

AI Game Programming
Wisdom 4

Edited by
Steve Rabin

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Charles River Media
A part of Course Technology, Cengage Learning

© 2008 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Publisher and General Manager, Course
Technology PTR: Stacy L. Hiquet

Associate Director of Marketing: Sarah
Panella

Manager of Editorial Services: Heather
Talbot

Marketing Manager: Jordan Casey

Acquisitions Editor: Heather Hurley

Project Editor: Dan Foster, Scribe Tribe

CRM Editorial Services Coordinator:
Jennifer Blaney

Copy Editor: Julie McNamee

Interior Layout Tech: Judith Littlefield

Cover Designer: Mike Tanamachi

CD-ROM Producer: Brandon Penticuff

Indexer: Broccoli Information Management

Proofreader: Mike Beady

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09 08

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2007939369
ISBN-13: 978-1-58450-523-5
ISBN-10: 1-58450-523-0

Course Technology
25 Thomson Place
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com
Visit our corporate website at cengage.com

eISBN-10: 1-305-40610-9

http://cengage.com/permissions
http://international.cengage.com/region
http://courseptr.com
http://cengage.com

iii

Contents
Preface . ix

About the Cover Image . xiii

Acknowledgments . xv

About the Contributors. xvii

SECTION 1 GENERAL WISDOM. 1

1.1 Situationist Game AI . 3

Adam Russell

1.2 Artificial Personality: A Personal Approach to AI 17

Benjamin Ellinger, Microsoft

1.3 Creating Designer Tunable AI . 27

Borut Pfeifer, Electronic Arts

1.4 AI as a Gameplay Analysis Tool . 39

Neil Kirby, Bell Laboratories

1.5 Ecological Balance in AI Design . 49

Adam Russell

SECTION 2 MOVEMENT AND PATHFINDING . 59

2.1 Company of Heroes Squad Formations Explained 61

Chris Jurney, Kaos Studios

2.2 Turning Spaces into Places . 71

Adam Russell

2.3 Dynamically Updating a Navigation Mesh via Efficient Polygon
Subdivision . 83

Paul Marden, DigiPen Institute of Technology
Forrest Smith, Gas Powered Games

2.4 Intrinsic Detail in Navigation Mesh Generation 95

Colt “MainRoach” McAnlis, Ensemble Studios
James Stewart, Stormfront Studios

2.5 Navigation Mesh Generation: An Empirical Approach 113

David Hamm, Red Storm Entertainment

2.6 Navigation Graph Generation in Highly Dynamic Worlds 125

Ramon Axelrod, AIseek

2.7 Fast Pathfinding Based on Triangulation Abstractions 143

Doug Demyen, BioWare Corp.
Michael Buro, University of Alberta

2.8 Automatic Path Node Generation for Arbitrary 3D Environments . . . 159

John W. Ratcliff, Simutronics Corporation

2.9 Risk-Adverse Pathfinding Using Influence Maps. 173

Ferns Paanakker, Wishbone Games B.V.

2.10 Practical Pathfinding in Dynamic Environments 179

Per-Magnus Olsson, Linköping University

2.11 Postprocessing for High-Quality Turns . 191

Chris Jurney, Kaos Studios

2.12 Memory-Efficient Pathfinding Abstractions. 203

Nathan Sturtevant, University of Alberta

SECTION 3 ARCHITECTURE . 219

3.1 A Flexible AI Architecture for Production and Prototyping of Games 221

Terry Wellmann, High Voltage Software, Inc.

3.2 Embracing Declarative AI with a Goal-Based Approach 229

Kevin Dill, Blue Fang Games

3.3 The MARPO Methodology: Planning and Orders 239

Brett Laming, Rockstar Leeds

3.4 Getting Started with Decision Making and Control Systems. 257

Alex J. Champandard, AiGameDev.com

3.5 Knowledge-Based Behavior System—A Decision Tree/Finite State
Machine Hybrid . 265

Nachi Lau, LucasArts

3.6 The Emotion Component: Giving Characters Emotions. 275

Ferns Paanakker, Wishbone Games B.V.
Erik van der Pluijm

iv Contents

http://AiGameDev.com

3.7 Generic Perception System . 285

Frank Puig Placeres

3.8 Peer-To-Peer Distributed Agent Processing 295

Borut Pfeifer, Electronic Arts

3.9 AI Architectures for Multiprocessor Machines 305

Jessica D. Bayliss, Ph.D., Rochester Institute of Technology, Information Technology
Department

3.10 Level Up for Finite State Machines: An Interpreter for Statecharts . 317

Philipp Kolhoff, KING Art
Jörn Loviscach, Hochschule Bremen

3.11 Building a Behavior Editor for Abstract State Machines 333

Igor Borovikov, FrameFree Technologies, Inc.
Aleksey Kadukin, Electronic Arts

3.12 Multi-Axial Dynamic Threshold Fuzzy Decision Algorithm. 347

Dave Mark, Intrinsic Algorithm LLC

SECTION 4 TACTICS AND PLANNING . 359

4.1 RTS Terrain Analysis: An Image-Processing Approach 361

Julio Obelleiro, Enigma Software Productions
Raúl Sampedro, Enigma Software Productions
David Hernández Cerpa, Enigma Software Productions

4.2 An Advanced Motivation-Driven Planning Architecture. 373

David Hernández Cerpa, Enigma Software Productions
Julio Obelleiro, Enigma Software Productions

4.3 Command Hierarchies Using Goal-Oriented Action Planning 383

David Pittman, Stormfront Studios, Inc.

4.4 Practical Logic-Based Planning. 393

Daniel Wilhelm, California Institute of Technology

4.5 Simulation-Based Planning in RTS Games . 405

Frantisek Sailer, University of Alberta
Marc Lanctot, University of Alberta
Michael Buro, University of Alberta

4.6 Particle Filters and Simulacra for More Realistic
Opponent Tracking . 419

Christian J. Darken, The MOVES Institute
Bradley G. Anderegg, Alion Science and Technology Corporation

Contents v

4.7 Using Bayesian Networks to Reason About Uncertainty 429

Devin Hyde

4.8 The Engagement Decision. 443

Baylor Wetzel, Brown College

SECTION 5 GENRE SPECIFIC . 455

5.1 A Goal Stack–Based Architecture for RTS AI. 457

David Hernández Cerpa, Enigma Software Productions

5.2 A Versatile Constraint-Based Camera System 467

Julien Hamaide, 10Tacle Studios Belgium/Elsewhere Entertainment

5.3 Seeing in 1D: Projecting the World onto a Line. 479

Andrew Slasinski

5.4 Reaction Time with Fitts’ Law . 485

Baylor Wetzel, Brown College

5.5 Enabling Actions of Opportunity with a Light-Weight Subsumption
Architecture. 493

Habib Loew, ArenaNet
Chad Hinkle, Nintendo of America Inc.

5.6 Toward More Humanlike NPCs for First-/Third-Person
Shooter Games . 499

Darren Doherty, National University of Ireland Galway
Colm O’Riordan, National University of Ireland Galway

5.7 Stop Getting Side-Tracked by Side-Quests 513

Curtis Onuczko, University of Alberta
Duane Szafron, University of Alberta
Jonathan Schaeffer, University of Alberta

SECTION 6 SCRIPTING AND DIALOGUE . 529

6.1 Spoken Dialogue Systems . 531

Hugo Pinto, University of Sheffield
Roberta Catizone, University of Sheffield

6.2 Implementing Story-Driven Games with the Aid of
Dynamical Policy Models . 551

Fabio Zambetta, School of Computer Science & IT, RMIT University

vi Contents

6.3 Individualized NPC Attitudes with Social Networks. 571

Christian J. Darken, The MOVES Institute
John D. Kelly, U.S. Navy

6.4 Scripting Your Way to Advanced AI . 579

Alistair Doulin, Auran Games

6.5 Dialogue Managers . 593

Hugo Pinto, University of Sheffield

SECTION 7 LEARNING AND ADAPTATION . 605

7.1 Learning Winning Policies in Team-Based First-Person
Shooter Games . 607

Stephen Lee-Urban, Lehigh University
Megan Smith, Lehigh University
Héctor Muñoz-Avila, Lehigh University

7.2 Adaptive Computer Games: Easing the Authorial Burden 617

Manish Mehta, Georgia Institute of Technology
Santi Ontañón, Georgia Institute of Technology
Ashwin Ram, Georgia Institute of Technology

7.3 Player Modeling for Interactive Storytelling: A Practical Approach. . 633

David Thue, University of Alberta
Vadim Bulitko, University of Alberta
Marcia Spetch, University of Alberta

7.4 Automatically Generating Score Functions for Strategy Games 647

Sander Bakkes, Universiteit Maastricht
Pieter Spronck, Universiteit Maastricht

7.5 Automatic Generation of Strategies . 659

Pieter Spronck, Maastricht University, The Netherlands
Marc Ponsen, Maastricht University, The Netherlands

7.6 A Practical Guide to Reinforcement Learning in First-
Person Shooters . 671

Michelle McPartland, University of Queensland

About the CD-ROM . 685

Index . 687

Contents vii

This page intentionally left blank

ix

Preface

Welcome to the fourth, all-new volume of AI Game Programming Wisdom! Inno-
vation in the field of game AI continues to impress as this volume presents

more than 50 new articles describing techniques, algorithms, and architectures for use
in commercial game development.

When I started this series over six years ago, I felt there was a strong need for AI
game programmers to share their advances and expertise with each other. What I did-
n’t anticipate is how successful this series would be. At nearly 250 articles across all
four volumes, I’m extremely impressed with the generosity of these authors in sharing
their valuable ideas, innovative algorithms, and source code with others. When each
person contributes a little, we all benefit greatly.

This volume is indebted to the hard work of the five section editors who managed
the authors and directed the content of each section. The section editors were instru-
mental in the creation of this book, offering tremendous help and guidance to each
author. This provided specialized expertise for each section and introduced diverse
viewpoints during article selection. The following is a list of the section editors and
the areas that they managed:

Neil Kirby: Section 1: General Wisdom, and Section 6: Scripting and Dialogue
Steven Woodcock: Section 2: Movement and Pathfinding
Ryan Houlette: Section 3: Architecture
Kevin Dill: Section 4: Tactics and Planning, and Section 5: Genre Specific
John Manslow: Section 7: Learning and Adaptation

Refining the Basics

An important trend in game AI over the last couple years has been to hone and
deepen the core elements that define game AI, such as movement and agent architec-
ture. In retrospect, this is to be expected as core technologies are the ones that get the
real work done and pay the bills. They are concrete in terms of observation, in the case
of movement, and measurable in terms of agent flexibility and developer productivity,
in the case of architecture. While not as sexy as learning algorithms, improvements in
movement and architecture have tangible payoffs that contribute greatly to the per-
ceived intelligence of agents. As a result, over half of the articles in this volume relate
to movement and architecture.

In the area of movement, two very interesting advances have taken place. The first
is realistic agent, squad, and vehicle movement, as exemplified by Company of Heroes
with their coordinated squad movement and vehicles that are capable of making
three-point turns. The second advance is the ability of agents to deal with dynamically
changing terrain, which is a very hot topic at the moment since many games now fea-
ture destructible terrain. Several of the articles in this volume address the issue of
changing terrain.

In the area of architecture, we’re seeing further exploration of planning as a core
architecture with four articles in this book, which is more than in any previous vol-
ume. Other interesting refinements of architectures include goal-based, subsumption,
and, of course, finite state machines.

What Happened to Learning?

For the past six years, learning algorithms have consistently been on the cutting-edge,
ready to leap out and make a big impact on game AI. Unfortunately, it hasn’t quite
materialized. In order to explain this, I’ll make a few observations. First, agents in
most games usually don’t live long enough to ever benefit from learning, so for many
games learning isn’t that useful. Second, since learning is something that happens over
time, it’s difficult for players to perceive that agents or opponents are learning, so the
benefits are extremely subjective and unclear. Third, learning requires a great deal of
trial and error and tuning, so if the benefits are difficult to quantify, then the risk and
time investment is consequently more difficult to justify.

This is not to say that learning isn’t vastly interesting and could be instrumental
to certain games, but for the majority of games it isn’t on the radar and might not
make an impact. That said, I think there are many games that could benefit from sim-
ple statistical learning in the form of player modeling. Player modeling is the simple
concept in which a model of the player’s behavior is constructed from observations
over time. As the statistical observations start showing player preferences and idiosyn-
crasies, the AI can exploit this information to make the game either easier or harder.
Player modeling is simple, easy to implement, and can be leveraged by many games.
If learning is to make a real and meaningful impact on games, I believe it will come
from player modeling.

Looking Forward

In our desire to look forward toward the future, many interesting topics arise that are
explored in this volume. Subjects include multi-processor architectures, planning
architectures, Bayesian networks, conversational AI, reinforcement learning, and
player modeling. Each of these show great promise and offer the possibility of new
game AI experiences. It’s certainly very exciting to imagine how planning, reasoning
about uncertainty, adapting to the player, and communicating more conversationally
can take games to the next level.

x Preface

Contributing to Future Volumes

If you would like to contribute an article for the next volume of AI Game Program-
ming Wisdom, send an e-mail to steve.rabin@gmail.com. We are always on the look-
out for great ideas and unique material that can appear in future volumes. It is my
sincere hope that you can participate in this series and share your wisdom with the
game AI community.

AIWisdom.com and IntroGameDev.com

For over five years, aiwisdom.com has been an important resource for locating AI arti-
cles that appeared in the AI Game Programming Wisdom series, the Game Program-
ming Gems series, and other resources. The Web site aiwisdom.com indexes over 300
game AI articles and lets you quickly find articles on any game AI topic.

Over the last couple of years, introgamedev.com has been the equivalent of aiwisdom.
com, but covering all of game development. The Web site introgamedev.com indexes
over 1300 articles that appeared in compilation books, such as the Game Programming
Gems series, covering areas such as general programming, mathematics, AI, graphics,
physics, networking, production, game design, and the business of games. Take a look
around and find out what you may have been missing!

Preface xi

http://AIWisdom.com
http://IntroGameDev.com
http://aiwisdom.com
http://aiwisdom.com
http://introgamedev.com
http://introgamedev.com

This page intentionally left blank

xiii

About the Cover Images

The four images on the cover are from the award-winning game Company of Heroes.
Chris Jurney, who worked as an AI programmer on Company of Heroes, has

contributed two wonderful articles on squad formations and vehicle movement to this
volume.

Real-time strategy (RTS) games, like Company of Heroes, are some of the most
challenging to build in terms of AI, exemplifying what this book is about. RTS games
feature individual AI agents, squad-level AI managers, and grand-scale strategy AI.
Even more impressive are the extreme conditions in which the game AI must run, such
as large maps, destructible terrain, hundreds or thousands of units, and many types of
units (individuals, vehicles, aircraft, and watercraft). The AI must plan, build and man-
age resources, and coordinate strategy and attacks. All in all, architecting RTS AI is
extremely challenging and offers many opportunities to innovate.

Cover images © 2006 THQ Inc. Developed by Relic Entertainment. THQ, Relic Entertainment, Company of Heroes
and their respective logos are trademarks and/or registered trademarks of THQ Inc. All Rights Reserved. All other
trademarks, logos and copyrights are property of their respective owners.

This page intentionally left blank

xv

Acknowledgments

Iwould like to thank the nearly 70 authors who contributed to this book, helping
make this series one of the most influential in the field of game AI. Each author’s

generosity in sharing their knowledge, wisdom, and hard work will surely have a pro-
found impact on the game development community.

In addition to the authors, there were five section editors who were responsible
for selecting articles, guiding their composition, and honing each article to deliver
reliable and trustworthy information. Their contributions were critical in raising the
bar and maintaining the quality of this series. I’d like to thank Kevin Dill, Ryan
Houlette, Neil Kirby, John Manslow, and Steven Woodcock.

Turning these articles into a book wouldn’t be possible without the expertise of
the publisher, Charles River Media, a part of Cengage Learning. I would like to
thank Emi Smith, Heather Hurley, and Jennifer Blaney at Charles River Media
for their continued guidance and support of this series, as well as the entire team for
helping deliver such a high- quality book.

Finally, I want to thank my family for their continued support—my wife Leslie
and my children Aaron and Allison; my parents, Diane Rabin and Barry Rabin; and
my in-laws, James and Shirley Stirling.

This page intentionally left blank

xvii

About the Contributors

Bradley G. Anderegg
bradanderegg@gmail.com

Bradley is an engineer at Alion Science and Technology and has been working closely
with the open source Delta3D game and simulation engine for more than two years
now. Brad was the AI programmer for the critically acclaimed Source mod “Eclipse,”
which was a runner-up for the IGF Source Mod of the Year in 2006. He earned a
masters certificate in digital game design from the Guildhall at Southern Methodist
University in 2005 and earned a B.S. in computer science from the University of Ore-
gon in 2002.

Ramon Axelrod
mushroomramon@yahoo.com

As a cofounder of the Majorem studio, Ramon led the development of Ballerium, one
of the first MMORTS titles. In this role, he dealt extensively with the problems raised
by distributed AI, including planning with partial information, effective use of the
processing power of client machines, and the constraints imposed by limited band-
width. Prior to Majorem, he worked for several years in the field of military opera-
tions research. He holds a B.S. in mathematics and physics and is today the CTO of
AIseek, a company specializing in AI acceleration.

Sander Bakkes
s.bakkes@micc.unimaas.nl

Sander Bakkes received his bachelor’s degree in computer science in 2001 and his
master’s degree in computer science in 2003. In his master thesis, he discussed a novel
approach to team AI for video games. To the present day, he continues to work on
research in game AI as a Ph.D. student. His current research concerns adaptive AI for
RTS games.

Jessica D. Bayliss
jdb@it.rit.edu

Jessica Bayliss is an assistant professor in the Information Technology department at
the Rochester Institute of Technology where she is actively involved in both a B.S. and
M.S. degree in game design and development. Jessica maintains a keen interest in arti-
ficial intelligence for computer game development. She co-led the “Art of Munging
AI” roundtable at GDC in 2006. Whereas Jessica’s dissertation developed a brain-
computer interface that used virtual reality to demonstrate online control of a simple

3D apartment, Jessica has since become involved in the scholarship of teaching. She is
the founder of the Reality and Programming Together (RAPT) program, which serves
to attract students to computing by teaching games as an application area overlaid
onto traditional introductory programming course curricula.

Igor Borovikov
igor.borovikov@gmail.com

Igor Borovikov graduated from the Moscow Institute for Physics and Technology
(MIPT) with an M.S. in physics and a Ph.D. in mathematics. After graduation, Igor
worked as a senior researcher on a space telecommunication project at the Institute of
Microelectronics in Zelenograd, Moscow. In 1993, Igor joined AnimaTek Intl. and
became one of the leads of World Builder, an innovative 3D modeling and rendering
application for creating photorealistic natural environments. In 2001, Igor changed
careers to work on PS2 games and joined the company 3DO. In 2002, he started at
SCEA in Foster City. As a senior programmer at SCEA, he contributed to several
game systems on Rise to Honor. Currently, he holds the position of lead scientist and
works on advanced graphics and AI applications at FrameFree Technologies.

Vadim Bulitko
bulitko@ualberta.ca

Vadim Bulitko received his Ph.D. in computer science from the University of Illinois
at Urbana-Champaign in 1999 and is presently a faculty member at the University of
Alberta. He has been working on real-time heuristic search and decision making under
uncertainty since 1996. Some of his academic interests include real-time heuristic
search, online and supervised machine learning, and player modeling in real-time com-
puter games. You can visit his Web site at www.cs.ualberta.ca/~bulitko/.

Michael Buro
mburo@cs.ualberta.ca

Michael Buro is an associate professor for computing science at the University of Alberta
in Edmonton, Canada. He earned his Ph.D. in 1994 from the University of Paderborn
in Germany where he studied selective search and machine learning techniques for
improving AI systems for two-player games. The result was an Othello-playing program
that defeated the human world champion 6-0 in 1997. He is currently conducting
research in real-time AI applied to RTS games and sampling-based search for imperfect
information games. Professor Buro also organizes the annual RTS game AI competition,
which is based on his free RTS game engine ORTS.

xviii About the Contributors

http://www.cs.ualberta.ca/~bulitko/

Roberta Catizone
R.Catizone@dcs.shef.ac.uk

Roberta Catizone is a research fellow at the University Sheffield where she has worked
with the Natural Language Processing Group in the Computer Science department
since 1994, following research positions at the Computing Research Lab in New
Mexico, the University of Pittsburgh Learning Research and Development Center, and
the Institut Dalle Molle in Geneva, Switzerland, where she did research on Natural
Language Tutorial systems, a multilingual concordance system, and a content-based
text alignment system. She has worked on four European Union Fourth, Fifth, and
Sixth framework projects funded by the Information Society and Technology (IST)
sector, including the ECRAN Information Extraction (IE) project (1995–1998) and
the NAMIC IE and authoring project (1998–2001). Her most recent work in building
dialog systems includes being the Sheffield team leader of the multimodal dialog pro-
ject COMIC (2002–2005) and the Sheffield research team leader of the Companions
project, which is a large-scale multimodal dialog project focusing on intelligent person-
alized multimodal interfaces to the Internet. She also played a key part in the develop-
ment of the CONVERSE program, which won the Loebner competition judged for
being the most realistic conversationalist in 1997.

David Hernández Cerpa
david.hernandez.cerpa@gmail.com

David is currently a senior AI Programmer at Pyro Studios where he is working in an
unannounced next-gen project. Previously, he was a senior AI programmer at Enigma
Software Productions for almost two years where he implemented several AI systems
for the game War Leaders: Clash of Nations. Before joining the game industry, he was
an AI researcher at the University of Las Palmas de Gran Canaria, where he worked
on his Ph.D., which is focused on artificial emotional systems. His paper BDIE: A
BDI-Like Architecture with Emotional Capabilities was published in the proceedings of
the AAAI 2004 spring symposium held at Stanford University. His main research
interest focuses on new AI architectures and their applications to games while taking
into account performance and engineering restrictions.

Alex J. Champandard
alexjc@AiGameDev.com

Alex J. Champandard has worked in the entertainment industry as an AI programmer
for many years, most recently for Rockstar Games. With a strong academic background
in artificial intelligence, he also authored the book AI Game Development: Synthetic
Creatures with Learning and Reactive Behaviors and often speaks about his research—
most notably at the Game Developers Conference. Currently, Alex is a freelance consul-
tant for games companies in central Europe, helping developers integrate state-of-
the-art techniques into commercial games. He maintains open source AI engines at
http://AiGameDev.com, where he also publishes tutorials for game programmers.

About the Contributors xix

http://AiGameDev.com

Christian J. Darken
cjdarken@nps.edu

Christian is currently an associate professor of computer science at the Naval Postgradu-
ate School in Monterey, California, where he collaborates intensively with the MOVES
Institute. He was previously a project manager at Siemens Corporate Research in Prince-
ton, New Jersey, and was on the programming team of what was perhaps the first
3D massively multiplayer online game, Meridian 59. He received his Ph.D. in electrical
engineering from Yale University in 1993.

Doug Demyen
doug.demyen@gmail.com

Doug Demyen is a programmer for BioWare/Pandemic Studios at BioWare’s Edmon-
ton location where he works on both tools and game code for next-generation titles.
He earned a B.S. High Honors in computer science from the University of Regina in
Regina, Saskatchewan, and an M.S. in computing science from the University of
Alberta in Edmonton, Alberta, for the research on which this article was based.

Kevin Dill
kdill4@gmail.com

Kevin graduated from Carleton College with a B.A. in computer science in 1992.
After some soul searching (and some job searching, neither of which went horribly
well), he decided to join the Army. He spent the next four years in the infantry—first
toting a machine gun and later flipping PowerPoint slides and correcting grammatical
errors for his superiors in military headquarters (where life was considerably less excit-
ing but also considerably less muddy).

Upon his release, he decided that he was going to pursue his dream of making
computer games for a living… but first, he went back to school. He attended the Uni-
versity of Pittsburgh, where he studied subjects such as real-time systems, networking,
simulations, and AI. He quickly fell in love with AI, so he transferred to Northwest-
ern University where he could concentrate on his primary interests: believable agents
and computer games. Two years later, after completing his master’s degree, he finally
did what his mother had hoped for all along and got a real job.

That was in 2001. In the subsequent six years, Kevin has worked for three com-
panies on five published titles, ranging from strategy games to animal simulations. He
is currently working for Blue Fang Games, helping to develop the next-generation AI
for its highly successful Zoo games.

In his copious free time, Kevin teaches classes at Harvard Extension School,
serves on the organizational committee for the AI and Interactive Digital Entertain-
ment conference (www.aiide.org), and is a section editor for the book you now hold in
your hands, AI Game Programming Wisdom 4.

xx About the Contributors

http://www.aiide.org

Darren Doherty
darren.doherty@nuigalway.ie

Darren Doherty is a Ph.D. research candidate in NUI, Galway. He is currently
researching techniques for the evolution of team behaviors. He has published papers on
his work in the national AI conference, international genetic and evolutionary com-
putation conference (GECCO), and international computer games conference (C-
GAMES) where he was awarded a best-paper prize. He holds a first-class honors degree
in IT. His research interests include evolutionary computation, artificial intelligence,
and computer game development.

Alistair Doulin
alistair@doolwind.com

Alistair Doulin is a senior programmer at Auran Games where he creates games for
Xbox 360 and PC. His second game, Battlestar Galactica, has just been released on
Xbox Live Arcade and PC. Before Auran, Alistair worked as a business applications
programmer while at the university. He works primarily as a gameplay programmer
with a special interest in AI and graphics. When not at work, he spends most of his
time working on his personal project Combat Information Centre and writing articles
for his game development blog (doolwind.com). Alistair earned a Bachelor of Informa-
tion Technology (Software Engineering) degree with distinction from the Queensland
University of Technology.

Benjamin Ellinger
benjamin.ellinger@microsoft.com

Benjamin Ellinger is a Program Manager at Microsoft, working with Carbonated
Games. He writes game development kits, helps creates casual games, and writes some
AI code every now and then. He also teaches the Junior game project class at the
DigiPen Institute of Technology. Before Microsoft, Benjamin was a programmer and
game designer working on titles such as This Means War!, Dawn of War, Ultima Online,
Ashen Empires, The Matrix Online, and Bicycle® Texas Hold’em. Long ago, he broke in
to the game industry at Steve Jackson Games, working on board games such as Car
Wars and role-playing games such as GURPS. Strangely enough, Benjamin has a B.S.
in Kinesiology (specializing in weight training) from the University of Texas. He also
claims to be the strongest game designer in the world.

Julien Hamaide
julien.hamaide@gmail.com

Julien started programming a text game on his Commodore 64 at the age of 8. His first
assembly programs would follow soon after. He has always been self-taught, reading all
of the books his parents were able to buy. He graduated 4 years ago as a multimedia
electrical engineer at the Faculté Polytechnique de Mons (Belgium) at the age of 21.

About the Contributors xxi

http://doolwind.com

After two years working on speech and image processing at TCTS/Multitel, he is now
working on next-generation consoles at 10Tacle Studios Belgium/Elsewhere Entertain-
ment as lead programmer. Julien has contributed several articles to the Game Program-
ming Gems series.

David Hamm
trianglegamer@gmail.com

David Hamm is a senior software engineer at Red Storm Entertainment, where he has
contributed to PC and console releases for 10 years. His recent work has focused on
extensible AI systems, including character pathfinding, tactical planning, and remote
debugging. David has also developed four generations of scripting systems for Red
Storm games. Since 2000, he has focused on the Tom Clancy’s Ghost Recon line of tac-
tical shooters. In addition to AI and scripting, David has extensive experience and
interest in game engine architecture and tools. He holds a B.S. in computer science
from Harvey Mudd College.

Chad Hinkle
hinks85@gmail.com

Chad graduated from DigiPen Institute of Technology, majoring in real-time interactive
simulation and minoring in mathematics. Using a background in both customer service
and software development, Chad is always trying to improve games to help the players
have a more enjoyable experience. He is currently working at Nintendo of America.

Ryan Houlette
houlette@gmail.com

Ryan is a senior engineer at Stottler Henke, an AI software consulting firm, where he
has spent the past 10 years working on a variety of commercial and government AI
applications ranging from automated planning to data mining to intelligent tutoring
systems. He is the architect of Stottler Henke’s SimBionic® game AI middleware
product. His research interests include AI engines for games and simulations, visual
authoring environments, and interactive narrative systems. He holds an M.S. in AI
from Stanford. In his free time, he enjoys performing and recording music, hiking,
reading, and also playing board games and computer games.

Devin Hyde
devinhyde@gmail.com

Devin Hyde completed his B.S. in computer science (Honors) in 2006 at the Univer-
sity of Saskatchewan. His undergraduate thesis involved researching Bayesian net-
works, fuzzy logic, and the Dempster-Schafer theory to reason about uncertainty in
video games. He is currently employed as a systems analyst for the Western Canada
Lottery Corporation.

xxii About the Contributors

Chris Jurney
jurney@gmail.com

Chris Jurney is a senior programmer at Kaos Studios, where he works on AI for con-
sole and PC games. Before Kaos, Chris worked on real-time strategy games at Relic,
and on weapon simulators, slot machines, and online worlds at various companies in
Atlanta. He has spoken at the Game Developer’s Conference, GDC China, and local
IGDA chapter meetings. Chris has a B.S. in computer science from the Georgia Insti-
tute of Technology where he specialized in AI.

Aleksey Kadukin
akadukin@gmail.com

Aleksey Kadukin is a software engineer at The Sims Division of Electronic Arts Inc.,
where he designs and develops tools and technologies for The Sims game projects.
Before joining Electronic Arts, Aleksey worked as a software engineer at Sony Computer
Entertainment America, Press Start, and AnimaTek. He contributed to titles such as
The Sims 2 Pets, The Sims 2 Glamour Life Stuff, The Sims 2 Sampler: Create-A-Sim for
PC, and Jet Li: Rise to Honor for PS2. Aleksey earned an M.S. in computer science from
Moscow State University.

John D. Kelly
wackonian@aol.com

John is a Lieutenant in the U.S. Navy and a recent recipient of a master’s degree in
modeling and simulation from the MOVES Institute of the Naval Postgraduate
School in Monterey, California.

Neil Kirby
nak@alcatel-lucent.com

Neil Kirby is a member of the technical staff at Bell Laboratories, the R&D arm of
Alcatel-Lucent. His assignments have included architecture consulting, tool develop-
ment for CMMI certification, and the development of speech recognition systems.
He has contributed articles to The Bell Labs Technical Journal and to the AI Game Pro-
gramming Wisdom series of books. He has spoken at the Game Developers Conference
and has numerous papers published in the conference proceedings. He cohosts the AI
Roundtables at GDC as well as the AI Programmers Dinners. Neil is the chapter
coordinator of the IGDA Columbus, Ohio, chapter and a member of the IGDA
Foundation board of directors. Neil earned a B.S. in electrical engineering and an
M.S. in computer science from Ohio State University. He is a guest speaker for the
OSU Fundamentals of Engineering Honors program and a judge for their annual
robot competition.

About the Contributors xxiii

Philipp Kolhoff
pkolhoff@kingart.de

Philipp Kolhoff graduated in 2007 from the Media Informatics study program of
Hochschule Bremen, University of Applied Sciences. Philipp is a software developer
at the game studio KING Art based in Bremen, Germany. Currently, he is working on
a turn-based strategy game called Battle Worlds: Kronos, which will be released this
summer, and he is also contributing to two upcoming titles. Philipp presented a short
paper at Eurographics 2005 and a full paper at SIBGRAPI 2006.

Dr. Brett Laming
brett@tilda.plus.com

Dr. Brett Laming is now a programmer for Rockstar Leeds, where he continues to
search for the beauty inherent in simple AI. A B.S. in cognitive science and Ph.D. in
computational neuroscience now seem a distant memory, as do many of the earlier
tribulations of AI programming. He has now had the pleasure of working on Indepen-
dence War 2, Powerdrome, Burnout: Revenge, and GTA:Vice City Stories, and in doing
so has worked alongside some of the UK’s best talent.

He continues to reside in Sheffield where he frustrates his partner, Katherine, by
having the same hobby as his work. He has, at least for the moment, given up on the
idea of a Web site, as it has been in construction so long, the URL has lapsed.

Marc Lanctot
lanctot@cs.ualberta.ca

Marc Lanctot is a Ph.D. candidate in the Computing Science department at the Uni-
versity of Alberta. He earned both a B.S. (Honors) with a minor degree in mathemat-
ics and an M.S. in computer science at McGill University in Montreal, Quebec. His
previous work has focused on locally adaptive virtual environments, behavior learn-
ing, and dynamic waypoint repositioning from collected player data in persistent-
state multiplayer games.

Nachi Lau
nachilau@hotmail.com

Nachi Lau has been in the video game industry since 2002. He obtained a B.S. in
computer science from Simon Fraser University, Canada. Presently, he is a senior AI
software engineer with LucasArts. Some of his past video game projects include Shrek
3, X-Men 3, True Crime 2, Iron Man, and SoccerZ. He started his game development
adventure after winning the international Online Game Open Source Code Design
Competition in Taiwan for re-implementing an MMO title. His favorite video game
genre is role-playing games, which is also the main focus of his career.

xxiv About the Contributors

Stephen M. Lee-Urban
sml3@Lehigh.edu

Mr. Stephen Lee-Urban is currently a fourth-year computer science Ph.D. student at
Lehigh University studying artificial intelligence under his advisor, Dr. Muñoz-Avila.
His research on AI in games includes the use of plan generation and repair, reinforce-
ment learning, transfer learning, and ontology-based case retrieval.

Habib Loew
habibloew@gmail.com

Habib Loew has worked as a system administrator, security engineer, and Web devel-
oper, but the best job he’s ever had is as a game programmer. Habib is a graduate of
DigiPen Institute of Technology, where he earned a B.S. in real-time interactive simu-
lation. He has spoken at the Pacific Northwest Numerical Analysis Seminar, the Uni-
versity of Washington, and to just about anybody else who will listen about the
intersection of mathematics and game development. He currently works at ArenaNet.

Jörn Loviscach
jlovisca@informatik.hs-bremen.de

Jörn Loviscach has been a professor of computer graphics, animation, and simulation
at Hochschule Bremen, University of Applied Sciences since 2000. A physicist by
education, he turned to journalism after finishing his doctoral degree. He covered
media-related software at several computer magazines, ending up as deputy editor-in-
chief of c’t computer magazine, Hanover, Germany. Since his return to academia, Jörn
has contributed to GPU Gems, Shader X3, Shader X5, and Game Programming Gems
6. In addition, he is the author and coauthor of numerous academic works on com-
puter graphics and on techniques for human-computer interaction presented at inter-
national conferences, such as Eurographics and SIGGRAPH.

John Manslow
john@jmanslow.fsnet.co.uk

John Manslow has a Ph.D. in AI from one of the UK’s top-ranked research universi-
ties and has spent nearly 15 years applying his expertise in fields as diverse as credit
and fraud risk analytics, commodity trading systems, and computer games. He occa-
sionally lectures in game AI and is a regular contributor to, and section editor of, the
AI Game Programming Wisdom series of books. His primary interest lies in real-time
learning and the ways in which it can be applied in games.

About the Contributors xxv

Paul Marden
pmarden@digipen.edu

Paul Marden is currently a junior at the DigiPen Institute of Technology in his third
year in the real-time interactive simulation program. He recently finished an intern-
ship at 3M in St. Paul, MN.

Dave Mark
dave@IntrinsicAlgorithm.com

Dave Mark is the president and lead designer of Intrinsic Algorithm, LLC, an inde-
pendent game development studio and AI consulting company in Omaha, Nebraska.
He has been programming since 1984 when he was in high school. Much to the dis-
may of his teacher, he wrote his first text adventure on the school’s DEC PDP-11/44.
After a brief detour in the music business as a composer/arranger, keyboard player,
and recording engineer during the early 1990s, he reentered the technology arena in
1995. He worked in a variety of capacities, including network design and rollout,
Web design, and world-wide e-mail systems, before turning to business database
application design and programming for Fortune 500 companies. After being in the
IT consulting and development world for eight years, Dave left to start Intrinsic Algo-
rithm, LLC, with his wife, Laurie. As a side project, he also combined a passion for
football (the one with touchdowns) and an addiction to statistics by designing an
NFL statistical analysis and prediction system that was released as a subscription ser-
vice on the Internet from 2002 through 2004.

Colt “MainRoach” McAnlis
duhroach@gmail.com

Colt “MainRoach” McAnlis is a graphics programmer at Microsoft Ensemble Studios
where he researches new rendering techniques and algorithms. Before Ensemble, Colt
worked as a graphics programmer at TKO Software and a programming intern at Pet-
roglyph Games. He is also an adjunct professor at SMU’s Guildhall school of game
development where he teaches advanced rendering and mathematics courses. After
receiving an advanced degree from the Advanced Technologies Academy in Las Vegas
Nevada, Colt earned his B.S. in computer science from Texas Christian University.

Michelle McPartland
michelle@itee.uq.edu.au

Michelle is undertaking a Ph.D. at the University of Queensland and concurrently
working for Bohemia Interactive Australia (BIA) as a programmer. Her research is
focused on learning techniques in FPSs. Prior to commencing her Ph.D., Michelle
completed a Bachelor of Information Technology (Honors) where she specialized in
genetic algorithms and neural networks.

xxvi About the Contributors

Manish Mehta
mehtama1@cc.gatech.edu

Manish Mehta is a Ph.D. student at the College of Computing at the Georgia Institute
of Technology. He worked full time on a project aiming to demonstrate universal
natural interactive access (in particular for children and adolescents) by developing
natural, fun, and experientially rich communication between humans and embodied
historical and literary characters from the fairy tale universe of Hans Christian
Andersen. He has also been involved in developing an augmented reality version of a
desktop-based game called Façade. Façade is an AI-based art/research experiment that
is attempting to create a fully realized one-act interactive drama. Augmented Reality
Façade moves this interactive narrative from the screen into the physical world. The
player wears a video see-through display allowing the virtual characters, Trip and
Grace, to inhabit the physical room with them. More details about his work can be
obtained at www.cc.gatech.edu/~mehtama1.

Héctor Muñoz-Avila
hem4@Lehigh.edu

Dr. Héctor Muñoz-Avila is an assistant professor at the Department of Computer Sci-
ence and Engineering at Lehigh University. Prior to joining Lehigh, Dr. Muñoz-Avila
did post-doctoral studies at the Naval Research Laboratory and the University of
Maryland at College Park. He received his Ph.D. from the University of Kaiserslautern
(Germany). Dr. Muñoz-Avila has done extensive research on case-based reasoning,
planning, and machine learning, having written more than 10 journal papers and more
than 30 refereed conference/workshop papers on the subject. Two of these papers
received awards. He is also interested in advancing game AI with AI techniques. He has
been chair, program committee member, and a reviewer for various international scien-
tific meetings. He will be program co-chair of the Sixth International Conference on
Case-Based Reasoning (ICCBR-05) to be held in Chicago, Illinois.

Colm O’Riordan
colm.oriordan@nuigalway.ie

Colm O’Riordan lectures in the IT department in NUI, Galway. His main research
interests are in the domain of AI (including evolutionary computation, artificial life,
evolutionary game theory, and multi-agent systems). He has authored more than 80
papers in peer-reviewed conferences and journals.

Julio Obelleiro
julio.obelleiro@gmail.com

Julio Obelleiro has been a senior AI programmer at Pyro Studios and Enigma Soft-
ware Productions where he has designed and developed several AI architectures for a
next-gen unannounced title and the strategy game War Leaders: Clash of Nations.

About the Contributors xxvii

http://www.cc.gatech.edu/~mehtama1

Before moving to the games industry, Julio was professor and researcher at different
labs, including Human Computer Technology Lab and Computational Neuroscience
Institute, both at Autonoma University in Madrid; and Interactive Technology Group
at Pompeu Fabra University in Barcelona. He is interested in the research of new AI
techniques, new ways of human-computer interaction, and computer vision tech-
niques applied to games and interactive digital art installations. He has run computer
vision workshops at MediaLabMadrid, where he collaborated in the development of
projects such as Play the Magic Torch (www.playthemagic.com).

Per-Magnus Olsson
perol@ida.liu.se

Per-Magnus Olsson is a Ph.D. student at the Division of Artificial Intelligence and
Integrated Computer Systems, Department of Computer Science, Linköping Univer-
sity, Sweden. Before becoming a Ph.D. student, he was an artificial intelligence pro-
grammer at Massive Entertainment where he worked on the real-time strategy game
Ground Control 2 released in 2004, as well as on concepts for future games. After that,
he did consulting in the defense industry, mostly working with decision support for
fighter aircraft. Currently, he is involved in applied artificial intelligence in several
areas, including unmanned aerial vehicles as well as simulators and games. He encour-
ages comments and discussion about the article and artificial intelligence in general.
Per-Magnus earned a B.S. in computer engineering from the University of California
Irvine and an M.S. in computer science and engineering from Linköping University.

Santi Ontanon
santi@cc.gatech.edu

Santi Ontanon is a post-doctorate researcher at the College of Computing in the
Georgia Institute of Technology. His Ph.D. thesis focused on case-based reasoning
techniques applied to multi-agent systems. His main research goal is to enhance the
case-based reasoning paradigm so that it can deal with real tasks, such as computer
games. His current research involves the application of case-based reasoning tech-
niques to computer games, in particular strategy games and interactive adventures, in
order to provide computer games AI with adaptive capabilities. More details about his
work can be obtained at www.cc.gatech.edu/~santi.

Curtis Onuczko
onuczko@cs.ualberta.ca

Curtis Onuczko has an M.S. from the Department of Computing Science at the Uni-
versity of Alberta. His research interests are in plot generation using generative design
patterns in computer role-playing games. He works for BioWare.

xxviii About the Contributors

http://www.playthemagic.com
http://www.cc.gatech.edu/~santi

Ferns Paanakker
ferns.paanakker@gmail.com

Ferns Paanakker is lead programmer at Wishbone Games B.V. Previous to founding
the company, he worked in logistical optimization for more than a decade where he
designed and implemented systems such as large-scale planning, user interfaces, and
GIS. Most of his implementations are heavily influenced by AI techniques such as
evolutionary algorithms, expert systems, and pathfinding.

Wishbone Games B.V. creates computer games for both PC and consoles and
additionally performs game AI consultancy services. Ferns earned his M.S. in artificial
intelligence from the University of Amsterdam. He is now pursuing his Ph.D., creat-
ing innovative AI techniques to solve difficult optimization problems.

Borut Pfeifer
borut_p@yahoo.com

Borut Pfeifer is an AI engineer at Electronic Arts Los Angeles. He has worked on AI
and gameplay for games such as Scarface: The World Is Yours (PS2, Xbox, PC) and
Untold Legends: Dark Kingdom (PS3). He has also taught in the game design program
at the Vancouver Film School and has published various articles on game develop-
ment in the Game Programming Gems series, Gamasutra, and elsewhere. Borut gradu-
ated from Georgia Tech in 1998 with a B.S. in computer science. His blog, The Plush
Apocalypse (www.plushapocalypse.com/borut), discusses the development of games
that combine entertainment with deeper social themes.

Hugo Pinto
hugo@hugopinto.net

Hugo Pinto is an artificial intelligence engineer specializing in computational linguistics
and interactive entertainment. Currently he works as a research associate at the Univer-
sity of Sheffield (UK), where he investigates dialog in the context of artificial human
companions and computer games. He acts as a developer lead and architect to his team.

His research and work has spanned natural language processing and text mining
(financial, military, and biomedical domains), cognitive architectures (Webmind and
Novamente), computer games, multi-agent systems, and machine learning. He devel-
oped commercial AI applications in diverse international teams, associated to compa-
nies such as Webmind, Vetta Tech, and Novamente LLC. He also worked for a brief
time on the integration of legacy systems in the public sector.

Parallel to his research and consulting jobs, he pursues a Ph.D. at the University
of Sheffield, where he researches the application of dialog technologies to games. He
received his M.S. in computer science from Universidade Federal do Rio Grande do
Sul in 2005, defending a thesis on real-time planning, personality modeling, and
computer games. In 2001, he received a B.S. in computer science from Universidade
Federal de Minas Gerais, with a monograph on cognitive architectures.

About the Contributors xxix

http://www.plushapocalypse.com/borut

David Pittman
david.pittman@gmail.com

David Pittman is currently a programmer at Stormfront Studios, working on an
unannounced project. He previously developed AI tools at Gearbox Software for
Brothers in Arms: Hell’s Highway. His lifelong passion for game development began at
the age of 6, when he learned to write games in BASIC on his parent’ computer. He
received a B.S. in computer science from the University of Nebraska-Lincoln and sub-
sequently attended The Guildhall at Southern Methodist University in Dallas, Texas.
There, David nurtured a growing interest in game AI programming and helped make
history by being among the first 24 students to receive a master’s degree in video game
development. When he is not working, David enjoys playing games, researching new
technologies, and entertaining delusions of rock stardom.

Frank Puig Placeres
fpuig@fpuig.cjb.net

Frank Puig Placeres is the leader of the Virtual Reality Project at the University of
Informatics Sciences, located in Cuba. He developed the CAOSS Engine and CAOSS
Studio, which have been used to create games such as Knowledge Land and Turning
Points. He has been a contributor to Game Programming Gems 5, Game Programming
Gems 6, and ShaderX5. He has also spoken at the GameOn 2006 conference as well as
at the Cuban Virtual Reality Congress. Frank has also worked as a software engineer
at SolStar Games, where he researched modern engine architectures, graphic render-
ing, and artificial intelligence simulations.

Marc Ponsen
m.ponsen@micc.unimaas.nl

Marc Ponsen is a Ph.D. student at the computer science department of Maastricht
University, The Netherlands. His research interests include machine learning and, in
particular, reinforcement learning. Current research focuses on scaling reinforcement
learning algorithms to complex environments, such as computer games. He coau-
thored several refereed conference papers, workshop papers, and international journal
papers on these subjects.

Steve Rabin
steve.rabin@gmail.com

Steve is a principal software engineer at Nintendo of America, where he researches new
techniques for Nintendo’s next-generation systems, develops tools, and supports Nin-
tendo developers. Before Nintendo, Steve worked primarily as an AI engineer at several
Seattle startups, including Gas Powered Games, WizBang Software Productions, and
Surreal Software. He managed and edited the AI Game Programming Wisdom series of
books and the book Introduction to Game Development, and has over a dozen articles

xxx About the Contributors

published in the Game Programming Gems series. He’s spoken at the Game Developers
Conference and moderates the AI roundtables. Steve teaches artificial intelligence at
both the University of Washington Extension and at the DigiPen Institute of Technol-
ogy. He earned a B.S. in computer engineering and an M.S. in computer science, both
from the University of Washington. Finally, Steve maintains a Web site that catalogs
more than 1,000 game development articles at www.introgamedev.com.

Ashwin Ram
ashwin@cc.gatech.edu

Professor Ashwin Ram is a recognized leader in introspective learning and case-based
reasoning, two of the key aspects of this proposal. In his earlier work, he developed a
novel approach to self-adaptation in which introspective analysis of reasoning traces
was used to determine learning goals (similar to behavior modification goals in this
proposal), and planning was used to carry out the modifications. This work was well
received and published in major journals (including Artificial Intelligence and Cognitive
Science) in addition to serving as a framework for an MIT Press book Goal-Driven
Learning. More details about his publications can be obtained at www.cc.gatech.edu/
faculty/ashwin.

John W. Ratcliff
jratcliff@infiniplex.net

John W. Ratcliff is a long-time game industry veteran, starting with Electronic Arts in
the mid-1980s where he worked as an independent artist. John’s Electronic Arts titles
include the original 688 Attack Sub, SSN-21 Seawolf, and S.C.A.R.A.B. John also con-
tributed technology to many other Electronic Arts titles. After leaving Electronic Arts,
John was the lead client programmer for Cyberstrike 2, published by 989 Studios,
when he worked for Simutronics Corporation. In 2000, John established the St. Louis
office of Sony Online Entertainment (then Verant Interactive) and built a team to
create the world’s first massively multiplayer online shooter called Planetside. After
Planetside, John went on to work for Ageia Technologies to assist in the development
of tools, technology, and demos for physics middleware. Recently, in 2007, John
rejoined Simutronics Corporation to work on their MMO game engine Hero Engine.
In addition to John’s professional work, he has been active in releasing source code
into the public domain as well as publishing magazine articles and book chapters.

Adam Russell
chronotopia@gmail.com

Adam recently returned from the front lines of commercial game development to take
a position as lecturer in computer game programming at the University of Derby.
This move follows two years as a senior programmer at Eurocom Entertainment, one
of Europe’s largest independent developers, where Adam led AI development for an

About the Contributors xxxi

http://www.introgamedev.com
http://www.cc.gatech.edu/faculty/ashwin
http://www.cc.gatech.edu/faculty/ashwin

unannounced next-generation project. Prior to that, he spent three years working at
Lionhead Studios, where he played a pivotal role in the AI design for Microsoft’s
XBox RPG Fable. Adam holds a master’s degree in evolutionary and adaptive systems
from the University of Sussex, but his first education was studying philosophy and
psychology at Oxford University.

Frantisek Sailer
sailer@cs.ualberta.ca

Frantisek Sailer is an M.S. student in the computing science department at the Uni-
versity of Alberta. He earned his B.S. (Honors) in computer science at the University
of Manitoba. Before he entered the graduate program, he worked as lead AI program-
mer for Complex Games in Winnipeg, Canada, concentrating on automated
pathfinding in 3D worlds without the use of manual waypoint placement. Currently
he works on real-time strategy game AI. His thesis work on real-time planning in RTS
games—on which this article is based—was presented at CIG 2007.

Raúl Sampedro
rghoul@gmail.com

Raúl Sampedro started as AI and gameplay programmer in July 2005 for previous
Enigma Software Productions projects, and joined War Leaders: Clash of Nations game
a few months later, working with gameplay, AI, and tools. He has been working as
senior AI programmer for Silicon Garage Arts’ The Shadow of Aten project and has
recently joined Pyro Studios to work on a new exciting project. He is also researching
AI learning techniques applied to turn-based strategy games as the final project for his
master’s degree.

Jonathan Schaeffer
jonathan@cs.ualberta.ca

Jonathan Schaeffer is a professor in the Department of Computing Science at the
University of Alberta. His research interests are in artificial intelligence and parallel
and distributed computing. He is best known for his work on computer games, and
he created the checkers program Chinook, which was the first program to win a
human world championship in any game. He has a Ph.D. in computing science from
the University of Waterloo.

Andrew Slasinski
ExtraStanlo@gmail.com

Andrew Slasinski is currently an intern working at Microsoft Robotics Initiative,
where he works on a 3D simulation environment used as a test bed for robotics. He
earned a B.S. in real-time interactive simulation from DigiPen Institute of Technol-
ogy, and specializes in 3D graphics.

xxxii About the Contributors

Forrest Smith
fsmith@gaspowered.com

Forrest Smith graduated with a bachelor’s in real-time interactive simulation from the
DigiPen Institute of Technology in the Spring of 2007. He is currently working as a
software engineer at Gas Powered Games.

Megan Smith
mev2@Lehigh.edu

Mrs. Megan Smith completed work on RETALIATE as part of her master’s thesis,
which coincided with her employment as a developer at Travel Impressions. She
received her B.S. in computer science in 2005 and her M.S. in computer science in
2007 from Lehigh University, working with Dr. Héctor Muñoz-Avila on various pro-
jects involving computer games and reinforcement learning. She continues to work as
a developer at Travel Impressions.

Marcia Spetch
mspetch@ualberta.ca

Marcia Spetch is a researcher and faculty member in the Department of Psychology at
the University of Alberta. Focusing on comparative cognition, Marcia investigates the
cognitive aspects of fundamentally important human and animal behaviors, such as
locating and remembering important places, and recognizing important objects.
Some of her research interests include comparative studies of learning, memory and
cognition, including spatial memory and navigation, avian visual cognition, and
object recognition. Visit her Web site at www.psych.ualberta.ca/~mspetch/spetchm.htm.

Pieter Spronck
p.spronck@micc.unimaas.nl

Pieter Spronck received his Ph.D. in computer science in May 2005. His thesis was
titled “Adaptive Game AI.” It discusses how machine-learning techniques can be used
to allow game opponents to adapt to gameplay experiences. One of the major require-
ments of the techniques he researched was that they should be applicable by game
developers in state-of-the-art games. He coauthored about 50 scientific articles for
international conferences and journals, half of which are on machine learning and
game AI. He is currently employed as assistant professor at the computer science
department of Maastricht University, The Netherlands.

James Stewart
jms@jmstewart.net

James’s first exposure to the games industry was an internship at Gearbox Software,
where he worked on Brothers-In-Arms: Hell’s Highway. In March 2007, he received a
master’s degree in interactive technology from the Guildhall at Southern Methodist

About the Contributors xxxiii

http://www.psych.ualberta.ca/~mspetch/spetchm.htm

University. James is currently an associate programmer at Stormfront Studios in San
Rafael, California. His home page can be found at http://jmstewart.net.

Nathan Sturtevant
nathanst@gmail.com

Nathan Sturtevant is a postdoctoral researcher for the University of Alberta in
Edmonton, Alberta, where he does research on search algorithms for single-player,
two-player, and multiplayer games. He has authored more than a dozen scientific arti-
cles in these areas and has taught courses on similar topics. Nathan received his B.S. in
electrical engineering and computer science from UC Berkeley and his master’s and
Ph.D. in computer science from UCLA. Nathan spent his college years writing the
popular Macintosh shareware game Dome Wars.

Duane Szafron
duane@cs.ualberta.ca

Duane Szafron is a professor in the Department of Computing Science at the Univer-
sity of Alberta. His research interests are in using programming languages, tools, and
environments to integrate artificial intelligence in computer games. He has a Ph.D. in
applied mathematics from the University of Waterloo.

David Thue
davidthue@gmail.com

David Thue is currently a second year master’s student in computing science at the
University of Alberta, and received his B.S. in computer science with High Honors
from the University of Regina in 2005. He created the PaSSAGE project in the Sum-
mer of 2006 to serve as a basis for his M.S. thesis. His primary research interests
include interactive storytelling, player modeling, dynamic gameplay alteration, and
level-of-detail AI. Secondary interests include natural language generation, graphics,
animation, and audio. Visit his Web site at www.cs.ualberta.ca/~dthue/.

Erik van der Pluijm
erik.van.der.pluijm@gmail.com

Erik van der Pluijm works for a large game company in The Netherlands. The past
four years, he has worked on several projects for both PC and consoles. He is cur-
rently completing his B.S. in artificial intelligence at the University of Amsterdam in
The Netherlands.

Terry Wellmann
terry.wellmann@high-voltage.com

Terry Wellmann has been programming computers since 1983 and has been developing
games professionally for over 10 years at High-Voltage Software, Inc. He was responsi-

xxxiv About the Contributors

http://www.cs.ualberta.ca/~dthue/
http://jmstewart.net

ble for architecting and writing the AI as well as leading the overall development effort
for Microsoft’s NBA Inside Drive franchise on the PC and Xbox. In addition to his work
on basketball, Terry was the lead programmer on All-Star Baseball 2001 for the N64 and
Charlie and the Chocolate Factory for the Xbox, PS2, and GameCube. He holds a com-
puter science degree from Purdue University. In the summer, you can find him playing
baseball in a Chicago-area amateur league and working in his garden. In the fall, you
will find him lurking around the marshes of Minnesota hunting ducks or helping out
on the family farm, and in the winter, you can try to catch him on one of Wisconsin’s
vast network of snowmobile trails.

Baylor Wetzel
baylorw@yahoo.com

Baylor Wetzel is an instructor at Brown College’s Game Design and Development
program, where he is the lead instructor for artificial intelligence. For the two decades
prior to Brown, Baylor held almost every computer job imaginable, from help desk to
architect to entrepreneur. He occasionally speaks at conferences, has been a member
of the International Game Developer Association’s Artificial Intelligence Interface
Standards Committee, and runs the Web site PracticalGameAI.com.

Daniel Wilhelm
dan@dkwilhelm.net

Daniel Wilhelm is a Ph.D. student in computation and neural systems at the Califor-
nia Institute of Technology. He has interdisciplinary interests in AI, neurobiology, psy-
chology, and computer science. A self-taught programmer, Daniel’s passion for
computer game development has continually motivated him to learn and extend his
programming knowledge. He holds a B.S. in computer engineering from Purdue Uni-
versity, and he is a contributor to the open source Fast Artificial Neural Network
(FANN) library.

Steven Woodcock
ferretman@gameai.com

Steven Woodcock’s background in game AI comes from over 20 years of ballistic mis-
sile defense work building massive real-time war games and simulators. He has
worked on a variety of arcade- and PC-based games and irregularly maintains a Web
page dedicated to the subject of game AI at www.gameai.com. He is also the author of
various papers and magazine articles on the subject and has been proud to have both
contributed to and been technical editor for several books in the field, including the
Game Programming Gems and AI Game Programming Wisdom series. Steve lives in the
mountains of Colorado with the lovely Colleen, an indeterminate number of pet fer-
rets, and a basenji that hates squirrels with a passion.

About the Contributors xxxv

http://www.gameai.com
http://PracticalGameAI.com

Fabio Zambetta
fabio@cs.rmit.edu.au

Fabio Zambetta is a lecturer at the School of Computer Science and Information
Technology (RMIT University) where he teaches games programming, games
modding, and computer graphics. His research interests revolve around interactive
storytelling, online virtual worlds, and game AI, and he is particularly keen on multi-
disciplinary projects involving diverse areas of computer science and art. Fabio has
published some 30 papers in conference proceedings, journals, and book chapters on
topics such as facial animation, intelligent agents, embodied conversational agents,
and interactive storytelling in games. He devotes his little spare time to programming
and modding games, and he is currently busy with his Neverwinter Nights 2 module
project, The Two Families. Fabio earned an M.S. and a Ph.D. in computer science,
both from the University of Bari (Italy).

xxxvi About the Contributors

1

S E C T I O N

1
GENERAL WISDOM

This page intentionally left blank

3

1.1

Situationist Game AI
Adam Russell
chronotopia@gmail.com

This article examines the tension in game content production between the system-
atic reduction of specific cases to general rules and the deliberate construction of

unique player experiences. Market and design trends are pushing games toward
hybrid styles that combine these two approaches. However, most work in contempo-
rary game AI is committed to strongly autonomous game agents and, as such, remains
too closely tied to the reduction of specific cases to general rules. A quick review of
related themes in sociology and psychology sets up the last part of the article, explor-
ing the notion of what we call a situationist game AI that is capable of meeting this
hybrid challenge.

Reductionism Versus Constructivism in Game Content

During the production of game content, one section of a game level might require a
highly custom set piece interaction with a group of NPCs (non-player characters).
Most likely, a level designer has authored this content for the purposes of advancing
the game’s story, rather than being created directly by an AI programmer. The author-
ing might be achieved by describing this scene to the general AI within its universal
representations—for example, by increasing alertness levels, enabling stealth mode, or
applying a faction change so that the player will become perceived as an enemy. Alter-
natively, the level designer might choose to temporarily disable and replace the NPCs’
autonomous AI. The NPCs could be forced into playing back a scripted sequence of
specific animations. However, neither of these approaches is completely satisfactory—
we are forced to choose between a loss of either a unique story moment on the one
hand or a loss of consistent game mechanics on the other.

The example choice described previously is symptomatic of a recurring design
question in engineering the behavior of game agents. Time and again, game AI devel-
opers are faced with this kind of choice. In this article, we refer to this as a choice
between the reductionist approach and the constructivist approach, as summarized in
Table 1.1.1.

Table 1.1.1 Key Characteristics of Reductionist and Constructivist Approaches

Reductionist Constructivist

Types Few types of entity Lots of types of entity
Instances Many repeated instances Few occurrences of each type
Rules General rules Specific rules
Control Local control Global control

In a reductionist approach, the game world is populated by many repeated instances
of a small set of types, for example, unit types in an RTS, building zones in a tycoon sim,
or soldier types in a squad-based shooter. These types are governed by rules with very
general application, which form a great part of what is normally called “the game
mechanics,” such as general rules about unit movement rates, supply requirements,
health and armor, damage and ammo, and so on. However, although these rules have
great generality and often dictate behavior across the entire game, the locus of control
required to apply the rules is extremely local. The system does not need to know the cur-
rent state of other units or the player’s progress through the current story mission in order
to apply attrition damage to a building under siege. The rule can be applied by looking at
a very small part of the whole simulation, often just the unit in question, its immediate
location, and perhaps one other unit that it is paired up with in a local interaction.

By contrast, a constructivist approach to the production of game content results
in a game world that is populated by lots of different types of entities, with few occur-
rences of each type. Many of the types will be tailored to a particular section of the
game. There might even only be one instance of a certain type in the game, for exam-
ple, a boss monster with unique combat AI and a custom animation rig playing hand-
animated motion sequences that are only seen in that one encounter. The rules
governing these numerous types of entity are likely to be highly specific because they
were defined for the particular scenario where that particular custom-made type
appears and performs its specific function. These entities are rarely completely bound
by the general rules that determine the behavior of units in a reductionist approach.
Finally, note that although the rules applying to these constructed entities and scenar-
ios are extremely specific to those contexts, the locus of control required to apply the
rules is typically highly global. The choreography of the particular scene where our
hypothetical boss monster appears is a carefully scripted interplay between every
aspect of the game, from camera, sound, and music, to the behavior and incidental
speech of every member of the player’s squad, everything must be tightly coordinated
together to achieve the desired dramatic effect.

Strengths and Weaknesses of the Two Approaches

Of course, the opposing approaches outlined previously are rarely pursued in isolation.
There will almost always be a little of both styles in any game project. The question is
how much of each, and how do they interact? Can we say that one is better for games

4 Section 1 General Wisdom

than the other? Unsurprisingly, in practice, both approaches have strengths and weak-
nesses and must be assessed relative to the context of a particular game project, as sum-
marized in Table 1.1.2.

Table 1.1.2 Strengths and Weaknesses of Reductionist and Constructivist Approaches

Reductionist Constructivist

Strengths Good scalability Supports narrative
Supports player creativity Allows cinematic presentation
Suggests open-endedness Promotes richness

Weaknesses Tends to homogenize Poor scalability
Hard to control Limits replayability

A reductionist approach has various powerful strengths that make it very attrac-
tive. First and foremost is that it scales extremely well. After a small number of types
are working, and the rules that control them are ticking away, it is pretty easy to man-
ufacture large amounts of content. To take an extreme example, when David Braben
and Ian Bell presented an early version of the legendary space sim Elite to their pub-
lisher Acornsoft, they boasted that the game could deliver nearly three hundred thou-
sand billion different galaxies for the player to explore, thanks to each one being
entirely procedurally generated from a single 48-bit seed! Wisely, Acornsoft insisted
that the game limit itself to only eight hand-picked galaxies from the billions available
to make them feel more deliberately constructed [Spufford03]. A rather more perti-
nent strength in today’s game design climate is that reductionist approaches are good
at supporting player creativity. As Harvey Smith so persuasively argued after his expe-
riences designing on Ion Storm’s Deus Ex, the application of consistent general rules
creates the prospect of players inventing strategies the designers had not envisaged,
and the exploration of the large and consistent space of possibilities created by the
rules is empowering for players [Smith02]. Also, this quality of emergent gameplay
creates a strong suggestion of open-endedness to players, a sense that they could keep
playing around in the sandbox almost indefinitely and still come up with new ideas.

Despite that, the dreams of bottom-up emergence associated with reductionist
approaches are typically disappointing in practice. After a while, playing around with
the same pieces subject to the same rules, the game can start to feel a bit repetitive.
There is a general tendency among heavily reductionist games toward homogeneity of
content. Although each land in Peter Molyneux’s seminal god-game Populous was a
unique terrain configuration and a unique starting point for the player and his oppo-
nent, at the end of the day, every land presented the same elements in different
arrangements. Once developed, the same optimal strategies could be used again and
again with the same success. Much less visible to the players but of great concern to
the developers is that reductionist approaches can be hard for the designers to control.

1.1 Situationist Game AI 5

6 Section 1 General Wisdom

Generally this issue arises when a heavily reductionist game needs to include an ele-
ment of constructivism, which, as you will see shortly, is very likely to occur.

The constructivist approach has contrasting strengths and weaknesses. Its greatest
advantage over simulation is that it supports the delivery of narrative. As argued pas-
sionately by members of Joseph Bates’ now-defunct Oz project at Carnegie Mellon
University, both engaging drama and believable characters can only be achieved
through construction of unique variations and highly specific traits [Mateas97].
Character-driven dramas do not explicitly strive toward the communication of univer-
sal rules and the reduction of all circumstances to instances of generic types, even
though they might well employ such techniques in their development. On a related
and more specific theme, the constructivist approach supports the developer in
achieving a cinematic presentation of game content. To plan out the camerawork in a
scene, the cinematics specialists on a development team need to know that the scene
is likely to take place, what happens in the scene, where the player will arrive in the
space, the positions and behavior of other protagonists/antagonists in the scene, and
so on. This goes hand in hand with the earlier example of the boss monster encounter,
a classic case where even heavily reductionist action games will resort to construc-
tivism. Overall, the constructivist approach promotes richness in game content
because individual areas or characters can have highly tailored work done on them to
make them unique and memorable.

The downsides of constructivism should be well known to any game developer.
The need to hand craft all this unique content results in very poor scalability. For
example, who has not heard someone say, “if you want another 8 hours of gameplay,
we are going to need another 30 content creators on the team or another 9 months of
development.” This is a clear sign of a heavily constructivist game. An additional 9
months of development on a reductionist title might give the rule set that extra depth
and balance providing 50% greater longevity to the existing world content. This
might lead players to stick with the same content for another 8 hours of nonlinear
interaction. But on a strongly constructivist title, a linear model of content produc-
tion is usually allied to a linear narrative and an overall player experience of “working
through” the various different bits of content the developers have set up for them.
Intimately related to this issue is that constructivist approaches tend to limit the
replayability of game content. Although reductionist approaches tend to homogenize
the elements encountered, they also promote variation on repeated playthroughs of
the same content. Constructivist game content, on the other hand, promotes the
delivery of unique experiences across different sections of a single playthrough but
tends to limit variation across repeated playthroughs of the same section because each
unique experience is always the same.

The Drive Toward a Hybrid Approach

If every game could focus on one of these approaches to the exclusion of the other, life
would be a lot simpler for the development team. Each design could play to the

strengths of the content style, playing down the accompanying weaknesses by a wise
choice of subject matter. However, there are many indications that this kind of project
is no longer a viable economic proposition in today’s marketplace. Certainly this is
true for triple-A titles on the latest generation of consoles.

The first indication of a general trend toward hybrid approaches that mix strong
reductionism with strong constructivism is an overall erosion of extremes at both ends
of the spectrum. Even previous extremely reductionist simulation games are now trying
to provide more authored structures for their players to work through. For example,
consider the addition of “wants and fears” to The Sims 2, which help the player work
their Sims through little micro-narratives that are built on top of the general rules of
basic desire satisfaction. At the other extreme, there seems little room in today’s market-
place for almost exclusively constructivist game content such as found in the traditional
point-and-click adventure genre. Those adventure games that survive have had to make
concessions to a reductionist style of content, for example, the addition of “stealth”
mechanics to sections of Revolution’s Broken Sword 3.

Another fairly recent force behind this trend is the huge influence of the Grand
Theft Auto franchise, also known as “the GTA bandwagon.” The massive success in
2001 of Rockstar North’s third title in the series cast a five-year long shadow over the
rest of triple-A game development. This sometimes produced the feeling that every
other title under the sun, whatever its fundamental genre, was trying to offer a sand-
box gameworld combined with nonlinear mission-based narratives. This has pushed
both players and developers toward a jack-of-all-trades attitude, where individual
titles are expected to cover a broad range of gameplay styles in one package. Develop-
ers are then forced to employ a mixture of both reductionism and constructivism to
produce the content.

Last but not least, and this goes hand in hand with the GTA bandwagon, is the
trend in marketing and PR blurbs that make statements such as “become the hero in
a cinematic action adventure” alongside statements such as “immerse yourself in a
fully interactive world.” These statements sound great, but what do they really mean
for developers? Making players feel like a movie hero requires a heavy dose of con-
structivism, but helping players to immerse themselves in a world of interactivity
requires a significant degree of reductionism. Only reductionist simulations can give
players that sense of a complete world, a closed loop, and a lack of artificial bound-
aries. The result is that many of today’s front-of-house blockbuster games have settled
on what we might almost call a new game genre, the cinematic action-adventure RPG.
Games of this type cross many previously well-defined genre boundaries and fuse dis-
parate elements together in a new blend of design styles that demand an impressive
mixture of constructivism and reductionism from the developers.

The Failure of Reductionism in Game AI

As touched on at the beginning of this article, most of the work that is viewed as “progres-
sive” by the game AI community (and most of the material collected in this volume)

1.1 Situationist Game AI 7

involves increasing the individual self-sufficiency of game agents in one way or another.
Whether it be by adding a search-based planner to action selection, enforcing sensory
honesty in game world representation, or catering for dynamic physics objects in the
pathfinding system, the general interest amongst AI developers tends to be toward mod-
els with greater depth, realism, and cognitive sophistication in themselves, without refer-
ence to the rest of the game content. In the simplest instance of this view of game AI,
imagine that you just had one type of entity (a game NPC) that had sufficiently deep and
complex general rules (a cognitive model), and then the designers could just drop a
bunch of these NPCs into the game world and they would be interesting to interact with.
This emphasis on strong autonomy in game AI is a particularly advanced and complex
form of reductionism.

However, as was argued in the previous section, a purely reductionist style cannot be
the answer to the challenges of today’s hybrid game styles. Players expect more and more
realism, interactivity, and consistency in game agents, but they also expect more and
more tightly authored dramatic experiences at the same time. This puts game AI develop-
ers in a very difficult position. Of course, all games that include some degree of
autonomous AI behavior along with some amount of narrative content (i.e., most games
in today’s market) are already confronting this issue and coming up with some kind of
solution. The problem is that most of these solutions are actually avoiding the issue.

The most common response is simply to keep the two aspects as far apart as pos-
sible, with heavily reductionist gameplay leading to carefully constructed but entirely
noninteractive cutscenes, followed by more reductionist gameplay. This is often better
disguised by using a successive alternation in styles of game space, where some contain
heavy emphasis on reductionism, and others contain a heavy emphasis on construc-
tivism, with each type of space very light on the other approach to content. This solu-
tion was used to great effect in the original Half Life 2, where combat zones would be
interrupted by story sections that involved carefully choreographed character interac-
tions but no combat, such as the checkpoints on the train out of City 17.

The biggest problem with this kind of simple separation is that if the designers
ever want the same characters to appear in the reductionist environments and in the
constructivist environments, it becomes very difficult to ensure consistency between
whatever state the “reduced” characters might be in and the state they are shown to be
in during the constructed content. Grand Theft Auto 3 solved this issue by allowing
cutscenes to take place in the game world as long as they only involve simple visual
changes such as the vehicle driven, weapons held, and so on, and by keeping all of the
mission-delivering story characters confined to cutscenes that take place outside the
game world, such as Donald Love’s rooftop apartment. The only exception is in-game
appearances in missions that concluded with the story character’s death.

The Need for a Situationist Perspective

If developers are to meet the challenge of hybrid game content head-on, rather than
just coming up with various ways of working around it, they must reconsider com-

8 Section 1 General Wisdom

mitments to both strongly autonomous agents and to tightly preconceived narrative
experiences. Game AI developers helping to deliver hybrid content should not be ask-
ing “Is this agent interesting if I play with it in an empty test level?” but rather “Can
we make seamless transitions between scripted and unscripted behavior? Can we
choreograph richly interactive scenes? Can the AI coordinate its actions with those of
other agents?”

This change of emphasis calls into question much of the application of work in
the academic AI field to our own work in game AI. Academic theories and techniques
had no connection to choreography and story-level orchestration of behavior, so why
should their cognitive models be relevant to generating that kind of behavior? In fact,
the whole program of cognitive science that underpins most work in academic AI is
founded on a reductionist approach. To meet the challenge, we must search for per-
spectives on behavior that are different from those found in the academic AI field. We
need to find new ways of thinking about our game characters so that they are recon-
ceived from the ground up, not primarily to function as autonomous individuals.
Instead, they should function under an organizing principle that can potentially span
the entire game world at any given state in the narrative. Somehow, we must allow for
both the creative player expression and the sense of open-endedness that reductionism
supports, and for the accompanying scalability, consistency, and potential for reuse
that reductionist content can provide.

Through a quick cross-disciplinary review covering related themes in sociology
and psychology, you will see how these other fields have encountered similar problems
with reductionist ways of thinking and how certain thinkers in those fields have
already laid paths toward an admission of constructivist elements into the theoretical
framework. This review will help frame the concluding discussion of examples of
hybrid approaches to building agent behaviors in current game AI.

Situationism in Sociology

As it turns out, sociologists have been wrestling with a very similar problem to this
reductionist/constructivist dilemma for almost as long as their field has existed. One
of the fundamental debates in sociological theory regards whether the structure of
society should be viewed as the voluntary creation of a collaboration of free-willed
individual subjects, or whether the apparently free choices made by each individual
member of society should be viewed as primarily determined by the existing struc-
tures of the society in which they exist. This is known as the “agency/structure”
debate, and it has several parallels with our own. It is also sometimes known among
sociologists as the “individualism/holism” debate, highlighting the parallels with our
tension between global and local control.

Sociologists who see agency as the primary force in society argue that the individ-
ual’s wants precede the society that he helps to create. Each individual is viewed as
freely making the same choice every day to keep maintaining his society. As such, all
subjects are essentially the same wherever in the world and even whenever in history

1.1 Situationist Game AI 9

they happen to find themselves. The subjects could always potentially choose to
reconstruct their society along different lines that might be found in another time or
place. This is analogous to the reductionist approach with its homogenizing tendency
to reduce all characters to some general model and its highly local locus of control.

Those in the opposing camp see structure as the primary force in society. They
argue that the existing social structure precedes the individual subjects who are con-
structed within it. Thus society is maintained because the hopes and fears of each sub-
ject implicitly conform to the overall values of the society at large. As a result, every
individual is a unique product of the time and place in which they were brought up.
This is analogous to a constructivist approach with its profusion of different types
with small numbers of instances of each, its support for truly unique content, its pro-
motion of richness and diversity, and its highly global locus of control.

Bourdieu’s Habitus

The French sociologist Pierre Bourdieu built a “middle way” in the agency/structure
debate by arguing that society constructs individual agents to the extent that they
inhabit a system of dispositions toward certain forms of practice. He employed the
term habitus to refer to this system, emphasizing the many wordless and everyday
aspects of human social behavior that in many cases elude conscious awareness, such
as styles of dress, patterns of speech, accents, posture, and so on. We might say to an
extent that the habitus is the agent’s “way of being” or “way of seeing” in the social
world. Crucially, the fundamental role played by this habitus in structuring the minu-
tiae of everyday behavior is not meant to imply that social agents are subjected to any
kind of closed rule that limits their capacity for free creative action. Instead, Bourdieu
insisted that the system of dispositions forms a generative framework within which
agents are free to act.

Situationism in Psychology

The young field of psychology was dominated for a time in the 1940s by B.F. Skinner’s
radical behaviorism, which rejected the existence of internal mental states. However,
this was an almost contradictory position for a field whose aim was to study minds,
and it could not last. The solution to this tension was found through analogy with the
very new field of computer science in the 1950s, which had developed its vocabulary
beyond the study of mere circuitry, valves, and logic gates and now spoke confidently
of the existence of data and programs inside the machine. These that had no physical
substance but all agreed were entirely proper subjects of scientific enquiry. The infor-
mation processing analogy viewed the brain as the hardware, mental processes as the
software, sensory stimulation as the inputs, and observable human behavior as the out-
puts. This gave psychologists an escape route from radical behaviorism and made it
possible to admit internal mental states back into experimental science.

10 Section 1 General Wisdom

However, although it legitimized the experimental study of internal mental
processes, the information processing view only did so under several crucial assump-
tions. The first assumption was that mental processes could be broken up into inde-
pendent modular components (programs) and that these modules interacted by
passing information. This information was assumed to be separable into constituent
tokens that could be stored independently of the processes that manipulated them
(data). As a result of these assumptions, the sensory processes (inputs) were conceived
as being only very indirectly related to the separate motor control processes (outputs)
of the system. The function of sensory processes was confined to the construction of
internal mental representations of the external environment, so that these tokenized
representations could then be stored and manipulated by the independent mental
processes. These assumptions can be summarized philosophically as cognitivism.

These assumptions in both cognitive psychology and in its sister discipline of
classical AI have come under increasing assault over the past 20 years. Game AI has
flirted in recent years with certain aspects of the nouvelle AI that resulted from this
debate. However, there has been little awareness or acceptance in that field of the gen-
eral failure of cognitivism as a principled approach to the generation of character
behavior. If anything, the arrival of another console generation with further increased
levels of visual fidelity in character models and the accompanying vogue for realistic
game settings has given game AI a renewed appetite for old-fashioned cognitivism in
our attempts to control these complex physical simulations of characters, despite the
ever-growing emphasis on constructivism in level design.

Varela’s Enactivism

The 1980s saw a growing alternative to cognitivism led by the Chilean biologist and
philosopher Francisco Varela in what he called the enactivist perspective. This approach,
also sometimes referred to as embodied cognitive science, takes particular issue with the
cognitivists’ assumed independence of sensory and motor tasks. Varela and others were
aware of a growing body of evidence demonstrating the essential role of motor control
in the development of perceptual skills and in the resolution of sensory ambiguities.
This led to the fundamental claim that both sensory and motor processes could only be
understood in the light of closed-loop sensory-motor coordinations. Putting it another
way, these theorists claimed that there was no such thing as perception or action in
themselves, but only enactions, which are fully embodied coordination tasks such as
walking or grasping.

Situationism in Game AI

Looking back over key responses to the strongly reductionist views in both psychol-
ogy and sociology, we can recognize a few overall themes. Sensory processes are not
task-neutral. Bodily motion is highly contextual. Local behavior is subject to multiple
simultaneous organizing principles that are not intrinsic to the agent in question.

1.1 Situationist Game AI 11

These principles are what we call situations. An approach that takes all of these themes
seriously is called a situationist game AI.

Contextual Animation

The situationist theme with the most immediate relevance to the challenges of con-
trolling characters on the latest generation of consoles is the demand that all bodily
actions be fully situated in the context that they take place. This means going beyond
the traditional approach to interactive character animation, which is only “contex-
tual” to the extent of attempting to choose the right time at which to play the appro-
priate predefined or canned movement. In the animation of a strongly situated
character, there should be no such thing as “the walk cycle,” “the lever pull,” or “the
ladder climb,” but instead only “this walk here,” “pulling this lever,” and “climbing
this ladder,” with every unique action motion being situated in a unique combination
of dynamic features, such as the exact position of the interaction object, the entry
speed and posture of the agent, the emotional and physical state of the character, and
so on.

One of the most readily achievable forms of contextual animation is Rose’s verb-
adverb approach [Rose98], in which a set of prototypical examples of one particular
motion verb (e.g., waving) are scored offline against multiple adverbial parameters
(e.g., energy and height of the waving), and then unique instances of the verb motion
are generated at runtime by weighted blending of the example motion clips (e.g., a
low energetic wave). This verb-adverb motion model was the basis of the highly influ-
ential c4 architecture presented by MIT’s synthetic characters group at the GDC in
2001 [Burke01, Downie01].

Useful though they are, adverbial models remain tied to a library of offline motion
clips, which severely limits their potential to deliver strongly situated character motions.
Far more ambitious are approaches that attempt true motion generation, such as Ken
Perlin’s Improv [Perlin96] and more recently the solutions provided by Torsten Reil’s
company NaturalMotion. It remains to be seen how far these techniques can take us, and
worth noting that each motion generator has to be painstakingly constructed/trained for
the performance of a specific preconceived motor task (e.g., putting hands out to break
a fall). The key feature of these methods for this discussion is that although the task is
preconceived, the particular implementation of the motion is highly situational.

Ecological Perception

The next promising area for our proposed shift toward a situationist model is one that
has already seen a lot of interest in recent years under various different banners, which
we refer to collectively as ecological perception in honor of its theoretical heritage in the
work of J. J. Gibson [Gibson79]. These approaches are of particular interest in this
discussion because they transcend two of the most basic reductionist assumptions.
The first assumption is that agents’ sensory representations are task-neutral descriptions
of their objective physical environment, which could potentially be passed between

12 Section 1 General Wisdom

any number of independent internal processes. The second assumption is that agents
carry around their own self-contained behaviors (e.g., patrolling, searching, attacking,
idling), which they attempt to apply to whatever world they find themselves in.

Any method of constructing task-dependent spatial representations at runtime
can be described as a form of dynamic terrain analysis. The most common instance of
this in current game AI is on-the-fly identification of spatial locations for the applica-
tion of combat tactics, for example, by selecting from a list of potential positions
using a task-dependent evaluation function [vanderSterren01] or by iterating some
kind of finite-element domain model to a steady state to identify semantically signifi-
cant features, such as zero-point crossings, a technique better known as influence
mapping [Tozour01, Woodcock02].

Another increasingly common form of ecological perception found in today’s
game AI is the movement of specific task knowledge out of the agents and into entities
found in the environment, also known as the smart objects or smart terrain approach.
Will Wright’s monumentally successful franchise The Sims is by far the best-known
example of this strategy, although it has roots in earlier academic models of synthetic
characters [Kallmann99]. A slight generalization of smart object approach is the gen-
eral use of semantic annotations in the game environment, such as social ownership
relations [Orkin04], task-specific grouping of positions [Butcher02], or embedded
narrative [Doyle98].

For a much more in-depth discussion of the conceptual motivations and practical
applications of ecological perception in game AI, refer to the article “Turning Spaces
into Places” in this same volume [Russell08].

Situation Layering

Perhaps the greatest technical challenge in our proposed shift toward situationist
game AI is the demand to stop separating behaviors into mutually exclusive agent
states and instead provide support for layering and parallelism of action. Being able to
play multiple simultaneous animations on one skeleton, such as running and aiming
at the same time, is only the beginning of answering this challenge. The real complex-
ity comes when the AI must consider what multiple animations to play and when to
play them. Most implementations of parallel action in games to date have depended
on assumptions of orthogonality between the separate tasks, but this is not enough.
What is really needed are better models of adaptive coordination between conflicting
situations, such as aiming a gun while opening a door, or performing full-body con-
versation animations while navigating through an environment.

This problem becomes even more acute when considering situations that span
multiple agents. How do we coordinate all the interdependent body motions in a
sophisticated performance of a multicharacter conversation while each agent might
simultaneously be involved in any number of parallel situations, such as controlling a
vehicle or moving to catch a projectile? Although most games tackle these problems to

1.1 Situationist Game AI 13

some extent, there is surprisingly little published discussion of formal models of
action layering and concurrency in game AI.

Turning to academic models, a number of useful precedents might be fruitfully
employed in constructing a situationist game AI. As is becoming common in game
AI, Cremer’s HCSM framework employed hierarchical finite state machines, but it
also supported concurrent state activation and competition over conflicting demands
for limited resources [Cremer95]. Possibly the most sophisticated example of parallel
action sequencing on a single character model has been Lamarche and Donikian’s
HPTS framework, which includes a priority system and resource annotations on the
nodes of concurrent state machines to enable intelligent adaptation of parallel tasks.
This was demonstrated in their example of an agent drinking coffee and smoking a
cigarette while reading a newspaper [Lamarche01]. If this formalism could be
extended to multiagent coordination, then it would be an incredibly powerful general
framework for authoring game situations, allowing designers to script specific scenes
while still providing a space for the enforcement of general rules about character
behavior.

Conclusion

Contemporary game AI needs to relax its commitment to autonomous game agents.
The notion of a “situationist” game AI can help to organize the behavior of agents in
collaboration with their narrative environment. Through recognizing situationism as
a distinct design style in game AI architectures, we can learn to distinguish it from
simple scripting approaches and build on its strengths.

References

[Burke01] Burke, Robert, et al., “Creature-Smarts: The Art and Architecture of a Vir-
tual Brain.” Proceedings of the Game Developers Conference, (2001): pp. 147–166.

[Butcher02] Butcher, Chris and Jaime Griesemer, “The Illusion of Intelligence.”
Proceedings of the Game Developers Conference, (2002), available online at
http://halo.bungie.org/misc/gdc.2002.haloai/talk.html?page=1.

[Cremer95] Cremer, James, Joseph Kearney, and Yiannis Papelis, “HCSM: A Frame-
work for Behavior and Scenario Control in Virtual Environments.” ACM Trans-
actions on Modeling and Computer Simulation, Vol. 5, no.3, (July 1995): pp.
242–267.

[Downie01] Downie, Marc, “Behavior, Animation and Music: The Music and Move-
ment of Synthetic Characters.” MSc Thesis, January 2001.

[Doyle98] Doyle, Patrick, and Barbara Hayes-Roth, “Agents in Annotated Worlds.”
Proceedings of the Second International Conference on Autonomous Agents, (1998):
pp. 173–180.

[Gibson79] Gibson, James J., The Ecological Approach to Visual Perception, Houghton
Mifflin, 1979.

14 Section 1 General Wisdom

http://halo.bungie.org/misc/gdc.2002.haloai/talk.html?page=1

[Kallmann99] Kallmann, Marcelo, and Daniel Thalmann, “A Behavioral Interface to
Simulate Agent-Object Interactions in Real Time.” Proceedings of Computer Ani-
mation, (1999): pp138–146.

[Lamarche01] Lamarche, F. et al., “The Orchestration of Behaviours Using Resources
and Priority Levels.” Computer Animation and Simulation, (Sep 2001): pp.
171–182.

[Mateas97] Mateas, Michael, “An Oz-Centric Review of Interactive Drama and
Believable Agents.” Technical Report CMU-CS-97-156, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA. June 1997.

[Mateas00] Mateas, Michael, “Towards Integrating Plot and Character for Interactive
Drama.” Working notes of the Social Intelligent Agents: The Human in the Loop
Symposium, AAAI Fall Symposium Series, 2000.

[Orkin04] Orkin, Jeff, “Constraining Autonomous Character Behaviour with
Human Concepts.” AI Game Programming Wisdom 2. Charles River Media,
2004.

[Perlin96] Perlin, Ken and Athomas Goldberg, “Improv: A System for Scripting
Interactive Actors in Virtual Worlds.” Computer Graphics (SIGGRAPH 1996):
pp. 205–216

[Rose98] Rose, Charles et al., “Verbs and Adverbs: Multidimensional Motion Inter-
polation Using Radial Basis Functions.” IEEE Computer Graphics and Applica-
tions, Vol. 18, No.5, (Sep/Oct 1998): pp. 32–41

[Russell08] Russell, Adam, “Turning Spaces into Places.” AI Game Programming Wis-
dom 4. Charles River Media, 2008.

[Smith02] Smith, Harvey, “Systemic Level Design for Emergent Gameplay.” Game
Developers Conference Europe, (2002), available online at http://www.planetdeusex.
com/witchboy/systemic_ld.zip.

[Spufford03] Spufford, Francis, “Masters of Their Universe.” Available online at
http://www.guardian.co.uk/weekend/story/0,,1064107,00.html, October 2003.

[Tozour01] Tozour, Paul, “Influence Mapping.” Game Programming Gems 2. Charles
River Media, 2001.

[vanderSterren01] van der Sterren, William, “Terrain Reasoning for 3D Action
Games.” Available online at http://www.gamasutra.com/features/20010912/ster-
ren_01.htm, 2001.

[Woodcock02] Woodcock, Steve, “Recognizing Strategic Dispositions: Engaging the
Enemy.” AI Game Programming Wisdom. Charles River Media, 2002.

1.1 Situationist Game AI 15

http://www.planetdeusex.com/witchboy/systemic_ld.zip
http://www.planetdeusex.com/witchboy/systemic_ld.zip
http://www.guardian.co.uk/weekend/story/0,,1064107,00.html
http://www.gamasutra.com/features/20010912/sterren_01.htm
http://www.gamasutra.com/features/20010912/sterren_01.htm

This page intentionally left blank

17

1.2

Artificial Personality:
A Personal Approach to AI
Benjamin Ellinger—Microsoft
benjamin.ellinger@microsoft.com

Much of the discussion about AI for games revolves around algorithms. Algorithms
such as pathfinding, threat maps, flocking, neural networks, and so on are all

important. Implementing, optimizing, and applying these algorithms is the primary
work that we do. But what is the ultimate purpose of these algorithms? How do we
ensure that these algorithms not only work correctly and efficiently but also engage
and delight the player?

The primary goal when writing game AI is to pull players into the game so that they
stop thinking about it as a game. Just like good animation and good physics, good game
AI should make the virtual reality of the game seem deeper, richer, and more engaging
(in terms of the game’s reality, not the real world). This can be achieved by shifting focus
away from creating AI and moving it toward creating artificial personality.

After defining what artificial personality actually is and how it is created through
the use of personality archetypes, this article will go over some sample archetypes that
can be applied to many types of characters. This is followed by a case study of a Texas
Hold’em game that used the artificial personality approach and a discussion of how
other possible approaches either supplement or conflict with this one.

What Is Artificial Personality?

Artificial personality emerges when AI algorithms are presented in a way that allows
the behavior of virtual characters to be easily interpreted as expressing personality
archetypes. People are accustomed to interacting and engaging with personalities, not
with abstract “intelligences.” When presented with a personality (even an artificial
one), the player will project motivations, desires, and emotions onto any game behav-
iors. This encourages a style of play that revolves around understanding and exploit-
ing the personalities in the game.

For most players, this is a much more satisfying and immersive experience than
mastery of game mechanics and tactics alone. Defeating an efficient optimization algo-
rithm is not what most players are interested in. Players do not think, “Fascinating—it
appears that applying reactive armor to a heavy tank results in a 4.52% increase in

survivability for only a 2.36% increase in production costs.” Most would much rather
engage with a human-like personality; “Rommel is brilliant, but he can never resist the
opportunity for a bold, preemptive strike—which will be his downfall!”

Artificial personality is not an algorithm and is not created by discarding tradi-
tional AI algorithms. Any combination of traditional AI algorithms can be used as
tools in the process of creating artificial personality. When those tools are used to create
a set of clean, clear, and appropriate personality archetypes for a game, then that game
will have artificial personality.

