Gameplay Programmer Uses SNAs 233

const unsigned int PLAYER_ARRAY_NETWORK_ID = 20;
SharedNetworkArray<CPlayer> players(PLAYER_ARRAY_NETWORK_ID);

The client application must also contain a local client manager instance and ini-
tialize it as follows.

ClientConnectionManager clientCM;
clientCM.start();

Once created, the SNA’s corresponding connection manager must register it. The
following line registers the players SNA with its client connection manager.

clientCM.registerArray(&players);

Once registered, the developer has the equivalent of a fixed array of the provided
template objects. The developer may interact with each object in that array using
the brackets operator as follows. The SNA framework returns a pointer to the
object at the specified index.

if (players[i]->isNearEnemies())
{
 players[i]->alert();
 /* ... do extra game logic when near an enemy ... */
}

 In communication with its counterpart on the server, the client connection
manager must also receive messages as well as send messages to be broadcast to
the other clients. Such activities occur when the application invokes the client
manager’s sync() method. The application may call this method in a multithread
safe manner using the following line.

clientCM.sync();

 Finally, the gameplay developer must call the propagateChange() method
for each object they wish the framework to propagate changes across all clients.

234 17. Shared Network Arrays as an Abstraction of Network Code from Game Code Logic

Other than that, the developer may rely on SNAs as if they were any other array
in the system.
 On the server, the developer must also create an instance of the same SNA
having the same identifier as used on clients, initialize its server connection man-
ager, and regularly synchronize for data as shown in the following code.

const unsigned int PLAYER_ARRAY_NETWORK_ID = 20;
SharedNetworkArray<CPlayer> players(PLAYER_ARRAY_NETWORK_ID);

ServerConnectionManager serverCM;

serverCM.start();
serverCM.registerArray(&players);

while (true) // core game loop
{
 serverCM.sync();
 /* perform other game logic */
}

17.4 How a Network Programmer Uses SNAs
The network programmer building and using SNAs has to abide by a set of im-
plementation interfaces required for SNAs to work. The first one is that any ob-
ject used as a template parameter for an SNA (such as the CPlayer object in the
code examples above) must inherit from the abstract SharedObject class. This
ensures that the implementation is required to override its copySharedObject-
Data() and setSharedObjectData() methods.
 The framework calls these methods whenever an internal synchronization
event occurs, such as sending and receiving messages across connection manag-
ers. The application must copy whatever data it needs to propagate across all cli-
ents in the copySharedObjectData() method. Meanwhile, it must set whatever
data it wishes to override locally with the setSharedObjectData(). An applica-
tion cannot make any assumptions of how or when the connection managers call
those methods.
 These methods exist so that one can fine tune the information shared across
clients. One may choose to select what content the framework broadcasts vs.
what is local only. For example, a player’s total life is shared across all clients,

17.4 How a Network Programmer Uses SNAs 235

while the player’s control settings are not. The code below exemplifies a mock
implementation for the CPlayer class, which contains a shared value across con-
nected SNAs.

class CPlayer : public SNA::SharedObject
{
 public:

 CPlayer() : value(0)
 {
 }

 virtual ~CPlayer()
 {
 }

 bool copySharedObjectData(char *buffer,
 const unsigned int sizeofBuffer, unsigned int& packageSize)
 {
 if (sizeofBuffer > packageSize || !buffer)
 {
 memcpy(buffer, &value, sizeof(value));
 packageSize = sizeof(value);
 return true;
 }

 return false;
 }

 bool setSharedObjectData(char *buffer,
 const unsigned int sizeofBuffer)
 {
 if (sizeofBuffer == sizeof(value))
 {
 memcpy(&value, buffer, sizeofBuffer);
 return true;
 }

 return false;
 }

236 17. Shared Network Arrays as an Abstraction of Network Code from Game Code Logic

 private:

 int value; /* a dummy value that this object holds */
};

17.5 Further Discussion
The SNA proposal in this chapter makes three assumptions that one may wish to
extend in terms of implementation. The first assumption is that all SNAs are of
fixed size. One may enhance the SNA framework implementation so that it con-
tains a dynamic size. To do so would require adding new messages to the con-
nection managers that cause new nodes to be created and destroyed. It would also
require adding a size method to the SNA class.
 The second assumption is that synchronization disputes about the age (with
messages discards) suffice as an introductory scenario. More complicated scenar-
ios would likely need to enhance this dispute by using either an external clock
system (such as the actual time in which the events were triggered), or an internal
clock system, such as the game’s local reference time. For further insight into
clock synchronizations and disputes, see [Lamport 1978].
 The third assumption is that the clients and the server are able to know which
SNAs they wish to share beforehand. In scenarios where that may not hold true,
one would likely need to implement a query system where a client is able to re-
trieve array IDs and types at runtime from the server connection manager.

References
[Brownlow 2005] Martin Brownlow. “A Reliable Messaging Protocol”. Game Program-

ming Gems 5, edited by Kim Pallister. Charles River Media, 2005.

[Lamport 1978] Leslie Lamport. “Time, clocks, and the ordering of events in a distribut-
ed system”. Communications of the ACM, Vol. 21, No. 7 (July 1978), pp. 558–
565.

 237

Part IV

Character Control and
Artificial Intelligence

This page intentionally left blankThis page intentionally left blank

 239

18

Vision Based Local
Collision Avoidance

Teófilo Bezerra Dutra
Universidade Federal do Ceará

Ricardo Marques
Universitat Pompeu Fabra

Julien Pettré
INRIA

Jan Ondřej
Disney Research

18.1 Introduction
Video games have traced a remarkable history since their emergence and popu-
larization. Many major revolutions occurred in this ever-changing market. Now-
adays, games take place in always-larger scenes, and the environments are
becoming more and more dynamic. Game worlds need to be populated by non-
player characters (NPCs) so as to not look devoid of life. Once those NPCs can
freely wander through the environment, their ability to autonomously move and
react to both static and dynamic obstacles has become a crucial feature in game
development. Notwithstanding, local collision avoidance between moving NPCs
is one of the most difficult tasks to perform.
 For an efficient navigation, NPCs must plan their paths within complex sce-
narios in order to reach their goals, avoiding both moving and static obstacles.
This is achieved by resorting to information provided by the game engine that is

240 18. Vision Based Local Collision Avoidance

Figure 18.1. An example of a GPP is represented through the gray dots and their connec-
tions on the image. The situation highlighted illustrates a risk of collision, in which case
an LPP is used to modify the path of the NPCs for collision avoidance.

usually fed to a pair of game components, a global path planner (GPP) and a lo-
cal path planner (LPP). GPPs possess information about the whole scene in order
to identify the traversable areas to the goals and to produce a set of intermediate
waypoints, as shown in Figure 18.1. For their part, LPPs steer NPCs through
these waypoints while making fine-grain adaptations to avoid collisions and other
kinds of danger.
 Regarding local path planning, game developers commonly resort to rule
based approaches or to the recently introduced velocity based algorithms. Both of
these classes of algorithms provide interesting results, but the literature has
shown that further improvements are possible by using valuable hints provided
by the NPC’s visual flow [Ondřej et al. 2010, Dutra et al. 2014, Dutra 2015]. In
the following section, we briefly present the concepts of rule based and velocity
based approaches. Then, the remainder of this chapter is devoted to discussing
vision based techniques and how they can be implemented.

18.2 Local Path Planning in Games

One of the most straightforward ways of simulating interactions between NPCs
during navigation is to consider them as particles that are subject to attraction and
repulsion forces in a particle system [Helbing and Molnár 1995]. In this case,
NPCs should repulse each other to avoid collisions and be attracted to their goals
(e.g., the waypoints provided by the GPP) so as to reach their objectives. In those
approaches, the closer the characters, the stronger the adaptations. However, real

Risk of Collision

18.2 Local Path Planning in Games 241

life is different, because real humans allow themselves to either anticipate their
avoidance or pass at closer distances to the obstacles. In this kind of approach,
strong adaptations combined with lack of motion anticipation lead to visually
unpleasant behaviors.
 A simple way of avoiding those kinds of artifacts is to define behavioral rules
for the particles in the system such as the several steering behaviors introduced
by [Reynolds 1999] for simulating autonomous characters. These behaviors are
described through atomic rules and their combinations. In the particular case of
obstacle avoidance behavior, the danger (meaning the risk of collision in the near
future) is anticipated, and consequently, the NPC’s motion is adapted by extrapo-
lating its trajectory to detect potential collisions in the near future. Rule based
techniques are quite popular given the fair results achieved through the combina-
tion of simple and noncontradictory rules. An example of a good-quality C++
library for simulating steering behaviors can be found on the OpenSteer website.1
 Other LPP techniques based on the principle of extrapolating the NPC’s tra-
jectory (according to its current velocity) for motion anticipation have been pro-
posed [Paris et al. 2007, van den Berg et al. 2008, Karamouzas et al. 2009, Pettré
et al. 2009]. Those so-called velocity based techniques have demonstrated visual-
ly appealing results as well as better level of realism, especially in semi-dense
areas where anticipation plays an important role. A particular representative of
such techniques, proposed in the field of robotics [Fiorini and Shiller 1998], re-
sorts to the concept of velocity obstacles. This method works in velocity space
and consists in selecting, for each robot, a velocity that guarantees that the future
distance of closest approach to other obstacles over a short time window is above
a collision threshold. That concept has evolved since then. A recent evolution is
represented by the optimal reciprocal collision avoidance (ORCA) approach
[van den Berg et al. 2011], which efficiently computes the optimal solution, i.e.,
the maximum collision-free velocity closest to a comfort velocity2 in velocity
space, hence reciprocally avoiding collisions between NPCs in the near future.
This kind of velocity based technique suffers from problems such as the binary
notion of collision that results in strictly minimal avoidance maneuvers and weird
interaction distances where personal space is not taken into account. A C++ li-
brary implementing the ORCA velocity based technique can be found in the
RVO2 website.3

1 http://github.com/meshula/OpenSteer
2 Comfort velocity is the velocity the NPC would use in an environment without obsta-
cles, i.e., a vector pointing towards the goal with length equal to a predefined scalar com-
fort speed.
3 http://gamma.cs.unc.edu/RVO2/

http://github.com/meshula/OpenSteer
http://gamma.cs.unc.edu/RVO2/

242 18. Vision Based Local Collision Avoidance

18.3 Vision Based Obstacle Avoidance

Overview

Recently, a new category of techniques that resort to using the NPC’s visual flow
to detect collisions with anticipation has demonstrated that the results achieved
with velocity based techniques could be further improved [Ondřej et al. 2010,
Dutra et al. 2014, Dutra 2015]. Vision-aided navigation is inspired by cognitive
science literature, which acknowledges the role of the human vision system in the
locomotion perception-action loop [Cutting et al. 1995, Warren and Fajen 2004,
Rio et al. 2014]. Despite its clear importance for locomotion, the visual infor-
mation has been a neglected feature by the existing techniques until recently,
mostly for performance reasons.
 In these vision based local path planning (VBLPP) techniques, the environ-
ment is rendered from the point of view of each NPC, and the resulting image is
processed to determine how that NPC should react to the potentially dangerous
obstacles within its field of view. The need for rendering and processing the vi-
sion of each NPC for each frame is a challenging task in terms of performance,
given the amount of data to deal with. However, the capabilities of the modern
graphics cards have made the simulation of several NPCs endowed with synthet-
ic vision no longer impracticable. Despite the limited performance of VBLPP
techniques when compared to other velocity based approaches, the former allow
a more realistic perception of the virtual environment and open several new pos-
sibilities for dealing with the information acquired.
 In this section, we present the technical aspects involved in VBLPP tech-
niques. Afterward, we scrutinize the details of two representatives of such tech-
niques and their implementations.

Implementation Guidelines

As stated before, the use of the NPC’s vision to adapt its trajectory involves a
rendering step and a processing step, as shown in Figure 18.2. In the rendering
step, the camera is placed at the eye location of the NPC, and then the surround-
ing environment is rendered to a texture from this point of view. However, in-
stead of rendering the visual aspect of the obstacles such as color, texture, and
surface normal, some kinematic properties are associated with each pixel, such as
relative position and relative velocity. The vision based technique employs pro-
grammable shaders in order to efficiently compute some motion variables with
respect to each obstacle from the NPC’s perspective. Therefore, this process aims

18.3 Vision Based Obstacle Avoidance 243

Figure 18.2. Algorithm overview for VBLPP techniques.

at producing a texture endowed with data meaningful enough to allow the NPC’s
reasoning with respect to the dangerous obstacles perceivable in its field of view.
Since the resulting data does not represent colors, it is usually necessary render to
a the texture storing unnormalized floating-point numbers.
 Once the rendering is finished, the resulting texture is downloaded from the
GPU to the CPU and processed. The processing step depends on the particular
technique, but basically, background pixels are discarded, and a motion adapta-
tion algorithm processes the remaining pixels. In Figure 18.3, we describe a base
class for vision based techniques. The implementation of the techniques de-
scribed in the following sections inherit from this base class.
 In this class, the texture for synthetic vision is defined along with its dimen-
sions. Other important properties are the camera to be used by the NPC and the
shader used during the rendering from the NPC’s point of view. The class has a
method ProcessAgents() that is responsible for setting up the shader and pro-
cessing the NPC’s texture output. The SetupVisionShader() and Proces-
sAgent() methods are abstract in order to force them to be implemented by
concrete derived classes.

Figure 18.3. Base class for vision based techniques.

Place camera at
NPC’s eye location

Render NPC’s
point of view

vision texture

For each NPC

Download
vision texture

Process
vision texture

Update NPC’s
properties

VisionBasedModelGEG

+visionWidth: int
+visionHeight: int
+agentCamera: Camera
+visionTexture: Textur2D
+visionShader: Shader

+VisionBasedModelGEG(shaderName: string)
+ProcessAgents(agents: GameObject[])
-SetupAgentCamera(agent: GameObject)
-GetAgentVision(agent: GameObject): Color[]
#SetupVisionShader(agent: GameObject)
#ProcessAgent(agent: GameObject, pixels: Color[])

244 18. Vision Based Local Collision Avoidance

 The code accompanying this chapter is written in C#, and it runs in Unity.
Some undefined properties and methods presented in this chapter are encapsulat-
ed by Unity. In the VisionBasedModelGEG class, for example, Camera, Tex-
ture2D, and Shader are classes defined by Unity. Moreover, the shader snippets
presented in the following sections are written in ShaderLab, a shading language
used in Unity that has similarities with Cg and HLSL.
 Common example evaluation scenarios usually define two NPC groups with
the objective of swapping positions, e.g., where the initial positions of a group on
the left are the goal positions for another group on the right and vice-versa. The
main idea behind this is to bring forth situations where there are potential colli-
sions, which are inevitable if the NPCs are unable to steer properly. Useful sce-
nario scripts such as OppositeScenario are provided for this purpose.
 After setting up the scenario, it is necessary to implement a means for creat-
ing the VBLPP technique object and for processing the NPCs with the collision
avoidance technique at each application step. The GEG script inherits from Mono-
Behavior in order to do so. Moreover, a good demo is never complete without
some user interaction. The Player script can be attached to the player’s model in
order to allow its representation and control. That model’s shader has the “Obsta-
cle” tag set in order to be perceived by the NPCs. The Update() method syn-
chronizes information between the model and its shader.
 The next two sections are devoted to detailing two VBLPP techniques and
their implementations. First, we examine the purely reactive technique proposed
by [Ondřej et al. 2010], which was the first vision based technique specifically
designed for simulating crowds. In that case, NPCs react to the risk of collision
identified through synthetic vision. A collision threshold is used to determine
when to adapt the NPC’s motion in order to escape the danger of collision. Sec-
ond, we examine the gradient based technique introduced by [Dutra 2015], which
represents an advance over the previous one where NPCs move so as to always
minimize the risk of collision by taking into account all the information produced
by the visual flux instead of merely reacting to the most imminent danger.