Personality Archetypes

A personality archetype is a clear, bold, and consistent set of behaviors that a player can
easily identify with a single word. Archetypes are painted in bold strokes, not in sub-
tle details. Personalities such as “the coward,” “the defender,” and “the psycho” are
archetypes. Finer distinctions, such as “the lonely coward,” “the jovial defender,” and
“the playful psycho” are not really archetypes and should be avoided for purposes of
game behavior. These finer distinctions are best left for areas such as character back-
grounds, storytelling, and dialogue.

Broad and Bold

The most important but easy-to-forget aspect of personality archetypes is that they
must be painted with broad, bold strokes! It is usually a mistake to add lots of clever,
subtle nuances. The player will fill in subtle behaviors, even if they are not actually
there. Each character’s primary behaviors must be very easy to identify so that the
player can recognize the character’s archetype.

It is almost impossible to overdo this. In fact, the game should usually just directly
tell the player what the archetype of each character is. Even when a game is this direct,
many players will be slow to realize that each character’s behaviors are actually tied
directly to their archetypes. This is because many players expect the characters to
behave like a computer, not like a person. Because most players are not looking for
these behaviors, the game must shout to be heard.

The only way to tell if a game’s archetypes are easy enough to identify (even if the
game is directly telling the player) is to observe completely new players who are given
no help or clues of any kind. If they can see what is going on, then the game is being
direct enough. But anyone who has any knowledge that there are multiple AI types in
the game is not a valid subject for this test.

It is tempting to believe that figuring out a character’s archetype is part of the fun
of the game. Usually, this will only be true if figuring out archetypes is the primary
thing the game is about. If this is attempted, this aspect of the game must be tested
with brand-new testers throughout the game’s development. The game will also need
to make it very clear that figuring out the personality type of each character is some-
thing the player needs to do to be successful in the game.

18 Section 1 General Wisdom

Minimize Random Behaviors

Although many games make good use of randomness, random (or even apparently
random) behaviors should be minimized as much as possible. Random behaviors
make it difficult to identify archetypes and predict how a character will behave. Ran-
domness is often used to make an AI more difficult to predict (and therefore more dif-
ficult to defeat), but this is rarely enjoyable for the average player.

A better approach is to have a given archetype behave in a clever but predictable
way. After the player has figured out what a character is doing, winning is just a matter of
figuring out how to counter the character’s behavior. If the character switches tactics,
especially if it does so at random, the average player will often become frustrated. The
player’s carefully planned counter-tactics are now pointless. Players want to win and want
to feel that they won through skill or planning, not just through luck or persistence.

For example, a game might have an archetype that runs away half the time and
fights the other half of the time when attacked. Or the odds could be based on a
morale statistic or some other data. But all the average player knows is that sometimes
it runs, and sometimes it does not. Because players cannot predict how the character
will behave, the character’s behavior cannot really be used to defeat it. But if the same
character always runs away when outnumbered and always fights otherwise, that is
something players can see and develop tactics around.

Randomly switching between personality archetypes for a single character is
another common mistake. This will quickly convince players that these characters just
behave randomly and have no archetypes at all. Players will not be able to tell that a
character switched archetypes unless the game makes it incredibly obvious, with both
visual and audio reinforcement, and does it in a way that makes sense in the context
of the game (a mind control spell, a berserker potion, etc.).

This does not mean that randomness should never be used in a game’s AI, of
course. An aggressive AI might always build attack units first but randomly select
among air, ground, or sea units. Just make sure any randomness does not obscure the
AI’s personality.

Reinforce the Archetypes

Be sure to make the archetypes in the game clearly different. Subtle differences between
archetypes will be perceived as random behavior by players and will dilute the power of
both archetypes. If each archetype is made as unique as possible, this will reinforce each
one in the player’s mind. This becomes difficult with more than 8 to 10 archetypes.
Staying well under this limit meshes nicely with the number of archetypes players can
keep track of.

Most players will have difficulty keeping more than 4 to 6 different archetypes in
mind at the same time. More than 6 should only be considered if it really adds a lot to
the game. More than a dozen is pointless—it would be better to keep the best 12 and
discard the rest. The quality of a game’s archetypes is always more important than the
quantity, so do not keep weak archetypes in a game just to “fill out” a number of slots.

1.2 Artificial Personality: A Personal Approach to AI 19

Archetypes should also be reinforced at every opportunity by the art style, anima-
tion, audio, dialogue, story, and so on. If all of these elements for a given character are
specifically designed to match the character’s archetype, it will be almost impossible
for the player to forget which character has which personality. This will also bring the
characters, story, and entire game to life in a way that behavior alone cannot.

It is especially important to have an audio cue when a character makes an impor-
tant decision based on its archetype. When the coward decides to run away, it should
yell: “Run away!” When the defender decides to rejoin his comrades, it should yell:
“Regroup!” Directly tell the player what characters are thinking or doing—that is how
the player will figure out when and how to use their personalities against them.

Sample Archetypes

There are an infinite variety of archetypes and names for archetypes, but there are some
moderately generic core types that can be applied to many games. The following list
and descriptions are not meant to be exhaustive. They are just a starting point—a small
sample of basic archetypes. Of course, a given archetype can be applied to an individ-
ual unit in a strategy game, a “bot” in an action game, the commander of an entire
military, a player at a card table, or a more traditional character in a role-playing game.

The Coward
This archetype is way too cautious. It always runs away when outnumbered and only
fights when the odds are very favorable or when cornered. It never takes chances or
bluffs and is very predictable. The coward will surrender in bad situations, if possible,
and might even switch sides.

The Defender
This archetype is not aggressive but will always fight back when attacked. The
defender prefers to stick with other characters as much as possible, so they can protect
each other (even when this is not the best tactical choice). The defender will retreat if
necessary but will never surrender or leave anyone behind. In a strategy game, it will
build too many defensive units and not enough offensive units.

The Psycho
This archetype is always aggressive and will fight at any time, even against impossible
odds. The psycho will act alone and unprotected, often not waiting for reinforce-
ments or backup. It takes crazy chances and make foolish bluffs. The psycho will
never retreat, never surrender, and might even destroy itself to take out a few more
enemies. In a strategy game, it will build too many offensive units and not enough
defensive units.

The Champion
This archetype does things by the book. It reacts to what the opponent does in solid
tactical fashion but does not do anything clever. Generally, the champion does not
take chances but will occasionally bluff just to keep opponents off balance. The cham-

20 Section 1 General Wisdom

pion retreats when necessary but attacks aggressively when the opportunity is there.
For most games, this is the “smartest” archetype needed.

The Idiot
This archetype makes all the mistakes a raw beginner would. It builds the wrong types
of units, does not react to nearby units being destroyed, bets foolish amounts, and is
easily bluffed or tricked. It might not even know the layout of a level or the victory
conditions. The idiot’s actions are all based on short-term thinking—it does not really
have a strategy at all.

The Genius
This archetype never makes a basic mistake and always fights efficiently. It lays traps
for other players. The genius performs elaborate maneuvers and feints designed to
confuse opponents. It anticipates the opponent’s reaction to what it is doing and plans
accordingly. The genius knows everything about every level, unit, and so on that a
player could possibly know. This archetype is as smart as the AI can possibly be
(within practical limits).

The Builder
This archetype is generally only found in strategy games (or some board games). It
builds and manages resources very efficiently but focuses on building and resource
production to the detriment of military readiness. The builder will only attack when
it can no longer continue to grow.

The General
This archetype is the opposite of the builder. It creates military units as quickly as
possible, at the expense of long-term growth. It manages unit upgrades and repairs
very efficiently. The general scouts enemy positions aggressively and attacks at the first
opportunity.

The Comedian
This archetype does things for humorous effect, such as building only one type of
unit for the whole game, stopping to dance after every fight, betting everything on
every hand in poker, and so on. The comedian is an AI designed to simulate a silly,
nonserious player, or someone who is completely insane.

Texas Hold’em Case Study

It is fairly easy to see how to apply the artificial personality approach to a first-person
shooter or a real-time strategy game. However, this approach can be applied to almost
any type of game and was applied to Bicycle® Texas Hold’em developed by Carbonated
Games in 2006 for MSN Games. The AI for the game was designed around the four
classic poker personality types: the novice, the rock, the maniac, and the shark. Unlike
what is seen in many other poker games, there are no fine gradations between these
types. Every novice behaves exactly like every other novice, and every maniac behaves
exactly like every other maniac.

1.2 Artificial Personality: A Personal Approach to AI 21

Styles of Play in Poker

As a quick review of poker strategy, there are two basic axes of behavior in poker: tight
versus loose and aggressive versus passive. A tight player is one who bets only with
good hands that are likely to win. A loose player is one who bets with any hand that
could possibly win, even if the odds are unlikely that it will. An aggressive player is
one who usually bets large amounts, forcing other players to fold or pay a lot of money
to challenge him. A passive player is one who usually bets small amounts, never forc-
ing other players to fold, and will fold when challenged by other players.

The novice is a loose-passive player, which is the worst possible way to play.
Novices do not win a lot of money when they do manage to win a hand, they play lots
of hands that are not likely to win, and they can easily be bluffed into folding. Novices
can easily be beaten just by playing normal poker and betting big if they seem to have
a better hand (they will usually fold). The novice is effectively the idiot archetype
from the list of sample archetypes.

The rock is a tight-passive player. Rocks are better than novices because rocks
only play good hands, but because they do not bet aggressively, their winning hands
do not get them a lot of money. Rocks can be defeated by just waiting them out. Just
fold when they bet (because they must have a good hand) and wait for the blinds
and/or ante to whittle away their chip stack. The rock is effectively the defender
archetype from the archetype list.

The maniac is a loose-aggressive player. Maniacs are fairly dangerous because they
play a lot of hands and bet them aggressively. They win a lot of money but lose a lot
too. Maniacs will also bluff with hands they know will not win. It is very difficult to
know whether a maniac actually has a good hand or not, so the way to defeat them is
to wait for a really good hand, let them bet first until the final card, and then keep
raising until they fold or call. The maniac is effectively the psycho archetype.

The last type of player is the shark, a tight-aggressive player. This is what all poker
players try to be (and most think they are, even when they are really rocks or mani-
acs). This is the perfect balance—sharks do not play a lot of hands, but when they do,
they play them aggressively. Sharks also bluff occasionally, which usually works
because they almost never play weak hands, and it costs a lot to call their bluff. The
only way to beat a shark is to get lucky or to be a better shark. The shark is effectively
the champion archetype.

Discovering the Archetypes

In Bicycle® Texas Hold’em, each AI player is represented by a simple, cartoon-like face.
All novice players have a happy face. All rocks have a frowning face. All maniacs have
a tilted smile and crazy eyes. All sharks have a completely flat, expressionless face. This
means that a player does not have to watch how a character plays to determine that
character’s archetype—the game just directly tells the player.

22 Section 1 General Wisdom

However, although this might seem fairly obvious, the majority of players do not
figure out that this game has different personalities for different players unless they are
told by another person who has figured it out. This is because the game does not tell
players that there are different personality types! If we were to do it over again, we
would, at the very least, have the names of the AI players be “Rock1,” “Novice3,”
“Shark2,” and so on instead of “Player1” or “Player3.” In addition, we would have the
game tell players when they selected an AI game that they were playing against “three
novices, one rock, two maniacs, and a shark.”

Another possibility with a little more flavor would be to name the AI players
“Rick the Rock,” “Sam the Shark,” “Mike the Maniac,” or “Ned the Novice.” How-
ever, this can easily be taken too far. Names like “Rick Rockford,” “Sammy Shark-
skin,” “Mike Mann,” and “Ned Newman” might seem better, but if a game does this,
it will be a little bit harder for the average player to figure out what’s going on. This
could be okay but will require plenty of testing with average players.

So the overall result was that although we knew we needed to tell the players the
exact archetype of each opponent, we did not take a strong enough approach.
Remember, it is almost impossible to overdo this.

Playing Against the AI

Although the archetypes are not as clearly named as they could be, after a player
knows about them, the game is quite fun (for a novice poker player). Because each of
the four archetypes is very different and behaves in a way that makes sense to any
poker player, all a player has to do is pay attention to the archetype of each opponent
and make bets based on the known behavior of those archetypes. Barring a run of bad
luck, this almost guarantees success.

The overall result is that the best strategy in this game is for players to pay atten-
tion to the personality of their opponents and use the flaws in those personalities to
defeat them. Go after the novices early and aggressively to get an early lead. Leave the
rocks alone and do not challenge them. Wait for the right moment to take out the
maniacs in a single hand. Leave the sharks until the end and then just try to play bet-
ter than them. This is exactly how to win at real poker, so it leaves the player feeling
like a real pro.

Ironically, the shark AI was not very good by poker AI standards, but it was still a
success. Any good poker player could crush the shark easily even though it didn’t
make any stupid mistakes and played by the book (we did not have time to imple-
ment the genius). But this made little difference to most players, who are generally
not that good and would rather play against other humans if they were available.

An additional factor is that the shark appears to be smarter than it actually is to
most players. This is because players are also facing a lot of novices, rocks, and mani-
acs, so the shark seems pretty good by comparison. This effect should not be underes-
timated—it is much easier to make an archetype feel smart by contrast with lesser
archetypes than it is to create a truly smart AI.

1.2 Artificial Personality: A Personal Approach to AI 23

Difficulty Levels

When playing against the AI in Bicycle® Texas Hold’em, there are three difficulty lev-
els: easy, normal, and hard. The behaviors of each archetype are not changed at all
based on the difficulty level—a given archetype always behaves the same way. Instead,
the easy level puts players up against mainly novices, a rock or two, and sometimes a
single maniac. The normal level puts players up against an even mix of all types. The
hard level puts players up against mainly sharks and maniacs, with occasionally a rock.

This method of setting the difficulty of a game just by changing the mix of arche-
types the players will face works well for many games. Especially when players are
working their way up through the difficulty levels, the effect when they reach the hard
level is excellent. The players know very directly what they are up against because they
know what maniacs and sharks are like from the normal level—and now here is a
table full of them!

Note that players never face a large number of rocks (there are never more than
two at any table), no matter what the difficulty level is. This is because playing against
a lot of rocks is as exciting as it sounds—it takes forever because few hands are played
and nobody bets much when a hand is played. This is an important point—some
archetypes are only fun in small doses. Do not think that a game needs to use all of
them equally.

Making It Better

The biggest improvement would be to make the archetypes of the AI players clearer,
but there are some other obvious possible improvements. Adding a “genius” AI would
have been a lot of fun to write and would have given even experienced poker players a
challenging game. However, this would have taken at least 10 times longer to write
and was not necessary for most of our players. It is important to remember that play-
ers generally want to win when they play—our job is just to make winning enjoyable.

So what about adding more AI types? We could add a coward or a comedian
pretty easily if we wanted. Although these additions might be good for the game,
always be cautious about adding more archetypes just because it is easy. Having only
a few archetypes makes it easier for a player to understand each type. If we added a
coward, it might be difficult for players to distinguish that archetype from the novice
(i.e., the idiot) in a poker game. The best number of archetypes will depend on the
exact game and the intended audience, but most games need fewer archetypes, not
more.

Although it would have taken a good amount of additional work, we could also
have added a lot of archetype reinforcement to the game. The AI players could have
chatted about the other players, pointing out their weaknesses, and complaining when-
ever someone challenges any rock at the table. The maniac could have gotten a really
angry-looking face after any hand that it lost a lot of money on, indicating that it is “on
tilt” and will not fold on the next hand no matter what kind of hand it has. The novice
could have occasionally asked whether or not a straight beats a flush. The shark could

24 Section 1 General Wisdom

have made comments about how it won a national tournament with the same hand.
The possibilities are endless, but the point is always to reinforce the archetypes.

Other Approaches

AI in games can be approached in a variety of different ways, of course. Different
approaches can certainly work to some degree, but in most cases, focusing on person-
ality first and foremost will get better results for a game that needs to simulate human
behavior.

The Sophisticated Algorithm Approach

AI can be written by focusing on the creation of the most sophisticated and advanced
algorithms possible. It is easy to fall into this approach on occasion, becoming enamored
of a complex but beautiful algorithm that really does not fit the game being created.
Classic examples are using a neural network when there is no way to get good training
data, or using a genetic algorithm when there is no good fitness function (or when it is
difficult to have enough generations for the algorithm to produce good results).

The limitations of this approach are obvious: lots of complicated code that does
not result in behaviors that the player understands or is interested in. Although this
approach can be useful for research purposes (discovering new algorithms, for example),
making it the primary way a game’s AI is developed will get mediocre results at best.

The Pure Intelligence Approach

Another approach is to write AI that is just as smart as possible. The AI can then be
“dumbed down” dynamically to account for different levels of player skill. This might
seem like a good idea, but it rarely gives satisfying results in a game. This approach is
much better suited to real-world AIs (robots, vehicles, and so on) or to game AIs
whose purpose is to defeat the best humans in the world (Deep Blue, for example).

The problem is that for most players, an AI written to just be as intelligent as pos-
sible is not much fun to play. Even when the AI has been adjusted to match the
player’s skill level, the player wins by avoiding mistakes and being more efficient than
the AI-controlled characters. This is almost never as fun as knowing the personality of
an opponent and using the flaws in that personality against it.

Most game AI just needs to be smart enough that it does not make stupid mis-
takes that only a computer would make. As long as the mistakes that are made would
be made by human players as well, the AI is smart enough for the vast majority of
players. Spending huge amounts of time and energy making the “perfect” AI is usually
not worthwhile when that is not what most players want.

Worries that a game’s AI will not be challenging enough without a pure intelli-
gence approach are usually unfounded. Remember that the best challenge for most
players will be multiplayer games. But even for single-player games, things such as
asymmetric starting positions, limited resources, and challenging victory conditions
can easily be used to adjust the difficulty in a satisfying way.

1.2 Artificial Personality: A Personal Approach to AI 25

The Make-It-Fun Approach

This is the approach that most veteran AI developers take. It has a lot going for it—it
is difficult to go wrong when you are just focusing on making the AI fun. Any suc-
cessful game AI will make good use of this approach. The problem is that this
approach only identifies the goal, not how to get there, which often results in a lot of
false starts and wasted effort that a more focused approach could avoid.

The other problem with this approach is that it is very easy for a game developer
to write AI that is fun for a game developer to play against, but this usually does not
work as well for average players. Because we already know how the AI is supposed to
behave, we can see things that a normal player cannot. Even having many different
people play the game while it is being developed is not adequate because they will
rarely be good proxies for average players. Moreover, by the time broad play-testing is
started, it might be too late to rewrite the game’s AI.

A personality-based approach that uses strong archetypes will help avoid creating
AI that is only interesting to game developers. By immediately focusing on how the
player will interact with the archetypes in the game, the developer is put in the player’s
mind right away, instead of waiting until it is too late. In the best case, each archetype
mimics a specific type of player personality, so the developer is forced to really under-
stand how different players think.

Conclusion

Artificial personality can be used on small projects or large ones, regardless of whether
there is limited AI with a few characters or highly advanced AI with an enormous cast
of characters. It is a powerful conceptual framework that gives direction and focus to
the underlying algorithms that make up all AI. The designer should always remember
that although an intelligent opponent can be challenging, an opponent with a person-
ality will be fun!

To give artificial personality a try, just follow these steps:

1. Identify all the personality archetypes of actual people who play the game.
2. Eliminate all archetypes that are uninteresting or too similar.
3. Identify the particular behaviors/tactics/strategies that the remaining arche-

types use.
4. Identify and implement the traditional AI techniques needed for those

behaviors.
5. Reinforce the archetypes with visuals, audio, and dialogue.

26 Section 1 General Wisdom

27

1.3

Creating Designer Tunable AI
Borut Pfeifer—Electronic Arts
borut_p@yahoo.com

Designers and AI programmers have very different skill sets, yet this interaction is
a crucial part of game development [Reynolds04]. AI programmers are responsi-

ble for building the systems designers will use to create interesting player encounters
with the AI. The easier it is for designers to use these AI systems, the better the AI will
look, and the better the game will be in the end.

Sometimes even experienced AI programmers create compelling gameplay fea-
tures that go unused or misused simply because the designers are not able to control
them properly. Spending the time to create the best interfaces for designers to manip-
ulate the AI avoids those problems and helps to create more compelling gameplay.

This article covers tips, techniques, and pitfalls to avoid when implementing the
interfaces and tools that give designers access to the AI. Although there are numerous
articles on AI algorithms in this and other volumes, this article instead deals with the
tools and interfaces needed to manipulate those algorithms.

The important factors that drive the definition of designer-AI interfaces are
authorability, workflow, and communication. Authorability denotes where and how
much control the designers have over the AI, whereas workflow involves the process
they have to go through to do so. Whether the game uses data-driven or scripted
methods to expose functionality to designers, these two concepts drive the creation of
good interfaces. Communication among team members about how underlying AI sys-
tems work via training sessions, debugging tools, reference documentation, or even
just casual e-mail, is the glue that unites great AI with great gameplay. Better tools and
processes in AI development naturally make for better games.

Authorability

When working with designers, keep in mind the range of control they will want over
the AI. The authorability of an AI system is defined by how easily the designers can
use it to create the gameplay they want. Understanding designers’ needs and desires is
key in effectively building the AI.

Even with games that have a great deal of autonomous AI, designers will typically
want very fine control during certain moments. For an action game, this can be
scripted sequences that convey a plot point or an important mission detail. By default,

assume the worst case: any action the AI can perform by itself is something that the
designers might want to have direct control over at some point. This is why experi-
enced game AI programmers tend to avoid black box solutions, such as genetic algo-
rithms or neural networks, whose internals are not easily accessible for those
exceptional cases. The important question becomes, “How often will designers need
that level of control?” Frequent tasks should be very easy to accomplish, whereas it is
acceptable for infrequent tasks to be more difficult.

An Example of Authorability—Pathfinding Data

A good example of the spectrum of authorability can be seen in pathfinding data. To
save designers from manually creating path node graphs for levels, many games auto-
matically generate navigation graphs. Whatever type of navigation graph is automati-
cally generated needs to be edited to handle these problems:

False positives: Perhaps there is some detailed geometry in the level that is needed
for collision or other purposes. If this geometry is picked up by the graph
generation algorithm, it can cause lots of strange pathfinding anomalies, such as
NPCs walking on banisters. These areas will need to be manually disabled from
being considered by the graph generation.

False negatives: There might be a small piece of a level that the designers want to
place enemies on that is not recognized by the algorithm (such as a ledge that is
not wide enough). Designers should be able to mark seed points for the graph
generation to make sure it is included in the final graph.

Although these examples are specific to pathfinding, the same is generally true of
any algorithm that procedurally generates data to solve an AI problem in a game. Some-
times these problems can be handled by improvements in the algorithm but rarely can
they be completely solved that way. After it is clear where the designers will need to
input their intent into the system, how often will these situations occur? If there are false
negatives and positives on every level, take the time to add functionality to the interfaces
in the level-editing tools to quickly handle those cases. If they only happen a handful of
times, it can be acceptable to leave the editing cumbersome (such as editing a text file)
to spend more time simplifying the commonly edited aspects of the AI.

Workflow

After considering what AI functionality will need designer input, the next step is to
consider the workflow for getting that input into the game. There are a number of
different constraints to keep in mind.

Existing Tools

If there are existing tools within the game engine, it is usually best to work within that
framework. If designers are accustomed to loading data files in a certain manner in a

28 Section 1 General Wisdom

certain format, then creating a new pipeline for getting that data into the game makes
them spend their time using and debugging two data pipelines instead of tuning that
data. If existing data uses XML files that the designers are familiar with, then it might
be best to stick with that format. If there is a custom game data format that meets
most needs, it’s better to make minor extensions instead of creating a new pipeline
and the tools to use it.

Multiple Users

If any single data file or asset needs to be edited by multiple designers frequently, this
can pose problems. Designers can become blocked from working while they wait on
someone else who has the file locked, or in the case of text files, there can be frequent
problems merging files. Try to piece out the data inside the file into separate component
files. It helps if the components are logically tied to different designers’ roles (such as a
level designer editing a file containing only general prop locations, and a mission
scripter editing mission-specific level data).

Iteration Speed

Whatever methods designers have to manipulate the AI, being able to load and evalu-
ate their changes without restarting the game will have a profound impact on the
quality of their work. The ability for designers to quickly iterate on their AI tuning
will help them find what is fun and compelling much faster than if they have to reload
the game every time they want to change AI settings. This could be as simple as
reloading an XML file to read in new gameplay parameters or as complex as compil-
ing and reloading a script file at runtime, but it is usually worth the effort.

Analyzing Technical Strengths

In the game industry today, designers often have computer science degrees. Alternately,
they might have come by scripting experience while working on previous games. To a
designer who has not had either type of experience, scripting can be fairly daunting.
Some solutions to AI problems are easier for a nontechnical design team but might take
more implementation; other solutions might require technical expertise to use but allow
for flexibility and can take less time to create. Assessing the strengths of the design team
can be just as big a factor in the search for solutions as the requirements of the game
itself. Here the lead designer can help in making that initial assessment, but the key is to
balance chosen AI solutions with the skills of the team.

Data-Driven Methods

Data-driven design has become a very common approach used in game development,
due to its many benefits during the production process [Rabin00]. There are a num-
ber of good practices when it comes to getting the most out of data-driven design.
Making it easy to add parameters without invalidating existing data, fully supporting

1.3 Creating Designer Tunable AI 29

data versioning when it does get invalidated, and being able to reload data at runtime,
all make data-driven design that much more effective. But there are a number of other
guidelines to consider when organizing how designers input data into the game.

Tuning Behavior

Working closely with designers is necessary to clarify what parameters they will care
about for any individual behavior. Exposing a few relevant parameters can give design-
ers a great deal of flexibility and allows reuse of existing behaviors [Tapper03]. This is
especially the case if the game design calls for autonomous NPCs who are aware of
their surroundings and must deal with a wide range of player behavior. Driving behavior
through small, well-defined sets of parameters is a good way to allow designers to author
the player interactions with the AI they want, without sacrificing the AI’s ability to
autonomously handle dynamic situations.

Designers can then customize NPCs via these parameters and by assigning them
different behaviors. One type of NPC might use melee weapons, use shields, and find
nearby cover, whereas another type of NPC might use cover, fire long-range weapons,
and dodge. A third, more aggressive NPC might have both long-range and melee
weapons but does not have any defensive behaviors. Creating these behaviors as assign-
able modules, with minor variations allowed through data assigned to NPCs, allows the
AI programmer to determine the right circumstances to start and stop those behaviors.
Meanwhile, the designers can focus on defining what kind of strategies the player must
use against an AI.

Take care to implement the behavior parameters that the designers actually want
control over. A very complex aiming accuracy model specified with more than 10 dif-
ferent parameters for a gun-toting NPC might simply not get used if all the designers
really wanted was to specify an NPC’s accuracy as high, medium, or low.

Spatial Markup

One of the most common types of data a designer enters during game production is
spatial markup. This could be manually entering nodes for a navigation graph, adding
patrol or cover points for enemy NPCs, adding other tactical information about a
space, such as good sniping spots, or adding objects NPCs can interact with in a level.
Because it is a common task, make sure adding the AI data associated with these
points or objects is also trivial. Use of indirection (detailed next) is especially useful
for classifying different points with data categories defined elsewhere.

Data Indirection

If there are exposed parameters for tuning behaviors, the designers might need the abil-
ity to define these parameters for each NPC. However, this might also be a rare case, so
forcing designers to add this data to each NPC creates a lot of work to just add one
NPC to a level. Separating out these types of parameters into a data set that is then

30 Section 1 General Wisdom

assigned to an NPC simplifies these matters. Designers create lists of these data sets
(combat parameters for aggressive enemies, weak enemies, and so on), and then assign
a data set to an NPC when it is created.

This indirection allows designers to change all the parameters associated with that
set without having to actually edit any of the NPCs. If a designer needs to create an
NPC with a unique set of parameters, he must create a new data set that is only used
by that NPC. This is a little more work to define custom parameters on an NPC, but
this task is done much less frequently, so there is a large benefit from being able to
reuse data by assigning it indirectly.

Data Orthogonality

When defining these data sets, keep in mind the orthogonality of that data. Are there
different chunks of parameters within the data set that serve separate purposes? Will it
simplify the designer’s workflow to break up this data into separate sets? For example,
if an NPC’s combat parameters can be broken up into attack parameters and defense
parameters, it can be easier to create unique types of NPCs.

For example, the designers might want five different types of aggressiveness in
NPCs (involving combat speed, attack rate, accuracy, and so on) and four types of
defensive behavior (varying dodge ability, blocking percentage, and so on). If design-
ers had to create each combined type as a unique data set, there would be 20 data sets.
If they could simply mix and match, assigning an attack data set and a defensive data
set to each NPC, they would only have to create 9 sets of data. If there were 10 attack-
ing NPC classifications and 10 defensive NPC classifications, without splitting up the
data sets orthogonally, designers would have to create and maintain 100 different data
sets! Care must be taken to not overdo it as well; if designers do not actually use the
data orthogonally (i.e., every NPC attack data set always corresponds to the same
defensive data set), this might just be more work for them.

Keeping Names and Units Consistent and Intuitive

As different programmers write AI or gameplay functionality that gets exposed, keep-
ing consistent names and units for similar parameters can occasionally be a problem.
Two separate programmers might expose the same type of parameter with very differ-
ent names or units. This leaves the design team perpetually trying to remember which
one is appropriate in each case. With inconsistent units, it is easy to make mistakes
that result in wasted time modifying and retesting parameters. When adding addi-
tional parameters, take care to verify their consistency with any existing code.

In addition, stick to the most intuitive units. For values of time, this typically
means seconds instead of milliseconds. For angles, never expose a value in radians—
most people naturally think of orientations in angles. When designers have to enter
data regarding varying degrees of chance (e.g., how often an NPC uses a particular
behavior or what type of NPCs to spawn), stick with weights or odds instead of per-
centages or probabilities. Percentages and probabilities require the numbers to sum to

1.3 Creating Designer Tunable AI 31

a specific value, so they are more complex to enter and do not allow for easy adding
and removing of elements. Exposing the data as odds greatly simplifies entering that
kind of data (i.e., for three options A, B, and C, values of 3, 1, and 1 mean A would
be selected 3 times as often as B or C).

Values should always be displayed in more intuitive types for designers’ debugging,
even if internally, the information is stored as the less intuitive unit (removing any unnec-
essary calculation on the designers’ part from the process). Any minor performance offset
is made up for in readability and ease of use many times over. When forced to choose
between keeping unit consistency over intuitive units, lean toward consistency. If the
existing code is reasonable enough to refactor to a more intuitive unit, refactoring is the
better choice—the designers will no doubt appreciate the effort.

Scripting Systems

Data-driven design solves a lot of designer interface problems, but there are still times
the designers will need to customize game logic or behavior via a scripting language.
Besides trying to make the language more usable (with case insensitivity, simple key-
words, weak typing, and so on [Poiker02]), it is very beneficial to determine ahead of
time just how much direct control over game functionality will need to be exposed. In
some cases, more is not always better. There are few guidelines to follow, allowing for
variance on the technical strengths of the design team and the requirements of the
game itself.

Provide a Simple Framework

A programming language, just like a regular language, often provides many ways of
accomplishing the same task. To anybody who has not received formal programming
training, it can be a daunting task to figure out how to implement something cor-
rectly when there are many means of achieving it. Provide a simple framework for
designers to accomplish important or frequent tasks:

• Expose straightforward callback functions that designers can override per NPC in
script, such as OnDamage, OnDeath, OnArriveAtDestination, and so on.

• Keep consistent API declarations. Similar to data-driven methods, try to ensure
consistent units as well as consistent function naming conventions, function
parameter declarations, and so on.

• Expose only one level of an API unless absolutely necessary (typically the highest
level). For example, designers might want to set behaviors on an NPC, such as
Attack, Defend, Follow, or Flee. If they also have access to the lower level APIs,
they might inadvertently recreate the same behavior if they do not notice it in the
higher level script interface.

32 Section 1 General Wisdom

Streamline Common Scripting Tasks

The most common tasks a designer performs via a scripting language need to be as
simple as possible. The following are good examples of tasks that should be trivial to
do in a game’s scripting language (allowing some variance for different game types):

• Creating, querying, setting, and resetting flags or other variables on objects. Design-
ers will need to easily add flags to objects to perform tasks such as mission or quest
scripting. Besides setting and querying the values, there might need to be a quick
way to reset to a known good state (e.g., if a mission fails and the original premis-
sion state needs to be restored).

• Querying whether or not an object belongs to a set of objects (such as if it is a tar-
getable enemy), and selecting objects from a set.

• Waiting for a specified amount of time. This should be as simple as a wait com-
mand that pauses script execution for a number of seconds.

• Giving simple commands to NPCs: patrol, attack a target, defend a position, or
use an ability or animation.

Visual Scripting Languages

Visual scripting systems, including finite state machine editors, are typically much
easier for people without a lot of technical experience to learn. However, they have a
number of limitations as well. A nontechnical designer can easily learn to script a
sequence of actions by an NPC, but it typically becomes difficult to reuse those visual
scripts (such as passing parameters between invocations). When a visually scripted
system or sequence becomes reasonably complex or interconnected, it becomes much
more difficult to maintain than the same functionality implemented in a text pro-
gramming language. The benefits of such a system are more apparent when there are
small scripting requirements and a team of nontechnical designers.

Behavior Scripting

When the designers have the ability to write AI behavior in script, it can be compelling
to let them define all aspects of a behavior. This can work well for behaviors only used
in one specific context in a game (e.g., a behavior one NPC might display when it
reaches a certain point in a level). When the behavior is to be used in multiple contexts,
however, getting it to work in those contexts, handling errors, and returning to the
appropriate behavior is a complex engineering task that is not reasonable for designers
to handle.

Designer control of behavior is most effective when they can easily swap between
sets of the individual behaviors implemented by the AI programmer, or if they have
the ability to queue existing behaviors as commands in a straightforward fire-and-
forget manner. Even if AI is going on behind the scenes to determine when to switch
to the next command, it is an effective mechanism for designers to script their desired
behavior. Ideally, NPC agents retain enough autonomy that designers can simply

1.3 Creating Designer Tunable AI 33

place them in the level and assign their initial behavior set, and the NPCs can func-
tion well without additional scripting.

Failure Cases

Because of the flexibility of scripting languages, it is easy to expose different function-
ality with them, but not all functionality is well suited for it. Be very careful when
exposing the entry of data via script—try to remove it and apply the guidelines in the
previous section. For example, NPC paths and cutscene scripting are visual tasks best
left in level-building tools, rather than entered as sequences of path points and events
in a text file. NPC behavior parameters are best stored in separate data files, which
allow instantaneous reloading without having to recompile scripts.

Avoid forcing designers to implement any sort of solution to a systemic problem
in script. For example, if working on a multiplayer cooperative action game where
players can act together to solve simple puzzles, the designers will want to script the
logic and behavior used in the puzzles. If designers have to deal with complex multi-
player problems, such as race conditions, in their puzzle scripting, that functionality
will need to be moved into code, while existing script API functionality is disabled
and replaced with a more encapsulated system.

Debugging Tools

Designers who author gameplay with AI systems must be able to debug their own
work. With complex systems, often it is not clear why an AI is failing to perform as
expected. Debugging tools save time when trying to find errors or track down prob-
lems in a script or data file. Additionally, it also saves programmer time because
designers are empowered to find the problems themselves.

Visual Overlays

Most games feature debug visualization using spheres, lines, and such. If this informa-
tion is well organized and easy to toggle on and off, designers will be able to narrow
down the point of failure for any particular problem. When visual debugging tools are
properly implemented, they make it exceptionally easy to spot NPC errors in behav-
ior. Without visual debugging tools, a designer will have to sift through huge logs of
frame-by-frame data, which is less efficient because it takes much longer to under-
stand the problem within the context it occurs.

Similar debug data should be combined into overlays that can be toggled on and
off (either via a console command, key presses, or a simple onscreen menu). A good
organization of overlays allows designers to quickly find the reason why an NPC is
not performing as expected. Consider the following separate overlays:

General NPC information: Position, velocity, name, ID, and class.
Animation state: Current animation names, length, and animation state.

34 Section 1 General Wisdom

AI intent: The NPC’s target location, its current attack target, its current state or
the action it wants to perform, and any associated data.

AI perception: Currently or recently seen enemies and objects that factor into its
decision making.

AI state: Current and past states, especially if the AI uses any sort of pushdown
automata that stores states or commands that are queued to execute.

Path information: The NPC’s overall navigation graph and its current path along
the graph.

Designers should be able to see an NPC in a failure state, such as an NPC that
should be attacking, and go through the overlays to narrow down the problem. The
animation state overlay can determine if the NPC is trying to play the animation but
failing (such as in the case of a missing asset). The AI perception overlay will show if
the NPC correctly perceives an available attack target, and the AI intent overlay will
show if the NPC is actually attempting to attack but is being prevented for other rea-
sons. If a designer comes across a bug that requires detailed research by a programmer,
try to find a way to make this problem immediately diagnosable via overlay informa-
tion. The small amount of time to add the additional information is greatly offset by
the debugging time it will save.

Ideally, the debug information in the overlays should be instantly understandable.
Use different colors to denote different states. A line drawn to the NPC’s target loca-
tion is useful, but a line that is green, yellow, or red based on its pathfinding status
(valid, pending, or failed) is much more useful. Depending on the number of NPCs
active at one time, additional commands might be needed to restrict the debug dis-
play to the currently selected NPC and to toggle which NPC is selected to display.

Data Validation

Wherever possible, validate designer data and handle error cases appropriately:

• Give visible onscreen notification (which can be optionally turned on/off). An
error message in a log with thousands of lines of text is difficult to find. The eas-
ier it is for the designer to find his own error, the less help he will need from an AI
programmer.

• Write clear messages that point to the problem data. Programmers often use tech-
nical language that designers are not familiar with, so it always helps to review an
error message for plain English immediately after writing it. If someone asks what
an error message means, immediately rewrite it for clarity.

• Fail gracefully. The game should handle as many error cases of bad data as possi-
ble. The game might not behave correctly, but it should run. If necessary, revert
to default data options in these cases. One designer’s data error should not pre-
vent others from working.

1.3 Creating Designer Tunable AI 35

Script Debugging

If designers will be writing scripts, they must have the tools to debug them (and when
things go wrong, the AI programmers must have good tools to debug the script, too).
An existing, mature scripting language solution has many, many advantages over a cus-
tom built solution. Lightweight languages such as Pawn (a simple C-style language
[Riemersma06]) and Lua ([Celes07, Lake07]) that have existing debug APIs and debug
tools will greatly simplify the development of a useful game scripting environment.

Communication

Communication between AI programmers and designers is critical to making AI that
designers can use effectively. Good communication between AI programmers and
designers involves written specifications of systems to be implemented and reference
documentation. Upfront outlines of systems can allow designers to verify that the sys-
tem will meet their needs and allows the AI programmer to manage expectations by
exposing any limitations.

Even after designers have been given intuitive tools, a key part of the process is
offering training on each tool’s features and limitations. Training should be an ongo-
ing process as systems are changed and as new designers join the team. Because people
have different communication styles, this information should be offered in different
forms. Additionally, reference documentation is a good resource during production
and helps train new designers.

System Design Goals and Limitations

Early on in the development process, it is common for programmers to get designers’
feedback on the code systems that are planned for implementation. Emphasize this
part of the process to make sure it is clear what the designers want and that the tech-
nical design will meet their goals. Just as important, and subtly different, is to cover
system limitations—what the system will not do. Designers need to know the limits of
AI systems just as much as they need to know what functionality is implemented.

For example, there might be some script functions exposed that a designer can
use to create friendly NPCs that rudimentarily follow the player. A designer might see
that basic interface and plan for a level where an NPC is meant to act as a robust
squad mate, following the player while also attacking nearby enemies. Experienced AI
programmers are well aware that delivering that level of functionality is an order of
magnitude more difficult. It can be time consuming to implement all the behaviors
necessary: behavior to keep the ally out of the player’s way during combat, to follow
the player’s combat behavior, and to provide support behaviors such as covering fire or
healing magic. However, this distinction might not be clear unless explicitly commu-
nicated to the designers (that the AI will not do that).

36 Section 1 General Wisdom

Reference Documentation

Good reference documentation can save time in communicating minor details of
functionality. During their work, designers will have questions about small details
around the implemented functionality. They can either ask an AI programmer, exper-
iment with the system, or they can look it up in the documentation (which saves
everyone time). Here are a few guidelines for good reference documentation:

• Make it easy to access via a well-organized team wiki page or even an HTML link
button directly in the game tools.

• Describe how the system works in exceptional and common cases. Make sure to
cover both special and default values for parameters in data-driven systems.

• Try to keep the language plain and nontechnical, even when describing very tech-
nical concepts.

• Ensure that it is searchable.

Training

Good reference documentation can never take the place of good training. Training
gives designers solid examples for common cases they will encounter using these sys-
tems. Whereas some designers might learn by poring over reference documentation,
others will learn better through visual representations, listening to the information, or
by being taken through examples. There are several things to keep in mind for pre-
senting this information for training:

• Keep any presentation slides as visual as possible. Use screenshots of tools or the
game with annotations to convey the same information found in the reference
documentation.

• Use concrete examples. Go through step-by-step how designers would accom-
plish common tasks using the software. Explain the steps the designer should take
to look into possible error causes if the task fails.

• Try to give designers an understanding of how the underlying system works.
While at their desks working/scripting, the underlying mechanics might not be
apparent to them even through reference documentation, so they might come to
different conclusions about what the system is actually doing behind the scenes.

• Keep points of information short so as to not overwhelm anybody’s memory or
attention during the training session. Break up training into multiple sessions if
necessary.

• Keep any training presentation notes around, update them, and present them
again when enough new designers come onboard.

Keep It Up to Date!

Naturally, as systems change, the documentation will need to be kept up to date. As
new designers join the team, or as other designers who were previously tasked on

1.3 Creating Designer Tunable AI 37

other things start to use the software, it greatly reduces confusion if they can start with
documentation that is up to date and get the same training as well. Finally, try to
make sure new designers are aware of the system’s original design goals and limitations
to avoid problems with improperly implemented script functionality (because new
designers might also make assumptions about the underlying capacity of existing
technology, like the earlier squad-mate example).

Conclusion

Taking the time to find the right interfaces for different team members with different
skill sets is well worth the effort. Empowering designers to work with the AI adds
more to the overall value of the game and allows AI programmers to work more effec-
tively. It is the AI programmer’s job to optimally expose the AI to designers in a sim-
ple manner that streamlines workflow. Giving them the tools to understand and
debug the AI will allow them to use the AI systems to the fullest.

References

[Celes07] Celes, Waldemar, et al., “The Programming Language Lua.” Available
online at http://www.lua.org, May 28, 2007.

[Lake07] Lake, Rici, “ldb – A Lua Debugger.” Available online at
http://www.dzone.com/links/ldb_a_lua_debugger.html, April 19, 2007.

[Poiker02] Poiker, Falko, “Creating Scripting Languages for Nonprogrammers.” AI
Game Programming Wisdom, Charles River Media, 2002.

[Rabin00] Rabin, Steve, “The Magic of Data-Driven Design.” Game Programming
Gems, Charles River Media, 2000.

[Reynolds04] Reynolds, Brian, “AI and Design: How AI Enables Designers.” Game
Developers Conference, 2004.

[Riemersma06] Riemersma, Thiadmer, “The Pawn Language.” Available online at
http://www.compuphase.com/pawn/pawn.htm, November 14, 2006.

[Tapper03] Tapper, Paul, “Personality Parameters: Flexibly and Extensibly Providing a
Variety of AI Opponents’ Behaviors.” Available online at Gamasutra,
http://www.gamasutra.com/features/20031203/tapper_01.shtml, December 3,
2003.

38 Section 1 General Wisdom

http://www.lua.org
http://www.dzone.com/links/ldb_a_lua_debugger.html
http://www.compuphase.com/pawn/pawn.htm
http://www.gamasutra.com/features/20031203/tapper_01.shtml

39

1.4

AI as a Gameplay
Analysis Tool
Neil Kirby—Bell Laboratories
nak@alcatel-lucent.com

Do game designers really know how people play their games? If the only way to
know something is to measure it, then AI can be an effective gameplay analysis

tool. This article uses case studies of two popular casual games, Minesweeper and
Sudoku, to show how small amounts of AI can illuminate what core gameplay actually
is. There is no claim that the AI measures what is fun, but it can measure what play-
ers actually do. The numbers may tell a different story than expected. Although AI
can most easily be applied to casual games, the results indicate value to more complex
games as well. Writing such AI leads to new gameplay concepts. A potential two-
player Minesweeper game from that case study is shown. Demonstration software for
both games is included on the CD-ROM.

Methodology

Both games have been analyzed elsewhere [Wikipedia07, Delahaye06], and solver
programs exist as well [Collet05, Kopp01]. Two factors are novel in the case studies
presented here. First is the slanting of the AI to play as people do, even when superior
software solutions exist. Second is the instrumentation giving hard numbers and an
accurate basis for comparisons.

Both games use a rules-based AI. The rules are ranked in complexity order, and
the simplest rules are attempted first. “Simple” means that the test to see if the rule
applies is easy to understand, and the code to execute the rule is easy to understand.
Because it is simulating a human player, the AI always tries the easy stuff first. All
rules are deterministic. If the current rule cannot make a move that it knows is good,
the next rule is tried in succession. If any rule finds a move, the AI drops back to the
simplest rule first when looking for the next move. The AI runs until it can make no
more moves.

The games are implemented as fully playable games and require some human
interaction. The AI can be adjusted from being turned off, to using only the simplest
rule, on up in complexity order to having all rules available. If the AI is enabled, it

runs after every human move and after every AI move until it can make no more
moves. If the game is not solved, the human player can take the next move. The AI
does not guess—it only takes known good moves. In the SmartMines version of
Minesweeper, the human player always makes the first move. In the SmartNumbers
implementation of Sudoku, the human has to either load a saved game or enter the
board clues to begin a game.

There is no “undo” in Minesweeper, but there is in Sudoku because there is no hid-
den information. The Sudoku game logic will not allow the player or the AI to solve
one tile that removes the last possible solution from any other unsolved tile. If the AI is
prevented from making a move for this reason, the AI stops looking for moves, and the
program beeps. Because the AI does not make mistakes, such a board must come from
human mistakes. The human player can also use the undo feature. In Minesweeper, if
the human player makes a mistake, then the AI is very likely to make a fatal move
based on that bad information.

All moves are counted. The counts are displayed in the menu bar. The moves
made by the human player are tagged with H. “Free” moves in Minesweeper, the result
of clearing the neighbors to a tile with zero surrounding mines, are tagged with F. Free
moves in Sudoku are the solved tiles at the start of a game loaded from a file. The
moves made by the AI are tagged by which rule made them. AI0 is the simplest rule,
then AI1, and, finally, AI2 is the most sophisticated.

SmartMines

The SmartMines game plays the same as the version of Minesweeper that comes with
Microsoft Windows 2000. The Beginner, Intermediate, and Expert boards have the
same number of tiles and the same number of mines as their Windows counterparts.
As expected, the first move is always safe.

Rules

The rules for the AI in SmartMines will only examine tiles that have been clicked and
that have unmarked neighbors. The tile being examined shows the number of mines
present among its neighbors. In order to capture the first three figures shown next, the
human player made moves that would have been made by the AI.

The rule for AI0 is based on what can be deduced by looking at a single tile and
its immediate neighbors (usually eight of them). In human terms, the question asked
is, “What does this one tile tell me about the unsolved tiles around it?” The rule first
looks to see if the flagged neighboring tiles can account for all of the mines indicated.
If so, then all unmarked neighboring tiles are safe to clear, and the AI will make a
move by clicking one of them. Such a move was made on the left side of the second
board in Figure 1.4.1. If there are more mines than flags, the AI will see if the number
of unaccounted for mines is equal to the number of unmarked neighboring tiles. If so,
all of them must be mines and the AI will move to flag one of them. Such a move was
made to get the third board of Figure 1.4.1.

40 Section 1 General Wisdom

The rule for AI1 uses a clicked tile that has both another clicked tile and at least
one unknown tile among the surrounding tiles (usually eight). In human terms, “How
does a neighboring clicked tile help me with the unsolved neighbors of this clicked
tile?” If either tile had enough information to generate a move by itself, AI0 would
have fired. The other neighbors to the two clicked tiles can be categorized as “mine,”
“yours,” or “ours,” depending on whether one, the other, or both clicked tiles are adja-
cent. Each tile of the pair can provide the other with a min and a max on the number
of mines in the shared tiles. This min and max information may be enough for either
tile of the pair to make a deterministic move. AI1 will only take a single move, even
when multiple moves are known. Figure 1.4.2 shows AI1 making a move leading to
other moves by AI0.

1.4 AI as a Gameplay Analysis Tool 41

FIGURE 1.4.1 Moves AI0 can make by clicking a safe tile and flagging a mine.

FIGURE 1.4.2 The algorithm for AI1 finds a safe tile to click.

The rule for AI2 uses the same algorithm as AI1 but not with an adjacent cleared
tile. Instead, the other tile is a cleared tile from the next outer ring of tiles (usually 16).
If AI2 finds moves, it will make a single move. Figure 1.4.3 first shows a board where
AI1 and AI0 can find no moves. AI2 is not enabled, but if it were, it would find 5 safe
tiles beside and below the singleton clicked tile showing 1 nearby mine. A single move
made by the player using the algorithm of AI2 causes a cascade of 20 free moves and
11 moves by AI0, giving the second board of Figure 1.4.3.

42 Section 1 General Wisdom

FIGURE 1.4.3 AI0 makes great progress after an AI2 move.

Results

The results are surprising. AI0 does the bulk of the work. AI0 makes 10 times more
moves than AI1. AI1 makes 10 times more moves than AI2. The finished expert-level
game played with all AI rules available (shown in Figure 1.4.4) recorded 4 human
moves, 155 free moves, 280 moves by AI0, 39 moves by AI1, and 2 moves by AI2.
Most players were surprised by these numbers. They thought that Minesweeper was
harder than it is. In simple terms, the gameplay for Minesweeper is, “Don’t make any
mistakes doing the simplest stuff, do a modest amount of thinking now and then, and
do a small amount of more considered thinking.”

On the beginner level, there are 81 moves, 40 to 50 of which are usually free. Here,
AI0 typically provides 30 moves. Many such games have only 1 or 2 human moves and
often do not need AI1 at all. On the intermediate level, it is much the same with more
than half of the 256 moves being free. Here AI1 provides 1 or 2 moves to keep things
going. It is rare for AI2 to fire on an intermediate or beginner board.

Further Results

No other rules were implemented because expert-level games had been reduced from
more than 300 player moves to typically less than 20 and often less than 10. The
board has 480 tiles, but the number of free moves reduces the number of tiles the
player has to mark or click. The moves that the more sophisticated rules would make
were the most interesting moves of the game, and human players liked making them.
Other rules were considered for their utility and for their ability to play as human
players do.

In some games, three-tile analysis can sometimes yield deterministic moves (see
Figure 1.4.5). Although such analysis is not beyond the capabilities of human players,
such a rule was not implemented due to the success of the one- and two-tile rules and
the desire to explore different basic concepts. Extending the concept to long-chain
perimeter analysis of arbitrary length might yield deterministic moves, but most
human players lack the concentration or the patience to play that way, so it was not
implemented. Human players are more likely to memorize specific long patterns
rather than analyze borders of arbitrary lengths and mine counts. Particular patterns
of up to five tiles can be seen online at http://www.planet-minesweeper.com [Duffez06].

1.4 AI as a Gameplay Analysis Tool 43

FIGURE 1.4.4 An expert-level board solved with four human moves.

http://www.planet-minesweeper.com

Statistical analysis provided candidates for further rules. In the end game, when
the number of mines is more manageable, careful counts may be able to prove that all
the remaining mines are on the perimeter. This in turn implies that all the tiles not on
the perimeter are safe, yielding deterministic moves. In some cases, two- and three-tile
analysis will place all of the mines. Because this analysis is reasonably easy for a human
player to do, this would have been the next rule to be implemented. In the first board
of Figure 1.4.6, there are three mines left. It can easily be shown that they all are on
the perimeter of the cleared areas. The six tiles on the lower-right corner and one tile
in the upper-left corner could be safely cleared as interior tiles. Likewise, the two
mines in the upper left and the single mine on the lower right can be deterministically
placed. After three such moves, the regular AI finishes the board.

Statistics offers guidance for the inevitable nondeterministic moves. Expert
Minesweeper places 99 mines on a 480-tile board of 16 × 30 tiles averaging 0.20625
mines per tile, a bit more than 1 mine per 5 tiles. (Beginner and intermediate levels
have a value of 0.1235 and 0.15625, respectively.) For first-order analysis, assume this
ratio is reasonably constant for most of the game. A human player is unlikely to
bother recomputing it until the end game. Complete accuracy would involve com-
puting interior tiles and mines separately from perimeter tiles and mines. This is not
always possible because the number of mines in perimeter tiles cannot always be nar-
rowed to a single number. Although the number of perimeter mines cannot always be
determined, the probability of a mine in a perimeter tile is usually exactly known or
nearly so. Whether they are computing it numerically or not, the human player is ask-
ing, “Is it better to pick on the edge or some new place in the middle?”

44 Section 1 General Wisdom

FIGURE 1.4.5 Three-tile analysis yields safe moves.

When there is no deterministic move, a perimeter move with a risk value of one
mine among two to four tiles is more risky than the average risk presumed to be at
0.20625. A risk value of one mine in five tiles is even, and one mine in six to eight
tiles is less risky than the presumed average. If interior tiles prove less risky, the player
must decide, “Which interior tile do I click?”

Because all interior tiles have identical risk, the player is best off picking the one
with the best reward. Interior tiles one tile away from the perimeter tiles have higher
reward than tiles farther away from a known tile. These tiles are within the range of
AI2 and may yield a deterministic move! The first board in Figure 1.4.3 showed such
a move, and the second board showed the rewards.

Even when picking on the perimeter of the minefield, the player should compare
risk and reward. Tiles on the edge of the board are more constrained, and picking one
of them may yield deterministic moves.

Risk and reward considerations gave rise to a potential two-player version of
Minesweeper. The second player would be allowed to move mines around as long as this
movement did not change any of the numbers shown to the regular player. The first
player can no longer assume that all tiles in the interior have identical risks. Although
this might be considered fun only by die-hard Minesweeper aficionados, most people do
not regard Minesweeper as having any two-player potential at all. The rule for AI2 and
statistical considerations were the inspiration for two-player Minesweeper. The impor-
tant point here is that writing an AI can inspire new gameplay ideas.

1.4 AI as a Gameplay Analysis Tool 45

FIGURE 1.4.6 Perimeter analysis yields final moves.

SmartNumbers

SmartNumbers does for Sudoku what SmartMines does for Minesweeper. The human
player starts with a blank game board and can create a game board for later play or the
player can simply proceed. Saving a game board and reloading it causes the program
to count the solved tiles in the saved game as free moves instead of as human moves.
Unsolved tiles will have up to nine small numbers against a white background. These
numbers show the possible solutions to the tile. The program removes small numbers
that can no longer legally be selected. The player can click one of these small numbers
to solve the tile with that number. A solved tile is marked with a large number against
a gray background. All of this can be seen in the first board of Figure 1.4.7. Smart-
Numbers has two rules, AI0 and AI1.

46 Section 1 General Wisdom

FIGURE 1.4.7 A board of 26 clues solved with 1 carefully selected human move.

Rules

The rules run on unsolved tiles. The rules compare the possible solutions for a tile to
the constraints imposed by the game.

AI0 notices that when a tile has only one possible number remaining, that
remaining number must be the solution. This is the simplest possible rule.

AI1 checks the possible numbers of a tile against tiles in the same row, column,
and square. If that number is the only one of its value remaining in the row or column
or square, it must be the solution. It codifies the statement, “All numbers must be pre-
sent in each row, column, and square.”

Results

For any difficulty level lower than “evil,” these two rules suffice to solve the puzzle. At
the evil difficulty, the human player is usually needed for two or three moves, and the
AI can do all of the rest. Even with the AI turned off, the SmartNumbers game board
is much easier to play than the same board in a newspaper. The program shows how
part of the challenge of the game is to keep track of the impact of solved tiles on
unsolved tiles. Many human players pencil in the nine small numbers on the unsolved
squares and mark them off when playing with pencil and paper for this very reason.

The numeric results again show that the simplest rules do most of the work. An
evil difficulty game scored 26 tiles free, 1 human move, 41 moves by AI0, and 13
moves by AI1. With SmartNumbers, the ratios vary more widely than SmartMines, but
in general, AI0 fires more often than AI1 by a factor of two.

The numeric results also suggest that more complex rules would have very little
utility. What is more, they would again be taking the most interesting moves away
from the human player. The two rules already reduce the most complex boards from
more than 50 moves to fewer than 5. Sudoku can be solved exactly with backtracking
algorithms, but human players do not play it that way. Other rules within the reach of
human players can be found in [Delahaye06] and more extensively at [Gupta05].

Conclusions

Both case studies show that a little bit of AI goes a long way with these two casual
games. They also show that using AI to analyze games need not be overly difficult. The
instrumentation shows that both games provide a number of easy challenges, a modest
amount of medium challenges, and a few hard challenges. Another way of stating this
is that the games give constant rewards of varying sizes, a typical marker of fun games.
With an instrumented AI, it is easy to get numbers to show how the reward levels are
balanced. The most surprising result is that nearly all of the game designers who were
shown SmartMines at GDC 2006 and 2007 thought that Minesweeper was much
harder than SmartMines proved it actually was. There was a disconnect between what
the designers thought players did and what the players actually did. Perhaps of greater
value to game designers is that the process of adding an instrumented AI to a game fos-
ters new gameplay ideas.

Future Work

The obvious additions to these case studies are to implement more of the deterministic
rules that human players use. It would be particularly interesting to see the usage ratios
between the existing rules and these new, more sophisticated rules. SmartMines shows
a 10:1 ratio, and SmartNumbers shows approximately a 2:1 ratio between the utility of
the simple rules to the more complex rules. SmartMines clearly could use a display of
the number of unmarked tiles or even the average risk value of the unmarked tiles.

1.4 AI as a Gameplay Analysis Tool 47

References

[Collet05] Collet, Raphaël, “Playing the Minesweeper with Constraints.” Multipara-
digm Programming in Mozart/OZ, Second International Conference MOZ
2004. Lecture Notes in Computer Science, Vol. 3389, Springer, 2005. Paper and
software available online at http://www.info.ucl.ac.be/~raph/minesweeper/, October
18, 2004.

[Delahaye06] Delahaye, Jean-Paul, “The Science Behind Sudoku.” Scientific American
(June 2006).

[Duffez06] Duffez, Grégoire, “Planet Minesweeper.” Available online at http://www.
planet-minesweeper.com/schemas.php, August 6, 2006.

[Gupta05] Gupta, Sourendu, “Sudoku Tips: How to Solve Sudoku: The Mathematics
of Su Doku.” Available online at http://theory.tifr.res.in/~sgupta/sudoku/algo.html,
October 13, 2005.

[Kopp01] Kopp, Hans, “Truffle-Swine Keeper.” Available online at http://freenet-
homepage.de/hskopp/swinekeeper.html, April 4, 2001.

[Wikipedia07] Author unknown. Available online at http://en.wikipedia.org/wiki/
Minesweeper_(game), June 18, 2007.

48 Section 1 General Wisdom

http://www.info.ucl.ac.be/~raph/minesweeper/
http://www.planet-minesweeper.com/schemas.php
http://www.planet-minesweeper.com/schemas.php
http://theory.tifr.res.in/~sgupta/sudoku/algo.html
http://en.wikipedia.org/wiki/Minesweeper_(game)
http://en.wikipedia.org/wiki/Minesweeper_(game)
http://freenethomepage.de/hskopp/swinekeeper.html
http://freenethomepage.de/hskopp/swinekeeper.html

49

1.5

Ecological Balance in
AI Design
Adam Russell
chronotopia@gmail.com

This article considers the ways in which entrenched methods of game design can
lead to unproductive tensions with advances in game AI technology. This issue

encompasses not only methods of thinking about game design but also styles of
design documentation and working relationships between designers and AI coders
when iterating on game features. The result is not only a failure to produce useful
increases in gameplay complexity. In some cases, the result is actually a reduction in
complexity due to the inability of outdated design approaches to effectively control a
more complex AI system.

The dream of emergence often seduces both designers and publishers. Advances
in AI features can provide the publisher with marketing-friendly unique selling
points, typically accompanied by great hopes among the designers of “limitless
replayability” and “unique experiences.” However, all too often a powerful new AI
technology is brought in and just bolted on to existing approaches without corre-
sponding changes in game design methodologies. In many cases, design approaches to
behavior remain stuck in a simple state machine mindset even though the AI architec-
ture has become considerably more complex. For example, whereas the design docu-
ments for a game are likely to specify precise actions in response to specific events, an
agent architecture that uses search-based planning might consider a variety of
responses to a given event depending on its longer-term goals.

The Principle of Ecological Balance

The field of situated robotics emerged in the late 1980s out of frustrations in the aca-
demic AI community with the general failure of Newell and Simon’s physical symbol
systems model of intelligence [Newell76]. Rodney Brooks’ famous attack on symbols
and search was motivated by his dramatic success in constructing a series of
autonomous robots at MIT that were able to robustly perform physical tasks (such as
Coke can collecting) in extremely noisy and dynamic environments without the use
of any kind of internal knowledge representation either of those environments or of
the task that they were performing [Brooks90]. After a half-decade of rapidly growing

interest in this perspective, Swiss researcher Rolf Pfeifer laid out a set of design princi-
ples to summarize insights to date and to help guide further work in the field
[Pfeifer96]. The sixth of these was his principle of ecological balance, which argued that
increases in the supply of complex information from an autonomous agent’s sensory
systems are pointless unless balanced by an increase in demand from their motor
coordination tasks, and that the overall sensory-motor complexity of the agent must
be balanced to the needs of the ecological niche it inhabits.

In our version of the principle, increased complexity in game AI technology must
be accompanied by a corresponding increase in design complexity if it is to deliver a
significant change in gameplay. Game AI techniques and design methodologies must
reach a balance within the overall gameplay niche. Unfortunately, there is very little
observation of this principle in today’s large-scale game development. Every develop-
ment discipline has ambitions for increasing the sophistication of its contributions to
the overall game, whether in applying cloth physics to plant models or adding search-
based planning to the AI characters. In many cases (such as environment art), these
complications can be made without concern for their interaction with other disci-
plines. However, game AI is intimately bound up with game design, and an increase
in AI sophistication is pointless unless accompanied by a design mechanic that makes
good use of it. The following sections explore several different sources of ecological
imbalance in AI design, from defensive design attitudes and problematic working
relationships, to counterproductive level design and different models of AI processes.

Defensive Design

Sadly, one major contributor to design imbalance in game AI is not technological,
conceptual, or organizational, but a purely psychological problem. Generally speak-
ing, the designers on a project are seen as being chiefly responsible for guiding the
work of the other creative disciplines, for example, dictating the animation move set
for playable characters, detailing how the HUD (Heads-Up Display) should operate,
and specifying the required AI features. This responsibility requires that designers
understand enough about the type of work involved in each of these areas that they
are capable of making sound strategic decisions and capable of effectively communi-
cating these decisions to the area specialists.

When it comes to modern game AI technology, there are so many factors for the
designers to consider that the challenge of directing work on AI features is likely to
result in more than a little insecurity. So many mechanics are at work in contempo-
rary game AI solutions that designers often feel lost when attempting to conceive and
execute specific designs using the AI systems.

Unfortunately, a common reaction is for the designers to tighten their grip on the
AI to ensure it does not run away from them. Instead of increased feature complexity
enabling a greater range of design expression, in practice, the increased complexity
can result in a highly defensive design posture and a more limited range of design
applications of AI features in the gameplay.

50 Section 1 General Wisdom

Problematic Working Relationships

The structure of working relationships between game designers and AI programmers
is often a source of ecological imbalance between the two disciplines. Like most pro-
grammers, AI developers are generally concerned with fitting specific design concepts
for the game into consistent overall software architectures, following logical patterns,
and building systematic relationships between subsystems. This process means that at
any given time in a typical working day, an AI programmer’s attention is often deeply
buried in some architectural issue, whether it is sketching out a new subcomponent
and putting together some skeleton code for numerous new classes, or taking a long
hard look at whether some particular design suggestion should necessitate a major
refactoring of some existing system to accommodate this new variation.

By contrast, a designer’s day is often spent reviewing and tweaking a particular
functional area of the game, whether it is a specific level or perhaps a specific aspect of
the game mechanics across all levels. This process tends to involve a brainstorm of
notes in response to playthrough, capturing lots of little individual thoughts for
improvements or tweaks to the design. As a result, the designer’s attention is often
very broadly connected to a great variety of surface gameplay phenomena, some imag-
ined and some already present in the game.

The problem arises when these two mental states collide. If the designers are con-
sidering a bunch of small gameplay tweaks, it is very likely that they have a long list of
accompanying questions for the AI programmers regarding these tweaks, such as “can
we already do this?,” “what exactly does that parameter do again?,” “can you add a flag
for us to turn that feature on and off?” Further, the desire to make progress in their
design work that day often creates a pressure to have answers to these questions as and
when they arise. Whether face-to-face or by some electronic means, it’s most likely
that these questions will produce a steady stream of brief communications between
designers and AI programmers throughout any given day.

In an ideal world, this kind of working relationship produces a good level of
mutual understanding between the two disciplines and helps to keep them up to date
with each other’s differing goals and objectives. However, in practice, it can often
devolve into a constant stream of minutiae from the design team, which breaks up the
AI programmers’ attention throughout the day and makes it extremely difficult for
them to stay focused on the overall technical architecture. As pressure builds toward a
major project milestone, this problem is likely to worsen, and the design communica-
tions with AI can come to seem like nothing more than constant nitpicking.

This difference in working styles between the AI programmers and the designers is
more than just a source of friction and reduced efficiency. Sustained over a long period,
this problem has the potential to systematically undermine the engineering quality of
the AI code. More and more time is spent satisfying short-term design changes, and
less and less time is given to maintaining a coherent technical architecture. Of course,
it is part of the AI programmer’s job to help bring the designers’ specifications in line
with a consistent engineering framework, and a great part of this task is to continually

1.5 Ecological Balance in AI Design 51

educate and inform the designers so that they can understand how to design “with the
grain” and not against it.

However, as the AI framework gradually becomes more complicated as a result of
the design tweaking described previously, it becomes more difficult for the program-
mers to summarize and explain the system to the designers. Hence, it becomes ever
more difficult for the designers to understand how any single concept they might
come up with either fits into or contradicts the engineering picture that the AI pro-
grammers are trying to maintain. In a worst-case scenario, the result is ill-fitting con-
cepts and excessive special-case complications to the AI framework. In this way, the
whole working relationship becomes trapped in a vicious cycle to the detriment of the
overall game.

Counterproductive Level Design

Nearly every game will have some equivalent to the concept of levels, where a level is a
specific arrangement of game content with its own unique challenges and experiences.
Also, nearly every game team is going to have people whose job it is to mastermind the
design and implementation of these levels, whatever name is given to the discipline.
For the sake of argument, we will call them level designers. At the end of the day, game
AI features have no purpose except within the levels delivered in the final version of the
game. If the level designers are working against the AI features instead of with them,
the results are counterproductive.

The relationship between level design and game AI is rather like that between
painting and brushes. The specific effect produced when the AI is employed by a level
designer is not something intrinsic to the AI itself but rather something that the level
designer achieves through the AI. The various general game mechanics and AI fea-
tures will be brought together to create the effect. In theory, the available features are
perfectly suited to achieving the desired effect. In practice, tension often exists
between the generality of game features and the needs of a specific area of a level. We
can identify several typical categories here, namely the perceived need in level design
for specific event orders, precise timings, predictable movements, and predefined ani-
mations. Let’s take a look at each of these categories.

Specific Event Order

Game AI architectures these days are increasingly capable of producing novel sequences
of events on repeated play of the same area, for example, due to the use of dynamic ter-
rain analysis or search-based planning. In many cases, this is great for the level designers.
However, on many occasions, this can be a big problem because the level design requires
that a certain sequence of events occurs in a consistent order at a specific point in the
flow of the level. The repeated need for level designers to control the sequence of events
at many points in the game can seriously undermine the drive toward more generative
game AI.

52 Section 1 General Wisdom

Precise Timing

Even with level design taking very tight control of the order of behavioral events, the
sheer complexity of the conditions on AI execution of behavior means that the timing
of specific actions is not fully predictable in advance. For example, consider an action-
adventure game where the level designers specify that at a certain point in the level, a
conversation must take place between several characters, consisting of a series of lines
of prerecorded dialogue that must be delivered in the correct order. This is a straight-
forward requirement and is easily met if the audio is simply played over the top of
whatever the characters were doing at the time. However, contemporary character AI
systems might well be waiting for other dialogue to finish, waiting until a speaker
stops and turns to face the listener, or perhaps even waiting for some of the characters
to navigate into each other’s vicinity before starting to play the next line of audio.
Variations in the time taken to achieve these conditions cause variations in the pacing
and feel of the conversation. If the level designers do not come to accept this variable
pacing and design their levels with it in mind, then they are likely to make a series of
feature requests to the AI programmers that allow them to enforce timing of events.
Unfortunately, all too often, the only way to ensure this precise timing is to make the
behaviors unresponsive to their environment. This makes for extremely brittle and
error-prone AI and also limits player interaction.

Predictable Movement

Just as the order and position of AI actions in time is a source of tension between level
designers and AI developers, the same is also true of the spatial aspects of behavior.
Search-based path planning is a vital feature of most contemporary game AI across a
broad range of genres. Automated generation of navigation graphs is increasingly
common, and this is very unlikely to support the exact patterns of spatial motion that
the level designers envisage for an area. Further, even where the level designers are
responsible for setting up some of the search metadata themselves, it is often difficult
for them to predict the effects of such a change on the final movements of game
agents. Anyone who has tried to control the results produced by a heuristic search
algorithm would agree that it is very hard to predict all the consequences of a particu-
lar cost function. Unfortunately, in many cases, this complexity can be interpreted as
a threat to the level design and again results in requests being made to enforce strict
constraints on the AI behavior, such as “the NPCs must always enter the zone at this
point and then travel through this waypoint.”

Predefined Animations

Today’s game character AI is likely to have very complex animation control systems
capable of interleaving multiple simultaneous animation states such as locomotion,
body posture, weapon aim, head tracking, facial mood, and lip synchronization. To
drive these many concurrent channels of expression, many independent subsystems will

1.5 Ecological Balance in AI Design 53

be driving the animation state in parallel. For example, the aiming and head tracking
code might be targeting the current primary threat, while the locomotion controller is
following the current navigation path, the lip sync is blending in an appropriate
phoneme shape based on the current audio state, and the body posture and facial mood
are displaying extreme fatigue because the character is seriously injured. In principle this
sounds great, but despite all that, the level designers are likely going to request direct
control of the character’s animation at certain points, for example, having the system
play a custom animation interacting with the environment while delivering some
accompanying dialogue.

This request can be served by having the level designers place some kind of map
triggers that play specified animations on characters. However, problems start to arise
when these triggers interact with the autonomous AI animation. If the designers have
predetermined that a particular animation must play, but at runtime that animation
might be preceded or followed by a variety of possible character animations, then it
becomes very difficult to maintain consistency and believability. Even worse, there
might be layers that are still running autonomously on top of the specified animation,
such as facial mood, which can create highly inappropriate combinations.

With the level designers finding a contradiction in expression between the
autonomous animation state and their triggered animation, their natural response is
to ask for the ability to force the autonomous state to certain values. But then what
began as a single specific animation gradually creeps out into general constraints on
AI-driven animation throughout an entire area of the level, and before long, the repeated
use of specific animations in levels can systematically undermine any attempts by the
AI programmers to maintain a consistent relationship between external animation
and internal AI state. Finally, this inconsistency can lead the design team to question
the very purpose of having such internal state variables because it is proving difficult
to clearly represent them to the player, and so aspects of the internal state model are
dramatically simplified or just cut altogether.

Different Process Models

A model is never equivalent to the real system that it models, especially in software
engineering. Just as the dominant representations at work in a field change over time,
so the models employed vary across disciplines within a single project. The descrip-
tion of AI processes used in the work of artists and animators are likely to be massively
simplified relative to the code architecture but good enough to appropriately structure
their work on the art assets that will be connected to the processes. The descriptions
used among programmers will vary depending on which area of the code is being
focused on, but the descriptions can always be made more sophisticated as necessary
by referring to the actual code under discussion. However, in design, we find a rather
more difficult and hazardous relationship between description and implementation.
The game designers are driving the engineering of AI features through the representa-
tional models they employ to describe AI processes. Any deep structural difference

54 Section 1 General Wisdom

between the process models used by designers and those at work within the AI team is
going to be a source of problems.

There have been many developments over the years in the approaches used to
describe and implement game agent processes. The simplest way of thinking is what we
might call a stateless reactive model, with a single update routine and a single handler
routine for all event callbacks. This description is then made more powerful by allowing
variables to persist across updates and different event handlers. For example, the enemy
ships in Space Invaders can be described easily using a reactive model with some simple
persistent variables. The ships always reverse their direction and drop down a level when
reaching the screen boundary, they drop bombs every time a timer expires if there is no
Invader below them, and they always die when struck by a player missile.

Even among nontechnical team members, most description of game agents goes
beyond this simple reactive model and assumes the more systematic finite state
machine metaphor. Here we describe agents as always being in exactly one state from
a predefined list and view the event handling logic as being separate for each state,
accompanied by a specialized update routine during which the current state can pur-
sue whatever spontaneous action is appropriate. We might also very likely presume
persistent variables that are local to the current state. To take another simple example,
Pac-Man’s ghosts are most conveniently described as always being in one of two states,
either chasing the player or fleeing from the player, with this division determining
everything about their movement, animation, sound effects, and what happens when
they touch the player [Lammers90].

Note that how these descriptions are implemented in code is to a great extent
irrelevant—the important point here is the model used to represent the agent’s behav-
ior. A finite state machine description can always be translated into a stateless reactive
model with persistent variables and vice versa. However, there will always be certain
features which fit comfortably under one representation that become awkward to
describe in another. For example, a reactive model can translate into a poorly defined
state machine because there are variables that need to span states, and, by contrast, a
state machine can translate into a messy reactive model because there are persistent
variables whose values only have meaning at certain times.

As mentioned, the game designers are driving the engineering of AI features
through the representational models they employ to describe AI processes. These
models constrain the AI design in two senses. On one hand, the designers use their
own models as a framework for themselves within which they are able to picture new
AI features. On the other hand, they use these models as a language through which to
express their designs back to the AI programmers. Of course, there will always be a
difference in representation between the designers and the programmers they are
working with. In an ideal world, this difference is only one of details, and the overall
structure remains the same whichever discipline is describing it. Unfortunately, in
practice, this is becoming less and less true as the technical architectures for AI
become more and more sophisticated. If we take a look at the typical models used for

1.5 Ecological Balance in AI Design 55

game AI today within the design and the programming disciplines, we find a number
of deep structural differences.

Game AI programmers are increasingly dealing with multiple simultaneous states,
for example, agents might be looking at an interesting object while moving to operate
a switch and simultaneously delivering lines in an ongoing conversation. More and
more frequently, they are building goal-driven agents whose responses to stimuli vary
depending on their current agenda, for example, deciding not to immediately attack
on sighting an opponent because ammo is low [Orkin06]. Architectures are now rely-
ing extensively on subsystem encapsulation to remain robust and scalable in the face of
today’s increasingly complex game worlds, for example, decoupling the precise anima-
tion state of a character from higher-level decision making and imposing intervening
abstractions such as pose requests [Burke01]. As a result of all these factors, surface
behavior is more and more likely to vary on each play through a given section.

By contrast, design approaches to AI processes still tend to assume a single overall
state, for example, “attacking,” “searching,” “idling,” and so on. They typically apply
a strongly reactive model of action-selection, for example, “every time the player exe-
cutes that command, the character should immediately shout this response.” Even
where concurrency is considered, little concession is made to the need for encapsula-
tion between subsystems, for example, “when they are navigating to a scripted posi-
tion at which point they are going to start a conversation, they should look at the
characters they are about to start talking to.” Also, despite marketing spin to the con-
trary, design will often still expect a surprisingly high degree of consistency in surface
behavior in a particular encounter, for example, “when they come around this corner,
they should always be aiming to the right.” This overall disconnect between today’s
advanced AI process models and the established approaches to designing AI content
has, in many cases, reached dangerous levels.

Conclusion

As we have seen, there are a number of different sources of ecological imbalance between
game design and AI programming. Some of these are social issues, as seen with defensive
design attitudes and tensions in the structure of working relationships. Others are tech-
nical issues, as seen with counterproductive approaches to level design and differences in
conceptual models of AI processes. Either way, greater balance is needed in AI design
between the different needs and concepts of designers and of programmers.

Two and a half thousand years ago, in his great utopian vision of the ideal city,
Plato argued that political strife would not end until the philosophers came to rule the
state, or at least until the rulers of the state became philosophers [Plato55]. In game
AI, it is the design kings who make the executive decisions and the AI philosophers
who ponder how to make sense of these decisions. Let’s hope that more game design-
ers can emulate Alexander the Great, a king who studied at the feet of Aristotle before
riding out to conquer the known world.

56 Section 1 General Wisdom

References

[Brooks90] Brooks, Rodney, “Elephants Don’t Play Chess.” Robotics and Autonomous
Systems, Vol 6 (1990): pp. 3–15.

[Burke01] Burke, Robert, et al., “CreatureSmarts: The Art and Architecture of a
Virtual Brain.” Proceedings of the Game Developers Conference (2001): pp.
147–166.

[Lammers90] Lammers, Susan (ed.), Programmers at Work. Tempus Books, 1989.
Interview with Iwatani is also available at http://www.geocities.com/SiliconValley/
Heights/5874/iwatani.htm.

[Newell76] Newell, Albert, and Herbert A. Simon, “Computer Science as Empirical
Inquiry: Symbols and Search.” Communications of the ACM, Vol 19, no.3
(March 1976): pp. 113–126.

[Orkin06] Orkin, Jeff, “3 States and a Plan: The AI of F.E.A.R.” Game Developers
Conference, (2006), available online at http://web.media.mit.edu/~jorkin/.

[Pfeifer96] Pfeifer, Rolf, “Building Fungus Eaters: Design Principles of Autonomous
Agents.” Proceedings of the Fourth International Conference on Simulation of Adap-
tive Behavior (1996): pp. 3–12.

[Plato55] Plato, Republic. Trans. H. D. P. Lee. Penguin, 1955.

1.5 Ecological Balance in AI Design 57

http://www.geocities.com/SiliconValley/Heights/5874/iwatani.htm
http://www.geocities.com/SiliconValley/Heights/5874/iwatani.htm
http://web.media.mit.edu/~jorkin/

This page intentionally left blank

59

S E C T I O N

2
MOVEMENT AND

PATHFINDING

This page intentionally left blank

61

2.1

Company of Heroes Squad
Formations Explained
Chris Jurney—Kaos Studios
jurney@gmail.com

The squad formations in Company of Heroes are designed to provide very complex
and believable motion for groups of soldiers moving through a highly destruc-

tible environment. This article explains how this was accomplished in enough detail
that you can implement a similar system or just steal a few of the tricks for your next
game. The techniques primarily apply to games with an overhead view where the
positioning and tactical movement of units is of high importance.

Squad Makeup

In Company of Heroes, infantry units are grouped together in squads. Players are only
able to issue orders to squads, so it is up to the squad AI to make the units look smart
while executing orders. Squads are broken up into three elements: core, left flank, and
right flank. Each element has a leader, and the leader of the core element is the leader
of the squad. These roles are assigned to soldiers and updated whenever one is killed
or the squad is reinforced. The assignments are made based on an extensive set of
game-specific rules, for example:

• Put squad leaders in the core.
• Allies put heavy weapons in the flanks; Axis put heavy weapons in the core.
• Put an even number of soldiers in the left and right flanks.

These assignment changes are “stable,” meaning that the system does the minimum
number of swaps necessary to obey the assignment rules. Extra swaps are avoided
because it looks awkward when a soldier randomly runs from the left side of a squad to
the right when a reinforcement arrives. The hierarchical structure of the squads is shown
in Figure 2.1.1.

Move Out

Now, let’s move on to the basics of movement. When a move order is issued to a squad,
its leader receives an order to move all the way to the move order’s goal. He immedi-
ately computes a path and starts moving. To generate goals for other squad members,
we predict the future position of the leader along his path roughly two seconds ahead.
We then take an offset from the leader’s future position and orient it using the leader’s
future heading to generate goals for element leaders. The formation is hierarchal, so
element followers make predictions for their element leaders’ positions and move to
offsets from there, as shown in Figure 2.1.2.

62 Section 2 Movement and Pathfinding

Squad Leader

Element Leader

Follow Link

Element Follower

FIGURE 2.1.1 The formation layout is hierarchal. At the top of the hierarchy is the squad
leader who has an immediate follower represented by the hollow circle and two element
leader followers that are represented by the circles filled with gray stars. Each element leader
has a single element follower, which is represented by a hollow circle.

Leader Future Spot

Follower O set

Follower Goal

FIGURE 2.1.2 Followers move to an offset from a point in the leader’s future.
The goal for the left-hand element leader is computed using the predicted future
position of the squad leader and the offset between the element leader and the
squad leader rotated according to the predicted heading of the squad leader.

Now the units are moving, but there is a problem. Without some control of the
units’ speeds, the formation will quickly lose its shape as some units fall behind and
others pull ahead. To overcome this problem, we introduce a speed modifier that is
used to adjust the speed of movement of individual units. To get the speed modifier,
we take the same formation offset we used to calculate the follower’s goal, rotate it
according to the leader’s current heading, and apply it relative to the leader’s current
position instead of his future position.

If the follower is ahead of the offset position in the axis of the leader’s motion, we
slow him down proportional to the distance he’s ahead; if the follower is behind, we
speed him up proportional to the distance he’s behind (see Figure 2.1.3). We don’t
really care if he gets out of place in the axis perpendicular to the direction of motion
of the leader because the follower’s goal will bring him back in line eventually.

2.1 Company of Heroes Squad Formations Explained 63

Distance
From
Spot

Formation O set

FIGURE 2.1.3 The distance of a squad member from his current offset position
in the current direction of motion of the squad leader is used to adjust his speed.

Softening the Shape

Now the units are moving out, but they will occasionally run into problems. Some-
times when using fixed offsets, the followers’ goals will be inside or on the far side of
obstacles, which is particularly problematic when the pathfinding distances to those
goals are significantly larger than the straight-line distances.

To resolve this, the system never uses offsets directly. Instead, for the goal offset
points described previously, a cheap A* pathfind with a search step limit of around
50–100 nodes is run from the leader’s future position to the follower’s ideal future off-
set position. Whether or not the search succeeds, the offset that will actually be used
by the follower will be the point touched by the search that was nearest to the ideal

64 Section 2 Movement and Pathfinding

offset position. The net effect of this approach is to make the formation squeeze in
organically at chokepoints and route around small obstacles that don’t divert too
much from the leader’s path. The behavior of this technique is shown in two different
scenarios in Figures 2.1.4 and 2.1.5.

htaPre
wolloF

Obstacle

A* Touched Area

A* Nearest
Point

A* Search
Start

Follower

Follower
Goal

FIGURE 2.1.4 The actual follower offset goal is picked by pathing
from the leader’s future spot to the ideal offset position. The nearest
point found by the pathfinding algorithm to the ideal offset position
is used as the actual offset position.

Wall

Follower Path

A* Touched Area

A* Nearest
Point

A* Search
Start

Follower

Follower
Goal

FIGURE 2.1.5 Using a search to choose a follower’s goal produces
good results in nearly every scenario.

The formation is now handling movement amid obstacles and chokepoints, but
it will look a bit robotic because the combination of the fixed offsets, speed control,
and obstacle avoidance code is too good at keeping units in their formation-mandated
spots. To counteract this, we have each unit store a personal drift variable that is
added to its formation offset for all the formation calculations. Each tick of the simu-
lation this drift value floats around via a random offset within a maximum radius.

All the systems that have been described for controlling the movements of indi-
vidual units in formation have one major drawback: performance. The cost of the
pathfind searches that are used to calculate goal positions are inexpensive because they
can be accomplished with a very low search step limit, however, pathfinding from the
followers’ current positions to the followers’ goals is slightly less constrained. Because
we are giving slightly different move orders to each unit each tick, we are asking each
unit to repath each tick.

Even though the pathfinding is only performed over relatively short distances, it
does add up. To counteract this, when the system calculates the final goal position and
speed modifier for a unit, it compares these to the unit’s current movement. If the
difference is within a small delta, then the new order is not given because it would
have little impact. By tuning this delta, we can have our follower units repath only
every half-second to three-quarters second during formation movement, which is
enough to keep their pathfinding from showing up significantly in the profile stats for
the game.

Formation Context

Not all formations are appropriate for all situations. When in a wide-open field, for
example, a broad wedge shape looks very natural, but when navigating along cramped
city streets, the same shape seems unnatural. To fix this, we decide which of a set of
formations to use based on the terrain the squad leader is passing over. Specifically, we
used a wide wedge for open areas, a tight wedge for confined areas, and a staggered
column for roads.

Leapfrogging

Now that the soldiers are moving in formation, it would be nice if they could leave
the formation occasionally to leapfrog to cover or some other interesting feature of the
game world. Specifically, leapfrogging means that one of the elements is going to leave
his normal place in the formation, run to some interesting spot in the world, hold for
some amount of time, and then resume moving in formation. Such interesting spots
are selected by searching for points of interest in the area of a follower’s goal. When we
find something interesting, we change the mode of movement of the element to have
it follow the leapfrogging pattern. Only element leaders perform this behavior, and
element followers are simply along for the ride. Occasionally, a leapfrog is performed
even when there is no interesting feature, just to keep the squads looking interesting.
The leapfrogging pattern is shown in Figures 2.1.6 and 2.1.7.

2.1 Company of Heroes Squad Formations Explained 65

This system works, but in some cases, putting a hard stop in the middle of a leapfrog
looks wrong, especially when the squad is in a hurry, such as when it is retreating. To
fix this, we add a second type of leapfrogging called a “soft” leapfrog. In the case of a
soft leapfrog, we calculate both the normal formation move order for the element leader

66 Section 2 Movement and Pathfinding

Cover

Follower
Goal

Cover Search Radius

Found Point
of Interest

FIGURE 2.1.6 Followers search for points of interest by
leapfrogging in the area of their goal.

Cover

Divert

to

Cover

Hold for 2 Secs

Resu
me

Follo
wing

FIGURE 2.1.7 Leapfrogging units move to the point of interest,
stop, and then resume following.

and the leapfrog order. We then send the element leader to a point on the line between
the two orders, about 80% on the side of the leapfrog order. This results in the character
veering out of formation obviously toward cover and slowing a bit but never stopping.
The effect is a very intelligent-looking unit who is in a hurry, but not so much as to
totally ignore his own safety and his environment, as shown in Figure 2.1.8.

2.1 Company of Heroes Squad Formations Explained 67

Cover

Current
Interpolated

Follower Goal
(No Stop)

Future Interpolated
Follower Goal

Current Path

Future Path

FIGURE 2.1.8 Soft leapfrogging modifies the follower’s goal by pulling
it in the direction of the point of interest.

Virtual Leader

Adding leapfrogging into the formation system creates a new problem. When the
leader of the squad and of the core element stops heading for the goal and heads for
some cover in a leapfrog, the entire squad will veer off to follow him. To fix this prob-
lem, we add the idea of a virtual leader that the formation will follow instead of the real
one. Most of the time, the virtual leader is snapped to the position of the real leader,
but when the squad leader leapfrogs, the virtual leader continues on the original path
to the goal. When the real leader finishes leapfrogging and resumes heading to the goal,
the virtual leader interpolates back and eventually snaps to the real leader. The inter-
polation helps prevent jerks in the motion of the units that would be caused by sudden
changes in goal positions. The effect of the virtual leader is shown in Figure 2.1.9.

The reason for not using a virtual leader all the time is that the virtual leader is not
a real unit dealing with all the obstacles of the dynamically changing world and can
therefore get significantly ahead of, or behind, the actual units. When the leader is a
significant distance from the followers, follower behavior will become less intelligent
because their goals and any leapfrogging behavior will be based on objects too far in
their future to appear relevant. Initially, the formations implemented for Homeworld
had issues with this, so we avoided the problem in Company of Heroes by keeping the
virtual leader as nonvirtual as possible.

Destination Formation

A separate formation system is used when a squad gets near its destination. This for-
mation has the same shape and uses the same drift values as the moving formation to
avoid any jarring shifts. In the separate system, each soldier marks his destination spot
with a reservation to make sure that no one else is standing there when he arrives, and
no one else is allowed to use that spot as a destination until he gives it up.

The user can set the facing of the formation in Company of Heroes by right-dragging
the mouse instead of right-clicking. If he doesn’t do that, we try to help him out by
making the formation face any enemies in the area; if there aren’t any, units simply
face the average direction for the move order, defined by the vector from the squad
leader’s start position to the position the user clicked.

Each individual soldier in the formation does a search in the area surrounding his
formation spot looking for cover to protect him from enemies that lie in the direction
of the formation heading. If he finds cover, he’ll go there instead of his formation
spot. Just like in the moving formation, we find a spot for the leader first, then we use

68 Section 2 Movement and Pathfinding

Cover

Real
Leader

Leapfrogging

Virtual Leader

Follower

FIGURE 2.1.9 While the real leader is
leapfrogging, followers use a virtual leader that
continues on the real leader’s previous path.

cheap pathfinds to validate any spot chosen by the destination formation, and we use
the closest available if it isn’t reachable. This keeps squad members from ending up on
the wrong side of a long wall or building at the end of a move but allows them to go
to the other side of small obstacles.

Handling Destruction

Fortunately, no additional code is required for this system to handle a highly dynamic
and destructible environment. Because everyone but the leader is recalculating their
paths every four to six ticks, any changes to the environment are immediately reflected
in units’ routes. As long as the leader also periodically recalculates his route to the goal,
he will also react to any changes. In practice, having the leader repath every time he
leapfrogged was sufficient.

The performance impact of all the repaths required by this formation system is
mitigated for the followers by the fact that their paths are all very short distances and
almost always direct due to the fact that their goal positions are close to a future posi-
tion of the leader and hence almost always directly reachable. Color Plate 1 shows a
formation from Company of Heroes with examples of these short paths. The perfor-
mance impact of the leader repaths is mitigated by the relatively smaller number of
leaders and by using hierarchal pathfinding.