18.4 Purely Reactive Technique

Overview

The first technique scrutinized in this chapter was introduced by [Ondřej
et al. 2010]. This purely reactive VBLPP algorithm extracts two indicators, α and
tti, from each pixel representing an obstacle in the synthetic optic flow. The first
indicator, α , represents the time-derivative of the bearing angle α under which the

18.4 Purely Reactive Technique 245

obstacle is perceived. The second indicator, tti, or time-to-interaction, is the re-
maining time until a collision occurs with an obstacle. The NPC’s reaction to
visual stimuli is taken by means of the following two actions while ignoring the
background pixels that are not processed during the rasterization stage:

■ For each pixel indicating a future collision (i.e., with α close to zero), a turn-
ing angle is computed based on a symmetric threshold function that is in-
versely proportional to tti. That threshold function can be parameterized in
order to control the NPC’s safety distance from obstacles and how far ahead
in time it can anticipate collisions (see [Ondřej et al. 2010] for more details).
This action aims at choosing the turning angle that avoids all the obstacles
and deviates less from the goal.

■ The speed is adjusted according to the minimum tti when a collision is immi-
nent, such as when there is at least one obstacle pixel with tti smaller than
three seconds. This action slows down the NPC in order to prevent collisions
from happening.

Implementation

In Figure 18.4, we derive the purely reactive technique from the base class intro-
duced in the previous section. The derived class implements the two virtual
methods defined in the base class and defines a private method for updating the
NPC’s properties. The properties of the shader used by the technique are also
shown in Figure 18.4. The output of the vertex shader, which is the input of the
fragment shader, are stored in the v2f structure. Finally, the value of the proper-
ties in PRMVisionShaderGEG and VisionShaderDefs are configured in Set-
upVisionShader() method of the model. For more details regarding this
particular technique, please refer to [Ondřej et al. 2010].

 Before describing an example using the purely reactive technique, it is im-
portant to characterize the NPCs and to define the obstacles in the environment
that are considered during processing. First, to characterize an NPC, we create a
C# script (AgentScript in Figure 18.5) that is attached to the 3D model repre-
senting the NPC and used to set the NPC’s properties needed by the shader and
the technique. AgentScript inherits from the base scripted behavior MonoBehav-
ior within Unity’s framework to define the Start() and Update() methods.
Update() is invoked every frame in order to compute the NPC’s properties using
the underlying shaders. Finally, a material possessing the “Obstacle” tag in its
shaders is used in order to specify the game objects that are considered as obsta-
cles. Some results are shown in Figure 18.6.

246 18. Vision Based Local Collision Avoidance

Figure 18.4. Description of the purely reactive technique.

Figure 18.5. Script used to characterize an NPC.

PureReactiveModelGEG

+PureReactiveModelGEG()
-UpdateVelocityAndPosition(agent: GameObject,
 thetaMin: float,
 thetaMax: float,
 ttcMin: float,
 goFirstMin: bool,
 goFirstMax: bool)
#SetupVisionShader(agent: GameObject)
#ProcessAgent(agent: GameObject, pixels: Color[])

v2f

+pos: float4
+depth: fixed
+speed: fixed
+speed_Alpha: fixed
+speed_Alpha_Goal: fixed
+alpha: fixed
+alphaDot: fixed

<<shader>>
PRMVisionShaderGEG

+_GoalVelocity: fixed4
+_A: fixed
+_B: fixed
+_C: fixed
+_Ttg: fixed

+vert(v: appdata_base): v2f
+frag(i: v2f): fixed4

<<cg include>>
VisionShaderDefs

+_ObstacleVelocity: fixed4
+_ObstacleID: fixed
+_AgentPosition: fixed4
+_AgentVelocity: fixed4

VisionBasedModelGEG

AgentScript

 Start()
 Update()
+GetDistanceToGoal(): float
+GetGoalBearingAngle(): float
+GetGoalBearingAngleDerivative(): float
+GetTimeToGoal(): float
+GetComfortVelocity(): Vector3
+GetDirectionToGoal(): Vector3

MonoBehavior

#Start()
#Update()

+comfortSpeed: float
+goalPosition: Vector3
+velocity: Vector3
+angularSpeed: float
+a: float
+b: float
+c: float
-render: Renderer

18.5 Gradient Based Technique 247

Figure 18.6. The initial state of the NPCs is shown on the left, where the player controls
the yellow cylinder. On the right, the interaction of the player with the NPCs is shown
when using the purely reactive technique.

18.5 Gradient Based Technique

Overview

In the purely reactive technique, the NPCs focus on avoiding only the most im-
minent danger and neglect the consequences of their actions on other potential
threats. Moreover, behaviors such as accelerating for avoiding collisions are ab-
sent. In this section, we introduce an alternative technique that explores a wider
range of possible motion adaptations for each NPC and retains the locally opti-
mal one. Convincing behaviors are achieved as a result of this exploration.
 The gradient based technique introduced by [Dutra 2015] extracts two indi-
cators from each pixel representing an obstacle in the synthetic optic flow:

■ dca, or distance at closest approach, represents the minimum reachable dis-
tance between an obstacle and an NPC, assuming that they keep their current
velocities over time.

■ ttca, or time to closest approach, is the remaining time until an obstacle
reaches the dca. This indicator complements the previous one because it
helps to determine the urgency for taking collision avoidance actions.

These indicators correspond to instant metrics for determining danger such that
low values on both indicators mean that a collision is likely to occur in the near
future.
 The technique employs a cost function tC to evaluate the current situation of
the NPC. It is composed of two terms, so that t m oC C C  . The movement cost

mC considers the current state of the NPC, given by its orientation with respect to

248 18. Vision Based Local Collision Avoidance

the goal and its current speed relative to its comfort speed. mC accounts for
whether the NPC is heading toward the goal at its comfort speed. The obstacles
cost oC considers the vision of the NPC, accounting for the (dca, ttca) pair for
each pixel detected, and evaluates the importance of collision risk with obstacles.
 The idea behind this technique is to minimize the cost function tC with re-
spect to the NPC’s velocity. To this end, the velocity is decomposed in orienta-
tion θ and speed s. Such an approach makes the NPC avoid dangers while trying
to move toward its goal at its comfort speed. To do so, the gradient of the cost
function is computed as

 , ,t t m o m o
t

C C C C C C
C

s θ s s θ θ

                              
,

and a step k in the opposite direction of the gradient is evaluated as

        , , , 0,k ts θ s θ λ C s θ ε      ,

where kλ is the step size and ε is a noise that is added to the angle in order to dis-
rupt undesired symmetric situations. The  ,s θ  pair is used to update the NPC’s
motion variables. We now discuss the underlying cost functions mC and oC . For
even more detailed information, please refer to [Dutra 2015].

Movement Cost Function

The movement cost function mC is designed to be minimal when the agent is
heading toward its goal at its comfort speed. It is defined as

2 2

comf1 1

2 2

1
2

g

α sg

α s s

σ σ

m
e e

C

   
       

   
  ,

where
gασ and sσ control the width of the Gaussian functions with respect to the

bearing angle and the deviation of the NPC’s speed s from the comfort speed
comfs , respectively. The parameterization of these Gaussians allows making an

adjustment to the tradeoff between adapting the orientation or the navigation
speed. This is useful for modeling different maneuvering capabilities of distinct
entities such as people, cats, cars, horses, etc.

Obstacles Cost Function

The obstacles cost function oC makes use of the NPC’s vision, and it is designed
to be maximal when both dca and ttca are zero. This function considers all obsta-

18.5 Gradient Based Technique 249

cle pixels i within the view range in order to compute an average based on each
individual pixel’s contribution

ioC to the overall cost, yielding

1

1
i

n

o o
i

C C
n 

  ,

 with

2 2
1

2
o oi i

ttca dca

i

ttca dca

σ σ
oC e

         
     ,

where ttcaσ and dcaσ are used to adjust the shape of the two-dimensional Gaussian.
More specifically,

■ ttcaσ adjusts the motion anticipation time such that low values cause the NPC
to delay its reaction to eventually detected future collisions. On the other
hand, high values cause the NPC to avoid collisions earlier and more smooth-
ly. Hence, this parameter can model the NPC’s attention to dangers or care-
fulness level.

■ dcaσ adjusts the comfort distance to keep from obstacles, influencing how far
the NPC tries to stay from obstacles while navigating. Therefore, it can be
used to model a personal safe area that the NPC tries to preserve, often for
animation purposes.

Implementation

We derive the gradient based technique by implementing the interface introduced
in Section 18.3. The properties of the shader used by the technique are shown in
Figure 18.7. A v2f structure possessing the specific properties for this technique
is shown in a way similar to the purely reactive technique in the previous section.
The values of the properties in the GBMVisionShaderGEG shader and the Vision-
ShaderDefs structure need to be configured in the model’s SetupVision-
Shader() method.
 The example scenarios described in Section 18.3 are compatible with our
implementation of this technique, given that a proper object implementing the
technique is instantiated. Finally, AgentScript now has the properties demanded
by the gradient based technique, shown in Figure 18.8. Some results can be seen
in Figure 18.9.

250 18. Vision Based Local Collision Avoidance

Figure 18.7. Description of the gradient based technique.

Figure 18.8. New properties in the NPC’s script.

18.6 Final Considerations

Vision based techniques are an emerging technology for local path planning.
VBLPP techniques prove how utilizing synthetic vision for locomotion can lead
to convincing results. These kind of techniques can go further by expanding the
reasoning of the NPCs so that they are able to deal with more complex entities
and situations. Since the real point of view of the NPC is retrieved, a lot of in-
formation could be considered to determine its next move or reaction. For exam-
ple, taking into account the environment and other NPCs in the vision, an NPC
could determine if it needs to crouch, jump, or dash in addition to just turning or
accelerating.

GradientBasedModelGEG

+GradientBasedModelGEG()
#SetupVisionShader(agent: GameObject)
#ProcessAgent(agent: GameObject, pixels: Color[])

v2f

+pos: float4
+relativePosition: fixed2
+relativeVelocity: fixed2

+sigmaAlpha: float
+sigmaSpeed: float

<<shader>>
GBMVisionShaderGEG

+_DistanceToGoal: fixed
+_SigmaDca: fixed
+_SigmaTtca: fixed

+vert(v: appdata_base): v2f
+frag(i: v2f): fixed4

<<cg include>>
VisionShaderDefs

+_ObstacleVelocity: fixed4
+_ObstacleID: fixed
+_AgentPosition: fixed4
+_AgentVelocity: fixed4

VisionBasedModelGEG

AgentScript

MonoBehavior ...
+sigmaDca: float
+sigmaTtca: float

18.6 Final Considerations 251

Figure 18.9. Example of interactions among the player and the NPCs using the gradient
based technique.

 Another interesting extension of these techniques would be the addition of
3D motion, which would be useful for simulating flying and swimming entities,
for example. The use of synthetic vision in games opens several possibilities be-
yond those related to locomotion since any information perceived from the point
of view of an NPC could be used as stimuli for its reasoning system.
 In this chapter, we introduced the general concept behind VBLPP, and we
described two methods that are representative of this approach. These kinds of
techniques have a higher computational cost than their conventional counterparts.
However, the power of the current graphics cards allows VBLPP techniques to
be used for real-time applications with a moderate number of NPCs. As graphics
hardware evolves along with the associated programming interfaces, these kinds
of LPP methods will become more feasible for enhancing the quality of NPCs in
upcoming games. Moreover, better performance can be obtained by resorting to
hybrid techniques or adaptive methods where the vision based information would
be used just in key frames for faster reasoning.
 The two methods shown in this chapter employ functions that model how the
NPCs reason about their movements. The first one uses a threshold function, and
the second one uses a cost function. Those functions’ parameters can be set to
produce multiple behaviors. Moreover, dynamic weights can be applied per NPC
to the mC and oC components of the cost function tC for the sake of modeling a

252 18. Vision Based Local Collision Avoidance

wider diversity of personality traits. For example, a bold NPC may prioritize
reaching its goal over avoiding collisions and, therefore, may force its way
through a crowd.
 The implementation provided with this chapter on the book’s website is a
reference for study and experimentation. For commercial usage, we kindly sug-
gest to contact the respective authors.

Acknowledgements

We would like to thank Dr. Creto Auguto Vidal (Federal University of Ceará,
Brazil), Dr. Joaquim B. Cavalcante Neto (Federal University of Ceará, Brazil),
Dr. José Gilvan Rodrigues Maia (Federal University of Ceará, Brazil), and
CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for
their financial support (Teófilo) and the project funded by the French research
agency ANR JCJC PERCOLATION also for their financial support (Ricardo).

References

[Berg et al. 2011] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha.
“Reciprocal n-body collision avoidance”. Robotics Research, Volume 70, Spring-
er, 2011, pp. 3–19.

[Dutra et al. 2014] Teófilo Bezerra Dutra, Gurvan Priem, J. B. Cavalcante-Neto, Creto
Vidal, and Julien Pettré. “Synthetic vision-based crowd simulation: reactive vs. re-
active planning approaches”. Proceedings of the 27th Conference on Computer
Animation and Social Agents, 2014.

[Dutra 2015] Teófilo Bezerra Dutra. “Gradient-Based Steering for Vision-Based Crowd
Simulation Algorithms”. PhD thesis, Fortaleza, 2015. Available at http://
www.mdcc.ufc.br/teses-e-dissertacoes/teses-de-doutorado/doc_download/283.

[Cutting et al. 1995] James E. Cutting, Peter M. Vishton, and Paul A. Braren. “How we
avoid collisions with stationary and moving objects”. Psychological Review, Vol.
102, No. 4 (1995), pp. 627–651.

[Fiorini and Shiller 1998] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic
environments using velocity obstacles”. The International Journal of Robotics Re-
search, Vol. 17, No. 7 (1998), pp. 760–772.

[Helbing and Molnár 1995] Dirk Helbing and Péter Molnár. “Social force model for pe-
destrian dynamics”. Physical Review E, Vol. 51, No. 5 (May 1995), pp. 4282–
4286.

http://www.mdcc.ufc.br/teses-e-dissertacoes/teses-de-doutorado/doc_download/283
http://www.mdcc.ufc.br/teses-e-dissertacoes/teses-de-doutorado/doc_download/283

References 253

[Karamouzas et al. 2009] Ioannis Karamouzas, Peter Heil, Pascal van Beek, and Mark H.
Overmars. “A predictive collision avoidance model for pedestrian simulation”.
Motion in Games, Vol. 5884, pp. 41–52.

[Ondřej et al. 2010] Jan Ondřej, Julien Pettré, Anne-Hélène Olivier, and Stéphane Do-
nikian. “A synthetic-vision based steering approach for crowd simulation”. ACM
Transactions on Graphics, Vol. 29, No. 4 (July 2010), Article 123.

[Paris etal. 2007] Sébastien Paris, Julien Pettré, and Stéphane Donikian. “Pedestrian reac-
tive navigation for crowd simulation: a predictive approach”. Eurographics, Vol.
26, No. 3 (2007), pp. 665–674.

[Pettré et al. 2009] Julien Pettré, Jan Ondřej, Anne-Hélène Olivier, Armel Cretual, and
Stéphane Donikian. “Experiment-based modeling, simulation and validation of in-
teractions between virtual walkers”. Proceedings of the 2009 ACM SIGGRAPH/
Eurographics Symposium on Computer Animation, pp. 189–198.

[Reynolds 1999] Craig Reynolds. “Steering behaviors for autonomous characters”. Pro-
ceedings of the Game Developers Conference 1999, pp. 763–782.

[Rio et al. 2014] Kevin W. Rio, Christopher K. Rhea, William H. Warren. “Follow the
leader: Visual control of speed in pedestrian following”. Journal of Vision, Vol.
14, No. 2 (February 2014).

[Van den Berg et al. 2008] Jur van den Berg, Ming C. Lin, and Dinesh Manocha. “Recip-
rocal velocity obstacles for real-time multi-agent navigation”. Proceedings of the
IEEE International Conference on Robotics and Automation, 2008, pp. 1928–
1935.

[Warren and Fajen 2004] William H. Warren and Brett R. Fajen. “From Optic Flow to
Laws of Control”. Optic Flow and Beyond, edited by Lucia M. Vaina, Scott A.
Beardsley, and Simon K. Rushton. Kluwer Academic Publishers, 2004.

This page intentionally left blankThis page intentionally left blank

 255

19

A Programming Framework
for Autonomous NPCs

Artur de Oliveira da Rocha Franco
José Gilvan Rodrigues Maia
Fernando Antonio de Carvalho Gomes
Federal University of Ceará

19.1 Introduction
Game engines have usually focused on plausible physics and cutting-edge
graphics. Modern engines also deliver mechanisms for controlling non-player
characters (NPCs), but these are typically not deep enough to yield a compelling
experience, especially considering that some games may require complex NPCs
that behave in a rich, coherent fashion. Following that trend, many recent titles
such as Monolith Productions’ Middle-earth: Shadow of Mordor1 adopted so-
phisticated systems for NPC interaction allowing for rich, awful enemies that
players can face. Players who enjoy stories are like book readers—they need
good quality NPCs to love and hate as the game progresses.
 It is arguable that a considerable part of the interactive storytelling features
found on video games was inspired by role playing games (RPGs) that emerged
in the 1970s and whose creation is attributed to Gary Gigax and Dave Arneson.
RPGs are derived from board games, and they introduced an interpretative as-
pect—an RPG player essentially personifies a character of a story narrated and
managed by a new kind of player called the “master”. Adventures are faced by a
player group controlling the protagonists as the story develops through game ses-
sions. The control of a character’s actions is performed by means of their descrip-

1 https://www.shadowofmordor.com/

https://www.shadowofmordor.com/

256 19. A Programming Framework for Autonomous NPCs

tions, whereas the actions’ effects are measured by systems defining rules gov-
erning simulations built upon the results of polyhedral dice rolls.
 The first electronic RPGs made their debut about a decade later.2 Electronic
RPGs, in general, share a similar context of dungeon exploration, but they lack
an interpretative context. For example, players must explore an infinite dungeon
in the pioneer RPG Dungeon Master. Evolved, modern games like New World
Computing’s Might and Magic IV: Clouds of Xeen3 or recently Bioware’s Drag-
on Age4 have a strong interpersonal context in which players establish relation-
ships with NPCs. An interpretative aspect is evident when the player faces social
or decision-making situations.
 Interactive digital storytelling, or simply interactive storytelling (IS), is a vast
field of research that aims to build narratives supported by the use of interactive
technologies found on multimedia. IS poses a complex challenge due to the mix-
ture of knowledge needed for its implementation. Moreover, it is closely related
to artificial intelligence (AI) because algorithms endowed with AI are necessary
to model and implement narrative elements for computers. IS also demands tools
for supporting the conception of enthralling stories capable of being influenced
by players, especially in order to give way for game writers and designers ex-
pressing their artistry. It is important to consider such control because the com-
plex underlying mechanisms driving the story can lead to unexpected situations.
Therefore, a game may need some constraints as input to follow the general plot
drawn up by the writer.
 This chapter focuses on the design and implementation aspects of a general
programming framework for supporting NPCs that behave according to their own
personal traits. We resort to concepts from IS for tackling this challenge while
considering electronic RPGs as an important test scenario. Although the Dun-
geons & Dragons (D&D) 3.5 system is adopted as a basis for this chapter, we
recommend that readers use any systems they like or even to create RPG systems
themselves. This programming framework is called “CordéIS” since this word
combines IS and refers to a particular kind of popular literature from Northeast-
ern Brazil.

2 http://www.meanmachinesmag.co.uk/upload/media/scans/retrogamer_dungeonmaster.
pdf
3 http://might-and-magic.ubi.com/universe/en-gb/games/all-games/might-and-magic-rpg/
index.aspx
4 http://www.dragonage.com/

http://www.meanmachinesmag.co.uk/upload/media/scans/retrogamer_dungeonmaster.pdf
http://www.meanmachinesmag.co.uk/upload/media/scans/retrogamer_dungeonmaster.pdf
http://might-and-magic.ubi.com/universe/en-gb/games/all-games/might-and-magic-rpg/index.aspx
http://www.dragonage.com/
http://might-and-magic.ubi.com/universe/en-gb/games/all-games/might-and-magic-rpg/index.aspx

19.2 CordéIS Overview 257

19.2 CordéIS Overview

We first present the main design goals considered for architecting a flexible pro-
gramming framework for intelligent NPCs that fits modern game engines and can
also benefit from emerging technologies and trends regarding interfaces for non-
programmers. Therefore, our very first look at the framework is in connection
with design patterns.

Design Goals

The following design goals were considered as requirements for CordéIS:

■ Allow artists to feed the system somehow in addition to programmers. A da-
ta-driven design helps a lot during tests and also serves as a Pandora’s box
for building valuable tools. For example, data-driven systems are a few steps
away from visual analytics and big data.

■ Decouple planning from its effective implementations. Different algorithms
are available in the literature for covering specific application scenarios.

■ Consider that goal selection and planning can be fed with data provided by
designers. Therefore, the framework should support the fact that portions re-
garding story and NPC behavior can be hard-coded when needed.

■ Decouple actions from their actual execution. A specific game might adopt a
measured pace with turn-based interaction while the needs of another game
are better suited by real-time action.

■ Consider that actions may fail, and consequently, replanning or even select-
ing a different goal might be necessary.

■ Keep as simple and general as possible. Layers of extra information can be
added to solve different domain-specific problems such as path planning.

■ Support electronic RPGs. We deem this genre as an important validation
scenario. Therefore, further simplifications are likely to be necessary when
adapting the framework to other game genres.

■ Ensure reusability at the expense of performance. This general framework
can fit a number of games, but optimization is left as future work since it can
produce better or quicker results for specific situations. Moreover, there are
plenty of performance-related tools in the game development ecosystem that
can produce effective results given how the framework splits the
responsibilities.

258 19. A Programming Framework for Autonomous NPCs

Components

The framework was implemented to satisfy the design goals referred to above.
The CordéIS core comprises the following main components (see Figure 19.1).

Game System
The game system represents the universe in which characters live and interact by
means of actions that are implemented on top of the game’s specific rules and
mechanics. The game also defines central and accessory entities that allow vari-
ous actions to occur, such as maps, places, items, weapons, and power-ups. Plac-
es are usually special entities that control events occurring in the game. Events
are special actions because they do not fail, and they do not require complex

Figure 19.1. Overview of the core CordéIS framework for autonomous NPCs. This model covers
decision making and controlling how the character actually performs in the game.

Goal
Database

Plan
Database

Action
Log

Goal Selection

Plan Selection

Game System

Planner

Event System

NPC Actor

current state

Character
Model

issued action

entities rules

NPC Reasoning and Action

initial state

pe
rc

ep
tio

n

pe
rc

ep
tio

n

19.2 CordéIS Overview 259

planning. Finally, the game system keeps track of the current state that is per-
ceived and considered by each character’s decision-making mechanism.

Character Model

Characters are a general representation for autonomous agents in the game. Char-
acters have their personal characteristics driving them toward their own goals by
means of action plans that are coherent within themselves. Other properties, like
emotional state and relationships, may be considered in order to allow for a high-
er level of sophistication when performing goal selection and planning.

Goal Database

The goal database manages useful information when selecting goals for charac-
ters, groups, or even for character stereotypes. Designers can therefore influence
what the goals are by fitting them to different characters’ personalities and situa-
tions. Goals can be triggered when the right requirements are met in order to pro-
vide control over how the game plays, to unlock extras, etc. Optionally, such a
goal can also provide metadata in order to force its usage by the underlying goal
selection.

Goal Selection

Goal selection is the process that finds and selects goals according to the current
game state for a given character based on its drives and its own knowledge about
the world. What goals are applicable? What goals can lead to the NPC’s satisfac-
tion? This component determines when an NPC commits itself to achieving one
or more goals, which is an important aspect since these outline a character’s life-
style and reasoning. Therefore, an NPC needs to keep track of such decision
making. Recurrent, abnormal goal choices may indicate an upcoming personality
transformation that can be detected and reinforced in the game.

Plan Database

Similar to the goal database, the plan database maintains information about ac-
tions and their respective effects, conditions, and duration. This component can
be fed with explicit information from designers in order to build characters who
tend to solve a given problem through a specific set of means (plans). Designers
may describe general plans crafted to be considered in certain game states. Op-
tionally, such a plan can also provide metadata in order to force its usage by the
underlying plan selection component. This database assists planning and outlines

260 19. A Programming Framework for Autonomous NPCs

agency, controlling how much a given NPC’s automatic actions are allowed to
affect the story.

Planner

The planner is a central component for autonomous decision making. It deter-
mines a (possibly unitary) set of applicable plans to achieve the NPC’s goals.
Within our framework, a planner does not necessarily make heavy usage of in-
formation from the character’s drives because solving a problem can pose a com-
plex task even without considering nuances from the NPC’s nature. Also,
multiple plans can be determined at once in order to allow for contingency when
a plan fails. This approach decouples and delegates the problem of choosing a
specific plan that suits the NPC’s personality to another component. A planner
can report back to goal selection when a goal is no longer feasible.

Plan Selection

Fundamentally the plan selection component chooses (and commits to the execu-
tion of) the best plan for that NPC’s own drives. This component can also per-
form quick replanning by resorting to the remaining plans already evaluated
when a given plan is considered unfeasible by the NPC actor. Moreover, an addi-
tional planning step can be executed after considering new information. A clever
implementation can also plan adaptation strategies in order to avoid the costs of
full replanning.

NPC Actor

The NPC actor performs the selected plan by issuing actions to be executed by
the game system. This component keeps track of the execution status of each ac-
tion and reports back to plan selection when any replanning is needed. Special-
ized actors can handle multiple characters, but this cannot be covered in detail
here.

Action Log

The action log gathers raw data about actions performed by the game’s characters
with the specific purpose of being consulted by NPCs considering their levels of
knowledge. Furthermore, the log may also contain additional information regard-
ing goals and plans selected by characters. Given the central importance of ac-
tions in the game system’s dynamic, this log provides starting materials to model
reputation and interpersonal relationships between characters. The action log may
also include a history preceding the moment when a player actually began to ex-

19.3 Implementing CordéIS for Electronic RPGs 261

perience the game—partial logs crafted by designers or the players themselves
can give hints about characters’ drives. Switching between NPC and player con-
trol can also rely on this log. However, in order to obtain reliable data, a subtle or
explicit mechanic might be included in the game for entrusting the player with
goal and plan selection.

Practical Considerations

Each of the components described above considers a well-defined domain and
can operate by processing slices of information. Their implementation requires
an effective interface for describing characters, goals, plans, states, actions, enti-
ties, and rules. Defining an interface for each of these elements can be a time-
consuming and error-prone task. Modern scripting languages are an attractive
technology for implementation due to their flexible and powerful nature. We
therefore point out that a general mechanism for manipulating game elements by
means of scripts can lead to significant enhancements on reuse and faster proto-
typing in this case.
 Practical usage in a game project demands tools capable of translating artist’s
designs crafted inside a high-level tool into those structures supported in the im-
plementation in order to feed the game. A general implementation of this pro-
gramming framework for electronic RPGs based on the D&D system is described
in the next section. Readers are invited to devise their own implementations ac-
cording to the broad lines laid down by CordéIS.

19.3 Implementing CordéIS for Electronic RPGs

Tools of the Trade

This section presents details regarding the application of the CordéIS program-
ming framework to digital RPGs. C/C++ was chosen as the main programming
language along with Lua for scripting due to its proven effectiveness for game
development. Moreover, Lua’s syntax and data description constructs are simple
enough to suit the needs of nonprogrammers. A data-driven design can be sup-
ported by text files, scripts, virtual filesystems, and data exchange data formats
like XML or JSON. SQLite is an attractive option for high-level programming
because it provides a powerful, compact, cross-platform transactional SQL data-
base engine supporting in-memory storage that can become helpful in imple-
menting such a system.