Conclusion

The motion produced by the system that is described in this article played a significant
part in making the soldiers in Company of Heroes into believable characters. Using the
system, you can achieve tactically and visually interesting motion. Even if you can’t use
the entire system, you should be able to use the individual pieces to improve the qual-
ity of your own group movement. The parts described can be developed iteratively to
build up advanced behavior gradually. After you apply them all, you will have squads
that will impress your players with their incredibly tactical and life-like motion.

2.1 Company of Heroes Squad Formations Explained 69

This page intentionally left blank

71

2.2

Turning Spaces into Places
Adam Russell
chronotopia@gmail.com

This article explores the complex relationship between the forms of spatial represen-
tation employed by game agents and the forms of behavior that are easily supported

by them. You will see how most game agents typically reduce space to little more than a
list of individual entities with objective spatial features existing in a task-neutral naviga-
tional representation of the global environment, and you will see how this is likely to
severely limit their behavioral sophistication. This observation leads us into an extended
discussion of the much richer notions of place found in the philosophical literature,
before returning to practical themes with a review of place-based models in game AI. We
will discuss affordance theory, smart object models, terrain analysis, influence mapping,
and informed environments, relating these specific approaches back to the general
philosophical notions of place identified in the middle section of the article.

The Impoverished Umwelt of Game Agents

Jakob von Uexkull was an Estonian biologist who studied the way in which different
organisms are adapted to their environments. He argued that it is misleading to talk of
organisms responding to a subset of the objective features of a physical environment
and to view these environmental features as something separate from the organisms
that respond to them. Instead, he pointed out that the only environmental features
that exist as far as the organism is concerned are those formed by sensory-motor
response mechanisms specific to the organism in question. Von Uexkull employed the
German word Umwelt or “about-world” to refer to this notion of the environment as
seen from the organism’s point of view, what we might call its “subjective environ-
ment” [von Uexkull57].

Applying this notion to game AI, we find a huge difference between the Umwelts
of the player and of the game agents. Whereas a human player experiences the game
world as a rich tapestry of meanings, the game agents’ subjective environment typically
consists of just two types of information: a list of entities recently observed in local
space and some form of navigation graph representing the global spatial structure.

Local Entities

Any game agent is likely to have some sort of list of handles to other entities in the game
database, such as “current target,” “nearest cover point,” and so on. In the simplest case,
these handles are nothing more than pointers to the entities themselves, and the agent
will pull state data directly off the entities as necessary, for example, to determine their
current position or velocity. In more complex setups, there will be some kind of data
structures referring to the entities, with various fields whose values are unique to the
agent in question [Orkin05], for example, “last observed position” or “last observed
time,” along with a pointer to the entity so that the agent can still cheat when it needs
to. In a very sophisticated setup [Evans00, Burke01], the entities themselves will be
completely hidden from the sensory representation, and there will be an extensible and
modular data structure within which to capture observed features of sensory stimuli,
such as “hot” or “making a noise.”

Whatever the complexity of the data, certain general traits can be identified. First,
whether the description is made directly (“this entity”) or indirectly (“an entity like
this”), it is still a static description. It might describe changing spatial features of the
entity, such as its position, but at any given time, the description is typically a single
frozen snapshot of the entity’s state (or perceived state). These representations are
almost completely atemporal, with generally only a very limited sense of time, often no
more than a simple timestamp and “is still valid” query that depends on how old the
description is. It is extremely rare for such sensory data to include a history of previous
states or any kind of prediction of future state, such as an estimated trajectory [Isla02].

Second, the description typically consists entirely of objective features, which is to
say it conveys facts about the entity that are observer-independent, such as its height or
location. The furthest that these descriptions might venture into observer-dependent
features is to use an egocentric spatial measure such as “current distance.” However,
these kinds of egocentric measures are simply derived from the objective features of
two entities, which in the case of distance are, of course, the position of the observed
entity and the position of the agent itself. These kinds of variables are egocentric but
still represent objective relations between entities and could be determined from any
point of view that wanted to consider them. It is exceedingly rare in game agents to
find truly subjective descriptions of observed entities, that is, descriptions that are task-
dependent and possibly meaningless to any other observer, although this approach can
be found in work on situated robotics [Brooks90].

Finally, these descriptions don’t just attach a list of observed features to an entity.
Almost certainly the descriptions are also classifications of the entity under some type,
probably within a hierarchy of types, such as “pickup” or “door.” Much like the descrip-
tive features discussed previously, these types are usually an objective classification of the
entity, which means they apply a shared typology that any other observer would apply in
the same way and arrive at the same classification. Most likely the types employed are
the actual entity classes from the game database, and thus correspond directly to the

72 Section 2 Movement and Pathfinding

nature of the entity. “Call a spade a spade” could almost be a motto for these kinds of
sensory representations.

Global Structure

In addition to awareness of certain game objects, agents will almost certainly have access
to some kind of navigational representation of the overall structure of the game space.
Navigation graphs provide agents with a considerably simpler environment model than
that of an environment’s collision geometry, which is likely to be much simpler than its
render meshes. By reducing space to a set of nodes on a graph and a set of connections
between them, agents are able to use graph-based search algorithms to plan paths
through the game environment [Stout00]. Under this representation, following a reduc-
tion of the agent’s physical volume to a single point, the positions of both the agent and
its goal are reduced to single nodes based on proximity, in the case of waypoint graphs,
or based on containment, in the case of space-filling graphs.

Although many games now incorporate some form of dynamic navigation repre-
sentation, the runtime data changes are normally just annotations on top of an under-
lying structure that is static—the positioning of waypoints, or the identification of
navigation polygons is extremely difficult to automate and, even when automated,
will almost certainly remain an expensive offline task [Tozour02]. This means that the
spatial structure upon which dynamic annotations can be made at runtime is precom-
puted and thus fixed for all agents at all times during the course of the game.

Objective Space

From the preceding review, it seems at first that spatial information appears under two
contrasting extremes. On one hand, we have instantaneous spatial measurements
regarding nearby entities, and on the other, we have a permanent navigational struc-
ture regarding the whole of the current game space; we have one local and one global
form of information, one temporary and one permanent. However, despite this con-
trast, both representations are united by a general objectification of spatial information
in two related senses of the word. First, these representations objectify space because
they capture spatial information that is observer-independent. Second, these repre-
sentations objectify space because they reduce space to the locations of entities (i.e.,
objects) at specific points in space.

In Search of a Sense of Place

At the inaugural AIIDE conference in 2005, Damian Isla discussed in considerable
depth the many varieties of spatial representation at work in Bungie’s Halo 2 [Isla05a].
Despite demonstrating a state-of-the-art variety of spatial representations in the game,
Isla admitted that even Halo still lacked much representation of spatial semantics,
such as recognition of rooms and their doorways, distinguishing between inside and

2.2 Turning Spaces into Places 73

outside, and capturing the mission-dependent sense of forward and backward through
a game level. At the same conference, Doug Church explored his concerns that the
game AI discipline is endlessly refining a narrow set of agent competencies and not
addressing broader issues, such as the interaction between level design and autonomous
behavior, and the lack of tools for pulling narrative out of cutscenes and putting it into
the game [Church05].

The basic motivation behind this article is that an increase in the complexity of
representations of spatial semantics will have a direct positive impact on the broader
issues that Church was discussing. We need better representations of place within our
AI frameworks to support more believable character interactions. The impoverished
Umwelt of game agents is intimately bound up with the general lack of development
in nonadversarial social interactions such as conversation models, opinion systems,
and interactive drama. In this search for more complex notions of place, we need to
broaden our discussion beyond the established terminology of game AI and draw on
related literature from other fields, such as philosophy, psychology, and sociology.

Places Are Observer-Dependent

No discussion of place is complete without mention of the French thinker Henri
Lefebvre. His work on place has been a massive influence on a whole generation of
thinkers across a multitude of fields. Much of the “spatial turn” in social sciences over
the past 15 years can be attributed to the publication in English of Lefebvre’s master-
work The Production of Space [Lefebvre91]. In this book, Lefebvre identifies three
interrelated perspectives on space: spatial practice, by which he means the physical
construction of spatial patterns by our culture; represented space, by which he means
the ways in which we conceive of space in our culture; and representational space,
which he uses to refer to the dynamic interplay between our spatial practice and our
represented space.

This approach of taking two opposing notions of space and then introducing a
third notion that mediates between them is typical of concepts of place. In fact, it is
directly analogous to the points made earlier regarding the gap between local entities
and global structure in game AI and the suggested need for spatial representations
that lie between the levels of individual objects and the global environment. As men-
tioned previously, game agents need far more sophisticated representations of spatial
semantics, such as doorway, inside, outside, forward, and backward. These semantics
are not objective features of the physical environment (even though they might be
consistently perceived by all observers), and in many cases, they are task-dependant
and highly temporary. However, they are also often shared between agents, and agree-
ment on their application is required for spatial coordination of groups. Similarly,
Lefebvre’s representational space refers to the interactions in society between our
physical environment (spatial practice) and our private mental concepts of that envi-
ronment (represented space).

74 Section 2 Movement and Pathfinding

Places Are Integrated with Behavior

The phenomenologist Maurice Merleau-Ponty is unusual among his trade for being
sincerely interested in the work of empirical scientists. In his book The Structure of
Behaviour, he draws attention to the body as an active center that integrates the men-
tal and physical domains [Merleau-Ponty65]. As James Gibson would discuss 30 years
later, our perception of the spatial environment is structured by the sorts of actions it
affords our body [Gibson79]. We see things for grasping, pushing, pulling, and sitting
on. We do not see distance, volume, angles, and so on. This is what Merleau-Ponty
means when he talks of the “functional body.”

As it happens, one of Merleau-Ponty’s most well-known examples of his notion of
perception is that of the player of a game, namely American football. The football
player does not see the field as an object with objective features, such as evenly mown
grass and regularly spaced painted white lines. Instead, he sees the field in terms of
what Gibson would call affordances for action, such as blocks and openings; potential
passes; and ultimately the goal itself, which in Merleau-Ponty’s view is again not an
object but a powerful sense of direction that pervades the entire field. This work again
speaks of the need for a sense of place in game agents, for what Damien Isla called
spatial semantics, and as we shall discuss later, is directly mirrored in the current state
of the art approaches to dynamic tactics in combat AI.

Places Are Hierarchical and Concurrent

The basic thrust of Lefebvre’s work is that our sense of place is neither simply objective
nor simply subjective but socially constructed. It should also be noted that each indi-
vidual belongs to many social groups and as such is likely to experience many different
senses of place at once in the same space. But space is also layered with places by the
existence of multiple individuals representing separate social groups. Lefebvre discusses
this point in the light of the appropriation by teenagers of spaces constructed for the
purposes of adult capitalist society, and the imposition of their own sense of place on
these spaces. For example, Lefebvre is fascinated by the teenage appropriation of a
fountain in a mall and how this might represent a rupture in capitalist place due to the
presence of individuals uninterested in consumption.

At first sight, these observations seem quite remote from the issues of game spaces
and their habitation by game agents, but it is important to consider the ways in which
simultaneous representations of place can overlap and conflict with one another in
games. For example, it’s all very well for a pair of NPCs to designate a place where
they are “having a conversation,” but this can look pretty stupid if they ignore the fact
that other NPCs keep walking through the middle of their conversation or that they
are standing in the middle of a fight between the town guards and some criminal.

Places Are Associative Structures

We have seen how places are socially constructed; how they are structured by and, in
turn, structure our actions; and how multiple places can coexist simultaneously in a

2.2 Turning Spaces into Places 75

space. But places can be more than just direct inscriptions of action into the environ-
ment, such as “hide here” or “snipe from here” or “hang out here.” Places can also
provide a typology or a categorization with which to plan and reason about behavior
or with which to associate patterns between different spaces. In some cases, places can
even be said to form a vocabulary for a language of space.

The sociologist Erving Goffman developed what he called the dramaturgical per-
spective on everyday life [Goffman59]. He drew an analogy with the requirement in
stage theater that an actor remain “in character” while performing in front of the audi-
ence. According to Goffman, many everyday social situations can be characterized as
providing roles for actors to perform, and people will go to great lengths to preserve the
role they are playing, even if the actions they take to do so contradict actions that they
take at other times and places in other roles. For example, the serving staff in a hotel
will always endeavor to maintain their roles of humility and disinterest toward the pri-
vate lives of the guests, even when in fact they take great interest in the guests’ affairs
and often consider themselves superior to the guests.

The most interesting aspect about Goffman’s application of the dramaturgical
perspective is that it brings with it a spatial vocabulary involving terms such as “front
stage” and “back stage,” which Goffman argues are critical notions of place that we
apply throughout our social lives. He pointed out that it is very common for service
environments, such as hotels or cafes, or even workshops, to be physically arranged in
such a way as to support these notions. They might have a small “front stage” area
(such as behind the counter of a store) within which the performers appear and main-
tain strict adherence to the role, along with a generally hidden back stage area, such as
the kitchen, within which the performers can discuss their performances of the roles
and express quite different opinions of the audience outside. Throughout our every-
day life, Goffman argues, we are constantly framing our spatial environment with
respect to whatever roles we might currently be performing, and this continual
process structures every detail of our paths through the environment, our body lan-
guage, and our facial expression.

Models of Place

We’ve now described various concepts of place from a largely philosophical point of
view. You have seen how a sense of place differs from a simple awareness of objective
space in a number of ways. Places are socially constructed notions; they are action-
oriented structures; they are layered on top of one another in the spatial environment,
both concurrently and hierarchically; and finally they can provide us with what you
might call a vocabulary for reasoning about space. Let’s now take a look at how elements
of these abstract philosophical themes are embodied in some concrete models of place.

Affordance Theory and Action-Oriented Perception

As mentioned previously in our discussion of Merleau-Ponty, the psychologist James
Gibson argued that our perceptions of the environment are primarily structured

76 Section 2 Movement and Pathfinding

around possibilities for action. He coined the term affordance to refer to this kind of
perception and suggested that we don’t principally experience objects in our local
environment, but rather we experience affordances that are presented to us by objects
[Gibson79]. It is important to note that the affordance is not an intrinsic feature of
the object in itself but depends on the interaction between the object and our sensory-
motor activities. This takes us back to the points made earlier about the Umwelt. The
things that we see in the environment are intimately connected with the things that
we do in that environment. Whereas a human sees a world of containers for filling,
handles for turning, text for reading, and so on, a cat sees a world of surfaces for
marking, corners for hiding in, and items for pouncing on.

Many games are already exploiting the affordance theory to structure the interac-
tions between game agents and their environment, most famously Will Wright’s The
Sims with its “smart object” model. We could say this approach was already implicit in
our earlier discussion of game agents’ awarenesses of local entities, when we men-
tioned the ascription of types to entities such as “pickup” or “door.” In many cases, the
entity types employed by the AI map directly to actions, such as “activate,” “open,”
“shoot at,” and so on. Although it is true that the types ascribed are typically observer-
independent and as such do not seem to arise from an interaction with the agent, the
object type hierarchies created for the game database are in fact often designed around
the sorts of actions that both the player and the game agents are capable of perform-
ing, and so these object types already represent a system of affordances for the AI.

However, as stressed in earlier sections, having a sense of place requires being able to
see the same space in many different ways depending on our engagement in different
social activities. The same should apply to the ascription of affordances to game objects,
and it might be that the direct use of a single type of hierarchy by all game agents, even
if this hierarchy represents a system of affordances, is largely responsible for the lack of
variety in game behavior. If everything is either a resource for picking up or an enemy
for shooting at, then it’s difficult to persuade your game agents to do much more than
pick stuff up and shoot stuff. This is why The Sims is so clever—although it does reduce
all objects to a predetermined set of affordances in an abstract sense (things that make
agents less tired, more happy, less stressed, and so on). At a more concrete level, there is
no limit to the actions that can be afforded to agents by the addition of new types of
object to the simulation because the concrete actions (drink coffee, cook at gas stove,
dance in front of stereo, and so on) are determined by scripts, animations, and sound
effects that are all provided by the object. However, even The Sims is limited in its repre-
sentation of place because both the drives satisfied and the actions afforded by an object
are fixed. A book in the game is only ever an educational device; it is never alternately a
doorstop or a shelf support or a ramp for a toy car track.

Direct Identification of Affordances Through Terrain Analysis

So far, we have been associating affordances with existing game entities, such as “a chair
is for sitting on.” But implicit in such discussions is the assumption that the entities are

2.2 Turning Spaces into Places 77

already identifiable objects in the environment and that their existences precede any
attachment of affordances to them. It is very common practice in combat AI to require
level designers to place helper entities, such as cover point markers, into maps, but nor-
mally, each helper entity has to be identified and placed manually by the designers.
These entity-based approaches can support a dynamic sense of place by the runtime
selection of a subset of “currently valid” positions taken from the complete set of exist-
ing helper entities. However, the runtime selection of an active subset is only very effec-
tive if a large number of such locations is available to choose from in the first place, and
this is not a very scalable approach when each entity has to be manually placed by a level
designer.

Here we shall use the term terrain analysis to refer to any kind of spatial search either
offline or online that identifies the existence of affordances at locations in space without
requiring the existence of an intervening entity [van der Sterren02]. We’ll use “static”
terrain analysis to refer to offline searches, with “dynamic” terrain analysis being
reserved for online searches that identify affordances at runtime. The offline approach is
still useful in supporting a dynamic sense of place because it lacks the scale limitations of
human-authored approaches and can be used to generate very large numbers of poten-
tial affordances, such as cover locations in advance, giving the runtime AI a large set
from which to select currently valid affordances. However, an online approach will
always be superior if it is computationally feasible because it saves on the space that is
required to store potentially enormous quantities of predefined affordances, it avoids the
search costs of iterating through these very large sets when most of the members are
invalid most of the time, and it also supports the identification of affordances that
depend heavily upon dynamic situational features, such as ambush locations.

Constructing Regional Affordances with Influence Maps

Affordance theory is a good way of thinking about closer integration between action
and perception, but it doesn’t necessarily help us bridge the gap between individual
affordances (e.g., “hide here”) and a broader sense of place (e.g., “this area makes us alert
and tense”). Whether we consider local entities that present affordances for action rather
than objective physical features or perhaps identify affordances at spatial positions using
terrain analysis, both of these approaches still tend to conjure an image of point-like
affordances hanging in a neutral space through which we navigate to reach the point
where the affordance is available. We are still left with a “go here, do this” model of
spatial behavior, with the “do this” at the end not telling us very much about the “go
here” that precedes it. This intervening space remains physical, observer-independent,
and without any of the qualities of place that we explored earlier. Let’s take a look now
at influence mapping, which is able to construct entire spatial regions that have
observer-dependent and action-oriented meanings.

Influence mapping is a well-known technique in strategy game AI that takes a list of
unit types held at known positions by different factions (traditionally by two oppo-
nents) and uses this information to construct spatial representations, such as areas of

78 Section 2 Movement and Pathfinding

principal control or border lines. It does this by using some kind of iterative propagation
of scalar influence values from the units across an existing discrete spatial representation,
such as a grid or a hexmap [Tozour01]. The interesting point about influence mapping
in our discussion is that it supports the identification of action-oriented spatial features
(e.g., border, no man’s land, front, flank, rear) that are local to an observer’s point of
view, local to a particular moment in the game when the units happen to be in the con-
figuration being analyzed, and are not simply point-like affordances but actually define
spatial regions with contextual meaning [Woodcock02]. In the light of our earlier con-
ceptual discussion, these characteristics clearly qualify influence mapping as a model of
place.

Supporting Narrative Through the Construction of Unique Places

You’ve now seen how semantic maps can take us beyond a “go here, do this” model of
place and attach a sense of place to spatial regions and how the influence mapping
technique is an example of a place representation that is completely integrated into
the AI architecture. However, one of the great strengths of influence mapping is also
its main limitation, namely that it operates by reducing particular units to a general-
ized model of value and by reducing these values to generalized types of places. When
using an influence map to determine the location of the current front line between
two opposing forces, all units on both sides will be reduced to one measure. The val-
ues assigned to each unit can vary of course, but nevertheless in substituting some
general influence for each unit, we lose everything that was specific about that unit
type. It doesn’t matter that castles take years to build, are good at withstanding sieges,
and can produce militia units, or that arable lands can be quickly created, are impos-
sible to defend, and can produce grain resource; instead, all we can say is that “one
castle is worth five arable lands.” Having obtained these value reductions, the general-
ized types of places then identified by the influence map (e.g., front, flank, rear) will
feed into some kind of generalized heuristics for action selection, such as “defend the
front; attack the flanks” [Woodcock02].

These limitations are both the blessing and the curse of the influence mapping
approach. The ability to recognize strategic dispositions in dynamic environments is
great for creating a robust and reusable AI, but it makes it very difficult for level
designers to produce unique encounters and to support preconceived dramatic narra-
tives. Although there is never going to be a single overall “best representation” because
these matters are highly application-dependent, in many ways, the most powerful
form of place representation identifies observer-dependent spatial regions that can
have unique content associated with them. This is like a combination of the strengths
of point-like affordances as seen with domestic objects in The Sims, along with those
of the space-filling sense of place as found in sophisticated strategy games.

The concepts of orders, areas, and styles in Halo 2 go some way toward this kind
of representation [Isla05b]. Areas are predefined groupings of designer-placed firing
positions, and orders instruct a squad to operate within a particular area while using a

2.2 Turning Spaces into Places 79

particular style. Styles do not directly select actions on the squad but apply predefined
subsets of the complete behavior tree, such as “aggressive,” “defensive,” or “noncom-
batant.” These representations give the designer control over the squad without pre-
venting autonomous action-selection, and instead of “go precisely here, do this
action,” it gives us a “go roughly there, behave like this” model of spatial behavior.

Conclusion

In this article, we have criticized the tendency of contemporary game AI architectures
to rely on objective spatial representations, both through the reduction of the spatial
environment to a list of objects at specific points and through the use of observer and
task-independent features to describe those objects. A brief detour among the philo-
sophical literature contrasted this approach to space with the notion of place. Places
are socially constructed, action-oriented, layered both concurrently and hierarchically,
and can provide a vocabulary for reasoning about space. Finally, we showed how a
variety of approaches in contemporary game AI are already applying practical models
of place, albeit to a limited extent. In conclusion, there is still a long way to go before
game spaces are as richly filled with meaning for game agents as they are for human
players and before the complexity of agent behavior has a chance of matching that of
human players.

References

[Brooks90] Brooks, Rodney, “Elephants Don’t Play Chess.” Robotics and Autonomous
Systems, Vol. 6, (1990): pp. 3–15.

[Burke01] Burke, Robert, et al., “CreatureSmarts: The Art and Architecture of a Vir-
tual Brain.” Proceedings of the Game Developers Conference, (2001): pp. 147–166.

[Church05] Church, Doug, “AI Challenges in Entertainment and Player Expression.”
Artificial Intelligence and Interactive Digital Entertainment Conference, 2005.
Available online at http://www.aiide.org/aiide2005/talks/church.ppt, December 21,
2007.

[Evans00] Evans, Richard, “AI in Games: From Black & White to Infinity and Beyond.”
Available online at http://www.gameai.com/blackandwhite.html, December 21, 2007.

[Gibson79] Gibson, James J., The Ecological Approach to Visual Perception. Houghton
Mifflin, 1979.

[Goffman59] Goffman, Erving, The Presentation of Self in Everyday Life, 1959.
Reprint Penguin Books, 1990.

[Isla02] Isla, Damian, and Blumberg, Bruce, “Object Persistence for Synthetic Crea-
tures.” Proceedings of the 1st International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), (2002): pp. 1356–1363.

[Isla05a] Isla, Damian, “Dude: Where’s My Warthog? From Pathfinding to General
Spatial Competence.” Artificial Intelligence and Interactive Digital Entertainment

80 Section 2 Movement and Pathfinding

http://www.aiide.org/aiide2005/talks/church.ppt
http://www.gameai.com/blackandwhite.html

Conference, 2005. Available online at http://www.aiide.org/aiide2005/talks/isla.
ppt, December 21, 2007.

[Isla05b] Isla, Damian, “Handling Complexity in the Halo 2 AI.” Available online
at http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml, Decem-
ber 21, 2007.

[Lefebvre91] Lefebvre, Henri, The Production of Space. First pub. 1974, trans. Nicholson-
Smith. Blackwell, 1991.

[Merleau-Ponty65] Merleau-Ponty, Maurice, The Structure of Behaviour. Trans. Fischer.
Metheun, 1965.

[Orkin05] Orkin, Jeff, “Agent Architecture Considerations for Real-Time Planning in
Games.” Proceedings of the Artificial Intelligence and Interactive Digital Entertainment,
2005. Available online at http://www.media.mit.edu/~jorkin/aiide05OrkinJ.pdf,
December 21, 2007.

[Stout00] Stout, Brian, “The Basics of A* for Path Planning.” Game Programming
Gems, Charles River Media, 2000: pp. 254–262.

[Tozour01] Tozour, Paul, “Influence Mapping.” Game Programming Gems 2¸ Charles
River Media, 2001.

[Tozour02] Tozour, Paul, “Building a Near-Optimal Navigation Mesh.” AI Game
Programming Wisdom, Charles River Media, 2002: pp. 171–185.

[van der Sterren 02] “Terrain Reasoning for 3D Action Games.” Available online at
http://www.gamasutra.com/features/20010912/sterren_01.htm, 2001.

[von Uexkull57] von Uexküll, Jakob, “A Stroll Through the Worlds of Animals and
Men: A Picture Book of Invisible Worlds.” Instinctive Behavior: The Develepment
of a Modern Concept, International Universities Press, 1957: pp. 5–80.

[Woodcock02] Woodcock, Steve, “Recognizing Strategic Dispositions: Engaging the
Enemy,” AI Game Programming Wisdom, Charles River Media, 2002.

2.2 Turning Spaces into Places 81

http://www.aiide.org/aiide2005/talks/isla.ppt
http://www.aiide.org/aiide2005/talks/isla.ppt
http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml
http://www.media.mit.edu/~jorkin/aiide05OrkinJ.pdf
http://www.gamasutra.com/features/20010912/sterren_01.htm

This page intentionally left blank

83

2.3

Dynamically Updating a
Navigation Mesh via Efficient
Polygon Subdivision
Paul Marden—DigiPen Institute of Technology
pmarden@digipen.edu

Forrest Smith—Gas Powered Games
fsmith@gaspowered.com

In recent years, graphics and physics advancements have allowed for the creation of
wildly more complex and dynamically changing environments, but pathfinding sys-

tems are often not able to adapt. Navigation meshes are commonly used but often in
a precomputed form that can’t be updated during runtime.

This article proposes a method for creating and storing navigation mesh
(navmesh) information in a manner that allows for both rapid creation and updating
of pathfinding nodes. It is made possible through a clever series of clipping techniques
that allow for a complete navmesh to be created and updated without the need for
any recursive operations. The final navmesh allows for the creation of a graph that can
be used with a classic A* algorithm.

Definitions and Rules

Before diving into the algorithm, some definitions need to be given.

node: A strictly convex 2D polygon built from dynamic geometry that represents a
walkable surface and its associated A* cost. AI or players may freely move from
any point to any point within the convex region.

edge: Polygon edge used by, at most, two nodes. Stores front and back pointer to
the nodes by which it is used.

base cell: An unchanging, strictly convex 2D polygon built from static geometry
that contains a collection of nodes. “Base cell” is interchangeable with “cell.”

navmesh: A collection of base cells and their contained nodes and edges.
overlapping geometry: Any dynamic geometry used to create unwalkable regions is

said to be overlapping the navmesh.

There are some subtleties to note in these definitions. Nodes are strictly convex
because this guarantees freedom of movement within the node. Concave polygons
would allow for potentially uncrossable intrusions. Our pathfinding solution moves
from edge to edge—rather than moving from the center of one node to the center of
another—which requires edges to be used by, at most, two nodes.

Overview

The entire process, from starting in a full 3D world taken all the way down to a series
of line segments used as a path, can be broken down into four sections. The basic
premise is that first, static geometry is used to generate a static base state, and then, at
runtime, dynamic geometry is used to continually create and update the mesh that
will be used for pathfinding. Before going into the details of the process, the following
summarizes each section:

Static Representation: A base state of the world is built from static geometry and
stored in base cells that are never forgotten. Dynamic geometry overlapping the
mesh is projected into the base cells.

Creating Mesh: The projections of overlapping geometry are used to subdivide the
base cells into walkable and unwalkable nodes by clipping the base cells against
the edges of the projection. This is the most complicated step.

Updating Mesh: When dynamic geometry moves, the cell it was in and the cell
it’s now in are both reset to their base states and resubdivided based on all
overlapping geometry. The majority of the mesh remains unchanged. The
subdivision process is fast and, by clearing the affected cells and recalculating
their contents, a minimum number of nodes are created, which allows for a
faster A*.

Pathfinding: To run the classic A*, we need a way to represent the navmesh as a
graph. We can make this by treating the center of every navmesh edge as a
graph-vertex that is connected to all other edges in the two nodes that share the
original edge. This method allows for efficient paths that are highly optimizable.
Figures in a later section will more clearly demonstrate this concept.

Static Representation

The first step is to create the base cells of the navmesh from the static geometry of our
world. We refer to all base cells as the base state of the navmesh. There are a few rules
relating to base cells:

Cells store nodes: Nodes are the actual geometry representing walkable regions.
Every node is contained by one, and only one, cell.

84 Section 2 Movement and Pathfinding

Cells track overlapping geometry: When geometry overlaps the navmesh, the base
cells store what geometry they are overlapped by.

Cells cover all walkable surfaces: Any region that could be walkable, provided no
overlapping dynamic geometry, must be covered by cells.

Edges used by cells are marked as outside : Edges used by nodes but not the cell
are termed “inside.” This distinction is used when resetting a cell because inside
edges can be discarded.

There are a few implications from these rules. A cell with no intersecting geome-
try contains a single node that fits the cell dimensions exactly. Cells should cover all
ground that can possibly be walked on, as any ground not covered by a cell will never
be contained by our navmesh. Cells never overlap. Furthermore, an ideal base state is
actually a grid, as the uniformity allows for several optimizations later on. In the case
of a multifloored world, multiple grids are needed.

When creating the base state, a careful balance must be struck between having
too many or too few cells. Imagine a massive open field with no static geometry and a
thousand dynamic objects. This field can be covered with either a single base cell or a
large grid of cells, but which is better? Having a single cell will lead to fewer nodes
after dynamic geometry is accounted for, which will mean a smaller search space and
thus faster A*. Recall that when dynamic geometry moves, only the cell (or cells) that
contained the geometry needs to be updated. So for a world with only a single base
cell, anytime one of a thousand objects moves, the entire mesh needs to be recalcu-
lated. With a grid of cells, when one object moves, only one or two cells need to be
updated—the rest of the grid remains unchanged. How this balance is struck is
entirely dependent on the game.

For simplicity’s sake, the rest of this article assumes a base state of coplanar cells
forming a grid in a right-handed coordinate system where the y-axis is up.

Overlapping Geometry

After the base state of the navmesh has been created, the next step is to detect overlap-
ping geometry. We will define two planes, one at the level of the navmesh and one at
some height y above the mesh, and all vertices between these two planes will be defined
as overlapping. The top plane is chosen so that geometry over an actor’s head does not
affect the potentially walkable surface. This allows for pieces of an object high above
the ground, such as the top of an arch, to not interfere with the mesh. A series of steps
are needed to extract useful information.

Create a bounding volume. A complex object may contain thousands of ver-
tices, so a simplified bounding volume will be needed. Any convex polyhe-
dron is acceptable, however, complex objects may require multiple convex
volumes to produce a tight fit.

2.3 Dynamically Updating a Navigation Mesh via Efficient Polygon Subdivision 85

Intersect volume with planes. We need to form a set of all points in the
bounding volume that exist between the two planes. This includes all points
actually between the planes, as well as the intersection of all line segments in
the volume with each plane. The intersection of segments and planes is not
covered by this article.

Projection of points to navmesh plane. With all of the intermediate points in
hand, they need to be orthogonally projected to the navmesh plane. Simply
setting the y value of each vertex to zero can do this, assuming the navmesh
is at 0 height.

Build a convex hull around projected points. With the arbitrary points pro-
jected to the surface, we need to form a new 2D convex hull. An algorithm
to do so is described in the next section.

In our final product, we want actors to have the ability to walk not directly beside
geometry but rather some radius away to prevent models from clipping. This can be
accomplished with expanding bounding volumes by that radial distance. This will
later insure that not only is the surface walkable, but that it can also be done safely
without character models intersecting halfway through a wall or box.

Quick Hull Algorithm
Given an arbitrary set of coplanar points, a single bounding convex hull can be created.
This hull can be visualized as filling a board full of nails and then taking a rubber band,
stretching it around all of the nails, and letting it snap into place. Many of the nails, or
vertices, will be inside this new convex hull and can be ignored—we only care about
the ones along the edges. The process is as follows and is shown in Figure 2.3.1:

1. Find two extreme points (the leftmost and rightmost can be used) to form a
chord (AB). These two points will be part of the hull.

2. Divide all other points into two sets (S0 and S1), for those points above the
chord and those below.

3. For each set of points, find the farthest point from the chord, and call it C.
This point will be part of the final convex hull because it cannot be encapsu-
lated. It should be inserted between points AB in a list of vertices we maintain
to define our convex hull.

4. Form a triangle ABC from the two chord points and the point farthest from
the chord.

5. All points in triangle ABC are already inside our convex hull and can be dis-
carded.

6. Form new sets S0 and S1 for those points outside chord AC and BC.
7. Recursively perform steps 3 to 6 until no points remain and a hull is

formed.

86 Section 2 Movement and Pathfinding

Creating the Mesh

Assuming we have a navmesh that is in its base state and the projected 2D convex hull
of an object, we can now begin the process of splitting the mesh cells based on the
hull. There are several parts to this process.

Clipping the Hull to the Base Cells

A large amount of clipping is about to be performed inside each cell, so we first clip
our hull against the base navmesh cells and form lists of line segments that are wholly
interior to each cell. If our cell structure is grid-based, this can be easily and quickly
performed through a digital differential analyzer (DDA) grid-traversal algorithm.
With a line segment’s start and end points in a normalized grid—where each cell is
1 × 1—the DDA algorithm can iterate along the segment returning the intersected cells
by checking at each step whether the segment will next enter a cell in the x-direction
or in the y-direction and incrementing accordingly. The following code shows the
algorithm.

// DDA Algorithm

Vec2 startPoint, endPoint; //Points of line segment

int curRow = floor(startPoint.y); //Grid starting point

int curCol = floor(startPoint.x);

Vec2 dir = endPoint – startPoint;

//If dir.x = 0 or dir.y = 0 then early out

//If dir.x = 0 intersected cells are from

//grid[curRow][curCol] to grid[curRow][floor(endpoint.x)]

//Similar for dir.y = 0

Vec2 curPoint = startPoint; //Incremented value

while(distanceTraveled < Mag(endPoint-startPoint))

{

//Segment is in grid[curRow][curCol]

float xDist = dir.x > 0 ? floor(curPoint.x+1) -

curPoint.x : curPoint.x – ceil(curPoint.x – 1);

float timeX = fabs(xDist / dir.x);

2.3 Dynamically Updating a Navigation Mesh via Efficient Polygon Subdivision 87

A

B

S0

S1

A

B

S0

S1

C

FIGURE 2.3.1 Quick hull algorithm.

float yDist = dir.y > 0 ? floor(curPoint.y+1) -

curPoint.y : curPoint.y – ceil(curPoint.y – 1);

float timeY = fabs(yDist / dir.y);

if(timeX < timeY)

curCol += dir.y > 0 ? 1 : -1;

else

curRow += dir.y > 0 ? 1 : -1;

}

This code snippet assumes a space normalized so that each cell is 1 × 1 in dimen-
sion, which means the test segment should be transformed accordingly. It calculates
how far it is to the next cell along the x-axis and z-axis, and then how long it will take
to reach that point. Whichever time is less determines whether the next intersected
cell is in the x or z direction. When the distance traveled exceeds the distance between
endPoint and startPoint, the algorithm should terminate.

Clipping the convex hull against the cells allows us to then clip the cells against
only those edges we know intersect, which may be far fewer than the number of edges
that are part of the convex hull.

Clipping Cells Against Intersecting Edges

This part is perhaps the most complex part of the algorithm, so each step will be
described in detail. Before getting started, here’s a list of a few things that we are going
to accomplish:

• Each cell will be split into multiple nodes based on intersecting edges.
• Nodes will be strictly convex in form.
• No single edge will be used by more than two nodes.
• Nodes will properly share edges.
• Adjacency between nodes will be complete with no missing connections.

For each interior edge (interior to the cell) in the hull:

1. For each node that the edge overlaps:
a. Create two new nodes, designating one as front and one as back.
b. Extend the edge to form a line.
c. For each edge in the current node:

i. If the edge is in front of the line, add it to the front node.
ii. If the edge is in back of the line, add it to the back node.

iii. If the edge straddles the line:
1. Create three new edges.
2. Two of these edges correspond to the splitting of the current edge

of the node.
a. Make sure to set the front and back pointers appropriately for

each line fragment.

88 Section 2 Movement and Pathfinding

b. Update the node’s neighbor (across the edge that is being split)
so that it incorporates the new fragments.

3. The third edge is the edge that will be shared by the splitting of
the current node. This splitting edge is comprised of the two inter-
section points where the node crosses the line.

iv. If one of the edge’s endpoints lies on the line, then the splitting edge
must be updated with the intersection point, but there is no fragmen-
tation of any edge here.

Things to watch out for when clipping:

• Never assume clockwise or counterclockwise ordering of vertices along an edge. It
can be different for each node using the edge.

• When an outside edge is split, its fragments need to be marked as outside. The
corresponding edge in the parent cell’s list of outside edges needs to be replaced
with the two new fragments.

• Make sure that orphaned edges are removed from the edge pool.

Because this is a tricky concept to understand, the visual example in Figure 2.3.2
will help greatly. On the left side is a depiction of a single cell being split into nodes
by a square. The right side shows the underlying nodes and their connections at the
completion of each step.

2.3 Dynamically Updating a Navigation Mesh via Efficient Polygon Subdivision 89

Starting with an empty cell
and empty navmesh.

In the left column, clipping the cell against an arbitrary
convex hull. On the right column is the current state

of the navigation mesh with node connections.

A single edge is chosen, and clipping is performed
against the single node in the cell. The navmesh on

the right shows the results: the original node is
fragmented and a connection has been created

between the fragments.

The next edge of the polygon is chosen and is only
clipped against the polygon it overlaps—the upper-
right one. It should be noted that after this clipping,

the lower-left polygon now has four edges,
although they are not visible in the diagram.

The process is repeated again.

And the clipping is completed. The diagram on the
right shows the final state of the navigation mesh.

FIGURE 2.3.2 Cell clipping example.

Updating the Mesh

Any time an object inside a cell moves or a new object intersects a cell, that cell should
be invalidated, which means that the cell should be reset to its base state so that it can
be split again based on the new internal edge positions.

Resetting a Cell

As mentioned earlier, resetting a cell isn’t a trivial matter. The issue is that the border
from one cell to the next may be comprised of a single large edge, but previous splitting
may have cut that edge up into smaller pieces. Due to the reset, it now needs to be
checked to see if it can be “welded” back into its former state. The process is as follows:

1. Restore the cell to its original state.
2. Iterate through all outside edges.
3. For each pair of edges, they may be welded (fused to form a single edge) if

they are adjacent, are collinear, and have identical front/back nodes.
4. If they can be welded, weld them, setting front/back pointers properly, and

update the polygons in the adjacent cell so that they use the welded edge.
5. Delete old nodes.

Pathfinding with the Mesh

By this point, we should have a fully updated mesh ready to be used, but right now,
there isn’t a data set on which we can operate directly. To run A*, the mesh needs to be
converted into a graph by treating the center of every edge as a vertex. This edge is
part of, at most, two nodes in the navmesh, so our graph vertex will be connected to
all other edges in those two nodes. This concept is difficult to explain but easy to visu-
alize in Figure 2.3.3.

90 Section 2 Movement and Pathfinding

FIGURE 2.3.3 Graph formed from navmesh.

This first frame of Figure 2.3.3 is a single cell that is split into four nodes, plus the
overlapping object in the middle. The second frame shows the connections between
all of the edges with connections inside the object represented by dotted lines. The

final frame shows just the graph that an A* algorithm needs to operate on. This graph
should resemble a fairly standard search space.

Notice that the graph includes edges inside the overlapped region (dotted lines),
which might seem odd at first. This is because weights can be attached to nodes making
an area not necessarily unwalkable but simply more expensive to pass through. Imagine
a hallway with a pool of acid in the middle. The acid could be added dynamically, and
an AI could go through the acid, but it would be more expensive as far as pathfinding is
concerned. If a route around the acid exists, that’s wonderful, but wading through it is
still an option. Additionally, a node can be set as completely unwalkable, which would
cause those edges to not be added to the graph at all.

Optimizing the Path

With the graph, we can generate a path that will get us to a target properly, but it won’t
look pretty. Edges in our navmesh are not equally sized and not evenly spaced, which
causes a zigzag path. The more nodes the world has, the more jagged the path becomes.
It is likely that the path will go somewhat further than it actually needs to due to the
pathfinder going through the middle of edges when a sharp turn occurs. Luckily, there
are things that we can do to create a satisfying path.

Removing Path Points
For a given path, there may be a series of points where a straight path exists between
the first and last, making any points in between, but potentially not on the line, unnec-
essary. Finding and removing these unnecessary points along our path will make straight
lines. The process to do this isn’t complex.

1. Take three consecutive points, and build a segment between the first and the
third.

2. If this segment passes through no unwalkable nodes, then remove the sec-
ond point.

Of course, finding which arbitrary nodes a segment passes through isn’t trivial. With
our setup, however, there is enough information to avoid most unnecessary checks. Based
on the direction we are going, we can say that points 1 and 3 lie in a single node. We also
know that point 2 lies on an edge shared by two nodes, which are the two nodes that
contain points 1 and 3. With this in mind, we can do the following:

1. Find the intersection with the segment and all edges in the first point’s node.
There is one, and only one, intersection.

2. If the intersection edge uses the same node as point 3, then we can say there is
a safe, straight line from point 1 to point 3, and we can throw away point 2.

3. If the intersection edge does not use the same node as point 3, then repeat
steps 1 to 3 with the new node.

Figure 2.3.4 demonstrates these concepts. The first frame shows an arbitrary cell
where solid lines are uncrossable, and dotted lines are crossable node boundaries. A

2.3 Dynamically Updating a Navigation Mesh via Efficient Polygon Subdivision 91

path is built through these edges, but it’s not very smooth. A new line is draw from
point 1 to point 3, and it undergoes the operation described previously.

After performing the segment test, we will find that the second point could be
removed, which is shown in the second frame of Figure 2.3.4. This test is repeated
down the path, removing points where possible. The final frame shows a path with
much straighter lines and only five points compared to the original eight.

92 Section 2 Movement and Pathfinding

1

2345

6

7

8

1

2345

6

7

8

1

2
3

4

8

FIGURE 2.3.4 Path point removal demonstration.

Rubber-Banding
To help with the zigzag issue, a rubber-banding technique was developed, which is a
variation on the string-pulling method [Johnson06]. If you recall, our path vertices lie
in the middle of node edges. The convexity of the nodes allows us to freely move the
point along its edge. The algorithm for this is given here:

For each set of three adjacent path-points:

1. Find the intersection of the line between the first and last points and the edge
on which the middle point lies.

2. If that point lies on the middle point’s edge, then replace the middle point
with the intersection point.

3. Otherwise, replace the middle point with the closest endpoint on the mid-
dle point’s edge.

Figure 2.3.5 demonstrates this concept. The first frame starts with our path from
the previous section with a new line added between points 1 and 3. Following the pre-
vious algorithm, point 2 slides down its edge creating point 2b as shown in the second
frame.

The same operation is then performed on the 2b-3-4 points triplet. The resulting
point 3b is shown in the third frame as well as the line for the 3b-4-5 points triplet.
The final frame shows the resulting path after a single pass. In many situations, a sin-
gle pass is not enough to satisfactorily smooth the path. For our purposes, three passes
produced the desired result.

Point removal cannot occur before rubber-banding. A simple example, as shown in
Figure 2.3.6, demonstrates why. For the given geometry, an initial path consisting of
five points is created. After point removal, the new path is through points 1, 3, and
5. Running rubber-banding next would create the path through points 1, 3b, and 5.
This is a clearly unacceptable path. Running point removal strictly after rubber-
banding prevents such situations from occurring.

2.3 Dynamically Updating a Navigation Mesh via Efficient Polygon Subdivision 93

1

2
3

4

5

1

2b

3

4

5

1

2b

3b

4

5

1

2b

3b

4b

5

FIGURE 2.3.5 Rubber-banding demonstration.

1

2

3
4

5

3b

FIGURE 2.3.6 Example showing why point
removal before rubber-banding is wrong.

Dealing with a Dynamic Mesh
When a portion of the mesh is modified, any paths that are using nodes in that portion
must be recomputed to some degree, if not completely. Any path that uses a node that
changes must be updated either by recalculating the entire path or by trying to repair
only the broken section.

Paths are broken frequently in a dynamic world. The simplest solution is to avoid
updating the mesh whenever possible. Updating only when an object starts and stops
moving can work in some simulations. Objects in motion tend to stay in motion,
which makes updating the mesh every frame useless because the data will just become
invalid the next frame. When forming a bounding volume, you can also take into
account an object’s velocity so that the volume encompasses not only where the object
is but also where it’s going to be. Updating only every few seconds is wildly more effi-
cient than having to update every single frame. Another option is to use local steering
techniques to avoid objects that are in motion.

Conclusion

Navigation meshes are a common part of many AI systems, but not all of them adapt to
the complexities brought by other systems such as physics. This article presents a new
approach to a navmesh system that successfully reached its goal of dynamically updating
at runtime. It is a modular system with several subalgorithms that stand by themselves
and can thus be highly optimized for both speed and memory consumption.

This technique is flexible enough to be custom-tailored to most any situation. For
example, information from an overlapping object can be retained. Sometimes, an
object in the way is simply meant to slow the path of an actor rather than stop it com-
pletely. Nodes can store a weight that allows the AI to go through the cells, potentially
kicking the object out of the way, rather than walking around. It is even possible to
embed world information, such as an area being marked as a cover spot, into the
bounding polyhedron so that even more information can be stored in the navmesh.

The concepts discussed in this article are simple enough that they can be worked
into an existing framework in only a few weeks but still powerful enough to support a
dynamic and immersive world.

Resources

[Johnson06] Johnson, Geraint, “Smoothing a Navigation Mesh Path.” AI Game Pro-
gramming Wisdom 3, Charles River Media, 2006: pp.134–135.

94 Section 2 Movement and Pathfinding

95

2.4

Intrinsic Detail in Navigation
Mesh Generation
Colt “MainRoach” McAnlis—Ensemble Studios
duhroach@gmail.com

James Stewart—Stormfront Studios
jms@jmstewart.net

In the years since Greg Snook’s seminal article in the first Game Programming Gems
[Snook00], navigation meshes have become the search space representation of

choice for pathfinding in games. Compared to the waypoint approach of the previous
generation, navigation meshes are more amenable to automatic offline generation,
produce better (in many cases, optimal) paths, and provide more useful information
to entities that must negotiate dynamic obstacles. These benefits come at the cost of
increased memory usage and slower search performance, problems of increasing sever-
ity given the content demands of next-gen titles—open-world games in particular.

In this article, we present a mesh simplification scheme that reduces the size of the
search space while maintaining details necessary for optimal paths. This approach can
be used to generate high-fidelity paths over very large terrains and is ideal for incre-
mental refinement via streaming or progressive transmission over a network. Due to
the regularity of the triangulation, it also allows fast lookup into the search space.

The key to our approach is a modified version of Restricted Quadtree Triangulation
(RQT), which provides the minimal representation of a regular grid given a world-space
error metric. RQT is well suited to navigation meshes because it preserves detail in
high-frequency regions where pathfinding must be more precise while representing low-
frequency terrain (flat plains, for example) with fewer vertices. Throughout this article,
we use a 2D regular grid as our example world, but this is only to simplify the explana-
tion. In subsequent sections, we suggest how this technique can be applied to arbitrary
and irregular world geometry.

Overview

The navigation mesh structure is ideal for movement over 2D surfaces in 3D space.
The core of this scheme is to treat a series of connected faces of a mesh as a search
space for pathfinding algorithms such as A*. In Snook’s original description, each
node of the search space corresponds to a single face of the navigation mesh and con-
tains the three indices needed to represent the face. Each node references a maximum
of three neighbors (one for each edge of the triangle). The navigation mesh must also
enforce two constraints. First, it must be composed entirely of triangles to ensure that
each node occupies exactly one plane. Second, adjacent triangles must share only a
single edge (and therefore two vertices). These two constraints are easy to satisfy given
a world representation that conforms to a regular grid, such as height field terrain.

Navigation meshes don’t always scale to large environments. Suppose you are devel-
oping an RTS that takes place on the surface of an entire planet. This world is massive,
perhaps a 215 × 215 regular grid of heights, for a total of 1,073,741,824 vertices. Because
it is an open world, it is impossible to use portal-based segmentation to divide the space.
In fact, the rendering team has to stream portions of the terrain model and use a variety
of level-of-detail and culling techniques to update the player’s view in real time. As the
AI engineer for this project, you must develop a pathfinding solution and choose,
among other things, a search space representation for this massive environment.

Simply reusing the visual representation will be difficult. Although it might be
possible to share vertex and index buffers between the rendering and pathfinding
modules, it is unlikely that the rendering pipeline has the bus bandwidth to spare.
Even then the search space will have to be streamed; a billion vertices, even with the
best compression, will be far too large to fit into system memory all at once. Even
with unlimited memory, path generation will be quite expensive given the size of the
map. Regardless, the cost of streaming the search space for a single path will likely be
amortized over many frames, and there will likely be many entities requesting paths—
this is a world-spanning war, after all. In the end, you are faced with a choice of two
evils: Don’t move an entity until the path query is complete, or do a quick “best guess”
for initial movement and hope there’s no need to backtrack.

Under these circumstances, you might consider the most reliable trick in the AI
programmer’s handbook: cheating. Generate high-fidelity paths for all entities in the
same chunk as the player, prioritizing those that are visible in the frustum. More dis-
tant entities will follow greatly simplified paths. Although this approach certainly
solves the problem, it limits development in a number of ways. First, you will need a
variety of restrictions on the simplified paths so that they remain reasonably plausible.
What if two opposing platoons—both flying through the sky like F-16s because real-
istic paths were too expensive—meet over an island that would be impossible to reach
on the ground? More special cases will have to be generated for dynamic obstacles—
the player who blockades the Suez Canal won’t appreciate it if enemy battleships
somehow teleport from the Mediterranean to the Indian Ocean. These rules will
become even more complex if we introduce multiple human players or allow random

96 Section 2 Movement and Pathfinding

access views into the world (the armchair generals playing your game, having invested
heavily in the satellite technology upgrade, perhaps, might want a minimap to watch
troop movements on the neighboring continent).

How much better would it be to have a more economical search space representa-
tion that maintains the beneficial qualities of a navmesh—namely a high-fidelity rep-
resentation of the game environment?

To solve the problems presented in this scenario, we turn to a solution from the
world of real-time rendering: mesh simplification. Although a huge number of simplifi-
cation schemes exist, we have chosen the Restricted Quadtree Triangulation (RQT) for
two reasons. First, it preserves intrinsic details of the mesh that are needed for generat-
ing paths (more on this in a minute). Second, the algorithm produces a triangulation
that maintains quadtree boundaries. Regular decimation—subdivision of the mesh along
regular boundaries—offers a number of advantages as a search space representation, chief
among them incremental refinement and fast lookup when performing local searches.
This becomes very important when avoiding dynamic obstacles or updating the naviga-
tion mesh to account for terrain deformation.

Intrinsic Detail

Any surface can be said to contain some degree of intrinsic detail. Although numeri-
cal methods exist to quantify detail exactly—the compression and frequency analysis
domains are rife with examples—the concept is simple enough to describe. Imagine
two meshes that represent perfectly flat planes. One mesh is a simple quad, that is,
two large triangles. The second mesh represents the same plane in a network of 1,024
triangles. The second mesh, although represented with more polygons, contains no
more intrinsic detail than the two-polygon version: Both are just (sections of) planes.

In this example, it is clear that the second mesh is over-tessellated (i.e., divided
into more triangles than necessary). But when dealing with more complex models, the
difference isn’t so easy to detect. Despite the difficulty of the problem, intrinsic detail
is a crucial concept when looking for ways to reduce the size of our search spaces
because naive simplifications will likely omit path possibilities that would be obvious
to a player when viewing the high-fidelity visual representation of the world.

Consider a naive level of detail (LOD) implementation for heightmap terrain. At
each level of detail, we double the sample rate of the heights in exchange for exponen-
tial reduction in the number of heights. If the terrain has a low frequency (picture the
“lumpy soup” produced by basic procedural terrain algorithms), we might even be
able to get away with naive sampling in this manner. This approach will likely pro-
duce artifacts, however, when applied to high-frequency regions. Imagine a terrain in
which a narrow valley passes through an otherwise impassable mountain range. These
vertices might coincidentally be retained in a naive simplification if they happen to be
indexed near powers of two, but it is more likely that they will be skipped by expo-
nential sampling. The naive simplification would likely retain the mountain range but
not represent the narrow valley—not particularly useful, as search spaces go.

2.4 Intrinsic Detail in Navigation Mesh Generation 97

RQT solves exactly this problem. It allocates polygon budget where it matters
most—to regions of the mesh that contain the most detail. When generating our
navigation meshes, we can use RQT to reduce the size of the search space without
sacrificing the details needed to generate realistic paths. We define a world-space error
metric to test which vertices are needed for a given refinement. The issue becomes a
matter of data tolerance—how exact a representation does the application need to
produce convincing paths?

Next we describe the RQT algorithm and suggest some of the various ways RQT
can be leveraged when generating navigation meshes.

Restricted Quadtree Triangulation (RQT)

Traditionally, terrain is viewed as a regular grid of heights. Although thorough in its rep-
resentation, this approach incurs a large memory footprint, even with the latest image-
based compression technologies. But the process of generating an efficient lower polygon
mesh representation for a massive terrain data set is far from a trivial task. Refinement
algorithms must balance memory footprint and visual quality, often falling on their
faces near the edge cases of either. Many polygonal refinement algorithms focus largely
on the use of view-space metrics to eliminate unneeded polygons [Duchaineau97,
Hoppe94-07]. The terrain is stored at its highest resolution representation, and lower res-
olution versions of the mesh are used at runtime.

Lower resolution representations, such as triangulated irregular networks (TINs),
are desirable for their smaller memory footprint and the capability to closely represent
the original data. TINs suffer from one crucial flaw, however: They are not easily inte-
grated with the natural runtime representation of terrain. Height field terrain easily
represents its data structure in a form that is ideal to be contained in a 2D hierarchal
data structure. By breaking the terrain into small MxN groups of vertices called
“chunks,” the 2D organizational system speeds up culling and offers an efficient
memory layout. TIN representations rely on combinations of low-frequency polygons
spanning larger areas to achieve greater memory representations, but this does not
lend itself an efficient management representation as its regular grid counterpart. To
fit a sparse TIN representation into a similar 2D data structure, we often run into the
problem of large sparse polygons spanning multiple nodes at a single time. To repre-
sent this efficiently, these large polygons can be split against the chunk boundaries to
create new polygon sets that fit well into the representation. Because of its geometric
nature, this is not a desirable task—the computations can be heavy-handed and prone
to problems such as T-junctions and holes in the output representation that require a
complicated fix-up. Instead, we seek a representation of the terrain that combines the
efficient memory footprint of a TIN with the efficient bounding data structure of a
regular grid.

RQT provides the best of both worlds. RQT takes in a regular grid of input data
and outputs a triangulated regular network (TRN) that adheres to the layout require-
ments of a given 2D data structure, such as a quadtree or octree.

98 Section 2 Movement and Pathfinding

Prior research presented bits and pieces of the RQT algorithm, but Pajarola was
the first to present RQT in a practical manner [Pajarola98]. Szofran defines a usage
system for runtime RQT generation and validates some of the prior research but does
not delve too deep into any implementation details [Szofran06]. We present a simpli-
fied explanation of the RQT algorithm described by Pajarola as well as a minimization
of the dependency marking and mesh generation processes specifically for terrain.

Features of RQT include the following:

RQT is segmented. With proper tessellation, you are guaranteed that no polygon
crosses chunk boundaries. This is a major problem with TINs—even in
streaming media, you are never guaranteed that a chunk will holistically contain
a given polygon.

RQT is “water-tight.” RQT is free of T-junction intersections and fits perfectly
into terrain chunks without the need for polygon splitting or a second fix-up
pass to repair these problems.

RQT’s control parameter is singular. All that’s needed as input is a single world-
space error metric value. This is simple enough to use in art tools for content
designers.

RQT Refinement

Our implementation of the RQT algorithm has two stages: the rejection phase and
the mesh generation phase. The first generates a grid of Boolean values corresponding
to the vertices that pass our refinement test and will be included in the output mesh.
The second phase uses this data as an acceleration structure to quickly generate a
polygon list.

Despite the length of the explanation that follows, the actual amount of code
involved in small. Both phases of the algorithm are clearly marked in the source code
that accompanies this book. It may be helpful to reference the code when reading this
section.

For this article, we define a patch as a 3 × 3 grouping of points in our regular grid
representation of the terrain. As shown in Figure 2.4.1, these points can be spaced at
any regular interval. Patch A is a patch with a stride of one—that is, the neighbor ver-
tices are all one mark away. Patch B is also a patch but with a stride of three, so that all
neighbor vertices are two marks away.

Rejection Phase

The first phase of RQT scans the terrain for points to be included in the final mesh,
marking these values in a Boolean grid (or mark grid) of the same dimensions as the
input terrain. At the beginning of this phase, the mark grid is completely false. When
a vertex is chosen to be inclusion, we mark the grid position as true.

2.4 Intrinsic Detail in Navigation Mesh Generation 99

The first step of this phase is to manually mark points of significance to provide
anchor points for specific generation types. For terrain, we mark all the corners of our
primary chunks. This is a required step because it signifies that the lowest tessellation
that the terrain can decimate to is at the chunk level. These manual markings must by
no means be static, as designer input may indicate that other areas be marked as well.
It is useful to provide users with tessellation override brushes, allowing them to specif-
ically override the marking rules for distance and directly affect the tessellation level of
specific regions. It is important to note that the chunk size chosen for the automatic
markings is considered the maximum size that a patch can span, as differing values
can cause problems with dependency information crossing chunk boundaries.

Next, we define a single world-space distance tolerance to use as an error metric
when choosing points to mark. A point-line distance test between the vertex in ques-
tion (the pivot point) and its two neighbors in the current patch determine whether
the pivot should be marked (see Figure 2.4.2 for an example). If the distance from the
point to the line is greater than the error metric, the vertex is considered to have
enough displacement to provide a visual difference to the final mesh. If the distance is
less than the error metric, the point is considered noise in the image; it is assumed that
removal will not cause a great loss in visual quality. By definition, this test requires
three sources of input data: a vertex V and neighbor points A, B.

To test all the points in our grid, we scan the entire input terrain in steps of
increasing patch size. That is, we walk the entire terrain in patch sizes of 3 × 3, and
then we walk the entire terrain in patches of 5 × 5, then 9 × 9, and so forth. This
process continues by doubling the size of each patch on subsequent passes: 3, 5, 9, 17,
31, 63 … K, where K = 2N + 1, and N is the maximum size of a patch (for terrain, this
should be the size of a chunk). This method requires that K be an odd number, so that
there will always be a center vertex to pivot over to perform the distance test. Even
intervals of K cause a loss of the pivot vertex and degeneration of the algorithm.

100 Section 2 Movement and Pathfinding

FIGURE 2.4.1 A) A patch with a stride of one.
B) A patch with a stride of three.

To demonstrate the marking process, consider the 1D example depicted in Figure
2.4.2. Given a line with nine points, we test a vertex V against the line constructed
between two neighbor points A, B, which are located at half the patch size away from the
pivot on the line. Starting with a patch size of 3 at location 0, our patch center (and thus
pivot V) is point 1 along the line, with neighbor points A, B as point 0 and point 2. To
determine if V should be included in the final mesh, we test the distance from V to line
AB. We then move along to the next patch that starts at a nonoverlapping interval with
our current patch. This next patch would be points 2, 3, 4, with [A, B] = [point 2, point
4] and V = point 3. We continue in this manner until we’ve tested all the patches of this
stride.

The next scan of the terrain defines a stride of 5. This scan starts at point 0 (A)
again, but the pivot point (V) is now point 2 (which was the corner point of the prior
patch size) with the other corner being point 4 (B). Each point will be tested in the
grid due to the fact that at each successive level, corner vertices become pivot vertices
and must be tested as well. In Figure 2.4.2, vertices passing the distance test at each
level are highlighted.

2.4 Intrinsic Detail in Navigation Mesh Generation 101

FIGURE 2.4.2 The point-line distance test between neighboring vertices at different strides. Vertices
passing the distance test at the current stride are marked. The resulting mesh layout is the accumulation
of all the passing verts at all encompassed substrides.

Original Patch Stride of 5

Patch Stride of 3 Patch Stride of 9

Resulting Mesh

As defined previously, a patch—a 3 × 3 set of vertices—gives us enough informa-
tion to compute the distance test for all noncorner vertices in the given patch. For
cardinal vertices that lie on the edges of the patch, we define points A, B as the given
corner points of the edge that it lies on. For the center vertex of a patch, we allow A,
B to be the cardinal verts that span the center vertex.

For a given patch, we need to test only five points. We identify the center point C
of the patch, located at [I, J] in our mark grid, where I and J are multiples of half the
patch stride (HPS = patch stride >> 1 and I % HPS = 0). Our top, bottom, left, and
right points are the vertices that lie on the edges of the patch, obtained by adding
HPS C in the cardinal directions: [0,HPS], [0,–HPS], [HPS,0], [–HPS,0]. To test
these noncenter verts (top, bottom, left, right), we construct our line for distance
from the two corner points of the edge that our target point lies on. For example, to
test our top vertex, we would use the top-left corner and top-right corner to construct
the line AB. Figure 2.4.3C, shown in the next section, indicates the corner and center
vertices of a 3 × 3 patch.

The center vertex is tested for validity by testing distances from both sets of non-
center points. That is, we test the distance from C to the line formed by [top, bottom],
and also the distance from the line formed by [left, right]. If C passes the distance test
for either line, it is marked as true. Figure 2.4.2, shown earlier, provides a representa-
tion of this test at several different patch strides.

As an additional test, if any edge point of a patch has been marked for inclusion
into our mark grid, we also mark C to be included as well. This sort of dependence
marking ensures that no patches with valid edge points lack a center for proper tessel-
lation. This concept is the cornerstone of the RQT algorithm, as marking dependent
points along with the target point ensures that the triangulations are free of polygonal
artifacts.

Dependency Marking
When marking a point as valid, vertices “dependent” upon this vertex must also be
marked to generate valid polygons in the next phase of the algorithm. This allows us
to generate the polygon list very quickly later on. Not only that, but these dependencies
create an output mesh that is free of T-junctions without requiring a separate fix-up
pass.

If the vertex under inspection is on a vertical edge (X % HPS = 0), we must mark
the neighbor vertices of half stride horizontally. These verts are the center points of
the patches that share the vertical edge that the point is on (see Figure 2.4.3A).

If the vertex is on a horizontal edge (Y % HPS = 0), we must mark the neighbor
verts of half stride vertically. These verts are the center points of the patches that share
the horizontal edge that the point is on (see Figure 2.4.3B).

If the vertex is a center point, all four corners of the current patch stride need to
be marked (see Figure 2.4.3C).

102 Section 2 Movement and Pathfinding

While marking vertices, it is important to consider that a point might have already
been marked as a dependent vertex prior to this test. If this is the case, we assume that
this vertex is needed and mark its dependents as though it passed the distance test.

Mesh Generation Phase

The reason for the extra dependency marking of the rejection phase is to create an eas-
ily accelerated system for generating our triangle lists. By ensuring any given vertex has
a valid relationship with neighboring vertices to construct a triangle, we can rely on the
fact that our output mesh omits any incorrect layouts. This constraint allows us to
chart out a set of potential 3 × 3 patches emitted from the dependency marking phase,
resulting in a discrete set of triangle layouts. Specifically, our dependencies allow us to
define 7 archetypal triangle layouts for a given patch, resulting in 17 possibilities after
transforming each archetype. The 6 archetypal layouts are shown in Figure 2.4.4, along
with their resulting valid transformations.

Three of the archetypes, A, B, E, are unique in that their transformations result in
the same orientation as the input (we call these the identity archetypes). Types C and
D have unique transformation representations that are labeled with a numeric identi-
fier to distinguish them. Two of our archetypes, F and G, serve a dual purpose: They
actually exist as hybrid tessellations between two patch levels spanning the same area.
They contain valid patches at lower levels as well as a valid partial triangulation at
upper levels. We do not consider the fully tessellated patch to be a hybrid patch, even

2.4 Intrinsic Detail in Navigation Mesh Generation 103

FIGURE 2.4.3 Dependency examples. A & B: Edge dependencies
mark the centers of the neighboring patches. C: A center point in the
current patch marks the edges of this patch.

though it could be considered to contain four valid children. Rather, we consider this
orientation a member of the identity set and consider it a leaf node (a node with no
children).

For each archetype, we define a simple set of indices to represent a polygonal lay-
out representing that type. When generating our triangle lists, we add the current off-
set of the patch to the archetype layout indices and append the resulting triangles to
the running list. This tessellation process is much faster than other algorithms that
require geometric equations to calculate polygon splits and triangle areas. We can
forgo that entire process by relying on our dependencies to define preset patterns for
our patches. Because of this, the mesh generation process for RQT is exceptionally
fast, allowing it to be done even at runtime.

Archetype Hash Keys
To output our final triangle list, we scan the marked grid as input and test each patch—
at each stride—against the archetypes to find a valid match. To accelerate this process,
we generate a unique hash key for each archetype layout, giving us a precompiled lexi-
con to compare against during this search process. A given target patch in the mark grid
generates a hash key on the fly. The comparison to find the valid archetype layout
becomes a fast switch statement block.

To generate a unique hash key for each archetype, we opt to use information con-
tained in its polygonal layout, as that information is unique to each type. We repre-

104 Section 2 Movement and Pathfinding

FIGURE 2.4.4 All 17 possible patch combinations. The 7 key archetypes are in the top
row. Possible transformations are listed vertically. Hybrid archetypes are listed at the far right
with a different selection.

sent each point in our 3 × 3 patch as a Boolean value—true if a vertex exists there,
false otherwise. Starting at the upper-left corner of a patch, we move to the right and
down, packing each binary test result into a 16-bit variable via bit shifting. Figure
2.4.5 demonstrates this process. While walking the marked grid, we generate a simi-
lar hash key for each 3 × 3 patch that we encounter and test it against the lexicon.

Using this representation allows us to represent both unique layouts and encom-
passing transformations in the same span. In other words, the result contains an iden-
tifier that uniquely represents a given archetype and its rotation. Another advantage is
that the approach uses only the nine lower bits of the variable, which allows more data
to potentially be stored in the upper bits for other data you may want to add (such as
marking passability or storing slope data).

2.4 Intrinsic Detail in Navigation Mesh Generation 105

FIGURE 2.4.5 Hash key generation for a given patch.

Patch Layout Identification
To generate a valid triangle list for the refined terrain, we visit each patch in our grid,
starting at the largest patch (size N). For each patch, we grab the 3 × 3 Boolean values
from our mark grid and generate a hash key. If the given key is found in the lexicon
(the set of archetype hash keys), we have encountered a leaf node, and add the vertices
to the list. If the given patch does not have a valid match in the lexicon, the patch is
invalid, so we recurse to the next lowest patch level; that is, we continue on to the four
children of this patch. Recall that the two hybrid types terminate one node earlier
than the leaves because not all of their children are valid. To test for this, the parent
first tests its child patches against the lexicon before moving to them. If all four chil-
dren have valid matches, the parent node contains leaf nodes. If one, two, or three of
the children are valid, we must test against one of the hybrid types for this level. This
process continues until all leaf nodes for a patch have valid matching archetypes. List-
ing 2.4.1 provides pseudocode for this process.

Listing 2.4.1 Pseudocode for Polygon List Building Algorithm

int giveTriListForPatch(patch)

{

if(patch.areCornersMarkedTrue())

{

if(!patch.isCenterMarkedTrue())

{

GivePolyList(blockType0);

return 1;

}

else

{

C0 = giveTriListForPatch(children0);

C1 = giveTriListForPatch(children1);

C2 = giveTriListForPatch(children2);

C3 = giveTriListForPatch(children3);

if(c0 + c1 + c2 + c3 == 0) //no children

{

GivePolyList(GenHashKey(patch));

}

else if(c0 + c1 + c2 + c3 != 4) //hybrid patch

{

GivePolyListHybrid(GenHashKey(patch));

}

return 1;

}

}

return 0;

}

Navigation Mesh Refinement

Using RQT-reduced navigation meshes requires a 2D or 3D regular grid of vertices
for the world representation. If the world for your project is already constructed on a
regular grid (such as height field terrain), you’re in luck. Otherwise, you’ll need to reg-
ularize the representation. This is a massive topic beyond the scope of this article, but
research on the quantization of irregular meshes is abundant. In particular, Hugues
Hoppe has a variety of papers on this subject [Hoppe94-07]. Relief-based reconstruc-
tion and other approaches are also possible [Szymczak02]. Depending on the needs of
your application it will probably suffice to quantize the search space and keep the
visual representation irregular. Imprecision with regularization will not win you any
friends among the artists on the project.

After you have a regular world representation (all vertices are situated on a regular
grid of two or three dimensions), there are numerous ways to use an RQT refinement,
depending on how deeply you want to incorporate it into your project.

106 Section 2 Movement and Pathfinding

At the simplest level, RQT can be used to reduce the size of existing navigation
meshes. Reducing the memory footprint for the pathfinding data reduces the time
spent to search the space, reduces read time when paging from storage, and requires
no decompression step. This modest incorporation of RQT requires no changes to
pathfinding algorithms that already use navigation meshes and is easy to incorporate
into an existing tools chain—expose a world-space error metric to the designers (as a
slider perhaps) in the navmesh generation tool and add an RQT post-processing step
that uses this metric at export time.

But compression just scratches the surface of what can be done with RQT. Where
this simplification really shines is as a method of incremental refinement when
streaming pathfinding data from storage, such as optical media, a hard drive, or a net-
work.

Starting with a “good enough” path and then refining it during subsequent game
loops is a well-known strategy. Given how well RQT represents intrinsic detail, we
can apply this idea to a pathfinding solution that scales to large terrains.

Two sets of navigation meshes are generated in an offline tool. The first is the
summary mesh, or the high-tolerance model, that represents the entire world using an
in-core memory model. The summary mesh should be small enough to reside wholly
within system memory. The second set of meshes is the set of low-tolerance models,
each representing a different chunk of the world. Together they would be far too large
to fit into memory but provide higher-fidelity representation of regions of the world.

When an entity requests a path, one is generated on the summary mesh. In sub-
sequent frames, low-fidelity meshes that fall along this preliminary path are paged in
and used to refine the entity’s course over the world. The query to the summary mesh
will return a list of path nodes. As part of the refinement process, we mark transitions
between chunks by inserting transition nodes into this list. These nodes provide the
index of the next chunk to page during refinement but are not actually used to move
the entity.

Because the RQT-refined navigation mesh maintains boundaries between nodes
at all levels of detail, we could examine the preliminary path nodes in order and insert
transition nodes when the path moves to a different leaf. This will work but isn’t
amenable to parallel processing. A better way to mark these transitions is to project
the path into 2D and examine the line segments connecting each set of nodes. In
Game Programming Gems 2, Matt Pritchard describes a fast test to determine whether
a line spans a quadtree boundary [Pritchard01]. In each dimension, XOR the integral
portions of both ends of the line segment. Because quadtrees are subdivided along
powers of two, the position of the highest set bit indicates the level of the quadtree
where the spanning occurs. Because all chunks in this implementation are leaf nodes
at the same level of the quadtree (i.e., no leaves are contained at other levels of the
structure), this test can be used to quickly mark transitions.

The relative speeds of the paging strategy and the entity’s movement determine
how much time the entity will path along the preliminary path versus the refined path.

2.4 Intrinsic Detail in Navigation Mesh Generation 107

In practice, ground-based entities moving at slow speeds spend only a few frames mov-
ing along the preliminary (low-tolerance) path. Although the seek times of storage
media are a crucial concern when streaming, this approach minimizes the impact of
slow seeks because entities can travel along the preliminary path, whereas higher
fidelity navigation meshes are paged from storage. In the worst case, in which so many
entities are requesting paths that it overwhelms the paging mechanism, the preliminary
path is still convincing.

This approach allows you to apply generic A* to an RQT-reduced navigation mesh,
but other solutions are possible. The Internet abounds with hierarchical approaches to
pathfinding; the regular, hierarchical characteristics of RQT meshes are well suited to
these approaches.

These last few points are highly dependent on the particular needs of your game
but are worth noting:

First, there is huge potential for parallel processing here. Because both high- and
low-tolerance navigation meshes feature regular decimation, locking can be highly
localized when updating the meshes to account for dynamic obstacles. Likewise,
when refining the preliminary path, it is trivial to divide and conquer both when
marking transitions between chunks and when refining the path. When marking
chunk transitions, each thread examines a subset of the preliminary path. After the
transitions have been marked, each path segment can be refined in a separate thread
without the need for a stitch-up step when all refinements are complete.

Second, RQT reduction can be used alongside other navigation mesh optimiza-
tions, many of which are described in previous volumes of this series. For games that
exclusively use ground-based entities, faces above a certain steepness threshold can be
removed from the exported mesh. Preprocessed paths can certainly still be used and
modified at runtime to account for dynamic obstacles—in fact, RQT can be used to
speed up the offline generation of these paths. As always it can be dangerous to opti-
mize too early because one of the motivations for this search space representation is
that it copes well with dynamic changes to the world. One safe optimization is run-
length encoding of the search space, which outperforms wavelet compression in the
case of RQT that has already in a sense been compressed using frequency information.

Finally, it is certainly possible to imagine a scenario in which the terrain is so large
that it is impossible to fit it entirely into memory while maintaining a meaningful error
metric. In lieu of paging the summary mesh outright, it might be more fruitful to discard
the summary mesh concept and look instead to incremental refinement [Pajarola98]. As
with almost all data structures available, memory is the ultimate limitation, but RQT
extends the dimensions of the worst-case scenario to truly gigantic proportions.

Search Space Comparisons

In the second volume of AI Game Programming Wisdom, Paul Tozour outlined criteria
for evaluating search space representations [Tozour04]. Borrowing his metrics, let’s
see how RQT-reduced navigation meshes stack up.

108 Section 2 Movement and Pathfinding

Memory Usage/Performance

When devising a search space, developers often trade path optimality for simplicity of
the graph. RQT provides a solution for creating high-fidelity paths while reducing the
memory footprint of the search space representation. This is the primary motivation
for application of RQT to the world of pathfinding. Navigation meshes exhibit poor
performance and increased memory usage when compared to waypoints. RQT reduc-
tion addresses this weakness specifically by representing the search space in a more
concise format. The actual compression ratio varies with the frequency of the terrain
and the aggressiveness of the error metric. Given the paltry RAM available on modern
consoles and the exploding content demands for next-gen titles (both in terms of
world size and the number of pathfinding entities), this is perhaps the most important
metric of all. Although waypoints still provide a more concise representation, RQT
reduction is a vast improvement over unsimplified navigation meshes.

Path Optimality

In addition to the path optimality of unsimplified navmeshes, RQT-reduced navmeshes
guarantee the minimal representation of the search space for a given error metric. It is
important to note, however, that an infinite error metric would reduce a terrain to four
vertices and two triangles (a flat plane with dimensions equal to the original world).
Such aggressive reduction would obviously not be conducive to optimal paths. The pre-
vious section discussed a path-refinement scheme with a streaming navigation mesh,
and one of the optimizations proposed was that the first path node in any chunk be
retained from the preliminary path generated on the summary mesh, which could not
be said to be truly optimal. Once again, this devolves to an issue of data tolerance—how
optimal do the paths need to be for your application? In the case of games and even mil-
itary simulations, the highly detailed paths over arbitrarily large regions produced by
this approach are a vast improvement in path fidelity at the cost of “near” optimality. In
practice, RQT minimizes the tradeoff between path optimality and memory usage that
AI programmers are often faced with.

Suitability for Offline Generation

RQT reduction is ideal in this regard. Any world representation that allows regular
decimation can be reduced via the algorithm described in this article. When working
with networks of irregular points (i.e., almost all meshes in current 3D applications),
it is possible to quantize the world representation to a regular 3D grid for the pur-
poses of generating the navigation mesh. The navmesh generation tool can contain a
slider that allows designers to set an error metric—preferably along with a preliminary
visualization of the reduction—for use at export time. The drawback of RQT reduc-
tion is the trial and error of selecting a suitable error metric, which must be evaluated
by the designers via inspection of the mesh emitted by the navmesh generation tool.
This drawback is minimized by the fact that it is controlled by a single variable and

2.4 Intrinsic Detail in Navigation Mesh Generation 109

that impressive compression ratios are achieved even with a conservative error metric.
As a final option, Pajarola describes an objective method to derive an optimal error
metric for a given mesh [Pajarola 98].

Suitability for Dynamic Environments

As Tozour describes, this is the major advantage of navigation meshes—triangular (as
opposed to polygonal) navigation meshes in particular. This feature is enhanced by the
fact that RQT-reduced meshes feature regular decimation. If leaf nodes are of uniform
dimensions and stored contiguously in memory, random access is possible. If leaf
nodes can be contained in different levels of the tree, neighbors can be found either
through backtracking to a least common ancestor, a process with logarithmic complex-
ity that in practice rarely requires examination of more than four nodes [Samet84].
This inexpensive access allows fast examination of the local space to avoid dynamic
obstacles, rapid update of the search space representation to reflect recent terrain defor-
mations, and so forth. In addition, the frequency analysis inherent in the algorithm
allows for some interesting possibilities—if a certain unit can leap long distances, for
example, it’s possible to flag high-frequency regions as good search candidates for
jumping over dynamically created ravines and so forth. The unused bits in the patch
strings for the mesh generation stage of RQT are an ideal place to tag such data.

Suitability for Hierarchical Solutions

Although portal-based segmentation was a great solution for the previous generation
of games, in practice, it is expensive to segment procedurally and often requires direct
intervention on the part of an environment artist. Likewise, portal segmentation
often limits game design in the sense that the world must converge at discrete choke-
points. In terms of pathfinding, RQT reduction allows the representation of truly
open worlds. It does so in a way that is explicitly hierarchical; much of Pajarola’s orig-
inal work concerned incremental progression over a network (although we’ve glossed
over this point, the vertices at each level of the quadtree represent a valid triangula-
tion, meaning that it is possible to stream vertices first from the root of the tree, and
then from children nodes as bandwidth allows, without ever pushing the same vertex
twice). Finally, as described in the previous section, we can keep a summary naviga-
tion mesh of the entire terrain in memory to produce preliminary paths, and then
refine these paths as higher-fidelity chunk navigation meshes that can be streamed
from storage. In addition to being hierarchical, this approach scales well regardless of
terrain size or number of pathing entities because the preliminary path already
accounts for the intrinsic detail of the world representation.

Orthogonality to Visual Representation

Although Tozour omits this metric, we submit that it is a useful consideration when
choosing a search space representation. In fact, it is one of the implicit advantages of

110 Section 2 Movement and Pathfinding

using navigation meshes in the first place. Because RQT was originally developed to
simplify rendering of large terrains, it is possible that some code can be shared
between the rendering and pathfinding systems, both in terms of offline generation
(in particular, visualization tools) as well as for online problems such as streaming,
network transmission, culling, and so forth.

Source Code

A visualization tool on the CD-ROM accompanying this book allows you to step
through various levels of reduction of a 2D terrain. The demo provides source code
for both the dependency marking and mesh generation stages of the algorithm in a
concise and readable format. The reduction code has no dependencies and can be
dropped into an existing project with little to no hassle. However, the code deals only
with refinement of a single chunk. Multichunk environments are left as an exercise to
the reader, as this depends highly on the spatial organization structure of your project.

Conclusion and Future Work

Using the refinement described in this article, you have two additional tools at your
disposal when dealing with search-space representations: a method to compress exist-
ing triangular navigation meshes while preserving important details (with little or no
change to your existing pathfinding solution) and a method to generate navigation
meshes for very large worlds in a format amenable to streaming and fast dynamic
update. Determination of a useful world-space error metric is the drawback of this
approach—an overly aggressive error can omit crucial details.

We’ve given you a whirlwind tour of a topic that could be a book full of the differ-
ent ways to incorporate regularity, reduction, and incremental refinement into your
search spaces. From the kernel provided in this article, there are many paths to take.

Although the presented RQT algorithm is an offline, world-space error metric,
the core technique behind it allows it to be an exceptionally fast runtime technique as
well. The rejection/marking phase can be tailored to a generic marking system that
can allow other types of triangulation processes to exist besides RQT.

The marking grid of RQT can also serve as a great data structure for efficient
streaming of tessellation data. For example, every vertex streamed into the system
comes in the form of its XZ location in the Boolean grid. When a point is added to a
chunk, we can evaluate whether that added point will change the tessellation of the
edges of this chunk (a simple &= operation with what the edges were prior). If the
edges of this chunk have changed with the addition of this point, we then recalculate
the polygon list for this chunk and the neighboring chunks on the edges that have
been modified. If not, then we just recalculate the polygon list for ourselves.

This shows that the Boolean grid serves an even more powerful purpose: an
abstraction from the polygon snapping/splitting process, which is usually the brain-
bending part of up/down tessellation. Using other methods to fill the Boolean grid

2.4 Intrinsic Detail in Navigation Mesh Generation 111

structure, we can achieve the same complex tessellation processes of more traditional
algorithms in a faster, more stable process.

In addition, although the error metric presented here, based on slope informa-
tion, is a good general-purpose solution, more advanced metrics are certainly possible.
If impassable regions have been marked in raster data, for example, a texture lookup
could be used to scale the metric at each vertex.

Finally, we hope that this article has demonstrated that there are opportunities to
improve the navigation mesh concept by adapting algorithms from the rendering
domain. Mesh simplification is a vast playground—the devil is in the details.

Acknowledgements

James wishes to thank Dr. Anton Ephanov and Dr. Wouter Van Oortmerssen, both
faculties at the Guildhall at Southern Methodist University. Thanks for your feedback
and encouragement.

References

[Duchaineau97] Duchaineau, Mark, et al., “ROAMing Terrain: Real-time Optimally
Adapting Meshes.” Proceedings IEEE Visualization ’97, (October 1997): pp. 81–88.

[Hoppe94-07] Hoppe, Hugues, “Hugues Hoppe’s Home Page.” Available online at
http://research.microsoft.com/~hoppe/#mra, June 15, 2007.

[Pajarola98] Pajarola, Renato, “Large-Scale Terrain Visualization Using the Restricted
Quadtree Triangulation.” Proceedings IEEE Visualization ’98 (October 1998): pp.
19–26.

[Pritchard01] Pritchard, Matt, “Direct Access Quadtree Lookup.” Game Program-
ming Gems 2, Charles River Media, 2001: pp. 394–401.

[Samet84] Samet, Hanan, “The Quadtree and Related Hierarchical Data Structures.”
ACM Computing Surveys (June 1984): pp. 187–260.

[Snook00] Snook, Greg, “Simplified 3D Movement and Pathfinding Using Naviga-
tion Meshes.” Game Programming Gems, Charles River Media, 2000: pp.
288–204.

[Szofran06] Szofran, Adam, “Global Terrain Technology for Flight Simulation.”
Game Developers Conference, 2006, available online at http://download.
microsoft.com/download/5/6/f/56f5fa07-51a4-4c0d-8a9a-2e8539214f2e/
GDC2006_Szofran_Adam_Terrain_v1.doc.

[Szymczak02] Szymczak, Andrzej, et al., “Piecewise Regular Meshes: Construction
and Compression.” Graphical Models, Special Issue on Processing of Large Polygonal
Meshes, 2002, pp. 183-198.

[Tozour04] Tozour, Paul, “Search Space Representations.” AI Game Programming
Wisdom 2, Charles River Media, 2004: pp. 85–102.

112 Section 2 Movement and Pathfinding

http://research.microsoft.com/~hoppe/#mra
http://download.microsoft.com/download/5/6/f/56f5fa07-51a4-4c0d-8a9a-2e8539214f2e/GDC2006_Szofran_Adam_Terrain_v1.doc
http://download.microsoft.com/download/5/6/f/56f5fa07-51a4-4c0d-8a9a-2e8539214f2e/GDC2006_Szofran_Adam_Terrain_v1.doc
http://download.microsoft.com/download/5/6/f/56f5fa07-51a4-4c0d-8a9a-2e8539214f2e/GDC2006_Szofran_Adam_Terrain_v1.doc

113

2.5

Navigation Mesh Generation:
An Empirical Approach
David Hamm—Red Storm Entertainment
trianglegamer@gmail.com

Many games rely on navigation meshes as inputs for AI pathfinding. Automatically
generating these meshes can be a big win for development because it eliminates

both a major art task in the content pipeline and a corresponding class of bugs. A com-
putational approach to navigation mesh generation has previously been presented
[Tozour02] and extended in the AI Game Programming Wisdom series [Farnstrom06].

This article proposes an alternative, empirical approach to navigation mesh
(navmesh) generation being developed for the Tom Clancy’s Ghost Recon series of
games. This technique scales very well with increasing world detail, including outdoor
or natural environments. The output is a surprisingly uniform triangle mesh especially
well suited for pathfinding use. Secondary advantages include the avoidance of floating
point precision issues and localized customization of the algorithm when desired.

Algorithm Overview

Five steps are involved in empirical navmesh generation:

1. Simulate moving a character shape around the map, essentially flood-filling
regions with breadcrumbs everywhere characters can reach.

2. Process the resulting grid of points, throwing out points in tight areas that
could complicate navigation.

3. Identify boundary points, and optimize their connections to form simplified
impassable walls.

4. Select a balanced distribution of interior points to promote to navmesh
vertices.

5. Connect the interior vertices with the impassable walls to form a triangle
mesh.

Various heuristics and optimizations are applied at each step, as well as possible
extensions for representing additional information in the navmesh valuable to pathfind-
ing. Each of these steps is further developed in the following sections.

Step 1: Sampling the World

Empirical navmesh generation begins with extensive sampling of the world via colli-
sion tests. This process generates a database of navigability information that drives the
construction of the final mesh. It is this basis on experimental evidence that suggests
the term “empirical.”

World sampling must be seeded by inputting a single known navigable point in the
world for each disjoint navmesh to be generated. A basic implementation might assume
valid traversable terrain at the world origin. A more sophisticated system should allow
multiple seed points to be graphically specified throughout the rendered world geome-
try. Disjoint meshes, and thus multiple seeds, can come into play for maps with NPCs
placed on isolated terrain that is inaccessible to players, such as sniper nests.

Outward from each seed point, collision tests are performed on an axis-aligned
grid to determine the navigability of the terrain. A ray cast fired relative to the closest
resolved sample is used to find the height of the terrain. Then, a capsule corresponding
to the approximate volume of a game character is positioned just above the terrain to
check for world collisions. If these tests find a valid place for a character to stand, the
slope of the path between this point and the previous location is checked for navigabil-
ity. If the slope traversed between the points is too great, the new point is rejected as
unreachable. A visualization of the resulting point collection is shown in Figure 2.5.1.

114 Section 2 Movement and Pathfinding

FIGURE 2.5.1 Navigable points are collected by performing collision
tests and checking for reachable neighbors.

The distance between points on the grid must be carefully selected. It should be
sufficiently shorter than the collision radius of the game’s characters to avoid blindly
stepping past obstacles when sampling the world. However, a shorter increment along
the grid will increase the precision of the navmesh at the cost of added mesh complex-
ity and overall computational cost. That is, better results will increase the runtime of
both the algorithm and operations on the resulting mesh. Typical characters in the
Ghost Recon series have a collision radius of 35 centimeters (about a foot). A sample

grid of 25-centimeter increments produces a nice balance between mesh precision
and complexity.

The collision tests in this first stage of the algorithm can be extended to describe
additional attributes of the terrain relevant to the characters that will be navigating it.
For example, Ghost Recon navmeshes track water-covered areas and stance-restricted
regions, such as low ceilings that force crouched or prone movement. These situations
can be identified and recorded by extracting additional information from ray casts
and by testing additional collision volumes to represent different character stances.

The grid of breadcrumbs resulting from world sampling highlights both strengths
and weaknesses of the empirical algorithm. Working on an axis-aligned grid simplifies
data management and avoids floating-point precision issues arising from arbitrarily
close positions but fundamentally limits the degree to which the generated mesh can
match actual world geometry. Note that because the “grid” is generated by a breadth-first
search of queued neighbors, regions of terrain are free to overlap. As long as a minimal
clearance is maintained, the algorithm generates a valid navmesh for a stacked naviga-
ble terrain.

Step 2: Cleaning the Navigable Space

The initial network of navigable points is based on direct tests of the world geometry,
and thus inherently reliable within the tolerance of the sampling rate. Because this data
is still just an approximation of continuous terrain, some cleanup will be required before
using it as the basis for an actual navmesh. In general, we want to smooth the point net-
work to eliminate unnecessary complexity and potentially dangerous areas of marginal
navigability.

At this point, it’s useful to move from considering the samples as a collection of
points to thinking of them as navigable regions with actual geometric area. To do this,
the point grid is searched for “cycles” of navigability. Any point that can trace a
North–East–South–West cycle through neighboring points is considered to anchor a
“cell” of navigable space bound by those navigable connections. This cell search is
again performed with a breadth-first search of queued points, thus intentionally miss-
ing undesirable regions that cannot be reached cleanly via navigable cells. The result
can be visualized as a tiled landscape of navigable area.