262 19. A Programming Framework for Autonomous NPCs

Implementation Overview

D&D Game System
The game system implementation is inspired by traditional RPGs because their
dynamic systems allow for interpretative aspects. Game elements are based on
the D&D system due to its popularity and open licensing.5 D&D’s system com-
prises rules defining the variables that describe the entities found within the game
world. Characters are modeled from six main variables (strength, dexterity, con-
stitution, intelligence, wisdom, and charisma), and action execution is simulated
using dice. Unfortunately, there is no room for showing all of the rules, but these
can be found in official books and on related websites.6 Other RPG systems are
applicable given the necessary underlying adaptations.

Game Entities
A unified entity model was used for our implementation. This may look weird at
a first glance since object-oriented programming practice causes us to think that
specializations are often better. However, a unified model allows for flexibility
and better reuse, as we stated earlier. Within RPGs, there is room to define items,
places, collections, and characters using similar concepts. For example, a charac-
ter can be seen as a place when such an interpretation seems useful.

Character Model
Emotional and relationship models are not included in our implementation for the
sake of simplicity. Therefore, we focus on developing characters’ drives, build-
ing on top of the concept of karma, which defines four attributes [Barbosa
et al. 2010] in the  1, 1  range: sense of duty, material gain, pleasure seeking,
and spiritual endeavor.
 Regarding planning, we propose a similar approach, inspired by the personal
attitude representation found on D&D’s alignment [Franco et al. 2015]. There-
fore, we derive five attributes belonging to the  1, 1  range: pleasing, cost, risk,
moral, and order. Pleasing determines how much characters are ready to perform
activities considered pleasant or unpleasant to themselves. Cost determines the
extent to which characters are willing to spend their time and resources in order
to achieve a goal. Risk defines how much characters can expose themselves to
danger, harm, or loss. The last two variables are familiar to traditional D&D
players—moral is represented by good, neutral, and evil; and order is represented

5 See http://www.d20srd.org/ogl.htm
6 Such as http://www.d20resources.com/

http://www.d20srd.org/ogl.htm
http://www.d20resources.com/

19.3 Implementing CordéIS for Electronic RPGs 263

as lawful, neutral, and chaotic. An insane, erratic NPC, for example, can be rep-
resented by setting its moral to neutral and its order to chaotic.

Goal Selection
Goals are evaluated by calculating dot products between an NPC’s karma attrib-
ute vector and an estimate of karma attribute vectors corresponding to each ap-
plicable goal. Therefore, artist-crafted goals must include a description of their
preconditions as well as their karma attributes. Special goals can be devised in
order to induce “artificial stupidity” on some characters, which gives room for
players to drive the game story.

GOAP Planner
We reused the General Purpose GOAP7 (goal-oriented action planning) as the
planner of choice for our implementation. This planner is straightforward to use
and can achieve interesting results for general purposes despite the fact that it
reports only one plan per execution.

Plan Selection
In order to assist plan selection, actions may define general information regarding
their plan selection attributes. Actually, most aspects of plan and goal selection
can be implemented at a high-level for a general framework working over
metadata. Therefore, actions are associated with plan selection attributes that al-
low the characteristics of individual actions to be summed up in order to obtain
an attribute vector that represents an entire plan. A straightforward plan selection
can be performed based on dot products of attribute vectors. More sophisticated
selection mechanisms can utilize alternative measures for representing a given
plan’s attributes, such as average and standard deviation. Moreover, trivial ac-
tions are marked so they can be ignored during this process.

FSM-based NPC Actor
The actor operates the game system by controlling the actions found in the se-
lected plan. We adopt the finite-state machine (FSM) proposed by [Franco
et al. 2015] for implementing such control based on three fundamental states,
shown in Figure 19.2. “Workaday” is the common state that comprises actions
reflecting the character’s daily routine that is built around predefined goals. Con-
sequently, this state does not require goal selection until a conflict involving the
character occurs. Such a situation corresponds to the “Unforeseen” state, in

7 https://github.com/stolk/GPGOAP

https://github.com/stolk/GPGOAP

264 19. A Programming Framework for Autonomous NPCs

Figure 19.2. Overview of the FSM-based NPC actor implemented for electronic RPGs.

which the NPC resorts to goal and plan selection for responding to external stim-
uli. Finally, the “Future” state is responsible for maintaining characters’ features
based on the outcomes of their actions.

Additional Guidelines

There are additional considerations regarding integration of this framework into a
game engine. Developers should consider a resource budget needed for deliver-
ing a subsystem that orchestrates data and checks whether goals and plans are
achievable, especially for games featuring real-time action. Clever approaches
such as resource pools and memory allocation strategies might be necessary for
maintaining real-time performance. Another important question concerns the size
of the NPC population. Level of detail can be used for behavior as long as any
simplification can at least provide data for feeding back to the system’s action
log. Consideration of mechanisms for controlling character groups as a single
NPC is also relevant for addressing performance issues. On the other hand, there
is room for reducing the cost of simulating complex characters that hardly ever
interact with players.
 Moreover, obtaining goal selection mechanisms and planners capable of pro-
ducing varied commitment possibilities is valuable for drawing attention to the
game. This allows for a rich emulation of human behaviors, especially when a

Unforeseen Plan
Selection

Goal
Selection

Perform
Actions

Plan
Selection

Perform
Actions

Registry

Planning

Message
Initial
State

Workaday

Future
Verify

Conditions

Start
Changes

Go to
Workaday

19.4 About the Demo 265

character undergoes personality transformations or resorts to alternative plans
due to eventual execution failures.

19.4 About the Demo
The demo included with this chapter illustrates most parts of the framework and
provides simple, textual output for a non-playable story about a foreigner arriving
at a mysterious, small city to work on an abandoned gold mine that suddenly be-
comes profitable again. A few things were intentionally coded using different
approaches in similar situations. The main idea behind this is to expose some
options for readers wanting to implement their own framework.
 Most plot metadata is retrieved from an SQLite database. Lua scripts are left
as an alternative for nonprogrammers, and these are brought into C++11 by
means of Selene.8 The demo’s source code and documentation contain more de-
tails regarding how to set things up. Up-to-date source code is being maintained
on the project’s website at http://tejo.virtual.ufc.br/cordeis/.

References
[Barbosa et al. 2010] S. D. J. Barbosa, A. L. Furtado, and M. A. Casanova. “A Decision-

making Process for Digital Storytelling”. 2010 Brazilian Symposium on Games
and Digital Entertainment.

[Franco et al. 2015] Artur O. R. Franco, Joaquim A. M. Neto, José G. R. Maia, and Fer-
nando A. C. Gomes. “An Interactive Storytelling Model for Non-Player Characters
on Electronic RPGs”. 2015 Brazilian Symposium on Games and Digital Enter-
tainment.

8 https://github.com/jeremyong/Selene

http://tejo.virtual.ufc.br/cordeis/
https://github.com/jeremyong/Selene

This page intentionally left blankThis page intentionally left blank

 267

20

Beyond Smart Objects: Behavior-
Oriented Programming for NPCs
in Large Open Worlds

Martin Černý
Charles University in Prague

Tomáš Plch
Charles University in Prague, Warhorse Studios

Cyril Brom
Charles University in Prague

20.1 Introduction
A typical limitation of many open world games (OWGs) is their inability to make
the world appear alive and purposeful. A major cause is that most non-player
characters (NPCs) display only very basic ambient behaviors in which NPCs per-
form activities on their own without being triggered by the player. This is partly
due to problems that arise in managing a large codebase required for the nontriv-
ial ambient behaviors in a large-scale game. In this chapter, we present an ap-
proach called behavior objects (BOs) by which we manage the complexity of
ambient behaviors in a large-scale OWG.
 The general idea behind BOs is simple—apply the principles known from
object-oriented programming to behavior development. BOs are thus focused on
encapsulation of code and data together to promote natural behavior decomposi-
tion and reusability. We outline our approach with examples from our ongoing
work on Kingdom Come: Deliverance.

268 20. Beyond Smart Objects: Behavior‐Oriented Programming for NPCs in Large Open Worlds

 Let us start with a simple scenario. In a village, there are two kinds of NPCs,
farmers and shopkeepers. Farmers spend most of their day on a field and go
shopping once they are either hungry, are coming from the fields, or are just
missing some items for dinner. Shopkeepers spend most of their days in their
shops selling goods. All NPCs have a daily routine (like most living things)
where they sleep, eat, work, and get back to sleeping. The village is composed of
houses for NPCs as well as shops and nearby fields.

 A natural high-level decomposition is to separately develop behaviors occur-
ring at individual locations (e.g., house, field, shop). A nice property of this de-
composition is that the behaviors for individual locations are well encapsulated
and conveniently located at their respective places. If there are no dependencies,
all these locations can be created, scripted, and tested separately. Thus, the main
logic of an NPC is reduced to choosing a behavior and the location where it
should be executed.

 On a finer level, some code is shared among the locations. For example, both
shops and houses have doors, so it makes sense to encapsulate the door-
traversing behavior and reuse it in both locations. The behaviors should also
work across multiple instances of the given location (e.g., shops with storage
racks and shops with storage chests). So if we encapsulate the individual types of
“take-item-from-storage” behaviors, the code for all types of shops may be the
same and simply reference an array of storage containers. We could also mix
chests and racks in a single shop. This kind of gradual hierarchical decomposi-
tion of behaviors can have multiple levels and is an important feature of the BO
approach.

 While it is natural for NPCs to be explicitly connected to the houses they live
in (and they should use the same house for the whole game), it is not necessary
for them to know all the shops in the village. Instead, an entity associated with
the whole village may be the only object aware of all shops (plus pubs, churches,
etc.) that are available. The NPCs simply ask the village they are currently in to
direct them to an available shop, making the addition of more shops to a village
easy because they need to be connected only to the village object, and all NPCs
can automatically start using them.

 In our scenario, the individual villages, shops, houses, doors, racks, etc., are
BO instances. Some, such as the storage rack, provide only a single behavior,
while others provide multiple behaviors (e.g., the shop has behaviors for both a
shopkeeper and a customer). Some BOs may also need to be active entities and
have a brain, a behavior that the BO executes on its own. All instances of the
same type share the same behavior and brain code that is specified in a BO tem-

20.2 A Little Bit of Context 269

plate. Every instance is connected to its own environment data and has its own
internal state.

 Environment data are references to in-game entities that the BO needs for its
execution. For example, environment data might be the point where the shop-
keeper should stand, or it might be a set of storage containers. Internal state con-
sists of a set of variables that the brain uses for its execution. For example, a
variable might reflect whether a shopkeeper is present in a shop, or it might hold
a list of NPCs waiting to be served. Internal state also consists of references to all
NPCs executing behaviors of the BO. This way, adding new houses or shops to
the game requires only instantiating a BO and connecting it to the relevant envi-
ronment data.

20.2 A Little Bit of Context

The idea behind BOs did not come out of nowhere. BOs are a natural extension
of smart objects [Kallman 2002]. A smart object in its most simple and typical
form is an in-game entity endowed with animation data that instructs any NPC
that wants to “use” the object what animations to play and where they should be
applied. This approach is typically employed to handle levers, buttons, and the
like as well as for traversing obstacles during navigation (e.g., a fence together
with an animation to crawl over it). In our scenario, the storage containers could
be reasonably handled as simple smart objects.

 Many games further extend this simple pattern. The Sims have successfully
built their whole AI engine on advanced smart objects that provide complete
scripts that the NPCs execute while interacting with objects, allowing for behav-
ior nesting [Ingebretson and Rebuschatis 2014, Champandard 2007b]. Basically,
all behaviors that characters display are encapsulated in smart objects. However,
due to different gameplay requirements, the approach used in The Sims is not
directly transferable to OWGs, as the NPCs in The Sims are not designed to im-
mediately react to user actions.

 In the context of OWGs and shooter games, there are smart terrains provid-
ing more complex behaviors to NPCs in the S.T.A.L.K.E.R. series [Iasenev and
Champandard 2008] and special objects that provide hints to NPCs about how to
cooperate in specific situations in Hitman: Absolution [Vehkala 2012]. In Bi-
oShock: Infinite, the AI behind the sidekick character Elizabeth makes heavy use
of “opportunities”, which are marked places in the environment that contain in-

270 20. Beyond Smart Objects: Behavior‐Oriented Programming for NPCs in Large Open Worlds

formation on how Elizabeth may interact with it (e.g., inspect things, talk to peo-
ple, etc.).1
 Behavior objects have also been inspired by “smart materializations”, which
are in-game entities that broadcast to NPCs goals that they may help to achieve
[Brom et al. 2006].
 Because the AI system in our project is based on a variant of behavior trees
(BTs) [Champandard 2007a], all of our examples are given using the BT formal-
ism, but we also outline how BOs can be used with other AI formalisms.

20.3 Behavior Objects
Now let us dive deeper into the details of BOs and how they differ from smart
objects. First, consider a simple BO representing a storage rack. The rack pro-
vides only a single “use” behavior—align the NPC to a helper point and play a
“search and pickup” animation. Its environment data is the rack entity with the
associated animation helper data, and its state is a simple boolean value indicat-
ing whether the rack is currently in use. The rack has no brain.
 As we already noted, the storage rack could be reasonably handled as a sim-
ple smart object, as it is in state-of-the art AI engines. BOs can, however, be used
for much higher-level behaviors, such as shopping. The shop in our scenario is a
BO providing two behaviors, “customer” and “shopkeeper”. The environment
data consists of helper points marking the spots where the shopkeeper and the
customer should stand during a transaction and a few other points for other cus-
tomers that are standing in line. Additional environment data consists of the rack
BOs (as above) that the shopkeeper behavior uses while satisfying the orders.
The state consists of a boolean flag indicating whether there is a shopkeeper pre-
sent and an array with references to NPCs waiting in line. The shop also has a
brain that manages the line of customers. If the shopkeeper leaves, the shopkeep-
er behavior notifies the brain, which in turn notifies all the customers, causing
their customer behaviors to fail. If a customer is served, all waiting customers are
notified and move one step forward in the line. A diagram of the situation is
shown in Figure 20.1.
 Both the rack and shop BOs are now well encapsulated and thus easily reus-
able. Creating multiple racks with different contents or multiple shops with dif-
ferent layouts and customer line capacities is possible by simply instantiating the
respective BO templates and connecting them to the appropriate environment
data. Further, the NPCs can be completely oblivious to how the behaviors are

1 See http://www.youtube.com/watch?v=2viudg2jsE8.

http://www.youtube.com/watch?v=2viudg2jsE8

20.4 Integration Within an AI System 271

Figure 20.1. A diagram of the example usage of BOs in a shop with multiple racks. The code for
individual behaviors and BO brains is provided in BO templates (purple, dotted) that are shared by
multiple instances (pink, solid). The instances execute code and encapsulate state and environment
data. NPC_1 represents a shopkeeper using the “Shopkeeper” behavior provided by the shop.
NPC_2 is a customer using the “Customer” behavior provided by the shop, which further uses the
“Sit” behavior provided by a chair.

actually executed, and all communication and synchronization is internal to the
shop BO. This allows us to develop and test the shop independently of the rest of
the game.