To generate navmeshes that allow multiple agents to cleanly navigate the world, it
might be desirable to further restrict the acceptance of navigable cells. For example,
we can require that all valid cells be connected to other neighboring cells, so that
blocks of 2 × 2 or 3 × 3 meta-cells are present. In cases where such a block cannot be
identified, the cells are no longer considered part of the navigable space. This addi-
tional cleanup will eliminate narrow corridors from the resultant navmesh, which can
ease the burden on pathfinding and path following.

After navigable cells are noted, boundary points can be identified. These are
important because they will ultimately define the shape of the navmesh. A boundary

2.5 Navigation Mesh Generation: An Empirical Approach 115

point is a valid (navigable) point not contributing to navigable cells on all four cor-
ners. Typically, a boundary point will have two other boundary points as neighbors
(such as when they’re along a wall or cliff). It is an important simplification that we
avoid cases of boundary points connecting to more than two boundary point neigh-
bors. This is an indication of multiple tiny obstacles breaking up navigability. The
solution is to merge the obstacles by removing connections between boundary points,
effectively filling tight areas with impassable space.

116 Section 2 Movement and Pathfinding

FIGURE 2.5.2 The point network is processed to eliminate excess
complexity and areas of marginal navigability.

This cleanup process of finding navigable cells, removing corridors, marking bound-
aries, and filling tight areas is repeated until no new tight areas are found. Although this
seems like a lengthy and time-consuming process, in practice, this condition is met in just
a few iterations. The result, as represented in Figure 2.5.2, is a polished description of the
navigable space ready to serve as input to mesh construction.

Step 3: Refining Boundaries

Now that the point network is optimized, we will reexamine the boundary points with
an eye toward choosing the impassable vertices and edges in the final navmesh. Simply
promoting all boundary points to vertices and connecting them with impassable edges
would result in a very dense navmesh. The goal will instead be to generate a simplified
series of edges that still represents most of the precision stored in the boundary point
network.

Each boundary point is examined until an unvisited chain of boundary points is
found. A trace operation is then executed. As each neighboring boundary point is iter-
ated over, a record is constructed noting the compass direction traced to continue the
chain. For example, a simple obstacle might result in a closed cycle of boundary points
that traces out the pattern North–East–South–West. Similarly, a diagonal wall segment
might generate a stair step pattern such as North–East–North–East, and so on.

Theses recorded trace sequences are then compared to a set of patterns targeted for
simplification. Instead of creating eight individual navmesh edges from a sequence of
eight collinear, neighboring boundary points, a single edge will be created to span the
entire length represented by the points. Likewise, a stair-step sequence will be identified
as a common pattern and approximated with a single diagonal edge near the boundary
points. Ultimately, this is likely to result in a four-fold decrease in boundary complexity
compared with directly promoting all boundary points to impassable navmesh vertices.
In some cases, such as the stair-step patterns, it is also likely that the smoothed bound-
ary edge is a closer match to the actual obstacle geometry.

This process of tracing boundaries to produce optimized impassable navmesh ver-
tices and edges can be extended to also generate internal mesh regions representing
other navigation properties. For example, water or stance restriction information
stored with navigable points can be embedded in the final mesh if navmesh polygons
are generated so that each polygon has consistent traits throughout. In this case, rather
than tracing obstacles via chained boundary points, the algorithm is modified to build
edges around different terrain regions by tracing through points with mismatched
neighboring cell traits.

After navigation boundaries have been simplified to produce the impassable ver-
tices and edges of the navmesh, some of the most important work is done. Figure
2.5.3 shows a representation of the algorithm at this stage. All that remains is to
round out the mesh into a complete data structure ready for pathfinding.

2.5 Navigation Mesh Generation: An Empirical Approach 117

FIGURE 2.5.3 Impassable navmesh edges are generated by tracing
through boundary point chains and looking for easily simplified patterns.

Step 4: Selecting Interior Vertices

Although the impassable edges represent key information in a navmesh, interior vertices
and edges are also needed to complete the mesh and provide connectivity across passable
regions. The first two steps of the empirical algorithm have provided a multitude of

interior navigable points for inclusion in the navmesh. How should we choose among
these points to construct a desirable mesh?

Game-specific considerations might come into play here. In general, a relatively
uniform navmesh density is helpful if additional data is to be attached to the mesh
vertices or polygons. For example, tactical pathfinding information, such as line-of-
sight considerations, can be embedded with navigation data [Straatman06]. A rela-
tively uniform density makes storage and application of this additional data more
consistent across a map.

Gameplay might also dictate that the majority of character movement happens
near obstacles and other areas of good cover. In this case, it can be valuable to encour-
age greater navmesh density around obstacles, giving pathfinding agents more tactical
options in these areas of special interest. In any case, it is wise to have sufficient inter-
nal vertices near the navmesh edges to avoid a proliferation of “sliver” triangles joining
the internal vertices with the impassable edges.

These goals can be met by first flood-filling to find and record the closest dis-
tances to boundaries for each interior point. Then, for those interior points, a few
heuristics can be applied when considering which to promote to vertices. First, we
enforce a minimum distance from other vertices and boundaries and reject points that
are too close. Second, we promote any points exceeding a maximum distance from
both existing vertices and boundaries. Finally, we also promote points closer to an
obstacle than an existing vertex.

These rules will select a well-distributed collection of vertices for the navmesh, as
shown in Figure 2.5.4. Combined with the boundary vertices selected earlier, they
will complete the vertex list for the final navmesh.

118 Section 2 Movement and Pathfinding

FIGURE 2.5.4 A few simple heuristics will help select a set of inter-
nal vertices that give a relatively uniform density to the final navmesh.

Step 5: Constructing the Triangle Mesh

We are now left with the task of constructing interior edges from the vertices and ulti-
mately linking the edges into a triangle mesh. The original navigable point grid will con-
tinue to serve as a source of connectivity information for validating possible navmesh
edges. Tracing candidate connections along the point grid will, for example, avoid incor-
rectly linking stacked navmeshes with vertical edges.

We begin by identifying edge candidates up to a maximum length, which is cho-
sen to support the length needed to connect interior points as dictated by the specific
heuristics used in interior vertex promotion. Furthermore, edge candidates are ignored
if they are already linked boundary edges, do not match up with a passable route
through the point grid, or pass outside (or are collinear with) boundary edges.

Candidate edges that pass these tests are then sorted by length and considered
shortest edge first. We reject any edges that intersect second-degree neighbor edges.
All other edges are accepted and added to the mesh. Choosing the edges in this fash-
ion avoids all intersecting or otherwise invalid edges.

The navmesh structure can now be finalized by building triangles from the set of
edges. For each edge, the associated triangles must be identified. In the case of impass-
able edges, there will be only a single associated triangle. Care should be taken to
avoid selecting triangles that enclose smaller triangles. Also, impassable obstacle trian-
gles should not be included in the mesh. Keeping these caveats in mind, the triangles
can be identified efficiently just by examining neighboring edges.

The empirical navmesh generation algorithm results in a collection of vertices
connected into edges and, in turn, connected into triangles as seen in Figure 2.5.5.
The final representation of the navmesh will depend on the needs of pathfinding or
any other optimized algorithms that operate on the data structure. Subject to tuning
parameters and precision/complexity tradeoffs, the navmesh should be a viable
approximation of the navigable terrain.

2.5 Navigation Mesh Generation: An Empirical Approach 119

FIGURE 2.5.5 The generated navmesh in its final state with vertices
connected into edges and triangles.

Optimizations

As the preceding description suggests, empirical navmesh generation is both compu-
tationally intensive and memory intensive. The traditional advice of getting the code
correct and then making it efficient is not entirely applicable here because any naïve
approach to implementation will quickly exhaust memory while only very slowly
converging on a solution. However, with careful data structure choices and extensive
refinement, the Ghost Recon implementation is capable of generating 20,000 triangle
meshes for highly detailed maps roughly 300 meters in each dimension, taking
roughly 45 seconds on a single core 3 GHz PC.

The first step of the algorithm, performing the millions of physics queries
required to produce the initial grid of navigable points, is difficult to optimize for
most detailed environments. After all viable performance tuning is complete, it is
likely to remain the dominant resource drain. With this in mind, it is important to
verify that the ray casts and collision tests are done as efficiently as the game’s physics
technology allows. It is also crucial that no extra tests are performed during terrain
traversal. Results should be cached at each point and reused when the breadth-first
search encounters previously tested regions to minimize overall processing.

Memory optimizations should begin with an examination of the data stored with
each navigable point. The grid-like nature of the point samples can be leveraged to
compress the representation of a location. It is likely that 16-bit indices will suffice for
distinguishing unique coordinates on the navigable terrain. Attention should also be
given to compressing additional data fields stored with each of the potentially mil-
lions of navigable points. The Ghost Recon point implementation includes a set of
some 16 flags toggled at various stages of the algorithm. These are represented as a sin-
gle compacted bit field to avoid wasted memory.

Consideration should also be given to the containers used to store and access data
as the algorithm runs. The Ghost Recon implementation includes a custom three-level
grid hierarchy for storing the initially sampled points. This representation allows large
regions of data storage to be pre-allocated and quickly referenced without tying up a
lot of excess, wasted memory for nonnavigable regions. Later in the algorithm, an
optimized spatial hash table might also be valuable for efficient edge candidate lookup
[Farnstrom06]. Such measures are necessary to produce an implementation that will
scale to large, complex environments. Furthermore, every memory optimization has
the potential to double as a speed improvement due to reduced cache misses.

Tuning the Results

This algorithm can generate production-quality navmeshes for a wide variety of terrains
just by using a common set of heuristics. However, problems will inevitably arise when
special circumstances break the basic assumptions of navigability. For example, an
unusually steep staircase intended to be climbable or a low-rising ridge intended to be
impassable can be misrepresented by the generated navmesh. Happily, tuning parame-
ters can be easily added to the algorithm both at a per-mesh and per-region granularity.

120 Section 2 Movement and Pathfinding

Listing 2.5.1 shows a GUI-generated configuration file that can be used to specify a
variety of custom inputs to the navmesh generation process. Such a file will be necessary
for holding the SeedPointList, which provides the required starting points for naviga-
ble terrain sampling. Other useful global settings include GridStepXY, which controls
the granularity of the point field used to build the navmesh; VertexSpacingMin and
VertexSpacingMax, which control the density of interior vertices in the navmesh; and a
StanceList, which defines different character representations to test for navigability.

Listing 2.5.1 Using a Configuration File to Tune Navmesh Generation for a Particular
Environment

<NavGenConfig>

<PointLimit>1000000</PointLimit>

<GridStepXY>0.25</GridStepXY>

<CollisionRadius>0.35</CollisionRadius>

<VertexSpacingMin>1.5</VertexSpacingMin>

<VertexSpacingMax>4</VertexSpacingMax>

<MeshTerrainOffset>0.7</MeshTerrainOffset>

<StanceList>

<Stance Name = “Prone” Height = “0.7”

MaxDepth = “0”/>

<Stance Name = “Crouch” Height = “1.1”

MaxDepth = “0.5”/>

<Stance Name = “Upright” Height = “1.9”

MaxDepth = “1”/>

</StanceList>

<SeedPointList>

<SeedPoint>-14.72;22.03;13.80;</SeedPoint>

</SeedPointList>

<TerrainTypeList>

<TT Name = “Natural” Clearance = “0.2”

Slope = “1”/>

<TT Name = “Urban” Clearance = “0.4”

Slope = “2”/>

<TT Name = “Blocked” Clearance = “-0.1”

Slope = “-1”/>

</TerrainTypeList>

<ZoneList>

<Zone Terrain = “Urban” Default = “1”/>

<Zone Terrain = “Blocked”>

<Point>149.21;67.02;0.00;</Point>

<Point>149.11;61.43;0.00;</Point>

<Point>153.07;66.98;0.00;</Point>

</Zone>

</ZoneList>

</NavGenConfig>

Finer control of navmesh generation can be achieved by also specifying custom
slope limits and ground clearance tolerances for specific regions of a map. Such excep-
tions can be nicely managed by the concept of terrain types, which are defined and
then referenced by specific zones across the map. A default terrain type can be used to
describe the most widely prevalent conditions of an environment. These terrain “hints”

2.5 Navigation Mesh Generation: An Empirical Approach 121

allow a correct interpretation of unusual cases in the geometry each time the navmesh
is regenerated without requiring the source art to be modified.

Implementation Advice

Before diving into empirical navmesh generation coding, there are a few implementa-
tion guidelines to consider. Thinking about these issues early on will yield savings in
the long run and avoid some frustration. The Ghost Recon implementation reached a
proof of concept state in about three weeks of development. The first version suitable
for production testing was ready after three months. This investment was minimal
compared to the expected payoff, but closer attention to these lessons might have pro-
vided an even larger win.

First, consider investing in debugging capability from the start. The algorithm
lends itself well to visualization at most stages of generation. Yet a decision must be
made to put in a little extra work up front to expose the navigability data as it is
processed. Even in the rare cases when portions are coded bug-free the first time, visu-
alization aids will help build confidence in the algorithm.

Second, provide profiling support to log timing information as the implementation
progresses. There are many optimizations to consider when coding navmesh generation.
Having concrete feedback about where time and memory are going will allow informed
decisions about which optimizations to prioritize. It can also serve as encouragement to
see the algorithm using fewer resources over time.

Finally, plan on having a convenient method of comparing generated navmeshes
with assets created under any previous workflow. It is very useful to see side by side
how well the generated navmeshes are measuring up against a legacy approach on the
same environments. This can suggest areas of the implementation that need further
tuning.

Future Work

The automated process presented in this article addresses a pressing problem shared
by many content pipelines. However, different games will have different needs, and,
in general, those needs are getting more elaborate. For example, game environments
are becoming much more dynamic and interactive. This limits the usefulness of pre-
computed data in many contexts, including AI and navigation. More research will be
needed to explore whether empirical navmesh generation can be adapted to produce a
runtime solution for highly dynamic or destructible worlds.

Any runtime version of navmesh generation is likely to involve rebuilding and
merging localized sections of mesh. This ability would also be of great value for tool-
time editing where tweaks to the world terrain and static objects could update the
associated navmesh incrementally instead of relying on a slower regeneration of the
whole mesh. Further optimizations of the algorithm could also be explored, including
opportunities for parallelization.

122 Section 2 Movement and Pathfinding

Conclusion

Navmeshes are a widely implemented basis for AI pathfinding and tactical reasoning.
The algorithm presented here seeks to automate the generation of navmeshes with a
scalable, tunable approach. Furthermore, the relatively uniform density of the result-
ing meshes provides reliable navigation options and well-distributed anchor points for
additional metadata. The Ghost Recon series is leveraging this technology to improve
pipeline efficiency and AI performance.

Acknowledgements

This navmesh generation research was supported by the Red Storm AI group, includ-
ing John O’Brien, Deirdre Toomey, Christopher Port, and Dmitriy Buluchevskiy.
The author is grateful for their assistance.

References

[Farnstrom06] Farnstrom, Fredrik, “Improving on Near-Optimality: More Techniques
for Building Navigation Meshes.” AI Game Programming Wisdom 3, Charles
River Media, 2006: pp. 113–128.

[Straatman06] Straatman, Remco, Beij, Arjen, and van der Sterren, William,
“Dynamic Tactical Position Evaluation.” AI Game Programming Wisdom 3,
Charles River Media, 2006: pp. 389–403.

[Tozour02] Tozour, Paul, “Building a Near-Optimal Navigation Mesh.” AI Game
Programming Wisdom, Charles River Media, 2002: pp. 171–185.

2.5 Navigation Mesh Generation: An Empirical Approach 123

This page intentionally left blank

125

2.6

Navigation Graph Generation
in Highly Dynamic Worlds
Ramon Axelrod—AIseek
mushroomramon@yahoo.com

The game world of today is rapidly becoming more complex and dynamic through
the use of physics engines. A major bottleneck for achieving the true potential of

in-game physics is the creation of an AI subsystem capable of handling a fully dynamic
world. Although some techniques exist for dealing with movement and pathfinding in
dynamic worlds, these are limited in two aspects. First, such techniques have problems
with fast or large-scale changes because they depend on maintaining a great deal of pre-
processed information (e.g., a navigation graph generated offline from raw 3D data).
Second, they do not take into account that the game’s agents can change the world.

This article describes a new approach for generating and updating navigation
graphs directly from raw 3D data in real time. The method proposed supports
extremely dynamic worlds and accounts for all agents. Moreover, this technique can be
extended to handle situations where the agents themselves can affect the environment.

Background

One of the most basic requirements of AI modules in games is to move the game
agents through the 3D environment in a way that looks natural, that is, to plan a
route for the agent (pathfinding) and then to execute that route with small local cor-
rections when changes or obstacles are encountered. Presently, the standard practice
for pathfinding is based on searching for an optimal path on a prebuilt navigation
graph and then applying some postprocessing (e.g., string pulling, smoothing) to the
result. The navigation graph itself is prepared “manually” by a game developer or gen-
erated automatically by a graph-generation process. Typically, such automatic graph
generators produce the graph and the navigation data from raw geometrical data and
the collision/movement model.

Processing of full maps with current generation techniques requires considerable
time—on the order of many minutes to hours. For simple scenarios, it is possible to
adapt these techniques to support real-time updates by generating the graph only around
a small number of moving objects. However, such adaptations prove inadequate for
highly dynamic worlds that can undergo large-scale physical changes affecting dozens to

hundreds of characters (e.g., collapsing buildings with significant debris dispersing over a
wide area). At peak times, such scenes can include many thousands of moving objects.
Nevertheless, the navigation graph must be updated within a few seconds. It is also
important that the graph, and the graph updates, account for the various movement abil-
ities of the characters (e.g., the simple walking ability of a character may have been
blocked by fallen debris, but that character might still be able to jump over the newly cre-
ated obstacle or crawl underneath it). Lastly, the graph-generation method should take
into account that objects that form obstacles can also be part of walkable surfaces.

Before describing the new method, we will first review several common tech-
niques for generating the navigation graph. In particular, we will clarify the challenges
that existing techniques face in highly dynamic scenes (see Figure 2.6.1). This review
also lays the groundwork for understanding our new technique, which draws on cer-
tain aspects of existing methods.

126 Section 2 Movement and Pathfinding

FIGURE 2.6.1 Examples of simple but highly dynamic scenes.

Movement-Based Expansion

Movement-based expansion generates the graph by moving the agent systematically
through the virtual world space and checking for collisions using a collision/movement
model (usually the same one used by the game itself). Specifically, this algorithm
starts with one or more seed points and tries to move an agent in all directions for a
small distance (see Figure 2.6.2). Each point the agents visits is also expanded in the
same fashion, until the entire space is exhausted. Usually, after the graph is built, a
graph size-reduction phase is applied (e.g., consolidating nodes to form triangles for
navmeshes, or rectangles by means similar to [Miles06]).

The main benefit of this algorithm is that it does not depend directly on the actual
geometry but instead calls the engine to provide collision and movement results. In
addition to requiring only a simple interface to the engine and facilitating portability
between engines, this independence allows movement-based expansion to cope with
highly irregular and complex character shapes (assuming that the engine code itself

does so). Similarly, the costs of movement between adjacent positions can be extracted
from the engine regardless of their dependency on geometry and shape.

Another important aspect of this method, and one that is harder to address by other
methods, is easy support for multiple character actions (e.g., jumping, crawling, or even
supernatural powers). Such actions can be included simply by trying all of them at each
point in each direction. At a sufficiently high resolution, the graph created is the most
complete and accurate one possible because it reflects the actual capabilities of the char-
acter in the game, including any loopholes the developer put in the code.

However, these benefits come at a great cost: It can take hours to build a full graph,
even with highly optimized collision code. Therefore, where real-time updates are
required, this method can only be used to update a very small area of the game world
(some maps require over a million movement checks, which will not be affordable even
with the CPU budget of the near future).

Another problem with this approach is that it depends on seeds. In highly dynamic
terrains, certain regions that were disconnected at the beginning might become con-
nected later and vice versa (and the AI characters can affect this). Essentially every part
of the graph might be accessible at any one moment, not just the regions connected to
the seeds.

3D Rasterization (Voxelization)

Another technique for graph generation is 3D rasterization (also known as voxeliza-
tion or volume filling). This method tries to place the character’s bounding box (or
cylinder) iteratively at all positions of the virtual world (see Figure 2.6.3). If the char-
acter can occupy two adjacent positions, and a predefined set of rules regarding their
difference in height or in slope is satisfied, the objects are deemed connected. The
movement cost for a given character is determined by a set of rules and functions
describing the character’s capabilities (e.g., how high it can jump, how high it can
step, the cost as a function of slope). Although some of these rules resemble their

2.6 Navigation Graph Generation in Highly Dynamic Worlds 127

FIGURE 2.6.2 Graph generation using movement-based expansion.

movement code counterparts, others can be complicated and must be designed specif-
ically (e.g., checking for open space above, instead of fully simulating a long jump),
especially if a more accurate graph is required.

To cope with multiple character types and multiple actions, this method usually
tries several box sizes. Each box test comes with its own set of rules for deciding which
positions are connected and the corresponding costs. With proper design of the order
in which the boxes are checked, the overall performance hit from checking multiple
boxes can be kept to a minimum (by using earlier boxes to cull tests for later boxes),
even with multiple characters and multiple actions. However, the number and com-
plexity of rules can increase considerably, depending on the level of accuracy required.
Although not a critical drawback at runtime, this can be problematic during develop-
ment because ongoing changes in the movement code have to be accompanied by
corresponding changes in the graph-generation code (usually writing different code,
unlike movement-based expansion).

128 Section 2 Movement and Pathfinding

FIGURE 2.6.3 Graph generation using 3D rasterization (voxelization).

This method usually works better and faster when given a height map of the ter-
rain because in that case, it is possible to limit the collision tests to the terrain surface
only rather than the entire world space. Terrain here is used in the broad sense: Floors
in buildings should also have a height map, and the corresponding graph generated is
a connected set of multiple 2.5D maps.

Typically, the 3D rasterization method generates the graph faster than the move-
ment-based expansion approach, albeit at the cost of accuracy, especially in tight
places where the approximation of a character by an axis-aligned bounding box is too
coarse, and the actual shape of the character becomes important. In certain cases,
good results can require a nonaligned box or even a simplified mesh for the character
and another nonaligned box for the weapon. When using height maps instead of full
3D rasterization, this method can also miss places where the displacement of physical
objects produces new walkable surfaces (e.g., a beam connecting two roofs).

Other Generation Methods

Another class of graph generation methods do not rely on collision checks because
they tend to be slow. For example, the points of visibility technique builds a navigation
graph by placing nodes at all the corners of the orthonormal projection of objects and
connecting only nodes that are visible to each other (see Figure 2.6.4). Put differently,
this method connects nodes between which an agent can move in a straight line.

To account for the character’s size (width and height), the entire scene geometry
is usually extruded: Half the agent width is added to all walls, and, optionally, half the
agent’s height is added to all floors and roofs. For more information, see the “Refer-
ences” section [Young01].

2.6 Navigation Graph Generation in Highly Dynamic Worlds 129

FIGURE 2.6.4 Extrusion and graph generation using points of visibility.

The time it takes to generate a graph using this method depends on the number
of objects in a volume rather than the size of the volume. This results in greatly
improved performance for sparse open scenes when compared with the earlier meth-
ods. However, such sparse scenes do not usually contain many physical objects. In
fact, in highly dynamic scenes (meaning a lot of objects with a lot of vertices), this can
lead to a combinatorial explosion [Tozour02] and considerably worse runtimes than
previous algorithms. To some extent, this is also true for other algorithms in this class,
such as creating a navmesh directly from the polygons.

Like the 3D rasterization algorithm, this method also relies heavily on data describ-
ing the character’s movement capabilities (cost as a function of slope and steps). How-
ever, it is more difficult and time-consuming to deal with the related issues (e.g., jumps,
cost dependency on terrain type) because the method is based on visibility and not on
local decisions.

For completeness, it should be noted that the graph produced in this way does
not require further size-reduction steps and that the paths found on it do not require
string pulling.

Real-Time Graph Generation

A basic intuition for a new algorithm can be gained by studying the results of previ-
ous methods. By comparing movement-based expansion and 3D rasterization, you’ll
find that the latter provides better performance but fails in tight places or near obsta-
cles (where movement tests with the actual character shape are required). Therefore, it
might be useful to perform true collision and movement checks only in these situa-
tions, and use capsule or box rasterization (it does not even matter which) with sim-
ple rules to approximate the character for all other normal situations.

By using a few different box sizes, you can rule out a position or decide that the
character can indeed stand there. Internally, some physics engines use bounding boxes
to rule out collisions early on, but usually they do not test a small (bounded) box to
determine that a collision is certain to occur. Moreover, the systematic collision test-
ing of adjacent places allows for optimizations that cannot be done using standard
movement code (which performs a single test each time):

• Many checks are shared in adjacent places.
• Testing larger boxes makes it possible to classify entire regions in advance, thereby

avoiding collision tests per point (at least when the ground height is uniform).

The main point of the previous discussion is that in all cases, it is possible to
determine whether actual movement checks are required using 3D rasterization. The
implication is that by using a variant of 3D rasterization, together with judiciously
applied movement checks, we can achieve great speed without sacrificing the accuracy
associated with movement-based expansion.

A second point to note is the resemblance between a graph generated for a terrain
and the rendering of the terrain in the 3D graphics sense. Specifically, we find that the
graph (in grid form) resembles the height maps that can be produced by rendering. You
can think about 3D rasterization based on height maps as an algorithm for “blocking”
pixels in the height map or replacing them with costs. Based on this similarity, it seems
plausible that a variation on a rendering technique can be used to speed up all the steps
required to build the graph.

System Overview

Next we describe a graph-generation system that builds a navigation graph from raw
3D meshes for very large areas in real time with minimal “rules” from the user.

Basically, the system uses rendering-like techniques to find “floors,” “roofs,” and
obstacles, and, for each floor position, decides between three options: (1) a character
is sure to collide there, (2) a character can definitely stand there, or (3) the answer is
undecided. In the last case, the node is added to a list of nodes for which actual move-
ment tests will be performed.

130 Section 2 Movement and Pathfinding

The system is based on four components:

Main generation algorithm. This component performs several “rendering” passes
of the geometrical meshes, using the results to produce the graph and fill the
movement costs for most of the game area. This portion may be further
accelerated using the GPU (see “Using the GPU” later in this article).

Movement-based expansion variant. This component fills all the “undecided”
holes left by the main phase.

Self-building dictionary. An algorithm for automatically learning movement
capabilities and characteristics of the agents from the results of movement-based
expansion. Like 3D rasterization and the points of visibility method for graph
generation, our rendering-like algorithm depends on a lot of knowledge about
the agents’ movement abilities. These can be extracted using movement-based
expansion in a limited manner, which we will discuss later.

World segmentation. This step divides the world into bins that are used to keep
track of the parts of the world that have changed, for which the graph needs to
be updated.

To make the discussion more tractable, we’ll next describe building a graph for a
single NPC with a single action and touch on the more general problem later. We’ll
also simplify the explanation and refrain from describing the world segmentation
component that is common to many other subsystems in a game engine.

In this discussion, we assume that you have a basic understanding of 3D render-
ing techniques and shader programmability.

Main Generation Algorithm (Render-Generate)

Using several passes, this rendering-like algorithm (we will refer to it as render-generate)
builds the graph and populates it with cost data. Notice that most of the rendering
passes that will be described output either depth or other calculated data instead of
actual color. Again, it is important to stress that if the render-generate algorithm is
unable to resolve particular positions, these positions are marked for actual movement
tests.

The algorithm detailed starts by finding the heights of all floors, roofs, and obsta-
cles and later uses this information to decide where characters can stand and decide
where to build the graph. As in the 3D rasterization case, the floors and roofs are more
generic height maps: They can be true floors in a building, the terrain outside, and the
sky, or even a cave floor and its roof. Despite this generality of the algorithm, a good
intuition can be gained by imagining a normal building with several apartments that
have floors, ceilings, and furniture acting as obstacles.

Using the building scene as an example, the first two rendering passes produce
the floor of the top apartment and its ceiling as height maps. Inside the apartment, we
then take into account all obstacles (furniture) and render them to figure out how

2.6 Navigation Graph Generation in Highly Dynamic Worlds 131

high they are. We then set the maximum height for the rendering to be the next floor
and go over the same steps again (see Figure 2.6.5).

The algorithm renders the meshes and objects of the collision model used for actual
collisions tests and not the graphics meshes. Only polygons with which the game engine
actually interacts are taken into consideration, and polygons used for visual effects only
are ignored.

The algorithm, of course, has to deal with situations that are much more complex
than our building example. However, it is designed to be conservative, so that any
mistakes or problems in the rendering phases will not risk the correctness of the final
graph but simply cause more movement tests. Put differently, rendering problems
result in performance hits (more movement tests) rather than graph mistakes.

The following describes each algorithm pass.

Floor Height Map Passes
As stated before, the purpose of this stage is to find the “floor,” including all walkable
areas but ignoring small obstacles. For example, in the apartment situation, we want
to take into account the floor and maybe a large table but ignore a support column or
a stack of books. These will be taken into account later. The results of this stage are
floor height manifolds: a collection of height maps for all the outside terrain, floors,
and so on.

To produce the top-floor manifold, we render the nonsmall objects in the scene
(objects where any axis of the bounding box is above 1 m) from above using ortho-
normal projection. For each pixel, we output its depth, which is actually the height at
that point. We cull back-facing polygons to “see” through roofs, and, for each pixel,
we output the height and slopes of the mesh at each pixel instead of the color.

Unlike traditional rendering, we render our pathfinding pixels even if the center
of the pixel is not occupied to ensure that we render at least one pixel per scan line, so
that thin objects or objects perpendicular to the viewing directions (e.g., walls and
wires) will still be seen. To produce the next floor, we render the entire scene again,
but this time, we cull pixels that are above the last floor. This process is repeated sev-
eral times to produce most of the floors and terrain. It is not important to retrieve all
height maps this way because the movement-based expansion stage will investigate
and find all the missing graph nodes.

Following are some notes to consider:

• Slopes are calculated from the original polygon (by calculating its derivatives
along x and along y) per pixel.

• Back-facing polygons means (for those not familiar with 3D rendering jargon) poly-
gons with a normal away from the camera, that is, facing away from the camera.

• Stitching of different floors together will occur automatically thanks to later
movement tests.

132 Section 2 Movement and Pathfinding

Roof Height Map Passes
To turn the apartment in our example from a floor plan to a room, we need a ceiling.
Therefore we create roof height manifolds: a collection of height maps for the roofs above
the floors, where roofs are defined as the lowest point above each floor point, as shown
in Figure 2.6.6.

To produce the roofs, we render all the objects in the scene using orthonormal pro-
jection and back-face culling, but this time from below (i.e., we look up from the floor
to “see” the ceiling). We cull any pixel that is below or equal to the current floor height
or above the last floor height. In other words, we render only objects (or part of them)
that lie above the current floor and below the previous floor. In practice, we cull every-
thing below the current floor plus a small threshold height so that the bottom of
objects that lie on the ground will not count as a roof (which would lead to unneces-
sary movement checks but not to an error, as will be explained later). Again, we render
pixels even if the center is not occupied to capture lamps, wires, and other thin objects.

Walkable Ground and Obstruction Passes
Now we need to deal with the obstructions and all the objects we ignored before. We
do this by rendering all objects (big or small) from above that are between the floor
and roof, including the floor, outputting the height (actual walkable height), slopes
(in both x and y directions), and object material (the cost of moving on different ter-
rain types might vary).

Some clarifications are in order here. The obstacle height map is also potentially a
walkable surface height map (you might not be able to step from the floor onto a high
closet, but you can walk on it if you are there and have enough room below the roof).
Of course, if the “big object” size threshold was a bit smaller, the top of the closet
would be rendered as “floor,” and the side of the closet would appear as a wall. As you
will see, this does not really affect the actual graph produced, only the amount of col-
lision checks required.

2.6 Navigation Graph Generation in Highly Dynamic Worlds 133

FIGURE 2.6.5 3D rendering passes to extract the topmost floor (right) and the next floor
(left).

In some games with complex 3D models, finding the correct floors can be a deli-
cate matter. For example, consider two rooms located one above the other. In the top
room, we have a table. The previous process will result in three levels: (1) the top floor
and top of the table, (2) the bottom floor and top floor beneath the table, and (3) the
bottom floor beneath the table. As you will see, all these vast changes in floor height
will be marked for collision checks (including the bottom floor), and the bottom floor
parts will be linked. The movement checks can be reduced by dividing the floor-
generation part in two: the first (ignoring objects smaller than, say, 5 m) to find the
floor of the room, and the second (ignoring only very small objects) to find walkable
areas.

Another example might be two buildings with a wooden beam connecting them.
The beam will not be seen as part of the floor but will appear as an obstacle. There-
fore, the beam will be considered in the rendering as if it were a large wall causing
later stages to perform actual movement tests on it, thereby getting correct results
with only a minor performance hit.

Building the Graph

Using the information about floors, roofs, and obstacles, we are now ready to create the
graph. We do this in two stages: First we find out which pixels can actually be nodes in
our graph (where a character can stand without colliding with the scene), and later we
connect these nodes, marking the resultant edges with appropriate movement costs.
Places that cannot be decided are sent to actual collision or movement tests.

134 Section 2 Movement and Pathfinding

FIGURE 2.6.6 3D rendering passes to extract the roofs of the floors in
Figure 2.6.5.

Extrusion and Finding the Graph Nodes
For each roof manifold, we define the extruded roof map as follows: For each pixel, we
take the minimum height of the roof manifold in a radius of half a character width
(rounded up). Similarly, we define the extruded obstruction map by computing for
each pixel the maximum height of the walkable manifold in a radius of half a charac-
ter width (rounded up).

Extrusion maps have the property that a character can stand at every place where
the difference between the extruded roof map and the extruded obstruction map is greater
than the height of the character’s bounding box height. Together with the idea that a
character cannot stand at a place if his height is more than the difference between the
floor and the roof, we have everything we need to make a decision or send it for a
collision test.

Following is pseudocode for the entire decision:

for each pixel v in the floor map:

diff[v] = roof[v] - walkable[v]

ext_diff[v] = Extrude_Roof[v] - Extrude_walk[v]

if (diff[v] < character height)

the character CANNOT stand there

else if (ext_diff[v] > character height)

the character can stand there

else Undetermined - send to actual movement test

end loop

Consider a character with bounding cylinder radius r and a floor of area A. In
theory, the extrusion map can be calculated very quickly in time O(A ⋅r) because a lot
of data is shared between adjacent pixels. For large radiuses, there is really no need to
calculate minimum roof and maximum floor heights according to the exact radius—
any bigger radius or bigger rectangle will do. Bigger shapes do not change the result-
ing graph but simply send more points to actual movement tests. Nevertheless, these
approximations are still worthwhile because they can be computed in O(A⋅log2r). To
accomplish this, you build a map at half resolution, where each pixel holds the mini-
mum (maximum) of the appropriate four pixels in the original map. This mipmap-
like process is repeated several times until the resolution is low enough to include the
radius.

When dealing with multiple characters, there are several radiuses and heights
associated with them. By using all the lower resolution maps and searching higher
radiuses and heights first, you can find the actual characters that can stand at a point
in sublinear time. No extra rendering passes are required. Similarly, multiple actions
also require different opening sizes (e.g., crawling can be done at a lower height) and
can also be done at once. The end result is a graph with data associated with each
edge, as shown in Figure 2.6.7.

2.6 Navigation Graph Generation in Highly Dynamic Worlds 135

Finally, it is worth noting a few additional considerations:

• Basically, the reason the entire method works fast enough (even when you do not
use a GPU, as discussed later) is that instead of simple box collision tests for many
points, we are doing an even simpler point test.

• Walls get at least 1 pixel, which means they are much higher than the floors around
them, and, therefore, nodes near them are sent to movement tests automatically.

• In scenes created by art designers, there can be many interpenetrating objects, and
the algorithm described might create nodes on floors inside objects. Strictly speak-
ing, these nodes do not produce pathfinding problems because the generation
ensures that there are no edges connecting the nodes outside to those inside. Still,
for aesthetic reasons, we rule out the nodes inside objects by counting the number
of front-facing and back-facing polygons above a floor pixel while rendering. This
is a known technique: For pixels outside an object, the numbers should be equal.

Connectivity and Cost Filling
For each two adjacent nodes in the same floor manifold where a character can stand,
we use a set of rules to determine whether the edge between them should be blocked
based on the difference in height, slope, material, action, and so on. If the edge is
unblocked, and all but one of the geometrical characteristics are negligible (i.e., either
a step or a large slope), we fill it from a dictionary cost function that was learned auto-
matically (and the cost can also be infinite). If there is more than one abnormality, we
send the edge for actual movement tests.

136 Section 2 Movement and Pathfinding

FIGURE 2.6.7 The extrusion of the walkable ground manifold of the
scene in Figures 2.6.2 through 2.6.4.

The following is a reduced version of the corresponding pseudocode (note that if
there is a large height difference, the nodes are sent to movement tests, e.g., near all
walls):

for each adjacent pixels src, dst:

diff = walkable [dst] - walkable[src]

if (diff < max step height)

if (slope > max_slope)

cost = blocked

else if (slope < slope threshold)

cost = slope_cost_dictionary(slope,material)

else if (diff < diff threshold)

cost = step_cost_dictionary(diff,material)

else complex place - send to movement test

else Undetermined - send to movement test

end loop

When dealing with multiple actions, the algorithm looks up the cost for all
allowed actions (as given by the extrusion phase) and takes the minimal cost.

Movement-Based Expansion Variant Used to Fill Gaps

An implementation of the movement-based expansion method is used to resolve
undecided points. The implementation starts with an open list of seeds equal to all
the edges marked as undecided by the render-generate part. The algorithm retrieves
an edge from the open list and tries to move the character along that direction using
all allowed actions, deciding the movement cost in tight places and adding nodes and
edges if it finds new unvisited places. During the expansions, it also connects between
different floor levels (different manifolds) and provides a complete graph. We let the
algorithm run until there are no more edges in the open list.

Self-Building Dictionary

During graph building, the edges’ costs are filled from several dictionary cost functions.
These functions give the cost for a character to traverse one particular geometrical
characteristic using a particular action. These functions are per agent type.

At design time, we run movement-based expansion on a sufficiently complex
scene to learn these functions by sampling the cost at particular values (depending on
the actual scene) and linearly interpolating between them later. The dictionary con-
tinues to be updated at runtime: If for a given characteristic, there are too few sam-
ples, or if they are too far apart, the dictionary will be updated when new points are
found in the scene with the corresponding characteristic.

During the first pass, the self-building dictionary also learns the sizes of the char-
acters. These sizes are not necessarily the static bounding boxes of the animations but
might depend on the actual implementation in the engine (e.g., some engines allow
swords carried by the characters to intersect the walls briefly, and some characters have
clothes).

2.6 Navigation Graph Generation in Highly Dynamic Worlds 137

Using the GPU

Although the algorithm works very fast in software running on the CPU, it can be
accelerated significantly using programmable GPUs. This includes all the rendering
passes and the extrusion pass using 2D passes (where the GPU is simply acting as a
massive floating-point computation engine).

Because the GPU does not allow full control over the rendering pipeline, certain
modifications must be made to overcome these limitations:

Ensuring at least one rendered pixel. For perpendicular polygons to be apparent,
we need to render at least 1 pixel per scan line, even if the center of the pixel is
not occupied. On the GPU, we render the object a second time in wireframe
mode.

Rendering target type. Certain render targets and inputs need to be of type float
and not RGBA (which only have 8 bits each). To save memory and bandwidth,
it is possible to encode the extrusion and obstruction maps in RGBA channels
by storing the values relative to the floor and roof (thus, 8 bits are enough)

Using vPos. Use vPos to get the current pixel without computation.
Using ddx(), ddy(). Use these operators for computing the slopes.
Rendering at high resolution. GPUs can handle this easily, and it leads to much

better results in tight places. The results can be turned into a navmesh faster and
more accurately.

Multitasking the GPU. Assuming the GPU runs the game’s graphics in parallel,
the rendering passes and extrusion passes should not be done consecutively to
avoid hiccups in the graphics.

In the near future, it should be possible to render the extruded floor and roof
directly from the geometry using the geometry shader in DX10, providing a useful
shortcut [MS07].

Results

We will compare the results and runtime for full graph generation in movement-based
expansion (being the most accurate but also the most time consuming) with the ren-
der-generate algorithm running in software and on the GPU. We tested two scenes:

The ruined temple. A 250 m × 250 m scene with two floor levels in most of the
terrain (see Figure 2.6.1 on the right). The scene contains 1,000 objects with a
total of ~100,000 triangles (these are the number of polygons in the collision
model, not the graphics!).

The valley of Shaharit. A 1,000 m × 1,000 m scene that contains outdoor terrain,
caves (with a large tunnel below the terrain), and 2 cities with several floors
(~5,000 objects with ~500,000 triangles). The characters of the scene have
several actions per NPC.

138 Section 2 Movement and Pathfinding

The graph generation is linked to a third-party engine to run actual movement tests
and runs on a dual core X86 CPU running at 2.5 GHz capable of making ~3,000
movement tests per second on a single core allocated for the task (including early checks
of whether a simplified character bounding box can stand at the origin of the movement
at all). Table 2.6.1 shows graph generation timings for two example environments.

Table 2.6.1 Amount of Time Needed for Generating the Graph (Net)

Ruined temple Shaharit
(250 m × 250 m) (1 km × 1 km)

Movement-Based 5 minutes >1 hour
Software Render-Generate 3 sec. rendering 30 sec. rendering
(SSE optimized) 4 sec. exact move tests 2 min. exact move tests
GPU Render-Generate 0.5 sec. rendering (by scene design), ~5 sec. rendering
(including transfer to under 3 sec. for exact move tests 1 min. exact move tests
main memory)

The results for render-generate running on the GPU show total graph generation
times (rendering plus movement tests) of 2–3 seconds per each 200 m × 200 m region.
When dealing with more frequent updates of smaller regions (say, 50 m × 50 m), the
algorithm runs in a fraction of a second. Thus, the algorithm meets our original goal
of updating large portions of the graph in real time.

Besides the difference in runtime, there is also a slight difference in the generated
graphs. The movement-based algorithm was initialized with four seeds, but the scenes
contain several parts that are not connected to them (but can be if certain walls will be
knocked down or objects moved). The render-generate algorithm finds about 25%
more traversable area in the ruined temple than the movement-based algorithm, with-
out the need for any seeds. Also, because the intermediate rendering algorithm is at a
higher resolution than the resolution at which the movement-based algorithm is run,
it also produces slightly better results at tight spots.

An interesting fact to note is that in highly dynamic worlds, the density of objects
is high (and gets higher as the game progresses), and there are hardly any large
obstructed convex areas. This calls in question the usefulness of navmeshes and simi-
lar approaches: An 8-way grid of 250 × 250 with 8-bit traversal cost between nodes
(this suffices because the distances between nodes are small) consumes 0.5 MB,
regardless of obstructions. A navmesh of the same scene starts at ~100 KB (2,000 tri-
angles, 3 indexes each, vertices of floats, and so on) and can reach 1 MB when most of
the scene becomes messy. The actual library implementation contains an option to
convert the extended grid into a navmesh by means similar to [Miles06] using a mod-
ified version of the FIST triangulation library [Held07]. The conversion increases the
runtime by 10% to 20%.

2.6 Navigation Graph Generation in Highly Dynamic Worlds 139

Future Directions: Incorporating Changes Due to Agents

In highly dynamic environments, the agents themselves can alter the scene—they can
move objects, build walls, and so on. It is possible to alter the graph-generation process
to take such possibilities into account by adding physics influence maps—a type of influ-
ence map similar to [Tozour01] that contains physics information.

Like all influence maps, a physics influence map changes the weight of edges
(movement costs) to prefer a path or deter a character from moving there. However,
this influence map incorporates certain aspects of agents affecting the terrain without
simulation. The basic idea is to build or alter the influence maps during graph gener-
ation. Following are two examples:

Avoiding physically problematic places. The idea is to find paths that avoid areas
where collapse can occur and cause a lot of collateral damage. To achieve this, we
add an influence map made from the potential energy of objects above the
ground (so taller walls or structures with a lot of beams will be avoided).

Pathfinding that considers “opening a path” (e.g., shooting a hole in a wall). The
idea is to replace the default “blocked” weight of obstacles with a high weight.

This work, while still experimental, shows great promise.

Conclusion

When combined with a system for keeping track of changed areas, the render-generate
algorithm allows real-time graph updates for very large areas with minimal compro-
mises on graph quality. It can also be useful during development to speed up graph
generation of large scenes. Moreover, this algorithm enables a robust solution for
destructible worlds: If a falling beam connects two floors, the pathfinding will use it.

The algorithm translates well to GPUs. Today’s GPUs are programmable and
widely available. They should be used when a large amount of floating-point process-
ing is needed. More processing power makes great AI possible.

References

[Held07] Held, Martin, “FIST: Fast Industrial-Strength Triangulation of Polygons.”
Available online at http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html, 2007.

[Miles06] Miles, David, “Crowds in a Polygon Soup: Next-Gen Path Planning.” Avail-
able online at http://www.babelflux.com/gdc2006_miles_david_pathplanning.ppt,
GDC06.

[MS07] Microsoft, DirectX 10 SDK. Available online at http://msdn.microsoft.com/directx/.
[Smith02] Smith, Patrick, “Polygon Soup for the Programmer’s Soul: 3D Pathfinding.”

Available online at http://www.gamasutra.com/features/20020405/smith_01.htm,
GDC02.

140 Section 2 Movement and Pathfinding

http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html
http://www.babelflux.com/gdc2006_miles_david_pathplanning.ppt
http://www.gamasutra.com/features/20020405/smith_01.htm
http://msdn.microsoft.com/directx/

[Tozour01] Tozour, Paul, “Influence Mapping.” Game Programming Gems 2, Charles
River Media, 2001.

[Tozour02] Tozour, Paul, “Building a Near-Optimal Navigation Mesh.” AI Game
Programming Wisdom, Charles River Media, 2002.

[Young01] Young, Thomas, “Expanded Geometry for Points-of-Visibility Pathfind-
ing.” Game Programming Gems 2, Charles River Media, 2001.

2.6 Navigation Graph Generation in Highly Dynamic Worlds 141

This page intentionally left blank

143

2.7

Fast Pathfinding Based on
Triangulation Abstractions
Doug Demyen—BioWare Corp.
doug.demyen@gmail.com

Michael Buro—University of Alberta
mburo@cs.ualberta.ca

Pathfinding is arguably the most fundamental AI task in current video games. No
matter the technique used for the decision making of in-game characters, they

lose the desired illusion of intelligence if they cannot navigate about their surround-
ings effectively. Despite its importance and that it is a well-studied problem, pathfind-
ing is often performed using techniques that do not provide or take advantage of
information on the structure of the environment.

In this article, we present an approach to pathfinding that addresses many of the
challenges faced in games today. The approach is fast, uses resources efficiently, works
with complex polygonal environments, accounts for the size of the object (for example,
character or vehicle), provides results given varying computational time, and allows for
extension to dynamic pathfinding, finding safe paths, and more. At the heart of this
approach is an abstraction technique that removes all information from the environ-
ment that is extraneous to the pathfinding task.

Motivating Example

As an example, imagine a man planning a route between two houses in a city. If the orig-
inating house is in a bay, for example, the man can assume that as long as the destination
house is not in that same bay, the start of the route will be to leave the bay. After that, he
won’t consider turning off onto side streets from which there is no exit unless they con-
tain the destination because they would be dead ends. When the route reaches main
roads, the man needs only consider at which intersections to turn; he ignores making
decisions partway between intersections because the only possible options are to proceed
or turn back, which would be nonsensical.

Each intersection represents a decision point in planning the route—they are
where the man will decide to travel on the north or south side of the stadium for
instance. After a series of these decisions, the route will reach the destination, and
although the man ignored dead-end streets and going partway between intersections
to this point, he can still plan a route to a house in a cul-de-sac or in between intersec-
tions on a street. You will also notice that the path is formed at the high level of
streets, and after it is formed, particulars such as lanes can be determined. After all, it
would make no sense to consider using each possible lane if after forming the com-
plete path, it becomes obvious that the left lane is preferred or perhaps necessary. Our
algorithm follows a similar high-level human-like decision-making process.

Outline

We will start by introducing triangulations, our environment representation, and in
particular Dynamic Constrained Delaunay Triangulations (DCDTs), which provide
many advantages for this work. We will cover some considerations for pathfinding
with this representation and some for the extension to nonpoint objects (specifically
circular objects with nonzero radius). From there, we describe the abstraction method
used to achieve the simplified representation of the environment and how the search
uses this information. Finally, we provide some experimental results, draw conclu-
sions, and suggest possible extensions to the work.

Pathfinding in Triangulations

Here we will introduce some different triangulations as well as how they are con-
structed and considerations for their use as an environment representation and for
pathfinding.

Types of Triangulations
A fundamental aspect of the methods represented here is the use of triangulations to
represent the environment. Here we will briefly cover the different types of triangula-
tions and how they relate to pathfinding.

Given a collection of vertices in two dimensions, a triangulation (see Figure
2.7.1a) is formed by joining pairs of these vertices by edges so that no two edges cross.
When no further edges can be added, all faces in the convex hull of the vertices are tri-
angular.

A special case is a Delaunay Triangulation (DT) (see Figure 2.7.1b) that specifies
that the minimum interior angle of the triangles in the triangulation must be maxi-
mized. This avoids thin triangles wherever possible, which is a useful property that we
will explore later. DTs can be constructed from triangulations by taking (convex)
quadrilaterals in the triangulation formed by two triangles sharing an edge, and
replacing that shared edge with one joining the other two vertices in the quadrilateral,
whenever this results in a shorter diagonal.

144 Section 2 Movement and Pathfinding

Another version of a triangulation is a Constrained Triangulation (CT), which
specifies that certain edges must be included in the final triangulation. We now make
the distinction between these predetermined edges (called constrained edges) and
those added during the triangulation process (called unconstrained edges). CTs are
constructed in the same way as regular triangulations but with the constrained edges
added first to ensure they are included. Constrained edges that cross are broken up at
the intersection points. When used as an environment representation, a CT uses con-
strained edges to indicate barriers between traversable and obstructed areas.

2.7 Fast Pathfinding Based on Triangulation Abstractions 145

FIGURE 2.7.1 (a, b, c) Examples of (from left to right) regular, Delaunay, and Constrained (Delaunay)
Triangulations.

A CT can also carry the Delaunay property, forming a Constrained Delaunay
Triangulation (CDT) (see Figure 2.7.1c). CDTs are formed from CTs using the same
edge-flipping technique for creating DTs, with the added proviso that constrained
edges cannot be flipped. CDTs maximize the minimum interior angle of the triangles
as much as possible while maintaining constrained edges. This is the representation
used by the techniques described in this article but with one more technique that
makes it ideal for use in games.

A technique presented by Marcelo Kallmann [Kallmann03] allows for the cre-
ation of DCDTs. This algorithm handles the online addition and removal of vertices
or constrained edges in an existing CDT with minimal performance cost. Constraints
are added to or removed from those already present, affected unconstrained edges are
removed, and the surrounding area is retriangulated, and then the Delaunay property
is propagated out to areas that have since lost it. This update requires minimal resources
and can be done in real time.

Triangulations offer many advantages for pathfinding over other environment
representations, such as the ability to handle edges that are not axis-aligned. Specifi-
cally, triangulations can represent environments with straight barriers perfectly and
can represent curved barriers using a number of short segments, providing an approx-
imation that is superior to axis-aligned methods.

When stored, triangulations often require fewer cells than grid-based methods.
This not only presents an advantage for pathfinding but also provides more informa-
tion about the environment. For example, the traversibility of a tile contains no infor-
mation on the surrounding area, whereas assuming all vertices and constrained edges
in a triangulation represent obstacles (otherwise, they just add unnecessary complexity
to the representation), a triangle indicates the distances to obstacles in each direction.
This makes triangulations a perfect candidate for working with different-sized objects;
you can determine if an object can pass through a section of the triangulation with rel-
ative ease using a technique introduced later.

Considerations for Pathfinding
The basis of triangulation-based pathfinding is the idea that paths are formed by mov-
ing from triangle to adjacent triangle across unconstrained edges, much like moving
between traversable adjacent cells in tile-based environments. However, when using
tiles, the exact motion of the object is known to go through the centers of the tiles (at
least before smoothing) as the path is being formed. If you assume during the search
that the path goes through the center of the triangles it traverses, the approximation
of the path’s length can be very poor because triangles are typically much larger than
tiles. This can lead to suboptimal paths that can spoil the illusion of intelligence by
moving an object to its destination by a longer than necessary path. Here we present
requirements for finding optimal paths on a triangulation, which together form the
first search algorithm presented, Triangulation A* (TA*).

Pathfinding (and, in fact, all heuristic search) uses a pair of values to guide its search:
the distance traveled to the current point in the search, or g-value, and an estimate of the
distance remaining, or h-value. To find an optimal path, the h-value must be no more
than the actual distance remaining to the goal because overestimates could make the
search abandon a branch leading to an optimal solution. The g-value is assumed to be
exact, so when the search reaches somewhere that was reached by a shorter path, the cur-
rent path is abandoned because taking the other path must be shorter.

However, for triangulations, a path being searched may enter a triangle through
one edge and then leave through one of the two others. The full path between the
start and goal points as a result of this decision (and likely subsequent ones) produces
different paths leading to this triangle, and so the distance covered to reach it cannot
be known exactly during the search. Therefore, to produce an optimal solution, we
must introduce two constraints. The first is that the g-value must not be larger than
the true distance between the start of the search and the current triangle as it is
reached in the final path to the goal. This follows the same logic in preventing the
search from abandoning a potentially optimal path. The other constraint is that we
cannot eliminate a node in the search simply because it was reached with a potentially
shorter path because we do not know which path was shorter.

These requirements fit well with an anytime algorithm, that is one that finds a
solution and improves it as long as it is given more resources. As with any other point

146 Section 2 Movement and Pathfinding

in the search, when the goal is reached, the shortest path is not immediately known.
Therefore, even after the goal is found, the search continues, accepting paths to the
goal shorter than the best one currently known. Search is determined to have found
an optimal path when the length of the shortest path found is less than the sum of the
g- and h-values of the paths yet to be searched. This follows from these being under-
estimates of the path length, so any paths remaining in the search must be longer than
the best one found.

Other Enhancements
To find the triangle that contains the start (and goal) point, you must perform a task
called point localization. An inefficient approach, such as performing a greedy walk
along adjacent triangles, would mask any benefits the triangulation could afford.

There is a simple but improved way to handle this task. First, the environment is
divided into rectangular cells (for our experiments, a modest 10 × 10 grid was used).
When the triangulation is constructed, triangles are tested as to whether they lie on
the center point of any cells. If so, the triangle is recorded for that cell. When locating
a point, its containing cell is determined easily, and the process of moving progres-
sively closer to it is started from the triangle covering the midpoint of that cell. This
results in shorter point localization times, allowing the full advantage of the triangula-
tion-based methods.

In some cases, the possibility of the search visiting a triangle multiple times could
mean the search converges more slowly on the goal. However, for maximum flexibil-
ity, we want to find the first path quickly in case the pathfinding task is not given
much time. Therefore, we modified the search algorithm to only expand each triangle
once until the first path has been found, after which they can be expanded again. This
makes the first path available earlier without affecting the algorithm’s ability to con-
verge on an optimal path.

Triangle Width

One of the main challenges of pathfinding is dealing with objects larger than points.
Incorporating this constraint is necessary to achieve paths that do not bring objects
into collision with obstacles in the environment. A popular method for achieving this
result is to enlarge the obstacles in the environment by the radius of the object and
then perform pathfinding as if for a point object. This technique has the drawback that
a separate representation of the environment must be calculated and stored for each
size of object, resulting in compounded time and memory costs. An advantage to the
use of triangulations for pathfinding is their aptitude in handling this kind of problem.

We have developed a method for measuring the “width” of all triangles in a CDT,
which is, for any two (unconstrained) edges of the triangle, the largest circular object
that can pass between those two edges. We use circular objects because they require no
consideration for orientation, and, in most cases, the pathfinding footprint of game
objects can be fairly well approximated by a circle of some radius.

2.7 Fast Pathfinding Based on Triangulation Abstractions 147

After this is calculated for all triangles in the triangulation, pathfinding for an
object of any size can be done as if for a point object except that paths which traverse
between two edges of a triangle with a width less than the object’s diameter are
excluded. The calculation does not require much processing and memory and is done
once only. This allows for objects of any size, eliminating the restrictive need to create
game objects of discrete sizes for the sole purpose of pathfinding.

Finding the width for the traversal between two edges of a particular triangle is
equivalent to finding the closest obstacle (a vertex or point on a constrained edge) to
the vertex joining those two edges, in the area between them. If one of the other ver-
tices of the triangle represents a right or obtuse angle, the closest obstacle is the vertex
representing that angle, and the width of the triangle is the length of the edge joining
this vertex to the one where the two edges meet.

Otherwise, if the edge opposite the vertex in question is constrained, the closest
obstacle is the closest point to the vertex on that edge, and the width is the distance
between them. Finally, if the edge opposite the vertex being considered is uncon-
strained, a search across that edge will determine the closest obstacle to that vertex.
This search is bounded by the shorter of the distances to the other two vertices in the
triangle because they are potential obstacles. It considers vertices in the region formed
by the extension of the edges of the original triangle for which the calculation is being
done and constrained edges in this region that would form acute triangles if their end-
points were connected to the base vertex.

Note that because the search is always bounded by the distance to the closest
obstacle found so far and that Delaunay triangulations make it impossible for the
search to traverse any triangle multiple times, this operation can be performed on a
triangulation very quickly.

Modified Funnel Algorithm

The result of pathfinding in a triangulation is a sequence of adjacent triangles con-
necting the start to the goal called a channel. However, because triangles are larger
than tiles, it does not translate directly into an efficient path through them. Luckily,
you can find the shortest path through a channel quickly using a funnel algorithm (see
Figure 2.7.2a). This algorithm has the effect of conceptually pulling a rubber band
through the channel between the start and the goal, producing a sequence of line seg-
ments touching the vertices of the channel and forming the shortest path.

However, this operation is meant for point objects, and our generalized solution
seeks to find shortest paths for circular objects of nonzero radius. Therefore, we devel-
oped a modified version of this algorithm (see Figure 2.7.2b) that basically consists of
adding a circle with the same radius as the object centered around each vertex in the
channel except the start and goal vertices. The shortest path is found by a similar
method but now consists of arcs along these circles and line segments between and
tangent to them to avoid collision with the obstacles.

148 Section 2 Movement and Pathfinding

Some considerations to keep in mind are that this algorithm assumes that the
channel is wide enough to accommodate the object in question. Although this tech-
nique produces the optimal path for the object through the channel, it assumes the
object is capable of traveling in a curve. If this is not the case, the object can approxi-
mately follow the arcs produced by this algorithm by traveling in several short straight
segments, turning in between.

2.7 Fast Pathfinding Based on Triangulation Abstractions 149

start

path

funnel

apex

(part of)
channel

start

path
funnelapex

(part of)
channel

FIGURE 2.7.2 (a, b) The funnel algorithm (left) determines paths for point objects, and the modified
version (right) produces paths for circular objects of some radius.

Triangulation Abstraction

The most important part of the process we use to reduce the pathfinding graph pro-
duced by the triangulation (see Figure 2.7.3a) is a simple classification of each triangle
as a node in the abstract graph by level. We do this by assigning each triangle an inte-
ger value between 0 and 3 inclusive, indicating the number of adjacent graph struc-
tures. The graph resulting from this procedure (see Figure 2.7.3b) carries additional
information about the structure of the environment.

Level-0 nodes, or islands, are simply triangles with three constrained edges. These
are easily identified when the algorithm passes over the triangles in the triangulation.

Level-1 nodes form trees in the graph and represent dead ends in the environ-
ment. There are two kinds of level-1 trees in a reduced graph: rooted and unrooted.
The root of a rooted tree is where the tree connects to the rest of the graph (via a level-
2 node). Unrooted trees have no such connection; they are formed in areas of the
graph that do not encompass other obstacles.

Level-1 nodes are identified as triangles containing two or fewer constrained
edges and containing, at most, one unconstrained edge across which is a level-2 node.
Level-1 nodes with two constrained edges are easily found in a first pass over the tri-
angulation, and for each of these found, the triangle across the unconstrained edge is
put in a queue for processing as a possible level-1 node. Each triangle on the queue is
evaluated if it now fits the description of a level-1 node, and if so, is classified as one;
the unclassified triangle adjacent to it across an unconstrained edge (if one exists) is
put on the queue for processing. This process will propagate through a rooted tree
until the root is reached, or for an unrooted tree, throughout the whole connected
component.

Level-2 nodes represent corridors in the environment and are adjacent (across
unconstrained edges) to two nodes that are either level-2 or level-3. A connected
group of level-2 nodes can form a corridor between two distinct level-3 nodes, a loop
beginning and ending at the same level-3 node, or a ring with no level-3 beginning
or end. All triangles remaining after the level-0, -1, and -3 nodes are identified and
classified as level-2.

Level-3 nodes are the most important in the pathfinding search because they
identify decision points. Search from a level-3 node can move directly to level-3 nodes
adjacent across either unconstrained edges or level-2 corridors and represent choices
as to which direction to pass around an obstacle. After level-0 and level-1 nodes are
identified, level-3 nodes are those triangles with neither constrained edges nor adja-
cent level-1 nodes.

Abstraction Information
In addition to each triangle’s level, the abstraction stores other information about each
node in the environment for use in pathfinding. The adjoining node is recorded for
each direction depending on its type. For level-1 nodes in rooted trees, the root of the
tree is recorded for the edge through which it is reached. For level-2 nodes not in

150 Section 2 Movement and Pathfinding

FIGURE 2.7.3 (a, b) A triangulation (left) is reduced to an abstract graph (right) where circles, squares,
filled squares, and filled circles represent level-0, -1, -2, and -3 nodes, respectively.

rings, they are the level-3 nodes reached by following the corridor through the edges
for which they are recorded. For level-3 nodes, they are the level-3 nodes adjacent
directly or across level-2 corridors in each direction.

The abstraction is also where a triangle’s widths (between each pair of edges) are
held. It also stores the minimum width between the current triangle and each adjoin-
ing node so the search can tell instantly if the object can reach that node.

We also included an underestimate of the distance between the current triangle
and each adjoining node to be used in the search to improve the accuracy of this value
and make the search more efficient.

Abstraction Search

Finding a path on the reduced triangulation graph requires more steps than perform-
ing the search on the base triangulation. First, a number of special cases are examined
to determine if a search of the level-3 nodes needs to be done at all, then the start and
goal points need to be connected to level-3 nodes on the most abstract graph, and
finally, a search between level-3 nodes is run. This is the basis for Triangulation
Reduction A* (TRA*), described later. As before, at each step, the width of the trian-
gles being traversed is checked against the diameter of the object for which pathfind-
ing is being performed, and paths that are too narrow for it are not considered.

The simplest check performed is to see if the endpoints are on the same con-
nected component in the environment—that is, they are not in separate areas divided
by constrained edges. Because identifying the different components requires no more
processing on top of the reduction step, we can instantly see if there are any possible
paths between them. If they are on different connected components, no path can exist
between them. If they are on the same one, there is a path between them, and the only
question is whether it’s wide enough to accommodate the object. You can then check
whether the endpoints are in the same triangle; if so, the path between them is trivial.
This covers when the endpoints are in the same island triangle.

Next we check whether the endpoints are in an unrooted tree or in a rooted tree
with the same root. In these cases, we can search the tree for the single path between
the start and the goal. Because trees are acyclic (no two triangles can be joined by mul-
tiple paths that do not visit other triangles more than once), we can eliminate aspects
of the search meant for finding the shortest path because only one exists (other than
those containing cycles that needlessly lengthen the path). The result is a simplified
search where the midpoints of the triangles are considered as exact points on the path,
the Euclidean distances between them are used as distance measures, and no triangle
needs to be considered twice. Also, in the case of rooted trees, the search need not
venture outside the tree. Note that these searches are so localized and simple that they
are almost trivial in nature (see Figure 2.7.4a).

2.7 Fast Pathfinding Based on Triangulation Abstractions 151

Then for search endpoints in level-1 nodes, we search moves to the root of the
tree. In some cases, the other endpoint will be at the root of this tree. This can be
determined instantly and the optimal path constructed easily by simply moving along
the one (acyclic) path to the root of the tree (see Figure 2.7.4b). Otherwise, the search
next examines patterns with level-2 nodes.

152 Section 2 Movement and Pathfinding

s g

s’

g’

s
g

FIGURE 2.7.4 (a, b) Cases where the endpoints are in the same tree and a path is easily found.

s’

g’

s

g

s

g

s’

g’

FIGURE 2.7.5 (a, b) The start and goal can also be on the same level-2 corridor, loop, or ring.

If both endpoints are on level-2 nodes (or in level-1 trees rooted at level-2 nodes)
on a ring or the same loop (see Figure 2.7.5a), there are two possible paths between
them—going clockwise or counterclockwise around the ring or loop. Both of these
paths are fully constructed, and the shorter of the two is taken as the optimal path.

If the level-2 nodes associated with the endpoints are on the same corridor (see
Figure 2.7.5b), we form one path along that corridor and determine its length, and
then the level-3 nodes found by going the opposite directions are considered the start
and goal nodes for the level-3 search, respectively. The level-3 node search is per-
formed as usual from here, except that the search now has an upper bound: the length
of the path already found.

If none of these cases applies, the search travels from the level-2 nodes associated
with the start to the level-3 nodes on either end of that corridor. These are the start-
ing points for the level-3 node search. If the starting point is on a level-3 node, there
is only one starting point for this search. The same procedure is performed for the
goal point—potential goals are the level-3 nodes at either end of the corridor if the
goal point is on a level-2 node, and if it was on a level-1 node, from the corridor on
which the goal node’s tree is rooted. If the goal point is on a level-3 node, that is one
goal for the level-3 search.

The search from here is performed similarly to TA*, except instead of moving
across unconstrained edges to adjacent triangles, it moves across corridors of level-2
nodes to other level-3 nodes. A few additional techniques are available for estimating
distances on the abstract graph. The same tests for g- and h-values, the anytime algo-
rithm, and the revisiting of nodes are performed as before.

Discussion

The criteria that decide about the adoption of new algorithms in video games are their
space and time requirements, quality of the results, versatility, and simplicity. Usually
at least one of these conditions is violated—in our case, it’s simplicity.

The implementation of TA* and TRA* relies on efficient code for point localization
and maintaining Delaunay triangulations dynamically. For this, we use Marcelo Kall-
mann’s DCDT library [Kallmann03] whose point localization procedure we improved.
Dealing with arbitrarily located points usually complicates computational geometry
algorithms due to limitations of integer or floating point–based computations. The
DCDT library we used is general and complex. However, for new game applications, it’s
conceivable that all line segment endpoints are located on a grid, and segments only
intersect in grid points. This constraint greatly simplifies the DCDT algorithm. In addi-
tion, the TA* and TRA* abstraction and search mechanisms are not exactly easy to
implement, although the software provided at http://www.cs.ualberta.ca/~mburo/aiw4
can help AI programmers get familiar with the technique and test it in their settings.

The space requirement of TRA* is only slightly larger than the original polygonal
map description because the size of the abstraction is linear in the number of islands
in the world, which is usually orders of magnitudes smaller than the total number of
triangles. Moreover, compared with grid-based representations, the space savings
when using triangulations at the lowest level can be substantial if there are big unob-
structed areas (see Figure 2.7.6a). In the experiments we touch on here [Demyen-
Buro06, Demyen06], we used 120 maps taken from Baldur’s Gate and Warcraft 3
scaled up to 512 × 512 tiles, and the total memory requirement for TRA* was, at
most, 3.3 MB. We did not try to optimize memory consumption, and with 184 bytes
per triangle allocated by the DCDT library, there is certainly room for improvement.

2.7 Fast Pathfinding Based on Triangulation Abstractions 153

http://www.cs.ualberta.ca/~mburo/aiw4

TRA*’s runtime can be broken down into two components: map preprocessing
time (triangulation, reduction, sector computation) and actual pathfinding time. The
most complex maps could be preprocessed within 400 milliseconds (ms) on an
Athlon 64 3200+ computer, which were split roughly in half between triangulation
and reduction. The median preprocessing time was 75 ms. In this set of experiments,
we focused on static environments. However, you can repair triangulations and the
reduced graph efficiently if changes are local. TA* and TRA* are considerably faster
than grid-based A*. We observed 170× median speedups over A* for TRA* and 30×
for TA*, for finding the first approximation of optimal paths of length 512 (see Figure
2.7.6b). The absolute times for TA* (see Figure 2.7.7a) and TRA* (see Figure 2.7.7b)
show they work well for real-time applications.

In over 95% of the considered cases, the length of the path first reported by TA*
is shorter than the grid-A* path. We know that A* computes the shortest paths, so this
statement doesn’t seem correct. However, the object motion in grid-A* is restricted to
eight directions, whereas in triangulation-based pathfinding, objects can move freely.
The TRA* path quality reaches that of grid-A* if after finding the initial path, we con-
tinue to search for better paths for the time it took to find the first. Thus, equating
path quality, TRA* is about 85 times faster than grid-A* when finding long paths in
the maps we considered. Note this is an abridged version of a more complete experi-
mental analysis provided in the accompanying thesis [Demyen06].

Triangulation-based pathfinding as we described it is not only fast but also versa-
tile. TA* and TRA* can be regarded as anytime algorithms: The more time we invest
after the initial search phase, the shorter paths become. These algorithms also find

154 Section 2 Movement and Pathfinding

FIGURE 2.7.6 (a, b) Environments have few triangles and level-3 nodes, giving TA* and TRA* greater
speedup over A* than even enhanced grid-based methods such as PRA*.

optimal paths for moving circles of varying size, which is useful for group pathfinding
when we use bounding circles. Triangulations are also very suited for detecting strate-
gic terrain features, such as chokepoints.

Conclusion

We have shown the usefulness of triangulations for environment representations, both
in efficiency and for the benefits it affords to pathfinding. We have also shown enhance-
ments to pathfinding on the triangulation itself, providing an anytime algorithm for
finding better paths when given more resources and converging on the optimal path.

The main contribution of this work, however, is the reduction step performed on
the triangulation. On top of identifying useful structures in the environment, it
allows for much faster pathfinding. Coupled with the many opportunities for extend-
ing this work for different needs and situations outlined next, we hope the efficiency
and flexibility of these techniques will find application in the games industry.

Future Work

One of the most exciting aspects of these techniques is their suitability to further exten-
sion. Among these is the ability to deal with dynamic environments. For example, if
mobile obstacles block an object’s path, it could possibly steer around the object within
its channel to avoid running the pathfinding search again. If pathfinding is being done
for a group of objects, one search could yield a channel for all objects to use. In the case
of a narrow path and many or large objects, more paths could be found, and the
objects split between them to meet up at the goal. If paths are being found for multiple

2.7 Fast Pathfinding Based on Triangulation Abstractions 155

FIGURE 2.7.7 (a, b) TA* and TRA* find a path within a couple milliseconds.

objects going in different directions, you could avoid collisions by recording at which
times each object will be going through a triangle when its path is found. How
crowded a triangle is at any time could be calculated based on the size of the triangle
and the size and number of objects going through it at that time. When finding paths
for subsequent objects, those going through crowded triangles could be avoided, and
some steering should be adequate to avoid collisions.

There are also several possible extensions if more precomputation is a desired
tradeoff for more speed. For example, precalculating the best paths between level-3
nodes would require a fraction of the memory required by most navigation mesh
approaches. The pathfinding task would only require moving from the start and goal
to adjoining level-3 nodes and fetching the rest from a table. The level-3 node graph
could be abstracted even further by collapsing any doubly connected components of
this graph into single nodes in a higher-level graph. This graph would then consist of
a group of trees, and because paths in trees are trivial, only pathfinding between the
entry points of the doubly connected components would be necessary. If some subop-
timality is acceptable, you could even precalculate and cache paths between these
entry points for lightning-fast pathfinding with minimal memory cost.

If pathfinding needs to be done for only a few sizes of objects, separate environ-
ment representations could be constructed for each. The exchange for the increased
memory would be instant knowledge of a path existing for a particular object and not
having to test paths for minimum width requirements.

You could also use these techniques in more complex cases. Pathfinding on the
surface of 3D environments could be done by triangulating the passable surfaces.
Overlapping areas, such as bridges, could be handled by forming separate triangula-
tions and creating virtual links between the edges. These links could also be given
costs to simulate additional time or effort for moving between meshes by jumping or
climbing ladders, for example.

If objects need to take paths with certain properties, such as being clear of ene-
mies or containing enemies whose total power is less than the object, then other infor-
mation, such as the “threat” of an enemy, can be localized to a triangle and propagated
through the abstract graph in the same way as triangle widths. The pathfinding search
could then avoid returning paths that traverse corridors where the total enemy power
is greater than a certain threshold.

Source Code and Demo

The software at http://www.cs.ualberta.ca/~mburo/aiw4 contains Marcelo Kallmann’s
DCDT implementation, with the work shown here built on top. Functions of interest
are SearchPathBaseFast, SearchPathFast, and Abstract, which implement TA*,
TRA*, and the reduction process, respectively. The executables are found in the se/bin
directory—setut.exe will run a GUI for visualizing pathfinding in a reduced triangula-
tion. Press “6” when the program opens to see the DCDT, noting the red constrained
edges, gray unconstrained edges, yellow level-1 trees, green level-2 corridors, cyan

156 Section 2 Movement and Pathfinding

http://www.cs.ualberta.ca/~mburo/aiw4
http://se/bindirectory%E2%80%94setut.exe
http://se/bindirectory%E2%80%94setut.exe

level-0 islands, and magenta level-3 decision points. Click two points to find a path
between them; the black lines are the channel, and the blue lines are the path. You can
also drag the obstacles around and see the triangulation, abstraction, and path change.
The information contained in the abstraction for the triangle over which the mouse is
currently positioned is printed in the console window.

Acknowledgments

We thank Marcelo Kallmann for making his DCDT software available to us, allowing
us to get so far so quickly. Financial support was provided by NSERC and iCore.

References

[DemyenBuro06] Demyen, D. and Buro, M., “Efficient Triangulation-Based
Pathfinding.” Proceedings of the AAAI Conference, Boston (2006): pp. 942–947.

[Demyen06] Demyen, D., “Efficient Triangulation-Based Pathfinding.” Master The-
sis, Computing Science Department, University of Alberta, Edmonton, Canada.
Available online at http://www.cs.ualberta.ca/~mburo/ps/thesis_demyen_2006.pdf,
2006.

[Kallmann03] Kallmann, M. et al., “Fully Dynamic Constraint Delaunay Triangula-
tions.” Geometric Modeling for Scientific Visualization, Springer Verlag, 2003: pp.
241–257.

2.7 Fast Pathfinding Based on Triangulation Abstractions 157

http://www.cs.ualberta.ca/~mburo/ps/thesis_demyen_2006.pdf

This page intentionally left blank

159

2.8

Automatic Path Node
Generation for Arbitrary
3D Environments
John W. Ratcliff—Simutronics Corporation
jratcliff@infiniplex.net

This article presents a general-purpose algorithm to produce high-quality naviga-
tion meshes for arbitrarily complex static 3D environments. The navigation mesh

(navmesh) is ideally suited to perform high-speed path planning for AI. This spatial
data structure can serve innumerable other purposes because it comprises a meaning-
ful way to describe the world. It can be used by game designers to associate metadata
with the environment and by programmers to implement additional algorithms. The
navmesh produced is both compact and highly efficient, yet it can also describe every
relevant nook, cranny, and corner of a game level.

The algorithm we will be presenting has been proven to work in several commer-
cial games. It was originally developed for the first-person shooter S.C.A.R.A.B., pub-
lished by Electronic Arts in 1997. It was later adapted for the game Cyberstrike 2,
published by 989 Studios and developed at Simutronics Corporation. More recently,
it was integrated into the Planetside game engine for Sony Online Entertainment.
Today, Simutronics Corporation is using it in the MMO (massively multiplayer
online) game development environment Hero Engine.

In addition to presenting the algorithm, this article is accompanied by public
domain source code as well as a detailed demo application. To fully build and run the
demo requires the use of the AGEIA PhysX SDK, which is provided on the CD-
ROM courtesy of Ageia Technologies.

Requirements and Assumptions

There are a few important assumptions to consider before using this algorithm.
Although these restrictions match most game designs, it may not accommodate a
number of situations. The most critical assumptions are as follows:

• The game has a definitive constant orientation or up-vector.
• The game models gravity so that characters fall relative to the up-vector.

• Characters may only walk up surfaces of a specific steepness (no crawling on walls
or ceilings).

• The class of character that is to use the navmesh is of a consistent size and behavior
(although you can produce separate navmeshes for different classes of characters).

• The game level is largely a static environment and can be described as a set of
triangles.

• The algorithm requires the ability to process navmeshes offline as part of the level
building step. Depending on the complexity of the environment, this tool can
take a substantial amount of time to run.

Although these assumptions may not match every game design, it does fit the
standard model of most first person shooters (FPSs) or other games that have a care-
fully crafted prebuilt static environment. The algorithm could be relatively easily
adapted to remove the assumption that characters only walk along a single predefined
up-vector by running it in multiple passes for each distinct surface orientation.

Algorithm Overview

The starting point for this algorithm is to identify which surfaces in the game level
qualify as valid for a character to stand on. Next, all of these surfaces are voxelized into
a giant data set that represents every point in 3-space where it might be possible for a
character to stand. From this giant source data set, a modest number of pathfinding
nodes are produced. The designer can tune the detail level applied at each stage of the
algorithm to best match the characteristics of their own game.

The final step is to run the actual in-game character controller to compute the
node connectivity graph.

Because the algorithm is independent of any specific game engine, the game
needs to supply the answer to four questions:

1. Is a particular point in 3-space a valid location for a character to stand?
2. Is a particular point in 3-space embedded in world geometry?
3. Can a character walk from point A to point B?
4. What is the exact altitude of the nearest walking surface relative to an exist-

ing location?

In the sample application provided, the interface that answers these questions uses
the PhysX SDK from Ageia Technologies. A character controller is a complex piece of
software and can be a major part of a game engine. The PhysX SDK provides a program-
mable character controller implemented by Pierre Terdiman, the author of OPCODE
[Terdiman03]. A character controller encompasses all of the collision-detection code and
logic to move a simulated character around a 3D environment while taking into account
sliding along walls, walking up stairs, or bumping the head against a ceiling. In addition
to a character controller, the game engine also provides a general-purpose collision detec-
tion and ray-casting system.

160 Section 2 Movement and Pathfinding

Assuming the algorithm computes a navigable space mesh using the same charac-
ter controller as the game engine itself, it is guaranteed that connectivity between all
nodes is entirely valid.

A general overview of the steps employed by the algorithm is as follows:

1. Represent the game level as a collection of triangles in world space.
2. Clean up the input mesh to remove degenerate triangles and duplicate tri-

angles, and to extrude double-sided triangles into solid geometry.
3. Create the thread-safe instance of the AIPathSystem class and send it the

world geometry.
4. Classify all triangles in the world that are to be considered walkable surfaces

based on the up-vector and slope limit provided by the user.
5. Tessellate all walking surfaces down to a specific detail resolution.
6. Convert each triangle into a “candidate” point.
7. Eliminate candidate points that the application rejects as an invalid location

for a player to occupy.
8. Consolidate (or merge) nodes by expanding rectangles built against the

large data set of candidate points. Keep doing this until all input points
have been examined.

9. Validate each node by asking the application if it is possibly embedded
within the world geometry.

10. Compute connectivity between each node and every other neighbor node
storing the results.

The World Geometry

Before the AIPathSystem can begin processing, it needs access to the entire game-level
geometry. The algorithm expects triangles, so if your input level contains geometric
primitives or other parametric shapes, they should be triangulated first. We often find
that game artists introduce physically incorrect geometry into a scene. The most com-
mon example is when an artist creates a double-sided polygon to represent a wall.
Because the wall has no thickness, it is impossible to tell which side of the wall you are
on. Double-sided triangles also cause problems for some physics engines.

Another problem with using raw graphics content as game-level geometry is occa-
sionally encountering duplicate or degenerate triangles. A utility called MeshCleanup is
provided that will remove duplicate and degenerate triangles as well as extrude dou-
ble-sided triangles to form closed convex shapes. You can avoid this cleanup step if
you know that your game-level geometry is already in a good state.

Finally, your input game level should be in metric units. Although it is certainly
possible to run the algorithm with any set of physical units, it is generally not desir-
able. If your game level is not represented in metric units, you might consider con-
verting it into metric before submitting it to the AIPathSystem. You can then return
the results transformed back into your own coordinate space.

2.8 Automatic Path Node Generation for Arbitrary 3D Environments 161

Potential Walking Surfaces

In real life, you can only walk up a surface that is not too steep. With this considera-
tion in mind, it is reasonable to pick a particular slope limit for your characters. Even
if your game engine has a mechanism that allows characters to climb walls, this partic-
ular algorithm does not deal with that case. It focuses primarily on the portion of
game environment that players can walk upon.

Having been given a particular slope limit, the AIPathSystem will compute the
plane equation of each triangle. It will then consider only those with a vector normal
in the direction of the up-vector and within the slope limit specified by the user. In a
typical game level, this will generally comprise roughly 30% of the original input data
set. During this computation, the surface area of all potentially walkable surfaces will
be calculated and returned (see Figure 2.8.1).

Note that potentially walkable surfaces can include surfaces inside objects, and
surfaces without enough room for the character to stand, which the next steps will
eliminate.

162 Section 2 Movement and Pathfinding

FIGURE 2.8.1 All potential walkable surfaces have been identified and
highlighted.

Tessellation of Walking Surfaces

Because the input triangles can be of all different sizes, we need to tessellate the geom-
etry to reach a sufficient detail resolution. Generally, that detail level will be some
fraction of the distance a character will cover while standing. A detail level of 20 or 30

centimeters generally works well, but you might want to use a coarser resolution for
larger characters, such as monsters.

To tessellate the input mesh, we simply measure the longest edge of each triangle.
If the longest edge exceeds the detail level, we then bisect that edge and recursively call
the routine with the two triangle fragments. Wash, rinse, and repeat until the input
mesh has reached a sufficient level of detail (see Figure 2.8.2).

2.8 Automatic Path Node Generation for Arbitrary 3D Environments 163

FIGURE 2.8.2 All walkable surfaces have been tessellated down to a fine
resolution.

Generating Candidate Data Points

For each fragment triangle, we compute its center location. Next, we convert the ground
plane components into integer values. For example, if the detail level is set to 20 cm (0.2
meters), we multiply each of the source points by 5.0 and then add 0.5 for rounding
before converting it to an integer value. This is critical because the next phase of the
algorithm, node generation, operates in a fixed grid space of integer components.

As we convert multiple candidate points into integer space, we often find that
more than one point maps to a single grid location. When this happens, the mean
vertical component should be computed to produce a representative sampling of the
altitude at this specific location. However, you should only merge candidate points if
the difference in the mean altitude is below the “step height” threshold specified by
the application.

In virtually all character controllers, logic is in place to take into account how
high a character may “step up” as it moves through the game environment. If a partic-
ular point is at a vertical height that is beyond the step height of a preexisting node,
then it is considered unique. This produces a sort of 2D grid where each hash location
contains a list of all points at various altitudes in the game level.

For large game levels, this can produce a massive number of data points. Imagine
that the input game level is simply two triangles, each covering 1 km on a side. With
a detail level of 20 cm, this would produce a grid of points 5,000 on a side for a total
of 25 million seed points (see Figure 2.8.3).

164 Section 2 Movement and Pathfinding

FIGURE 2.8.3 Candidate-walkable data points have been derived from
the tessellated surfaces and placed into a fixed-resolution grid.

Removing Data Points That Cannot Be Occupied

After the set of candidate data points is complete, we must validate each one. Valida-
tion is performed via a callback to the application. The application is expected to
answer the yes/no question, “Is it ok for a character to be here?” we posed previously.
There are a couple of different ways to determine this. The easiest method is simply to
generate an axis-aligned bounding box (AABB) that roughly encompasses the extents
of a character but is raised above its step height. Next, query the collision system for
all triangles that intersect this AABB (usually a very high-speed process in most game
engines). If no triangles intersect, then clearly this is a valid place for a player to stand.
Otherwise, examine the vector normal of any of the other intersecting triangles to
determine if they comprise a wall, ceiling, or some other property that might restrict

a player from standing at this location. This method may be called millions of times,
so it must be a very fast operation.

Another approach might be to simply create a character at this location, and see if
the controller will accept it as a valid position. This is an ideal solution, but it can be
much more time consuming to perform this operation. It’s likely best to perform the
AABB triangle query as an early accept and reject test before examining the location
in greater detail.

Remember that this determination is not made by the AIPathSystem class but is
supplied by your own application via a pure virtual interface. Even though a sample
implementation is provided using the PhysX SDK for collision services, you will most
likely provide your own validation routine relative to your specific application.

Merging into Potential Pathfinding Nodes

Initially, we claimed that this algorithm would produce a compact and efficient
description of navigable space. Now that we have generated hundreds of thousands, if
not millions, of candidate data points, you might be feeling a little bit skeptical of that
claim.

In the previous example of a single flat surface with a kilometer on a side compris-
ing millions of candidate data points, it could still be represented as simply one very
large pathfinding node (indicating that a character can walk unobstructed anywhere
within its range). In practice, however, we would never do this. Nevertheless, we can
use fairly large nodes to describe big empty spaces and thus, from the millions of can-
didate points, easily produce a solution set of several thousand pathfinding nodes.

Each pathfinding node is represented as an AABB and a surface altitude. To build
these nodes, perform the following steps (see Figure 2.8.4):

1. Copy all of the candidate points into a single vector container.
2. Allocate an array to track the points that have been “consumed” and that

still need to be processed.
3. Optionally, create a lookup table to access the input data randomly.
4. Candidate seed points may be selected either sequentially or at random

because each produces a different type of node distribution. We prefer the
results from a more random distribution, but this is a user-selectable
option.

5. For each of the original source points, first check to see if it has already been
“consumed,” “merged,” or neither.

6. If it has not been consumed, then attempt to merge this node with others by
expanding its size, pushing outward in a clockwise direction on each axis.

7. Imagine starting with the original point and then drawing a 1-pixel border
around it.

8. At each iteration, draw the border exactly one unit thicker than the last
time. When there are missing points on any side, stop expanding that par-
ticular edge.

2.8 Automatic Path Node Generation for Arbitrary 3D Environments 165

9. If there are matching points, but they are higher than the user-provided step
height, stop expanding those sides as well.

10. Continue to expand the edges in each of the four cardinal directions until all
four have stopped or the maximum user-specified node size has been reached.

11. After the seed point has been grown to form a contiguous rectangular sur-
face of all neighbor points, next evaluate whether you want to keep it or
not. If the node produced is below the minimum size specified by the user,
then throw it away; otherwise, add it to the list of potential pathfinding
nodes. At this time, every point that was included in the node is marked as
consumed and is no longer used.

12. If you decided to keep the node, next compute the best-fit plane equation
through the set of data points. This allows each node to record an approximate
plane for each node. This data item is often important during the pathfind
phase to change weighting values based on the steepness of a surface.

13. A call is performed back into the application to resolve the exact altitude at this
node location. Because the original points were snapped relative to a grid, the
computed altitude is only an approximation based on the mean altitude of all
points that matched a particular grid entry. On steep surfaces, the error intro-
duced can cause the connections step to fail if you do not use the precise value.

14. This process continues until all seed points have been considered.

Because each completed node consumes a large number of candidate points, this
process can actually be surprisingly fast to complete.

166 Section 2 Movement and Pathfinding

FIGURE 2.8.4 Potential pathing nodes are created by growing seed points.

Removing Pathfinding Nodes Inside Objects

Now that we have a set of pathfinding nodes that roughly describes all navigable space
in the game level, we must run a validation pass to see which ones we can keep. Due
to how art for game levels is built and the way objects are placed with game editors,
many seemingly valid walking surfaces are actually embedded within other objects.

A simple example is a large rock that someone has sunken down into a piece of ter-
rain. The terrain itself is usually not cut out, so it simply continues right on through the
rock. If you were to fly a camera inside the rock, you might find plenty of space to stand
and walk around, but, clearly, this is not a valid location for a character to be. Another
common case is when an artist places a pillar inside of a building. Usually a hole is not
cut out of the floor geometry for the pillar to fit neatly inside; rather, it is simply placed
on top of the floor. In our previous pass to find potential nodes, we might have consid-
ered the inside of the pillar as a perfectly valid place for a character to stand.

In this cleanup phase, the centroid of each pathfinding node is sent back to the
application for validation. The default validation technique provided performs an
operation called DeathBlossom, which sends ray casts in 45-degree increments from
the center of the node in all possible directions. We called it DeathBlossom because it
uses the same strategy that Alex Rogan employed during the climatic battle sequence
in the film The Last Starfighter. If any of these rays hits a back-facing triangle (indicat-
ing that the node is embedded inside another object), then the node is rejected.

This process could have been performed when generating the candidate points in
the first place but would have substantially slowed down the process. By performing
this cleanup check based on the nodes produced, we end up calling DeathBlossom
about 1/200th as many times.

Nodes that pass this test are placed into a vector container as the final solution
set. Because we earlier rejected nodes that were considered too small, this data set will
have many gaps in it and will not cover every square inch of the world. This is
absolutely normal and by design.

The goal is to produce as absolutely few nodes as possible while also making sure
we have all that we need. As long as there are enough options that an AI can navigate
every place the game design calls for, there is generally no need to cover every square
inch of the surface. When performing pathfinding, it is nearly always reasonable to
accept the closest node to our destination, even if that destination is located in the
small gap between two adjacent nodes.

How many nodes you need and at what resolution is ultimately a design choice.
The more nodes that are available, the more choices the AI has to navigate the envi-
ronment. On the other hand, if you have too many nodes, you are over-describing the
environment, and the extra nodes are just consuming memory and CPU during the
search phase. Observation of the AI’s choices will ultimately guide the designer here.

2.8 Automatic Path Node Generation for Arbitrary 3D Environments 167

Computing Node Connectivity

The final step is to compute the connectivity between each node and all of its neigh-
bors. To speed this process up, we first insert the index for each node into a Kd-Tree.
A Kd-Tree is an ideal data structure for performing high-speed range searching against
a static set of 3D objects. It is important to remember to insert the nodes into the Kd-
Tree in random order to ensure a balanced tree [Sedgwick84].

Next, for each of the original nodes, we find the nearest neighbors within a reason-
able distance. A value of 16 to 32 meters will generally provide plenty of candidates to
review. To avoid data duplication, we eliminate any node where the connectivity would
intersect a previously connected node. To prevent this culling process from cutting too
many possible connections, the intersection test can be relaxed so it accepts connec-
tions even if they cut corners on neighboring nodes. The next step involves calling a
pure virtual method canWalk back into to the application. The callback receives both
the starting point of the source node and the ending point of the neighbor.

In the default implementation provided, this invokes the character controller
built into the PhysX SDK. However, we cannot simply move the character from point
A to point B and see whether or not the controller gets there. This might work fine on
a flat surface, but it would allow connectivity between nodes even if there were a
chasm in-between them. Rather than simply warping the character, we instead sub-
step the movement and, at each step, apply a simulated force of gravity as would hap-
pen in a real game. In the example of a chasm between two nodes, the character
controller would fall and fail to reach the destination. On the flip side, this will also
create connections where falling would allow the character to reach the destination
node, which is often desirable.

Pierre Terdiman implemented the character controller that comes with the PhysX
SDK. Pierre is the author of the popular collision-detection library OPCODE as well
as many other excellent open source tools [Terdiman03]. This character controller is
shockingly fast, and computing connectivity even for thousands of nodes in a com-
plex game level can be done very quickly.

If you insert a callback to your own game engine, you can make this logic as sim-
ple or complex as you wish.

As we check each neighbor and retrieve success results from the canWalk callback,
we simply add the child node index to a parent node’s connections list.

The final step is yet another cleanup pass. When we performed the initial genera-
tion, we pruned many potential connections due to the fact that we culled for a maxi-
mum number of candidates and tested for overlapping connections. Because these are
applied relative to each individual node, it will often produce unidirectional connec-
tions. The final cleanup pass traverses each connection in each node and tests to see if
it is unidirectional. If it is, then we test to see if the connection could in fact be bidirec-
tional. An important optimization is to remember which connections had already been
tested to avoid performing the same test again.

168 Section 2 Movement and Pathfinding

With node connectivity complete, the final data set has now been produced. We
have gone from an arbitrarily complex 3D game environment to potentially millions
of seed points placed on a grid so we can finally end up with just a few thousands
nodes with an average of four to six connections apiece. Although we are only con-
necting to the middle of nodes, the data set is guaranteed to allow the in-game char-
acter controller to traverse all connected paths and can be searched extremely quickly.
The graph is so sparse that often simply searching 15- to 20-ply deep will get an AI a
massive distance across the world (see Figure 2.8.5).

2.8 Automatic Path Node Generation for Arbitrary 3D Environments 169

FIGURE 2.8.5 The final solution set is created by computing connectivity
between neighboring pathfinding nodes.

Jumping and Other Forms of Locomotion

The implementation provided here does not support jumping or other forms of char-
acter motion beyond simply walking along a surface. Adding a callback canJump and
creating new connections if the jump succeeds can easily implement this feature. In
the Cyberstrike 2 implementation, which supported jumping, we simply placed the
character at the center of the source node and jumped in the direction of the destina-
tion. This test was only performed against nodes that had failed the previous walk
test. A successful jump was recorded if the character ended up anywhere inside the
destination node.

This operation found hundreds of successful jump connections, even though it
missed what seemed like many other possible jump opportunities. Often, these con-
nections would show up in places that few people would have thought they could get
to. Watching the AI robots navigate the entire 3D environment, jumping from ledge
to ledge while hunting the player down was always one of the most impressive fea-
tures of the game.

For other types of connectivity, such as elevators or doors, a layered mechanism
would be needed to create and remove these forms of dynamic connections on the fly.

Dynamic Environments

Even if the basic game level itself is static, modern games are beginning to incorporate
a much greater use of highly dynamic objects. Fortunately, the navmesh produced by
this algorithm is ideally suited to handle this.

Because each pathfinding node is described as an AABB, the entire data set can be
inserted into an axis-aligned bounding volume hierarchy (AABVH). An AABVH can
be searched very quickly and can easily be updated to reflect the status of numerous
dynamic objects. As dynamic objects move throughout the environment, they can be
attached and removed relative to individual pathfinding nodes and marked as poten-
tial obstructers.

Other aspects of dynamic environments include doors, drawbridges, and changes
in the environment that should effectively turn on and off intersecting path nodes.
The path-searching system also must account for dynamic connections such as those
created by elevators or other automatic transport systems. Once again, the static data
set will have to be annotated in real time to reflect these changes and the links taken
into account by the pathfinding algorithm.

Other Uses for the Navigable Space Mesh

The navigable space mesh provides a powerful data set to associate game metadata with.
The nodes can be marked for all kinds of purposes, such as spawn points, hunting
grounds, or tied to game scripts. It is often a much more meaningful way to ask ques-
tions about the world in terms of “where players can be” as opposed to a large collection
of raw triangles.

Source Code and Demo

The source code for the AIPathSystem is almost entirely contained in a single file
AIPathSystem.cpp. It has a few additional dependencies on some math routines, but
the total source needed is modest. A small console application is provided to show the
minimal implementation of the tool. The source is not intentionally operating system
specific and should compile on any platform with relatively few changes. It does make
heavy use of the standard template library for container classes.

170 Section 2 Movement and Pathfinding

In addition to the algorithm itself, a complete functioning demo is provided that
allows you to import an arbitrary mesh as a Wavefront OBJ file. All of the steps of the
algorithm are illustrated and every tunable parameter is exposed. The demo requires
DirectX and the Ageia PhysX drivers to run. To build the complete demo, the source
code requires the DirectX SDK and the Ageia PhysX SDK.

All of the source code provided is in the public domain and is updated at the
Code Suppository Repository website from time to time [Ratcliff07]. Documentation
is included as well.

Future Work

We were surprised to see how fast this version of the algorithm runs. It was originally
written in 1995 when our fastest machine had a bare fraction of the CPU available on
modern processors. The fact that we switched to using an integer approach to grow
the nodes is another major speed improvement. Additionally, the collision-detection
systems provided by the PhysX SDK are extraordinarily fast. In a previous implemen-
tation, we used to have to run the utility to generate a navigable mesh overnight, even
when the entire game level was relatively simplistic geometry. This implementation
now operates in either seconds or the low minutes even with huge game levels.

For this reason, we believe it is quite likely that the algorithm could be adapted to
run in a background thread and continuously provide updated navmeshes on the fly,
even as the game environment changes. It could easily generate data on demand
rather than processing every square inch of the entire game level.

Conclusion

This article has presented a reliable method to produce a compact and efficient navi-
gable space mesh for an arbitrary static 3D environment. It has been used successfully
in several commercial games and is still being incorporated into new products today.

The data set can be searched at extremely high speeds to satisfy pathfinding for a
massive number of NPCs as well as to maintain a representation of dynamic objects
and occluders in the world. Although it does not necessarily support all of the require-
ments for all game environments, especially those that are highly dynamic, it may be
an excellent starting point for a number of projects.

One of the major advantages of a heavily precomputed solution is that it serves as
an expert system for the AI, giving it the same highly detailed knowledge of a game
level that an experienced human player has. So, not only is it not cheating, but also it
can hunt a player down to the depths of hell, if necessary, assuming your game level
actually has a hell to path to.

2.8 Automatic Path Node Generation for Arbitrary 3D Environments 171

References

[Ratcliff07] Ratcliff, John W., “Code Suppository Repository.” Available online at
http://www.amillionpixels.us/sourcecode.htm, 2007.

[Sedgwick84] Sedgwick, Robert, Algorithms. Addison Wesley Publishing, 1984.
[Terdiman03] Terdiman, Pierre, “OPCODE.” Available online at http://www.coder-

corner.com/Opcode.htm, June 3, 2003.

172 Section 2 Movement and Pathfinding

http://www.amillionpixels.us/sourcecode.htm
http://www.codercorner.com/Opcode.htm
http://www.codercorner.com/Opcode.htm

173

2.9

Risk-Adverse Pathfinding
Using Influence Maps
Ferns Paanakker—Wishbone Games B.V.
ferns.paanakker@gmail.com

In this article, we describe a pathfinding algorithm that allows the use of influence
maps to mark hostile and friendly regions on a terrain. This algorithm allows us to

find the optimal path from point A to point B very quickly, while taking into consid-
eration the different threat and safety regions in the environment. We demonstrate
this algorithm in a basic real-time strategy (RTS) setting where we plan a number of
paths. Some units are allowed to take more risk than others while traversing their
paths, which allows for more gameplay depth.

We’ll first discuss the representation of our game world and then explain how
influence maps can provide valuable information when evaluating a path, which
allows us to include risk in the paths. We allow both static and dynamic influences to
be active simultaneously. With risk-adverse costs represented in the search space, the
impact on search speed will be discussed. Finally, we include an example program
with full source code so you can test different situations.

Overview

When navigating game worlds, we use pathfinding algorithms to assist the human
player or the computer player. Most games use a point-and-click device to mark where
this unit needs to go and rely on the pathfinding algorithm to take a unit to its destina-
tion. When the unit walks the path we just created, it will probably pass through a
number of friendly and hostile territories, which can substantially increase or decrease
the risk to the unit.

If we create a pathfinding algorithm that allows us to include risk-awareness for
our units, we can create more intuitive paths and prevent the player from performing
mundane tasks, such as manually clicking temporary targets (waypoints) to make sure
the unit follows a low-risk path. High-risk areas can be created and changed based on
the observations of units, for example, the visual confirmation of an enemy or the
death of a unit that marks the place of death as a high-risk area.

Integrating risk sensitivity into the pathfinding search space is not a trivial task,
especially when the threat and safety regions can change frequently. By making a few
alterations to the basic pathfinding algorithm, we can create a new algorithm that is
both fast and flexible, allowing us to create paths that take into consideration proper-
ties such as terrain type; terrain risk; unit properties, including size, weight, and emo-
tional state; and so on.

To illustrate this pathfinding solution, we will use a simple RTS game world that
consists of a basic terrain with land and water. The game objects are a single unit, an
enemy tower, and the goal location of our unit. The layout of our simple world is
shown in Figure 2.9.1. In our example, the unit is not allowed to move across the
water, so if the unit wants to get to the target location, it must pass the enemy tower’s
attack range. The tower has an attack range that covers a wide area, and it is impossi-
ble get to the destination without passing through the attack range of the tower.

174 Section 2 Movement and Pathfinding

Destination

Unit

Tower attack range

Tower

Water

FIGURE 2.9.1 An RTS situation in which a unit must pass hostile
territory to get to its destination.

Influence Maps

An influence map (IM) is a location-based system that contains data about game objects
and ties it to a specific world position [Tozour01]. Many implementations use a 2D
grid overlaid on the world, but other representations can be used just as easily. For our
representation, we will use an IM that is integrated into the pathfinding graph so that
every connection in the pathfinding graph has an influence property. This is done
because in our pathfinding algorithm, we use information from both the terrain and
the IM. If these representations are the same, we will not have to perform additional
conversions. The influence of the individual game objects is stored in the IM and

allows us to retrieve information about the risks involved in traversing an edge. The
influences we use can come from a number of sources such as the units or the terrain,
or the user can specify the influences (such as specifying that a specific region should be
avoided or prioritized).

For example, an enemy guard tower can attack every enemy unit within a specific
range around the tower, whereas the edge of a forest might similarly provide cover for
units. Note that the influences can be different for every player: An enemy guard tower
provides safety for the units of your opponent because the tower can provide cover fire,
but it provides risk for you. Furthermore, a guard tower does not have unlimited range
where it can attack units, but it has a specific influence zone. We model this ranged
influence for simplicity as a circle, thus defining an influence disc. In our case, the influ-
ence discs have the same risk value across the disc, but it is, of course, possible to use
linear, exponential, or square risk fall off. We use this disc representation of the influ-
ences in the world and convert it to our IM, which is designed to be exactly the same
as our pathfinding graph. When updating the IM, we intersect every edge of the graph
with the influence discs to calculate the risk involved with traversing that edge.

We indicate safe terrain with negative values and risky terrain with positive val-
ues. The sum of all the influences is the total risk for traversing the edge. However, we
do not allow negative values because of the nonnegative edge cost restriction required
by search algorithms. We therefore offset the value so the safest terrain still has a non-
negative edge weight.

You can calculate the intersection of an edge with an influence disc in a number
of ways. One way is to solve the geometric problem and calculate the exact intersec-
tion points between the circle and the line segment [Bourke92]. We can then use the
length of this line segment to calculate the precise risk in traversing the edge. Because
finding this intersection is relatively expensive, we will for our purposes assume the
edges in our graph are relatively small compared to the size of the influence disc.
Therefore many edges will be either completely inside or outside the influence disc,
and we can speed up our check considerably by only checking the start point and end-
point of the edge. If only one of the points is inside the influence disc, we use half the
risk. It would be a game-specific issue to handle cases where both points lie outside
the influence disc, but the edge passes through it.

In an RTS setting, every unit and building has an influence disc, resulting in pos-
sibly hundreds of discs. The execution time of mapping the influence discs depends
heavily on the number and the size of the discs. You can speed up the mapping by using
spatial hashing, such as a grid or quadtree, to find the edges that are influenced by a cer-
tain disc. You can also group the discs based on their update frequency. Static structures,
such as buildings, are located at a fixed position in the game world and do not move.
The buildings can be erected or destroyed, but they do not change position and there-
fore have a static mapping to the pathfinding graph. We can also have dynamic influ-
ence discs. These are dynamic because they can move and therefore change the mapping
to the pathfinding graph. Another possible speedup is to group units and influences into
a single unified influence, thereby reducing the total number of discs.

2.9 Risk-Adverse Pathfinding Using Influence Maps 175

For an RTS setting, we have found that using three layers in an IM works well:
one layer for the static influence, one for the stationary influence, and one for the
moving influence. Static influences are updated only when buildings are erected or
destroyed, which only happens sporadically. Stationary influences are updated when
units start or stop moving, which in RTS games happens infrequently. The moving
influence is updated every pathfinding frame and has therefore the highest frequency.
A pathfinding frame is related to the frequency at which the pathfinding is per-
formed, which might be different from the graphics or AI frame rate.

In our example situation, the IM has a risk area around the tower, as shown ear-
lier in Figure 2.9.1. If we were to plan the shortest path, only based on distance, our
unit would follow the shoreline and be under attack from the tower for a long period
of time. This is exactly the behavior seen in many RTS games. Many human players
work around this problem by using waypoints to carefully direct the units around the
threat. However, using our modified pathfinding algorithm, we can create the same
behavior fairly easily by incorporating risk into the pathfinding algorithm.

Different Paths Depending on Unit Risk Tolerance

Having both the roadmap and the influence map now gives us two major sources of
information about the game world. When we calculate the path from point A to
point B, we indicate how much weight we put on each map. If we ignore the IM, we
only use speed and distance to guide us, which might expose the unit to high risk as
shown in Figure 2.9.2A. On the other hand, if we ignore the roadmap data, we only
use the risk analysis, possibly creating a longer path as shown in Figure 2.9.2B. Math-
ematically, this can be represented by the following formula:

α1 *edgetime + α2 *edgerisk α1,α2 ≥ 0

176 Section 2 Movement and Pathfinding

Destination Destination

Water

A B

Water

Unit Unit

Tower attack range

Tower

Tower attack range

Tower

FIGURE 2.9.2 Different paths taken for different tolerance risk parameters (left is high-risk
tolerance; right is low-risk tolerance).

You can use α1 to specify the weight of the roadmap and α2 for the weight of the
IM. This provides the tools to create different paths for different players.

For example, let’s say we have two different units: a scout and an soldier. Both units
have a different allowed risk: the scout wants to be as inconspicuous as possible with
minimal risk. The soldier has more confidence and allows for more risk in its path. This
kind of pathfinding is sometimes called tactical pathfinding and allows for many game-
play elements. For example, when a unit dies, we can place a high-risk IM at this loca-
tion on the presumption that something nasty killed it. All calculated paths that cross
this IM can be recalculated, which helps in the identification of chokepoints and
ambushes not only for the AI player but also for the human player.

Search Speed Considerations

Unfortunately, risk-adverse pathfinding can undermine the ability of A* to quickly
find a path. This occurs because an admissible heuristic must account for both cheap
terrain and areas of extremely low risk (in the case of influence discs that are protec-
tive of the unit). When risk is weighed several times higher than terrain cost, the
directed A* search reverts to Dijkstra because the heuristic value, h(x), becomes
insignificant compared with the given cost, g(x). This can be seen in that the cost
calculation of A*, f (x) = g(x) + h(x), is equivalent to the cost calculation of Dijkstra,
f (x) = g(x), as the influence of h(x) approaches zero. This has interesting implications
for whether A* is the best search algorithm in such an environment.

If an optimal path is required, and the heuristic is not overestimated, then the CPU
cost of calculating the heuristic (typically the Euclidean distance scaled by the most
optimistic terrain/risk) is wasted computation. Therefore, it would be considerably
faster to simply execute a Dijkstra search and not calculate the heuristic because A* will
not result in fewer searched nodes. Another reason to prefer Dijkstra is its ability to be
used in tactical decisions by calculating one-to-many paths to multiple enemy targets.
With many paths/targets to choose from, the unit can prefer the cheapest one, thus
leveraging a single Dijkstra search for both tactical information and a planned path.

If fast pathfinding is required, then path quality must be compromised. By over-
estimating the heuristic, search speed can be restored at the cost of forgoing an opti-
mal path. In this scenario, the heuristicmust estimate the cost to the goal, h(x), using
the average risk instead of the lowest risk. Although this speeds up the search, the
resulting path might unnecessarily stray into dangerous territory. However, the qual-
ity of the path can be flexible (varying between Dijkstra and an inadmissible heuristic-
tuned A*) based on the needs of the unit and the current CPU load.

Source Code and Demo

Included on the CD-ROM is the source code of a demonstration program that allows
you to experiment with risk-aware pathfinding and the effect of Dijkstra versus A*
searches. The code is strictly for demonstrational purposes and moderately optimized,

2.9 Risk-Adverse Pathfinding Using Influence Maps 177

but it might serve as a good starting point for your own implementation. The pro-
gram uses influence discs and allows the user to place both the start and goal positions
of the unit. By altering the risk parameter, different paths can be achieved. A screen-
shot from the demo is shown in Color Plate 2.

Conclusion

In this article, we have shown how we can perform risk-aware pathfinding.
Using influence maps to model the risk and safety regions in the search space

allows for interesting behavior, which in turn allows for additional gameplay ele-
ments. By allowing a custom cost function, we can specify the amount of risk a unit is
allowed to take and how this results in completely different paths.

References

[Bourke92] Bourke, Paul, “Intersection of a Line and a Sphere (or Circle).” Available
online at http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/, November
1992.

[Tozour01] Tozour, Paul, “Influence Mapping.” Game Programming Gems 2, Charles
River Media, 2001.

178 Section 2 Movement and Pathfinding

http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/

179

2.10

Practical Pathfinding in
Dynamic Environments
Per-Magnus Olsson—Linköping University
perol@ida.liu.se

As games are set in increasingly dynamic worlds, player demands for a more dynamic
and realistic world will continue to increase. Game developers must try to live up

to these expectations. One of the areas receiving more attention is to make the world
more dynamic through the addition of destructible objects, such as buildings. However,
if you only change the visual representation of a damaged or destroyed object, without
changing the actual traversability and visibility of the area in and around the object, it
will quickly spoil the illusion of a believable world. Moreover, as more games are featur-
ing AI companions for the player, it is important that these agents can also understand
the environment and act in a way that seems intelligent and believable to the player.
The area of search algorithms for dynamic environments has been quite thoroughly
researched, so this article will focus on maintaining the underlying pathfinding graph. It
describes how to handle situations involved in updating the underlying pathfinding
graph when adding, removing, or partially demolishing objects.

Using Edges to Store Information

Many pathfinding algorithms only use nodes to store information when computing a
path. It can be beneficial in dynamic environments to also use edges to store informa-
tion. An example will serve to show why this is advantageous.

In Figure 2.10.1, there are four nodes numbered 1 through 4, together with a
bridge crossing a chasm or stream. The nodes are connected by edges, where the edge
between nodes 2 and 4 lies across the bridge.

If the bridge is destroyed and can no longer be used, we have two different ways to
represent this. We can either disallow nodes 2 and 4 because these are the endpoints of
the edge that crosses the destroyed bridge, or we can disallow the edge that goes through
the area (connecting nodes 2 and 4). If the nodes are disallowed, it will be impossible to
move from node 1 to node 3 using node 2 even though node 2 is not located on top of
the bridge. Clearly this is not the intended effect. Using the other method, it is still pos-
sible to move from node 1 to node 3 using node 2, but it is impossible to use the edge

going across the bridge itself. This achieves the effect we are looking for without the
adverse side effects.

Nodes and Edges

A pathfinding graph consists of nodes, which represent positions, and edges, which rep-
resent the nominal path that a unit can travel between the nodes. For most games, the
graph is calculated in an offline tool, such as a level editor. Because nodes and edges are
the only components in the pathfinding graph, we will examine them in some detail.

class Node

{

/* EXTRANEOUS DETAIL OMITTED */

//General information

Vector3d m_position;

std::vector<Edge*> m_neighbors;

unsigned int m_id;

unsigned int m_graphId;

180 Section 2 Movement and Pathfinding

2

1

3

4

FIGURE 2.10.1 A simple pathfinding graph showing why it is beneficial
to use edges to store information. A bridge has an edge on top of it. If the
bridge is removed, the edge will be disallowed, making it impossible to use.

//Information used in A* search.

float m_g;

float m_h;

Node* m_predecessor;

};

class Edge

{

/* EXTRANEOUS DETAIL OMITTED */

Node* m_left;

Node* m_right;

bool m_allowedFlag;

float m_length;

};

Let’s go through these attributes in order; starting with the Node class:

• m_position is Node’s location in the world.
• m_neighbors is the set of Edges that this Node is connected to.
• m_id is the ID number of the Node, which should be unique for each instance.
• m_graphId is the ID of the graph to which the Node belongs. This attribute will be

covered in greater detail later.
• m_g is the total cost so far in the search, from the start position to this Node.
• m_h is the estimated cost from this Node to the goal position.
• m_predecessor is a pointer to the Node prior to this one in the path.

The last three attributes are used with an A* search; if another search algorithm is
used they will need to be modified accordingly. For an overview of the A* search algo-
rithm, refer to [Stout00].

The Edge class has the following attributes:

• m_left and m_right are the Nodes at each end of the Edge, which the Edge connects.
• m_allowedFlag is used to signify if the Edge is allowed to be used in a path. This

variable allows you to set the use of an Edge because it must be set to true for all
Edges used in a particular path and for a given Edge to be valid.

• m_length is the length of the Edge. It is precalculated and stored to be used as a
cost in pathfinding searches.

Storing additional data within node entries has been suggested as a way to make
it easier for the AI to understand and exploit the terrain [Straatman05].

m_id and m_graphId

The attributes m_id and m_graphId in the Node class deserve some extra attention. As
stated earlier, m_id is a unique ID for each instance of the Node class and is used to
quickly separate two or more nodes from each other. If the class holding the nodes is
using an array/vector to store them, the nodes can be stored with the m_id used an
index. It can then be used to quickly access the specific instance:

2.10 Practical Pathfinding in Dynamic Environments 181

//will return the Node with m_id value bestNodeIndex.

Node* bestNode = m_Nodes[bestNodeIndex];

m_graphId is a more interesting attribute because it is not unique for each node but
for each graph in the world. At creation, after all nodes are created and connected by
edges, the m_graphId is propagated from a randomly chosen start node. A simple recur-
sive algorithm can be used to propagate the value of m_graphId to each node that is part
of this graph. The m_graphId tag provides a quick way to separate the different graphs
in the world from each other and to prevent the pathfinder from making unnecessary
calculations. The most expensive call to a pathfinder is the one that returns no path
because it requires all possible paths from the start to the goal to be searched. Some of
these calls can be predicted and avoided by using the information stored in m_graphId.
It is used in the following way, before a call to the pathfinder is made:

Node* startNode;

Node* goalNode;

...

if(startNode->m_graphId == goalNode->m_graphId)

{

//Path possibly exists, call pathfinder.

...

}

/* else startNode and goalNode are in different graphs, no path can

exist. */

Not all unnecessary calls to the pathfinder can be avoided in this way. If a player
has placed limitations on the traversability of edges, a more elaborate scheme must be
used.

Removal of Objects

As shown by the destruction of a bridge in the introduction, some objects can be
removed from a map and cause an area to become disallowed for movement. An area
can be disallowed either by the server or a player. An area disallowed by the server
applies to all the movement of all players, whereas an area disallowed by a player only
affects that player’s movement (perhaps a player is disallowed an area due to the amount
of enemies there). If an area is disallowed, all edges that fully or partially intersect that
area should be disallowed.

As discussed earlier, we don’t explicitly store whether a node is allowed or not; in
our design, this information is stored in the edges. As a consequence, whether a unit
is allowed to travel through a given node is not explicit. If all of a given node’s edges
are disallowed, the node itself becomes implicitly disallowed because it is not possible
to get to or from that node in the current situation. This can happen if a unit builds
structures in such a way that it is blocking its own path out of an area. It is important
to try to detect this situation before it happens by predetermining the position that

182 Section 2 Movement and Pathfinding

the building unit will have at the end of the build phase. If the unit at the final posi-
tion can reach a valid node, then it can continue to move from that node; otherwise,
the unit must be moved during the build phase so that it ends up at a position that
allows it to reach a valid node.

Not all objects affect the pathfinding in the manner just described. For example,
a building can cover an area and provide a part of the pathfinding graph for that area,
but if the building is demolished enough that it can be removed, we will need to
update the pathfinding data to allow pathfinding through it again. This can be done
in several ways with perhaps the most obvious being to place new nodes (using the
same methods used in the preprocessing stage) and then create a new subgraph that is
then connected to the existing graph. This ensures that the area has a pathfinding
graph that connects with the rest of the world. Another option that can work in cer-
tain situations is to simply keep the old pathfinding graph unchanged. This is compu-
tationally cheap but will not give the same level of traversability and accuracy as
generating a new subgraph and can look very bad if the destroyed object covered a
large area.

Updating m_graphId When Removing Objects

When an object such as a bridge has been removed, the object might have edges that
acted as a connection between two different graphs. If the edges on the newly removed
object were the only links between the different graphs, the graphs are now discon-
nected, and their m_graphId should now be different. Determining if the object was the
last connection between graphs can pose some difficulties, especially if we consider
indirect transitive connections (which most pathfinding algorithms do). One method
that works well is to perform a search between the parts of the graph that are suspected
of being separated, after the object has been removed and the affected edges disallowed.
This can be done fairly quickly because normally just a few parts of the graph are
involved. In the bridge example in the introduction, there are two possible graphs, one
at each end of the bridge. If a valid path between the parts is found, then the graph has
not been separated, and no update of m_graphId is necessary. If no path is found, the
start and the goal nodes are now in different graphs. In this case, one of the graphs
must have its m_graphId updated to reflect the change. Simply use the next unused
m_graphId and propagate it in one of the graphs. As before, any valid node in the
graph can be used as start node.

Addition of Objects

Similar problems are encountered when an object is added to the world. Examples of
this might be a building or wall created in an RTS game.

When an object is added, modifying the pathfinding graph to accommodate the
change is very important. Exactly how this is done depends on how the pathfinding
graph was generated in the first place. For an overview of different graph generation
and node placement algorithms, see [Tozour03].

2.10 Practical Pathfinding in Dynamic Environments 183

You can handle the addition of new nodes in several different ways. Some games
use an extra reserved area around the object, larger than the bounding box, where
pathfinding nodes are placed at precalculated positions as soon as the object is placed.
The positions are calculated offline when the asset is created, and nodes placed at these
positions are known to connect to each other. Because the object can only be placed if
there are no objects that intersect with the reserved area, connecting the new nodes to
the existing pathfinding graph becomes a simple matter of using the same algorithm as
used in the level editor when creating the pathfinding graph to begin with.

Even if there is no reserved area around the object, there can still be precalculated
positions for the nodes (which can also be calculated offline). However, if there is no
reserved area around the object, we must test for each attempt to insert a new node to
determine if the precalculated position is valid. If not, another position close by must
be found to place the node to ensure traversability around the object. This does allow
the object to be placed arbitrarily as long as no intersecting objects are under the
object’s footprint. But this flexibility comes with the risk of decreased traversability
because there might not be enough room to place nodes around the new object.

Whether or not a reserved area is used, the new nodes must eventually be con-
nected to the existing graph. The connection is done in exactly the same way as the
basic pathfinding graph was originally generated. Because the creation of the basic
pathfinding graph is normally done offline in the level editor and can be computa-
tionally expensive, it pays to time slice the connection phase if possible. However, this
means that the graph will not be complete until the connection phase is finished.

Handling Doors and Other Connections into Objects

To add objects that units in the game can enter and move around inside, there must
be nodes close to the doors and other possible entrance points. These nodes must then
be connected to the existing pathfinding graph in the same manner as the nodes sur-
rounding the object on the outside. The inside of the object must also have a
pathfinding graph that is connected to the nodes by its entrance points, which in turn
are connected to the existing graph. A simple example of this can be seen in Figure
2.10.2, in which an object with a reserved area around, including pathfinding nodes,
is added to an existing pathfinding graph. Nodes 1–8 are part of the existing
pathfinding graph, and nodes 9–14 are part of the graph in and around the building
that is added during the game. The building comes with a reserved area around it,
including nodes in a precalculated pathfinding graph. This ensures that it is possible
to move around the building after it has been placed, as the building cannot be placed
if the reserved area intersects any object in the world.

In the reserved area, there are four pathfinding nodes in the corners of the build-
ing. These are connected to each other, as well as to another pathfinding node by the
door, which is connected to a node inside the building. When the building is placed,
it intersects some pathfinding nodes and edges in the existing pathfinding graph.

184 Section 2 Movement and Pathfinding

When the building is placed, the edges B through E are disallowed because they
intersect the building. Node 6 is implicitly disallowed because all edges leading to it
are disallowed. Edge A is interesting because it does not intersect the building itself, or
connect to a node that does, but only intersect the reserved area. Either it could be left
allowed if desired and no harm is done leaving it this way, or it could be disallowed in
the interest of completeness. Both methods are certainly possible and will yield the
same result. If the building is later removed completely, any edges and nodes that were
disallowed due to the addition of the building can be allowed again, and the pathfind-
ing graph can be restored to the state it was in before the building was added. This can
be achieved by saving the current state of the edges when the object is added, and then
when it is removed, the graph is restored to its old state. Edge A was removed to make
the figure clearer.

Figure 2.10.3 shows the new graph after disallowing edges and connecting the
graphs internal to and external to the building. Only allowed edges and nodes are
shown, so the disallowed edges B–E and the implicitly disallowed node 6 have been
removed. New edges connecting nodes 2 and 9, 3 and 9, 4 and 9, 4 and 10, 7 and 12,
and 8 and 12 are shown. The new edges are found by connecting nodes that are
within a certain distance from each other. Node 10 makes it possible to enter the
building through the door, and because that node was already part of the graph for

2.10 Practical Pathfinding in Dynamic Environments 185

11

1

2 3

4

5 6

7

8

B

C

D

9

10 11

12 13

14

E

FIGURE 2.10.2 An example of a building with a reserved area
around it.

the building, giving units access to the building becomes a simple matter of connect-
ing the pathfinding graph for the building to the existing graph in the world, in the
same way nodes are normally connected.

186 Section 2 Movement and Pathfinding

1

2 3

4

5

7

8

9

10 11

12 13

14

FIGURE 2.10.3 The building is placed and new edges are added to
connect the building’s graph to the existing graph.

Updating m_graphId When Adding Objects

After all new nodes have been connected to the existing graph, m_graphId must be
propagated to the new nodes. If the object has been placed in an area where all nodes
have the same m_graphId, propagation should be no problem. If the new object’s nodes
act as a bridge between two separate pathfinding graphs, one of the graphs must have
its m_graphId updated for all nodes to show that the graphs are now connected.

Partially Demolishing an Object

An interesting situation occurs when an object is partially demolished, perhaps as a
result of an explosion or a collision with a vehicle. If the object’s mesh is changed for a
completely new mesh, this can be handled in the same manner as adding a completely
new object. If the existing mesh is modified extensively (for example, using geometry
shaders), the pathfinding graph likely must be modified in the vicinity of the object.

For example, if a hole has been created in a wall large enough to allow a unit to pass
through, the parts of the graphs on both sides of the hole should be connected.

Example of Partially Demolishing an Object

Let’s walk through an example of how to handle a partially destroyed building and
modification of the surrounding pathfinding nodes. On the left in Figure 2.10.4,
nodes 1 and 2 are located outside the building and are connected by edge A. Inside the
building, nodes 3 and 4 are connected by edge B. Because the wall is partially demol-
ished, a potential new path is created. When this happens, tests should be performed to
determine if the resulting hole is large enough to allow a unit to travel through it. If so,
a new node, labeled 5, is placed directly outside the hole on top of edge A. The same
procedure is used inside the building to create a new node 6, placed between 3 and 4,
close to the hole and placed so that edge B passes through it. How positions for the
nodes can be found is described in the next section “Placement of New Nodes.” In this
case, edges A and B are found, and the new nodes are placed on top of them. New
node 5 divides old edge A into two new edges, A' and A", where A' connects 1 and 5,
and A" connects 2 and 5. In the same way, edge B is split into B' and B", where B' is
connecting 3 and 6, and B" is connecting 4 and 6. New nodes 5 and 6 are then con-
nected using another new edge C. Finally, the attributes for nodes 1, 2, 3, 4, 5, and 6,
as well as edges A', A", B', B", and C, are updated. In the update, a comparison is done
to see if the “old” nodes inside the building, 3 and 4, have the same m_graphId as the
nodes on the outside of the building, 1 and 2. If m_graphId differs, the two different
graphs must be reconciled by forcing the nodes inside the building to match the
m_graphId of nodes outside the building. The resulting new graph is depicted on the
right side of Figure 2.10.4. It is now possible to travel from outside the building to the
inside of the building, using new nodes 5 and 6 and the new interconnecting edge C.

Placement of New Nodes

When an object has been modified sufficiently to allow for new venues of movement,
new nodes should be placed to allow the use of them. The nodes should be placed on
positions along existing edges if possible, as such positions are guaranteed to be free of
obstacles, and this will make the incorporation of the new nodes into the pathfinding
graph easier. In Figure 2.10.4, approximate positions for nodes 5 and 6 can be found
by first locating the hole in the object and then expanding the building geometry by a
factor equivalent of a unit’s collision radius. This is to decrease the risk that the unit
gets stuck when trying to move too close to the wall. A line is then traced from the
middle of the hole, perpendicular to the wall, and traversability is checked from the
hole along the way. As soon as an allowed edge is found, the node can be placed on
top of that edge. If no edge is found, the exact position for the node must be found
using the normal node placement algorithm, which should check if the position is
valid. If it is, then the node must be connected to the pathfinding graph. If no edge is
found, and no valid node position exists, then no legal node can be placed. Of course,

2.10 Practical Pathfinding in Dynamic Environments 187

it would be possible to ignore the restrictions and add a node anyway, but this comes
with the risk of units getting stuck when trying to traverse edges leading to it.

If an object is changed more than marginally, the new nodes can be placed on
either side of the original object instead of where the change occurred, in the manner
described previously. An example of this can be seen in Figure 2.10.5, where nodes
5–7 have been added. Nodes 5 and 6 are sufficient to ensure traversability through the
hole in the wall. Thus node 7 is superfluous because it only allows for travel between
nodes 5 and 6 through edges C and D. Even if node 7 had not been created, traversa-
bility would still exist through the hole, and thus node 7 could be removed without
any decreased traversability. An exception might be if it is important to accurately
determine when a unit has entered a room or building; in this case, it can be benefi-
cial to have a node in the opening as a way of solving that problem.

When handling modifications of existing objects, it is important to think about
some situations that can arise. Suppose the hole created by an explosion is large enough
for a unit to use as an entrance point into a building, but only if the unit is crawling.
Should that be considered a valid entrance and thus included into the pathfinding
graph, or should it be ignored? Perhaps it can be included with a certain cost or restric-
tion that the pathfinding algorithm will have to consider. If included in the pathfind-
ing graph, it is likely the developer will want to store information on the edge related
to travel through the hole, perhaps to play a certain animation (such as crawling) as
described in [Reed03].

188 Section 2 Movement and Pathfinding

1

2

4

3

A B

1

2

4

3

A’
B’

A’’
B’’

5 6C

FIGURE 2.10.4 The situation before the building is partially demolished is shown on the left, resulting
in a hole in the wall. The right figure shows the same area after modification of the pathfinding graph to
allow passage into the building.

Updating m_graphId When Partially Demolishing Objects

There are two possibilities when objects have been demolished: either new nodes have
been added or not. If a destroyed object requires no new nodes to be added, it might
still be necessary to modify the surrounding pathfinding graph. In this case, a simple
comparison can be made among the involved nodes to see if they all have the same
m_graphId. If they do, then nothing more needs to be done. If the m_graphId for the
nodes are different, they will need to be reconciled because the nodes were part of dif-
ferent graphs.

If new nodes have been added, they will be added in the pathfinding graph in the
normal manner. The m_graphId must be propagated to all new nodes. If two or more
graphs were joined by the new nodes, the m_graphId of the graphs must be changed to
reflect this.

Verifying Existing Paths

What happens if a valid path has been found, but then the environment has changed
while a unit is en route, for example, by the addition or removal of some object that
could possibly affect the path? This happens often in games set in dynamic environ-
ments. One possibility is to simply perform a new search when the unit reaches the

2.10 Practical Pathfinding in Dynamic Environments 189

1

2

4

3

A’
B’

A’’
B’’

5 6C 7 D

FIGURE 2.10.5 Node 7 can be used to determine if a unit has
entered or left the building.

blockage, from that position to the goal position. Another option is to use the vari-
ables m_graphId and m_allowedFlag to determine path validity. The m_graphId for the
next node in the path is compared to the m_graphId of the goal node, in the same way
as described in the earlier section “Updating m_graphId When Removing Objects.” If
the m_graphId of the two nodes are the same, the nodes are in the same graph. Even if
the nodes are in the same graph, it is not certain that the path between them is valid.
The edges could have become disallowed for some other reason, such as a building
collapsing into the street or a vehicle wreck. Whether the edges are allowed or not is
investigated in the following step, when all remaining edges in the path are checked
using the edges’ m_allowedFlag. If all edges are allowed, then the path should be valid.
If any of these tests fail, the path is invalid, and a new path must be calculated.

Conclusion

In this article, methods for handling the addition, removal, and in-game modification
of objects such as buildings have been presented. By using not only nodes but also
edges to store information to be used in the pathfinding, it is easy to turn on and off
traversability in various areas without adverse side effects. By storing extra informa-
tion in the edges, we can detect unnecessary calls to the pathfinder and verify existing
paths even after a unit has started to traverse them.

As the games require more and more interaction, more demands will be put on
AI as well as on the pathfinder. More interaction means more possibilities and more
things that the AI has to be aware of. By maintaining a correct pathfinding graph, it is
easier for the AI to understand the environment as well as how to use it to create a
competent and entertaining enemy and buddy.

References

[Reed03] Reed, Christopher, and Geisler, Benjamin, “Jumping, Climbing, and Tacti-
cal Reasoning: How to Get More Out of a Navigation System.” AI Game Pro-
gramming Wisdom 2, Charles River Media, 2003.

[Stout00] Stout, Brian, “The Basics of A* Path Planning.” Game Programming Gems,
Charles River Media, 2000.

[Straatman05] Straatman, Remco, Beij, Arjen, and van der Sterren, William, “Kill-
zone’s AI: Dynamic Procedural Combat Tactics.” Available online at
http://www.cgf-ai.com/products.html, Game Developers Conference, 2005.

[Tozour03] Tozour, Paul, “Search Space Representations.” AI Game Programming
Wisdom 2, Charles River Media, 2003.

190 Section 2 Movement and Pathfinding

http://www.cgf-ai.com/products.html

191

2.11

Postprocessing for
High-Quality Turns
Chris Jurney—Kaos Studios
jurney@gmail.com

Units with limited turning ability, such as Jeeps and motorcycles, present problems
for pathfinding and movement systems. Calculating turns for these units during

the search multiplies the time required for an already expensive step (described in
[Pinter01]). This same article describes a way to modify an A*-generated path by con-
verting corners in a smoothed path into turns. In this article, we will refine this tech-
nique by defining a broad set of turn types, and then we will explain a method for
selecting the most optimal turn at each corner.

This technique is directly applicable to strategy games but can be used in any
game with units that have limited turning capability and must generate their move-
ment path in advance (as opposed to those using steering behavior). The system
described is used for all the moving units in Company of Heroes, including humans,
motorcycles, Jeeps, halftracks, and tanks.

Background

To help explain the turning technique, we’ll first give some context for where it fits
into the overall system. The input paths this system works on are generated by stan-
dard A* and then smoothed by cutting pairs of segments down to a single segment
where possible. This results in a valid but linear path, as shown in Figure 2.11.1.

The path is defined as a series of waypoints. Each waypoint has a position, a
heading, and some additional data used by units when following the path. The way-
point headings are initially set to the direction traveled by the previous segment
because units must first pivot to match the heading of the next waypoint before start-
ing to move. After they have achieved the next waypoint’s heading via pivoting, units
simply slide along the line to the next waypoint.

Because path following is so simple in Company of Heroes, using these paths
directly would result in jagged and unrealistic movement. For wheeled vehicles such
as Jeeps, we want as few hard corners as possible in the path to avoid pivoting in place
(the fallback behavior). We do this by adding turns.

Basic Turning

To get from a path of line segments to a path of turns, we walk through the existing
path and try to replace each segment with a curve. This technique is extensively
described in two articles by Marco Pinter [Pinter01, Pinter02]. The model for the
curved path is for the vehicle to make a fixed radius turn to either the left or right, fol-
low a straight segment, and then make another fixed segment turn to either the left or
right. We’ll call this shape a “curve turn” as shown in Figure 2.11.2.

192 Section 2 Movement and Pathfinding

Path
 Seg

men
t

Waypoint Heading

Waypoint

FIGURE 2.11.1 This is a basic smoothed A* path, the starting point for
the system.

End Turn Segment

Middle Straight S
egment

Start Turn Segment

FIGURE 2.11.2 This is the curve turn described in “Realistic
Turning between Waypoints” from the first volume of AI Game
Programming Wisdom [Pinter02].

The turn radius can be tuned to get variations on this turn. Because different
radii result in different paths, it can be desirable to try more than one. Tighter turns
are more likely to succeed in practice because they more closely match the original,
already-proven path. Units in Company of Heroes use a fixed rotation speed, so the
turn radius they can manage without slowing down is

fastTurnsRadius = speedmax/rotationRate

Rotation rate is in radians per second. Turns with radii larger than this can be
taken at full speed. Turns with radii smaller than this require that the unit slow to a
speed defined by the following equation:

turnSpeed = speedmax(turnRadius/fastTurnRadius)

Usually all four combinations of left and right turns (see Figure 2.11.3) result in a
valid path, but some of them are longer and take more time to follow. When applying
this turn to the path, we attempt to use only the shortest of the four variants. This
means we need to calculate the distance for all four types before picking the one to use.

2.11 Postprocessing for High-Quality Turns 193

Left then Right

Right then Right Right then Left

Left then Left

FIGURE 2.11.3 Four variants of the curve turn based on direction at the
start and end.

After we’ve picked the shortest turn, we compare the path to the environment
using our game’s collision routines to see if the unit is able to successfully follow the
path. If the unit can follow the new path without hitting any obstacles, we replace the
original segment with the curved turn. We use this validation step for all turn types
described in the next section.

In an early iteration of the Company of Heroes path system, only straight-line seg-
ments were supported in paths. To get the new curved path into the system, we tessel-
lated the curve into line segments. As long as you tessellate enough that the line
segment length is shorter than the unit can move in a single tick, there is no visible
quality difference between using line segments and actual curves. For Company of
Heroes, the simulation rate is 8 Hz, so the tessellation was not so detailed as to cause a
problem by wasting memory on lots of subdivisions.

There is one last wrinkle in the creation of the replacement path. The original sys-
tem required the vehicle to pivot in place to match the next heading before starting to
roll. We’ll fix this for the new curved path by setting a flag in the waypoint that tells
the unit to interpolate from its previous heading to the waypoint’s heading over the
course of the path. This gives us the nice smooth interpolation for rotation that we
want when driving around turns.

A Palette of Turns

The basic curve turn works, but in many situations, the motion it produces does not
look natural. To remedy this, we define a palette of turns to use in different scenarios.
A simple implementation can use a heuristic based on the direction to the next way-
point and the distance to decide which of these turns to use, but we’ll look at a search-
based refinement to this later on.

Smoothed Curve Turn

The basic curved turn works well, but when rounding corners, it tends to overshoot
them by a significant amount because it doesn’t modify the existing path’s direction at
each waypoint. To avoid this, we can use the exact same code we used for the curve
turn, but first modify the heading of the path at the destination before calling the
function.

To pick a good heading, we use the circle described by the three points: the start
of the current segment, the end of the current segment, and the point after the end of
the current segment (as shown in Figure 2.11.4). The new heading is the tangent of
the circle at the point it touches the end waypoint of the current segment. Because
this uses a point beyond the current segment, it doesn’t work for the final leg of the
path, but this is okay because we don’t need it for the final segment.

When the curve turn is applied with the modified heading, the effect is to cut the
corner tightly like a race driver (see Figure 2.11.5). Using the modified heading for
the start of the next turn gives a nice sweep out, cut in, sweep back out pattern on all
your corner turns.

Constant Radius Turn

The turns described so far work well in tight areas, but they run into problems in
open areas. The effect of the curve turn is as if the driver yanked the wheel to one side

194 Section 2 Movement and Pathfinding

for the initial turn segment, yanked it back straight for the middle segment, and then
yanked the wheel hard for the final turn segment. In an open field, this looks disturb-
ing. To combat this effect, we introduce a new turn called the constant radius turn.

The constant radius turn is defined as the path along the unique circle described
by the start point, the start direction, and the destination point, as shown in Figure
2.11.6. Because we don’t consider the direction at the destination, this turn requires
that we modify the destination. This may exclude its use on the final line segment of a
raw path in cases where we care about the final heading, but we’ll get into that situation
a bit later.

2.11 Postprocessing for High-Quality Turns 195

Previous Heading

Smoothed Heading

FIGURE 2.11.4 For a smoothed turn, the normal is modified to be tangent
to this circle.

Curre
nt S

moothed
 Seg

men
t

N
ext Segm

ent

FIGURE 2.11.5 When a smoothed turn is used, the heading is modified to
round the corner.

Three-Point Turn

The turns so far all handle most scenarios that come up when processing a path, but
when used on wheeled vehicles with a nontrivial turning radius, there is a problem. If
you use the curve turn to reach the destination, the vehicle makes a full loop. If you
use the constant radius turn, the turn is extremely tight and unnatural. To solve this
problem, we use a three-point turn.

A three-point turn is broken into two parts, as shown in Figure 2.11.7. The first
part is a reverse while rotating to face the goal point of the turn. This initial backup
segment ends when the vehicle is facing the midpoint of the original path segment. In
practice, this amount of backing up seems to produce visually acceptable results,
although any system that avoids backing up to face past the goal is likely acceptable.

The second part of the turn simply reuses the curve turn logic to get the unit to
the goal. This finishes the turn, and it means that three-point turns are able to match
a final destination heading without modifying it. This will become important when
we bring all of these turns together.

Reverse

So far we’ve only dealt with forward vehicle motion, but many times it is better for a
unit to go backward to get to his destination. If the unit loops around to reach the
goal in these instances, it will look awkward to the user. To resolve this, we can add a
simple reverse turn to our palette.

Fortunately, this is the easiest case to implement. To get a reverse, simply use the
curve turn code as is, but before calling it, reverse the heading of the start points and
endpoints. If the curve turn is successful, then walk the replacement points, and
invert each heading.

196 Section 2 Movement and Pathfinding

Modified Heading

FIGURE 2.11.6 Constant radius turns use the circle shown and modify
the goal waypoint heading.

Turn Search

You can apply the previously defined turns using a heuristic. The system can walk
through each turn segment, and based on the direction change, select the one best turn
to try. This works in practice, but there are problems. First, defining a heuristic that
selects the best turn in all cases is difficult. Second, if the turn selected isn’t possible due
to obstacles in the environment, it doesn’t offer a fallback.

To address this, we have to search to find the optimal turn for each segment. To
define which of the available turns is best, we use the time it takes to complete as a
metric. The turn that gets the unit to the goal in the least amount of time is the most
desirable.

The list of turns to consider will likely need to be defined differently for each unit
type in the game. The palette of turns used by a tank is very different from the palette
of turns used by a motorcycle or a Jeep (pivots are more acceptable for tanks).
Although a pivot is normally considered to be the last resort, it is important to include
it in the turn palette and score it along with the other turns because often some turns
take longer than the pivot they are replacing.

The exact method of estimating how long it takes to follow a given path will vary
depending on how your path following works, but the following method works for
many games. As an estimate, assume infinite acceleration, so the unit is always at the
top speed possible based on the turn radius. For curved sections of the path with a turn
radius greater than the vehicle can achieve at top speed, assume the vehicle is moving at
top speed. For curved sections of the path with a turn radius smaller than the vehicle
can achieve at top speed, multiply the vehicle’s top speed by the ratio of the turn’s

2.11 Postprocessing for High-Quality Turns 197

Reverse
Until

Facing
Midpoint

Finish Path with Curve Turn

Midpoint of Original Path

FIGURE 2.11.7 Three-point turns reverse until facing the midpoint and then use
the curve turn code.

radius to the top speed turn radius and use that. When you have a speed for a turn sec-
tion, just divide by the length to get the time, and add up the time for all segments.

Entries in the turn palette need a number of properties. The first property is the
type of turn (curve turn, constant radius, and so on). The second property, for some
turn types, is a radius multiplier. This is multiplied with the unit’s normal full-speed
turn radius to get the turn radius to try for this palette entry. It is useful to tune using
a multiplier instead of a fixed distance because this lets you tweak your unit speeds and
rotation rates without having to go back and modify your turn palettes. The third
property is a tunable value in seconds that is added to the calculated time for the turn.
This value lets us slightly prefer some turns over others. As an example, we are includ-
ing the pivot in the list of possible turns, but it looks terrible when Jeeps pivot in place;
we can fix this by adding five seconds to the estimated time for that palette entry.

Finally, we add a tunable maximum path distance to the entry so that it is not
considered for paths that exceed this maximum. This is primarily used on reverse
entries to prevent units from backing up over long distances. Color Plate 3 shows an
example of a Jeep’s turn palette applied to a path around a number of obstacles (also
see Table 2.11.1).

Table 2.11.1 Example Turn Palette for a Jeep

Turn Type Radius Multiplier Tuning Time Modifier Max Valid Path Length

Constant Radius N/A –0.40 N/A
Curve Turn Smoothed 1.00 –0.35 N/A
Curve Turn Smoothed 0.50 –0.35 N/A
Reverse 0.75 –0.20 30 meters
Curve Turn 5.00 –0.20 N/A
Curve Turn 1.00 –0.15 N/A
Curve Turn 0.50 –0.15 N/A
Three-Point Turn 0.50 –0.10 N/A
Curve Turn 0.15 +0.50 N/A
Curve Turn 0.10 +1.00 N/A
Pivot N/A +5.00 N/A

Matching a Destination Heading

Depending on your game, it may be important for the unit to end its movement with
a specific heading unrelated to the path it used to move there. This is the case in Com-
pany of Heroes because users are allowed to specify the final heading independent of
the move itself (see Figure 2.11.8). In our case, it is highly desirable that the unit
arrives at the destination already facing the correct direction instead of having to pivot

198 Section 2 Movement and Pathfinding

in place after arrival. We can add turns to our palette for the final segment in the path
to help achieve this.

When processing the final segment, we duplicate all entries of the original palette;
however, for the duplicate entries, we require that the final output direction match
the user’s order. These entries also have a large bonus time subtracted from their esti-
mation to put them at the top of the sorted pile.

For the turns that are always able to match the existing destination heading (curve
turn, reverse, three-point turn), we modify the path’s final heading to be the user’s
specified direction before processing the copied entries. For turns that do not allow
matching an existing heading (constant radius), we add a requirement to the verifica-
tion step that the copied palette entry does in fact match the user’s heading. We ignore
the smoothed curve turn for the final segment. The result of these extra entries and
their bonus tuning time is that turns matching the goal are almost always valued over
turns that do not, unless they are extremely slow to perform.

2.11 Postprocessing for High-Quality Turns 199

Original Path
User
Order

Start

FIGURE 2.11.8 Matching a final direction specified
by the user to avoid pivoting at the goal.

Optimization

One major performance issue with doing the search in this form is validating each
turn against the environment. Because any of the available turns might be the best for
the current segment, we must test collision for all of them to find the cheapest. To
optimize the process of selecting a turn for each segment, we can split the process into
two sections. The first piece is to calculate the shape of the turn and find its estimated
time cost. The second piece is to validate the turn by testing collision. The first is
done for all turns, and then the turns are sorted based on their estimated time.

Now, with the turns sorted, you can try the collision validation in order from
shortest to longest. The first turn that is validated is accepted, and you can stop testing.
If you find the pivot in this sorted list, it means that all the turns below it were more
expensive, even with the tuning value applied, so just leave the segment unmodified
and move on.

Discontinuity and Stopping

After implementing this system, we found one major remaining problem with individ-
ual vehicle motion. When a unit already in motion receives a move order, it immediately
gets a new path and throws away the old one, so there can be a discontinuity in speed
from the unit stopping on a dime or shooting off in a new direction. To resolve this,
whenever a moving unit receives a new order, we do a continuity test comparing his cur-
rent motion to the start of the new path.

If the new path starts in a direction different from the current motion of the unit
(see Figure 2.11.9), we create a halting path out of the path the unit was previously
following. The unit slows to a stop along the original planned route. The distance
traveled along the original path is based on the current speed and deceleration rate for
the vehicle:

diststop = speed 2/deceleration

200 Section 2 Movement and Pathfinding

New Discontinuous PathVe
hi

cl
e

in
M

ot
io

n

New User Order

FIGURE 2.11.9 Changing paths on new orders
can result in a sudden stop.

After generating this halting path, we repath to the unit’s new goal from the end
of the halting path (see Figure 2.11.10). We then merge these two paths together. The
result is that the unit comes to a stop slowly before pivoting to follow his new order.

Additionally, if the halting path and the repath to the goal happen to be continu-
ous, then we don’t have to stop at the end of the halting path. The result is that the
unit just extends his current motion a bit before turning to reach his new goal (see
Figure 2.11.11).

Conclusion

The techniques described in this article were used to control all the vehicles in Com-
pany of Heroes. They resulted in units that move in the expected direction and along
the expected route when an order is issued. They also behave predictably when a user
specifies the final direction for the unit. The system provides for easy tunability and
executes with only slightly more execution overhead than a basic smoother.

2.11 Postprocessing for High-Quality Turns 201

Original Repath

Obstacle

H
al

tin
g

Pa
th

New
User
Order

New Path

diststop

FIGURE 2.11.10 A stop path and a new path from the
stop endpoint replace the original path.

Obstacle

N
ew

 Continuous Path

H
al

tin
g

Pa
th

FIGURE 2.11.11 After repathing from the stop
path’s endpoint, the new path is continuous, so
the unit never has to stop.

References

[Pinter01] Pinter, Marco, “Toward More Realistic Pathfinding.” Available online at
http://www.gamasutra.com/features/20010314/pinter_01.htm, March 14, 2001.

[Pinter02] Pinter, Marco, “Realistic Turning Between Waypoints.” AI Game Program-
ming Wisdom, Charles River Media, 2002.

202 Section 2 Movement and Pathfinding

http://www.gamasutra.com/features/20010314/pinter_01.htm

203

2.12

Memory-Efficient Pathfinding
Abstractions
Nathan Sturtevant—University of Alberta
nathanst@gmail.com

In the fall of 2006, BioWare Corp approached us about pathfinding research that we
were doing at the University of Alberta, in particular to see if our work could be

adapted for use in their latest game, Dragon Age. Most of the memory budget allo-
cated to pathfinding was already taken by the map representation, and so we were
challenged to build a pathfinding abstraction that would minimize memory usage
and still provide a performance boost.

We describe the results of this collaboration in this article. In addition to the rep-
resentation itself, we also describe how to use the representation for pathfinding, as
well as a number of techniques that improve the performance and quality of resulting
paths. We have implemented the methods described here as the core pathfinding
module in Dragon Age.

Building a Memory-Efficient Abstraction

The key to building a memory-efficient abstraction is the representation used to store
the abstraction. The choice of the underlying representation depends on the game
being built and the types of maps used in the game. In a game where players traverse
large, mostly unoccupied areas of terrain, an explicitly represented grid is likely quite
wasteful. A game with tightly packed areas might be more amenable to a grid-based
representation. In this article, we will assume an underlying grid-based representation
as this is the representation that BioWare Corp chose to use in its title Dragon Age.

We take an approach that is common in games that contain both static and dynamic
data. As much planning is done as possible on the static game data before dynamic data
is taken into account. This is the basic approach used, for example, in Saboteur
[Dunki07]. We limit our discussion here to static planning only.

In this section, we describe the process of building an efficient graph representa-
tion of a low-level, grid-based map. We will refer to the original map as the low-level
map and locations in the low-level map as coordinates. The abstract structure is based
upon dividing the low-level map into fixed-sized sectors. These sectors are further

divided into regions. When referring to the abstraction, we will usually refer to
abstract regions, which correspond to a node in the abstract graph.

Sectors and Regions

We begin by overlaying a large grid over the low-level world. This grid defines the sec-
tors in the world. Given an x/y location in the low-level map, the sector can be implic-
itly determined from the sector size and map width. We limit sector sizes to 16 × 16
(256 grid cells) so that any point within a sector can be represented by a single byte.
Smaller sector sizes can be used, but we will show later that larger sector sizes are more
efficient.

Sectors are laid down without regard for the underlying topology of the world. This
means that the topology of the map will be divided by sector boundaries. Unlike the
abstraction representation of navigation meshes [Snook00] or quadtrees [Tozour04], it
might not be possible to visit every location in an abstract sector without leaving the
sector. To address this, we further divide sectors into regions, one region for each con-
tiguous area within a sector. Regions can be determined by performing a breadth-first
search on the low-level grid within each sector. Regions are not guaranteed to be convex.
A single x/y coordinate is chosen as a representative location for each region, and this
becomes a node in the abstract graph.

After sectors and regions are determined, we must find the edges between differ-
ent regions. This can be done by tracing the edges of each sector and comparing the
sectors on each side of the boundary. An edge is added to the abstract graph for each
pair of regions that share a sector border.

We demonstrate the initial layout in the left portion of Figure 2.12.1. The map
shown here is 32 × 32 and divided into four 16 × 16 sectors. Black walls cannot be
crossed. Sector 0 has only a single region, a, but Sector 1 has three regions a, b, and c.
We will refer to a region in the map as sector:region, (e.g., region 1:c). Region centers
can be chosen arbitrarily, although the choice of a region center can have a large
impact on the amount of work required for path planning using the abstraction. Ini-
tially region, centers are placed at grid cells close to the weighted center of a region, as
in the left portion of Figure 2.12.1. Locations are later optimized, as in the right por-
tion of Figure 2.12.1, which shows the full graph. The optimization process is
described later in the article. The original 32 × 32 world has been reduced to a graph
with seven nodes (region centers) and eight edges.

Storing the Abstraction

The memory used to store the abstraction is divided into two parts. The first portion
is fixed sized and stores basic sector information, whereas the second portion is vari-
able sized, storing region and edge information.

In the sector data, we need to store the number of regions in the sector as well as
an index into the second portion of memory indicating where the region and edge

204 Section 2 Movement and Pathfinding

information is stored. A simple implementation uses 32 bits to store this information,
although it is possible to reduce this to 16 bits if necessary. The data layout is shown
in the left of Table 2.12.1.

Table 2.12.1 Memory Used to Store the Abstraction

Sector Data Region Data Sample Region Data

Num. Regions (8 bits) Center (8 bits) 14
Region Index (16 bits) Edge Index (8 bits) 2

Center 243
Unused (8 bits) Edge Index (8 bits) 3

Edge Data N : 1
Edge Data NW : 0
Edge Data S : 1

The region data for each sector is broken into two parts, a fixed-sized portion for
region information and a variable-sized portion for edge data. The region data contains
the center of that region as well as an index into the edge data. This is shown in the
right portion of Table 2.12.1. The edge index stores the index of the first outgoing
edge of the next region. By computing the difference between the edge indices in suc-
cessive regions, the total number of edges in a region can be computed.

The example shows sample data for a sector with two regions. The first region’s
edges begin at offset zero in the edge data, and there are a total of two outgoing edges.
The second region’s edges begin at offset two, and there is one (3 – 2 = 1) outgoing

2.12 Memory-Efficient Pathfinding Abstractions 205

a

a
b

a

b

a

0 1

2 3

c

a

a
b

a

b

a

0 1

2 3

c

FIGURE 2.12.1 Sectors and regions (left) and the resulting graph after region optimization
(right).

edge from this region. This method means that only two memory accesses are needed
to find the total number of edges in a region as well as their offset in memory. If we
just stored the number of edges in a region, we might have to look at all regions to
find the offset of the edges in memory.

Eight bits are used to store each edge. Three bits are reserved for the edge direc-
tion, and five bits are reserved for the region that is connected by the edge. The target
sector can be computed from the current sector and the direction.

Besides the 32-bit sectors, there are two noticeable inefficiencies in memory usage.
First, we are storing every edge twice as an outgoing edge from every sector. We could
further reduce memory usage by only storing each edge once, however, this makes the
process of generating moves more expensive because we would have to look at all neigh-
boring regions to check for potential edges, which also detracts from cache locality. Sec-
ond, on open areas of a map, there can be many sectors that are essentially identical;
they have a single region with eight edges, one to each neighbor. Instead of storing these
regions, we can just mark them and generate the default data when needed.

We show the total memory required to store the abstraction averaged over a set of
120 512 × 512 maps in Figure 2.12.2. The top (dotted) line is the memory required
using exactly the methods described here. Our experiments suggest that an additional
25% or more memory could be saved using 16 bits for the sectors instead of 32 bits.
Using a sector size of 16, less than 10 Kb is needed to store the entire abstraction. We
also consider the possible gains from not storing sectors that match the default profile
(one region and eight edges). This compression is valuable for small sector sizes but less
so on larger sectors, although this depends on the types of maps being compressed.

206 Section 2 Movement and Pathfinding

With Compression

Without Compression

M
em

or
y

U
sa

ge
 (

kb
)

0

10

20

30

40

50

Sector Size
5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 2.12.2 Memory usage as the sector size increases.

Using the Abstraction

Now that we have described how to build and store a memory-efficient abstraction,
we will next describe the methods needed to use the abstraction for pathfinding. We
first describe the basic process of building a complete path from the start to goal and
then consider ways to optimize the process in the next section.

Three stages are required to build a complete path using the abstraction. First,
given a location in the real map, we must find the corresponding nodes in the abstrac-
tion. Second, a path must be found through the abstraction. Finally, the abstract path
must be refined into a low-level path.

Finding Abstract Nodes

Given x/y coordinates in the map, we can compute the corresponding sector using
just the sector and map size. The only difficult task is to compute the region. When a
sector has only one region, we must be in that region, so this case is easy. If a sector has
more than one region, we can use one of two methods to find the current region.

The first method is to perform a breadth-first search (BFS) from the low-level x/y
coordinate until one of the region centers is found. This search is limited to passable
points within the current sector and so is not too expensive, although this depends on
the relative locations of the region center and the given coordinates.

An alternative approach is to use an A* search from the region centers [Grimani05].
If we put each of the region centers onto the A* open list and use the low-level x/y coor-
dinates as the goal, we will find a path from the region center that is reachable from the
low-level location. The A* approach can look at less nodes because it uses heuristic
information to help find the closest region, but a BFS does not need to maintain a pri-
ority queue so the overhead of a BFS search is lower. In practice, we use a BFS, but in
other domains an A* search might work better. We will describe further optimizations
for finding abstract nodes at the end of the article.

Finding Abstract Paths

Finding paths through the abstract space is fairly straightforward. An A* search can be
used after the start and goal locations have been found within the abstraction. Instead
of storing precomputed edge weights inside the abstraction, we use the octile-distance
between region centers as abstract edge weights. (Given the x and y offset between two
locations, the octile-distance is x + 0.5y if x is greater than y, and y + 0.5x otherwise,
assuming that diagonals have a cost of 1.5.) We also use the octile-distance as the
heuristic cost between regions that are not directly connected.

Path Refinement

Paths can be refined from abstract paths into low-level paths via many methods. The
simplest way to do this is to first compute a path from the start location to the region

2.12 Memory-Efficient Pathfinding Abstractions 207

center for the start location. We can then compute paths to successive region centers
of the abstract path. Finally, we can compute a path from the last region center to the
goal.

We demonstrate this process, as well as how it can go wrong, in Figure 2.12.3. In
this case, the start is in region 0:a, and the goal is in region 1:a; however, the start and
goal are actually next to each other. Refining paths as described will lead to the path
shown in the figure, first going to region 0:a and then to region 1:a before going to
the goal. This can be easily fixed with a simple special case that covers the start and the
goal. Higher-quality paths are produced if, from the start location, we skip the current
region center and plan directly to the next region center on the abstract path. Addi-
tionally, we can skip the final region center and find a path directly to the goal from
the next-to-last region center. In this case both rules would apply, and we would
search directly for a path between the start and goal.

208 Section 2 Movement and Pathfinding

a a

0 1

S G

FIGURE 2.12.3 Refining an abstract path into a low-level path.

This idea can be extended to the full refinement process by skipping region centers
when refining other portions of the path. For example, we might choose to skip every
other region center. This will result in higher-quality paths at the cost of extra work.
Weighted A* can also be used to perform this step, as it is often cheaper than A*,
although we will discuss how the refinement cost can be minimized in the next section.

Another approach for limiting the refinement cost is to restrict the planning
process to the regions along the path being refined. We know that the regions along
the abstract path are connected in the low-level space, so this will avoid spending time
searching in areas that might not be relevant for the current path. The drawback of
this approach is that it is not flexible in situations where dynamic obstacles might
block paths.

To measure the effectiveness of these approaches, we took a set of 120 maps and
computed 93,000 paths, evenly divided in length from 1 to 512. We used the simplest
approach of refining only a single edge at a time, except in the case of the start and goal

where we skipped the first/last region center. Region centers were dynamically
adjusted, as described in the next section. We compare the total work required to build
a complete path in Figure 2.12.4. Note that Nodes Expanded is a logarithmic scale.

A* must expand nearly 100,000 nodes in the worst case. Using our abstraction
method requires just over 1,000 nodes in the worst case. For paths of length 512, this
means that, at worst, we are only expanding 2 nodes for each node in the final path.
Additionally, unlike A*, the computation required using the abstraction can easily be
spread over multiple frames of computation with no substantial memory overhead.
When comparing the curves for various sector sizes (not shown), we found that we did
the least overall work using the largest sector size, as long as we optimized region centers.
Without optimizing region centers, the least work was done with 14 × 14 sectors.

2.12 Memory-Efficient Pathfinding Abstractions 209

A* (Max)

A* (Average)

Abstraction (Max)

Abstraction (Average)

Minimum

To
ta

l N
od

es
 E

xp
an

de
d

1

10

100

1000

10000

100000

Path Length
128 256 384 512

FIGURE 2.12.4 A comparison between the work done using the abstraction and the
work done by A*.

Optimizing Performance

In this section, we consider a variety of methods that can be used to improve the qual-
ity or the cost of the paths produced using this abstraction.

Optimizing Region Centers

The work done during refinement depends on the location of region centers. Naviga-
tion meshes and quadtrees guarantee a straight-line path between adjacent parts of the
abstraction. There is no guarantee that a straight path will exist between adjacent
regions in the abstraction. In the worst case, it can actually be very difficult to find a

path between adjacent region centers. One solution is to just cache each of these paths
and reuse them as needed. But, besides being memory intensive, the cached data
would not account for dynamic obstacles in the world or dynamic adjustments to the
abstraction.

An alternative approach is to optimize the placement of the region centers to
minimize the work needed at runtime. The idea behind this approach is to first use a
simple method for placing region centers. An optimization phase then looks for adja-
cent regions with high pathfinding costs. These regions are then optimized individu-
ally. The pseudocode for this process follows. This code simply tries all possible
locations for the region center and chooses the region center that minimizes the max-
imum cost. Besides optimizing planning costs, it is also possible to optimize region
locations based on other metrics. For example, we can try to avoid putting region cen-
ters near walls or on top of other placeable objects in the world.

void OptimizeRegionCenter(Region &r)

{

maxCost = ∞;
bestCell = null;

for (each cell c in r)

{

cost = ComputeMaxCostToAndFromNeighbors(cell);

if (cost < maxCost)

{

maxCost = cost;

bestCell = &c;

}

}

r.SetCenter(bestCell);

}

This computation can be expensive, but it can also be performed at export time.
There are a number of ways the cost can be reduced, such as by not considering all
possible region centers or by using other reasoning to bound the cost incurred when
computing the cost to the neighbors. Returning to Figure 2.12.1, this is the process
by which the default region centers in the left half of the figure can be converted to
optimized region centers shown in the right portion of the figure.

To measure the effectiveness of optimizing region centers, we measured the max-
imum work done in a single edge-refinement while computing the paths in Figure
2.12.4. Over all paths, we then looked at the 95th percentile of the work done, which
we plot in Figure 2.12.5. The top curve is the work done with static region centers,
whereas the bottom curve is the work done with dynamic region centers. For small
sector sizes, the dynamic adjustment isn’t important. With larger sector sizes, there is
almost a factor of three reduction in nodes expanded.

210 Section 2 Movement and Pathfinding

Dynamically Modifying the Abstraction for Abstract Planning

We discussed special cases for computing the low-level paths from the abstract path.
One disadvantage to this approach is that the low-level path is constrained to follow
the abstract path. This means that inaccuracies in the abstract path will be reflected in
the low-level path. We demonstrate one particular example in Figure 2.12.6.

2.12 Memory-Efficient Pathfinding Abstractions 211

Static Region Centers

Dynamic Region Centers

N
od

es
 E

xp
an

de
d

0

25

50

75

100

125

150

175

200

Sector Size
5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 2.12.5 Savings in work by dynamically adjusting region centers.

0 1 2

3 4 5

s

g

0 1 2

3 4 5

s

g

FIGURE 2.12.6 Temporarily moving region centers improves the quality of abstract paths.

In the left portion of this figure, we show a simple map with six sectors and a small
barrier in the middle of the map. There are two possible optimal abstract paths
between sector 0 and sector 5, [0:a, 1:a, 5:a] and [0:a, 4:a, 5:a]. This same abstract path
will be followed no matter where the start is in 0:a and the goal is in 5:a. Suppose that
the abstract path is [0:a, 1:a, 5:a], then the resulting abstract path is shown in the left
portion of Figure 2.12.5. This path is improved by skipping the first and last region
center, but it is still quite poor.

Fortunately, there is an easy fix for this problem. The problem is that the region
centers in the abstraction do not accurately reflect the current problem being solved.
We address this by simply moving the abstract region centers to the start and goal
locations before computing the abstract path and then moving them back afterward.
This results in the graph on the right portion of Figure 2.12.6, and the path indicated
by the dotted line.

Selecting Sector Size

We have discussed the parameters that influence our decision regarding how large
to build our sectors in several locations. Larger sectors are better as long as it is still easy
to refine a single abstract edge. We maintain this property with larger sector sizes by
optimizing the location of our region centers. Although we could use sectors larger
than 16 × 16, this is a natural limit due to the underlying representation of the abstrac-
tion. One thing we did not show is the effect of sector size on optimality. It ends up
that larger sector sizes result in fewer suboptimal paths because the optimal paths
between region centers are longer. When using smaller sector sizes, we are forced to
travel through more region centers along any path, which increases suboptimality.

Smoothing

The paths returned using the abstraction as described thus far averaged about 10%
suboptimality. Note that these paths are restricted to a grid and are also restricted to
travel through region centers. In practice, we can take the grid-based paths and
smooth them. Approaches described before include Bézier splines [Johnson06], Cat-
mull-Rom smoothing [Rabin00], and many other nuanced techniques [Pinter01].
Many of these techniques assume that you already have a high-quality path that just
needs to be smoothed, but we want to remove some of the suboptimality with our
smoothing.

One approach to improving the optimality of paths generated by a hierarchical
abstraction is to trim the paths, either to room openings [Rabin00] or by some other
method. We investigated trimming our refined paths, and this did decrease subopti-
mality, but it also increased the cost of planning. So in addition to a minimal amount
of trimming, we also implemented a smoothing procedure that shrinks the paths.

In practice, we always do a straight-line check before computing any path. If this
fails, we fall back to a two-step process for smoothing. The first step is to look for seg-
ments of the path that are optimal on the underlying grid (e.g., a straight line segment
followed by a diagonal line segment). We then check to see if these segments can be
replaced with a straight line. If this process fails on a particular segment, we recur-
sively divide the segment in half and try again on each half. This smoothing step
occurs as early as possible in the planning process so that we can begin executing paths
while they are still being computed.

212 Section 2 Movement and Pathfinding

The second step in the smoothing process is to look at adjacent line segments
along the path to see if we can smooth them by adding a new segment between the
midpoint of the original segments. We demonstrate this in Figure 2.12.7. In part (a)
we show a path has been formed around a large obstacle. To smooth this path, we
check two adjacent path segments to see if their centers can be connected by a straight
line. If they can, we connect their centers and remove the extra portion of the path,
resulting in the path in (b). We then continue the process as time allows. If the length
of a line segment is below some minimum constant, we do not consider splitting the
line segment, but instead try to replace the entire segment with a smoother compo-
nent. The final path after smoothing everything is shown in part (c). The straight-line
check prevents us from smoothing too close to a barrier. If needed, the smoothing can
be focused on adjacent line segments that form a sharp angle. Long segments can also
be split to facilitate smoothing.

2.12 Memory-Efficient Pathfinding Abstractions 213

(a) (b) (c)

FIGURE 2.12.7 Splitting segments to smooth a path.

This is an iterative process that can be applied as many times as necessary or as
many times as there are CPU cycles available. In practice, we iterate between planning
and smoothing as paths are executed in the world. We describe this process in the next
section. Delaying the smoothing step not only helps to spread the computation across
as many frames as possible, but it also allows us to remove segments that might have
been planned around a dynamic obstacle that is no longer in the way when we reach
that portion of our path.

High-Level Control

We have described many different pieces of a pathfinding framework centered around
an abstraction that attempts to optimize memory usage. To conclude the major con-
tent of this article, we describe how each of these components can be combined to
form a complete pathfinding framework.

The first step is to find a complete abstract path. Then, the following steps are
performed in order of their priority: planning the immediate path, smoothing the
immediate path, and planning the long-term path.

Each time a unit is given time in the current frame to do pathfinding, it looks at
its current needs. If an immediate path is not available, it is computed. If the path is
available but not smoothed, a smoothing pass is applied as described in the preceding
section. If there is an immediate path ready to follow, and the path has already been
smoothed, then the next segment of the abstract path is computed.

During the planning process, agents can be given priority based on how much of
their immediate path has been planned, their importance in the world, and whether
they are visible to the user or not.

The pseudocode for the process follows:

void DoIncrementalPathfinding(Unit &u)

{

if (!u.HasAbstractPath())

{

u.PlanAbstractPath();

return;

}

if (!u.ImmediatePathSmoothed())

{

u.SmoothImmediatePath();

return;

}

RefinePath();

}

The only information retained between pathfinding calls is the abstract path, the
current low-level path, and a few state variables. We do not need to maintain the open list
from an A* search, which can be expensive. This process allows units to begin moving
with only a few hundred microseconds of computation; the rest of the pathfinding com-
putation is delayed until needed. A final advantage of this approach is that if the user
changes his mind while the unit is still traversing the path, we will not have wasted the
extra computation planning the rest of the path that will never be followed. These cycles
can instead be given to other units.

Additional Optimizations

A number of additional optimizations can be applied to optimize different steps of
the pathfinding process. The best approach depends on the memory and CPU avail-
able in any particular game.

Finding the Abstract Sector/Region

If there are extra bits available in the low-level grid, we can use them to store region infor-
mation. When no bits are allocated, we can only know the current region if a sector has

214 Section 2 Movement and Pathfinding

only a single region. If there is one bit of storage, we can use it to mark the largest region
in a sector, although we will still need to search in other unmarked regions. If more bits
are available, they can be used to mark additional regions within a sector.

If more memory is available outside of the low-level grid, multiple locations can
also be stored in each region. This will reduce the time required to find a marked
region location because there is more likely to be a region center nearby.

Finally, units can cache their current region and update it as they traverse the
environment. This eliminates the need to find the abstract region for a given start
location. If the goal region is selected by an arbitrary mouse click, however, this will
have to be computed using one of the methods described here.

Caching Paths and Costs

If more memory is available, we can refine any number of edges ahead of time so that
they do not need to be computed at runtime. Instead of storing all possible refine-
ments, we can also just store the ones that are most expensive to compute at runtime.

Similarly, we can annotate abstract edges with their underlying cost. This can
improve the quality of the abstract paths computed, especially in maps that are more
constrained. Again, we can just annotate the edges for which the abstract cost is much
higher than the heuristic estimate.

Dynamic World Optimizations

Most of what we have described here is optimized for static maps; however, there are
also several optimizations that help with nonstatic maps. First, if we know how the
maps will change in advance, we can precompute how the sectors/regions will change
and store this information in the abstraction. Then when the map changes take place,
we can just point the sector to the updated information, and the abstraction will
immediately be updated.

Additionally, we can annotate regions and/or sectors with occupancy information
and increase the pathfinding costs through crowded areas. Similarly, if a region center
is blocked, we can increase the cost of traveling through that region center, which will
direct the abstract path around temporarily blocked areas of the map.

Other Optimizations

We have attempted to minimize the memory used by the abstraction here. But much
more memory is being used by the underlying map representation than by the abstrac-
tion. This data can be streamed in and out at runtime, just leaving the abstraction in
memory. In this case, refinement only occur when the map is available in memory.

Besides storing just the abstract graph, we can also annotate connected compo-
nents in the abstract graph. This information can be used to quickly answer queries
about whether or not their exists a path between any two regions in the world. This
avoids having to perform a complete search at even the abstract level to verify that
there is no path between two locations in the world.

2.12 Memory-Efficient Pathfinding Abstractions 215

Source Code and Demo

Included on the CD-ROM with this book is sample source code for building and
using the abstraction described here. The program compiles under Unix-based sys-
tems using makefiles, and project files are included for Visual Studio 8 as well as
XCode 2.4. OpenGL and GLUT are required. A few sample maps are included,
which will load when passed on the command line. Otherwise, a map will be gener-
ated from random line segments. More details on visualizing the abstraction opti-
mization and testing various paths on both optimized and unoptimized abstractions
are found in a Readme file included with the source code.

Future Work

In this article, we have not described in detail the methods used for dynamic obstacle
avoidance. We implemented the basis for some of these techniques in the pathfinding
engine, but other programmers are still implementing some of these details. Still, it
would be worthwhile to perform a detailed study of the techniques suggested by the
game development community and their effectiveness in practice.

These abstraction techniques are also built around a simple grid-based map.
Although we have an understanding of how these ideas could be used with more com-
plex map representations, we have yet to fully describe how this is possible.

Conclusion

This article has described a hierarchical abstraction technique that works to minimize
the memory overhead of the abstraction, as well as the details needed to use the
abstraction in practice. A number of optimizations are considered and their usefulness
is measured in practice. We have implemented these ideas in the game Dragon Age by
BioWare Corp.

References

[Dunki07] Dunki, Quinn, “Streaming, Open-World Pathfinding.” Invited talk,
Third Annual Artificial Intelligence and Interactive Digital Entertainment Con-
ference, June 6, 2007.

[Grimani05] Grimani, Mario, and Titelbaum, Matthew, “Beyond A*.” Game Program-
ming Gems 5, Charles River Media, 2005: pp. 367–382.

[Johnson06] Johnson, Geraint, “Smoothing a Navigation Mesh Path.” AI Game Pro-
gramming Wisdom 3, Charles River Media, 2006: pp. 129–139.

[Pinter01] Pinter, Marco. “Toward More Realistic Pathfinding.” Gamasutra. Available
online at www.gamasutra.com/features/20010314/pinter_01.htm, March 14, 2001.

216 Section 2 Movement and Pathfinding

http://www.gamasutra.com/features/20010314/pinter_01.htm

[Rabin00] Rabin, Steve, “A* Aesthetic Optimizations.” Game Programming Gems,
Charles River Media, 2000: pp. 264–271.

[Snook00] Snook, Greg, “Simplified 3D Movement and Pathfinding Using Navigation
Meshes.” Game Programming Gems, Charles River Media, 2000: pp. 288–304.

[Tozour04] Tozour, Paul, “Search Space Representations.” AI Game Programming
Wisdom 2, Charles River Media, 2004: pp. 85–102.

2.12 Memory-Efficient Pathfinding Abstractions 217

This page intentionally left blank

219

S E C T I O N

3
ARCHITECTURE

This page intentionally left blank

221

3.1

A Flexible AI Architecture for
Production and Prototyping
of Games
Terry Wellmann—High Voltage Software, Inc.
terry.wellmann@high-voltage.com

This article presents an AI architecture that was developed for a game where the
player encountered many different AI enemies, each with its own personality and

abilities. We determined early in the development of the game that we wanted an AI
system that was flexible enough to support a wide variety of enemies as well as easy to
maintain and tune by the design team. One of our goals for the AI was to give each
enemy a unique and recognizable personality, which we accomplished through the
use of models, animations, and the decision-making system discussed here.

Although the architecture presented here was designed to accomplish our specific
goals, it is applicable to a wide variety of games. With the help of this article, you will
gain a better understanding of the factors to consider when building an AI architec-
ture, and you will have all of the tools necessary to successfully design a system that is
easy to understand, build, maintain, and extend.

The Architecture

One of the first tasks in designing any AI system is to identify the high-level decisions
that the agents are going to have to make. One important thing to keep in mind while
doing this is to keep the list short and think of things in generic terms: the details of
the decisions will come later. If you try to be specific with every decision, you will
quickly end up with an overwhelming list.

In our game, the user is bombarded with enemies that he must battle and defeat.
Many of the decisions an enemy can make are common across all enemies, whereas
others are unique to particular enemies. Examples of decisions that all enemies make
include moving forward, moving backward, moving to the sides, and standing, as well
as staying idle or occasional behaviors, such as taunting. Attacks or specialty moves are
examples of decisions that are generally unique for each enemy.

For our game, we chose to represent each AI decision using a 32-bit mask. This
limited us to 32 unique decisions for each AI agent, but this was more than sufficient for
our needs. We could have also represented the decision list with an enumerated type, but
there are a few drawbacks to this that we will discuss in the “Decision Chaining” section.

For the purposes of this article, we will use the following decisions and their
assigned bit values:

D_NONE 0x00

D_FORWARD 0x01

D_BACK 0x02

D_LEFT 0x04

D_RIGHT 0x08

D_LIGHT_ATK 0x10

D_HEAVY_ATK 0x20

We also need to define a structure to store the critical data for each decision. The
following code shows what the basic structure will look like:

struct TDecision

{

int mDecision;

float fProbability;

int mChainedDecisions;

int mFlags;

}

The mDecision variable indicates the decision represented by this structure. This
variable is intended to hold a single decision; they are never bitwise ORed together. The
fProbability variable represents the overall probability of choosing this decision over
any other decision. The mChainedDecisions variable is used to build more complex
decisions; we will discuss the use of this variable further in the “Decision Chaining”
section. The mFlags variable is a generic bit mask variable that can be used for a vari-
ety of things, such as coordinating an attack with several other independent AI agents.
We will discuss this in the “Agent Communication and Coordination” section.

Each AI agent has an array of TDecision structures that are initialized whenever a
decision is to be considered. The code for setting and maintaining the array can be
handled with basic STL (Standard Template Library) operations or your own custom
handling.

The Decision-Making Process

Now that we have established the underlying representation that is shared by all AI
agents, we can discuss the decision-making process that is performed whenever one
decision completes and a new one needs to be made. To simplify the architecture for
this article, we will make the assumption that all actions that result from an AI deci-
sion are performed in their entirety and execute quickly enough that they never need
to be aborted.

222 Section 3 Architecture

The first step in making a new decision is to clear the array of TDecision struc-
tures. After that is done, we can build a new list. When building the decision array, we
consider each decision to determine if it is currently valid and should be considered
for execution. If it is valid, we add it to the decision array. At the same time, we deter-
mine how likely the decision is to be chosen relative to all other valid decisions. In
addition, we can specify which decisions, if any, need to be considered as follow-up or
chained decisions as well as any other data that we may want to accompany the deci-
sion. We will discuss both decision chaining and accompanying data extensions to the
decision-making process later in the article.

When assigning a probability value to a decision, we can take a couple of differ-
ent approaches. The first is simply to assign a predetermined or hard-coded value. For
example, if we want the AI agent to always consider performing an idle action, such as
a taunt, we can assign a small value, such as 0.05. Another method for assigning a
probability value is to dynamically compute it based on runtime or situational data.
For example, if our agent has been hurt and has a low health value, we might want
him to be more cautious and have an increased likelihood of moving away from a
dangerous situation. By adjusting the move-backward probability value relative to his
health, not only are we making the AI more dynamic, but we are also defining a per-
sonality trait that will vary based on the events of the game and will most likely be
noticed by the player.

After all of the valid decisions have been added to the decision list, we can select
one for execution. This process is straightforward. First, we sum the probability values
for all of the valid decisions, which we can do as we add the decisions to the array.
Next, we compute a random value between zero and this sum. We then simply find
the decision in the list that corresponds to the randomly generated value.

Let’s now consider an example where we want our agent to consider the following
choices:

• Move forward with a 20% relative chance.
• Move backward with a 10% relative chance.
• Perform a heavy attack with a 15% relative chance.

The pseudocode for setting up the decision-making system for this would look as
follows:

ClearDecisionList();

// add the decisions that we want to consider

AddDecision(D_FORWARD, 0.2);

AddDecision(D_BACK, 0.1);

AddDecision(D_HEAVY_ATK, 0.15);

// pick and execute the decision

PickDecision();

ExecuteDecision();

3.1 A Flexible AI Architecture for Production and Prototyping of Games 223

224 Section 3 Architecture

In this example, we added three decisions to our agent’s list. The sum of the prob-
ability values for all three decisions is 0.45, so to make a decision, we will randomly
generate a value between 0.0 and 0.45. Table 3.1.1 shows how the probability values
of each decision map to the total range of 0.0 to 0.45.

Table 3.1.1 Decision Chance Value Ranges

Decision Chance Value Range

D_FORWARD 0.0 to 0.2
D_BACK 0.2 to 0.3
D_HEAVY_ATK 0.3 to 0.45

The final step in the process is to execute the chosen decision. While executing
the decision, there is one important aspect to take into consideration. The primary
responsibility of the execution process is to manage the animations and visual effects
and to apply any physical changes, such as damage to the environment and other
characters. When developing a system to pair an AI decision to these assets and attrib-
utes we want to keep them as decoupled as possible. By decoupling our physical game
assets from our AI system, we make our life easier when we want to reuse the AI sys-
tem for another game or if we need to port it to another engine.

Decision Weighting

The previous section touched on the concept of assigning probability values, or deci-
sion weight values, to each decision as it is added to the decision list. In the simplest
form, the probability values are static, but with a little additional effort and thought,
we can introduce a very dynamic element to the AI system that will help our agents
react to runtime changes to themselves or their environment.

Decision weighting is a technique that can give the agents a lot of personality and
provides hooks that will allow us to easily create unique personalities for each. There
are many ways in which you can implement a dynamic decision-weighting scheme, so
you will want to find the one that works best for your particular application. How-
ever, one approach is to give each decision a base value so that there is always some
chance that the decision will be made, and then add in a modifier computed at run-
time to make it dynamic.

For example, if we want to increase the likelihood that our agent will back away
from a threat as his health is lowered, we could do the following:

// fHealthPct is defined and set elsewhere

// and it holds the agent’s health as a value from

// 0.0 to 1.0, where 1.0 is full health

// set the base chance for this decision

float fMoveBackChance = 0.1;

// factor in the health of the agent by adding up to

// an additional 0.25 chance based on the health

fMoveBackChance += (1.0 – fHealthPct) * 0.25;

// add the decision to the list for consideration

AddDecision(D_BACK, fMoveBackChance);

Decision Chaining

In some cases, single decisions are not sufficient, and we need to string multiple deci-
sions together, which can be accomplished by decision chaining. Recall the mChained-
Decisions variable in the TDecision structure declaration. This variable is intended to
hold one or more decisions that are ORed together. Upon completion of the primary
decision, one of the decisions listed in this variable will be chosen and executed.

If we add a third parameter to the AddDecision function to accommodate chained
decisions, and we properly set the mChainedDecisions variable of the TDecision struc-
ture, we can now specify more complex behaviors.

Let’s now look at an example of what decision chaining offers. Consider the case
where we have two enemy agents, each very similar in functionality and personality.
Agent A has basic capabilities to move forward, backward, and side to side, and offers
two different attack types, a quick, light attack and a slower heavy-damage attack. Agent
B has the same capabilities but also has the ability to move forward followed by a quick,
light attack. Instead of defining a totally new and unique decision for this combined
behavior, we can simply chain the quick, light attack to the move-forward decision.

The following specifies agent B’s decisions. Notice the D_FORWARD decision with
the chained D_LIGHT_ADK.

AddDecision(D_FORWARD, 0.25, D_NONE);

AddDecision(D_FORWARD, 0.25, D_LIGHT_ATK);

AddDecision(D_BACK, 0.10, D_NONE);

AddDecision(D_LEFT, 0.15, D_NONE);

AddDecision(D_RIGHT, 0.15, D_NONE);

AddDecision(D_LIGHT_ATK, 0.20, D_NONE);

AddDecision(D_HEAVY_ATK, 0.15, D_NONE);

In some cases, we may want to specify multiple possible chained decision options.
For example, a primary decision to move forward followed up with either a backward
movement or an attack. The following describes this decision:

AddDecision(D_FORWARD, 0.20, D_BACK | D_LIGHT_ATK);

The specific needs for controlling and specifying how chained decisions are weighted
and chosen can vary, but a straightforward implementation is to assume all chained deci-
sions have an equal probability. In the preceding example, the chained decision to move

3.1 A Flexible AI Architecture for Production and Prototyping of Games 225

backward or perform a light attack would thus have an equal chance of being chosen as
the follow-up decision. In many cases, this method will be sufficient. If you need more
control, you can instead specify the primary decision multiple times, each time with a
different chained decision. If we have chosen to represent the decisions as an enumerated
type instead of a bit mask, we are restricted to this decision-chaining technique.