20.4 Integration Within an AI System

To provide any benefits, BOs need to be integrated with the rest of the AI sys-
tem. Surely we want the NPCs executing a behavior from a BO to keep reacting
to combat or other high-priority events, and it would not make much sense to
include combat code in the BO. For this reason, the behaviors cannot simply
override the main logic of the NPC. We have chosen the approach in which the
behaviors are injected into the active behavior of the NPC, and the higher-level
behavior still influences execution. In the context of BTs, injection is performed
by inserting a subtree into the NPC’s active behavior. In the simplest case, a spe-
cial request node inserts the behavior tree as its only child when executed. The
NPC then becomes a holder of the behavior. This lets the higher-level behavior
keep its influence on the NPC. An example of this setup is shown in Figure 20.2.
 Note that even though the behavior is executed in the context of the holder, it
still needs access to BO data. For example, the shopkeeper behavior needs to
know the point where the NPC should stand during a transaction. We have found

BO Template – Shop

Behavior Code

Customer

Shopkeeper

Brain Code

Code Definition

BO Instance – Shop_4

NPC Queue

Environment Data

Brain Instance

BO Template – Rack

Behavior Code

Use

Holder – NPC_1

NPC State

Main Behavior

Code Execution

Template Link

Behvaior State

Data

Beh. Instance – Shopkeeper

Beh. Instance – UseBO Instance – Rack_21

Environment Data

In use?

BO Instance – Rack_14

...

C
a

lls
C

alls

Holder – NPC_2

NPC State

Legend:

Main Behavior

Behvaior State

Beh. Instance – Customer

Shopkeeper
NavPoint

Queue
NavPoint1

Queue
NavPoint2

3D Entity
Rack_3

In-Game
Object

C
a

lls

Uses

Provides

Provides

Provides

Uses

Uses

272 20. Beyond Smart Objects: Behavior‐Oriented Programming for NPCs in Large Open Worlds

Figure 20.2. Injection of a behavior into a simplified main behavior tree belonging to a
shopkeeper NPC. The selector node continually evaluates its child conditions and activates the
subtree corresponding to the leftmost fulfilled condition. Since the selector node is still being
evaluated when executing the “Shopkeeper” behavior, the NPC is able to react to combat
situations.

it useful if the behavior has direct access to environment data because those are
immutable, but the behavior cannot directly access the state of the BO to prevent
race conditions when multiple holders work with the state concurrently. To ac-
cess the state, the behavior has to send messages to the BO brain. The brain then
handles those messages sequentially within its own updates.
 A well designed object should ensure that its internal state stays consistent
throughout behavior execution. To keep a BO in a consistent state even if a hold-
er terminates an injected behavior prematurely, the injected behavior has to be
allowed to always perform a cleanup procedure. In the shop example, a shop-
keeper has to notify the shop brain that it has left the shop. The simplest way to
achieve this is to develop the underlying AI system so that it enforces a con-
sistent init-work-done lifecycle for all BT nodes. Every node that has completed
its “init” phase is guaranteed to execute and complete its “done” phase before it
stops receiving updates. Now, the behavior can be wrapped with a “Cleanup”
node that executes a special subtree in its “done” phase, and scripters can per-
form any necessary cleanup behavior in this subtree. The downside is that in non-
trivial cases, the “done” phase may take multiple frames (e.g., to correctly termi-
nate a coordinated animation with another NPC), which makes the BT implemen-
tation more complex and possibly less reactive, but we consider it to be worth the
consistency guarantees.
 BOs should be useful even if your AI system is not based on BTs. For exam-
ple, in the context of hierarchical finite state machines (FSMs) [Fu and Hou-

Termination request

Start

Selector

Was Attacked Otherwise

Combat
behavior

Request
“Shopkeeper”

from “shop_23”

Cleanup completed

Selector

Was Attacked Otherwise

Combat
behavior

Request
“Shopkeeper”

from “shop_23”

Normal routine

Selector

Was Attacked Otherwise

Combat
behavior

shop_23:
Shopkeeper

Request
“Shopkeeper”

from “shop_23”

Attack starts

Selector

Node being executedLegend: Subtree being executed Inactive subtreeInactive node

Was Attacked Otherwise

Combat
behavior

shop_23:
Shopkeeper

Request
“Shopkeeper”

from “shop_23”

20.5 Implementation in Kingdom Come: Deliverance 273

lette 2004], an FSM may be injected in place of a state. Even if you code your AI
directly in a scripting language or some graphical representation of a script (e.g.,
Blueprints in Unreal Engine 4), similar structuring is achievable. Clear init-work-
done behavior lifecycles and an injection mechanism that keeps the higher-level
reasoning in place will help you in all cases.

20.5 Implementation in Kingdom Come:
Deliverance

The AI system in Kingdom Come: Deliverance (KC:D) is based on BTs with
multiple improvements. A preproduction version of the system is described in
[Plch et al. 2014]. An important additional feature of the AI system is a graph of
named links between entities that can be searched from within the BTs. We use
those links to connect BOs to their environment data. For example, the “shop-
keeper” behavior in the “shop” BO may enumerate all objects linked to the shop
with a link labelled “storage”.

 The most common types of BOs in KC:D are various types of smart entities
(SEs) that include smart objects and their generalizations, such as navigation
smart objects, quest smart objects, and smart areas. We also have situations as a
very different type of BO.

 All the BOs in our example scenario are SEs. SEs are attached directly to an
entity in the game world. Behaviors from SEs are always injected upon explicit
request from an NPC. To simplify the most common cases, SEs maintain an ena-
bled state and a maximal number of holders for each behavior. These can be
changed dynamically from within the SE brain (e.g., disabling the “customer”
behavior when the shopkeeper leaves the shop). If an NPC requests a behavior
that is not enabled or one for which the limit is exceeded, the request node fails.
The request node may also specify a list of applicable behaviors, in which case
the first available is used, or not specify any behavior at all, in which case any
available behavior is used. If more complex decision making is needed to choose
the correct behavior for the NPC (e.g., a rich man should behave differently in a
shop than a peasant), the NPC requests a general “public” behavior that queries
the NPC’s properties, and this “public” behavior then requests an appropriate
“private” behavior from the same smart entity (e.g., the shop has a public “cus-
tomer” behavior which then requests either “customer-rich” or “customer-poor”,
which are private).

 Another typical case is that the SE brain wants to execute code when an NPC
injects or drops a behavior such as assigning or releasing a spot in the line. To

274 20. Beyond Smart Objects: Behavior‐Oriented Programming for NPCs in Large Open Worlds

handle this easily, the SE brain may contain event trees, small BTs that are exe-
cuted automatically in those situations. The SE brain also has explicit references
to all behavior holders and may thus easily send messages to all holders of a cer-
tain behavior or perform any kind of coordination needed.

 We achieve a simple polymorphism by using duck typing semantics for SEs.
The request node does not check the actual type of the SE but only checks
whether it has a behavior with the given name. This way, the shopkeeper behav-
ior may request a “use” behavior from a storage container and not care whether it
is a rack or a chest.

Smart Objects and Their Variants

The simplest type of SEs are smart objects, and they are attached to specific ob-
jects in the game. Smart objects usually provide only few behaviors and usually
have no active brains even though they frequently use event trees. Still, our smart
objects may be much more complex than in other OWGs. For example, we have
a bench with four seats. The bench itself manages free spots and the NPCs sitting
on the bench. These NPCs must give way when an NPC wants to leave or use a
spot in the middle.

 We also use navigation smart objects. Those are smart objects that are con-
nected to the navigation mesh and provide passage between two polygons (doors,
stairs, etc.). Once again, as our navigation smart objects provide full-fledged be-
haviors, they are more powerful than their counterparts in contemporary games.
For example, we have realistic doors on hinges including natural open and close
animations for NPCs. A door also manages a queue of NPCs that want to use it,
if necessary, and allows NPCs to react when it is locked. Unlike plain smart ob-
jects, the behaviors of navigation smart objects are injected as a child of the
“move” BT node, and the NPC does not have direct control over what navigation
smart objects are used to traverse a path.

 We further use smart objects to handle quests. Quest smart objects are tech-
nically the same as plain smart objects but are used very differently. Whenever
an NPC is scheduled to perform a quest-related activity (e.g., a boy keeps secret-
ly visiting a girl in the evening, and the player may find this out), it requests the
relevant behavior form the quest smart object. The brain of the quest smart object
coordinates all NPCs participating in the quest, tracks progress of the quest, and
communicates with the global quest system. Quest smart objects usually have a
lot of environment data because they are connected to all in-game assets relevant
to the quest. This way, all the behaviors related to a single quest and all relevant

20.5 Implementation in Kingdom Come: Deliverance 275

assets are accessible from one place, and the quest behaviors can be developed
and tested independently.

Smart Areas

The most complex SEs we use are smart areas. Unlike smart objects, smart areas
are connected to whole areas of the game, such as a shop, a house, or the whole
village. This has the advantage that an NPC does not need an explicit reference to
a smart area, but may request a behavior implicitly from “the smart area I am
currently inside”. Smart areas have explicit parent-child relationships. The child
areas are fully contained within the bounds of the parent. This allows for both
top-down and bottom-up redirects of behavior requests.
 A top-down redirect occurs when an NPC is in a village and asks for a shop-
ping behavior. All shops within the village are children of the village smart area,
and it thus may choose an open and nearby shop for the NPC. In our implementa-
tion, the village smart area provides a “shopping” behavior that performs any
necessary computation to find the correct shop and then requests the “customer”
behavior of the shop. Note that the village is in no way restricted in redirecting
the behavior. For example, if a fair just started in the village, it may redirect the
NPCs requesting the “shopping” behavior to participate in the fair.
 A bottom-up redirect occurs when an NPC is in a house and asks for a shop-
ping behavior. As the house smart area does not provide such behavior, it asks its
parent area (the village) and, if necessary, parents further up in the tree to the root
smart area (the whole world). In our case, the village provides the behavior, in-
cluding a redirect to an appropriate shop. This allows for greater flexibility be-
cause the NPC now does not need to know anything about locations of particular
facilities. It may simply ask the smart area it is currently inside, and the redirects
handle the rest.

Smart Entities in Practice

In our game, smart areas usually represent complex high-level behaviors and del-
egate a lot of tasks to smart objects that are part of their environment data. For
example, when an NPC wants to eat in its house, the house delegates the behav-
ior to a table smart object that manages several chair smart objects that the NPC
may sit on. The table then uses a bowl smart-object for the actual eating behav-
ior, further delegating some parts of it to a chicken smart object. This setup is
very flexible because any smart object in the above chain can be transparently
replaced with a different one as long as the new object provides a behavior with
the same name.

276 20. Beyond Smart Objects: Behavior‐Oriented Programming for NPCs in Large Open Worlds

 Another interesting and frequent usage pattern is executing a piece of code
while using a smart object. For instance, the shop smart area provides a behavior
for the shopkeeper to sit on a chair and think aloud about business. It would not
be sensible to have this behavior within the chair smart object. Instead, the chair
smart object provides separate “sit” and “stand up” behaviors that are referenced
from within the “init” and “done” logic of the “think-aloud” behavior. See Fig-
ure 20.3(a) for an example.
 A different take on the same problem is forwarding the behavior request. If
the smart object needs to retain more control over the behavior, then the smart
area forwards the name of the behavior to be requested to the smart object behav-
ior, which then requests the forward behavior as a part of its own execution. See
Figure 20.3(b) for an example.
 The fact that SEs keep track of the maximal number of available instances of
behaviors can be exploited to use behavior requests as locks. Not only does this
mechanism ensure that a single NPC can ever execute the shopkeeper behavior at
a time, the SE may also expose an empty behavior with a limited number of

Figure 20.3. Two approaches to executing a piece of code while using a smart object. (a) The
higher-level behavior retains main control and requests separate “init” and “done” behaviors from
the smart object. (b) The behavior request is forwarded to the smart object, which gets control over
the forwarded behavior. In the actual implementation, the node structure is a bit more complicated
but is conceptually equivalent to the structure shown here.

Smart Area – Shop

Root

Think
aloud

Use smart object: Chair
Behavior: Sit down

Use smart object: Chair
Behavior: Stand up

Smart Area – Home

Smart Area – Home

Sequence

Set variable $forwardedBeh
to “eat seated”

Use smart object: Chair
Behavior: Forward

Init Done

Smart Area – Chair

Root
Init Done

Sit
down

Stand
up

Eat
seated

Request behavior:
$forwardedBeh

a) b)

20.6 Lessons Learned 277

available instances whose sole purpose is to serve as a lock. An NPC requests the
behavior and then executes a critical behavior section in parallel while holding
the behavior.
 Empty behaviors may also be used as a communication mechanism. The
NPC requests and immediately drops a behavior, resulting in the execution of an
event tree in the SE.
 External events (e.g., crimes or times of day) can also alter the enabled status
of behaviors, allowing the NPCs to use previously unavailable context-specific
reactions to those events. For example, when an NPC is notified of a crime, it
tries to request an appropriate crime reaction behavior from the smart area it is in.
During the night, the city also provides a specific behavior for handling move-
ment of NPCs among smart areas in the city. NPCs try to acquire a lantern prior
to moving and hide the lantern once they get inside.
 Since NPCs may query the AI system for nearby SEs providing specific be-
haviors, the changes in the availability of the behaviors thus affect which SEs the
NPCs end up using.
 Since the player presents himself to the AI system as another NPC, he may
also use smart entities. This is useful especially in the context of smart objects
because the player avatar can execute the very same code as the NPCs to sit on a
chair or open a chest.

Situations
Last but not least, we have a single type of BO that is different from SEs to
demonstrate the wider applicability of the concept. We call those BOs situations,
and they represent short scripted scenes occurring randomly on the streets of our
cities. As opposed to SEs, situations do not have brains and are short-lived. Once
the situation system decides that a situation should be executed, it chooses ap-
propriate NPCs to enact the situation, instantiates the BO, and injects the respec-
tive behaviors into a special place in the NPC decision logic. Once the scene has
been played, the BO is discarded. As situations are not gameplay-critical, a situa-
tion is stopped and discarded if any of the NPCs terminates the behavior prema-
turely (e.g., when it is attacked). A more detailed account of how situations work
with the rest of the AI system and how appropriate NPCs are chosen is given in
[Černý et al. 2014]. So far, situations are still in the preproduction phase.