Using this technique, our decision would appear as:

AddDecision(D_FORWARD, 0.10, D_LIGHT_ATK);

AddDecision(D_FORWARD, 0.10, D_HEAVY_ATK);

Note that whenever we choose to split decisions up in this way, we must distrib-
ute the probability values accordingly. If not, we can easily end up with a set of deci-
sions that occur more frequently than intended.

Agent Communication and Coordination

Inevitably, situations will arise that require agents to function and make decisions in a
coordinated manner. One easy way to accomplish this is to expand the parameter list
of AddDecision to also specify the mFlags variable that exists in the TDecision struc-
ture declaration.

For example, if we want a mob of enemies to all attack within a few moments of
each other and then back off to regroup or to give the player an opportunity to recover
from the attack before being bombarded again, we would use this technique. An easy
way to achieve this is to define a mob-attack flag in the mFlags bit mask. Whenever a
decision is chosen that includes this flag, a message is broadcast to all other enemies to
prefer an attack decision if possible. The code would look like this:

// define flags to modify decision behavior

F_NONE 0x00

F_MOB_ATK 0x01

// add the attack decision with mob coordination

AddDecision(D_HEAVY_ATK, 0.15, D_NONE, F_MOB_ATK);

When the D_HEAVY_ATK decision is selected, and the mob attack event has been
sent to all other agents, it is the responsibility of each agent to receive and handle the
event appropriately. Using the decision-weighting techniques that we have already
discussed, this can be easily accomplished by adding a large bias to all attack decisions
upon receiving the event. With a little tweaking and balancing with respect to other
possible decisions, we can still maintain our other key personality behaviors, such as
retreating if the AI agent is severely injured.

Handling Special Cases

Inevitably, we will encounter situations where some AI agents just do not fit the stan-
dard template. They might have special logic needs or decision execution that is unique

226 Section 3 Architecture

and cannot be handled in a generic manner. One way to handle these cases is to define
a set of custom decisions in our overall list so that they can be weighted relative to the
agent’s other decisions. Whenever one of these custom decisions is selected for execu-
tion, it is up to the agent to handle it appropriately. This is shown in the following
example:

D_NONE 0x00

D_FORWARD 0x01

D_BACK 0x02

D_LEFT 0x04

D_RIGHT 0x08

D_LIGHT_ATK 0x10

D_HEAVY_ATK 0x20

D_CUSTOM1 0x40

D_CUSTOM2 0x80

Another technique is simply to overload the bit values on an agent-by-agent basis.
If you choose to do this, take care to ensure that you never mix and match the deci-
sion definitions among agents.

Conclusion

The concepts we have discussed here can be applied (possibly with some extensions)
to satisfy the AI requirements of a wide variety of games. The architecture is simple
yet powerful and is well suited for iteration and game balancing. This architecture can
also serve as a prototyping tool when you need to rapidly develop a proof of concept
or gameplay examples.

Remember, AI development is all about good planning and trial and error. All
experienced AI programmers will tell you that they did not get it right the first time
and that they are always learning and discovering better ways to do things.

3.1 A Flexible AI Architecture for Production and Prototyping of Games 227

This page intentionally left blank

229

3.2

Embracing Declarative AI
with a Goal-Based Approach
Kevin Dill—Blue Fang Games
kdill4@gmail.com

We are on the brink of a new age of video game AI. The previous generation of AI
might excel at the mechanical aspects of play (micromanaging worker alloca-

tion or taking head shots, for example), but it still falls short in the areas of strategy
and tactics. More importantly, previous-generation AI is not compelling enough to
allow for true suspension of disbelief. It feels scripted and artificial. All too often, it
doesn’t feel intelligent at all.

Here are a few of the things we can hope to see in the future:

Cunning opponents: Opponents who have the ability to outmaneuver and
ambush you, cut your lines of supply, and attack with decisive force where you
are weak or vulnerable. Opponents who play without unfair economic or
military advantages, who need to be “dumbed down” on the easier levels of
difficulty to give the player a fighting chance.

Intelligent, responsive allies: Allies who understand the rules of the game, who
can operate independently, who know where and when to offer aid (and where
and when to ask for it).

Compelling, emotionally appealing characters: Characters you care about.
Characters you love or hate. Characters that feel alive.

To achieve these goals, we need to change the way we think about our AIs. The
vast majority of AI engineers seem to still be using finite state machines (FSMs) or
scripted AI in their games. It is our contention that these techniques, although useful
in many cases, are not sufficient for the sort of emergent behavior we want to see from
our characters in the future.

In software engineering, we make a distinction between procedural programming,
in which we describe what to do, and declarative programming, in which we describe
what that thing is like [Wikipedia07]. A similar distinction could be made for game
AI. Most of what exists today is procedural AI. The role of the developer is to tell the
AI what to do in every conceivable situation. As we learn to write declarative AI, we
will instead tell the AI what things are possible to do and how it should evaluate its
situation to select the best action available.

The choice between procedural and declarative programming is made by select-
ing the programming language to use, which enforces a particular problem-solving
approach. Similarly, the choice between procedural and declarative AI is largely a
result of the architecture we use, coupled with a particular way of thinking about
character behavior. Any number of architectures could be classified as declarative pro-
gramming available in the academic AI community. This article concentrates on goal-
based AI, which is an approach that has been used successfully in a number of games
across multiple genres in the past.

The remainder of this article briefly discusses the most common procedural AI
architectures and then presents goal-based AI. Finally, we will discuss hybrid approaches
that capture some of the best of both worlds. This article will leave you with a feel for
how and when to use declarative AI and perhaps also the inclination to apply goal-based
AI to your own games.

Procedural AI

When building procedural AI, we attempt to enumerate the possible situations and
tell the AI what to do in each one. One strong advantage of this approach is that it is
easy to test: Simply place an NPC in each enumerated situation, and observe whether
or not it takes the expected action. In addition, every game contains numerous situa-
tions in which the correct action is obvious. In an FPS, for example, if an NPC is low
on health and being attacked, then it clearly makes sense to run away and look for
health packs. There is an elegant simplicity to being able to tell the AI exactly what to
do when those situations pertain. Of course, the tricky part is determining whether or
not the situation truly pertains—in our previous example, for instance, if the player
were nearly dead, then standing and fighting might be a better option—but we will
leave that for the next section.

The disadvantage of procedural AI is that, as researchers have discovered in creat-
ing AI for a game as deceptively simple as chess, there is a limit to the complexity of
AI that can be written in this way. Beyond that point, increasing the complexity of the
AI causes the size (and fragility) of the code to grow at an alarming rate. The result
tends to be either relatively simple characters (such as those found in a game such as
World of Warcraft or Neverwinter Nights) or relatively few distinct characters (such as
in your average FPS).

Scripted AI

In many ways, scripted AI represents the ultimate in procedural AI. A well-designed
scripting language gives the developers the tools they need to have straightforward,
explicit control over the AI. Scripts are comparatively easy to write, easy to balance,
and easy to test. As a result, this architecture is extremely popular, particularly in
games where AI needs to be created for a large number of individual characters in a
short period of time (e.g., RPGs such as Neverwinter Nights).

230 Section 3 Architecture

The primary weakness of scripted AI is that it can easily result in characters whose
behaviors are highly repetitive and predictable. Although modern scripting languages
do support branching scripts and random selection, the use of these tends, by neces-
sity, to be fairly simplistic. Worse, if a branching script results in expected behavior
being unavailable for a reason that is not apparent to the player (e.g., the NPC will
not give the player a quest), the result is often frustration rather than fun.

Finite State Machines (FSMs)

As we all know, an FSM is a collection of states and transitions between those states.
The states typically represent actions that the AI can take (e.g., attack, retreat, search
for health) or situations the AI can be in (e.g., going to the station, riding the sky
tram, exiting the sky tram), and the transitions tell us when it is appropriate to shift
from one state to another.

At first blush, FSMs appear to be an example of declarative AI. After all, they
describe what the world is like (in terms of possible states that can pertain in that
world). The difference is in what they do with that description. Rather than having
the AI reason about the state it is in, the transitions provide a simple set of procedural
rules for choosing a state, and further procedural code is written for each AI to tell the
AI precisely what to do while in that state. In essence, an FSM can be summed up as
a list of procedural rules that take the form, “When in state X, if condition A applies,
then transition to state Y.”

Like scripted AI, FSMs have some powerful advantages that help to explain their
popularity. The division of the possibility space into states is a natural way for many
people to think, making FSMs easy to understand. In addition, FSMs are dead simple
to implement because at their core, they are just glorified switch statements. Finally, a
fair number of middleware products have adopted this architecture, making it a nat-
ural choice for integrating with your tools.

Unfortunately, if we want to solve the sorts of problems alluded to in the intro-
duction, FSMs have some distinct problems. First, they scale poorly because the num-
ber of transitions is exponential on the number of states. It’s easy to think that we can
avoid this problem by keeping the number of transitions per state small, but the prob-
lem is that the intelligence is in the transitions. If there is no transition between two
states, then there is no way to take the actions represented by one when the AI is in
the other. For example, if an FPS AI is in a state without a transition to the “attack”
state, and it encounters the player, it won’t be able to engage him. Furthermore, the
duplication of logic between transitions leading into a single state can result in ram-
pant duplication of code. Finally, FSMs can only be in one state at a time, which
means that they produce AI that can only do one thing at a time. If you need to be
able to control multiple resources in a coordinated fashion (in a squad-based FPS,
sports, or strategy game, for example), then this limitation can make things difficult.

In fairness to state machines, a number of extensions are available that can help to
solve these problems, some of which might even be classified as declarative AI. The

3.2 Embracing Declarative AI with a Goal-Based Approach 231

key thing to look for is an architecture that allows you to define the parameters used
to make a decision in a general way, rather than forcing you to enumerate every situ-
ation the AI can react to and the action it should take in each case.

Goal-Based AI

Goal-based AI is an example of a declarative AI architecture that has been used in a
number of successful games over the years (Zoo Tycoon 2, The Sims, and Empire Earth
2 and 3, to name just a few). We will discuss the architecture briefly and then look at
ways to overcome the most commonly mentioned challenges in its creation.

Architecture

Numerous other sources (e.g., [Millington06]) discuss the details of goal-based AI, so
we will keep our description brief.

Like an FSM, goal-based AI begins by defining a list of possible actions we can
take. We call them goals rather than states but use them in similar ways. For example, an
RTS game might have goals to attack, defend, and explore. In a game such as Zoo
Tycoon 2, an animal might have a goal to satisfy its hunger or to play with other animals
in its exhibit. Note that our goals, and particularly the ways we reason about them, are
somewhat different from a deliberative planning architecture, such as Orkin’s goal-
oriented action planning [Orkin05].

The difference between this architecture and an FSM is the way that goals are
selected. Whereas an FSM uses Boolean logic, goal-based AI instead assigns a priority
(sometimes called an “insistence”) to each goal and then selects the goal with the
highest priority. If we have sufficient resources, we might even pursue multiple goals
simultaneously (e.g., attack with one set of units while exploring with another), but
we will always pursue the highest-priority goals that are available.

One significant advantage of goal-based AI is that it uses a float value for arbitrat-
ing between competing choices, rather than a simple Boolean. This might seem like a
minor difference, but the additional expressiveness means that it can consider a much
wider variety of complex factors when choosing from a large selection of options.

Although a Boolean expression can be arbitrarily complex internally, it is, at best,
an awkward format for expressing subtle weightings of various factors. To illustrate
this point, let’s return to our FPS example where we had an NPC that was low on
health and under attack, trying to decide what to do.

The priority of a “retreat” goal would presumably be based on the NPC’s tactical
situation (i.e., his health, whether he is under attack, what weapon he is using, what
weapon the player is using, how much ammo he has, etc.), so it is going to be fairly
high in this situation.

Similarly, one of the factors that contributes to the priority of the “attack” goal
might be the player’s current health. This priority consideration might be fairly low

232 Section 3 Architecture

under normal conditions but increase exponentially when the player’s health is very
low. Thus, the NPC might decide to “go for it” and stay to fight (that is, the “attack”
goal’s priority might win out).

Now imagine writing the Boolean expression for this relatively simple decision.
We can’t simply say “fight if the player’s health is below 25%” because then the NPC
would stay even if it was at 5% while the player was at 25%. On the other hand, we
can’t say “run if your health is lower than the player’s” because then the NPC will run
away immediately if the player gets the first shot off. Certainly this logic could be con-
densed into a Boolean expression if we worked at it long enough—but then we would
be back to exactly the sort of convoluted, case-specific logic that we are trying to
escape!

Using float-based logic also allows us to optimize the allocation of resources (such
as units or money) in a simple way. If we build a prioritized list of all active goals, we
can simply work down the list and arbitrarily assign enough available resources to sat-
isfy as many of the highest-priority goals as possible. This is not likely to generate the
best possible resource allocation, however. For example, sometimes it is better to
accomplish two lower priority goals than one higher priority one. Similarly, it is usu-
ally better to assign units that are already located in the area where the goal will take
place. Thus, we can make one or more optimization passes where we consider moving
resources between goals, trying to maximize the total priority in the system. This
technique has been used to good effect in RTS games in the past [Dill05].

Another advantage of goal-based AI is that the selection logic is placed on the
goal (or, more specifically, the priority calculation for the goal) rather than on the
transition between a specific pair of goals. As a result, every possible action can be
considered on every update. We do not have to worry that a missing transition will
prevent the NPC from taking appropriate action in an unusual situation because a
transition is always implicit in the priority of the goal (although if you want to explic-
itly prevent a particular transition, you can certainly do so by setting the priority to
zero in that case).

This placement of the selection logic also means that the complexity of goal-
based AI scales in a much more reasonable fashion as the size of the AI grows. It
would be an exaggeration to say that it scales linearly because we do have to worry
about the interactions between goals when balancing the priorities, but it is much
closer to linear than we get with FSMs. In addition, there is no duplication of transi-
tions, which means that the resulting code duplication is eliminated as well. Finally,
because all of the intelligence is in the priority calculations, it is trivial to move that
information into a data file and allow designers or even play testers to balance the AI.

The main disadvantage of goal-based AI is a side effect of its greatest strength.
Thinking about AI decisions as a “bucket of floats” is significantly less intuitive than
thinking about them as a set of discrete decisions, each of which can be implemented
with custom code. Overcoming this challenge is the subject of the next section.

3.2 Embracing Declarative AI with a Goal-Based Approach 233

Balancing Priorities

Goal-based AI derives its strength from the ability of its priority functions to combine
a large variety of factors into a single value, which can then be compared to other val-
ues in order to decide what to do. The challenge is to balance those factors in a way
that yields behavior that appears intelligent rather than random or demented.

Other sources (e.g., [Dill06]) discuss at some length how to generate the numbers
that go into priority calculations. Here we will focus instead on tools and techniques
that can be used to manage the complexity of balancing the priorities for different
goals.

Shared Conventions
It is helpful to have explicit conventions about the values that are reasonable. For exam-
ple, in an RTS, we might say that exploration should generally have a priority of roughly
250, whereas attack goals will have priorities ranging from 0 to 800, and defend goals
will have priorities ranging from 100 to 1000. Further, we might decide that the value
of an attack goal is doubled after the enemy is engaged, making it easier to decide
whether to break off an attack to rush to defend your own cities. These shared conven-
tions help you to design the expected behavior of your AI before you delve into the
specifics of writing priority calculations. They also make it easy to look at the values
actually being generated and recognize situations where priorities are too high or low.
Finally, shared conventions simplify coordination between multiple AI developers.

Bonuses, Multipliers, and Exponents
Getting balance right requires the ability to tweak the relative value of all the factors
that feed in to priority calculations. One trick is to allow developers to apply an addi-
tive bonus, a multiplier, and/or an exponent to every value that goes into the priority
calculation, including the final priority for each goal. This results in a powerful, easy
way to balance the importance of each consideration.

Big Numbers for Big Decisions
One common complaint about goal-based AI is that it is difficult to debug because
every priority has to be considered in the context of every other priority. There are two
answers to this. First, we often have goals that use completely different resources (e.g.,
building a mine uses engineers, whereas defending that mine uses military units) and
hence do not interfere with one another. Second, even goals that use the same resources
can usually be divided into sets of goals that are essentially disjoint. For example, a
puppy game might have one set of goals for peeing (e.g., pee on the carpet, scratch to
be let out) and another for playing (e.g., play with the ball, take the ball to the player
to throw, chase my tail). If we use big numbers for big decisions (e.g., whether to pee
or play) and small numbers for small decisions (e.g., whether to play with the ball or
chase my tail), then we can balance them in isolation.

234 Section 3 Architecture

Debugging Tools
The value of good debugging tools cannot be overemphasized. For example:

Graphical Debugging Tools: If a decision is based on the position, rotation, or
movement of objects in the game, then find a way to display that graphically.
For example, a sports game might only pass to a receiver if no nearby opposing
players are in front of him, and the nearest player behind him is at least 3 feet
away. We can display arrows on the players to indicate their linear velocity, and
circles around the receivers to show the area that needs to be clear of opponents.

Statistical Analysis: It is useful to run the game for a while and then do a statistical
analysis of the priorities generated. What were the minimum, maximum, and
average priorities for each type of goal? What was the standard deviation? This
information can be used to validate your shared conventions and to provide
insight into the use of bonuses, multipliers, and exponents.

Priority Spam: Sometimes you just have to dig into the raw numbers. To this end,
there needs to be a way to see the overall priority of each goal, so that you can
see explicitly what was considered and what was selected. There also needs to be
a way to see the calculations that go into each of those priorities, so that you can
see why the decision went the way it did. This can result in a huge amount of
data, so be careful how much of it you store and ensure that you have the ability
to turn it off when it is not needed.

Replay: If at all possible, find a way to replay the game, generating the same player
inputs automatically and using the same random number seeds. This will allow
you to revisit a buggy situation and drill down on it over and over until you can
find the problem and fix it. Then you can replay that same situation with the
new logic and make sure that the fix worked. This same technology can be used
to give players a “film” of the game, which they can replay to their heart’s
content.

Data-Driven Design
To achieve rapid iteration, it is critical that the AI be data driven, so that it can be bal-
anced without recompiling the code. This also allows the values to be edited by designers
or even modified by players to create custom AI. The Kohan games, created by TimeGate
studios, are examples of games using a goal-based architecture that have had particularly
good success with player-created AI.

Hybrid Architectures

Goal-based AI does very well in dynamic situations where it needs to be able to inter-
pret the game state and react appropriately. There are some cases, however, where
there is a clear “Right Thing” to do. In those cases, it can make sense to combine this
architecture with more procedural architectures.

3.2 Embracing Declarative AI with a Goal-Based Approach 235

Hierarchical Implementations

The most obvious way to combine architectures is to implement them hierarchically.
For example, in Zoo Tycoon 2, if a guest chooses to ride on a sky tram, then he will run
a mini-FSM that has the guest go to the tram station, board the sky tram, ride to the
destination, and then exit from the sky tram.

Similarly, you can imagine a strategy game in which the high-level actions (whether
to attack, defend, or explore, for example) are selected using an FSM, and then goal-
based AI is used to select a target (or targets) for those actions. At Blue Fang, we have
found a technique similar to this to be useful in our next generation of animal AI.

We have also considered (but not implemented) the use of similar techniques
with scripts. Possibilities here include the following:

• Letting a goal execute a script.
• Letting a script set a variable that can be used to influence the priority of a goal.
• Letting the priority evaluation on a goal call a script and use that script to calcu-

late its value.

Overwhelming Bonuses

Another way to apply procedural logic to goal-based AI is to use an overwhelmingly
high (or low) priority. For example, if your shared convention is that the AI will only
assign priorities between 0 and 1000, then you can set the priority of a goal to 10,000
if you want to force it to happen. In Kohan 2, there are certain buildings that should
always be built together in a certain order as early as possible. This was enforced by
using build templates [Dill06]. After the AI decided to apply a build template in a par-
ticular situation, the template would set the priority for building the corresponding
buildings to be overwhelmingly high.

There are also times when you want to prevent the AI from taking actions that will
look stupid (whether they are really stupid or not). For example, it almost always looks
like a mistake to withdraw undamaged units from combat—even if they are on their
way to satisfy a high-priority goal. To prevent this from happening, you can simply set
the priority for any goal (other than a retreat) that would use an engaged unit to zero.

The values used for overwhelming bonuses should be part of your shared conven-
tions. You might even use multiple different overwhelming bonuses to create a hierar-
chy of forced goals.

Related Work

Goal-based AI is not the only way to approach declarative game AI. The following are
a few other areas of research that seem to be producing good results.

236 Section 3 Architecture

Planning

Goal-oriented action planning [Orkin05] has caused something of a stir in the game AI
community in the past few years. It is similar to goal-based AI except that it uses a
planning architecture rather than priorities to select goals. A similar approach is hier-
archical task network planning [Gorniak07].

Intelligent Scripting

Scripting remains a powerful and useful technique for generating AI, particularly if
you need to generate AI for a lot of characters in a short amount of time. Approaches
that seek to improve the intelligence and utility of scripting include ScriptEase [Cutu-
misu06] and dynamic scripting [Spronck06].

Terrain Analysis

Terrain analysis is not an architecture in its own right but rather a collection of tech-
niques for generating useful information and decisions about the game map.
Although not the topic of this article, good terrain analysis is essential to achieve the
cunning opponents and responsive allies alluded to in the introduction to this article.
Many publications discuss terrain analysis as it relates to computer games [Pot-
tinger00, Forbus02, Higgins02, Dill04, Jurney07].

Conclusion

The intent of this article is to inspire you to reconsider the ways that you think about
game AI. Instead of writing AI that explicitly tells the AI what to do, write AI that
tells the AI about the factors it should weigh, and let it do the thinking. Instead of
writing AI that behaves predictably, write AI that can behave in emergent, unpre-
dicted ways—but in ways that are both intelligent and appropriate to the situation at
hand.

We have discussed two of the most common procedural AI architectures in use
today and one popular declarative AI architecture. Many other declarative architec-
tures exist in the academic AI community, and you are encouraged to do further
research to find the techniques that are most appropriate for their particular game.

References

[Cutumisu06] Cutumisu, Maria, et al., “Generating Ambient Behaviors in Computer
Role-Playing Games.” IEEE Journal of Intelligent Systems, Vol. 21, no. 5 (Sep/Oct
2006): pp. 19–27.

[Dill04] Dill, Kevin, et al., “Performing Qualitative Terrain Analysis in Master of
Orion 3” AI Game Programming Wisdom 2, Charles River Media, 2004: pp
391–397.

3.2 Embracing Declarative AI with a Goal-Based Approach 237

[Dill05] Dill, Kevin, “A Goal-Based Architecture for Opposing Player AI.” Proceed-
ings of the First Artificial Intelligence and Interactive Digital Entertainment Confer-
ence, (June 2005): pp 33–38.

[Dill06] Dill, Kevin, “Prioritizing Actions in a Goal-Based RTS AI.” AI Game Pro-
gramming Wisdom 3, Charles River Media, 2006: pp. 321–330.

[Forbus02] Forbus, Kenneth D., Mahoney, James V., and Dill, Kevin, “How Qualita-
tive Spatial Reasoning Can Improve Strategy Game AIs.” IEEE Journal of Intelli-
gent Systems, Vol. 17, no. 4 (July/August 2002): pp. 25–31.

[Gorniak07] Gorniak, Peter, and Davis, Ian, “SquadSmart: Hierarchical Planning
and Coordinated Plan Execution for Squads of Characters.” Proceedings of the
Third Artificial Intelligence and Interactive Digital Entertainment Conference, (June
2007): pp. 14–19.

[Higgins02] Higgins, Daniel, “Terrain Analysis in an RTS—The Hidden Giant.”
Game Programming Gems 3, Charles River Media, 2002: pp. 268–284.

[Jurney07] Jurney, Chris, and Hubick, Shelby, “Dealing with Destruction: AI from
the Trenches of Company of Heroes.” Proceedings of the Game Developers Confer-
ence, 2007.

[Millington06] Millington, Ian, Artificial Intelligence for Games. Morgan Kaufmann
Publishers, 2006: pp. 376–402.

[Orkin05] Orkin, Jeff, “Agent Architecture: Considerations for Real-Time Planning
in Games.” Proceedings of the First Artificial Intelligence and Interactive Digital
Entertainment Conference, (June 2005): pp. 105–110.

[Pottinger00] Pottinger, Dave C., “Terrain Analysis in Real-Time Strategy Games.”
Proceedings of the Game Developers Conference, 2000.

[Spronck06] Spronck, Pieter, et al., “Adaptive Game AI with Dynamic Scripting.”
Machine Learning, Vol. 63, no. 3 (2006): pp. 217–248.

[Wikipedia07] Wikipedia, “Declarative Programming.” Available online at
http://en.wikipedia.org/wiki/Declarative_programming, August 21, 2007.

238 Section 3 Architecture

http://en.wikipedia.org/wiki/Declarative_programming

239

3.3

The MARPO Methodology:
Planning and Orders
Brett Laming—Rockstar Leeds
brett@tilda.plus.com

This article and associated demo elaborate on a previously outlined AI design par-
adigm [Laming03] nicknamed MARPO (Movement, Avoidance, Routing, Plan-

ning, and Orders). Resting on the premise that AI architectures, regardless of genre,
tend to include certain key building blocks and interfaces, MARPO abstracts these
genre-independent concepts to create a design framework that produces flexible and
manageable AI from first principles.

This article introduces the planning side of MARPO and its foundational princi-
ples. By imposing various design restrictions, it shows how to create a clean goal-based
hierarchical state machine that embraces some aspects of academic rule-based reason-
ing systems. It also addresses common pitfalls at this behavioral level, showing how
maintaining strong MARPO discipline maximizes efficiency, flexibility, manageabil-
ity, and successfulness of the end result. The associated demo on the CD-ROM
demonstrates this technique and its modular approach.

A Brief Introduction to MARPO

MARPO was originally formed as a design strategy for maximizing the chances of
producing solid AI from first principles. It aims to generalize, mostly from experience,
the best practice of writing AI across different genres, titles, and platforms. It consists
of a number of core observations and principles, some of which have been detailed
previously [Laming03].

The MARPO Mantra

AI implementations are notoriously difficult to generalize. Genres exhibit different
approaches and trends, titles require different game data, and platforms have different
limitations. In addition, to make for a better title, even the most generic AI architec-
ture needs to be tailored to the specific needs of the game in question.

Thankfully, ideas, as opposed to implementation specifics, generalize more easily,
and it is these ideas that underlie MARPO. The entire MARPO methodology is based
on four important observations:

• If implemented with a degree of discipline, AI lends itself nicely to compartmen-
talization resulting in a series of self-contained black boxes, or components, from
which we build an AI circuit. Although the internals can be quite complex and
different, the inputs and outputs, if kept properly self-contained, should form
neat finite interfaces that are inherently understandable.

• Within AI systems, the flow of information, per frame or iteration, is predomi-
nantly one way. Information about the game state flows downward through the AI
circuit, being sequentially digested by the black boxes into increasingly manage-
able data. The end result of this digestion is a subsequent change back to the game
state. This lends itself to a multitiered hierarchical approach to AI, which pro-
motes increased manageability via techniques such as individual tier diagnostics.

• AI is almost always applied to an individual—a sentient thing in the game world.
Although group behavior is common in AI, it is almost always modeled as com-
munication between a set of individuals. For the purpose of this article, we will
call these entities actors. As with most systems, an actor applies its AI indepen-
dently on each frame.

• Across genres, games, and platforms, a number of key interfaces can be identified
that respect unidirectional information flow. MARPO identifies five of these inter-
faces as being important, Movement, Avoidance, Routing, Planning, and Orders.
At these points, the flow of information is so well defined that it can be seen to
generalize across titles regardless of genre.

The MARPO Interfaces

The MARPO interfaces are described here:

Orders: At its highest level, the AI is ordered to perform some task. These orders
might come from the player (“cover me”), from a script (“attack the player”), or
from the game itself (“perform ambient behavior”). The AI doesn’t need to know
where the order came from—just what it is trying to do so that it can plan. At
this level, scripting languages exert their influence, with designers giving the
highest-level orders to produce custom AI for their circumstances.

Planning: This tier takes input in the form of an order and plans how to realize it.
This is one of the least easy tiers to generalize. The planning tier, and the
amount of emphasis it receives, will be highly dependent on both title and
genre. One factor we can generalize is movement. With few exceptions,
planning is going to tell the actor to move to a particular target position.

Routing: Given that we need to move to a target position, we need to work out
how to get there while navigating any static environment. This is the level of the
A* algorithm [Matthews02] or other navigation solutions. Although it is also
highly genre-specific, its output is well defined. It breaks down the journey into
one or more waypoints. These are given to the actor in sequence, the combined
effect being to take us to our desired destination.

240 Section 3 Architecture

Avoidance: Given a waypoint to head for, we now need to navigate the dynamic
environment. This is the realm of object avoidance and, if there is any deviation
off our path, further static avoidance of the environment. The output of this tier
is an adjusted target position that steers us away from trouble.

Movement: Given a desired target position, we now need to calculate the inputs to
the simulation and physics that cause our actor to head for that position. This
involves finding an inverse kinematics (IK) solution for the physics, usually via
some type of control system. These inputs might come from a simple heuristic
or a PID controller [Forrester03]. Its ultimate output is a collection of control
inputs that drive the simulation to produce the desired effect.

MARPO Good Practice

In addition to these key interfaces, various common sense principles have evolved
within MARPO to help produce and maintain reliable AI.

Game AI quickly grows beyond easy human diagnosis; this is part of its beauty.
Much has been made of this “emergent behavior” in recent years, and it is an integral
part of pleasing AI. But at some stage, someone is going to ask, “What is the AI
doing?” and expect an answer that you cannot provide. At times like this, it is impor-
tant that the AI can justify its behavior to you, so having a good debugging system in
place [Laming03] is essential.

As AI grows in complexity, it becomes hard to establish what is behavioral nuance
and what is implementation error. As the title grows, it is increasingly important that
the foundational building blocks work as expected. Using a modular approach allows
us to test a component independently, by variation of its inputs. An assert system is
used to protect input and output at our interfaces.

The relationship between AI and gameplay is extremely symbiotic. To be efficient,
direct communication between the AI and game engine is essential. Expecting to keep
a working copy of game state for the AI is both unrealistic and inefficient. But AI that
is too entwined with gameplay is difficult to debug and hard to encapsulate. As such,
we compromise and say that AI can query the game state arbitrarily but cannot modify
it. The rest of the simulation can alter the game state, but only using output from the
AI, not by inspection of the AI itself.

A consequence of this is that a strict divide is formed between AI and simulation.
If we consign simulation control input solely to the output of the AI delivered through
the movement interface, we maintain a clear simulation divide. By clever use of con-
strained public interfaces and const keywords, we limit the AI to read-only access.

The Basic Architecture

At this stage, we are in a position to define two of the most important components of
the AI: the virtual yoke and the target class.

3.3 The MARPO Methodology: Planning and Orders 241

The Virtual Yoke

The primary role of the virtual yoke is to deliver control inputs to the simulation,
fulfilling the need for a movement interface. Its secondary role is to provide direction
for the other game subsystems. The yoke’s design comes from similarities observed
between the AI and player control of an actor.

Table 3.3.1 Per-Frame Processing of the Human Player and AI Actors

Human Player AI Actor

The player takes audiovisual input that provides The AI queries the current game state to access
insight into the current game state. information.
The player processes this input and prepares to act. The AI digests this information through the

MARPO interfaces and prepares its control
inputs.

The player acts through a human interface device, The AI provides the control inputs to the
providing control inputs to the simulation. simulation through the movement interface.
The simulation executes without accessing the The simulation executes without inspection of
player’s brain. the AI’s internal state.

Following MARPO, Table 3.3.1 shows that our AI directly mimics the per-frame
input, output, and restrictions of the player. Taking this concept further provides the
following:

• AI control output, being no different from player output, should drive simulation
through the same device, essentially a virtual controller or yoke for the AI. AI and
player control are then directly interchangeable: the AI setting the yoke through
its tiered processing, the player setting the yoke directly from the physical pad
mapping.

• The simulation cannot access the player’s brain. Good design also prohibits it from
inspecting the AI’s internals. Hence, it is driven solely by control input. Except for
optimizations, then, gameplay logic should remain totally independent of the
nature of our actor. In an ideal world, there would be no player-specific behavior.

• Forcing both player and AI to drive the simulation through the virtual yoke has a
number of advantages. The virtual yoke probably exists already. Most games have
some notion of a physical input device mapping onto a virtual controller to facili-
tate multiple control schemes. It allows the player and AI to seamlessly take con-
trol of any actor, which is great for autopilots, in-game cutscenes, or AI possession
mechanics.

• Provided we maintain actor independence, the AI will perform actions just like
the player. This is great for believability and immersion, a holy grail in today’s AI
world.

242 Section 3 Architecture

• Keeping the simulation code independent of AI and player means we only need
to create one code path, and we can get rid of many traditional IsPlayer()-style
conditionals.

• Finally, although initially harder to adjust to and implement, thinking about AI
in terms of pad input changes how we write AI, leading to a much more “human”
approach.

The simple virtual yoke of our demo looks as follows:

struct sVirtualYoke

{

sVirtualYoke() : mGas(0), mSteer(0), mbCraft(0),

mbUse(0) {}

tFloat mGas;

tFloat mSteer;

tBool mbCraft : 1;

tBool mbUse : 1;

};

The yoke provides a combined interface shared by both AI and player. Both par-
ties will impart their own properties to the structure as the game grows. For example,
mGas and mSteer were added immediately to store the player’s directional pad input
(which the AI needs to replicate). By contrast, mbCraft was added later to allow our AI
to attempt to craft objects in our demo, but there is no reason why the player could
not map a control to this input and have the same functionality.

We mentioned previously that the yoke is responsible for directing other compo-
nents of the game engine such as the camera, animation, and sound subsystems. This
is necessary to produce the complex realism demanded by today’s games and maintain
strong timing control over AI actions and audiovisual output. Intended to grow
rapidly, without need for storage over the frame, the yoke transmits any information
needed to achieve this role even down to individual timing or animation blends. In
essence, we are answering questions such as “where should my animations be now?”
before they need to be asked.

The Target Class

The notion of target position or waypoint has been referred to many times, and many
interfaces use it as part of their input and output. As a location to move to, it is often
viewed as a position in the world, but there are many times when we want our AI to
go to another entity, follow a path node, or get within a certain radius. Unfortunately,
it is still too common to find these cases handled separately, even though they repre-
sent the same thing—an arbitrary position in the world, albeit one that can change
each frame.

3.3 The MARPO Methodology: Planning and Orders 243

Target needs, regardless of genre, usually fall into a set pattern. We start with a base
of reference. Common bases include world positions, an entity, or a path node, giving
us our initial position. We apply any local vector offset to the target (e.g., 3 meters to
its left). We then apply any approach radius (e.g., get within 10 meters) backward along
the vector to our reference entity to give us a final position to aim for.

The demo target class, cTarget, is designed to encompass these requirements.
The class is self-contained, takes a limited amount of input (a reference entity), pro-
vides finite output (a world position), and can reason about what it is doing by use of
a debug function—a classic MARPO component. Its primary purpose is to allow us
to combine similar AI instructions so that “go to position” is now no different than
“go to entity.”

class cTarget

{

public:

// Initial setup

void Set(const sVec &position);

void Set(const cEntity &entity);

// ...

// True if the given entity completes this frame -

// should take into account velocity etc...

bool IsCompleting(const cEntity &entity) const;

// The world position [output] to head for.

sVec WorldPos(const cEntity &entity) const;

// Debug function - what we are currently doing.

void Debug(const cEntity &entity,

sRGBA baseColour,

sRGBA aimColour) const;

private:

enum eComponents

{

C_Entity = 0x01,

C_WorldPosition = 0x02,

F_Radius = 0x04,

F_LocalOffset = 0x08

};

// Various parameters - can union to save space.

sVec mOffset;

const cEntity *mpEntity;

tFloat mRadius;

// Component flags

tNat8 mComponents;

};

244 Section 3 Architecture

In addition to its initial parameters, cTarget also maintains a completion radius.
Although not responsible for the target position itself, it defines a radius from the
final computed point, inside which we are said to have obtained our target. Although
this could go in client code, we justify its storage here on the grounds that most uses
of cTarget will involve entities arriving close to the target.

The Think/Act Loop

Having explored the advantages of separating AI and simulation and having decided
on the virtual yoke to communicate between the two, we can now define the update
loop for our actors. As the AI drives the simulation, and the flow is unidirectional
inside our once-per-frame Update() method, dubbed the Think()/Act() loop, the
loop is extremely simple:

sVirtualYoke yoke;

Think(yoke, dt); // Yoke passed by reference

Act(yoke, dt); // Yoke passed by const reference

For any given frame time dt, a fresh yoke input is filled in by the Think function,
which queries the AI or the player, and is then enacted in the Act function, which
contains the rest of the simulation.

Debugging and Testing

Even in this simple demo, some notion of debugging and modular integrity is neces-
sary. We will handle this in two ways. First, we put in place assert and debugging facil-
ities. The debugging facility in this demo (cDebug) is, in essence, a large display list
that allows for delayed direct rendering. This means we can debug intermediary calcu-
lations at their point of instantiation, without having to explicitly record them for the
render loop. For further ideas, see [Laming03].

Second, we test each component as it is built. In our case, we use the debugging
facilities to test the target class, using both a world position and an entity-based tar-
get. By directly plugging player input into the virtual yoke, we also test the Think()/
Act() loop. You can play with the targets in Example1.cpp on the CD-ROM.

The Movement, Avoidance, and Routing Tiers

Having verified the simulation with player input, the remaining AI components are
built using a bottom-up approach allowing each component and tier to be tested
piecewise. However, as planning is the primary focus of this article, we will limit the
discussion to the remaining tiers.

The first three tiers in the demo are represented by the following functions:

// Routing

tBool GetCurrentWaypoint(const cTarget &in,

const cEntity &entity,

cTarget &out);

3.3 The MARPO Methodology: Planning and Orders 245

// Avoidance

tBool ApplyDynamicAvoidance(const cTarget &in,

cTarget &out);

tBool ApplyStaticAvoidance(const cTarget &in,

cTarget &out);

// Movement

void SolveIKTo(const cTarget &target,

const cEntity &entity,

tFloat dt,

const sPropertySheet &propSheet,

sVirtualYoke &yoke);

Routing and avoidance are not implemented. Routing in our demo environment
is not particularly complicated—the world is mostly empty—and a full discussion of
dynamic avoidance is outside the scope of this article. However, as information flow is
unidirectional, we keep the method stubs so that they can be easily added later. Cur-
rently, each takes and passes back the same target.

The movement tier always needs implementation, however. Its purpose is to
resolve, for any given entity and entity property sheet (propSheet), a target position
(target) into movement control inputs for the virtual yoke (yoke) over the given
frame time (dt). In the case of the demo, this means determining the correct mGas and
mSteer values.

Solving this tier can often be complicated and, as with a lot of IK problems,
usually results in an approximated solution that mostly holds. For our simple demo,
where the actors can turn quite quickly, this problem can be solved with a near perfect
solution by making use of equations of motion. However, because it’s not the main
focus of this demo, the rationale behind its derivation will be left for another time. Its
methods can be found in AIIK.cpp.

Now that we have our IK in place, it is time to test the new components. By sup-
plying a temporary dummy target position to the SolveIKTo and leaving debugging
on the target, we can observe the AI on the move.

The Task System

With the MAR tiers of MARPO handled, debugging in place, and our components
tried and tested, we can now move onto the planning tier, the main focus of this article.
Similar architectural solutions have been derived before [Gilgenbach06, Johnson06]
and provide a useful comparison.

Our planning system consists of a goal-based, hierarchical finite state machine
designed to combine the simplicity, understandability, and elegance of the finite state
machine (FSM) with the power of more academic rule-based reasoning. In doing so,
we will build an efficient modular planning system, flexible enough to accommodate
different AI approaches while remaining easily comprehensible.

246 Section 3 Architecture

The Finite State Machine (FSM)

The FSM is unarguably still the bedrock of AI components. Although other alterna-
tives have gained favor recently [Orkin06, Isla05], the expression of AI output in
terms of finite actions will ensure, at some level, that FSMs remain a key component
of AI systems. Easy to understand and modular in design, the FSM is a natural repre-
sentation of control flow. Many critically acclaimed titles have been built around the
FSM, and the approach is well documented through game literature [Fu03]. Like it or
not, ask any designer and chances are that the notion of finite control flow, regardless
of implementation specifics, will be the preferred way of describing the behavior the
designer wants.

It would be foolish to ignore this fact. Having designers onboard and being able
to meet their specific requirements ensures that everybody is happy. They are, after all,
the principle clients of your AI toolbox. That said, a multitude of post-mortems on
even the best-intentioned FSM systems reveals that common mistakes are being
alarmingly repeated.

An example that illustrates most of the problem points is Grand Theft Auto’s
(GTA) paramedic. Death happens a lot in the predominantly FSM-driven GTA
world. Actors can, and generally are, run over or killed by vehicles at the most inop-
portune times. Regardless of what it was doing, the actor is told it is dead—so what-
ever myriad of states an actor is in, it needs to handle this case.

Suppose we have a state DEAD that we immediately transition to when death
occurs. Could this sudden change leave our previous state in a bad internal state? For
example, if death happens when we are getting in a car, whose responsibility is it to
unbook the seat? If the paramedic resurrects us, what state do we return to? If we had
been attacking someone, for example, we don’t want to just wander off.

A clever approach to solving this problem is to maintain a stack of previous states.
The DEAD state is pushed onto the stack and popped off again, should we be resur-
rected. This sounds like a neat solution, but what about the storage required? It is,
after all, not just the state that needs to be stored but also any target we might have
had at the time and any other properties that customized it—and to make matter
worse, we need such a stack for each actor in the world.

We could of course offload some parameterization to individual states, KILL_
ALLOWING_FLEE, for example. But won’t this lead to state proliferation and confusion?
How can we share the same code across multiple states, without littering the code
with unwieldy State() == KILL_ALLOWING_FLEE style conditionals?

Another alternative is to have each state handle the fact that we are dead, indi-
cated by a member property of the actor. This might be great for understanding the
event coverage of a state, but are all those extra IsDead() checks going to cramp effi-
ciency and readability? Is adding each global state as a property going to bloat our
actor?

3.3 The MARPO Methodology: Planning and Orders 247

In general then, if we are to follow the FSM approach so favored by designers, we
need a system that can handle the previous cases. This gives us a chance to define
some new design principles.

• The planning system needs the ability to react to critical events that can tem-
porarily take control away from the current state at any time.

• It needs to be able to safely return to its previous state and resume processing fol-
lowing any immediate reactions to these events.

• Minimizing code repetition is highly desirable, especially where it involves condi-
tional logic. Later addition of a missing conditional on instances of duplicated
code generates some of the worst problems to track down.

• As a direct result, conditional logic should be kept encapsulated and minimal to
improve code readability, maximize performance, and minimize potential prob-
lems later.

• State parameterization is generally more desirable than state proliferation. Having
fewer states minimizes confusion and maximizes code reuse.

• To be memory efficient and easily comprehensible, only information pertinent to
existing states should be kept around.

Goal-Based Reasoning

What do we mean by goal-based reasoning? The simplest definition is the achieve-
ment of a high-level goal by repeated decomposition into smaller and smaller subgoals
until each can be seen to represent a finite sequence of actions.

One technique that has had great success solving problems of this ilk in academic cir-
cles is goal-based reasoning, a subset of rule-based reasoning [Bratko90, Hopgood00].
We will briefly describe the traditional academic approach here before discussing its
strengths and weaknesses.

A traditional academic rule-based reasoning system consists of three main parts:
working memory, a rule base, and an inference engine. The working memory consists
of our actor’s knowledge about the world and a list of goals it is trying to achieve.

The rule base defines a collection of rules, each responsible for solving a particu-
lar goal and each with various preconditions. Should the preconditions match and a
rule fire, it will generate a series of actions and possibly some additional subgoals.
Rules can use wildcards and pattern matching for more general applicability (essen-
tially a form of parameterization).

An example rule for driving to a location might read as follows:

(goal) actor drive to location and
(precondition) actor has vehicle then
(action) remove goal actor drive to location and
(action) vehicle at location.

248 Section 3 Architecture

A second rule might be the following:

(goal) actor drive to location and
(precondition) not actor has vehicle then
(subgoal) add goal actor get vehicle.

An inference engine works by choosing rules that match their preconditions to
facts in the world. Firing a rule then creates actions that modify the working memory,
changing facts about the world, and possibly producing new subgoals. On the next
pass, these changes will probably match other rules, and this will continue until either
the goal is solved, or we cannot find a rule that matches.

Often, more than one rule will match at any one time. Traditionally, academic
inference engines, freed of tight real-time constraints, have used recursion to explore
each possibility. If this type of inference engine ever reaches a state where it cannot fire
any more rules but still has goals, it will backtrack (a handy byproduct of the recursive
approach) and try another possibility. In essence, then, most academic inference
engines take a brute force approach to reasoning, trying various rules in sequence
until they find a solution that solves the given goal.

There are historically a number of problems with applying this academic tech-
nique to commercial games. First, it makes heavy use of recursion. This might be
appropriate to the toy domain, but with a vast array of problems to solve and many
potential rules to solve them, other techniques, such as time-slicing or A*-directed
searching [Orkin06], are generally required. On top of this, the amount of memory
required to store the game state during recursion grows exponentially.

Having said that, this approach does have a number of nice properties that we can
exploit. First, each rule is self-contained. It needs little information about the bigger
picture, just what is required by its preconditions and what is changed by its actions.
By using subgoals, it allows someone else to take care of lower-level details. In terms
of AI understandability, this is an extremely appealing trait because it allows us to
define how to solve the task at hand without micromanagement. For example, if we
have a goal to get in a car, and we are not in a car, we can generate the subgoals find a
car and enter the car. That being done, we leave it to an inference engine to work out
exactly how to enter the car.

In addition, we can get around the need for expensive search techniques because
actions and their sequencing are often well defined. The get in a car goal makes no
sense, for example, if we try enter the car before find a car. Because we know the order
of actions and subgoals, we have already pruned our search tree without the need for
an automated planner. As subgoals are, for the most part, executed sequentially, each
goal only needs to act upon one subgoal at a particular time with our goal tree essen-
tially becoming a goal queue.

In this example, our get in a car goal knows to put on find a car before enter the
car. This is sensible knowledge to embed. By making use of an internal FSM whose
states are directly linked to subgoals, get in a car can control the subgoal sequencing

3.3 The MARPO Methodology: Planning and Orders 249

itself. Should we already have found a car, get in a car will realize this and immediately
transition itself to the enter car state, putting on the enter car subgoal.

This notion of a task embodying a single rule is quite powerful, and one we will
adopt. Conveniently, it follows the MARPO principles of self-containment with lim-
ited input—the working memory (our game state)—and limited output—actions
(virtual yoke output), and subgoals (our child). If we restrict a task to only knowing
about its children, as is implicit in most recursive rule-based reasoning systems, then
we also maintain the desired one-way flow of information.

The only question remaining is what happens if we start exploring a solution that
does not achieve the requested goal. In recursive rule-based reasoning systems, we
simply backtrack to the original state before we made the decision. Unfortunately, we
do not have that luxury, and to make matters worse, our current goal stack might
become invalidated by factors outside our control—that car we were getting into just
blew up, for example. The solution then is to start replanning again from the original
goal. However, if we are to do this, we need to minimize the time required to get back
to the state we were previously planning from. We will see shortly how this fits in
neatly with our approach.

This results in the following ideas:
A task is a self-contained code component that replaces the traditional production

system rule. As we lay no restrictions on it, a task could be a neural network, simple if-
then rules, Bayesian reasoning, or a callback to script. As it is executed procedurally, the
need to store an ongoing working memory is redundant—decisions are now made
directly on the current game state. Although this may produce suboptimal results com-
pared to other search-based planning systems, some argue that the player will often not
notice. By allowing random choices of subgoals wherever possible and similar sequenc-
ing tricks [Isla05], it is possible to generate believable results. Considering that subop-
timal plan generation often introduces more movement, a key output in making the AI
look busy, we argue that the wins in terms of memory and searching overhead have so
far outweighed the restrictions.

At any one time, a task is allowed to use a single subtask to help achieve its goal.
The active subtask is determined by an internal FSM. Note that it is quite possible for
a goal to require multiple subtasks and quite possible to keep around more than one
subtask at a time, but in terms of processing, only one is active at a time. As a search-
based inference engine considers each solution in sequence anyway, this has not yet
caused a problem.

The previous role of pattern matching is now replaced with parameterization on
construction. The notion of wildcard “binding” is replaced with task-specific storage,
allowing generic parameterization within the scope of the task.

Because rules fire only if their preconditions are valid, our task will have a notion
of validity. A task must monitor this over time, as events can happen that invalidate it.
If a task becomes invalid, it will be removed. A similar action will occur on success.

250 Section 3 Architecture

The planning system needs to be able to wind itself forward to match the best task
overview for any given game state. By returning the topmost task to an initial state and,
from here, sequencing and continuously processing subtasks atomically in their respec-
tive orders until we succeed, fail, or are forced to wait (e.g., by a subtask waiting for
arrival at a target), it is possible to return a task to its most relevant current state.

The Task Class

The core component of our planning system is the task. A task seeks to solve a particu-
lar goal by making use of subtasks and sending instructions to the simulation via the
virtual yoke. The sequencing of subtasks is managed via an internal FSM. A direct cor-
relation between the internal state and the currently running subtask has the handy
side-effect of providing runtime type identification (RTTI) for our subtask pointer.

We can now see our cTask class starting to take shape.

virtual tBool IsValid(const sTaskIn &in) = 0;

virtual tBool HasCompleted(const sTaskIn &in) = 0;

These are our validity checks. At any time, IsValid indicates whether we have
failed, and HasCompleted indicates whether we have succeeded. The sTaskIn argu-
ment is just a wrapper for task-specific input and will be discussed shortly.

... Process(const sTaskIn &in, sTaskOut &out) = 0;

This is the main process function that needs to be written for each task. The
sTaskOut argument is simply the output equivalent of sTaskIn and will also be intro-
duced shortly.

cTask *mpSubTask;

tNat mCurrentState;

tNat mNextState;

These hold our current subtask and corresponding internal FSM state. By explic-
itly keeping track of the next state to transition to, we can delay state change until
safely outside each call to Process(). By knowing mCurrentState, we can also resolve
mpSubTask to an appropriate concrete task.

eTaskStatus Update(const sTaskIn &in, sTaskOut &out);

This is the main update method, responsible for getting the given task up to date
with the current game state. Its processing is shown in Figure 3.3.1.

A few things are worth noting.

• The Update() method forms an infinite loop (atomic processing), with termina-
tion only occurring because of success, failure, or the task requesting a wait. As
touched on before, this gives us our immediate winding property to match the
current game state.

3.3 The MARPO Methodology: Planning and Orders 251

• While we have a subtask, we will recurse on its Update() function, although we
can still monitor the subtask, should we need to, using ProcessOverWatch(). This
ensures subgoals are processed first and has the neat property that Process() is
only called on a task in the absence of subtasks.

• We always get the opportunity to handle any subtask success or failure in
OnSubTaskReturn() before it is destroyed, giving us a way to query subtask infor-
mation before it disappears.

252 Section 3 Architecture

State changed?

IsValid()? TS_FAILED

HasSucceeded()? TS_SUCCEEDED

HasSubtask()?

Update() sub-task

Continue?

TS_PROGRESSING

Delete subtask
queue

Delete old
subtask
queue and
add new

Delete subtask
queue

ProcessOverWatch()

Yes

No

Yes

Yes

Yes

Yes

No

No

No
No

Subtask failed
or succeeded? TS_PROGRESSING

No

Process()

OnSubTaskReturn()
Yes

Delete subtasks

ENTRY

FIGURE 3.3.1 Flowchart showing the processing of cTask::Update().

Task Input and Output

Each task takes as input sTaskIn and gives as output sTaskOut. These are really just
wrappers to allow future expansion. In the demo, sTaskOut simply wraps the virtual
yoke, and sTaskIn identifies our actual actor.

Task Queues and the Task Hub

As mentioned before, tasks and their subtasks form a task queue, a simplified version
of a goal tree. As tasks are linked in a queue anyway, our task queue cTaskQueue is
simply a container for the root task and any subtask we might have pending.

Now if we draw an analogy between tasks and the notion of a traditional FSM
state, we see a direct correlation with hierarchical FSMs. The state queue is a hierar-
chical representation of states, each of which is controlled by its own state machine.
With such a strong correlation, it is important to ensure that we can address all the
previously discussed problems with FSMs.

If we declare that tasks and subtasks will be added by dynamic allocation of
instances of cTask-derived objects, then they can both be parameterized by member
properties. When they are deleted again, this information no longer needs to be kept
around. The winding property of Update()recognizes subtask sharing, and the ability
to create arbitrary queues from subtasks leads as well to subtask sharing. This leaves us
with the need to handle unexpected events that temporarily disrupt our processing.
This is the responsibility of cTaskHub.

Consider a gang member running a long-term goal to get to a meeting point.
While doing so, he comes under fire from an enemy that he decides to kill, giving
himself a reactive goal to do so. In the process, he nearly gets run over by a car, yield-
ing an immediate goal to roll out of the way. After he has rolled out of the way, he can
go back to killing his enemy, before continuing to the meeting point.

We have three key goals here, each layered on top of and suppressing the behav-
ior of another. We can implement this behavior as a series of prioritized task queues,
with higher-priority queues suppressing lower-priority queues. In this example, we
could have a long-term goal queue, a reactive queue, and an immediate action queue
as shown in Figure 3.3.2.

3.3 The MARPO Methodology: Planning and Orders 253

Reactive Monitor
(in Overwatch)

Kill <y>

Goto <x>

Get In vehicle

Kill <y>

Find cover to
attack <y>

Goto <x>
allowing reaction

Roll away from
<z>

Roll away from
<z>

Reactive Monitor
(in Overwatch)1. Spotted <y>?

4. Finished killing?

2. Avoid <z>?

3. Finished avoiding?

LONG-TERM GOAL
QUEUE

REACTIVE GOAL
QUEUE

IMMEDIATE GOAL
QUEUEP

E
N
D
IN
G

P
E
N
D
IN
G

P
E
N
D
IN
G

M
A
IN
Q
U
E
U
E

M
A
I N
Q
U
E
U
E

M
A
I N
Q
U
E
U
E

FIGURE 3.3.2 An illustration of temporary goal queue suppression.

The immediate queue would suppress the reactive queue, which would suppress
any long-term queue. Similar task priority rerouting can be seen in other approaches
[Isla05]. In this case, the task hub manages these queues.

It works by scanning an array of task queues in priority order until it finds a queue
that is already running a root task or has one pending. If a pending task is found, then
if it is on the same queue, it replaces the existing goal. If the task is on a different queue,
we suppress the previous queue. This processing flow is summarized in Figure 3.3.3.

At this point, we have defined the skeleton for our planning system. To flesh it
out, we need to put it into context.

The Demo

Hopefully you have already tried out examples 1 and 2 from the demo on the CD-
ROM. The rest of the demo will show how it is possible to build a procedural planner
using the techniques explored in the article to solve a simple alchemy problem. Con-
sider a role-playing game scenario where we are interested in creating the material
“white.” In our simple world, we have a number of materials: yellow, red, blue, and
green. Some of these are raw materials, others need to be created at a forge, and some
just need our skills to craft them together. Let’s assume that our actor has studied the
tomes and already understands how to create the various components, as summarized
in Table 3.3.2.

Table 3.3.2 Alchemy Rules Used in the Demo

End Product Component 1 Component 2 Creation

Blue - - Blue Mine
Green - - Green Mine
Red Green Blue Forged
Yellow Red Blue Crafted
White Yellow Green Forged

Given that our actor lives in a world consisting of blue mines, green mines, and
forges, our end goal is to get him to create “white.”

254 Section 3 Architecture

ENTRY

Got a
pending
task on this
queue?

Is it
immediate?

Is our currently
active queue
good to abort?

Got a root
task on this
queue?

Is this queue
the current
queue?

Delete
existing
tasks

Sleep the
current
queue

Promote our
pending task

Mark us as the
current queue

Call Update() on the
currently active

queue
Move to the next

queue

Move to the next
queue

YesNo

Yes

Yes

Yes

Yes

No

No

No

No

FIGURE 3.3.3 Flow chart for the task hub’s management of the task queues.

The journey begins at example 3 and will show how it is possible to sequence a series
of cTask-derived classes into a cTaskQueue that, under the control of a cTaskHub, will
solve the problem. It will illustrate how the solution is directed by sequential actions, ran-
dom choice, and appropriate light recursion to grow a piecemeal solution in the absence
of overall knowledge. In addition, it will justify its current action through debugging its
current task queue.

The description for each example is in its source file, and you can enable the
examples by following the instructions in ExampleSwitch.h.

Conclusion

This article summarized MARPO, a collection of common sense rules for maximizing
the chances of creating good, maintainable AI from first principles. A byproduct of nine
years of front-line AI experience, MARPO hopefully highlights the inherent beauty
found in AI systems. The article also introduces a goal-based reasoning system, includ-
ing the concept of goal queues, and shows how the common problems of multiple goals
and prioritization can be solved simply and effectively using multiple queues.

References

[Bratko90] Bratko, Ivan, “PROLOG: Programming for Artificial Intelligence.” Addi-
son-Wesley Publishers Ltd., 1990.

[Forrester03] Forrester, Euan, “Intelligent Steering Using PID Controllers.” AI Game
Programming Wisdom 2, Charles River Media, 2003.

[Fu03] Fu, Dan, and Houlette, Ryan, “The Ultimate Guide to FSMs in Games.” AI
Game Programming Wisdom 2, Charles River Media, 2003.

[Gilgenbach06] Gilgenbach, Matt, and McIntosh, Travis, “A Flexible AI System
Through Behavior Compositing.” AI Game Programming Wisdom 3, Charles
River Media, 2006.

[Hopgood00] Hopgood, Adrian A., “Intelligent Systems for Engineers and Scientists.”
CRC Press LLC, 2000.

[Isla05] Isla, Damian, “Managing Complexity in the Halo 2 AI System.” Proceedings
of the Game Developers Conference, 2005.

[Johnson06] Johnson, Geraint, “Goal Trees.” AI Game Programming Wisdom 3,
Charles River Media, 2006.

[Laming03] Laming, Brett, “The Art of Surviving a Simulation Title.” AI Game Pro-
gramming Wisdom 2, Charles River Media, 2003.

[Matthews02] Matthews, James, “Generic A* Pathfinding.” AI Game Programming
Wisdom, Charles River Media, 2002.

[Orkin06] Orkin, Jeff, “Three States and a Plan: The A.I. of F.E.A.R..” Proceedings of
the Game Developers Conference, 2006.

3.3 The MARPO Methodology: Planning and Orders 255

This page intentionally left blank

257

3.4

Getting Started with
Decision Making and Control
Systems
Alex J. Champandard—AiGameDev.com
alexjc@AiGameDev.com

Game developers have been using hierarchical finite state machines (HFSMs) to
manage low-level conditions and actions for years [Fu03, Isla05]. Such systems

are built from traditional state machines nested within each other, which mainly pro-
vide generalized transitions (i.e., transitions that apply to whole groups of states).

More recently, the industry has seen increasing adoption of behavior trees (BTs).
Instead of using an FSM at every level of the hierarchy, BTs rely on simpler primitives,
such as sequences and selectors, which improve scalability thanks to task-specific
memory and depth-first search mechanisms.

Ultimately, however, what gives such systems their power is the ability to handle
special cases by building hierarchies of custom tasks. This type of architecture is pop-
ular because it is a superset of both HFSMs and the original BTs, and, as such, is a
good place to start for most games.

This article summarizes some of the best techniques for implementing such a
decision-making and control system, including the following:

• Support for modular tasks with latent execution
• A framework for managing them concurrently
• Primitives for assembling hierarchies easily

The ideas presented here will prevent you from succumbing to common pitfalls
when implementing BTs and help your implementation scale to better handle large
data sets.

Building Blocks

No matter what features you build into your BT, getting the basics right will make a
big difference in terms of extensibility and robustness. This section establishes the
low-level primitives that can be used to assemble all types of behaviors.

http://AiGameDev.com

Modular Tasks

When implementing AI, it is best to think in terms of control flow and computation
rather than abstract terms such as “behaviors.” The task primitive is a chunk of code
that can be used in combination with other tasks to implement a behavior.

More specifically, think of a task as a closure: a function with its own execution
context. In practice, these can be implemented as member functions of C++ object
instances. Because tasks provide a modular way to manage computation, using tasks
exclusively at the base of your AI engine enables the rest of the code to be much sim-
pler and more flexible.

All other concepts in your decision-making and control system can be expressed
as combinations of tasks. For example, a condition is a task without memory that
gathers information from the game engine and usually returns immediately. An action
is a task that makes changes to the world representation and executes for a short
amount of time.

Latent Execution

A key feature for tasks in game engines is allowing them to run over multiple frames,
known as latent execution. Technically speaking, this is called a coroutine; like a clo-
sure, a coroutine has its own execution environment, but it can interrupt itself during
execution and temporarily return control to its owner. The next time the owner runs
the coroutine, it resumes where it left off with the execution context intact.

C++ doesn’t support this directly, so typically game developers end up with a
compromise: an object with a single entry point that can be called multiple times, as
shown in the following Task class. This is the simplest solution for providing light-
weight coroutines because it delegates to the implementer of custom tasks the job of
deciding which block of code to jump to from the single entry point.

class Task

{

public:

virtual Status execute() = 0;

virtual ~Task() {}

};

The Status object is used to specify whether the task has finished or is still run-
ning. It is also used as a way to signal the result of the computation to other behaviors.

Termination Status

Reasoning about the success and failure of current or hypothetical scenarios is the
main purpose of any decision-making or control system. A termination status is a stan-
dard code that each task returns after it has completed to indicate its success or failure.

258 Section 3 Architecture

To determine what termination status codes are necessary, it helps to understand
the three well-defined ways a behavior can terminate:

Completed successfully: The behavior accomplished its purpose and terminated
without any problems. The world representation was modified as intended.

Failed cleanly: The behavior did not accomplish its purpose but still terminated
cleanly. All problems were anticipated by the programmer, and all of the
assumptions that were true before the behavior’s execution still hold. This
typically means that there were no side effects on the world representation.

Unexpected error: The behavior could not accomplish its purpose and broke the
starting assumptions while trying to do so. There were side effects on the world
representation; higher-level logic should take this into account.

For your system to make accurate decisions about tasks, it somehow needs infor-
mation about these three different situations. There are three ways to implement this:

• Establish a convention that all tasks must fail cleanly if they encounter problems.
• Separate the process of deciding whether to run (which always fails cleanly) from

the actual running (which may result in an error).
• Keep one entry point, and provide a return status for both kinds of failure.

The third approach is the most flexible and generic solution. It is also the sim-
plest, so code using this API is less cluttered.

Support Framework

Having some robust principles at the core of an AI engine is a great start, but making
sure they are used optimally is also important. To do this, it helps to centralize the
most commonly used functionality.

Scheduler

The scheduler is responsible for managing tasks. It stores a list of active tasks and calls
them one after another during its update. Owners of tasks can request them to be exe-
cuted via the scheduler’s API and no longer need to worry about managing them
locally. As such, all the tasks are called by the scheduler, and the call stack remains
constant regardless of the number of tasks.

This has many advantages:

• A variable C++ call stack is no longer required to update large trees of tasks. Over-
flow problems can be dealt with gracefully.

• The update can easily be suspended at any point or split across multiple frames.
• Using tasks is much easier. Client code becomes as simple as calling a run() func-

tion in the scheduler. Because the scheduler is the only class responsible for
respecting the intricacies of the task API, the code also tends to be more reliable.

• Tasks can be monitored centrally, which is useful for debugging and metabehaviors.

3.4 Getting Started with Decision Making and Control Systems 259

A basic scheduler is simple to implement, although it can quickly grow in com-
plexity with the addition of features, such as allowing new tasks to be executed during
an update or supporting task priorities. The basic definition looks like this:

class Scheduler

{

public:

bool run(Task&);

bool halt(Task&);

void update();

protected:

struct Entry

{

Task* task;

Status status;

// Other data for execution.

};

std::vector<Entry> m_ActiveTasks;

};

The run() function adds the task to the list of active tasks, whereas the halt()
function removes it. The Boolean return value indicates whether the scheduler man-
aged to process the request or an error occurred (e.g., maximum number of running
tasks exceeded). The value returned is not the return value of the task itself, as tasks
are only executed when the scheduler is asked to update. The status of the task can be
queried later from the scheduler.

As for the update() function, it runs through the list of active tasks and executes
them one by one. When a task completes, it is removed from the list after the next
update.

Global Observers

An observer is a design pattern that allows external code to be notified about specific
events that occur during the execution of an algorithm. In the case of the scheduler,
the implementation of update() dispatches global observers when any task termi-
nates. The interface of this observer is defined along with the scheduler:

class SchedulerObserver

{

public:

virtual void onTaskFinished(Task&) = 0;

virtual ~SchedulerObserver();

};

The advantage of the observer is that new scheduling features can be implemented
without affecting the core algorithm. Additional functionality, such as debugging, log-
ging, recycling memory, or metabehaviors, is implemented by deriving from the base

260 Section 3 Architecture

SchedulerObserver class. Instances are then registered in the scheduler with the Sched-
uler::addObserver() function.

Support for multiple observers can be achieved by implementing composite
observers (one big observer that notifies all its children) or by making a simple linked
list within the scheduler itself.

Task Observers

Having a way to monitor every task globally in a scheduler is particularly useful from
a software architecture perspective. However, behaviors most often are only interested
in specific tasks. For example, tasks that delegate responsibility need to observe these
other tasks to deal with the outcome.

This is implemented in a very similar way to the global scheduler observer, using
a virtual base class called TaskObserver. Any task interested in monitoring another
task should derive from this class and implement a pure virtual onFinished() func-
tion, which takes the final return status as its argument.

Typically, to use an observer, you should provide it to the scheduler when a task is
run. The main scheduling algorithm is responsible for notifying the observer when
that specific task is done. To accommodate this, the scheduler’s run() function must
change to have an extra optional parameter for the observer.

// class Scheduler

bool run(Task&, TaskObserver* = 0);

Using this mechanism, behaviors can be notified of the final return status of any
task, allowing them to take action based on the outcome. Not only is dealing with
return status codes very important for the robustness of the AI logic, but it also pro-
vides the basis for hierarchical logic.

Hierarchical AI

Given modular tasks as building blocks and a scheduler framework that makes tasks
easy to manage in the AI engine, it is time to think about creating more interesting
behaviors for your actors. The best way to approach this is to use hierarchies for your
logic.

One popular approach to building hierarchies is to use standard script functions,
formulated in a language such as Lua, as tasks in the tree. For example, an Attack
function could contain script code to determine what specific behavior to perform in
the current context (e.g., AttackFromCover or Assault) and then execute it. There are
a number of drawbacks to this method, however:

• Reusing these scripts is difficult because they are often very situation-specific.
• Writing the scripts to deal with all failures and errors is tedious.
• Supporting concurrent behaviors is hard because scripts are very linear.

3.4 Getting Started with Decision Making and Control Systems 261

An alternative approach is to create some parameterized building blocks that can
be frequently reused as branches in the BT, simply with different inputs provided by
the designers. These are called composite tasks, as they use the composite pattern to
manage multiple child tasks. The most common composite tasks are sequences, selec-
tors, and parallels, all of which use the scheduler and task observers to define control
flow.

Think of these composites as a domain-specific language suitable for expressing
behaviors. Instead of using the low-level features of C++ or Lua to create behaviors,
you can assemble them much more quickly from higher-level concepts.

Sequences

Sequences provide a mechanism for expressing linear control flow in BTs. They essen-
tially execute their child tasks one after the other. This can be implemented easily by
following these steps:

1. Use the scheduler to manage the execution of the current task.
2. Rely on a task observer for notification when it is done.
3. Process the return status.
4. Continue with the next task in the sequence.

Sequences can be further customized by a set of parameters. For example:

• Keep looping, or run through the sequence just once.
• Ignore tasks that fail and keep going as normal, or terminate the whole sequence

when a task fails.
• Allow sequences to be modified dynamically at runtime, behaving as queues for

runtime orders.

Sequences are very commonly used to string multiple behaviors together because
they provide a good means for control and monitoring.

Selectors

Selectors, by contrast, express conditional logic and hence are very useful for decision
making. Based on the current context, selectors decide which child task to run and
then execute it. If a child fails, the selector falls back to a lower-priority task.

There are many possible ways to customize selectors, including the following:

• How they order the child tasks: using probabilities, priorities, or any other custom
rank

• If they make the decision once (static), or if they keep monitoring the decision
(dynamic)

Selectors, together with sequences, make up the bulk of any BT. Most of the logic
that is typically implemented as a state machine can be expressed with these two com-
posites instead.

262 Section 3 Architecture

Parallels

Parallels allow you to introduce concurrency into your hierarchies by forking control
to different subtrees. All the child tasks of a parallel composite are executed together
by the scheduler.

Instances of parallel composites also can be customized by common parameters:

• The number of child tasks that should succeed before the parallel succeeds
• The number of tasks that should fail before the parallel itself fails

The process of creating parallel BTs is certainly not trivial, but it can be used very
safely in a localized fashion specifically by using one action in combination with mul-
tiple preconditions to be monitored. For example, a CrouchInCover action can be
combined into a parallel with a condition IsBeingShotAt so that the behavior does
not terminate until it is safe to stand up.

Decorators

Technically, a decorator is a composite node with only one child. They are used to
extend the functionality of individual behaviors. For example:

• Filters to prevent behaviors from running in certain situations (e.g., limit the
number of executions, or prevent overly frequent execution using a timer)

• Control modifiers to force a certain return status (e.g., ignore failures, or keep run-
ning instead of terminating)

Many features in a BT can be implemented as decorators, and it is often wise to
do so because it allows you to recombine modular features easily in a data-driven way.
Most of all, it is a great way to keep the other composites simple by putting additional
features into decorators instead.

Applications

Most BTs are built primarily from the composites described previously. Thanks to the
logic within the selectors, updating the tree effectively performs a depth-first search of
the possible tasks, always falling back to a valid alternative. This is an extremely pow-
erful concept for a decision-making architecture.

To control the main behavior of in-game actors, you can create a single tree rooted
in a “Behave” task. This top-level task decomposes into more specific tasks that achieve
objectives inside the game. At this level of the tree, selectors are very common, particu-
larly the dynamic ones that recheck conditions in the world (like a state machine).

For example, in an action game, the top-level task selects among self-preservation,
attacking the enemy, or idle patrol (in order of priority). Each of these child behaviors
is defined as a sequence with a conditional check first (e.g., is there an enemy around),
and then the corresponding behavior. On a regular basis, a higher-priority behavior is
attempted to check if the situation has changed.

3.4 Getting Started with Decision Making and Control Systems 263

All tasks in the tree are designed to decompose recursively into simpler behaviors,
until an atomic behavior is reached. Sequence composites are much more common in
the lower levels of the tree, defining specific behaviors such as patrol routes.

As for reactions to events that are not part of the main behavior, another task
called “React” is defined and executed in the scheduler in parallel with the main tree.
The challenge of having two trees running concurrently is dealt with automatically by
the search. If two actions require the same resources at the same time (e.g., playing a
full-body reaction animation), then the second action fails, and the tree search contin-
ues looking for an alternative task that can achieve a similar purpose (e.g., making a
shouting sound).

Conclusion

A robust decision-making and control system is the best place to start with any AI
engine. The BT described in this article covers the major elements: implementing
low-level tasks with latent execution, building a framework for managing them con-
currently, assembling them into hierarchies using standard composites, and designing
the system for depth-first search.

Probably the most useful aspect of the system is its extensibility: each task in the
tree is modular and can override the search and modify the behavior of the rest of the
system. Using standard composite tasks, such as sequences and selectors, BTs prove to
be very intuitive and easier to manage than traditional HFSMs because subsequent
tasks are not encoded explicitly as transitions in the states but specified by higher-level
tasks instead. These concepts provide a logical structure for designers to reason about
AI without having to worry about scripting syntax.

References

[Fu03] Fu, Dan, and Houlette, Ryan, “The Ultimate Guide to FSMs in Games.” AI
Game Programming Wisdom 2, Charles River Media, 2003.

[Isla05] Isla, Damian, “Handling Complexity in the Halo 2 AI.” GDC 2005 Proceed-
ings. Available online at http://www.gamasutra.com/gdc2005/features/20050311/
isla_01.shtml, 2005.

264 Section 3 Architecture

http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml
http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml

265

3.5

Knowledge-Based Behavior
System—A Decision
Tree/Finite State Machine
Hybrid
Nachi Lau—LucasArts
nachilau@hotmail.com

In the modern game-development environment, designing and implementing a
behavior system that meets the diverse needs of designers and programmers can be

a challenge. From the perspective of game designers, a declarative behavior system
that can be easily understood by nontechnical users facilitates the incorporation of
designer suggestions, enabling faster development iterations. Because designers rely
on trial and error for design refinements, a system that simplifies the addition or
removal of NPC logic and offers a tight feedback loop allows effective testing of the
fun factor. Furthermore, a behavior editing tool with multiple customized user inter-
faces enables the intuitive manipulation of AI behaviors by different users. For exam-
ple, a script interface for detailed NPC logic allows low-level adjustments by
experienced designers, whereas a simple interface for tuning variables permits high-
level behavior editing by novice designers.

From the perspective of programmers, on the other hand, a clear debugging inter-
face is crucial because it allows the straightforward assessment of NPC behaviors.
Also, because users often want to create new AI behaviors by modifying existing ones,
a system with an architecture designed to enable behaviors to inherit from one
another can accelerate the prototyping process. Furthermore, as programmers often
have to hack the system to accomplish quick fixes, a certain level of built-in “hackabil-
ity” in the system allows for such fixes without violating the system architecture.

In an attempt to satisfy the diverse needs of designers and programmers, we have
developed the knowledge-based behavior (KBB) system, which we describe in this article.

The Knowledge-Based Behavior System

The KBB system is a variant rule-based system that attempts to encompass the advan-
tages of both the decision tree and the finite state machine (FSM) architectures while
minimizing their respective disadvantages. The main components of the system are as
follows.

Knowledge Elements

The knowledge unit is the basic building block of the system. A knowledge unit can be
thought of as a simple if-then statement, which can easily be understood by any non-
technical person. The following knowledge unit describes an NPC who attacks targets
when they come within range.

If (TargetInRange(3.0)) then (MeleeAttack())

The assessment function that appears in the “if ” portion of a knowledge unit is
known as a cause entity. A cause entity can perform arbitrary computations as long as
it returns a Boolean value. In the previous example, TargetIsInRange() is a cause
entity. When we want to modify an existing NPC behavior, we might simply change
the input parameter to the cause entity for a particular knowledge unit. If the desired
modification is more complicated, we can create a new knowledge unit with a differ-
ent cause entity. The freedom to associate different cause entities with a knowledge
unit allows us to build custom behaviors easily.

The construct that appears in the “then” portion of a knowledge unit is called a result
entity, and its purpose is to execute a specified AI behavior. In the previous example,
MeleeAttack() is a result entity that instructs the NPC to chase after its target. When the
cause entity returns true during evaluation of a knowledge unit, the associated result
entity is triggered and queued up in the knowledge controller to wait for execution.

In the knowledge-based approach, an NPC behavior is described by arranging
one or more knowledge units into a knowledge tree. The following is an example of a
simple knowledge tree for an NPC who will chase and attack targets depending on
their current range.

If (TargetInRange(3.0)) then (MeleeAttack())

If (TargetInRange(5.0)) then (ChaseTarget())

We will discuss more complex knowledge tree structures later in this article.

The Knowledge Controller

The knowledge controller is the central control component for the KBB, responsible
for managing the process flow of the system. It executes three main phases in each
frame update, as shown in Figure 3.5.1.

266 Section 3 Architecture

First, in the “evaluate knowledge” phase, the controller evaluates the knowledge
tree structure and queues up any triggered result entities. Second, in the “resolve result
queue” phase, the knowledge controller selects result entities from the result queue
based on priority and puts them into an execution queue. More than one result entity
can be selected for execution during this phase to simulate simultaneous behaviors.
Third, in the “resolve execution queue” phase, the result entities in the execution
queue are executed.

Result Entity Execution Cycle
The knowledge controller is also responsible for maintaining the execution cycle of
any currently running result entities. On every frame, the knowledge controller selects
result entities from the result entity queue to be placed in the execution queue. These
result entities are then executed on every frame until they either decide to stop or get
interrupted by other result entities. Each result entity contains logic to keep track of
the current game state and detect when it is no longer valid and should be terminated
by the knowledge controller.

Result entities that are already in the execution queue and have the same priority
as the newly selected result entities continue executing. Result entities with lower pri-
orities are interrupted, causing them to be removed from the execution queue and
cease execution.

Result Entity Priorities
A result entity’s priority is a numeric index used to determine the execution order of
result entities. All result entities with the highest priority are executed, which means that
more than one result entity can be executed at each update. All other result entities in
the queue that do not have the highest priority are ignored. Consider this example:

If (TargetInRange(5.0)) then (RangeAttack()) P5

If (OutOfAmmo()) then (ReloadWeapon()) P6

If (GetHit()) then (HitReaction()) P10

3.5 Knowledge-Based Behavior System—A Decision Tree/Finite State Machine Hybrid 267

Evaluate Knowledge Phase

Resolve Result Queue Phase

Resolve Execution Queue Phase

Evaluate the knowledge tree and queue up the result
entities that get triggered by each knowledge unit.

Go through each result entity in the result queue and pick
those with the highest priority to the execution queue.

Loop through the execution queue and execute those result
entities that are valid.

FIGURE 3.5.1 Process flow in the KBB system.

The knowledge units in the preceding example specify that whenever the target is
in range, the NPC should perform its ranged attack. When the ranged weapon is out
of ammo, the NPC should reload the weapon instead. If the NPC gets hit by some-
one, however, it should react to the hit. Because we specified a higher priority for the
HitReaction() result entity, the NPC will respond to a hit even if the RangeAttack()
and ReloadAmmo() result entities are also in the result entity queue.

Two special priorities are used in the system. The first special priority causes the
associated result entity to be executed regardless of other result entities’ priorities (as
long as its knowledge unit has been triggered). This is useful for defining result enti-
ties that are independent of other result entities. For example:

If (TargetInRange(2.0)) then (MeleeAttack()) P5

If (GetHit()) then (HitReaction()) P10

If (TargetInSight()) then (AcknowledgeAllies())P-1

The third knowledge unit in this example will always be executed as long as the
target is in sight, regardless of whether the other result entities are executed or not.

The second special priority informs the system to execute the result entity imme-
diately without putting it in the result queue. This allows us to define result entities
that other knowledge units might be dependent on. For example:

If (TargetIsInTriggerVolume(1)) then

(SetTargetIsReady()) P(-2)

If (TargetIsInTriggerVolume(2)) then

(SetTargetIsReady()) P(-2)

If (IsTargetReady()) then

(RangeAttack(MachineGun)) P(10)

The first two result entities in this example will be executed immediately as long
as the associated cause entities return true. The third knowledge unit relies on the exe-
cution result of the first two knowledge units to determine whether its result entity
should be queued up.

Advanced Knowledge Tree Structures

We describe here some extensions to the basic KBB architecture that provide increased
power and flexibility.

Result Entity Containers

A result entity container is a special type of result entity that allows multiple result enti-
ties to be attached to it. A result entity container has an associated selection method
that determines which of its child result entities should be executed. For example:

If (PlayerEnterVolume())

then (RandomResultContainer())

(Flee(), 50%)

(RangeAttack(), 50%)

268 Section 3 Architecture

If (TargetIsClose())

then (SequenceResultContainer())

(MeleeAttack(Combo1))

(MeleeAttack(Combo2))

When the random result container in the first knowledge unit is executed, either
the Flee() or the RangeAttack() result entity will be selected. The second knowledge
unit uses a sequence result container to define a series of melee attack actions that will
be executed in order. Result entity containers are typically useful for describing ran-
dom and sequential NPC behaviors.

Knowledge Groups

A knowledge group is a collection of knowledge units. A given knowledge group can be
included in multiple NPCs’ knowledge trees, enabling us to share common behavior
across NPCs. For example:

Common Knowledge Group:

If (HealthIsZero()) then (Death())

If (TargetIsVeryFar()) then (Idle())

If (PlayerIsDead()) then (Idle())

Including the previous knowledge group in each NPC’s knowledge tree automat-
ically ensures that all NPCs have default death and idle behaviors.

Knowledge States

Much like FSMs, the KBB system uses states to split knowledge into easily manage-
able chunks according to their required situational context. For example:

State Air

If (TargetIsClose()) then (RangeAttack())

If (TargetIsFar()) then (FlyTowardTarget())

If (LoseFlyAbility()) then (ChangeState(Ground))

State Ground

If (TargetIsClose()) then (MeleeAttack())

If (TargetIsFar()) then (WalkTowardTarget())

The knowledge states in this example define an NPC that can perform attacks in
the air and on the ground. When the NPC is in the “Air” state, the knowledge units
in that section of the knowledge tree are evaluated, while those in the “Ground” sec-
tion are ignored. If the NPC changes to the “Ground” state at some point during the
game, the “Air” knowledge units become inactive, and the “Ground” knowledge units
now apply. Through the use of states, we can thus better organize and maintain the
knowledge tree.

3.5 Knowledge-Based Behavior System—A Decision Tree/Finite State Machine Hybrid 269

Comparison with Other Architectures

In this section, we discuss the relative advantages and disadvantages of the KBB sys-
tem compared to other common game AI architectures.

Finite State Machines

The FSM is a popular method used to describe NPC logic in terms of states and tran-
sition rules. FSMs are effective in representing simple logic with few states and transi-
tion rules to manage. However, as NPC logic gets complicated, the number of states
and transitions explodes, making the state machine difficult to understand and main-
tain. Consider an NPC that can attack both in the air and on the ground. Figure
3.5.2 shows one possible way of representing this behavior using an FSM.

270 Section 3 Architecture

Air Range
Attack

Air Get Hit

Air Fly
toward
target

Ground
Attack

Ground
Walk

toward
target

Ground
Hit react

Get Hit

Target out of range

Target still in range

Target still out of range

A
lw

ays

Target in range

Target in range

Target still in range

Get Hit
Get Hit

Get hit reaction finish
and

Target in range

Get hit reaction finish andTarget out of range

Get HitTarget out of range

FIGURE 3.5.2 The FSM describes an NPC that can attack in the air and on the ground.

The FSM representation involves many states and transition rules even for such a
simple NPC. Moreover, it is difficult to add logic to or remove logic from an existing
FSM because the states are tightly coupled. For example, if the user wants to add a
special hit reaction behavior to the NPC, it requires adding one more state and four
more transition rules to the FSM. In addition, at least two existing transition rules
need to be modified to adopt the change. Figure 3.5.3 shows the modified FSM.

Decision Trees

Decision trees are another commonly used game AI solution. Figure 3.5.4 shows a
decision tree describing the same NPC behavior as Figure 3.5.2.

The NPC behavior, as described by a decision tree, requires a three-level tree
structure. Similar to the FSM approach, adding and removing logic to and from the
existing decision tree can get complicated. Figure 3.5.5 shows the modified decision
tree after adding a special hit reaction behavior to the NPC. Even though the behav-
ior change to the NPC is relatively simple, the change requires restructuring parts of

3.5 Knowledge-Based Behavior System—A Decision Tree/Finite State Machine Hybrid 271

Air Range
Attack

Air Get Hit

Air Fly
toward
target

Ground
Attack

Ground
Walk

toward
target

Ground
Hit react

Get Hit

Target out of range

Target still in range

Target still out of range

A
lw

ays

Target in range

Target in range

Target still in range

Get Hit

Get Hit Normal

Get hit reaction finish
and

Target in range

Get hit reaction finish andTarget out of range

Get Hit Normal

Target out of range Ground
Hit react
Special

Get Hit Special

Get
Hit Speci

al

Get hit reaction finish and

Target out of range
Get

hit rea
cti

on fin
ish

an
d

Targ
et

in
ran

ge

FIGURE 3.5.3 A modified FSM with special hit reaction behavior. (The dashed
line indicates the change.)

Is On Ground

Is Target Far Is Target Far

No Yes

Is Get Hit Is Get HitIs Get Hit Is Get Hit

Air Hit React

Range Attack Fly Toward
Target

Ground Hit
React

Ground Attack

Walk Toward
Target

No

Y
es N

o Yes

Air Hit React
Ground Hit

React

No

Y
es

N
o

Y
es

No

Y
es

Yes

N
o

if (OnGround())
if (TargetClose())

if (GetHit())
PlayGroundHitReaction()

else
GroundAttack()

else
if (GetHit())

PlayGroundHitReaction()
else

WalkTowardTarget()
else

if (TargetClose())
if (GetHit())

PlayAirHitReaction()
else

RangeAttack()
else

if (GetHit())
PlayAirHitReaction()

else
FlyTowardTarget()

FIGURE 3.5.4 A decision tree describing the NPC from Figure 3.5.2.

the decision tree. If the change to the NPC behavior is more complicated, a complete
reconstructing of the whole decision tree might be necessary.

272 Section 3 Architecture

Is On Ground

Is Target Far Is Target Far

No Yes

Is Get Hit Is Get HitIs Get Hit Is Get Hit

Air Hit React

Range Attack Fly Toward
Target

Ground Hit
React

Ground
Attack

Walk Toward
Target

No

Y
es N

o Yes

Air Hit React

Ground Hit
React

No

Y
es

N
o

Y
es

No

Y
es

Yes

N
o

if (OnGround())
 if (TargetClose())
 if (GetHit())

PlayGroundHitReaction()
 else

GroundAttack()
 else
 if (GetHit())
 if (GetSpeicalHit())

PlayGroundSpecialHitReaction
 else

PlayGroundHitReaction()
 else

WalkTowardTarget()
else
 if (TargetClose())
 if (GetHit())

PlayAirHitReaction()
 else

RangeAttack()
 else
 if (GetHit())

PlayAirHitReaction()
 else

FlyTowardTarget()

Is Get Special
Hit

Is Get Special
Hit

N
o

N
o

Ground Special
Hit React

Y
es

Ground Special
Hit React

Y
es

The dashed line
indicates the change.

FIGURE 3.5.5 A modified decision tree with special hit reaction behavior. (The dashed
line indicates the change.)

KBB System

The NPC example described previously can be implemented using the KBB approach
as follows:

State Air

If (TargetIsClose()) then (RangeAttack()) P5

If (TargetIsFar()) then (FlyTowardTarget())P10

If (GetHit())

then (AirGetHitContainer()) P5

GetHitReact()

ChangeState(Ground)

State Ground

If (TargetIsClose()) then (MeleeAttack()) P10

If (TargetIsFar()) then (WalkTowardTarget())P10

If (GetHit()) then (GroundHitReact()) P5

When we add the new special hit reaction behavior to the NPC, only one more
knowledge unit needs to be added to the system:

If (GetHit()) then (GroundHitReact()) P5

If (GetHitSpecial()) then (GroundHitSpecialReact()) P4

The new knowledge unit is associated with a higher priority index. As a result,
when the NPC reacts to the special attack, the special hit reaction automatically over-
rides the normal hit reaction. The KBB approach, therefore, allows user to easily add
new behavior to the NPC while the existing knowledge remains intact.

Compared with the FSM approach, the KBB approach has fewer states and tran-
sitions to manage. Moreover, the KBB solution generates a flatter tree structure than
the decision tree method. These advantages make the KBB solution easier to maintain
and understand. Furthermore, the KBB approach is much more tolerant to frequent
design changes due to its modular nature.

Implementation

The implementation of the KBB system is straightforward. We describe the major
classes here (these classes are included on the CD-ROM).

The Knowledge class implements the knowledge unit. The most important func-
tion of this class is the Evaluate() function, which is defined as follows:

void Knowledge::Evaluate() {

if (pCause->Evaluate())

pKnowledgeController->QueueResult(pResult);

}

Cause is the base class for all cause entities. It contains one pure virtual Evaluate()
function that returns a Boolean value:

class Cause {

public:

virtual bool Evaluate() = 0;

}

Result is the base class for all result entities:

class Result {

private:

int m_priority;

public:

virtual void Execute();

virtual void Interrupt();

virtual bool IsValid();

// ...

}

The class has a priority member variable to indicate the priority of this result entity
instance. The Execute() function is called if the result entity gets selected for execution.
The knowledge controller calls the Interrupt() function when a currently executing
result entity gets interrupted by a higher-priority result entity. The IsValid() function
is used to tell the knowledge controller to stop executing this result entity.

3.5 Knowledge-Based Behavior System—A Decision Tree/Finite State Machine Hybrid 273

The KnowledgeController class implements the knowledge controller. The
pseudocode for the ResolveResults() function is as follows:

for each result entity in result queue

{

if (entity has highest priority in result queue)

{

if (entity is not in execution queue)

{

interrupt any result entities with lower

priority in execution queue

put result entity into execution queue

}

}

}

Here is the pseudocode for the ExecuteResults() function:

for each result entity in execution queue

{

if (result entity is still valid)

execute result entity

else

remove result entity from execution queue

}

Conclusion

The goals of the KBB system are to provide a simple solution for constructing NPC
behaviors and to accelerate the iteration process during prototyping. Because each
knowledge unit is an if-then statement, nontechnical users can easily understand the
system.

Furthermore, the modular nature of knowledge units allows them to be readily
adapted to modify NPC behaviors during the development process. The straightfor-
ward implementation of the system also reduces programming maintenance effort. In
addition, users can easily extend the features of the system by implementing new
types of cause and result entities.

274 Section 3 Architecture

275

3.6

The Emotion Component:
Giving Characters Emotions
Ferns Paanakker—Wishbone Games B.V.
ferns.paanakker@gmail.com

Erik van der Pluijm
erik.van.der.pluijm@gmail.com

In this article, we discuss the Emotion Component, a software component that can be
inserted in an AI engine to model complex emotions, enabling the implementation of

more human-like behavior in game characters. This will in turn encourage the player to
form a stronger connection with characters, resulting in a deeper gaming experience.

By using the Emotion Component, game characters can have emotions that influ-
ence their behavior and color their perception of the world. They internally maintain
a condition that influences their behavior and reactions so that the human player is
persuaded that the character is experiencing emotions such as fear, anger, ambition, or
love. The Emotion Component is set up to function either as a separate unit or in con-
junction with other AI processes. Furthermore, this component can model not only
the emotions of a single character but also emotions for a group of characters.

We begin by defining what we mean by emotions and their relevance to video
games. Next, we explain how present-day games typically model emotions. We then
give a detailed description of the Emotion Component, including a discussion of how
to integrate the Emotion Component with the game world.

The Role of Emotions in Games

In computer games, player immersion is becoming increasingly important to produc-
ing a successful game. One way to encourage immersion is to increase the player’s
connection to the game characters (NPCs, the player’s avatar, buddies, and so on) by
enhancing them with emotional cues. As a result, the player subconsciously ascribes
emotions to the characters, making them seem more real and enabling deeper emo-
tional attachment [Freeman03].

Traditionally, in games without an explicit Emotion Component, emotion is sug-
gested through cutscenes with facial animation, gestures, scripting of emotional behavior,
and the use of sounds, physics, and animations. In some cases, this might be sufficient.

However, this approach can easily break down because it often suffers from a lack of
consistency. For example, there is presently a gap between full-motion video cutscenes
and actual gameplay in terms of the level of emotional sophistication that can be
achieved. When a character seems very emotional in the cutscene preceding a mission
but not in the mission itself, the player will subconsciously discard the notion that the
game character is an actual person, breaking the suspension of disbelief.

To counter this problem, we need a way to enhance the behavior of the characters
in in-game situations so that emotions expressed in the storyline can be sustained to
create a consistent experience throughout the game. We can do this by modeling the
emotions in the game characters themselves.

Emotions

Emotions are an important part of everyday human life. They strongly influence our
actions and our perception of reality and enable meaningful interaction with other
human beings and the world around us. Human beings can experience a large number
of different emotions, and the differences between them can be subtle. Psychologists still
have not reached a consensus on exactly which different emotions exist [Minsky85,
EmRec07]. In fact, there is not even a universally accepted definition of emotion
[EmComp07]. For our purposes, we will define emotion as a mental state that is not the
product of conscious effort but instead arises spontaneously and is usually accompanied
by physiological changes.

Because an emotion is not a product of conscious effort, it seems reasonable to
assume that there must be a separate subconscious mechanism that creates a mental
state associated with that emotion. The physiological changes associated with an emo-
tion can manifest themselves in a number of ways, such as changes in posture, skin
tone, facial expression, and vocal timbre. An observer takes cues from these visible
physiological changes of the subject to reason about their emotional state.

Besides producing changes in posture and facial expression, emotions can also
influence larger-scale behavior selection. People who are very scared, for example,
might instinctively choose to run away to a safe location and hide. It should be noted
that the influence on behavior selection is often irrational. A fight or flight response
can be triggered in situations where it is not effective, preventing the selection of a
more intelligent course of action. An example of irrational behavior is attacking a unit
that is obviously of superior strength.

In addition, a person’s perception of the world is not objective because his emotional
state constantly influences what he perceives. If a person is very angry, for example, he
might feel less pain from physical damage than someone in a more relaxed state. The
angry person effectively ignores the pain response, opting for an aggressive behavior
instead. We will call this phenomenon the “coloring” of perception. In games, we can

276 Section 3 Architecture

mimic this phenomenon by altering the amount of perceived damage based on the char-
acter’s emotional state.

Emotions in Games

One way to model emotions in games is by using finite state machines (FSMs). We
will quickly discuss the strengths and weaknesses of this approach, and then construct
our own component to solve a number of the problems.

Traditional Implementation: Finite State Machines
FSMs are among the most popular architectures used in games ([FuHoulette04]), and
they are a common way to model emotions. In an FSM, a graph describes all the possi-
ble states and the transitions between them. If we use an FSM to represent emotions, we
can assign an overriding emotional response to each state. For example, states can repre-
sent anger or fear as shown in Figure 3.6.1. The FSM starts in the “neutral” state where
the agent does not have an explicit emotion. Internal thoughts or external stimuli cause
the agent to transition to a new state, with a corresponding change in emotional state.
Such an FSM, where the transitions between behavioral states are directly linked to
inputs, can be viewed as a naive stimulus-response model.

3.6 The Emotion Component: Giving Characters Emotions 277

NeutralScared Angry

“no event for 30s” “no event for 30s”

“teammate killed”“large army approaches”

FIGURE 3.6.1 An FSM representing emotional state.

FSMs are easy to implement, efficient, and very easy to author, tune, and debug.
They are also straightforward to interface with other systems, such as animation,
physics, and sound, because it is easy to retrieve the current state of the character.
When using this approach, however, we tend to model the behavior of the character
(e.g., scared, angry) rather than the underlying emotion (e.g., fear, anger).

Additionally, in an FSM, only one discrete state can be active at a time. By con-
trast, emotions normally have a graduated activation level: you can be a little scared,
quite scared, or scared witless. To capture this in an FSM would require many addi-
tional states. An alternative to the standard FSM is the fuzzy-state machine (FuSM), in
which every state has a level of activation [Champandard04]. FuSMs are thus well
suited to modeling the graduated nature of emotions, and they serve as a springboard
for the design of our Emotion Component.

The Emotion Component
To represent emotions in games while avoiding the problems associated with FSMs,
we use a system that is loosely based on an FuSM. The Emotion Component is posi-
tioned between the “sense” and “think” parts of the traditional AI loop, as shown in
Figure 3.6.2. The feedback link from the “think” component to the Emotion Compo-
nent indicates that the agent’s thought processes can influence emotions.

278 Section 3 Architecture

Sense Think

Emotion
Component

Act

World

AI Loop

Colored
Perceptions

Color

FIGURE 3.6.2 The placement of the Emotion Component in the AI architecture.

How the Emotion Component Influences Character Behavior

We will now discuss the typical Sense/Think/Act modules of the AI architecture and
their relation to the Emotion Component.

The Sense Module: Coloring Perceptions with Emotions
The stimuli from the outside world are presented to the game character as perceptual
events. For example, the character might spot an opponent or take damage from a
weapon. The Emotion Component allows us to color this information based on the
emotional state of the character, resulting in a change to the value and/or type of the
event. This can be seen in Figure 3.6.3, where the actual damage taken by the charac-
ter is scaled down by the anger level to determine the perceived damage.

The Think Module: Influencing Behavior Selection with Emotions
Emotions also influence behavior selection for the character. The occasional selection
of irrational behavior can give the player a vivid indication of the intensity of a char-
acter’s emotions. In addition, the contrast between the normal situation—in which a
character behaves quite rationally—and the emotion-induced irrational state will
make his rational actions seem all the more rational, thus making the character more

believable. Of course, the injudicious use of irrational behavior can lead to the appear-
ance of stupidity, which detracts from the believability of the character.

The Act Module: Influencing Behavior Execution with Emotions
In the Act module, specific physiological phenomena, such as posture and facial
expression are overlaid on the selected behavior in accordance with the character’s
emotional state. For example, if the behavior is set to “run away,” the posture might
be “panicked” or “stealthy.”

Implementation Issues

When implementing the Emotion Component, we first have to discuss how emo-
tions are represented. We can distinguish between the case where only a single emo-
tion influences the agent’s behavior selection and situations where multiple emotions
influence behavior selection simultaneously.

Representing a Single Emotion

The Emotion Component can model an arbitrary set of emotions, where each emo-
tion has an activation level between 0.0 and 1.0 that represents its current strength.
For mutually exclusive emotions (e.g., “confidence” and “fear”), we can use a range
between -1.0 and 1.0. By using such a range, we can represent two emotions in a sin-
gle activation level, although this can make naming emotions less intuitive.

Multiple events can influence a single emotion (e.g., every enemy within visual
range might induce fear). Thus, instead of allowing the event to directly influence the
activation level of the emotion, we have opted to include a mapping function that
transforms an internal variable into the emotion’s activation level. For example, every
enemy within visual range might induce five fear “points.” The accumulated score
(“emotion points”) is then used to calculate the activation level of the fear emotion.

Example activation functions that can be used for such transformations are shown
in Figure 3.6.4. You can choose an activation function based on how well the activation
function matches a particular emotion. For example, you might use 4E for impatience,

3.6 The Emotion Component: Giving Characters Emotions 279

Emotion : Anger

Perceived damage =
Real damage * 0.8

Real damage : 3.0 Perceived damage : 2.4

FIGURE 3.6.3 The coloring of perceptions.

4C for excitement, and 4D for fear. There is no single best activation function to use.
For example, what activation function would you choose for the emotion “love”? Some
people might choose 4F for a love that grows over time, with every step of the floor-
function being a special experience that deepens the feeling, but others might experi-
ence something like 4D or maybe 4B for love at first sight. This also gives the
opportunity to create characters with a rich set of subtle differences.

280 Section 3 Architecture

Emotion Points

Emotion Points

Emotion Points

Emotion Points

Emotion Points

Emotion Points

A B

C D

E F

Le
ve

l o
f A

ct
iv

at
io

n

Le
ve

l o
f A

ct
iv

at
io

n

Le
ve

l o
f A

ct
iv

at
io

n

Le
ve

l o
f A

ct
iv

at
io

n

Le
ve

l o
f A

ct
iv

at
io

n

Le
ve

l o
f A

ct
iv

at
io

n

FIGURE 3.6.4 Different activation functions.

Handling Multiple Emotions

If we represent the emotional state of a game character as a set of emotions, we can no
longer directly identify one single discrete emotion as being dominant. A character
might be angry and confused at the same time. One solution is to order the different
emotions by their level of activation, granting the emotion with the highest level of
activation the title of dominant emotion (much like a single state in an FSM).

Another point concerns mutually exclusive emotions, such as fear and confidence.
As we mentioned previously, these emotions can be seen as two endpoints of the same
spectrum or alternatively as two separate emotions with their own activation levels.
The main reason to use separate emotions is that they permit a clear and distinct
name for each emotion. To simplify the implementation in this case, we could make
the activation level of one of the emotions dependent on the other (so you could
define “confidence” as 1.0 minus “fear”).

We should be aware, however, when two emotions are simultaneously highly acti-
vated because any lack of hysteresis will cause problems. Hysteresis is a property of sys-
tems that do not instantly react to the forces applied to them but instead change
slowly. The state of such a system depends on its immediate history. When a system
contains a threshold between two alternative behaviors, and the reaction speed of the
system is too fast, then the system might oscillate wildly around that threshold, giving
rise to unwanted behavior. Translated to the realm of game AI, we might alternate
between emotional states too quickly if their activation levels are very close together,
but their associated behaviors are very different.

For example, suppose we have a character with a high level of activation for both
fear and anger. At one moment, its fear activation level is highest, so it runs away. As
it runs away, its fear level decreases, and its anger level becomes highest. The character
now changes behavior to attack the opponent from which it was first fleeing. Moving
toward the opponent and being hit increases the fear level, so after a few steps, the fear
emotion becomes dominant. This cycle of events repeats, all other factors being equal,
and makes the character seem very indecisive and artificial.

Is There a Silver Bullet?
After reading the previous paragraph, you should be aware that the Emotion Com-
ponent as such does not provide a “silver bullet” against the difficulties and pitfalls of
correct behavior selection. Defining descriptive behaviors that convey the agent’s emo-
tional state to the player and making sure they are selected at the right time is unfortu-
nately still a task of long hours of testing and fine-tuning. The Emotion Component
does provide a more flexible approach to this fine-tuning by adding the explicit inter-
nal emotional state. Because of this state, it becomes easier to decouple the agent’s emo-
tional response from the game world stimuli, making it possible to have greater
subtlety and greater variation among the agent’s expressed behaviors. This even holds
true in the case of agents of the same type, which will express subtly different behaviors
based on their own internal state. Unfortunately, it comes at the cost of greater com-
plexity when modeling and fine-tuning the behavior.

Sustaining Emotions Over Time

We all know that our emotions fade. If we are scared, but there are no stimuli that
keep us scared, our fear will gradually diminish. We can model this by using a decay
function.

3.6 The Emotion Component: Giving Characters Emotions 281

The simplest decay function decreases the activation level by a fixed amount over
time, giving a linear decay rate. We can also use an exponential decay function that
defines a relative amount by which the activation level changes—for example, 1%
every second. The exponential decay function might be appropriate for a wide range
of emotions, such as fear, anger, and ambition, where the absence of stimuli reduces
the strength of the emotion. To make sure the Emotion Component has a sense of
time even in the absence of stimuli, we send a time event to the Emotion Component
in every AI update cycle so the Emotion Component can execute the decay.

Showing Emotions

The emotional state of the character must be portrayed in a way that provides appro-
priate cues to the player. This can be done by influencing animation, physics, sound
selection, responsiveness to orders, or even direct visual markers, such as a red ques-
tion mark above the character to indicate he is confused.

Consider the execution of a walk cycle of a game character. We create two candi-
date walk cycle animations: one where the character has a bent back and hanging
shoulders and drags its feet (an insecure animation), and another where the character
has a very straight back, with chest forward, shoulders back, vigorous arm and shoul-
der movement, and a springy step (a confident animation). By querying the Emotion
Component for the activation level of “confidence,” we can blend or select between
the two animations to convey the appropriate level of emotion. The transition times
between such emotions are incorporated directly in the Emotion Component as well
via the activation levels and decay functions. Humans are highly attuned to such sub-
tle visual clues, and a convincing implementation will help strengthen the connection
between the player and the game world.

Group Psychology

Agents that are part of a group are not only driven by their own emotions. The emo-
tions of other agents of the group are just as important.

We can achieve group-level emotional response using the Emotion Component
by allowing members of a group to send messages to others nearby concerning their
emotional state. The emotional state of the other members of the group thus becomes
just another input to the agent’s Sense/Think/Act cycle and can be used to influence
the character’s emotional state. With the correct settings, it should be possible to cre-
ate “emotional flocking behaviors” that give rise to emergent behavior. Naturally,
when implementing this for large groups, this calls for techniques to minimize the
amount of communication.

Source Code

We have now set the stage for our Emotion Component. We invite you to take a look
at the demo program and source code to gain a more detailed understanding of its
function.

282 Section 3 Architecture

Included on the CD-ROM is the source code of a demonstration program that
allows you to experiment with the Emotion Component. The code is strictly for
demonstration purposes and not heavily optimized, but it serves as a good starting
point for your own implementation. The program uses a number of different types of
agents, each capable of their own set of emotions. By allowing the agent to interact
with the environment and the other agents, the emotional state and the behavior of
the agents can be changed.

Conclusion

In this article, we have shown how to create a component that can represent human-
like emotions while supporting multiple active emotions at the same time. We have
discussed how our representation of emotions can color both perception and actions
and how to closely integrate with other modules, such as animation and AI.

Although the Emotion Component has by no means finished its evolution, we do
have a number of guidelines that we can offer as a starting point for your own experi-
ments with adding emotions:

• Make your behavior selection descriptive. When we used a simple difference in
speed between “flee” and “wander” behavior, with “fleeing” agents moving twice
as fast, the difference became immediately clear.

• Test to make sure behavior rules do not interfere with each other to end up in dead-
lock or feedback loops. For example, it seems like a nice idea to have a “scared”
agent run to the nearest friendly agent (which will boost its confidence), but this
approach breaks down if that friendly agent is scared too, and there is no additional
fallback behavior: both agents will run toward each other and then oscillate. Dis-
criminating between scared and confident friendly units would help in that case.

• Make sure that during implementation, you don’t add too many emotions and
agents into the system at once. When the mix becomes complex, it is increasingly
tricky to figure out what is going wrong. Making sure the system is first tested
with one or two basic important emotions is the easiest way to go.

• Define a “pecking order” for how your emotions influence your behavior selec-
tion. So, for example, fear will overrule anger, and anger will overrule idle behav-
ior. In that way, it is easier to avoid two emotions becoming gridlocked.

The Emotion Component provided in the accompanying source code is a good
place to start experimenting with giving agents emotions. Even with a straightforward
architecture, such as the Emotion Component, the possibilities are vast. Be aware,
however, that making complex emotions that affect gameplay can greatly increase the
time needed to play, test, and balance games. As always, try to balance the pros and
cons.

3.6 The Emotion Component: Giving Characters Emotions 283

References

[Champandard04] Champandard, Alex J., AI Game Development. New Riders Pub-
lishing, 2004.

[EmComp07] “Emotional Competency.” Available online at http://www.emotional-
competency.com/emotion.htm, August 14, 2007.

[EmRec07] “Emotional Competency.” Available online at http://www.emotionalcom-
petency.com/recognizing.htm, August 14, 2007.

[Freeman03] Freeman, David, Creating Emotion in Games. New Riders Publishing,
2003.

[FuHoulette04] Fu, Dan, and Houlette, Ryan, “The Ultimate Guide to FSMs in Games.”
AI Game Programming Wisdom 2, Charles River Media, 2004: pp. 283–302.

[Minsky85] Minsky, Marvin, The Society of Mind. Simon and Schuster, 1985.

284 Section 3 Architecture

http://www.emotionalcompetency.com/emotion.htm
http://www.emotionalcompetency.com/emotion.htm
http://www.emotionalcompetency.com/recognizing.htm
http://www.emotionalcompetency.com/recognizing.htm

285

3.7

Generic Perception System
Frank Puig Placeres
fpuig@fpuig.cjb.net

Perception is one of the most important topics in game AI. Every game has to
address perception in some way. This can be as simple as the NPC knowing the

complete map, hearing all sounds, and always seeing the player. On the other hand,
more sophisticated perception can also mimic the real-world limitations of the char-
acter types being modeled (e.g., humans or animals).

However, perception is much more than just seeing and hearing. It encompasses
all of the ways that an NPC gathers data about the world, including environmental
and tactical information such as hiding spots, ambush locations, and the positions of
walls and obstacles.

This article presents a perception system that analyzes the environment to pro-
vide the AI agents with world data as well as static and dynamic events. The system
also allows customization of most of its modules to match the space partitioning
structures used to organize the visual and physical world. It was designed to allow
integration of features such as time slicing, priority scanning, goal negotiation, move-
ment prediction, and short- and long-term memory.

System Architecture

The cPerceptionSystem object (see Figure 3.7.1) is responsible for updating all of the
cDataGatherer entities, which store the perceptual information about the world that
can be sensed by agents. That information can be anything from tactical data (such as
hints about best sniper locations and potential attack zones), to environmental data
(such as the locations of walls, stairs, characters), to events that happen in the world
(such as the sounds of gunfire or footsteps).

All of these types of information are implemented as subclasses of the abstract
cDataGatherer class and are detailed in the following sections. Maintaining all the
data gatherers as separate classes allows the inclusion of only the ones that are needed
for a specific game. Thus, a football game might discard environmental and tactical
classes, whereas a first-person shooter (FPS) would need them all.

Environmental Data

When creating game levels, artists build graphical and geometric representations of
the environment. You can automatically simplify these representations into basic
shapes that help the NPCs understand their surroundings. In this way, a complex 3D
world can be described as in Figure 3.7.2, with obstacles delimited by circles and walls
represented by straight lines.

286 Section 3 Architecture

cPerceptionSystem

+ Update() : void

cDataGathered

+ Update() : void

cTopological_DataG

cEnvironment_DataG

cBeacon_DataG

cBeaconCognitiveModel

cSet_CModel

cABT_CModel

cList_CModelcBeacon

- Intensity: float
- pEmitterEntity: void*
- Position: cVector3f
- TypeFlags: DWORD

0..*

0..* 0..*

0..*

FIGURE 3.7.1 Class diagram of the perception system.

FIGURE 3.7.2 Environmental data composed
of straight lines (walls) and circles (obstacles).

At any moment, the agent can query the environmental data gatherer to learn about
the structure of its surroundings to make movement decisions. Because the returned
shapes are very simple, well-documented algorithms, such as steering, behaviors can be
used to determine how to move to a target location while avoiding collisions or where to
hide from an enemy using the closest obstacles.

Tactical Data

For AI agents, perception is more than simply knowledge about the world’s geometry.
Information about the tactical characteristics of the surrounding environment is often
important—for example, hiding spots, sniper locations, ways to enter a room, and
places that can be ambushed, among others [vanderSterren01]. Figure 3.7.3 shows
some of the tactical and environmental information that the data gatherers can pro-
vide about the world.

3.7 Generic Perception System 287

FIGURE 3.7.3 Tactical and environmental data. The arrows and circles
represent tactical tips, such as possible hiding spots and room entries. The
lines indicate the nearby walls used for collision avoidance.

Beacon Data

So far, the described data gatherers hold information about static locations and struc-
tures. However, most of the useful hints will come from dynamic objects or events
that are created and modified at runtime. The third type of data gatherer deals with
this type of information, which it encapsulates as a beacon [Orkin02].

Each beacon represents an event or situation that could interest the AI agents.
Examples of beacons are visibility messages, smells, and sounds. Take for instance a
situation where a player is moving across a level. When the player object is created, it
registers a visibility beacon. When nearby agents are notified of this beacon by the
data gatherer (as described in the next section), agents know that they can see the
player. Similarly, every time the player moves, footstep beacons are created.

Figure 3.7.1 lists some of the properties that are stored on the beacons. For
instance, beacons store the position and identity of the emitter entity as well as the
emission intensity, which represents how loud the sound is or how visible/camou-
flaged the entity is. The beacon also stores a flag describing the type of perception,
such as GUN_FIRE, FOOTSTEPS, or DEAD_BODY. This enables the AI agent to take appro-
priate action depending on whether the beacon represents a sight, sound, smell, or
other perception.

Data Gatherer Internal Management

As presented in the UML diagram of Figure 3.7.1, the cBeacon_DataGatherer object
is composed of one or more cognitive models that manage the various beacons. The
simplest cognitive model is a list, but more specialized models, such as octrees, ABTs,
BSPs, and grids, are also possible. This flexibility enables the world representation to
match as closely as possible the structures used to handle visibility and collision, sim-
plifying and optimizing the updating of cognitive models and the retrieval of nearby
beacons.

The AI Agent

Now that the perception system has been introduced, let’s see how the NPC makes
use of it. Figure 3.7.4 depicts the AI agent’s sensors and memory subsystems.

Sensors

As in the real world, the AI agent receives information from the environment by using
sensors. These sensors constantly scan the surroundings in search of useful informa-
tion and keep the agent updated. To do this, they connect to the various data gather-
ers in the perception system, which provide environmental, tactical, and beacon data
about the world.

When an agent is created, it registers the sensors that it will need. For a dog char-
acter, it may not be necessary to register a tactical sensor because it does not need to
receive information about where to set up an ambush. However, it does indeed need
to register an environmental sensor to avoid collisions and know where to move next.
Also, it will need a beacon sensor to spot the player.

Each of the sensors has a set of filter properties that determines the sensory capa-
bilities of the associated agent. Those attributes are defined according to the type of
data that the sensor is designed to search. For instance, the environmental and tactical

288 Section 3 Architecture

sensors define visibility attributes so that only the closest visible data is returned when
the scanning is performed. Similarly, the beacon sensor provides attributes to specify
the types of beacon that it will detect. For instance, a particular sensor might only
detect gunfire beacons.

Every time an agent is updated, all of its sensors are also updated, causing them to
perform a scan of the data gatherer to which they are connected. This scan is imple-
mented in the data gatherers so that it can be optimized according to the constituent
cognitive models, allowing fast searches via space-partitioning trees for large environ-
ments with lots of useful information or simple list searches when small environments
are scanned. After the scan finds data that matches the sensor’s filter properties, this
data is placed in the agent’s memory.

Agent Memory

Often, short- and long-term memory is not included as a fundamental system in the
implementation of AI agents [Buckland05]. In the proposed architecture, however,
this system plays a fundamental role, serving not only to improve the agents’ capabil-
ities but also to optimize retrieval of perceptual data requested by the decision-making
algorithms.

As has been mentioned, after a piece of data matching a sensor’s filters is found in
the data gatherers, it is reported to the memory system of the agent that owns the sen-
sor. The memory system holds a set of memory slots that stores information about all
sensed data.

3.7 Generic Perception System 289

cAI_Actor

+ OnEntityDisappear(Entity, TypeFlags) : void
+ OnEntityPerceived(Entity, TypeFlags) : bool

cSensor

+ Update() : void

cTopological_Sensor

cEnvironmental_Sensor

cBeacon_Sensor

cMemorySlot

- BasePriority: int
- EntityTypeFlags: DWORD
- HowLongWasVisible: long
- TimeOfLastPerception: long
- TimeToWaitUntilReportingDisappear: long
- vLastPosition: cVector3f
- vVelocity: cVector3f

+ GetPriority() : int

cMemory

+ GetAllPerceivedEntities(EntityFlags) : list
+ ReportEntities(EntityFlags) : void
+ StopReportingEntities(EntityFlags) : void 0..*

0..*

FIGURE 3.7.4 Class diagram presenting the components of the AI agent.

Each of the slots contains a description of the type of data that it holds as well as
general information, such as the time and location where the emitter was last per-
ceived. This enables the agent to know where to find that emitter in the environment.

One of the key aspects of the memory system is its capacity to prioritize data.
When the agent requests information about the data reported by its sensors, the infor-
mation that is returned is sorted by priority so that the agent can simplify its decision-
making logic by only analyzing the most important data.

290 Section 3 Architecture

cAI_Actor cSensor System::cDataGathered cCognitiveModelcMemoryEngine

ReportEntities(f)

*Update()

*RelocateEntities

*Update
*Update

Scan
*Scan

*EntityFound
OnEntityPerceived

FIGURE 3.7.5 Sequence of function calls that happens when the perception system is
updated.

Priorities are also used to manage which information should be kept and which
should be forgotten and deleted. Whenever some information is not useful to the
agent or its relevance is below a minimum threshold, it can be discarded by the mem-
ory system. When a sensor reports data, the agent computes the base priority as
appropriate to its character in the game. Thus, a dog assigns a high priority to a bone
that it could eat, whereas a person assigns the bone a lower priority because he does
not consider it to be a useful object.

Priority also depends on the length of time that the data was perceived as well as
how much time has elapsed since it was last perceived. The longer the period during
which the data was perceived, the higher its priority, and the greater the elapsed time
since it disappeared, the lower its priority. For instance, suppose an agent enters a
room and sees a door. At first, the door has a low priority, so the agent does not imme-
diately analyze it, but after a few seconds, its priority increases, causing the agent to
notice it and decide to pass through. For a few more seconds, the agent will remem-
ber the door. After a while, though, the door’s priority will be so low that the agent
will forget about the door and release that memory slot.

Agent Requests

When implementing the agent’s logic, sensor information can be retrieved from the
memory system using either event-driven or polling approaches. In the event-driven
approach, memory slots can be directed to report all objects of a certain type. This
way, infrequent sensor data, such as dead bodies or footsteps, can be noticed by the
agent as soon as the memory system receives data of that type, without requiring the
agent to poll for them directly every frame. The implementation of the decision-mak-
ing algorithms is thus simplified because they do not need to take into account infre-
quent events, only processing them when the callback functions OnEntityAppear and
OnEntityDisappear are executed by the memory system.

The agent can also use poll requests to get information from its memory slots.
The memory system provides a function that returns all current sensor data, sorted by
priority so that the agent can focus its decision making on the most important sensor
data.

Expanding the Perception System

The perception system discussed so far is capable of handling the basic perceptual
needs of an AI agent. However, the implementation can also be expanded to include
some optimizations and additional interesting capabilities.

Time Slicing

Huge game worlds have the disadvantage of increasing the sensor scanning time
because many cognitive model subnodes have to be traversed, each of which may con-
tain a large amount of relevant sensor data. Time slicing helps reduce the stalling that
occurs every time a sensor scans the world. Basically, the system can be implemented
to handle two types of time slicing: per-sensor and per-agent.

Per-sensor time slicing spreads the sensor’s scanning process over several frames.
This way, every time a sensor performs a scan, instead of waiting until the complete
traversal of the cognitive models is finished, it just signals the data gatherers, which
perform a fraction of the scan on each frame until the search gets completed. The
number of frames into which the sensor scan is sliced can be adjusted to match cur-
rent performance.

The second type of time slicing distributes agent sensor requests across multiple
frames. Instead of each agent constantly scanning the world, it is possible to perform a
scan for 20 agents on one frame, then for 20 more on the next, and so on until all agents
get updated. This can be combined with a level-of-detail optimization so that agents far
away from the player have lower scanning priorities, only scanning the world every few
seconds, whereas characters near the player constantly scan their surroundings.

The drawback of using time slicing is that objects are not immediately perceived.
It can be a few seconds before they are reported to the agent. However, this can also
add a touch of reality to the perception system because in the real world, most people

3.7 Generic Perception System 291

do not immediately have a full understanding of their surrounding but notice objects
and events a few moments after they happen. The number of frames between sensor
scans might thus be set to reflect the reaction time of a particular agent.

Priority Scanning

Coupled with the time-slicing feature, the system can also be implemented to handle
priority scanning. The idea here is to mimic real-world behavior where important
events are noticed first, and finer details are detected on later frames.

To implement priority scanning, the cognitive models that comprise the data
gatherers can maintain their sensor data sorted by priority. When scanning is per-
formed, the nodes with higher priority are traversed first. For example, a door might
have a higher priority than a wall and a lower priority than a dead body. Of course,
because the cognitive models are not agent-specific, only one priority ordering exists
across all agents. In practice, however, this is not a major limitation.

Goal Negotiation

The proposed perception system is not limited to describing and understanding
prebuilt environments. The system can also be extended to handle new events and
manage knowledge acquisition.

Suppose, for example, that an artist creates an elevator that is called using a lever
in the middle of the room. The elevator moves any agent standing on its platform to
the higher floor. Integrating this new entity normally would require changing some of
the agent’s logic to handle the elevator behavior. However, using the perception sys-
tem, a goal-negotiation approach can be implemented instead.

At the moment that the elevator is placed in the environment, it registers a bea-
con signaling that it can move agents. When an agent senses the beacon, if that agent
needs to move to a higher level, it asks the beacon how to use it. The beacon returns a
goal, a script, or some other description of how to correctly use the elevator, which in
this case is “search for the lever, pull it, and then stand on the main platform until it
reaches the next floor.”

This procedure can be used to increase the artist’s capabilities while simplifying
the character’s logic implementation. The environment itself will explain to the char-
acter how to use the entities that surround it.

Using the System

Next is presented an example of how agents can use the perception system to move
and understand the environment. When implementing an FPS, the main loop con-
stantly updates the perception system and all active characters. Artists create simpli-
fied representations of the world as in Figure 3.7.2 and add it to the environmental

292 Section 3 Architecture

data gatherer using a space-partitioning technique to accelerate the search for nearby
entities and obstacles. Similarly, tactical data is precomputed based on the world rep-
resentation and stored in the appropriate data gatherer.

At the moment that each character enters the game, it registers visibility beacons,
and every time the character moves, shoots, or picks up an item, a sound beacon is
created for a few moments. The characters also create sensors to scan the world
according to their perceptual limitations. This way, only trained soldiers access the
tactical data, whereas zombies just scan the environmental data to avoid collisions.

To understand the AI implementation of the characters, consider this situation.
An NPC is placed in the world. He has a weak gun, so he decides to search for a bet-
ter one. He runs a pathfinding algorithm, which reports that a rocket launcher is in
the next room. His environmental sensors provide him with knowledge of his sur-
roundings, enabling him to use steering behaviors to move without collision to the
door that leads to the next room.

The door is locked but has a beacon that signals that it can indeed lead the agent
into the next room, so the character takes the script offered by the door. This script
informs him that he needs to step on the switch on the floor to open the door.

In the next room, he spots the rocket launcher beacon and moves in that direc-
tion. After a few seconds, its time-sliced sensor scan informs him of a visibility beacon
on his left side representing a dead agent. Immediately, the player increases its state of
alertness by increasing the number of beacons to be reported and lowering the mini-
mum priority that the scan uses for filtering data. The updated scan retrieves other
beacons with very low priorities showing footprints on the floor.

The character decides to follow these footprints, but after analyzing and remov-
ing the footprint and dead body beacons from the sorted list of data, the beacon with
the next-highest priority is the rocket launcher. The character thus moves to its loca-
tion, picks it up, and then uses his sensors to follow the footprints and hunt the
player.

Conclusion

The perception system described in this article simplifies decision-making logic and
expands the capabilities of NPCs by providing prioritized information about the envi-
ronment. It can also increase the realism of NPC behaviors by automatically handling
short-term memory, movement predictions, and variable reaction times.

This system can be scaled to reduce the performance impact of a large number of
agents interacting in the world. In addition, it can provide the ability to easily include
new complex objects by associating goals and scripts with them, making it well suited
to implementing complex character behaviors in next-generation games.

3.7 Generic Perception System 293

References

[Buckland05] Buckland, Mat, Programming Game AI by Example. Wordware Publish-
ing, Inc., 2005.

[Orkin02] Orkin, Jeff, “A General-Purpose Trigger System.” AI Game Programming
Wisdom, Charles River Media, 2002.

[vanderSterren01] van der Sterren, William, “Terrain Reasoning for 3D Action
Games.” Game Programming Gems 2, Charles River Media, 2001.

294 Section 3 Architecture

295

3.8

Peer-To-Peer Distributed
Agent Processing
Borut Pfeifer—Electronic Arts
borut_p@yahoo.com

This article covers methods to spread the processing requirements for agent-based
AI across multiple machines in a peer-to-peer game architecture. As networked

gameplay becomes more and more common across the range of gaming platforms
[Isensee03], we have to consider network architecture as a fundamental aspect of the
structure of our AI. Client-server and multitiered server architectures are often more
secure and scalable, but peer-to-peer architectures do have clear benefits for small
groups of players.

With a peer-to-peer architecture, any given player can leave without disrupting
the game, and that player can rejoin later on. With the increasing popularity of hand-
held gaming systems with ad hoc wireless networking, these types of failure cases are
becoming more common, such as when players temporarily go out of range of each
other. A peer-to-peer architecture can improve the players’ experience by handling
these cases gracefully. Peer-to-peer architectures can also allow network messaging
optimizations in certain circumstances, even for some aspects of massively multiplayer
games (MMO) [Knutsson04]. To properly take advantage of the benefits of peer-to-
peer architectures, we have to architect our AI systems around the concept of distrib-
uted agent processing.

Overall Architecture

To create peer-to-peer games, there is commonly a peering server, a separate, central-
ized machine that all players communicate with to get information about possible
game matches. The peering server can also be used if a final arbitrator between the var-
ious peers is needed, for instance, to determine who should take ownership of agents
controlled by a departing player. After the players successfully create or join a game,
they communicate by each broadcasting messages to every other peer in that game.

In terms of the AI architecture, the more autonomous the agents are in their deci-
sion making, the easier it is to distribute their processing across machines. If a large

group “brain” is coordinating decision making for all the agents, it will be more diffi-
cult to distribute its workload. If there are smaller decision-making groups, such as
squads or teams of agents, it may still be more straightforward to keep the processing
for an entire team on the same machine. For this reason, you should keep decision
making simple and at the individual agent level, and keep interagent communication
over group decision making, thereby making it easier to distribute agent processing.

Agent Communication

To coordinate the actions of separate agents, we will need a simple conduit for control-
ling their communication. Such a concept already exists for agents controlled by just
one machine: a blackboard [Isla02, Orkin04]. With a few extensions, a blackboard can
solve many problems with coordinating multiple agents’ actions across the network. To
achieve this, however, we have to lean ever so slightly away from peer-to-peer distribu-
tion of agent communication.

One machine, initially the player who started the game, controls the blackboard.
Every machine has its own version of the blackboard object, but only one is tagged as
the owner. The others are remote proxies to ensure that agents process blackboard
messages in the proper order. Given the nature of a peer-to-peer game, you can’t guar-
antee receiving messages in order from peers. For example, if one player shoots at and
hits an agent owned by another player, a third player might not receive the “shoot”
message before the “hit” message due to lag. Because many entries on the blackboard
require synchronization of handshaking-type requests between agents (where two or
more agents need to each receive agreement from the others), a guaranteed ordering is
necessary and is achieved by having the blackboard owned by one machine.

Blackboard entries consist of a type, a source object (typically the posting agent),
and related data (such as a position, a target object, and a timestamp). One agent puts
an entry on the blackboard, and other agents can react to it. At the most basic level, a
blackboard has these interface functions:

AddRecord: Adds a data entry to the blackboard.
FindRecord: Searches for an entry on the blackboard matching a given description.
RemoveRecord: Removes an entry on the blackboard. There can also be a similar

convenience function that removes all records matching a certain description.

Finding a record works the same on any machine: it runs through the local machine’s
list of entries to determine whether a record exists with a matching record type, source,
and so on. On the machine that owns the blackboard, the AddRecord and RemoveRecord

functions add or remove entries from the local list of data. They also broadcast the
request to add or remove the record to the other machines in the game. The other
machines’ blackboards respond to the broadcast by performing the desired command on
their local list of records. On remote machines, when an agent invokes AddRecord or
RemoveRecord, this request is transmitted to the blackboard owner. The owner updates its
data and then broadcasts the change to all the peers.

296 Section 3 Architecture

Note that a remote agent that originally requests a blackboard change will wait
for the owner to broadcast the change back to it. This communication could be opti-
mized so that the original remote requester simply makes the change internally to its
copy of the blackboard, and the blackboard owner only broadcasts the change to all
the remaining peers. However, this would violate the requirement that the blackboard
owner be the final authority on the ordering of blackboard additions and removals.
On the remote machine that originated the request, if any agent queried the black-
board for that record, the agent might get a different result from an agent on another
machine that would have to wait for notification from the blackboard owner.

Example of Networked Blackboard Coordination

One example of blackboard use for coordinating agent behavior is enabling two agents
to flank a player. The desired behavior is that any two available agents of the same type
will approach their target from opposite sides. Although this behavior could be explic-
itly scripted for two agents, if one agent dies, and the player moves toward a third
flanking agent, the new agent would not continue the flanking attack.

The first agent initially searches for flanking requests that have been posted on
the blackboard. Finding none, it adds its own request. The second agent finds the
request and adds a flanking partner match record. The first agent, polling for flanking
partner matches, picks the first one it finds. It then assigns this agent as its flanking
partner and tells its partner of the match via another record on the blackboard. If the
first agent also finds other matches that it does not choose, it can remove those
records from the blackboard so that those agents will keep searching for a new match
to their original request.

Now that the two agents have found each other via their handshaking messages
on the blackboard, they can calculate approach vectors to reach their target on oppo-
site sides (given their current positions relative to their target). If the agents are being
processed on separate machines, the distributed blackboard has kept this fact hidden
from each agent. Using the blackboard to coordinate tactics and decision making
allows an agent to have a single unified way to interact with other agents, both local
and remote.

A blackboard is a very efficient means of coordinating multiple agent behaviors.
If flanking or other group tactical behaviors were made at another level (e.g., a squad-
level “brain”), coordinating actions between agents across the network would become
more difficult. If we restrict all squad members to be processed on the same machine,
we will run into problems if we need to distribute agent processing by locality (where
nearby agents are processed on the same machine) when agents in the squad get sepa-
rated. Alternatively, each chunk of tactical decision-making code could perform all
the network communication between its subordinate agents itself, but that could
result in code duplication and inefficient communication. The code required to add
network communication to the blackboard, on the other hand, is minimal and has
the advantage of abstracting this functionality from any agent’s decision making.

3.8 Peer-To-Peer Distributed Agent Processing 297

Arbitrating Blackboard Ownership

Because the blackboard is owned by one player’s machine, it effectively acts as a small
server for coordinating AI communication. This means that when the player who
started the game and owns the blackboard leaves, the ownership of the blackboard
must be shifted seamlessly to another player. The simplest way may often be to rely on
the peering server to arbitrate ownership between the existing players. It receives noti-
fication that a player has left the game or determines that he has lost the connection
(when no messages have been received for a certain period of time). It can pick the
next player to own the blackboard (and potentially other singleton objects) and then
notify all of the players of the new owner.

You can avoid the additional communication with the peering server by establish-
ing a mechanism by which each remaining player’s machine can deterministically select
the new blackboard owner. This can be based on data assigned by the peering server
when the players join the game (such as the order in which the peering server processed
the players’ join game requests). Because the blackboard is always kept up to date on
each machine, whether the decision is made by the peering server or all peers in unison,
the existing blackboard on the new owner’s machine should not need any special
updates to take ownership; it can assume that its state of the blackboard is valid.

Although add or remove messages can potentially be lost if they were sent to the
blackboard owner after disconnect but before the new owner is decided, typically that
error case is infrequent, and the results are minor. Agents may not be able to act on
messages they are expecting momentarily until their state changes and they begin
looking for new records accordingly. If this error case is critical, agents can keep
resending their blackboard requests until the blackboard sends the acknowledgment
that the record is to be added or removed. This does require tracking each add and
remove request individually, to distinguish it from the case where an agent simply
wants to add a duplicate record to the blackboard.

Agent Ownership

The two main goals behind load sharing of agent processing are better handling of
streaming or spatial locality and performance improvements.

Streaming/Locality—Passive Load Distribution

If the game world is streamed, an agent may not be able to be simulated on a machine
that does not have nearby geometry loaded. If all the agents are being processed on
the first player’s machine, and a second player wanders far from the first’s location, the
geometry around the second player might not be loaded on the first’s machine. Agents
simulating on the first player’s machine near the second player’s location would fall
through the world without collision. That simple case might be handled by disabling
gravity, but agents would still need to perform line-of-sight tests, avoid walls, and so
on. Non-collision-related data, such as information about nearby props or other game
objects, may also be needed for the AI to function properly. A passive load-sharing

298 Section 3 Architecture

mechanism, one that transfers agent ownership as agents leave and enter players’ con-
trolled areas, will solve this problem. Three boundaries are considered in this decision
making-process:

• The update boundary around the player: This boundary defines the region of the
world around the player that is guaranteed to be valid for simulation because the
level geometry is loaded and objects are under an active level of detail of simulation.

• The ownership-acquiring minimum boundary for a player: Objects within
this boundary will come under the player’s ownership if they are not actively
owned by another player.

• The ownership-leaving maximum boundary for a player: If an object is inside
this boundary of a player, it will not be considered for changing its ownership to
other players.

For simplicity’s sake, these boundaries can be simple circle radii, but some games
might require more detailed boundary mechanisms (especially if they take place in
more than 21⁄ 2 dimensions). Every agent that is inside a player’s update radius and is
owned by that player is processed on that player’s machine. As players and agents
move through the world, when an agent exits a player’s ownership-leaving boundary,
it will begin to test other player’s ownership-acquiring boundaries on a per-frame
basis. If the agent ever enters the ownership-acquiring boundary of another player, it
will request its ownership to be transferred to that player’s machine.

This means agents outside of a player’s ownership boundaries might still in fact
be owned by that player, but they will be transferred as soon as they come within the
ownership-acquiring boundary of another player. Because the update boundary is
larger than both ownership boundaries, the agent is guaranteed to be in a valid simu-
lated world position while under active processing. Whenever it leaves its owner’s
update boundary without being transferred to another player, it goes into a nonsimu-
lated state so that the lack of valid level geometry and associated information won’t
cause problems (see Figure 3.8.1).

3.8 Peer-To-Peer Distributed Agent Processing 299

Update Radius

Leaving Radius

Acquiring
 Radius

Player 1

NPC owned by Player 1

NPC newly acquired by Player 1

NPC owned by Player 1 about to be acquired
by Player 2, not currently updated

Player 2

NPC still owned and updated by Player 1

NPC owned but no longer updated by Player 1

Ownership

Ownership

FIGURE 3.8.1 Visualization of update and ownership boundaries.

The ownership-leaving boundary must be larger than the ownership-acquiring
boundary. The difference should be large enough to prevent thrashing problems with an
agent leaving a player’s ownership and being reacquired, as determined by the maxi-
mum agent movement speed. The update boundary should be larger than both owner-
ship boundaries to ensure that all agents owned by a player or waiting to be transferred
are still being processed. Also note that if the second player comes back in range of the
first player, and their ownership boundaries overlap, agents owned by the first player will
not be transferred until they explicitly leave the first player’s ownership-leaving radius.

Performance—Active Load Distribution

The case where agent load must be transferred simply to balance processing perfor-
mance across all machines is less common. If the game has a steady, deterministic
number of agents per player, distributing their processing during regular gameplay
would not be effective; it would be simpler to parcel out agents to each machine when
a player joins the game. For many multiplayer games, this is the case because a com-
parable amount of AI is used for both single-player and multiplayer gameplay, so a
single machine already must be able to handle all agent processing. However, if the
nature of agent creation, due to gameplay, is more dynamic across all machines in the
game, an active load-sharing mechanism can address the problem. This is best illus-
trated when two players, after playing the game for a period of time, come to play
together, and one player is processing significantly more agents than the other.

Each machine keeps track of the agents it currently owns and the agents owned
by each other machine. Instead of each agent individually testing whether or not it
needs to transfer ownership, all the agents on one machine are considered at the same
time. There are three thresholds each machine must consider when determining
whether to request a transfer of ownership for an agent:

The high processing boundary: This number represents the limit on processing
load that the machine must be over, relative to other machines, before requesting
to transfer its agents.

The low processing boundary: This number represents the processing limit a
machine must be under, relative to other machines, before an overloaded
machine will request to transfer agents to it.

The minimum agent count: If a machine currently owns fewer agents than this
number, it will not consider transferring its agents even if it has a higher load
relative to the other machines.

The processing load of a machine is defined relative to the other machines. If one
machine is processing 10 agents and all the others are processing 5, it would have a
processing load of 2.0, and the others would be at 1.0. As agents are created and
destroyed, when one machine goes past the high processing boundary relative to the
other machines, it looks for a likely candidate to transfer agents to. If two machines

300 Section 3 Architecture

pass the high processing boundary at the same time, only the machine most drasti-
cally over the boundary is allowed to request transfer of its agents.

This machine then checks to see if any of the other machines are under the low pro-
cessing boundary. If the machine doesn’t find any, it keeps all of its agents. Although this
will result in suboptimal performance on the burdened machine, the other machines
are already at reasonable capacity. Overburdening them instead would simply cause
thrashing as agents are transferred back and forth between the most heavily burdened
machines.

If the overburdened machine does find machines under the low processing
boundary, it requests to transfer a number of agents, enough to take it below the high
boundary, to those machines. Agent lifetime is used to determine which agents to
transfer. The oldest agents are transferred first to reduce the chance that a single agent
may get rapidly transferred between two or more machines before finding a more per-
manent home. The machines that respond first to the requests are acknowledged by
the overburdened machine, and ownership is transferred.

This assumes agents have roughly similar processing requirements. In the case of
disparate processing requirements per agent, a simple weighted score could suffice to
adjust processing. For example, an agent that uses twice as many ray casts in its behav-
ior code might be assigned a weighted score of 2 in the processing load calculation,
assuming that ray casts are the bulk of the agent processing requirements. Using an
abstract score to represent processing load, separate from a machine’s actual process-
ing power or network bandwidth, allows us to change the calculation of an agent’s
impact on both of those factors by simply adjusting the two boundaries and the
weighting of any individual NPC.

Serializing AI State

After machines have coordinated the transfer of ownership of an agent, the agent
must continue its current actions relatively seamlessly on the new machine. During
normal processing, an agent frequently transmits a small amount of information
about its current state. This typically includes position, velocity, and animation state
changes. Unfortunately, this is not enough to properly transfer ownership when dis-
tributing an agent’s processing or when a player disconnects. If an agent fails to con-
tinue the behavior it was executing, game-locking bugs can occur (if the actions the
agent was performing were required to progress in the game). Additional information
is also necessary for any player to save the game, even though he does not control all
of the agents at that point.

When we decide to transfer ownership, we could simply send all pertinent infor-
mation about an agent’s state that is not transmitted on a regular update, but this
amount of data could be prohibitive. It also does not solve the problem that arises
when a player disconnects before there is an opportunity to send an agent’s full state.
Ideally, we want to keep this additional state information as small as possible by taking
advantage of its more persistent nature.

3.8 Peer-To-Peer Distributed Agent Processing 301

Agents driven by basic FSMs can simply transfer information when they change
states, specifying the new state and what caused the transition. More complex deci-
sion-making structures, such as stack-based state machines or hierarchical finite state
machines (HFSMs), would require data about past states and the state of each level of
the hierarchy. For instance, an agent with a high-level attack state might need to send
the information that triggered the attack (such as the enemy it saw) as well as infor-
mation about which substate it was in under the attack state (such as finding cover,
retreating, melee attacking, or reloading).

We need to be careful as we serialize additional lower-level state information.
Sending information about an agent’s attack state might in turn require information,
such as the agent’s lower-level animation data. The key to keeping this data small is
restricting it to the information that causes the agent to change state or perform new
actions. Information that is relevant while in the middle of an action will be recreated
when the agent’s ownership is transferred or the saved game is loaded. In the previous
example, it may not actually be necessary to send substate information for an agent in
a hierarchical attack state because the agent will resume at the high-level attack state
and redetermine the appropriate substate from there. Even if the AI is not imple-
mented strictly as a state machine, the same guidelines apply to persistent information
required by other decision-making mechanisms.

Other Issues

A number of other concerns arise when creating AI for a peer-to-peer game, which
vary in importance depending on the type of gameplay.

Scripted Game Logic

Having AI behavior scripted by game designers is fairly common and often beneficial.
This might include scripting gameplay logic, such as how much damage various
attacks perform under different circumstances, or it might be scripting sequences of
actions that agents must perform. In any case, only the machine that owns a particular
agent should run scripts associated with that particular agent (such as an OnDamaged
script function tied to a specific NPC). This allows the script to run on that machine,
complete execution, and send any resulting messages to the other peers.

Some scripting languages allow for a particular script function to execute over
more than one frame. That particular script state is saved between frames, and the
script can determine how long it will pause or sleep between executions. Although this
capability adds flexibility for designers, it makes it very difficult to serialize AI state.
Each peer has to broadcast the script state for all currently executing script threads so
that agents can continue functioning properly on other machines when their owner-
ship is transferred. The overhead associated with this transfer is prohibitive compared
to any small flexibility gained on the scripting side.

302 Section 3 Architecture

Cutscenes

Games that feature cutscenes—in-game noninteractive sequences where agents perform
scripted actions for storytelling purposes—place additional requirements on distributed
agent processing. Due to the nature of these sequences, timing is often crucial.
Cutscenes do not have to be perfectly in sync across all players’ machines, but on each
machine, agents must perform their sequenced actions at exactly the right times to coor-
dinate with camera movement and other scripted elements.

If the agents are trying to perform these commands while their processing is distrib-
uted on different machines, it will be very difficult to achieve this level of visual synchro-
nization on a given machine. There are a number of solutions, but they all typically
involve turning off each agent’s normal processing. They can then receive commands
directly from the “server” (an arbitrary player designated to run the cutscene and send it
to the other players). Alternatively, every agent on each machine can execute a series
of commands stored on disk for a particular cutscene, before they are returned to their
normal processing.

Security and Cheating

Because there is no server that can validate game messages from clients, a peer-to-peer
game does not normally allow for strong measures against player cheating and other
security issues. However, each peer can perform validation checks on the messages
and data it receives from other players and AI agents. This includes checks for valid
movement rates (to detect messages that move a player or NPC faster than allowable
by game logic), valid rates of fire for any attacks, damage amounts appropriate to an
attack, and so on. This approach at least requires all players to cheat together if they
want to cheat.

Message Ordering Between Peers

As noted in the case of the blackboard, the order of messages between peers may not
be consistent. A player may receive notification that an NPC shot a weapon from one
peer and notification that it hit something from another peer, out of order. With the
blackboard, it is easiest to assign ownership to one machine to solve synchronization
issues, but this is not always a valid or ideal solution for all message types. There are
other solutions for message synchronization [Lu04]; the most straightforward is to
discard messages outside a certain causality window. In the case of the shoot and hit
messages, after a machine receives the hit message, it can ignore any messages with a
game time predating the timestamp of the hit message (assuming all the peers have a
synchronized game time). The shoot message is then ignored if received afterward,
which is acceptable because we have already dealt with its effect upon receiving the hit
message.

3.8 Peer-To-Peer Distributed Agent Processing 303

Conclusion

Creating AI that is distributed across a peer-to-peer game raises some very different
issues than building AI for a client-server architecture. Although client-server archi-
tectures have certain benefits for larger-scale games, peer-to-peer architectures have
their own benefits for players, such as graceful player disconnect handling. With a few
straightforward architectural changes, we can distribute agent processing dynamically
across multiple peers, allowing us to take full advantage of a peer-to-peer architecture.

References

[Isensee03] Isensee, Pete, and Ganem, Steve, “Developing Online Console Games.”
Gamasutra. Available online at http://www.gamasutra.com/features/20030328/
isensee_01.shtml, March 28, 2003.

[Isla02] Isla, Damian, and Blumberg, Bruce, “Blackboard Architectures.” AI Game
Programming Wisdom, Charles River Media, 2002.

[Knutsson04] Knutsson, Björn, et al., “Peer-to-Peer Support for Massively Multi-
player Games.” Available online at http://www.cis.upenn.edu/~hhl/Papers/infocom04.
pdf, 2004.

[Lu04] Lu, Honghui, et al., “The Design of Synchronization Mechanisms for Peer-
to-Peer Massively Multiplayer Games.” Available online at http://www.cis.upenn.
edu/~hhl/Papers/MS-CIS-04-xy.pdf, 2004.

[Orkin04] Orkin, Jeff, “Simple Techniques for Coordinated Behavior.” AI Game Pro-
gramming Wisdom 2, Charles River Media, 2004.

304 Section 3 Architecture

http://www.gamasutra.com/features/20030328/isensee_01.shtml
http://www.gamasutra.com/features/20030328/isensee_01.shtml
http://www.cis.upenn.edu/~hhl/Papers/infocom04.pdf
http://www.cis.upenn.edu/~hhl/Papers/infocom04.pdf
http://www.cis.upenn.edu/~hhl/Papers/MS-CIS-04-xy.pdf
http://www.cis.upenn.edu/~hhl/Papers/MS-CIS-04-xy.pdf

305

3.9

AI Architectures for
Multiprocessor Machines
Jessica D. Bayliss, Ph.D.—
Rochester Institute of Technology,
Information Technology Department
jdb@cs.rit.edu

Single-threaded games are still written, but such games do not take advantage of
the full processing power of machines with multiple cores or processors. The pro-

liferation of multicore consoles and PCs means that games must now be threaded to
run on these architectures. This threading changes the overall architecture of a game
and may change the way AI is done as well.

Because multiple characters in a game need to do the same fundamental actions,
AI has traditionally been split into modules. The modularization of the AI influences
how it can be threaded. A common modularization of AI within a game is shown in
Figure 3.9.1. The AI receives sensory input from the environment, such as the loca-
tions of agents, sounds, or even smells. The pathfinder contains information about
the game map and finds paths for entities. The strategic AI module decides on goals
for the AI agents in the game. Goals may be as diverse as killing an enemy target or
getting coffee from the next room.

Strategy
AI

Planning
System

Action
Execution Animation

Path
Finder

Sensory
Input

Environment

FIGURE 3.9.1 A common modularization of AI within games.

The planning module decides how to accomplish the goals for agents in the
game. To obtain coffee, the game character may need to stand up, plan a path into the
next room, go to the next room, take a cup out of the cupboard, and pour coffee into
it. The action execution AI is the low-level physics and movement involved with the
chosen action and may provide feedback to previous steps when an action has been
fully executed. Animation is often closely linked with action execution and may be
stopped, started, or blended depending on the action sequence. Time slicing is com-
monly used to control the flow of many agents through the AI modules.

Functional and Data Decomposition

Figure 3.9.1 breaks the game AI into different types of tasks. This approach is called
functional decomposition, and it is the most commonly used decomposition in games.
In this approach, each module is assigned to its own thread—for example, pathfinding
in one thread and planning in another. Functional decomposition is more effective on
architectures where the number of processing units does not exceed the number of
functional modules in the game. As computing devices gain more and more processing
units, it will become increasingly difficult for functional decomposition to make full
use of available computing resources.

Functional decomposition can work well when the hardware contains homoge-
nous cores. PCs contain one or two homogenous cores, with more cores being put on
a chip every year, and there are enough functions in a game (e.g., physics, graphics,
AI) to make functional decomposition worthwhile. The Xbox 360 contains three
homogenous cores for running different game tasks, and functional decomposition is
reasonable for this platform as well.

The non-homogenous architecture of the PlayStation 3 (PS3) is a different story,
however. Each of the seven Synergistic Processing Elements (SPEs) contain 256 KB of
local memory, and they are linked together by a high-speed bus. One of the SPEs is
dedicated to the PS3 operating system ,and thus only six of them are usable by game
code. These six SPEs lend themselves to Single Instruction Multiple Data (SIMD) par-
allelism. The PS3 also contains a PowerPC processor that runs two hardware threads
that can be used for some functional decomposition. The bulk of the PS3 is thus not
designed for functional decomposition but for data decomposition.

Data decomposition occurs when the data for a computational task is divided
among different processing units. Massively multiplayer online (MMO) games make
heavy use of data decomposition. MMOs commonly decompose the game environ-
ment onto different physical servers. Each server runs its own AI, physics, and so on, but
on different data. MMOs often split their data up by physical game location to reduce
the number of messages between physical server machines. This ordinarily works well,
except when many players visit the same game location and overload that server.

When decomposing AI in terms of data, it is natural to decompose agents into
different groups. An example architecture for this is shown in Figure 3.9.2. This type
of architecture has been successfully implemented for schools of fish on the PS3 by

306 Section 3 Architecture

Craig Reynolds [Reynolds06]. This implementation consisted of a spatial hashing of
fish according to their position. Fish that were close to each other were then parceled
out to different SPEs for processing, and the fish calculated their own movements.
Because the fish move by steering behaviors rather than path planning, this worked
well. If computationally intense pathing were required, the approach would not work
as well. In this case, path information could potentially be precalculated and then
loaded into the appropriate SPE’s memory, or the A* pathfinding algorithm could be
parallelized and split across the SPEs.

3.9 AI Architectures for Multiprocessor Machines 307

Agents
0-n

Core 1: Agents
0-n

Agents
0-n

Core 1: Agents
0-n

Core 1: Agents

0-n

Animation

Sensory
Input

Environment

 n
Steering

Collaboration

Core 1: Agents
0-n

Agent 0

FIGURE 3.9.2 An example architecture for data parallel AI.

Alexander Repenning takes data decomposition further with the idea of antiob-
jects [Repenning06]. Repenning concentrates on putting AI into the environment as
opposed to putting AI into the individual characters. He eschews the creation of a
separate pathfinding module in his Pac-Man grid world and instead uses individual
tiles as objects, embedding important information in the tiles. For example, at each
step, the location of Pac-Man is mathematically diffused over the floor tiles. To reach
Pac-Man, the ghosts follow his scent with a simple hill-climbing algorithm. The act of
diffusion as well as the simple hill-climbing algorithm both lend themselves to paral-
lel systems such as the PS3. Repenning has additionally created collaborative soccer
players that operate on similar principles.

If a game has been architected to run on the PS3 through data decomposition, it
will not run as well on the Xbox 360 because the 360 does not have as many process-
ing units. Functional decomposition may yield better performance on a machine such
as the Xbox 360, especially when different functional components can help each
other by predicting the future state of the game. This may happen when a physics
engine processes data fast enough to get ahead of rendering and thus can make predic-
tions about the state of the game that can help the AI.

Demonstration Game

A simple program that demonstrates threading accompanies this article on the CD-
ROM. It is missing many components of a real game and is not optimized to keep the
program simple for the demonstration of different architectures. The demo is best
used in conjunction with a thread profiling tool (such as AMD’s Code Analyst or
Intel’s Thread Profiler) to see the effects of checking the threading box and how the
threads are split onto different machine cores. The AMD tool is free to download.

In this demo, the player is a zombie (green triangle) that chases after humans (yel-
low triangles) to gobble them up. The humans flee (purple triangles) when the player
gets too close but sometimes gang up with neighboring humans to attack the player
(red triangles). Both the player and humans can pick up food pellets (blue triangles)
to help restore health. The player never dies, and the humans always respawn so that
the simulation may be left running while techniques are compared. Examples from
the demo will be used to help explain concepts in the following sections.

Hybrid Decomposition

Hybrid game architectures use both functional and data decomposition. One exam-
ple of such an architecture is the parallelization of the Half-Life 2 engine as shown in
Figure 3.9.3 [Lindberg07]. A game engine loop runs in the main thread, and the
sound thread is separated from the rest of the system. A task queue is created to orga-
nize tasks according to necessity. Tasks in this architecture are very high-level concepts
and may consist either of sets of individual agents doing the same thing (data decom-
position) or of different system functional tasks (functional decomposition).

308 Section 3 Architecture

Other
Tasks

Main
Thread

AI

Collision
Physics

Rendering

Sound
Thread

Re-order
Buffer

Particle
System

Task
Queue

FIGURE 3.9.3 A hybrid game architecture where several parallel threads of execution
run. The tasks shown are example tasks that could be run on such an architecture.

Rather than using processing power to create and delete threads as they are
needed for tasks, a ready pool of threads is kept alive, and the individual threads in the
pool can take on whatever tasks are required by the task queue. Tasks are independent
from one another and may run on different processing units. The reorder buffer exists
to make sure that the rendering obtains items in the correct rendering order. Both the
task queue and the reorder buffer help to keep thread synchronization to a minimum
so that thread synchronization issues, such as deadlock, are less likely to occur.

The simplest way to parallelize AI in this architecture is to enable the individual
agents to submit tasks to the task queue for execution on different processing units.
This is the technique used in the following finite state machine (FSM) example.

Finite State Machines

The demonstration program contains both a threaded and nonthreaded FSM imple-
mentation. The individuals are hashed according to their location and split among
cores. Additionally, when an agent is close to the border of a processing unit’s “region,”
it is given to the two closest processors, with one copy being read only. This allows
agents to sense each other when not running on the same core. This kind of architec-
ture may also be used for collision detection and avoidance (which the demo does not
do). The FSM consists of the following rules for individual humans:

If DIE then

State = BORN

Else if health <= 0 then

State = DIE

Else if (health < maximum health &&

state == SEEK FOOD) then

State = SEEK FOOD

Else if (those around player > 2 &&

I'm around the player) then

State = SWARM

Else if (State != SWARM &&

health == maximum health &&

I’m not around the player) then

State = WANDER

Else if (State == FLEE && near player) then

State = FLEE

Else if (health < maximum health / 2) then

Look for the closest food and set as a target

State = SEEK FOOD

Else if (I'm around the player) then

State = FLEE

Else

State = WANDER

Although different independent agents may be split onto different processing units
according to location, it is possible for groups of cooperative agents to become split
onto different processing units. This can greatly increase message passing between two

3.9 AI Architectures for Multiprocessor Machines 309

different processing units. There are a couple of ways to deal with this case. Condi-
tional code may be written to ensure that individuals in the same unit are never sepa-
rated onto different processing units. Another method of splitting units consists of
placing them in a hierarchical relationship with individuals. In this case, groups could
be hashed onto different processing units rather than individuals. In games with both
individuals and groups, it is possible to have a group of size one for consistency.

It is also possible to functionally decompose state machines. Because FSMs con-
sist of states with connections representing state transitions, individuals that have the
same state machine can simultaneously run code to check a given transition. If there
are multiple possible transitions, each transition can be checked independently of the
others and thus could run on a separate processing unit. The drawback is that all tran-
sition checks for a particular state are likely to use almost exactly the same data for the
check, resulting in too many data transfers between processing units.

This is a common problem when trying to make several parallel threads, and it is
helpful to make the sharing of data more explicit in the AI architecture. FSMs are
known to have drawbacks. For one thing, it is not immediately obvious what data is
being shared unless the state machine author has been very careful to document shared
data. For another, there is coupling between planning and action execution. In the
demo, for example, we could decide that there are two kinds of humans: those who flee
and die, and more aggressive humans who will always attack and become zombies rather
than dying. In the previous state machine, the addition of a new kind of NPC means
that new states need to be added to implement the new character’s behavior. Decou-
pling the planning and action execution can make this sort of change easier and can lead
to a more functional type of parallelism with a more explicit model of shared data.

Planning Systems

An example planning AI system is shown in Figure 3.9.4 and is similar to the deci-
sion-making process from the game F.E.A.R., which used a version of the STRIPS
planning system [Orkin06]. This AI architecture is also similar to the game architec-
ture used by the Half-Life 2 engine in Figure 3.9.3.

The goal, planning, and action execution threads have been decoupled in this
architecture and can run on different processing units. The goal and planning threads
could potentially remain linked in the same thread depending on how much overlap-
ping data they modify because data must be locked if both threads use it. Working
memory serves to keep track of the environmental state of the game and allows the
different decoupled parts of the AI to converse. Working memory represents the state
of the game environment to the agent. A queue of changes to working memory, such
as the task queue from Figure 3.9.3, can be used to prevent locking and unlocking
between the threads. A queue can also allow prioritizing some changes over others.

310 Section 3 Architecture

The goal thread picks a goal to achieve, and then the planning thread finds a plan
of changes to working memory—that is, actions to be taken by an NPC—that achieve
that goal. If some actions are better than others, then A* may be used as a search algo-
rithm to find a plan. In the demo program, there are so few actions that it is not worth
using A*.

Actions have a series of preconditions that determine when they fire. Precondi-
tions can be methods or can evaluate the state of working memory. The planner for the
example program is simple: it consists of looking at sensory data and deciding on STAY
ALIVE, ATTACK, BORN, or BOUNCE goals. Several working memory variables take the place
of states from the FSM implementation: near others (OTHERS_YES/OTHERS_NO), mood
(FEARFUL/ANGRY/NEUTRAL), near the player (CLOSE/FAR), health (NONE/LOW/HIGH), and
wall (HITTING/NOT_HITTING).

The goals are decided in the following manner:

If health == NONE then

Next goal = BORN

Else if (wall == HITTING) then

Next 9 goals = BOUNCE

Else if (near others == YES &&

near player == YES &&

health != NONE) then

Add goal of ATTACK to the queue

Else Add a goal of STAY_ALIVE to the queue

The preconditions and actions are shown in Table 3.9.1. The main benefit of this
architecture is the decreased coupling between the different parts of the AI system
when compared to the FSM implementation. As reported by the creators of F.E.A.R.,
this architecture enabled them to easily add different characters via reusable actions

3.9 AI Architectures for Multiprocessor Machines 311

Strategy
& Goals
Thread

Planning
Thread

Action
Thread

Animation
Thread

A*
Search
Thread

Sensory
Input

&
Working
Memory

Environment

FIGURE 3.9.4 A planning AI architecture.

and goal lists. The flexibility of this type of system does come at a price: the working
memory for such a system is going to be larger than the working memory for an FSM
because the goals and actions communicate through working memory. For the demo,
it is possible to fit all states within an unsigned integer and use bit masks to tell which
ones are applicable. In addition, the added infrastructure to support this system takes
more time to program when compared with an FSM.

Table 3.9.1 The Actions, Necessary Preconditions for Firing the Actions, and Goals
Satisfied for the Example Rule-Based System.

Actions Preconditions Satisfies Goal

Swarm None ATTACK

Flee CLOSE && (FEARFUL || NEUTRAL) && STAY ALIVE

Goal is STAY_ALIVE
Seek Health LOW && !ANGRY && Goal is Stay Alive STAY ALIVE

Seek Screen Center Goal is BOUNCE BOUNCE

Born Goal is BORN BORN

Wander FAR && !ANGRY && Goal is Stay Alive STAY ALIVE

The working memory in this architecture is shared among the goals, planning,
and actions, which may be a concern on processing units without physically shared
memory. If this is the case, it may be better to use an architecture that makes shared
memory explicit so that it can be split up.

Blackboard Systems

Blackboard systems are based on the metaphor of a group of individuals trying to
solve a problem at a blackboard [Russell02]. The central idea is that only one individ-
ual has the chalk at a given time and may pass the chalk to another person for help in
solving one or more problems on the blackboard. Each individual contributing to a
solution is known as an “expert,” and its domain is necessarily limited. Each expert
operates independently of all other experts and uses the blackboard as a repository for
shared data. An arbiter is used to make sure that only one expert acts on the shared
data at any one time. The arbiter decides who has priority to access and modify data.
No One Lives Forever 2 used a blackboard for coordination among agents [Orkin02].

There can be multiple decision makers and tactical planners in such a system,
each vying to dictate what should be done next. Individual experts possess arbitrary
internal architectures, including FSMs, neural networks, or planning systems.

A potential blackboard for the demo might consist of experts for each of the main
actions from the rule-based architecture discussed previously. There could be a health
expert that determines when a character needs health, a movement expert that chooses
the type of movement a character should make at any one time, and an attack expert
that determines when attacking is appropriate.

312 Section 3 Architecture

These experts look at a portion of the world state that is of interest to them and
decide what action they should propose, if any. The arbiter then decides which of the
action-proposing experts had the highest priority and has that expert update the black-
board. Changing game-state information on the blackboard updates agents within the
game. An example of this architecture is shown in Figure 3.9.5.

3.9 AI Architectures for Multiprocessor Machines 313

Strategist
1

Planning
Expert II

Pathing
Expert

Blackboard:
Sensory

Input
&

Working
Memory

Action
Expert I

Strategist
2

Arbiter

Planning
Expert I

Animation
Expert

FIGURE 3.9.5 An example blackboard system. Each box may potentially be
broken up into a separate thread.

The blackboard system makes working memory explicit, so that the shared data
between components is well known. Different experts may only operate on a piece of
the blackboard and thus do not need to be concerned with the operation of other
experts. As an example, the health expert only accesses a character’s health and does
not care about its weapons or attack power.

The decomposition of AI into threads for a blackboard system is thus a hybrid
decomposition, where some of the data is exclusive to individual experts, and some
experts represent functional components of the game task.

The main benefit of the blackboard system is that it makes the shared memory
among different pieces of the AI system explicit. Further, the hybrid decomposition
suggests that a blackboard system is a scalable architecture as the number of process-
ing units continues to grow. Compared with both FSMs and planning system archi-
tectures, blackboard systems require the most program infrastructure to create.
Additionally, they can have a steep learning curve, and hence special tools may be
needed to enable game designers to use the blackboard system effectively.

Conclusion

The ability to develop threaded games is becoming more and more important, and AI
can benefit from the increasing number of cores on machines. To do this with the
least amount of pain possible, it is helpful to look at AI architectures that can support
the move to multiple threads. Architectures that decrease coupling among different
pieces of the AI or that make shared data explicit will likely be more useful for long-
term development needs.

Two primary types of decomposition exist: functional and data. Individual AI
characters may be split onto different processing units and represent data decomposi-
tion. It is fairly easy to keep the traditional FSM implementation of agents with this
type of architecture.

Several types of functional decomposition exist. The planning system described
here decouples goal, planning, and action functionality for characters. This comes at
a price: more memory is used. Still, games such as F.E.A.R. have successfully used this
type of architecture, and it shows promise due to its flexibility. Much like a system
based on a state machine, it enables designers to easily design goals and actions that
can then be used to make plans that drive character behaviors.

The blackboard system represents a hybrid of functional and data decomposition.
Because the blackboard makes shared memory explicit, it is easier to split it among
different functional experts so that they can run on different processing units. Black-
board systems are less frequently used in commercial games but could potentially be
the most scalable architecture due to the emphasis on data parallelism between differ-
ent agents. Experts may be difficult to construct for people who are not programmers,
and this is probably one of the main reasons that blackboard systems are not seen
more often in commercial games. Infrastructure is needed to make the experts easy to
construct for designers.

The three architectures discussed here are certainly not the only possible AI archi-
tectures for games. The AI architecture should be carefully considered within the con-
straints of the entire game system. Other needs, such as the ability to expose pieces of
the AI to designers, integration with existing tools, and testing, may constrain the
architecture. In the future, threading will necessitate a careful consideration of tradi-
tional AI architectures and will push the AI to be more decoupled, either functionally,
in terms of data, or both.

References

[Lindberg07] Lindbereg, P., and Werth, B., “Threading Games for Performance: A
One Day Hands-On Workshop by Intel.” Proceedings of the Game Developers
Conference, 2007.

[Orkin02] Orkin, J., “Simple Techniques for Coordinated Behavior.” AI Game Pro-
gramming Wisdom 2, Charles River Media, 2002.

314 Section 3 Architecture

[Orkin06] Orkin, J., “Three States and a Plan: the AI for F.E.A.R.” Proceedings of the
Game Developers Conference, 2006.

[Repenning06] Repenning, A., “Collaborative Diffusion: Programming Antiobjects.”
OOPSLA 2006, Proceedings of ACM SIGPLAN International Conference on
Object-Oriented Programming Systems, Languages, and Applications, Portland,
Ore., 2006.

[Reynolds06] Reynolds, C., “Big Fast Crowds on PS3.” Proceedings of Sandbox (an
ACM Video Games Symposium), Boston, Massachusetts, July 2006.

[Russell02] Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach (2nd
Ed.). Prentice Hall, 2002.

3.9 AI Architectures for Multiprocessor Machines 315

This page intentionally left blank

317

3.10

Level Up for Finite State
Machines: An Interpreter
for Statecharts
Philipp Kolhoff—KING Art
pkolhoff@kingart.de

Jörn Loviscach—Hochschule Bremen
jlovisca@informatik.hs-bremen.de

Finite state machines (FSMs) have become commonplace in game programming
[Fu04]. Their uses range from simple game logic to complex behavior of non-

player characters (NPCs). However, FSMs have a tendency to confront the program-
mer with an explosion of states and to become heavily entangled with other parts of
the game code. Harel’s statecharts provide some much-needed improvements over
FSMs that help to alleviate these problems [Harel87].

Many game programming scenarios that stretch FSMs to their limits can be
formulated with statecharts in a tidy and intuitive fashion. For example, statecharts
handle nested hierarchies of increasingly specific states as well as simultaneous
actions. This article introduces the statechart formalism and its use in game develop-
ment. We discuss how to create an efficient and flexible interpreter and provide both
an implementation in C++ that allows minimally invasive integration with existing
game code as well as a full-fledged implementation in C# with a graphical statechart
editor/debugger.

Statecharts help to create and modify a game’s behavior without writing code;
they offer the visual approach and the simplicity of standard FSMs but surpass them
in functionality. This benefits game designers working on tight schedules as well as
those having little expertise in programming. It may also open up new avenues for
complex user-generated game content.

Statecharts as an Extension to FSMs

In 1987, David Harel published his seminal work on statecharts, an extension of
FSMs. In this section, we describe the major ideas that form the basis of this exten-
sion, illustrating their use in a hypothetical dungeon-crawler game. We use standard

UML (Unified Modeling Language) statechart notation [OMG07] as defined in Fig-
ure 3.10.1 for all of the statechart examples in this article.

318 Section 3 Architecture

Statename

Entry: actions

Invoke: an activity

Exit: actions

parallel_state
parallel_region1

parallel_region2

H

superstate
substate_1 substate_2

H*

eventname [a condition]
/ actions

initial state final state

transition simple, atomic state
parallel state
with two regions

shallow history deep history

superstate with two substates

FIGURE 3.10.1 The elements of the UML statechart diagram.

Two basic elements of statecharts are on-entry and on-exit actions, which are
invoked when a particular state is entered or exited. In addition, transitions between
states may be guarded by conditions, which must be satisfied before the transition can
be followed. This is especially useful for transitions without an associated event,
which would otherwise be activated by any event. Consider the simple example in
Figure 3.10.2. The current value of our hero’s health is stored in a variable. Each time
the character suffers a hit, his health is reduced until the condition this.Health <= 0
is satisfied and the game ends.

In addition to the simple states and the transitions mentioned before, the state-
chart in Figure 3.10.2 contains two additional elements, which are familiar from
FSMs: a point from which to start the statechart and one to mark a possible end.
These so-called initial and final states are nameless pseudostates. Initial states immedi-
ately yield to the first actual state to which they are connected.

Hierarchy Through Substates

The dungeon of our game consists of several levels. The player may only proceed to
the next level after he has finished the previous one. At any level, the game will be over
if the player dies. This is signaled by a die event and leads to a state called dead. To
build this behavior with an FSM, you have to add a transition from every single level
to a dead state, as in the left half of Figure 3.10.3. The die event triggers this transi-
tion. The resulting number of transitions can lead to a maintenance nightmare. Imag-
ine, for example, that the game has a huge number of levels, and at some point late in

development, the name of the die event needs to be altered or a condition needs to be
added to the event.

To overcome this and related problems, Harel introduced a notion of hierarchy
into his statecharts, enabling a collection of states to be aggregated into a superstate.
Reconfiguring our original dungeon-levels FSM using this approach yields a new
superstate called alive, as shown in the right half of Figure 3.10.3. All levels of the
game will reside inside this state. A single transition from the alive state to the dead
state takes care of every die event that occurs during the game. If the event has to be
altered, changes now only have to be made once.

3.10 Level Up for Finite State Machines: An Interpreter for Statecharts 319

renew

Entry: this.Health ... current

Hit
/ this.Health ...

GotItem [eventdata == FirstAid] [this.Health <= 0]

FIGURE 3.10.2 The current health is reduced with each hit but may be recovered with a
first-aid kit.

level1 level2 level3

dead

die die die

alive

level1 level2 level3

dead

die

FIGURE 3.10.3 FSM (top) and statechart (bottom) implementation of the
dungeon level example.

Upon entering a superstate, the statechart interpreter looks for an initial substate.
This behavior is often seen in hierarchical compositions of FSMs, but hierarchy in
statecharts can do more because it allows interlevel transitions. Consider the alive
state that encompasses all the dungeon’s levels. In level two, a nasty poisoned trap
awaits the hero, killing him if he did not previously ingest an antidote. This trap can
send a poison event to the statechart, activating an interlevel transition from level2
to dead. This transition is guarded by the condition AntidoteActive == false. Such
a complex transition across the borders of the hierarchy would not be possible with a
composition of standard FSMs.

In addition, hierarchies of states facilitate specialization and generalization, similar
to object-oriented programming languages. For example, one designer can lay out the
whole dungeon game by deciding how many levels there are and where special transi-
tions, such as secret doors from one level to another, are available. This rough layout is
then handed over to a number of level designers. Each of them can implement his level
as a collection of substates without touching the logic of the other levels.

Concurrency Through Parallel States

Standard FSMs can create a combinatorial explosion of states to deal with even basic
logic. Suppose that to finish level one in our dungeon-crawler game, we have to find
the red key and the blue key. The naive way of coding this would be to add four states
with appropriate transitions: no_key_possession, red_key_possession, blue_key_

possession, and both_keys_possession. Because the player can receive the two keys in
any order, the event of receiving a particular key has to be considered in two transi-
tions. Things get quickly worse with more keys: for n keys, you need 2n states, as shown
in Figure 3.10.4.

To counteract this exponential growth, Harel proposes to model concurrency
with parallel states. Declaring a state to be parallel causes its direct substates to exist in
independent contexts. Each of the substates are entered and exited simultaneously as
the parallel superstate is entered and exited. Typically, these substates will contain
nested states that define their actual logic. Using parallel states, the four-key example
from Figure 3.10.4 can be simplified to the statechart in Figure 3.10.5, which has one
parallel superstate that contains a substate for every key color. Every key-color sub-
state itself contains an initial subsubstate, a subsubstate not_found_yet, and a final
subsubstate to represent the possession of the key.

To put it differently, regular states are combined in a manner that can be compared
to an XOR, with exactly one of them active at any time. By contrast, parallel states com-
bine their substates in an AND fashion, with all of them active at the same time.

Memory Through History

On entering a state with nested substates, the statechart interpreter searches for the
initial substate and then follow its transitions. If the nested substate is left and later
reentered, execution restarts at the initial substate.

320 Section 3 Architecture

3.10 Level Up for Finite State Machines: An Interpreter for Statecharts 321

none

red

blue green

yellow

red_blue red_green red_yellow blue_green blue_yellow green_yellow

red_blue_green

red_blue_yellow

blue_green_yellow

red_green_yellow

all

red

blue green
yellow

blue
green

yellow

red
green

blue_yellow

red blue

yellow

red

blue green

green yellow
blue yellow

blue

greenred yellow

red

green

red

blue

yellow green redblue

FIGURE 3.10.4 A standard FSM requires 16 states to deal with 4 keys.

keys
red

no_red

blue
no_blue

green
no_green

yellow
no_yellow

red

blue

green

yellow

FIGURE 3.10.5 Thanks to the parallel
states allowed in a statechart, the order in
which the keys are retrieved is of no
importance.

Suppose that in our dungeon-crawler game, the player wants to leave a level part
of the way through and then return to it later without having to play through the
entire level again. To offer this capability, Harel introduced the notion of history states
(H states). H states resemble normal initial states, except that on reentry, they imme-
diately switch the current state to the substate saved on the previous exit. Consider
Figure 3.10.6. When the hero returns from the vault to the princess’ bedroom, the H
state restores the state that was active when the hero was last in the bedroom.

322 Section 3 Architecture

vault

princess_bedroom
talking

Invoke: Dialog kissing
H

enter

Dialog.Done

enter

FIGURE 3.10.6 Example of the use of an H state.

H states come in two varieties: shallow and deep. A shallow H state only stores
the active state of the same substate hierarchy level. Thus, if the talking state con-
sisted of several substates that form a dialog, a shallow H state would not remember
which of these substates was active when the superstate princess_bedroom was exited.
Reactivating the shallow H state only would lead to the activation of talking at its
initial substate. A deep H state, by contrast, stores the deepest active subsubstate(s).
Note that there may be a multitude of these, due to parallel substates. If the H state of
the statechart in Figure 3.10.6 were a deep H, reactivating it would also restore the
active states inside the talking state, ignoring any initial states.

Temporally Extended Tasks Through Activities

Typically, FSMs employ “actions” to send messages to the rest of the game code. A
specific action can be invoked for every transition from one state to another. Actions
are generally short fragments of code that quickly return control to the FSM.

Suppose, however, that our dungeon-crawler game displays a text window to the
player and requires the hero to engage in a dialog with the princess, trying to flatter her.
He will either succeed, or the princess will lose her temper. Alternatively, the player
may close the text window before a decisive outcome is reached. Managing such a dia-
log is a temporally extended process and as such is not suitable for an action. Although
this can be implemented in traditional FSMs by either polling or sending status mes-

sages to the statechart as well as start and stop messages to the task, the statechart offers
a far more convenient tool for this typical programming task: the activity.

An activity is a process that starts when a certain state is entered and ends when this
state is exited. If the activity ends on its own (e.g., because the princess sent the hero
away), the activity sends a corresponding event to the state, as shown in Figure 3.10.7.

3.10 Level Up for Finite State Machines: An Interpreter for Statecharts 323

talking

Invoke: Dialog

kissingDialog.Done

FIGURE 3.10.7 The state talking starts the activity Dialog. When this
activity ends, it sends the Dialog.Done event.

Figure 3.10.8 shows the whole statechart of the dungeon-crawler game. The main
part of the game is contained in the alive state. Two parallel substates handle the
location and the health of the hero separately. The location state tracks the progress
inside the dungeon through several substates. The first level is another parallel state
that is done when its substates both reach a final state—in other words, the hero
found the two keys. Levels two and three are displayed collapsed for better readability.

quit_game dead

alive
location

level1
red_key_possession

no_red_key

blue_key_possession
no_blue_key

level2

level3

princess_bedroom
talking

Invoke: Dialog kissing
H

vault

health
renew

Entry: Health = 100; current

Exit

GotItem [eventdata == red_key]

GotItem [eventdata == blue_key]

level1.Done

level2.Done
level3.Done

Dialog.Done

Enter
Enter

Hit
/ Health = Hea...

[Health <= 0] GotItem [eventdata == FirstAid]

dieExit

FIGURE 3.10.8 The statechart for the dungeon-crawler.

Interpreting a Statechart

In most cases, it is intuitively clear how a statechart should behave, even though it
offers significant extensions over a classical FSM. However, developing an interpreter
that can understand highly complex statecharts requires that certain rules be estab-
lished regarding which transitions are to be taken under which circumstances.

Starting Up

Some kinds of FSMs allow marking several states as initial ones. In contrast to that, a
Harel statechart requires exactly one initial state on the topmost level. If there are
nested substates, every level should possess its own initial substate. This makes a stat-
echart’s startup phase easy to understand and debug.

Nonetheless, there is still a vital reason to allow starting from an arbitrary state:
persistence. For example, you must be able to save the current state of the game to
disk and continue it later. This saving and restoring could be handled with standard
serialization mechanisms that ignore the statechart’s behavior. Alternatively, integrat-
ing persistence with the statechart interpreter itself might also make sense: the inter-
preter would enter all states that were persisted as being active, invoking their
on-entry actions and starting their activities.

Processing Events

A statechart is a reactive system, changing its states only when triggered by an event
(either external or generated by actions and activities invoked by the statechart itself).
In practice, it has proved useful to pass these events as a two-part data structure that
contains a character string that identifies the event type and a pointer or reference to
an eventdata object that identifies the concrete cause.

Using a character string offers several benefits. In a log file or the output of a
debugger, the string is readily understandable. For testing, the developer can fire
events by typing them into a console embedded into the game. In addition, character
strings can be operated on with simple wildcards or even with sophisticated regular
expressions. For example, a transition on the topmost level of states could listen for
events called Error.* to catch all error events that are not caught otherwise. This can
eliminate a huge number of transitions. Although such behavior could also be mod-
eled with class inheritance, wildcards prove to be more flexible.

The statechart interpreter does not process the eventdata object, which simply
stores data for use by the game engine. In some situations, the eventdata object may
not be necessary—for example, if all interesting conditions are obtainable from global
or static variables.

The statechart interpreter can run in a processing thread separate from the rest of
the game code. Thus, events can occur while the statechart interpreter is still evaluat-
ing previous events. To avoid making the application code wait, the statechart inter-
preter requires a queue that accepts and stores incoming events in a first-in first-out

324 Section 3 Architecture

manner. Only when one event is fully processed will the interpreter start to work on
the next one.

To keep the AI behavior independent of the frame rate, it can be useful to imple-
ment two event queues: one handles events sent by the statechart, which are processed
first, and the other handles regular external events, which are only accepted when the
first queue is empty.

Sending events should be the only way to trigger state changes. It may be tempt-
ing to activate states directly, in particular through actions and activities, but this runs
the risk of violating consistency, for example, by skipping over activation or deactiva-
tion code.

Choosing the Transition

Upon receiving an event, the statechart interpreter checks which transitions, if any,
might apply. Because transitions can occur from and to different levels of nested states,
this seemingly simple task requires more caution than with an FSM. The interpreter
might find an appropriate transition on the top level of the hierarchy or deeply hidden
in subsubstates. A policy is required to determine which of these transitions should be
taken. In adherence to the idea that substates are specializations of superstates, the
transition that starts at the deepest substate is favored. This policy defines the order in
which all transitions of all active (sub)states are queried, regardless of whether or not
they are applicable to the event at hand. Due to the hierarchy, a statechart requires a
more extended search for transitions than a standard FSM. To model the same behav-
ior, the FSM would, however, need many more states and transitions and thus require
an equally expensive search.

For every transition that is checked, the interpreter has to determine if the event’s
type matches the transition and if all conditions on the transition are fulfilled. The
event type check is performed by comparing two character strings, possibly with wild-
cards or regular expressions. The evaluation of transition conditions cannot be accom-
plished by the statechart interpreter alone because it requires access to external game
data. A typical solution is to formulate the condition in a scripting language, attach
this condition script as text to the transition, and send it to the game code for evalua-
tion as true or false. Typically, the eventdata object passed along with the event will
come into play here because it may contain data needed during condition evalua-
tion—for example, which item the player clicked on or which NPC has cast a spell on
the hero.

When to Activate and When to Deactivate

The order of activation and deactivation is another tricky point for statecharts. When
a transition is taken in an FSM, the old state is deactivated, and the new state is acti-
vated at the same time. When on-entry/on-exit actions come into play, the old state
should be deactivated first, which triggers its on-exit action, and then the new state
should be activated, triggering its on-entry action.

3.10 Level Up for Finite State Machines: An Interpreter for Statecharts 325

Things get more complex when substates are present at one or both ends of the
transition. The interpreter deactivates the deepest active substate first and continues
with its active superstates. It stops the deactivation when it hits a superstate that
encapsulates both the origin and the target of the transition. If such a superstate exists,
it remains active. From this point, the activation proceeds downward. This rule
ensures that all superstates of an active state are active, thus preserving the statechart’s
consistency.

Imagine State_1111 of the statechart in Figure 3.10.9 is active, and the transition
to State_121 is activated. The interpreter has to ensure that first of all State_1111 is
deactivated, followed by State_111 and State_11. The State_1 can remain active
because the target of the transition also is a descendant of State_1, like the start state
of the transition. After deactivating all necessary states, the activation starts in reverse
order: State_12 is activated before State_121, its substate. This facilitates specializa-
tion through hierarchy because on-entry-actions of a substate succeed those of their
superstates and so, for example, can override values.

326 Section 3 Architecture

State_1
State_11

State_111
State_1111

State_12
State_121

FIGURE 3.10.9 A statechart with a deeply nested hierarchy.

Parallel states require special caution. At all times, their substates must either all
be activated or all be deactivated. In practice, however, this is not possible because
actions attached to theses substates will not be invoked simultaneously but one after
the other. To produce a deterministic interpreter, we need to define an ordering
policy—for example, the order in which the substates were added to the state in the
editor. The order of activation should be the reverse of the order of deactivation. Of
course, the substates of these substates require recursive inside-out deactivation and
outside-in activation.

The statechart interpreter automatically takes transitions for which no events are
specified. This happens after all substates have been activated. Otherwise, an eventless
transition on a higher level would short-circuit the states below. A more subtle case
occurs when a condition guarding an eventless transition becomes true after some
time without anything else happening. The interpreter won’t notice the change
because it only reacts to events; thus, such a condition change would go unnoticed
until its next evaluation, triggered by the next event. One way to prevent this problem

is to send an event with an empty type when something changes in the game. This
may be expensive, and hence possibly one such event per frame suffices.