20.6 Lessons Learned
We have now been using multiple variants of BOs for almost two years, so what
have we learned? In general, BOs provide benefits similar to object-oriented pro-

278 20. Beyond Smart Objects: Behavior‐Oriented Programming for NPCs in Large Open Worlds

gramming (OOP) in that they do not enable programming anything fundamental-
ly impossible without BOs, but they help greatly in managing the codebase. Tak-
ing inspiration from OOP best practices has helped us significantly in designing
BOs. BOs also correspond well to designers’ view of the game because designers
naturally think in terms of places and quests.

 Be aware, however, that implementing BOs in an AI system will very likely
add a slight computational overhead due to more indirections in behavior evalua-
tion, lower cache coherence, and managing the BOs. They also have a nontrivial
memory footprint due to BO state and pooling of behavior trees for injection.
Therefore, one has to consider whether the benefits of improved code structure
outweigh the overhead costs for the particular project.

 In KC:D, we found it useful to decompose heavily and to keep the individual
behaviors small and highly hierarchical as in the eating in a house example
above. As in OOP, decomposition promotes reusability and makes creating new
environments quick. The only thing that is necessary is to properly set up the en-
vironment data. The downside is that after multiple levels of injection, the trees
tend to grow large and we thus had to optimize our BT engine heavily to evaluate
large trees quickly. Another possible way of handling the growing size would be
to remove or deactivate parts of the trees that are no longer needed in a manner
similar to a tail recursion optimization.

 As with any AI technology, good debugging support is key to success. One
problem we struggled with was that as the trees grow large, they become difficult
to visualize on a single screen. We have yet to improve our tools to make this
less of a nuisance.

 Our implementation also does not allow for explicit parameter passing to
behaviors. Instead, we share data through variables with agreed-upon names (as
in Figure 20.3). This is far from optimal, but parameters are not needed often
enough to justify investing development time in this feature.

 There are also situations where BOs cannot help you. For example, we have
a relatively large piece of code that properly prepares an NPC for a dialog with
the player or another NPC. This code snippet is needed in many behaviors, but it
makes no sense to encapsulate it in a BO. Good support for reusing code snippets
is an important complement to BOs.

 It also seems a good idea to provide more computation time to brains of BOs
that are used heavily so that they can respond to all messages sent by their hold-
ers in a timely fashion.

 Additional details about BOs and their implementation in KC:D are given in
a more academically oriented description of BOs [Černý et al. 2015].

Acknowledgements 279

Acknowledgements

The research behind behavior objects is partially supported by the Czech Science
Foundation under the contract P103/10/1287 (GAČR), by student grant GAUK
No. 559813/2013/A-INF/MFF, and by SVV project number 260 224.
 Special thanks belong to Warhorse Studios and its director Martin Klíma for
making this research possible by their openness to novel approaches and by let-
ting researchers work in close cooperation with the company.

References

[Brom et al. 2006] Cyril Brom, Jiří Lukavský, Ondřej Šerý, Tomáš Poch, and Pavel
Šafrata. “Affordances and level-of-detail AI for virtual humans”. The Proceedings
of Game Set and Match 2, 2006, pp. 134–145.

[Černý et al. 2014] Martin Černý, Cyril Brom, Roman Barták, and Martin Antoš. “Spice
it up! Enriching open world NPC simulation using constraint satisfaction”. Pro-
ceedings of Tenth Annual AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, 2014, pp. 16–22.

[Černý et al. 2015] Martin Černý, Tomáš Plch, Matěj Marko, Jakub Gemrot, Petr
Ondráček, and Cyril Brom. “Using Behavior Objects to Manage Complexity in
Virtual Worlds”. ArXiv preprint. Available at http://arxiv.org/abs/1508.00377.

[Champandard 2007a] Alex J. Champandard. “Understanding behavior trees”.
AIGameDev.com, 2007. Available at http://aigamedev.com/open/article/bt-
overview/.

[Champandard 2007b] Alex J. Champandard. “Living with The Sims’ AI: 21 Tricks to
Adopt for Your Game”. AIGameDev.com, 2007. Available at
http://aigamedev.com/open/review/the-sims-ai/.

[Fu and Houlette 2004] Dan Fu and Ryan Houlette. “The ultimate guide to FSMs in
games”. AI Game Programming Wisdom 2, edited by Steve Rabin. Charles River
Media, 2004.

[Iassenev and Champandard 2008] Dmitriy Iassenev and Alex J. Champandard. “A-Life,
emergent AI and S.T.A.L.K.E.R.”. AIGameDev.com, 2008. Available at
http://aigamedev.com/open/interviews/stalker-alife/.

[Ingebretson and Rebuschatis 2014] Peter Ingebretson and Max Rebuschatis. “Concurrent
interactions in The Sims 4”. Game Developers Conference, 2014. Available at
http://www.gdcvault.com/play/1020190/Concurrent-Interactions-in-The-Sims

http://arxiv.org/abs/1508.00377
http://aigamedev.com/open/article/bt-overview/
http://aigamedev.com/open/article/bt-overview/
http://aigamedev.com/open/review/the-sims-ai/
http://aigamedev.com/open/interviews/stalker-alife/
http://www.gdcvault.com/play/1020190/Concurrent-Interactions-in-The-Sims
http://AIGameDev.com
http://AIGameDev.com
http://AIGameDev.com

280 20. Beyond Smart Objects: Behavior‐Oriented Programming for NPCs in Large Open Worlds

[Kallmann 2002] Marcelo Kallmann and Daniel Thalmann. “Modeling behaviors of in-
teractive objects for real-time virtual environments.” Journal of Visual Languages
& Computing, Vol. 13, No. 2 (April 2002), pp. 177–195.

[Plch et al. 2014] Tomáš Plch, Matěj Marko, Petr Ondráček, Martin Černý, Jakub Gem-
rot, and Cyril Brom. “An AI system for large open virtual world”. Proceedings of
Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2014, pp. 44–51.

[Vehkala 2012] Mika Vehkala. “Crowds in Hitman: Absolution”. AIGameDev.com,
2012. Available at http://aigamedev.com/ultimate/video/hitmancrowds/.

http://aigamedev.com/ultimate/video/hitmancrowds/
http://AIGameDev.com

 281

21

A Control System for
Enhancing Entity Behavior

Mike Ramsey
Ramsey Research, LLC

We’ve all seen games where an alien soldier is running down a hallway, and as
that soldier reaches the end of the hallway, he starts to blend in a turn animation
to change his direction but ends up careening into a wall! Sure, we could have the
level designer make the hallway wider in a vain attempt to fix the problem, but
the real problem is that we’re mixing statically generated assets with behavior
that’s driven or influenced by the game player. We need entities that can react to
these types of situations, and one of the mechanisms that can help us modify that
soldier’s behavior is by taking feedback into consideration in an entity’s control
architecture.
 Control and feedback are everywhere in our everyday interactions with the
real world. We perceive and act according to a myriad of feedback from our-
selves and the environment as well as social cues. One of the essential under-
standings we want to achieve is that we want to influence an entity’s behavior
specifically by its own output, rather than just brute world queries. We are seek-
ing reliable behavior. Feedback within a control system is essentially perceiving
or receiving suggestions about an action that we’ve performed within a specific
set of contextual extents and using them in a manner that appropriately modifies
an entity’s behavior. What this chapter shows is how we can use a proportional
integral differential (PID) controller to influence our entity’s behavior through
negative feedback.
 The accompanying C++ implementation of a closed-loop controller is fairly
straightforward and can be dropped into virtually any game engine. The field of
process control theory has been generating literature for over fifty years, so by
necessity this chapter is focused on the applicability and usefulness of negative

282 21. A Control System for Enhancing Entity Behavior

feedback control to a specific set of problems that benefit from this approach. For
a history and an in-depth guide to feedback, please consult [Janert 2013]. In this
chapter, we’ll discuss several examples for handling several common AI behav-
ioral issues such as altering the urgency of an entity’s response and animation
variance as well as covering some general strategies that are useful when creating
and tuning controllers for your own game. While the use of a PID controller can
enhance an entity’s response to a dynamic event in a game, you’ll also need the
required support systems to exist, such as collision sensors and a query space
[Ramsey 2011] as well as the ability to translate the PID’s correction into an ap-
propriate corrective action.

21.1 Controller Basics
PID is an acronym for proportional, integrative, and derivative. A PID controller
is a method to control feedback into our system in a linear manner. The formula
for a traditional PID controller is

        
0

t

p i d
d

M t K e t K e τ dτ K e t
dt

   ,

where e denotes the error, i denotes the integral, and d denotes the derivative
component. While this formula is how the majority of books represent the tradi-
tional PID formula, we can make this formula’s translation into our actual C++
implementation a bit more amenable if we factor out the gain K to obtain

       PID
0

1

.

t

d
i

p

p
i

i

d
d

p

d
M t K e t e τ dτ T e t

T dt

K K

K
T

K

K
T

K

     








 The proportion (P) is the magnitude of the corrective action applied to the
perceived error. The integral (I) is the history of perceived errors in addition to
the momentary perceived error. Using an integral inside a PID controller allows
us to effectively correct more quickly if we’ve had a large error in the past. The
differential (D) is a prediction of future error, which is essentially our potential
rate of change.

21.1 Controller Basics 283

 pK is a constant that represents the controller gain, iK is our integral con-
stant, and dK is our derivative constant. (While other books use “coefficient” in
place of the “constant”, we use the word “constant” here to make it clear that
these three values traditionally do not change!) These constants are typically dif-
ferent for each context in which your PID controller is used. Perhaps one of the
most useful characteristics of the PID controller is that it’s actually multiple con-
trollers in one. Depending on how you tune it (which again depends entirely on
the context in which you use it), we can either have a proportional controller, a
proportional integral controller, or a full-blown proportional integral derivative
controller. The context determines which controller would be most beneficial by
how we decide to tune the integral or derivative components. Figure 21.1 is an
example graph of how a simple proportional controller can be used to reduce an
error to near zero in a smooth manner. So we have a nice little formula that al-
lows us to pick and choose whether to take the past, the present, and the future
into consideration of our corrective action. Let’s see how this maps to some
source code and some common use cases.

Figure 21.1. The sample PID (0.5, 0, 0) with no integral or derivative applied exhibits no
oscillation below zero.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

284 21. A Control System for Enhancing Entity Behavior

21.2 PID Implementation

In Listing 21.1, we have our implemented PID controller that operates on float-
ing-point values. This is a useful starting point for our examples in this chapter;
however, [Ramsey 2015] contains multiple implementations including one that
operates on a traditional vector3 that may be more specific to your use case. The
implementation follows the formula rather closely, but it is helpful to step
through it.

 The first condition we want to test for is whether there’s been no change in
time. If there hasn’t, then we exit. Assuming that we have a time delta, we calcu-
late the error, which is the difference between our current and desired value or
condition, and we then add it to our historic error after multiplying by the time
delta. This is our integral. If we intend to use the predictive aspect of the PID
controller, then we need to generate an error for the derivative component. This
is the current error minus the previous error divided by the time delta. We then
store this error for the next update cycle. The result is the sum of the proportion-
al, integral (historic), and derivative (future) errors. This sum is then typically
added to the current value by the caller of the controller update.

Listing 21.1. Core update function for a PID controller.

class PIDController
{
 public:

 PIDController(float p, float i, float d) : m_p(p), m_i(i), m_d(d)
 {
 }

 float update(const float& current, const float& desired,
 const float& dt)
 {
 float result = 0.0F;

 // If there's been no change in time, then exit.
 if (dt <= 0.0F)
 {
 return result;
 }

21.3 Use Cases and Strategies for a PID Controller 285

 const float error = desired - current;
 m_historicError += (dt * error);

 const float derivativeError = (error - m_previousError) / dt;
 m_previousError = error;

 const float proportional = m_p * error;
 const float integral = m_i * m_historicError;
 const float differential = m_d * derivativeError;

 result = proportional + integral + differential;

 return result;
 }

 // Call this when context changes.
 void reset()
 {
 m_historicError = 0.0F;
 m_previousError = 0.0F;
 }

 private:

 float m_p = 0.5F, m_i = 0.2F, m_d = 0.001F;
 float m_historicError = 0.0F,
 m_previousError = 0.0f;
};

21.3 Use Cases and Strategies for a PID Controller

In modern game engines, animations do not solely drive an entity’s movement.
Character movement is influenced by many factors including the players desired
direction of movement, the collision system, game logic, and the physics simula-
tion. A typical game system expects the animations to be interruptible in order to
react to unnatural game mechanics, e.g., zero-wind up jump, strafing, and more,
but the perceived credibility of an entity when it transitions into that new state is
expected to look plausible. Our goal of minimizing these obvious perceptual
hitches, such as running into a wall as the collision response system rotates the

286 21. A Control System for Enhancing Entity Behavior

character so that it eventually slides until it works itself free, is a typical game
situation that we strive to avoid. It’s situations like these where a PID controller
with an integral value of zero can assist us. When an unnatural game mechanic is
detected, the blend tree can use a PID controller to transition into the target state
based on the desired corrective response. Let’s dive into a couple examples of
environmental feedback influencing an entity’s behavior through a PID
controller.

Dynamic Turn Tightening

Handling turning independently of locomotion is advantageous because it allows
animators to avoid generating a large number of turn animations. Turning can be
handled by using a target point, such as the next point along a navigation route or
a point that is dynamically generated as seen in Figure 21.2. A turn angle is gen-
erated by taking the dot product between the alien soldier ant’s heading and the
target and using that to solve for the angle. This value is then used to twist the
spine of the solider ant, and that’s where our PID controller can assist us. Typi-
cally, a uniform twist would be applied to all bones in the spine, e.g., the alien
ant soldier has four bones and our turn angle is 40 degrees. We would apply 10
degrees of twist to each bone. However, depending on the urgency of the situa-
tion, we can increase the proportional gain of the controller to tighten the turn (of
course, within reason!) by twisting bones in different amounts.

Animation Variance

Subtle changes to animation can also be applied by controlling the additive
blending through a PID. For example, suppose an incoming projectile will hit our
alien ant soldier. How that soldier responds to the projectile is dependent upon
the speed of the approaching projectile, and the soldier’s surprise factor would
lead to upper torso flinches or a transition to a new behavioral state. The flinch
effect is visually very subtle, but subconscious of an animator or player will no-
tice the increased sense of immersion.
 One of the prototypical uses for a PID controller is when an entity is ap-
proaching a position. If our position is far away, we want to move quicker toward
it, but if we’re approaching our target point, we want to slow down so we don’t
overshoot it. If the target point is being dynamically altered (perhaps by the play-
er), then the derivative component of the controller might be used to help antici-
pate the future error. However, one of the problems with using the derivative
component is that if a set point change is too large, then there will a momentary
spike in the output of the controller. This outwardly erratic behavior is usually

21.3 Use Cases and Strategies for a PID Controller 287

Figure 21.2. Turn tightening. The human player (a) is chasing an alien ant soldier into a
hall. The AI system typically would generate a turn target for the ant soldier (b) to the left
avoiding the wall while transitioning into an attack stance of some type. However, the
human player has fired a rocket to the left of the soldier, so the soldier needs to execute a
tight right turn. Choices for the AI are either death by rocket or perform a right turn and
retaliate. The PID controller can dynamically tighten the soldier’s right turn so that he
won’t collide with the wall. If the turn cannot be tightened sufficiently then the instigat-
ing system could alter the soldier’s behavior appropriately (e.g., a rapid turn in place and
fire).

labeled as a controller “explosion” because the managing system does not detect
and handle such large spikes. Where the integral component is used to eliminate
steady-state errors (see Figure 21.3) for PID controllers that are executing for
extended periods without a context reset, the derivative component is typically
avoided due this reason.
 One of the last uses for our controller is the application to dynamic leaning.
Dynamic leaning can also be handled in a relatively straightforward manner by
adding some rotation to the affected bones as an entity makes its turn. Typically,
at extreme speeds, this is would be handled by animators, but even an exaggerat-
ed lean can be initially handled by your controller and then tuned down to only
handle lower angle turns.

(a)

(b)

Option 1:
Death by rocket

Option 2:
Collision

288 21. A Control System for Enhancing Entity Behavior

Figure 21.3. The sample PID (0.6, 0.25, 0) with a relatively small integral factor. This
exhibits minor oscillation as the controller factors in past error in an effort to eliminate
any steady state errors.

References
[Janert 2013] Philipp K. Janert. Feedback Control for Computer Systems. O’Reilly, 2013.

[Powers 2008] William T. Powers. Living Control Systems III: The Fact of Control.
Benchmark Publications, 2008.

[Ramsey 2011] Michael Ramsey. “An Egocentric Motion Management System”. Game
Engine Gems 2, edited by Eric Lengyel. A K Peters, 2011.

[Ramsey 2012] Michael Ramsey. “PD Controllers for AI and Animation”. 2012.

[Ramsey 2015] Michael Ramsey. “PID Numerical Companion”. 2015.

‐10

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 289

22

A Control System Based
Approach to Entity Behavior

Mike Ramsey

Ramsey Research, LLC

In the companion chapter “A Control System for Enhancing Entity Behavior”,
we dealt with one focused aspect of enhancing entity behavior in a nonspecific
game engine. This was essentially detecting an error and generating a subsequent
corrective action to a perceived discrepancy in the environment, such as an alien
soldier being too close to a wall to execute an effective turn. This chapter focuses
on a hierarchical control system to model an entity’s AI. While many games’ AI
appear to exhibit nothing more than a simple stimulus and response mechanic,
more robust behavior can be crafted through the use of control systems, ideally
resulting in more compelling gameplay. Instead of coding for specific behaviors
that may break under unknown game situations, we compose a hierarchical archi-
tecture of negative feedback systems to minimize disturbances between the entity
and the environment, allowing it to exhibit purposeful behavior, even when those
disturbances may be unknown.

22.1 A Single Control System

An individual control system fundamentally does four things: receives signals,
analyzes signals, generates instructions to act on the analyzed signals, and finally
uses these instructions to do something (see Figure 22.1). A typical example of a
control system is how the cruise control of vehicle maintains a specific driving
speed. When the cruise control is enabled with a particular speed, that speed be-
comes the control system’s reference signal. As the vehicle’s speed varies from
the initial reference signal, the control system alters the vehicle’s fuel intake

290 22. A Control System Based Approach to Entity Behavior

Figure 22.1. A single negative feedback control system.

accordingly. This variance compensation attempts to minimize the discrepancy
through negative feedback [Jannert 2013].

 The control system shown in Figure 22.1 is labeled with very general terms
as the actual details of the boxes are application specific, but the principles are
the same for all negative feedback control systems. The design of this single sys-
tem is to minimize the variance between a perceived perceptual signal and a set
reference signal. The reference signal can either be static (as set by a designer) or
dynamically altered in a more hierarchically architected system. This negative
feedback system has an input function that generates a perceptual signal from
some world input. The comparator then compares this perceptual signal with a
reference signal, which in turn generates an error signal. This error signal is then
converted inside the output function into a compensatory action that attempts to
reduce the initial variance. A gain factor can also be applied to increase the rate
of change.

 While operating on a single floating-point control variable inside cruise con-
trol is straightforward, our typical in-game entities are usually more complex and
need more customized controllers that operate on coarse data structures and ob-

Comparator
(C)

Input
(I)

Output
(O)

Feedback

Reference signal
(S)

Error
signal

Perceptual
signal

× gain

22.2 Hierarchical Control System Basics 291

jects [Ramsey 2009, Ramsey 2010]. Some examples of coarse controllers include
a personal space controller, a biological urge controller (e.g., nutrients, sleep
[Toda 1982]), and a spatial orientation controller. Our gosling example later in
this chapter uses a spatial controller in its following behavior.

22.2 Hierarchical Control System Basics

William Powers proposed a complex hierarchy of negative feedback control sys-
tems as the foundation for human and animal perception [Powers 1989]. While
Powers’ approach is indeed very detailed, the suggested hierarchy is physiologi-
cally based, and not all elements are practical when architecting an entity behav-
ior system for a game. We focus on the general concept without diving into the
full complexity of his proposed hierarchy. Our hierarchical system (see
Figure 22.2) is composed of individual control systems that, instead of just con-
suming a reference signal, actually have that reference signal modified by a high-
er-order control system. The inputs of the lower-order control systems can also
be directed into a higher-order control system. The perceptions in the higher-
order control systems are typically informed by combinations of lower-order
systems.

22.3 A Hierarchical Control System for Following

While our example focuses on a particular aspect of a larger gosling behavior
system, it can provide the foundation for some interesting interactions in a dy-
namic virtual world that are translatable to a more typical game setting (e.g., al-
ien ant soldier FPS). Tackling the engineering of a behavioral system for an
entity is complex, but we can limit our focus on our virtual animal by addressing
specific needs or urges [Toda 1982]. This gives our designers the tweakable pa-
rameters that allow us to influence the underlying control systems that make up
our behavior. For our particular example, we detail a normal following behavior
that a gosling exhibits.
 A gosling’s initial association for the setting of its contact distance is what
Konrad Lorenz [Lorenz 1981] referred to as imprinting, whereby its innate close-
ness is associated to the first animate object that the gosling sees. This distance
interval is initially defined by our game designer. The priming and subsequent
distance requires a gosling to keep within that interval. This contact distance is in
essence a comfort level for the gosling. Goslings do not typically follow a regi-
mented schedule of always staying at their mother’s side. They’ll forage for food,
explore, play with siblings, or sleep. Each of these are modeled with a negative

292 22. A Control System Based Approach to Entity Behavior

Figure 22.2. A simple hierarchical control system illustrating both the setting of a com-
parator’s reference signal from a higher-order controller (red line from O into C) and the
propagation of input into a higher-order control system (I into I). This system’s architec-
ture has a higher-order control system (csA) that adjusts a lower-order system’s reference
signal (csB). Then the input that is sensed by the lower-order system is propagated back
into the higher-order system.

feedback control system that is added to our hierarchical tree (see Figure 22.3).
In Figure 22.3, we see that the maximum contact distance is used as the initial
reference signal for the distance control system. As the gosling’s normal behavior
moves it around the environment, the distance control system samples the dis-
tance to the mother and generates an error. It’s also worth noting that all active
control systems continuously step. If the error signal that comes out of the dis-
tance control system is too large then the spatial orientation controller informs
the action manager to move the gosling toward its mother using the current ve-
locity scale.

 One of the issues that you may face during development is that groups of
control systems may be active for longer than desired, which means that the ac-
tion manager may have competing behaviors running. Traditional approaches of

I

C

O

I

C

O

Control system A (csA)

Control system B (csB)

Adjusting reference signal

22.3 A Hierarchical Control System for Following 293

Figure 22.3. A hierarchical gosling behavior constructed out of three negative feedback
controllers, allowing a gosling to follow at the side of a specified target.

brute force prioritization of one control system over another would break the dy-
namic usefulness of this approach, so we need an alternative. We can generate a
controller’s priority by normalizing the difference in the perceptual and reference
signals. This may require some extra logic to get around the perceptual and refer-
ence signal comparison, but it’s worth the effort. This allows the control systems
to effectively prioritize themselves depending upon the situation in the game, and
the action manager can just handle the system with the highest priority.
 There are also situations where the error from the distance control system is
very large. These are situations where the error could be fed back into the higher-
order control system for invocation of another control system’s behavior (e.g.,

I

C

O

I

C

O I

C

O

R

R R

Distance
control system

Velocity scale
control system

Spatial orientation
control system

Follow
Behavior

Action Manager (AM)

Optional
feedback

294 22. A Control System Based Approach to Entity Behavior

random movement). One of the fundamental understandings in building a hierar-
chical control system is that no single component should do too much! When in
doubt, feed back the error into a higher-order control system, and let it be the ar-
biter of what to do, which would likely include suppressing or deactivating the
control system that has effectively caused a transition to another control block.

References
[Janert 2013] Philipp K. Janert. Feedback Control for Computer Systems. O’Reilly, 2013.

[Powers 1989] William T. Powers. Behavior: The Control of Perception. Benchmark
Publications, 1989.

[Powers 2008] William T. Powers. Living Control Systems III: The Fact of Control.
Benchmark Publications, 2008.

[Ramsey 2011] Michael Ramsey. “An Egocentric Motion Management System”. Game
Engine Gems 2, edited by Eric Lengyel. A K Peters, 2011.

 295

Contributor Biographies

Cyril Brom
brom@ksvi.mff.cuni.cz

Cyril Brom is an Assistant Professor at Charles University in Prague. He is
one of the fathers of GameDev @ mff.cuni.cz.

Martin Černý
cerny@gamedev.cuni.cz

Martin is interested in (not only reactive) planning techniques and in apply-
ing symbolic AI techniques in game worlds. He is working part time for
Warhorse Studios, helping them with the creation of magnificent AI for
Kingdom Come: Deliverence.

Fernando Antonio de Carvalho Gomes
fernandocarv@gmail.com

Fernando Antonio de Carvalho Gomes is a professor of Artificial Intelli-
gence in the Department of Computing at the Federal University of Ceará
(UFC) in Brazil. He received his PhD in Computer Science from the Univer-
sité de Montpellier II in 1993. He was also a Postdoctoral Visiting Professor
at SITE from 2000 to 2001. In both the PhD and the postdoc he worked with
machine learning. His current research interests are optimization, big data,
and games. He also works with telecommunication policies, optimization,
and computer vision. He has been the coordinator of several government and
industry-sponsored applied research projects.

mailto:brom@ksvi.mff.cuni.cz
mailto:cerny@gamedev.cuni.cz
mailto:fernandocarv@gmail.com
mailto:GameDev@mff.cuni.cz

296 Contributor Biographies

Marc Fauconneau Dufresne
marc.fauconneau.dufresne@intel.com

Marc is a graphics software engineer with Intel’s Visual Computing Engi-
neering group. He received a MEng. degree from Ecole Centrale de Lille and
a MEng. degree from Doshisha University. At Intel, he works on pre-
enabling for future Intel GPUs. He also occasionally contributes software
such as the Fast ISPC Texture Compressor.

Teófilo Bezerra Dutra
teofilo.dutra@gmail.com

Teófilo Dutra obtained his PhD in Computer Graphics from Universidade
Federal do Ceará (UFC) in 2015. He is currently a postdoctoral researcher at
UFC, and he participates in the research group CRAb (Computer Graphics,
Virtual and Augmented Reality, and Animation) with an emphasis on crowd
simulation. In his master’s, he developed a model based on potential fields
and social forces for simulating crowds with secondary (local) goals. His
current research started during his PhD and is focused on crowd simulation
based on synthetic vision.

Nicolas Guillemot
nlguillemot@gmail.com

Nicolas is a software engineering student at the University of Victoria, and
he is currently working in Intel’s Advanced Technology Group. Nicolas
spends his cycles thinking about C++, computer graphics, and game devel-
opment. He participates in the standard C++ community through Study
Group 14, the ISO C++ study group for game development & low latency.
Nicolas is a regular speaker at UVGD, the University of Victoria Game De-
velopment Club.

mailto:marc.fauconneau.dufresne@intel.com
mailto:teofilo.dutra@gmail.com
mailto:nlguillemot@gmail.com

Contributor Biographies 297

Frank Kane
fkane@sundog-soft.com

Frank Kane is the owner of Sundog Software, LLC, makers of the Silver-
Lining SDK for real-time rendering of skies and the Triton Ocean SDK for
real-time rendering of 3D oceans (see www.sundog-soft.com for more
information).
 Frank’s game development experience began at Sierra Online, where he
worked on the system-level software for a dozen classic adventure game
titles including Phantasmagoria, Gabriel Knight II, Police Quest: SWAT,
and Quest for Glory V. He’s also an alumnus of Looking Glass Studios,
where he helped develop Flight Unlimited III. Frank developed the
C2Engine scene rendering engine for SDS International’s Advanced Tech-
nology Division, which is used for virtual reality training simulators by every
branch of the US military. He currently lives with his family outside
Orlando.

Josh Klint
joshklint@leadwerks.com

Josh Klint is the founder of Leadwerks Software, a company dedicated to
making game development tools aimed at beginners. His career in game
technology began while performing behavioral experiments at the UC Davis
Department of Neurological Surgery. He left science to pursue entrepreneur-
ship and then earned a Masters of Business Administration at Sacramento
State University. Josh is also a GDC speaker and avid snowboarder.

Manny Ko
man961@yahoo.com

Manny Ko is currently working in the graphics R&D group at Activision
Blizzard. Prior to that, he worked in the Rendering Group for DreamWorks
Animation and on the ICE team for Naughty Dog, where he worked on next-
generation lighting and GPU technologies.

http://www.sundog-soft.com
mailto:fkane@sundog-soft.com
mailto:joshklint@leadwerks.com
mailto:man961@yahoo.com

298 Contributor Biographies

Eric Lengyel
lengyel@terathon.com

Eric Lengyel is a veteran of the computer games industry with over 21 years
of experience writing game engines. He has a PhD in Computer Science
from the University of California, Davis, and he has an MS in Mathematics
from Virginia Tech. Eric is the founder of Terathon Software, where he cur-
rently leads ongoing development of the Tombstone Engine.
 Eric was the Lead Programmer for Quest for Glory V at Sierra Online,
he worked on the OpenGL team for Apple, and he was a member of the Ad-
vanced Technology Group at Naughty Dog, where he designed graphics
driver software used on the PlayStation 3. Eric is the author of the bestselling
book Mathematics for 3D Game Programming and Computer Graphics and
several chapters in other books including the Game Programming Gems se-
ries. His articles have also been published in the Journal of Game Develop-
ment, in the Journal of Graphics Tools, and on Gamasutra.com.

Khaled Mamou
kmamou@gmail.com

Khaled Mamou received a PhD degree in Applied Mathematics and Com-
puter Science from the University of Paris V in 2008. Currently, he is a Sen-
ior Member of Technical Staff on the AMD Software Multimedia Drivers
Team, working on designing and optimizing multimedia solutions. Dr. Ma-
mou has been a member of the ISO/IEC MPEG Standard Committee since
2005, focusing on 3D graphics compression. He chaired the MPEG Ad-Hoc
Group on MR3DMC (Multi-Resolution 3D Mesh Coding) and significantly
contributed to the standardization of the SC3DMC (Scalable Complexity 3D
Mesh Compression) and FAMC (Frame-based Animated Mesh Compres-
sion) CODECs for static and animated 3D meshes. Dr. Mamou is a holder of
several patents and prestigious awards, such as the first prize in the 2015
AMD Innovation Showcase, the 2013 AMD spotlight award, and the
ISO/IEC award for the “special contribution” as a project editor in the inter-
national MPEG standard (MPEG-4 Part 16). He is the author of several
books, book chapters, and peer-reviewed conference and journal papers on
multimedia content compression and processing. He also has over 40 contri-
butions to the MPEG standards.

http://Gamasutra.com
mailto:lengyel@terathon.com
mailto:kmamou@gmail.com

Contributor Biographies 299

Ricardo Marques
ricardo.marques@upf.edu

Ricardo Marques received his MSc degree in Computer Graphics and Dis-
tributed Parallel Computation from Universidade do Minho, Portugal, in Fall
2009, after which he worked as a researcher at the same university. He joined
INRIA (Institut National de Recherche en Informatique et Automatique) and
the FRVSense team as a PhD student in Fall 2010 under the supervision of
Kadi Bouatouch. His thesis work has focused on spherical integration meth-
ods applied to light transport simulation. He defended his PhD thesis in Fall
2013 and joined the Mimetic INRIA research team as a research engineer in
2014, where he worked in the field of crowd simulation. In Fall 2015, he
joined the Interactive Technologies Group (GTI) of Universitat Pompeu
Fabra (UPF) in Barcelona.

Muhammad Mobeen Movania
mobeen.movania@dsu.edu.pk

Dr. Muhammad Mobeen Movania received his PhD degree in Advanced
Computer Graphics and Visualization from Nanyang Technological Univer-
sity (NTU), Singapore in 2012. He carried out research in biomedical volume
rendering and visualization in collaboration with the National Cancer Centre
of Singapore (NCCS). After his graduation, he joined Institute for Infocomm
Research (I2R), a division of A-Star Singapore, as a research scientist. His
responsibilities there were research and development in the areas of ad-
vanced computer graphics, augmented reality, and 3D animation.
 Dr. Movania has published several international conference and journal
papers in the area of computer graphics and visualization including a poster
at SIGGRAPH 2013. He has contributed chapters in WebGL Insights and
OpenGL Insights, and he has reviewed several recent OpenGL books
including OpenGL 4 Shading Language Cookbook (Second Edition) and a
video course Building Android Games with OpenGL ES. He has also written
the book OpenGL Development Cookbook, which details several applied
recipes on using modern OpenGL. He is the author of the open source cloth
simulation library, OpenCloth (http://github.com/mmmovania/opencloth).
 Dr. Movania is currently serving as an Assistant Professor in the
Department of Computer Science at DHA Suffa University in Karachi,
Pakistan. More information about his current research activities may be
obtained from his research group web page (http://cgv.dsu.edu.pk).

http://github.com/mmmovania/opencloth
http://cgv.dsu.edu.pk
mailto:ricardo.marques@upf.edu
mailto:mobeen.movania@dsu.edu.pk

300 Contributor Biographies

Artur de Oliveira da Rocha Franco
arturfhtagn@gmail.com

Artur de Oliveira da Rocha Franco is an indie game developer, an HTML5
enthusiast, and a junior researcher in the TEJO laboratory at the Federal Uni-
versity of Ceará (UFC) in Brazil. He received a BS in Digital Systems and
Media from the Virtual University Institute at UFC in 2015. His current re-
search interests are interactive storytelling, electronic RPGs, and multivariate
data analysis. He also works with JavaScript technologies, artificial intelli-
gence for games, and education.

Jan Ondřej
jan.ondrej@gmail.com

Jan Ondřej is a Postdoctoral Associate at Disney Research, Los Angeles. He
obtained his PhD in 2011 from INSA/INRIA Rennes in France, supervised
by Julien Pettré. He was a postdoctoral researcher at Trinity College Dublin,
headed by Professor Carol O’Sullivan. His research interests focus on real-
time simulation, visualization and validation of crowds and autonomous vir-
tual humans, computer animation, and virtual reality.

Julien Pettré
julien.pettre@inria.fr

Julien Pettré has been a research scientist at INRIA, the French National In-
stitute for Research in Computer Science and Control (www.inria.fr) since
2006. He prepared his thesis under the supervision of Jean-Paul Laumond
and obtained his PhD in 2003 from the University of Toulouse III in France.
He then spent 18 months as a postdoc at VRlab, EPFL, Switzerland, headed
by Daniel Thalmann. At INRIA in Rennes, he joined the Bunraku team
headed by G. Dumont. His research interests are crowd simulation, motion
planning, autonomous virtual humans, computer animation, and virtual
reality.

www.inria.fr
mailto:arturfhtagn@gmail.com
mailto:jan.ondrej@gmail.com
mailto:julien.pettre@inria.fr

Contributor Biographies 301

Tomáš Plch
tomas.plch@gmail.com

Tom has programmed computer games since he entered collage in 2002.
After finishing his Bachelor’s degree, he continued his studies in the field of
operating systems. However, after few years, he got back into the field of
computer games, focused on artificial intelligence for believable agents. His
vision was to develop agent techniques to get more complex and large-scale
worlds to work more interactively and believably. After finishing his Mas-
ter’s thesis in the field of Believable Agent Behavior via Behavior Trees, he
continued as a PhD candidate at the Charles University (Faculty of Mathe-
matics and Physics) and shifted into the AI planning domain and aerial ro-
botics. He continued to work on various technologies to integrate large-scale
worlds, but was more focused on robotics AI of assisted drone piloting. In
2012 came the offer to collaborate between the faculty and Warhorse on en-
riching the virtual world in Kingdom Come: Deliverance. After a short peri-
od, Tom quickly got more and more involved in designing and programming
the completely new AI system for the game, which is based on ideas from his
Master’s thesis. After being put in charge of the AI Team, Warhorse was
engaged in the quest of having a completely open-world simulated AI sys-
tem. He continues to work on his PhD thesis, which is based on the work he
does at Warhorse, bridging the industry/academia gap.

Michael Ramsey
mike@ramseyresearch.com

Mike Ramsey is the principle programmer on the GLR AI Engine. Mike has
developed core technologies for Xbox 360, PC, and Wii at various compa-
nies. He has also shipped a variety of games, including World of Zoo (PC
and Wii), Men of Valor (Xbox and PC), Master of the Empire, several Zoo
Tycoon 2 products, and other titles. Mike has contributed multiple articles to
both the Game Programming Gems and AI Game Programming Wisdom
series, and he has presented at the AIIDE conference at Stanford on uniform
spatial representations for dynamic environments. Mike has a BS in Comput-
er Science from Metropolitan State College of Denver, and his publications
can be found at http://www.masterempire.com/. He also has a forthcoming
book entitled A Practical Cognitive Engine for AI. When Mike isn’t working,
he enjoys playing speedminton, drinking mochas, and having thought-
provoking discussions with his fantastic wife and daughter, Denise and
Gwynn!

http://www.masterempire.com/
mailto:tomas.plch@gmail.com
mailto:mike@ramseyresearch.com

302 Contributor Biographies

João Lucas Guberman Raza
jraza@microsoft.com

João Lucas Guberman Raza is a Program Manager at Microsoft’s Direct 3D
team. An avid gamer, he has been working on the game industry for over six
years, having shipped multiple titles, SDKs, and platforms. He holds a Bach-
elor of Computer Science from Universidade Federal de São Carlos
(UFSCar) and runs the blog www.versus-software.com, where he writes
about his main interests in game design, graphics, and networking.

Stefan Reinalter
stefan.reinalter@molecular-matters.com

Stefan Reinalter is the founder of Molecular Matters, which is the developer
of the Molecule Game Engine and development tools. He holds an MS in
Computer Science, and specializes in low-level programming, engine archi-
tecture, and optimization. In his more than a decade in the games industry, he
has contributed to a variety of titles on most platforms. Stefan loves to share
his knowledge and experience on his blog and as a lecturer at the University
of Applied Sciences in Vienna, where he teaches C++, game engine design,
and console programming.

José Gilvan Rodrigues Maia
gilvan.maia@gmail.com

José Gilvan Rodrigues Maia is a professor of Game Development in Digital
Systems and Media at the Virtual University Institute of the Federal Univer-
sity of Ceará (UFC) in Brazil. He received his PhD in Computer Science
from the Department of Computing at UFC in 2010. He spent many years
working with computer game technologies, especially game engine devel-
opment and collision detection. His current research interests are computer
games, computer vision, machine learning, and computer graphics. Gilvan
enjoys programming retro games, and he has been working for at least 15
years on research projects at UFC.

mailto:jraza@microsoft.com
mailto:stefan.reinalter@molecular-matters.com
mailto:gilvan.maia@gmail.com
http://www.versus-software.com

Contributor Biographies 303

Rahul Sathe
sathe.rahul@gmail.com

Rahul works as a Sr. Software Engineer at Intel Corporation. His current role
involves defining and prototyping the next-generation technologies in the
Intel Graphics Performance Analyzer. Prior to this role, he has worked in
various capacities in research and product groups at Intel. He is passionate
about all aspects of 3D graphics and its hardware underpinnings. He holds
several patents in rendering and game physics. Prior to joining Intel, he stud-
ied at Clemson University and the University of Mumbai. While not working
on the rendering related things, he likes running and enjoying good food with
his family and friends.

Gino ven den Bergen
gino@dtecta.com

Gino has been involved professionally with interactive physics since the be-
ginning of this century. He developed the SOLID collision detection library
that has been applied in top-selling game console titles, such as the Formula
One series for PlayStation 2. He currently works as an independent consult-
ant picking up physics programming contracts. Among his clients are com-
panies involved in game development, medical devices, robotics, and
CAD/CAM. Gino is a frequent speaker at the GDC main event, and has
shared his ideas in a number of influential publications on game physics.

Don Williamson
dwilliamson_coder@hotmail.com

Don entered game development at the age of 16, when he published his first
shareware game. After entertaining offers from the likes of Lionhead after
A-Levels, he accepted his first job writing PlayStation emulators to port
games to PC in a few days. The Flintstones, Lucky Luke, and several can-
celed games later, Don got the opportunity to rewrite the Splinter Cell engine
for Xbox 360 from the ground up. The next destination was the Fable fran-
chise, where Don lead the engine team, working on Fable 2 and Fable 3 and
co-creating Fable Heroes. A specialist in finding performance where none
can be found, Don runs Celtoys, a contracting company that can optimize
and grow the pretties for any ship’s engine.

mailto:sathe.rahul@gmail.com
mailto:gino@dtecta.com
mailto:dwilliamson_coder@hotmail.com

304 Contributor Biographies

Kin‐Ming Wong
kmwong@cse.cuhk.edu.hk

Kin-Ming Wong is an award-winning visual effects professional and the
owner of artixels, a boutique visual effects software developer that focuses
on plug-in development for high-end motion pictures. He has recently joined
Professor Tien-Tsin Wong’s research group to pursue his PhD degree, where
he works on photorealistic rendering problems with a strong interest in high-
performance sampling and filtering techniques. He is also a computational
artist with his works exhibited in SIGGRAPH and GRAPHITE (predecessor
of SIGGRAPH Asia).

Tien‐Tsin Wong
ttwong@cse.cuhk.edu.hk

Tien-Tsin Wong is a Professor in the Department of Computer Science and
Engineering in the Chinese University of Hong Kong (CUHK) and served as
head of the committee advisory board of the Computer Game Technology
Centre in the department. He has been coding in the area of computer
graphics for over 20 years, and he has written publicly available code, librar-
ies, demos, and toolkits (check his home page) as well as code for all his
graphics research. He works on GPU techniques, rendering, image-based
relighting, natural phenomenon modeling, computational manga, and multi-
media data compression. He is a SIGGRAPH author and has published in
Graphics Gems V, the ShaderX series, and the Game Developers Conference.

mailto:kmwong@cse.cuhk.edu.hk
mailto:ttwong@cse.cuhk.edu.hk

	Front Cover
	Contents
	Preface
	Part I: Graphics and Rendering
	1: The Open Game Engine Exchange Format
	2: Realistic Blending of Skies, Water, and Terrain
	3: Fog with a Linear Density Function
	4: Vegetation Management in Leadwerks Game Engine 4
	5: Smooth Horizon Mapping
	6: Buffer-Free Generation of Triangle Strip Cube Vertices
	7: Edge-Preserving Smoothing Filter for Particle Based Rendering
	8: Variable Precision Pixel Shading for Improved Power Efficiency
	9: A Fast and High-Quality Texture Atlasing Algorithm

	Part II: Physics
	10: Rotational Joint Limits in Quaternion Space
	11: Volumetric Hierarchical Approximate Convex Decomposition
	12: Simulating Soft Bodies Using Strain Based Dynamics

	Part III: General Programming
	13: Generic, Lightweight, and Fast Delegates in C++
	14: Compile-Time String Hashing in C++
	15: Static Reflection in C++ Using Tuples
	16: Portable SIMD Programs Using ISPC
	17: Shared Network Arrays as an Abstraction of Network Code from Game Code Logic

	Part IV: Character Control and Artificial Intelligence
	18: Vision Based Local Collision Avoidance
	19: A Programming Framework for Autonomous NPCs
	20: Beyond Smart Objects: Behavior-Oriented Programming for NPCs in Large Open Worlds
	21: A Control System for Enhancing Entity Behavior
	22: A Control System Based Approach to Entity Behavior

	Contributor Biographies
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2016-02-24T08:27:41+0000
	Preflight Ticket Signature