Building a Statechart Interpreter

The statechart interpreter can be created in a straightforward manner as a monolithic
object. Depending on its use, this may be inefficient, however. A statechart may, for
example, represent an NPC with thousands of instances in existence at the same time.
In this case, it becomes reasonable to separate data that is unique to a single NPC
instance from data that is the same for everyone using that statechart. Taking this
approach, the interpreter needs to maintain a list of active states and an event queue
for each NPC instance. The statechart template—that is, the collection of rules that
make up the statechart logic—is shared by all NPCs.

This separation of the instance data from the statechart template saves memory,
which may be important for games on mobile devices. A more prominent advantage
is modularization: the interpreter can be exchanged, possibly even dynamically, with-
out changing the template. This design is along the lines of the flyweight design pat-
tern [Gamma95].

Modeling a Template

A statechart’s template contains its structure and perhaps some functions to alter this
structure or to step through it, but not the functions to interpret it. Given the hierar-
chical construction of a statechart, it is natural to create a tree structure, comparable
to the scenegraph used to organize 3D worlds. Every state is represented by a node;
substates that specialize a superstate become subnodes of its node. This structure
allows us to add or delete entire subtrees. Furthermore, the interpreter can quickly
walk through the hierarchy to search for relevant transitions.

Every node can be modeled as an instance of the class BasicState. From this
class, we could derive separate classes for regular states and parallel states as well as
for pseudostates, such as initial states and H states. However, it turns out that the
different kinds of states require mostly the same data. Furthermore, a polymorphic
approach would incur a lot of type checks and downcasts. To remain efficient, we can
use a single class that contains a type identifier.

Every BasicState possesses an ID, for example, a character string to facilitate
debugging or a unique number to accelerate the lookup in a map. To allow the inter-
preter to walk the tree, every BasicState possesses a list of pointers to its substates and
a pointer to its superstate, which may also be the tree’s root. The remaining data in a
BasicState consists of a list of the outgoing transitions and a list of the attached
actions and activities.

Communicating with the Outside World

The rules for interpreting statecharts impose a two-way communication between the
interpreter and the rest of the game code.

3.10 Level Up for Finite State Machines: An Interpreter for Statecharts 327

The interpreter receives events, each of which may cause a transition from one
state to another. Events contain a character string describing their type and a pointer
to an arbitrary object.

The interpreter passes transition conditions—represented as character strings—
to external game code to be evaluated to true or false. This character string could
be the name of a Boolean variable, or it could be an expression formulated in a script
language, such as Lua or Python.

On taking a transition or on entering or exiting a state, the interpreter may invoke
actions in the game. Actions can, for example, be represented by script code, file
names, or resource handles to files containing script code, or even a list of function
pointers. In our prototype, an action is referred to by an object that specializes the
interface IAction, which can be used to implement any of these options.

Activities can be treated similarly to actions. The interpreter can, for example,
pass the activity’s name and parameters to the game code, which searches through a
list of registered services for an appropriate one. On exiting the activity’s state, the
interpreter must be able to abort the activity using the same means of communica-
tion. To prevent ambiguities, the interpreter needs to provide both a StateId and an
InstanceId when it launches or terminate an activity.

The programming interface that supports this communication should be as sim-
ple as possible to keep the interpreter only minimally connected to the game. Figure
3.10.10 shows a lean and reusable architecture that separates templates from the
interpreter code and encapsulates the statechart’s communication in an interface.
Optimally, both the interpreter and the game can be easily replaced. In particular, the
interpreter should be reusable for other projects.

328 Section 3 Architecture

Interpreter

Template

IDataBinding

DataBinding

implemented by

invokes actions, starts activities,
requests the evaluation of conditions alters game objects

sends events

uses or contains
uses

Game

FIGURE 3.10.10 Architecture of the demo implementation.

Four functions suffice for the outgoing communication. The interface employed
in our C++ demo is as follows:

class IDataBinding

{

public:

virtual bool EvaluateCondition(

const std::string &condition,

void* eventdata,

InstanceId instance) = 0;

virtual void ExecuteAction(

IAction* action,

void* eventdata,

InstanceId instance) = 0;

virtual void InvokeActivity(

const std::string &src,

const std::list<Parameter> ¶meters,

const std::string &StateId,

InstanceId instance) = 0;

virtual void CancelInvokedActivity(

const std::string &StateId,

InstanceId instance) = 0;

};

The C# version is a literal translation:

public interface IDataBinding

{

bool EvaluateCondition(

string condition, object _eventdata,

InstanceId instance);

void ExecuteAction(

IAction action, object _eventdata,

InstanceId instance);

void InvokeService(

string src, List<Parameter> parameters,

string StateId, InstanceId instance);

void CancelInvokedService(string StateId,

InstanceId instance);

}

Source Code and Demo

This article is accompanied by two demonstration statechart interpreters on the CD-
ROM. Written in C++ for Microsoft Visual Studio 2005 or Visual C++ Express, the
first one is designed for easy integration with existing game code. To use this code,
you need to provide a data binding and to construct the statecharts, either in a factory
class or by reading them from files or a database. The precise details will depend on
your game. To get you started and to illustrate the use of the demo, an example appli-
cation is provided in which the statechart is explicitly constructed in the code.

3.10 Level Up for Finite State Machines: An Interpreter for Statecharts 329

The second demo implementation is a comprehensive framework based on
.NET, written in C# for Microsoft Visual Studio 2005 or Microsoft Visual C#
Express. It can read statecharts from the appropriate XML dialect, called State Chart
XML [Barnett07]. The data binding realizes all of the described requirements; in par-
ticular, it allows the registration of services that can execute activities.

The C#-based solution employs scripts written in Lua. The data binding for Lua
can automatically catch all events issued by a given .NET object. Using reflection, it
determines all .NET events that the object can fire, and for each event, it registers a
handler function that delegates the event to the statechart interpreter.

The statechart editor/debugger is easily the most complex piece of the .NET
implementation. In this tool, the user can create states of all kinds, connect them with
transitions, and add conditions, actions, and activities. The execution of statecharts
can also be viewed in real time. The interface draws a red outline around each active
state. In addition, it briefly flashes the background of every entered state from white
to red. Thus, the flow of execution is easily visible even when the view is zoomed out
or when the statechart is displayed on a second monitor alongside the game’s actual
output on the first monitor.

The statechart editor/debugger can be used in other .NET-based projects in two
ways. First, you can create a StateChartWindow that shows a single statechart and
allows you to edit and debug it. This is best done in a separate thread because the real-
time visualization of a running statechart requires frequent refreshing to highlight
every entered state. Second, you can integrate a StateChartGUIUserControl on a pro-
prietary form, for example, in a level editor. If the project is not based on Windows
Forms, you can still create an object of type StatechartGUI, although in this case, the
application programmer has to take care of feeding user events into the statechart edi-
tor/debugger.

The statechart display employs the standard UML notation. Most of the figures in
this article were produced by the same code, rendering to a PDF pseudoprinter. Actu-
ally, the rendering is abstracted away from the underlying graphics routines through
five functions. The display could use any system ranging from in-game OpenGL to a
plotter device at the other end of the world as long as it provides these functions.

An automatic layout routine cleans up the statechart’s arrangement, placing states
that are connected close to each other, as shown in Figure 3.10.11. This layout is
based on an approach inspired by physics: force-directed layout. States that are con-
nected exert strong attractive forces on one other; overlapping states repel each other;
states that lie on the same level but are not connected try to stay a set distance from
each other. To more easily gain insight into complex hierarchies, the user can hide
substates. In addition, every state may be pinned to its current position; the automatic
layout then produces a reasonable arrangement without touching the pinned states.
This is helpful for “secondary notation,” where the user wants to graphically group
related states or to force a control flow from bottom to top. This blend of manual and
automatic layout can be saved to disk and later restored.

330 Section 3 Architecture

3.10 Level Up for Finite State Machines: An Interpreter for Statecharts 331

State

State1

State2

State3 State4

State5

State

State1

State2

State3
State4

State5

FIGURE 3.10.11 The automatic layout aims to produce a space-efficient and logical
arrangement. By default, initial states are placed on the upper left, and final states on
the lower right.

Conclusion

A small number of additional features, such as hierarchy and concurrency, dramati-
cally enhances the expressivity of FSMs. We believe that every game developer, look-
ing back to previous projects, will immediately notice places where statecharts would
have been much less intricate than the FSMs that were actually used.

The interpreter offers enough flexibility to blend well with most existing projects.
Just add a specific data binding and a way to construct statecharts. Employing a standard
file format for this will make it even easier to edit statecharts with standard diagramming
tools that can be used by any game designer. In this way, the path from design documents
to working code becomes fully automated, increasing development speed and leaving less
opportunity for errors.

This statechart framework has already been used to script the behavior of items
and NPCs in an upcoming commercial adventure game. Game designers find it much
easier to read and edit complex behavior if it is presented graphically. In particular,
designers with little background in programming easily pick up the framework. The
ability to focus on the game’s screen, but at the same time watch the graphical state-
chart representation from the corner of the eye, propels the game’s authors to a new
level of productivity.

References

[Barnett07] Barnett, Jim, “State Chart XML (SCXML): State Machine Notation for
Control Abstraction.” Available online at http://www.w3.org/TR/scxml/, February
2007.

[Fu04] Fu, Dan, and Houlette, Ryan, “The Ultimate Guide to FSMs in Games.” AI
Game Programming Wisdom 2, Charles River Media, 2004.

[Gamma95] Gamma, Erich, Helm, Richard, and Vlissides, John, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing Co.,
1995.

[Harel87] Harel, David, “Statecharts: A Visual Formalism for Complex Systems.”
Science of Computer Programming, (June 1987): pp. 231–274.

[OMG07] Object Management Group, “Unified Modeling Language: Superstruc-
ture.” Version 2.1.1. Available online at http://www.omg.org/docs/formal/07-02-
03.pdf, February 2007.

332 Section 3 Architecture

http://www.w3.org/TR/scxml/
http://www.omg.org/docs/formal/07-02-03.pdf
http://www.omg.org/docs/formal/07-02-03.pdf

333

3.11

Building a Behavior Editor
for Abstract State Machines
Igor Borovikov—FrameFree Technologies, Inc.
igor.borovikov@gmail.com

Aleksey Kadukin—Electronic Arts
akadukin@gmail.com

On one of our past game projects, we faced numerous challenges presented by the AI
scripting pipeline. In particular, a refactoring of the Behavior Editor, an essential

component of the AI tool chain, turned out to be desirable to improve its usability. This
article describes the issues analyzed and resolved while building a new version of the
Behavior Editor, as well as the enhancements to the scripting introduced during refac-
toring. The implementation of the Behavior Editor as a standalone application (rather
than as a Maya plugin) allowed building an advanced GUI frontend. At the same time,
connecting the standalone Behavior Editor with Maya via the Maya Command Port
helped keep its tight integration with Maya, which was necessary for streamlined script-
ing and level building. The backward compatibility of our new XML-based file format
allowed a smooth upgrade to the new AI tool chain. With the new extended file format,
two object-oriented additions to the scripting language, behavior referencing and tem-
plate script parameters, have become possible. They were implemented through offline
preprocessing of the behavior scripts without changing the runtime code of the under-
lying abstract state machine (ASM) core of the behavior system.

Abstract State Machines (ASMs)

An abstract state machine (ASM) is a powerful theoretical tool for software design that
offers a useful framework for modeling game agents’ behaviors. Thus, building a
behavior system for games with an ASM-like architecture in mind is quite common.
This section gives a brief introduction to ASMs. A more formal and much more com-
plete discussion can be found in [Börger03].

An ASM can be viewed as a finite state machine (FSM) with an extended definition
of the notion of “state.” A regular FSM is based on a number of states and correspond-
ing update functions. When an FSM is in a certain state, it invokes the corresponding
update function during each update cycle. Here, a state is just a label, an element of
some finite set. A rule in an FSM might look like this:

IF state_patrol THEN patrol_region()

Here state_patrol is a label that denotes the state of an NPC, and patrol_region()
is the update function corresponding to the patrol state. The FSM will keep calling
patrol_region() until its state changes.

An ASM extends the notion of states by using dynamic conditions instead of sta-
tic labels:

IF condition() THEN update_function()

Here condition() is a logical function that is evaluated each ASM update cycle. The
update_function() is executed when the condition returns TRUE. The pair (condition,
update_function) is called a transition rule. We will also call a transition rule an update
function when the context allows. A basic ASM is a finite set of transition rules.

An NPC or, more generally, any agent in the game, can be controlled by a single
ASM or by multiple ASMs that work either sequentially or asynchronously. Different
AI subsystems can be controlled by different ASMs. It is also possible to dynamically
replace ASMs during runtime. Allowing a slight abuse of terminology, we will call an
ASM a behavior because it represents a smallest meaningful self-contained piece of AI
functionality. In addition, we will call a transition rule a behavior task or, for short, a
task. Hence, a behavior is a collection of tasks triggered by conditions.

Note that tasks can have rather complex update functions that actually consist of a
number of actions, each encompassing multiple steps. It is also possible for update func-
tions to switch to a different behavior by calling START_BEHAVIOR(new_behavior_name)
inside an update function, thus allowing dynamic switching between ASMs.

The execution of a behavior in the game starts by traversing the list of tasks,
which has been sorted by priority. When the first task whose condition evaluates to
TRUE is found, its transition rule is called. On the next behavior update, we again tra-
verse the list and select a task. Because a task’s transition rule may require more than
one behavior update cycle to complete, we need to save the state of its execution
between behavior updates. If it is reselected on the next behavior update, then we will
continue execution where we left off. If a different task is selected, then the previous
task transition rule execution state is reset, and we begin execution of the new task’s
transition rule. The AI engine is responsible for organizing the concurrent function-
ing of active ASMs and allocating the necessary time slices during each behavior
update cycle.

334 Section 3 Architecture

Here is an example of a simple but relatively complete behavior for an NPC
guard:

BEHAVIOR SimplePatrol

TASK AttackIfPlayerNearby

IF distance_to_player_less_than(10) THEN

approach_player(3)

attack_player()

TASK WalkPatrolPath

IF TRUE THEN

walk_path(my_patrol_path)

The previous ASM listing can be extended by adding more tasks to the behavior.
The execution of this behavior normally starts with WalkPatrolPath task because its
condition always evaluates to TRUE. When the distance between the player and the
NPC shrinks below 10 units, the behavior activates the AttackIfPlayerNearby task.
The update function of this task consists of two actions that are executed sequentially.
First, the NPC attempts to come within 3 units of the player, and then the NPC
attacks. If the player is defeated or runs away, the condition of this task no longer
holds, and the NPC returns to the task of following the patrol path.

Additional task attributes can simplify management of the control flow in the
behavior, as follows.

• Remove on completion is a useful task flag that tells the AI to remove the task
when it is completed. It is equivalent to execute once and is well suited to a vari-
ety of situations, such as immediately after an NPC is spawned.

• Remove on abort is an analogous flag that causes the AI to remove the task when it
fails to complete. This flag is useful for preventing the AI from reevaluating tasks
that are no longer valid (such as when a path is blocked by a destroyed object).

• The Task must complete flag ensures that control will not be transferred to a dif-
ferent task until the current one is finished.

• The Don’t reevaluate task condition(s) flag prevents the AI from passing
control to a different task unless the other (higher priority) task’s conditions
become TRUE. Having this flag set for a task is equivalent to a combined condition

IF was_executing_during_previous_behavior_update

OR my_conditions

THEN …

where my_conditions is the original condition of the task.

The actual behaviors controlling NPCs could be much more complex than the
SimplePatrol behavior. A behavior set for a real game level with dozens or even hun-
dreds of objects and many behaviors composed of many tasks can become challenging

3.11 Building a Behavior Editor for Abstract State Machines 335

to design, understand, and maintain. In our experience, despite the theoretical conve-
nience and conceptual simplicity of ASMs, they initially proved to be rather hard to
use for real-life applications, providing many ways to shoot yourself in the foot. For
example, an incorrect flag on a task can break control flow of the behavior in a subtle
way. Such a bug could be difficult to localize in a big complex behavior. After some
consideration, however, we realized that the problems we were experiencing were par-
tially due to the way in which the behaviors were being built and managed. We there-
fore decided to create a Behavior Editor that would alleviate these problems.

The Behavior Editor as a Maya Plugin

A game agent behavior extends the pure ASM in a number of ways. In addition to the
control flow flags, it has to reference level objects to be useful in the game AI. Typical
referenced objects are paths, regions, hotspots, NPCs, effects, and other behaviors.
Such references are initially created as symbolic ones and later have to be resolved.
This resolution and binding of names happens when the level data is converted into
the binary form loadable by the game. Usually, a level-builder application takes care of
this by reading, validating, and merging data exported from the level design tool and
other tools.

The AI data flow before the refactoring of the Behavior Editor was as follows. An
intermediate, (mostly) human-readable form of the AI data was exported from Maya
where designers had built the level. The data included descriptions of all the objects
that could be referenced by behaviors. These objects were ordered and grouped by
type, and their symbolic names replaced by numeric identifiers. A command-line
level-builder tool then read these intermediate files and assembled the final binary
representation of the level, resolving and replacing references to the symbolic names
with numeric identifiers.

Because all of the level data was available in the Maya scene, it seemed self-
evident that the Behavior Editor should reside inside Maya as a plugin. This would
keep all of the level data together, simplifying the design process and the level export,
at least during the initial phase of development. The behavior data was embedded
into the Maya scene through dummy objects (called “behavior cubes”) that held all
necessary behavior scripts in their user attributes. Finally, the powerful scripting capa-
bilities of Maya allowed building of an advanced GUI-driven toolset for behavior
editing entirely in Maya.

Drawbacks of the Plugin Approach

After we were well into production, it became evident that the “self-evident” approach
had a number of serious drawbacks. Behavior data integrated into the Maya binary file
was inaccessible outside of Maya. A designer or scripter had to run Maya, open the
level scene—which may grow to more than 100 MB—and only after that, he would
get access to the behaviors in the scene. Due to problems with file referencing in Maya,

336 Section 3 Architecture

it was impossible to separate behaviors from the other data. Thus, the entire level was
stored in a single file, and only one designer could work on this file at any given time.

Version control was another concern. Hiding behavior data inside the Maya binary
file made version control of the behaviors virtually impossible because binary Maya files
were too large for Visual Source Safe. In addition, it is generally inadvisable to merge
multiple versions of a binary file. This restriction prevented users from editing multiple
copies of the level file and then merging their changes.

Building a Behavior Editor GUI in Maya was yet another problem. Even though
Maya’s MEL (Maya Embedded Language) scripting opens up many possibilities, it
still has some serious limitations. For example, we couldn’t easily create a tree control
in MEL. Other examples of functionality awkward to implement in MEL are search-
and-replace, copy-and-paste, and undo-redo. Of course, undo-redo is supported by
Maya itself, but it is intended for editing the 3D scene, not for a MEL-driven GUI.
Thus, even though undo was technically there, it was virtually useless in the context
of the Behavior Editor plugin. A convenient copy-and-paste was also missing from
the plugin-based implementation, which was unfortunate because it would have been
useful to be able to script pieces of behavior in smaller mockup scenes and then trans-
fer them to the actual level.

Data and Workflow Decomposition for the Standalone
Behavior Editor

Moving the Behavior Editor outside of Maya would solve all of the aforementioned
problems, but it would also require some extra effort to keep the behavior script con-
sistent with the level objects that are defined in the Maya scene. In other words, it
would still be necessary to access the Maya scene if the designer wanted to pull up the
name of an object or assign a behavior to an NPC. In addition, export and data link-
ing would need the same kind of access to ensure the consistency of the behavior with
the level objects and the correct resolution of names.

The analysis of the game data formats hinted at a possible way to solve the export
and linking problem: a new “dual” format, which would also be backward-compati-
ble. On top of that, Maya Command Port presented a solution to the integration with
Maya. Command Port allows sending commands to Maya and receiving responses
remotely from a standalone application.

Data Decomposition

We employed an export of the Maya scene minus the behaviors (and minus actual
geometry, of course) into a text file containing so-called “mission data.” This mission
file stores the AI-related data in the scene, in particular, information about all of the
objects such as NPCs, regions, paths, and so on. The mission file is mostly human-
readable and can be parsed automatically. This allowed us to use it separately from the
behavior file and then resolve symbolic names and do the linking at a later stage.

3.11 Building a Behavior Editor for Abstract State Machines 337

Originally, the mission file used a format shared with few other game data files: a
custom line-based format. A line could contain either name of a data section for higher
level structuring, or a parameter description belonging to the current data section. A
parameter description consisted of a parameter name, its value type and size, the value
itself, and an optional comment. Such a custom format was easy to generate, parse, and
translate into binary. Reusing the same format for different types of data was con-
venient because the AI-related scene data could be saved in a single file (complete
mission) or in separate files by sections, for example, in-game objects’ descriptions,
navigation data, behaviors, and so on—each of them in individual files. Another
important advantage was in virtually one-to-one correspondence of human-readable
format to the binary data loadable into the game. However, such direct correspondence
was limiting extensibility: adding metadata that didn’t have exact representation in the
game was difficult.

The new file format for the behavior file was designed in such a way that, on the
one hand, it was compatible with the mission file format, and, on the other hand, it
took advantage of the flexibility and convenience of XML, including the wide array of
open source libraries for generating and parsing XML files. The behavior file stores
each behavior in two formats: a version with symbolic, unresolved object names that
uses plain XML, and then a “compiled” version in the format compatible with the
mission file. This can be achieved by using a CDATA section in the XML file, which
instructs the XML parser to consider the data in that section as an atomic piece.

We had to keep a couple of issues in mind. First, the compiled behavior can’t con-
tain the pair of symbols]] because they would be recognized as the end of the CDATA
section. Luckily, the compiled behavior data format did not use this pair of symbols.
Second, if the XML version of a behavior is modified manually, the behavior file has
to be opened and resaved from the Behavior Editor to ensure that the compiled
version remains consistent with the canonical XML version. However, it turned out
that manual editing was virtually never required, and when it was, resaving was a very
quick task.

Another concern was ensuring that the XML version of the behavior was ignored
by the existing parser that was used in the level builder. Happily, this already turned
out to be the case, but such a simple modification—ignoring all lines with XML tags
present—wouldn’t be very difficult in any case. As a result, the “dual” XML-based for-
mat was easily integrated into the level-building pipeline. The data can be easily linked
with mission data, with only a few symbolic name resolutions required. For example,
we still need to resolve names of regions, hotspots, game objects, and so on because in
the game, they were referred to by their binary ID (usually an index in a list). But this
ID was not known at the moment the behavior was created. Thus, an additional name
resolution and binding step was still required even with a new format.

The following listing shows a fragment of the combined behavior file for the sim-
ple patrol behavior sample. Only one task is shown to avoid clutter.

338 Section 3 Architecture

<?xml version=”1.0” ?>

<BEHAVIORSET>

<VERSION>1</VERSION>

<DATAFORM>

<![CDATA[

#VERSION=1.0

behaviornames

{

Behavior_Patrol # 0

}

behaviorset

{

behavior

{

stringid “Behavior_Patrol”

behaviorid 0

task

{

stringid “Task_AttackIfPlayerNearby”

taskflags 0x00000000 # no flags

{

combine 0 # logical operation

negate 0

conditiontype 176 #DISTANCE_FROM_OBJECT

parameter 0x01000003 #%PLAYER

parameter 3 # LESS_THAN

parameter 10.0 # 10.0

}

action

{

actiontype 101 #ATTACK_OBJECT

parameter 0x01000003 #%PLAYER

}

}

…

]]>

</DATAFORM>

<BEHAVIOR>

<NAME>Behavior_Patrol</NAME>

<TASK>

<NAME>Task_AttackIfPlayerNearby</NAME>

<CONDITIONS>

<CONDITION>

<NAME>DISTANCE_FROM_OBJECT</NAME>

<COMB>0</COMB>

<NEG>0</NEG>

<PARAM>0 # ObjectID # %PLAYER #</PARAM>

<PARAM>1 # Test # LESS_THAN #</PARAM>

<PARAM>2 # Value # 10.0 #</PARAM>

</CONDITION>

</CONDITIONS>

<ACTIONS>

<ACTION>

<NAME>ATTACK_OBJECT</NAME>

<PARAM>0 # ObjectName # %PLAYER #</PARAM>

3.11 Building a Behavior Editor for Abstract State Machines 339

<PARAM>1 # TimeOut # 0.0 #</PARAM>

</ACTION>

</ACTIONS>

...

</BEHAVIOR>

</BEHAVIORSET>

Using the dual format had another very important advantage. Because the changes
to the tool chain and level-building data were relatively small, it allowed a smooth tran-
sition from the old Behavior Editor to the new one.

Workflow Decomposition

Initially, we feared that moving the Behavior Editor to a standalone application might
break integration with the level design tool, Maya. However, Maya Command Port
allowed us to establish runtime communication between the standalone Behavior Edi-
tor and Maya. Behavior Editor could open communication with Maya Command Port
via a TCP/IP socket and then communicate directly with Maya via MEL commands.

The simplest use of this kind of communication was to poll a list of objects of a
given type in the scene to ensure that the scripter picks the right object name inside
the script. Another, more advanced example was assigning a behavior name to an
actor that is represented as an object in Maya. For this task, the Behavior Editor sends
a command to the Command Port to set the corresponding attribute of the object
inside Maya. As an even more advanced example, the user could start Maya directly
from the Behavior Editor, load the correct scene, and manipulate the data in Maya as
though the Behavior Editor were a Maya plugin.

Although all of this integration is useful, it also is important that Maya and the
Behavior Editor retain the ability to function completely independent of each other if
necessary.

Providing a connection between multiple copies of Maya and multiple copies of
the Behavior Editor posed another challenge. Fortunately, it is possible to open a Com-
mand Port with a unique name for each Maya instance. By keeping track of running
Maya instances and maintaining a table with records of open and available command
ports, it was possible to arrange concurrent functioning of several instances of Maya
and Behavior Editors.

We also used this approach to store the mapping between Maya scene files,
exported mission files, and behavior file names. This allowed the Behavior Editor to
obtain data directly from the latest exported mission file. Access to the exported scene
data allowed the Behavior Editor to be used in “offline” mode without direct access to
the Maya scene.

Thus, the Maya Command Port and several custom modules enabled us to turn
the Behavior Editor into a standalone application that was still as tightly integrated as
a Maya plugin. Figure 3.11.1 shows how the Behavior Editor communicated with
Maya.

340 Section 3 Architecture

GUI for the Standalone Behavior Editor

After decoupling the behavior data from Maya level data and finding a way to enable
runtime communication with Maya, it was possible to develop a completely new
Behavior Editor application outside of Maya.

There were several possible choices for building the new GUI. The choices nar-
rowed down to Python after we found that C# was not immediately available on the
project. Also, Python was already used for several other scripting tasks.

The two most popular GUI toolkits available for Python are wxPython and Tkin-
ter. The choice of wxPython was more logical for several reasons. First, it provided a
native Windows look and feel to its controls. Second, it offered a wider range of stan-
dard controls, including a tree control with standard Windows functionality. Third,
wxWidgets, the base library of wxPython, has interfaces reminiscent of MFC, which
simplified development because we had experience with MFC.

In comparison with wxPython, Tkinter has a slight advantage in the way it han-
dles exceptions: Tkinter survives more critical errors than wxPython without causing
the application to crash and close. However, with log reporting, it was not too diffi-
cult to ensure that all of the critical bugs were tracked down and fixed, so this advan-
tage was not critical in the long run.

The incredible speed of development offered by wxPython was also a very big
help. The development of the new Behavior Editor had to be done alongside high-
priority production and tool tasks. A demo of the basic framework was ready in only
a few days, with a tree control and placeholders for behaviors and tasks, complete
undo-redo, the possibility to open and edit several behavior scripts simultaneously,
and so on. Of course, populating the initial prototype with actual functionality took

3.11 Building a Behavior Editor for Abstract State Machines 341

Read
Records

Update
Records

Get Scene
Data

Set Scene
Data

Open
Command Port

Connect to
Command Port

Behavior
Editor

Maya
Scene

Plugin

FIGURE 3.11.1 Use-case diagram for the standalone
Behavior Editor communicating with Maya.

much longer than that, but it was still faster than developing an MFC/C++ applica-
tion by orders of magnitude. It is possible that C#/.NET development would offer
similar rapid prototyping benefits to wxPython.

The final task was packaging the editor and distributing it among the team mem-
bers. An open source py2exe application offered an excellent solution for this. An
advantage of wxPython over Tkinter showed itself here as well, as all packaging of
wxPython with py2exe was nearly automatic, in contrast to Tkinter with Python Mega
Widgets (PMW), which required manual compilation and preparation of a PMW
library for distribution.

The resulting editor distribution was an executable file with a number of support-
ing files, including the Python interpreter. End users thus did not need to install a
separate copy of Python to use the Behavior Editor. Figure 3.11.2 shows a screenshot
of the Behavior Editor UI.

342 Section 3 Architecture

FIGURE 3.11.2 A screenshot of the standalone Behavior Editor UI with a sample behavior.

Extending the ASM Architecture with XML-Based Generic
Programming

The flexibility of XML combined with the dual file format for behavior data allowed
us to introduce two new features that were highly desirable but virtually impossible
when the behavior editing was done inside of Maya. Specifically, we could add para-
meters to the behaviors, thus making them much more versatile and reusable, and we
could support referencing for tasks, behaviors, and behavior groups. Referencing
improved the reusability of behavior scripts and introduced an object-oriented flavor
to the ASM scripting. The dual format of the behavior data allowed us to expand the
new features into explicitly compiled code in a way similar to the preprocessor macros
or templates in C++. Thus, a new level of functionality was added to the original
ASM implementation without changing its runtime code.

Referencing

Referencing for ASM was inspired by object-oriented class inheritance. Consider a
complex behavior where one or two tasks need to be implemented slightly different
for certain NPCs. Without referencing, such a modification would require copying
the entire behavior and replacing those few tasks. Copying code is not a healthy prac-
tice in general, and it is not healthy for ASMs either. When the script programmer
changes the original behavior, it is necessary to manually propagate the changes to all
similar behaviors. With referencing, it is possible to avoid such copying and manual
updates.

The basic rules for inheritance are the following. Each task in the behavior pos-
sesses a unique name. When defining behavior B, we can say that it references behav-
ior A. By referencing A from B, we implicitly create a copy of all tasks of A inside B in
exactly the same order. Overriding a task definition can be done through a naming
convention: If a behavior in B defines a task with the same name as in A, the new task
overrides the task from A. This is similar to the way virtual functions work in object-
oriented programming (OOP) languages.

Due to its obvious limitations, this referencing scheme falls short of being true
inheritance. The most significant limitation is the absence of a mechanism for chang-
ing the order of the tasks in the derived behavior. Nevertheless, even as limited as it is,
the referencing mechanism adds a good deal of reusability and object-oriented flavor
to the ASM design process.

Here is an example of the SimplePatrol behavior with the attack task replaced to
simulate a coward guard running away from the player instead of attacking:

BEHAVIOR CowardGuardPatrol: REFERENCE SimplePatrol

TASK AttackIfPlayerNearby

IF distance_to_player_less_than(10) THEN

avoid_player(30)

The task of walking the path remains the same as before, whereas the task Attack
IfPlayerNearby leads to a completely different reaction by the guard. As a result, the
guard tries to avoid the player by keeping a distance of at least 30 units at all times.

Extending referencing from the level of behaviors to a higher level of behavior
groups is easy. Behavior groups are not part of the original ASM definition but are a
convenient mechanism for grouping related behaviors by their purpose or spatial
location. For example, the NPCs in one region could have all their behaviors collected
into a single group. NPCs in a similar but slightly different region could reference this
group to avoid redefining many of the same behaviors.

Parameters

The referencing mechanism would be incomplete and severely limited if it did not
support parameterization of the behaviors. In its original definition, an ASM does not

3.11 Building a Behavior Editor for Abstract State Machines 343

expose any parameters. Although we were unable to implement runtime support for
this feature, even compile-time parameters turned out to be useful. They were imple-
mented in a way similar to template parameters in C++.

A parameter for a task or behavior is simply a symbolic constant that can be
replaced with an actual value during compilation (or export) of the behavior. Con-
sider the following example:

BEHAVIOR SimplePatrol(

detection_distance,

attack_distance,

patrol_path)

TASK AttackIfPlayerNearby

IF

distance_to_player_less_than(detection_distance)

THEN

approach_player(attack_distance)

attack_player()

TASK WalkPatrolPath

IF TRUE THEN

walk_path(patrol_path)

Two numeric parameters and one string parameter allow us to modify the patrol
behavior to address many useful cases. The parameter patrol_path allows us to specify
which path to use, whereas the two numeric parameters set the detection and attack
distance for the guard.

Through parameterization, the referencing is enhanced with a new degree of free-
dom. The referencing behavior can replace some of the symbolic parameters of the
referenced behavior. Again, we had the ability to expose parameters on the level of
tasks, behaviors, or behavior groups.

Implementation of Referencing and Parameters

On the level of the XML representation, adding referencing is straightforward.
Through new tags, you can extend the internal behavior representation in many ways.
Exporting or “compiling” a behavior for the level builder unfolds all the references and
replaces all parameters with their actual values. Thus, all of the additional mechanisms
added to the ASM architecture are only compile-time features.

Behaviors illustrating these concepts are included on the CD-ROM. The three files
included are Sample1.behavior, Sample2.behavior, and Sample3.behavior. Sample1
corresponds to the simple patrol behavior discussed earlier. Sample2 is a parameterized
version of the simple patrol. Sample3 shows a parameterized behavior for a coward
guard, referencing the behavior from Sample1. Behavior files are human-readable XML
documents. The compiled part is located in the CDATA sections and illustrates the way
the parameters and references are handled.

344 Section 3 Architecture

The Behavior Editor, also included on the CD-ROM, is a fully functional albeit
slightly stripped-down version of our actual production tool. You can create new tasks,
behaviors, and behavior groups (called “behavior cubes”), and experiment with para-
meters and references.

Compile-Time Versus Runtime

Referencing and parameters, as we introduced them, work similarly to templates in
C++: the compiler does all of the work during the export, so no runtime references or
parameter resolutions are required. Interesting enough, one of the first commercial
implementations of C++ (the Glockenspiel C++ preprocessor) was also built entirely
on top of the existing C compiler. Thus, compile-time extensions seem to be a logical
first step in developing OOP-flavored scripting systems, especially in situations with a
rich legacy.

A rather common argument against C++ templates is that they bloat executable
code, which renders them inefficient. In the realm of ASM, however, this extensive
template-like approach was still quite practical even though there was some bloat as a
result of our implementation of the ASM template and referencing preprocessor. This
is because data size was not a big concern for us. Although data cache considerations
may come into play at some point in the future, the actual behaviors built for the
game were still small enough to ignore such issues.

Probably the biggest advantage of having the new ASM features processed at
compile-time was the ability to keep the runtime AI engine code untouched, which
ensured backward compatibility with already-built levels. This proved to be highly
valuable in light of our tight development schedule.

With that said, there is no doubt that more dramatic improvements to ASMs
could be made by moving some features into the runtime system. However, for such
an implementation, we would rather consider an existing scripting language, such as
Lua, and use its powerful tables to support runtime polymorphism with Lua objects.
Of course, such an approach would be a radical departure from the ASM framework.

Conclusion

Extending a behavior scripting system based on ASMs with an advanced Behavior
Editor, without interrupting production on our game, turned out to be an educa-
tional experience. It was possible to make several significant improvements:

• By using the Maya Command Port feature, we improved the workflow by build-
ing a standalone Behavior Editor without compromising integration with the
level design tool.

• Maintainability and version control for behavior scripts was improved by moving
them to XML-based files.

3.11 Building a Behavior Editor for Abstract State Machines 345

• Two new features—behavior referencing and template parameters—extended the
original ASM framework, providing greater reusability of behaviors and adding
an OOP flavor to ASM scripting. By manipulating the behavior data offline in
the new Behavior Editor, we were able to do this without changing the runtime
AI code at all.

Overall, the ASM proved to be a useful model for behaviors in the game. It also
offered a framework for gameplay design that was easy to manipulate and extend.

References

[Börger03] Börger, E., and Stärk, R., Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

346 Section 3 Architecture

347

3.12

Multi-Axial Dynamic
Threshold Fuzzy Decision
Algorithm
Dave Mark—Intrinsic Algorithm LLC
dave@IntrinsicAlgorithm.com

AIdesigners and programmers commonly need an intuitive, efficient way for
their agents to make decisions; in other words, to answer the question, “Given

data A, should I perform action B?” The more parameters that comprise data A, the
more complex this decision-making process generally becomes. It is therefore impera-
tive that a decision algorithm make it easy to visualize and manipulate the necessary
decision parameters.

The Multi-Axial Dynamic Threshold Fuzzy Decision Algorithm (MADTFDA) is
one such algorithm. It allows the designer to combine two or more constantly chang-
ing values and then compare the result to a defined numerical threshold to make a
decision. This algorithm makes it easy for the designer to visualize the interactions of
the decision inputs, and it enables the programmer to create quick, robust, parameter-
ized decision calls that accurately reflect the intent of the designer. This article will
cover the concept behind MADTFDA, describe its various uses as an AI design tool,
and provide an overview of the code that is included on the CD-ROM.

The Concept

Game developers, whether modern-day programmers or pen and paper gamers from
decades past, are all familiar with the idea of a “decision threshold.” In the past, you
might have rolled a 20-sided die to determine whether you succeeded or failed at a
given task. Rolling a number greater than or equal to, say, 14 indicated success,
whereas a number less than 14 indicated failure. Game designers, and in particular, AI
designers, continue to use much the same concept in their work today, with the ven-
erable 20-sided die replaced by a pseudorandom number generator.

The problem with this approach is that it is one-dimensional; that is, it allows
consideration of only a single decision factor, such as the difficulty of hitting a crea-
ture. If the designer wants to incorporate a second factor into the decision algorithm,
it must be somehow combined with the first factor to arrive at a single value that can
be tested against the decision threshold.

One way of combining factors is with weighted sums [Garces06]. In fact, a
weighted sum of two factors, each with a coefficient, is simply the equation of a line
in two dimensions and is therefore mathematically the same as the MADTFDA
threshold line. However, weighted sums can become unwieldy if you need to inde-
pendently and frequently change the coefficients. Repeated modifications to the sums
can become especially cumbersome and even lead to deteriorating accuracy when they
involve relative changes, such as applying percentages to the existing numbers, or in
nonpredefined ways, such as using the result of another algorithm as a coefficient. For
example, increasing a value by 10% is not negated by reducing it by 10%. If this com-
bination of actions were repeated, the base value would drift away from its intended
range. Also, weighted sums provide only limited information about the decision out-
comes they produce (generally either a flat yes/no or else the simple distance from the
decision threshold).

MADTFDA simplifies the process of constructing decision thresholds and extends
it in a number of ways. The result is an easy-to-understand, easy-to-use algorithm that
the designer and programmer can use to make a wide variety of AI decisions.

Understanding MADTFDA

In its most basic form, a MADTFDA decision model is composed of two axes and a
threshold line (see Figure 3.12.1). Each axis represents one input to the decision being
modeled. The threshold line determines whether a given point in the decision space
yields a positive or negative result. This threshold can have almost any shape (as long
as it is a continuous function), but for the sake of simplicity, we will focus most of our
discussion on straight lines. The “success zone” (or “result zone”) of a given model
may be either above or below the threshold. In strictly Boolean terms, if a data point
is located in the success zone, it is said to be a “positive” result, or simply “true.”

348 Section 3 Architecture

x-axis

Data
Points

Threshold
Result Zone

x-axis

negat iv
e

result

posit iv
e

result

Result Zone

sixa-y

sixa-y

FIGURE 3.12.1 A basic decision model with a linear threshold. In this example, the success
zone lies below the threshold.

A Simple Decision Model
Suppose we want to build a decision model that determines when an agent should
run away. This model takes as inputs the agent’s health (on the x-axis) and attack
strength (on the y-axis). Now suppose that we want a particular agent to run away
when a certain combination of low health and low strength is reached. To model this,
we draw the threshold as in the left side of Figure 2. In this decision model, anything
below and to the left of the threshold is a positive result, in other words, “yes, run
away.”

Changing the location and slope of the threshold results in different behavior. On
the right side of Figure 3.12.2, we have a threshold where attack strength plays a
greater part in the decision process. The result is an agent that will tend to run away
as attack strength is lowered, even if the agent is in perfect health. On the other hand,
if attack strength is near 100%, the agent will be willing to fight to the death without
ever retreating.

3.12 Multi-Axial Dynamic Threshold Fuzzy Decision Algorithm 349

Health

R
u
n
a
w
a
y
!!

High attack strength =
more willing to fight

Low strength =
less willing to fight

when wounded

Health

Run away!!

High attack strength =
willing to fight to death!

ht
g
n
ert

S
k
c
att

A

ht
g
n
ert

S
k
c
att

A

si
htgnerts

kcattafI
kcitst’nod,

wol
!llata

dnuora

FIGURE 3.12.2 Two thresholds yielding different retreat behaviors.

Dynamic Thresholds

The threshold for an agent’s decision model need not be fixed. We can dynamically
change the threshold based on a third criterion, say, the proximity of allies, the agent’s
morale, or the attack strength of the player. This enables a number of interesting
capabilities.

Creating Diversity Among Unit Types

A simple use of this method is to provide a common interface for different agents that
share similar types of behaviors but exhibit them in different ways. For example, all

creatures will run away under certain circumstances. What causes a harmless bunny to
bolt, however, will differ dramatically from the circumstances required to panic a tena-
cious badger or a rabid wolf. Using MADTFDA, the solution is to assign bunnies one
threshold formula, badgers another, and rabid wolves yet another. The same codebase
can be used to process the “run away” decision for each agent with only a change in the
formula for the threshold. In fact, using slight variations in the threshold among simi-
lar agents, such as different subtypes of a monster, leads to some interesting results.

Imagine a group of orcs that are attacking the player en masse. The game design
has the orcs’ decision model tracking the strength of the player on one axis and their
own group’s strength on the other. Because the battle situation changes slightly each
time the decision model is checked, slightly different thresholds could be triggered at
different times. Perhaps the most poorly armed grunt orcs begin to withdraw first.
Then, as some of the more powerful lieutenant orcs begin to pull back, the grunts
bolt outright. The captain orcs, who hold steadfast, are left alone and exposed.

In this example, each individual agent received the same perceptions of the battle
(the respective sides’ attack strengths) but processed them using different threshold
formulae (one per orc subtype). The end result was that the three subtypes reacted
differently to the exact same situation. Simplifying agent behavior into a single thresh-
old formula allows the designer to quickly and intuitively create, analyze, compare,
debug, and tweak the entire set of NPCs.

Creating Diversity Among Individual Agents

Taking the diversity concept one step further, each of the individual agents can have
its threshold formula randomized slightly through the addition of parametric noise
upon creation. This serves to introduce some behavioral variation among individual
agents. As the battle situation changes, these individual agents will flee at different
moments. In general, the weakest orcs will still be the first to flee, but each individual
grunt orc will do so at a slightly different time. In short, we have created a unique
“personality” (at least as far as this single decision type goes) for each orc. Note also
that applying parametric noise to the individual agent at creation is much less expen-
sive than applying it to every decision check throughout the combat.

State-Specific Thresholds

Another interesting idea is to provide an agent with a set of thresholds that reflect a
range of situations. These thresholds can be linked to a state machine so that as the
agent’s state changes, a different set of reactions is elicited by the same combination of
stimuli. The benefit of this approach is that the thresholds can be hand picked by the
designer. Also, a finite set of discrete formulas allows for easier debugging.

Fuzzy Threshold Adjustments

Thresholds can also be specified as an offset from a base threshold. This enables the
creation of decision models with thresholds that vary continuously rather than being

350 Section 3 Architecture

limited to a set of discrete states. Returning to our previous example, we can move the
threshold for a given grunt orc by an amount proportional to some criterion. For
example, we can nudge the threshold down (making him less likely to flee) as the dis-
tance to his home village decreases. As the orc is pressed nearer to his home village, he
will gradually shift from cowardly to downright aggressive. In effect, we have added a
third parameter to the initial x-axis and y-axis in our framework.

Creating Fuzzy Results

So far, the threshold has been used to make only binary determinations. Although this
is sufficient for many types of decisions, there are often circumstances when we want
to know more about the orientation of a data point in relation to the threshold. That
is, we may want to know not just if the data point is in the success zone but how far
into the success zone it lays. This is where the “fuzzy” portion of MADTFDA comes
into play.

We can measure the distance from a given data point to the threshold in a variety
of ways, each of which yields a slightly different perspective. We discuss several meth-
ods here.

Absolute Distance

Probably the most common measurement of “decision magnitude” is the absolute lin-
ear distance between the data point and the threshold line (which can also be thought
of as the length of the line segment that is perpendicular to the threshold line and
whose other endpoint is the data point in question). The actual value of this distance
is based on the scales of the x-axis and y-axis. Because a true distance value is used,
there is a consistency across the framework. One unit away from the threshold near an
axis is the same as one unit away from the threshold in the middle of the grid.

Alternatively, the distance can be measured using a line parallel to the x-axis or
y-axis that intersects the data point and threshold line. Depending on the decision
being arrived at, rather than measuring how far away from the threshold the data
point is, we may want to measure how far left, right, above, or below it is. We can also
define a line with a custom slope to use to measure the distance. Each approach has its
own benefits depending on the needs of the AI designer. In fact, given the same
instantaneous combination of data point and threshold, it can be useful to use a vari-
ety of measurements of distance in different calculations. This allows us to glean mul-
tiple outputs at the same time out of a single decision model.

Normalized Distance

Another way of measuring the magnitude of a decision is to determine the distance
from the threshold as a percentage of what it could have been. That is, instead of just
using the linear distance from the threshold as described previously, we compare that
distance to the furthest possible data point, usually in a corner of the decision model.

3.12 Multi-Axial Dynamic Threshold Fuzzy Decision Algorithm 351

The decision magnitude is then expressed as a percentage of the maximum possible
distance. Thus, a data point right on the threshold would yield a value of 0%. A data
point that lies on both axes (such as on the origin) would be as far away from the
threshold line as possible, giving a value of 100%. Note that this percentage is inde-
pendent of the actual distance between the threshold line and the data point.

For example, imagine a decision model with axes that each run 0 to 10 and a
threshold line running (0, 10) to (10, 0), that is, diagonally through the middle (see
Figure 3.12.3). The maximum decision magnitude is approximately 7.1 units, for the
data point (5, 5). If we are evaluating the data point (6, 3), its linear distance from the
threshold is 1.4. That distance of 1.4 is 19.7% of the maximum decision magnitude.
If the threshold ran from (0, 6) to (6, 0), however, a data point lying at (3, 3), which
is again 1.4 units away from the threshold, would yield a value of 33%.

352 Section 3 Architecture

x-axisx-axis

(5,5)

(5,3)

(6,4)

100 100

10

0

10

0

(3,3)

(3,1)

(4,2)

sixa-y

sixa-y

7.
1

1.
4

1.
4

4.
2

FIGURE 3.12.3 As the threshold changes, the same linear distance may yield different
relative distances.

Revisiting our “running away” example, instead of a binary decision of whether
or not the orc should run away, we might want to calculate the intensity of the desire
to run away. If our design specification for fleeing stated that the potential range of
“run away” emotions was expressible on a scale from “mild anxiety” about the situa-
tion to a maximum possible value of “abject panic,” we could define a continuum
with the endpoints being 0% and 100%, respectively. Numerous factors might deter-
mine the placement of our threshold line, ranging from the type of orc to some
aspects of the current world state, to the orc’s current AI state. Our threshold might
also have been nudged around by a collection of mathematical parameters (such as
proximity to home as described previously) or by adding some randomness to our
equations. Regardless of the absolute location of the threshold at any moment, the
threshold line itself represents 0% (that is, “mild anxiety”), and the origin represents

100% (that is, “abject panic”). This ensures that all orcs, regardless of type or current
situation, will reach a state of “abject panic” just as they are getting to the (0, 0) point
in the decision model.

Because the function calls to MADTFDA allow the programmer to specify the type
of measurement to return, the programmer can select whether to use the pure absolute
distance method or the normalized distance method based on the agent’s state. The
measurement method itself can thus act as another input type, which allows for greater
situational behavior flexibility.

More Advanced MADTFDA

The result from the MADTFDA decision model need not be the end product. Situa-
tions often necessitate using the result of one MADTFDA decision model as an input
parameter to a second decision model. This allows the designer to “daisy chain” deci-
sion models together in interesting ways.

For example, a medic could poll its neighboring allies and triage them using a
decision model with the input parameters “health” and “current exposure to enemy
fire.” The decision magnitude for a given allied agent would represent the urgency of
medical care for that agent. This urgency value could then serve as one parameter to a
second decision model, with the agent’s proximity to the medic being the second
parameter. The medic could then sort the results from this second decision model to
decide who to tend to first. The possibilities are limitless.

The result of the decision model can be processed further by sending it through
other algorithms. For example, the normalized distance (i.e., 0% to 100%) into the
success zone of a particular data point could be inserted into an exponential or loga-
rithmic equation to yield a more dramatic increase than is given by the percent result
alone. By assigning a custom-contoured continuum to the result set, such as those gen-
erated by response curves [Alexander02], the linear or percentage result of the decision
model can be sculpted into innumerable shapes to better achieve the designer’s desired
behavior.

Using Layered Thresholds

Up to this point, we have only used MADTFDA models that utilized a single threshold.
A MADTFDA decision model can contain multiple thresholds, which can be used
independently or in concert. You could use the same data point applied to any or all of
the thresholds to arrive at independent decisions, or the algorithm can use two or more
thresholds together. Some of these functions are performed by the MADTFDA code
itself, whereas others are left to the programmer to construct using the results from two
or more independent calls to the model. We consider both options here.

Independent Thresholds
Any of the thresholds in a decision model can be accessed individually. This is useful
when we have multiple discrete decisions that depend on the same input parameters.

3.12 Multi-Axial Dynamic Threshold Fuzzy Decision Algorithm 353

For example, we have already created a decision model that determines whether our orc
mage wants to run away given the criteria of opposing group strength and own party
strength. A second, independent decision might be whether or not to cast a powerful,
one-shot spell as the balance of power shifts against his group.

In the left side of Figure 3.12.4, Result Zone A is the “run away” decision, and
Result Zone B is the “cast spell” decision. When the situation turns problematic (i.e.,
the data point moves down and to the left), the orc mage will first decide to cast his
spell, and then, as things progress from bad to worse, he will run away. Note that each
threshold check is done independently. It is entirely possible for the orc to have estab-
lished his “run away” state and still decide to cast the spell.

Combining Thresholds
Alternatively, we can combine multiple thresholds using Boolean logic. For example,
“Is the data point under threshold A AND under threshold B?” Refer to the right half
of Figure 3.12.4. Data point 1 yields a negative result for both thresholds, points 2
and 3 have positive results for thresholds A and B respectively, and data point 4 has a
positive result for both thresholds. Data point 4 is thus the only one to return TRUE
from the AND statement.

354 Section 3 Architecture

x-axisx-axis 100 100

10

0

10

0

Result
zone “A”

Result
zone “B”

Result
zone “A”

Result
zone “B”

1

3
4

si xa- yy-
ax

is

2

FIGURE 3.12.4 Multiple thresholds can be combined to create more complex decisions.

We are not limited to Boolean operators, of course. We can also use arbitrary
mathematical functions to combine the outcomes from two or more thresholds, pro-
viding a vast array of subtle results to the designer. For example, we might add the two
absolute distances from both results together to yield a third aggregate value, or we
might apply the normalized percentage value of one result to the absolute distance
value of the second. Because of the wide variety of possibilities in combining results
from multiple thresholds, the logical or mathematical combinations are left to the

programmer to create. The decision model only provides the shared definition of the
model; that is, both of the thresholds are using the same axes to define them.

Hierarchical Thresholds
A slightly more involved way to combine multiple thresholds is to layer them so that
one supersedes the other. In this case, we might be most interested in a primary
threshold and only process the secondary threshold if the primary threshold returns a
negative result. This is often useful in cases where an agent has two similar choices,
with one being preferred over the other.

Returning to the example of the orc mage in Figure 3.12.4, if threshold A (run-
ning away) was set at a higher priority than threshold B (casting the one-shot spell),
then the moment that A returns a positive result, B would no longer be an option.
This can be described as the orc mage running away instead of casting the spell rather
than in addition to casting it.

MADTFDA allows the programmer to specify a priority when each threshold is
defined. When using the appropriate function calls, MADTFDA would return only
the highest-priority threshold that achieved a positive result.

Using the MADTFDA Classes

The accompanying CD-ROM contains the code for the MADTFDA framework.
The framework consists of two classes: a decision model class (CDecisionFramework)
and a threshold class (CThreshold). A decision model object holds the definitions and
structure for the x-axis and y-axis as well as one or more thresholds. To use it in a pro-
ject, simply add the two classes and provide the #include statement:

#include “DecisionFramework.h”

Creating a Decision Model

There are three ways to use a decision model: as a standalone entity that can be shared
by many agents, as a member of the agent’s class, or as a temporary object in a function.
Regardless of the method used to create it, a decision model needs, at a minimum, the
maximum values for its x-axis and y-axis. If the decision model is created in code, these
can be set at creation time by passing these values into the constructor. Alternatively, if
created as a member of a class, these will need to be set at a later time (usually in the
agent’s constructor) by calling the functions SetMaxX() and SetMaxY().

Adding Thresholds
The threshold’s constructor is a private member of the class. To create a new threshold
and add it to a decision model, use the AddThreshold() function. This function takes
a number of parameters, including the x- and y-intercepts that will define the thresh-
old’s line. The optional third parameter defines the threshold’s priority. This is only
needed if there are multiple hierarchical thresholds in the decision model. You must
also define which side of the threshold line represents a positive result and what type

3.12 Multi-Axial Dynamic Threshold Fuzzy Decision Algorithm 355

of result should be returned. For these parameters and others throughout the classes,
you should use the enumerated types provided in the header files.

Putting It All Together
Creating an initial decision model with a single threshold is done as follows. If created
locally in a function:

CDecisionFramework mDF_Retreat(MAX_HEALTH, MAX_STRENGTH);

unsigned int ThresholdIndex = mDF_Retreat.AddThreshold(

0, 80, 60, THRESH_RESULT_UNDER, THRESH_GRADE_PERP);

If created as a member in the agent’s class declaration:

class CAgent

{

private:

CDecisionFramework mDF_Retreat;

};

CAgent::CAgent()

{

mDF_Retreat.SetMaxXandY(100, 100);

unsigned int ThresholdIndex =

mDF_Retreat.AddThreshold(80, 60, 0,

THRESH_RESULT_UNDER, THRESH_GRADE_PERP);

};

Note that the AddThreshold() function returns the index of the threshold that
has been added. This index should be stored so that the specific threshold in the deci-
sion model can be called later. If you are only adding a single threshold, its index will
always be zero.

Getting Results from MADTFDA
A variety of function calls are available in CDecisionFramework that enable you to
set the threshold in different ways. In addition to setting it via the standard x- and
y-intercepts, you can pass in the top and/or right-side intercepts as well. This allows
for more intuitive setting of the threshold. For example, rather than calculating a
y-intercept that is extraordinarily high, you could set the top intercept along with the
x-axis. There are set functions for every pair of intercepts. If you ever need these inter-
cept values again, you can use GetThreshYatX() or GetThreshXatY() and pass in the
maximum values for the decision model. Thresholds can also be set using any of the
four intercept points and a slope value.

At this point, if we want to receive a result back from the decision model, we sim-
ply need to insert one of the following calls into our agent’s code:

bool RunAway = mDF_Retreat.PointInResultZone(

mAttackStrength, mOwnHealth);

356 Section 3 Architecture

double Urgency = mDF_Retreat.GetDepth(

mAttackStrength, mOwnHealth, THRESH_DISTANCE_LINEAR);

double UrgentPercent = mDF_Retreat.GetDepth(

mAttackStrength, mOwnHealth, THRESH_DISTANCE_PERCENT);

There are more instructions in the code on the CD-ROM that describe individ-
ual function calls not addressed here. Additionally, there is an example agent class that
shows some of the function calls and uses of MADTFDA in a code environment.

Extensibility of the Code
Although the basic functions described here are available on the CD-ROM version of
MADTFDA, this code could be extended and customized in a number of ways. For
example, there is no reason that the thresholds must be straight lines. You can easily
adjust the code to account for hyperbolic, parabolic, logarithmic, and sigmoid func-
tions. In fact, combining various curves with the fuzzy result capability of MADTFDA
provides for some interesting results! Also, by adding a z-axis, the decision model can
be extended into three dimensions, making the threshold a plane rather than a line.

Conclusion

As we have shown, MADTFDA replaces and extends the commonly used technique
of weighted sums for decision making. MADTFDA provides a simple, easy-to-visual-
ize, customizable interface for making decisions based on a handful of inputs that
might change often throughout the course of gameplay. It also allows the designer and
programmer to more clearly define sometimes subtle differences between game agents
to lend depth to the behavior models. Moreover, it allows the programmer to com-
bine related decisions into a single framework to help manage complex layers of deci-
sions. All in all, MADTFDA can be a quick, powerful addition to your game code.

Resources

[Alexander02] Alexander, Bob, “The Beauty of Response Curves.” AI Game Program-
ming Wisdom, Charles River Media, 2002.

[Garces06] Garces, Sergio, “Extending Simple Weighted-Sum Systems.” AI Game
Programming Wisdom 3, Charles River Media, 2006.

3.12 Multi-Axial Dynamic Threshold Fuzzy Decision Algorithm 357

This page intentionally left blank

359

S E C T I O N

4
TACTICS AND

PLANNING

This page intentionally left blank

361

4.1

RTS Terrain Analysis:
An Image-Processing Approach
Enigma Software Productions

Julio Obelleiro
julio.obelleiro@gmail.com

Raúl Sampedro
rghoul@gmail.com

David Hernández Cerpa
david.hernandez.cerpa@gmail.com

In real-time strategy (RTS) games, high-level AI systems control multiple units, which
must be used wisely to defeat the enemy. One prerequisite for accomplishing this is

for the AI to have an understanding of the terrain in the area where the battle is taking
place (i.e., a terrain analysis). Using this analysis, for example, the AI can decide where
to deploy units or find a path to a target that avoids enemy troops. Ideally, the AI
precomputes the terrain analysis to minimize the impact on runtime performance.

This article introduces the terrain analysis technique developed for the game War
Leaders: Clash of Nations. This technique is based on simple image-processing opera-
tions, combined with data produced by pathfinding searches that simulate the move-
ment of troops around the map. Mixing data from these two sources results in an
analysis that is precise about which points on the map are strategically important.

Background

The first thing to do before implementing a terrain analysis system is to determine
what information is needed by the AI [Higgins02]. War Leaders: Clash of Nations uses
a hierarchical AI with several levels, one of which is devoted to army-level AI. This
level is in charge of selecting the tactics to be employed by the army’s units. A list of
terrain information queries was created to help the AI decide which tactic should be
used. Some of these queries include the following:

• Are my troops together in a single logical area of the map?
• Are there enemy forces in the same area as my units?
• Does my area have connections to others?
• When defending an area, how should I place my troops?
• When attacking, how should I approach the enemy?
• Which areas have important strategic value?
• Are there strategically important elements in my area (e.g., bunkers, cities, or

bridges)?

To answer these questions, we first need to partition the map into interconnected
logical areas. This information should not only include an analysis of the terrain but
also of objects. Bridges are good places to put defensive troops, for example, whereas
buildings can be used to house infantry. Furthermore, the terrain analysis system
should provide information about good attack and defense points for each connection.

These problems are obviously not unique to computer games. As a result, we can
turn to solutions that have been devised for real armies [Glinton04, Grindle04, Sven-
son03]. The two main approaches for terrain analysis are geometric terrain analysis
and pathfinding simulation analysis.

Geometric Terrain Analysis Techniques

Geometric terrain analysis techniques analyze the map and build a graph representation
using geometric information. Generalized Voronoi diagrams [deBerg00] are a common
example of these techniques.

A generalized Voronoi diagram is very useful for dividing the map into different
areas that can later be classified by other algorithms, such as height processing. How-
ever, for our needs, this technique has several drawbacks:

• Voronoi areas are not conceptually the same as game zones (described in the fol-
lowing sections). Voronoi areas might include impassable terrain or subdivide big
passable regions.

• Voronoi diagrams provide no connection areas, only simple edges.
• Tactically important vertices (i.e., those shared by several areas) are not well situ-

ated. They usually fall in the center of areas and thus are not a good indication of
the best tactical position for troop placement.

• Voronoi diagrams give no information about the strategic value of each area.

As a result, although Voronoi diagrams are a good starting point for terrain analysis
[Forbus01], they are not a definitive solution. Nevertheless, the ideas behind the
Voronoi diagram solution are central to the image-processing portion of our technique.

Pathfinding Simulation Analysis Techniques

Pathfinding simulation analysis techniques try to detect important paths on the map.
This is useful to determine paths and avenues of approach (i.e., long, narrow corri-

362 Section 4 Tactics and Planning

dors) [Svenson03] that are more likely to be used by troops. ANTS [Dorigo96] is an
example of a technique that can find avenues of approach. It employs several agents
that move around the map looking for important locations. When one is detected,
the agents distribute pheromones along the path they followed so that other agents
tend to use it. Avenues of approach are computed as paths with high concentrations
of pheromones, based on the assumption that the more paths go over a certain loca-
tion, the more important that location is. This technique uses interesting concepts
but fails to provide all the needed information:

• No information about logical areas
• No information about connections
• No information from the paths about which of their waypoints are strategically

important

The Combined Approach

Our research into existing techniques did not find a definitive solution to the problem.
It seemed clear that a combination of techniques was most likely to produce good
results. Toward that end, we determined to use geometric terrain analysis to detect log-
ical areas and their connections, and pathfinding simulation analysis to determine their
importance.

Basic Concepts

Before going into the details of our algorithm, we should define some basic concepts.
Many of them come from military terminology that refers to terrain features with high
strategic value.

The Passability Map

The passability map is a black-and-white image in which each pixel represents 1 square
meter on the terrain map. Black pixels represent passable areas (i.e., ones which units
can move through), whereas white pixels represent impassable ones. What makes a cell
impassable depends on the game, but in our case, a cell was considered to be impass-
able if a river went through it or if the slope was too steep to traverse.

Objects such as buildings or trees are not included in the passability map. Bridges
are the only exception because they make the cells underneath passable. The focus of
this step is to detect the big areas of passable terrain that determine the game zones.
Objects do not add information on this scale, so we perform this stage of the analysis
without them.

Regions, Connections, and Hotspots

Today’s strategy games have to handle huge maps that often have very complex terrain
features. For this reason, it is critical to precompute a simplified representation of the

4.1 RTS Terrain Analysis: An Image-Processing Approach 363

364 Section 4 Tactics and Planning

terrain, so that we can reason about it quickly at runtime [vanderSterren01]. Strategy
game maps are typically characterized by relatively large open spaces connected by
narrow passages [Dill04]. This information is represented with a graph, with open
spaces being the nodes, and passages being the edges. To expand on this slightly, con-
sider the following concepts:

• Regions represent areas of passable terrain that are delimited either by impassable
terrain or by other regions of a different type. From the image-processing point of
view, regions are a set of pixels with the same value (color) surrounded by pixels
with a different value. There are two main types of regions:
• Game zones are broad, open, passable areas.
• Chokepoints represent narrow corridors between game zones. There are many

kinds of chokepoints, such as avenues of approach and bridges. Chokepoints
offer a number of offensive or defensive opportunities. They force armies passing
through them to use a narrower formation (greatly decreasing combat power), for
example. Therefore, chokepoints are the most strategically significant elements of
the map, and the main goal of the analysis should be to find them as accurately as
possible.

• Connections represent logical links between chokepoints and game zones. This
link is not part of the map; instead, it is a data structure used in the system to rep-
resent the connection between the chokepoints and adjacent game zones.

• A hotspot represents the best position to defend a game zone from attacks coming
through a particular chokepoint. Of course, the information given by the hotspot
is combined with runtime information to calculate the optimal position.

The Terrain Analysis Algorithm

Processing a map involves several steps, including image-processing transformation,
pathfinding, and geometric and numeric data extraction. Figure 4.1.1 gives an overview
of the process, providing a clear roadmap of the complete algorithm. Each element of
this image is described in detail in the following subsections.

Noise Reduction

The process starts with a passability map, which might have many small islands of
impassable terrain, usually near larger impassable areas (such as mountains), produc-
ing useless divisions in the map. Noise reduction is the process of removing those
areas. We can do this safely because we are not performing pathfinding on the result,
we are simply creating a high-level division of the map into regions. To remove the
noise, the algorithm selects the zones of impassable terrain and removes those with a
small area, filling their pixels with black color. Figure 4.1.2 shows an example section
of a map before and after noise reduction.

After the passability map has been cleaned, the algorithm uses it for two parallel
processes: an iterative image-processing step (the core of the algorithm) and a random
pathfinding step. The results of these steps will be combined to generate the final image.

4.1 RTS Terrain Analysis: An Image-Processing Approach 365

Noise Reduction

Iterative
Image

Processing

Image 1 Image 2 Image N

Clean Passability MapPassability Map

Analysis Selection

Random Pathfinding

Pathfinding Data

Final Image
Final Image + XML

File
Data Extraction

Combining Image
Processing and

Pathfinding Data

Combined Image

FIGURE 4.1.1 The terrain analysis algorithm. Trapezoid shapes represent
the processing performed by the algorithm, whereas rectangular ones denote
the data shared between them.

Passable terrain

Impassable terrain

Passable terrain

Impassable terrain

FIGURE 4.1.2 Noise reduction is a very common step in image processing. (Left)
Original passability map. (Right) Clean passability map after noise reduction.

Random Pathfinding

Our algorithm takes information from the terrain heightmap and combines it with
pathfinding data to infer knowledge about the paths that are most likely to be used by
the enemy during the game. This step simply calculates a large number of random
paths and stores them. We keep not only the path’s waypoints but also the number of
paths passing through each cell. These will be used to weight the zone containing
those cells in later steps. An example of this step can be seen in Color Plate 4.

Iterative Image Processing

This step divides the map into regions. It takes as input a clean passability map and
applies image-processing operations to generate an output image on which each
region is clearly marked. Following are the operations performed on the image, shown
in Figure 4.1.3:

1. Select all the pixels representing impassable terrain, that is, the white ones.
This creates a selection area around each impassable zone.

2. Expand the selection by a given number of pixels (known as the chokepoint
detection radius) in all directions. If two impassable areas are close together,
the expanded selections will overlap. These overlapping areas are our poten-
tial chokepoints, which will be used later in the algorithm.

3. Invert the selection. With this step, broad passable zones are selected. These
zones are separated from the impassable ones by a number of pixels deter-
mined by the chokepoint detection radius, and they are the center of the
game zones into which the map will be divided.

4. Fill the current selection with a new color so that the game zones are marked.
5. Expand the selection by the chokepoint detection radius to move the selec-

tion’s borders back to the limits of the impassable zones. Note that the
potential chokepoints that we discovered in step 2 will not be returned to the
selection when we do this. Thus, we now have the game zones completely
selected, and the impassable areas and potential chokepoints are unselected.

6. Invert the selection again. The impassable areas and potential chokepoints
should now be selected.

7. Deselect pixels representing impassable terrain, that is, white pixels. At this
point, only the potential chokepoints should be selected.

8. Fill the current selection with a new color so that the potential chokepoints
are marked.

9. Save the result as a potential analysis.

The result is an image where all of the potential chokepoints and the game zones
are marked with different colors. This image is just a potential analysis because the
whole algorithm is executed several times with different values for the chokepoint
detection radius. This parameter determines the distance that must exist between two

366 Section 4 Tactics and Planning

impassable zones to form a potential chokepoint. If, for example, the parameter is set
to 5, two impassable zones that are less than 10 pixels away from each other will gen-
erate a potential chokepoint between them. As a hint, our game maps use a range of
values from 5 to 50 pixels radius. An example of the influence of the chokepoint
detection radius in the image analysis is shown in Figure 4.1.4.

Combining Image Processing and Pathfinding Data

Remember that chokepoints are still potential, not final. We use the pathfinding data
to determine whether each potential chokepoint is relevant. Chokepoints with a small
number of paths crossing through them are probably isolated in a corner of the map
or have other chokepoints next to them with more paths, so they are discarded. After
irrelevant chokepoints have been cleared, the game zones are examined to determine

4.1 RTS Terrain Analysis: An Image-Processing Approach 367

Select impassable areas (1) Expand selection (2)

Invert (3) and fill selection (4) Expand selection (5)

Invert selection (6) Deselect impassable (7) and fill (8)

Wild passable terrain

Impassable terrain

Game zone seed

Potential choke point

Lined areas belong to current selection

FIGURE 4.1.3 The image-processing step
involves several operations. In the title above
every image, the number in brackets represents
the step the image refers to.

whether any of them need to be connected because of a cleared false chokepoint
between them. Thus, the algorithm continues with a flood fill step through the game
zones, joining them where chokepoints no longer exist.

The pathfinding information can also be used to sort the final chokepoints in
terms of strategic importance. In our case, after experimenting with several possible
metrics, such as the paths per square meter, we determined that the best measure of
the relevance of a chokepoint was simply to count the number of paths that crossed it.

Analysis Selection

Now that we have generated a number of possible analyses, with image processing and
pathfinding performed on each, we need to choose the best one. Different metrics can
be used to make this decision. For our game, it was determined that the number of
game zones in the analysis was one of the best metrics, but more research should be
done in this respect. When several candidates had the same number of game zones,
the one with the shorter chokepoint detection radius was selected. An example of an
analysis is shown in Color Plate 5.

Data Extraction

The last step of our terrain analysis is to compute a hotspot for each connection
(remember that a connection links a chokepoint to a game zone, and a hotspot represents
the best position to defend a game zone from attacks coming through that chokepoint).

368 Section 4 Tactics and Planning

FIGURE 4.1.4 Larger chokepoint detection radii
produce bigger potential chokepoints. (A) Potential
analysis with 20 px radius. (B) Potential analysis
with 23 px radius. (C) Potential analysis with 26
px radius. (D) Potential analysis with 29 px radius.

We do this using a simple geometric analysis on the border between the chokepoint and
the game zone.

Connections are formed by a concave line of pixels, which represents the bound-
ary between the chokepoint and the game zone. If we draw a straight line between the
endpoints of this boundary, the middle point of that line will be the hotspot for the
connection. Next, we determine an orientation that will allow defensive units to face
in to the chokepoint. We can’t simply take the vector to the center of the chokepoint,
as an irregularly shaped chokepoint could cause this to face in almost any direction.
Instead, we generate a line that is perpendicular to the straight border, passing
through the hotspot. Next, we take the two points that are 1 pixel away from the
hotspot on this line and calculate the distance from each of them to the midpoint of
the curved border. The farther of the two points lies on the correct heading. This cal-
culation can be seen in Figure 4.1.5.

4.1 RTS Terrain Analysis: An Image-Processing Approach 369

Chokepoint

FIGURE 4.1.5 Hotspot computation. An imaginary line (L) joins the
chokepoint’s edges. The middle point of that line is the hotspot (H). Two
points (P1, P2) spawned from the hotspot along the imaginary line’s per-
pendicular vector will be used to calculate the connection’s orientation.
Note (M) point is the middle point for the chokepoint’s real boundary. In
this case, as (P1) is farther from (M) than (P2), the connection’s direction
will be calculated from the hotspot (H) to (P1).

After all the hotspots have been computed, we generate an XML file with the fol-
lowing information for every chokepoint:

• The list of game zones connected by the chokepoint.
• The hotspot for each of the chokepoint’s connections.
• The direction from the hotspot to the game zone connected to it.

Use of Terrain Information

Now that we have generated all of this information, the AI system can use its knowl-
edge of game zones, chokepoints, and hotspots to help it defeat the enemy. The ques-
tions presented at the beginning of the article can now be answered:

• The image denotes the extent of the different areas, so it is easy to compute which
area contains each allied and enemy unit.

• The XML file gives information about connections for a given area and their
hotspots. Thus, it is a simple matter to look at where the enemy is and use this
knowledge to determine which connections must be attacked or defended. After
those connections have been selected, the hotspot and the direction vector point-
ing away from the chokepoint can be used together to place units at appropriate
locations relative to the connection, depending on the situation and the unit types
involved.

• Weighting information can be used to decide which areas and connections are
most important.

Although the weighting information generated during the terrain analysis is static, we
can combine it at runtime with live data about where enemy troops are [vanderSterren01].
For example, the AI looks for enemy troops and makes pathfinding searches from
their positions to allied ones to decide which connections must be defended. The
resulting paths are then analyzed to find the chokepoints that would be traversed.
Those chokepoints will receive a dynamic weighting which, when added to the
static one, will allow the AI to perceive their actual importance.

Future Work

Although the algorithm is working properly for all of the maps in our game, it could
be improved in several ways.

As previously mentioned, the number of detected game zones and chokepoints
depends on the value of the chokepoint detection radius parameter. Additionally, the
final analysis is selected with a metric, which, in our case, is the number of game zones
detected. The problem is that sometimes there is no single value for this parameter
that is best for the entire map. A value that might correctly detect chokepoints on one
part of the map might completely miss those in another part. One possible solution to
this problem is to subdivide the map into clusters and analyze each cluster separately.
Thus, each cluster could have a different value for the detection radius.

Another area for improvement would be to add more tactical data to the algo-
rithm’s output. For example, height or slope analysis could easily be added. This infor-
mation would be part of the zone and chokepoint descriptions and could be useful for
detecting positions with height advantage. Our algorithm includes a postanalysis step

370 Section 4 Tactics and Planning

to add information about strategically important objects on the map, such as bridges
or bunkers, which add valuable information to the analysis. The computation of this
information and its use is beyond the scope of this article.

Conclusion

An RTS army-level AI must have a good understanding of the terrain over which the
battle is taking place. Of course, you could think about generating this knowledge by
hand, but the need for good production pipelines in today’s video game industry is
growing, not to mention the need for automatic understanding of player-generated
maps by the AI. In our case, the terrain analysis technique presented here proved to be
quite useful, greatly improving the AI’s effectiveness.

The technique presented here analyzes two sources of information. First, it
processes the image of the terrain passability map to generate information about the
game zones and the potential chokepoints. Second, it performs pathfinding simula-
tion analysis to discover the strategic importance of each potential chokepoint
detected in the image-processing step. The combination of these steps makes it possi-
ble to create robust terrain data.

Finally, the visual nature of the algorithm, which is one of its most interesting fea-
tures, allows easy debugging and integration with the map creation tool.

References

[deBerg00] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O.,
Computational Geometry: Algorithms and Applications. Springer, Berlin, 2000.

[Dill04] Dill, K., and Sramek, A., “Performing Qualitative Terrain Analysis in Master
of Orion 3.” AI Game Programming Wisdom 2, Charles River Media, 2003.

[Dorigo96] Dorigo, M, Maniezzo, V., and Colorni, A., “The ANT System: Opti-
mization by a Colony of Cooperating Agents.” IEEE Transactions on Systems,
Man, and Cybernetics Part B: Cybernetics, Vol. 26, no. 1, (1996): pp. 29–41.

[Forbus01] Forbus, K., Mahoney, J., and Dill, K., “How Qualitative Spatial Reason-
ing Can Improve Strategy Game AIs: A Preliminary Report.” Proceedings of 15th
International Workshop on Qualitative Reasoning, May, 2001.

[Glinton04] Glinton, R., Grindle, C., Giampapa, J., Lewis, M., Owens, S. R., and
Sycara, K., “Terrain-Based Information Fusion and Inference.” Proceedings of the
Seventh International Conference on Information Fusion, Stockholm, Sweden, July,
2004.

[Grindle04] Grindle, C., Lewis, M., Glinton, R., Giampapa, J. A., Owens, S. R., and
Sycara, K., “Automating Terrain Analysis: Algorithms for Intelligence Preparation
of the Battlefield.” Proceedings of the Human Factors and Ergonomics Society 48th
Annual Meeting, Human Factors and Ergonomics Society, (Sep. 2004): pp.
533–537.

4.1 RTS Terrain Analysis: An Image-Processing Approach 371

[Higgins02] Higgins, D., “Terrain Analysis in an RTS—The Hidden Giant.” Game
Programming Gems 3, Charles River Media, 2002.

[Svenson03] Svenson, P., and Sidenbladh, H., “Determining Possible Avenues of
Approach Using ANTS.” International Conference on Information Fusion, Cairns,
Australia, (2003): pp. 1110–1117.

[vanderSterren01] van der Sterren, W., “Terrain Reasoning for 3D Action Games.”
Game Programming Gems 2, Charles River Media, 2001.

372 Section 4 Tactics and Planning

373

4.2

An Advanced Motivation-
Driven Planning Architecture
Enigma Software Productions
David Hernández Cerpa
david.hernandez.cerpa@gmail.com

Julio Obelleiro
julio.obelleiro@gmail.com

Game AI techniques have evolved from simple architectures, such as finite state
machines (FSM), to others more complex and powerful, such as goal-oriented

action planning (GOAP), hierarchical task networks (HTN), and motivational
graphs. However, imperative programming techniques [Wikipedia07], such as FSMs,
are still widely used as the main decision-making system because they are simple to
implement and do not involve any development risk. Unfortunately, as game AI com-
plexity increases, these techniques become unmanageable, difficult to extend, and
present several problems for code maintenance.

The game War Leaders: Clash of Nations features two game modes: manager and
RTS. Both modes have strong requirements in terms of high-level AI. In manager
mode, the AI has to control all of the nonplayer factions, creating complex courses of
action (which might require several turns to complete) for each one. In RTS mode,
the army-level AI has to select its tactics based on the highly dynamic situation on the
battlefield. Clearly, it’s desirable to share as much of the AI logic as possible between
modes. Toward that end, we have created a new architecture that borrows from
STRIPS(STanford Research Institute Problem Solver), GOAP, HTN, and motiva-
tional graphs.

Background

A detailed treatment of planning systems is beyond the scope of this article, so we will
just briefly cover the background of the technique being presented, as well as the
motivation for using a planning system to develop game AI.

Advantages of Planning Systems

In general, planning algorithms are composed of three steps [O’Brien02]. Analyze the
world to detect needs and opportunities; create goals based on the previous analysis;
and, for each goal, calculate a sequence of actions that leads to the satisfaction of that
goal. The advantages of such a system can be summarized as follows:

• Imperative systems, such as FSMs, force the programmer to think of every possible
situation that the AI might face during the game. As game complexity increases,
these architectures become unmanageable. Within a planning architecture, it’s easy
to avoid this pitfall because we specify what the AI can do, rather than what the AI
has to do. The planning system selects the actions the AI will actually perform from
among this list of possibilities.

• Planning systems can help to create nondeterministic behaviors, facilitating the
appearance of emergent behaviors.

• Although it might seem that the creation of a planning architecture is too expen-
sive in terms of development time, the fact that it’s much more scalable, reusable,
and modular will more than offset these costs in most cases. Planning architectures
also adapt better than imperative systems when faced with the continuous changes
in game design that are common in our industry.

Related Work

The presented architecture borrows from previous planning systems. One of the ear-
liest planners was STRIPS (STanford Research Institute Problem Solver) [Fikes71].
STRIPS operates in a space of world models, where a world model is a representation
of the state of the world at a given time, and operators (actions), which function as
transitions between world models. Operators are described in terms of preconditions
and effects. An operator can be applied if all of its preconditions are true in the cur-
rent world model, and doing so will cause its effects to become true, thus moving us
to a new world model. STRIPS searches this space for a sequence of operators (i.e., a
plan), which will place it in a world model in which the current goal is satisfied.

Goal-oriented action planning (GOAP) applies STRIPS to behavior modeling for
NPCs [Orkin03, Orkin04]. It handles similar concepts, such as goals, actions, and
plans. GOAP defines a plan as a sequence of actions to satisfy a goal. It extends STRIPS
by supporting replanning [Orkin05], which allows it to manage situations where a plan
becomes obsolete during its execution.

STRIPS and GOAP plan to create a sequence of actions, all at the same level. Other
techniques use the concept of hierarchical planning [Wallace03, Gorniak07], which is
an important aspect for the architecture being presented. For example, hierarchical task-
network (HTN) planning plans to create task networks that are hierarchically decom-
posed into actions [Erol94]. This hierarchical approach has several benefits, such as
partial replanning [Knoblock95], which avoids recomputing valid parts of a plan. Addi-
tionally, HTN introduces a mix of planning and execution that allows the generation of
plans to adapt to changes that have occurred in the game world [Paoloucci00].

374 Section 4 Tactics and Planning

Finally, motivational graphs introduced the concept of motivations as high-level
processes that detect needs. These processes change the agent’s state to drive the
behavior toward the satisfaction of the needs [Chivas03]. This article presents motiva-
tions as processes that detect AI necessities and produce goals to satisfy them.

Architecture

The architecture is composed of two main layers that are completely decoupled. As
shown in Figure 4.2.1, one layer is dedicated to the motivations, and the other one is
dedicated to the planner. Both will be discussed in detail in the following sections.

4.2 An Advanced Motivation-Driven Planning Architecture 375

Motivations

Task

Complex Goal

TaskTask

Complex Goal Complex Goal

Simple Goal Simple Goal Simple Goal

Planning System

FIGURE 4.2.1 Architecture overview.

Motivations

AI architectures often include the concept of goals as something that an agent tries to
achieve. They represent a concrete need or objective that must be satisfied. This con-
cept is used in the architecture, but we introduce a higher level one, which we call the
motivations. In both game modes, manager and RTS, there are things that must be
taken into account that do not, by themselves, represent specific goals. For example,
in manager mode, the AI should check that there are no territories in revolt. The
result of this check might result in the generation of goals, but it is not a goal itself.

A motivation is a general-purpose, high-level process whose responsibility is to
detect needs and create goals that will satisfy them. How these goals are achieved is
not determined by the motivation. In our game, motivations are implemented with
scripting functions that perform specific tests and create the needed goals. For exam-
ple, the motivation DefendFaction iterates through all of the faction’s territories and
generates a goal DefendTerritory for each territory with an enemy influence greater
than the allied one.

Each part of the game has several independent motivations that control different
parts of the AI. Examples include researching new technologies, gathering raw mate-
rials, and providing military defense. Having independent motivations that do not
interfere with one another generates unexpected combinations of goals, which pro-
motes emergent behavior.

The Planner

The function of the planner is to take the goals from the motivation system and find
a way to satisfy them. The following sections describe this process in more detail.

Parameters
A parameter is a piece of data used by any component in the system. All the elements
in the architecture have parameters, whether they function at planning time or at plan
execution time.

Most other planning techniques do not use parameters at planning time, which is
an important limitation on their ability to generate complex plans. For example, it is
not possible to build a good plan for the goal DefendTerritory without knowing
which territory should be defended. Some territories might be defended simply by
shifting units around, for example, whereas others require new units to be recruited.

Parameters are transferred to subgoals or tasks in the planner, allowing them to be
used in lower levels of the plan.

Predicates
Predicates are functions that return a Boolean value. For example, IsTerritoryInRe-
volt indicates whether or not the population of a given territory is in revolt against its
faction. Predicates accept parameters for their evaluation and, as generic functions,
can query the game logic using those parameters to compute their values. The func-
tion that evaluates a predicate is implemented in a script, which is called when the
predicate’s current value is needed.

Goals
As discussed earlier, goals represent a concrete requirement that must be satisfied.
They are the inputs to the planning system. The main purpose of the planner is to
find the best sequence of actions that will satisfy any goal that is added to its list of
active goals.

As discussed in the section on STRIPS, a goal is defined by a set of preconditions and
effects. Preconditions are predicates that must be true to consider a goal for execution.
Effects, which are also predicates, represent the changes that might occur in the world
if the goal is satisfied. For example, one of the effects of the goal DecreaseTaxes might
be TerritoryNotInRevolt. Note that effects only indicate possible outcomes of executing
the goal, they are not a guaranteed result. For example, the task MoveArmyToTerritory
might fail due to the destruction of the army while moving to the target territory. In this
case, although the effects indicate that the army will be at the target territory after the task
execution, external circumstances have caused it to fail.

376 Section 4 Tactics and Planning

Goals can be satisfied by tasks, which are simple actions, or by subgoals, which
produce a hierarchical decomposition of the plan. The idea is to have the ability to
interleave simple elements, whose execution will produce an output from the AI system
to the game logic, with complex ones, which are broken down into simpler elements.
As discussed earlier, other architectures, such as HTN, use a similar approach.

Goals perform some reasoning at planning time. Specifically, they select values
for their parameters at planning time, so that those values can be used throughout the
rest of the planning process. They also determine information that is used during goal
execution to determine whether they need to be replanned. This allows plans to be
calculated with up-to-date information from the game logic. Then, as the situation in
the world changes, the plan is checked to determine whether it is still valid. If a goal
is invalid, then its plan is discarded, and a new one is computed. All of this work is
implemented within scripts, which are called from the C++ game engine. Expensive
computations needed by these scripts are implemented in C++ and exported to the
scripting system.

The planning system can plan and execute multiple goals simultaneously. Goals
are assigned a priority, which serves as a heuristic for resolving any conflicts between
them. Plans for the main goals (i.e., those added by the motivations) are generated in
priority order, and resources are assigned to goals with greater priority in case of con-
flict. Generating priorities is a hard problem in its own right, and one which other
papers discuss in greater detail [Dill06].

Tasks
Tasks are actions that can be executed by the AI to modify the world state. They are asso-
ciated with goals at planning time and are expected to satisfy their goals when executed.
For example, a goal MoveArmyToTerritory does not actually move the army. It will have
an associated MoveArmy task that will receive the army and territory parameters and call
the appropriate game logic method to move the army. Separating goals and tasks allows
decoupling what has to be done from how it is done. Substituting the set of tasks
changes how the system satisfies the same goal set.

Like goals, tasks are described with preconditions and effects that allow the plan-
ner to match them to the goals to be satisfied. Tasks compute two important values
during planning:

Satisfaction value: In traditional planning architectures, when a task with an effect
is found to satisfy a precondition of a goal, the planner supposes that the task
will completely satisfy it. Thus, there is a one-to-one correspondence between
a precondition and the task that will be used to satisfy it. This schema is
insufficient to handle complex situations. Our architecture supports the
satisfaction of one precondition through the execution of several tasks. The
satisfaction value is an assessment in the range [0..1], which indicates how much
the precondition is satisfied by the task. The planner continues to add tasks that
can help to accomplish the goal’s precondition until a total of 1 is reached.

4.2 An Advanced Motivation-Driven Planning Architecture 377

Application Cost: When the planner has several available tasks, each of which can
satisfy some or all of a precondition, it has to decide which of them should be
chosen. The application cost is used to sort all the tasks that can satisfy the
precondition so that the plan with the lowest cost can be selected.

As with other elements in the architecture, computations relative to game-specific
tasks are implemented using functions in scripts.

The Planning Algorithm

The planning process starts when a motivation proposes a goal that the system has to
satisfy. The algorithm tries to find the hierarchical sequence of goals and tasks that
best satisfies the goal. This process has the following steps:

1. Calculate the top-level goal’s data. In this step, we assign values to the goal’s
parameters and calculate the internal data that will be used during execution
to determine if the goal has become invalid. These parameters are passed
down to the subgoals and tasks, so that they can determine whether they are
sufficient to satisfy the top-level goal and, if so, what their cost will be. For
example, in the RTS part of the game, the goal AttackEnemyGroup is in
charge of selecting a group of units and using them to attack an enemy
group. In this step, the goal computes the position of the enemy group,
which is later used to detect whether the goal has to be replanned. The goal
will replan if the enemy moves a certain distance from this stored position.

2. Check the top-level goal’s preconditions. For every unsatisfied precondition
p, follow the remaining steps.

3. Find potential subgoals and tasks that can satisfy p, that is, those that have
p as an effect in their descriptions.

4. Run the planner on every potential subgoal task found in the previous step,
using the current goal’s parameters. We do this by recursively calling the
planner with these objects as the top-level goal.

5. Discard those subgoals and tasks for which the planner did not find a plan.
6. Calculate the application cost and satisfaction value for every subgoal or

task that remains.
7. Sort the subgoals and tasks by application cost to find the cheapest plan.
8. Select subgoals and tasks to be in the final plan until the precondition is

fully satisfied. This means that the total satisfaction value for the selected
subgoals and tasks must be greater than or equal to 1.

Although other architectures have opted to use standard graph search algorithms,
such as A* [Orkin05, Filion06], we decided to implement specific planning algo-
rithms for simplicity and easier debugging.

378 Section 4 Tactics and Planning

Adapting to Change: Replanning

Plans can quickly become invalid in worlds that are in constant change. Thus replan-
ning capabilities are a basic requirement for our system. Plans must be reevaluated in
a timely manner and be reconsidered when they become untenable.

Each goal has a generic function named HasToReplan, which returns true when
the goal needs to be replanned. The implementation of this function is goal specific.
In the goal AttackEnemyGroup, for example, this function checks whether the enemy
group has moved too far away from its initial position. If so, then the goal has to be
replanned because there is a new target position where the assigned units must be
sent. Furthermore, a different tactic or set of units might be more suitable to attack
the target enemy group in its new position.

Periodically, the function HasToReplan is called for all the goals of the hierarchical
plan. If it returns true for one of them, then that goal (and any subgoals it had) are
replanned. Note that if the invalid goal is not the root goal, we do not need to replan
the parts of the plan that are still valid.

A Complete Example

Figure 4.2.2 shows an example of the AI update in the manager part of the game. This
AI has several motivations, but this example focuses on ControlRevolts.

4.2 An Advanced Motivation-Driven Planning Architecture 379

MoveArmiesToTerritory
- Satisfaction: 0.6
- Cost: 300

ControlRevolts

ControlRevoltInTerritory
- Territory
- Army Power Increment: 500

BuildArmiesInTerritory
- Satisfaction: 0.4
- Cost: 500

MoveArmies
- Army1. Power: 150
- Army2. Power: 50
- Army3. Power: 100

BuildArmies
- ArmyType: Infantry: 50
- ArmyType: Tank: 150

DefendFaction

Goal

Task

Motivation

Research
Technology

FIGURE 4.2.2 An example of a plan computed to satisfy a goal, which has been
generated by a motivation.

During its update, the ControlRevolts motivation detects one territory in revolt, cre-
ates a new ControlRevoltInTerritory goal, and adds the territory in question as a para-
meter to the goal. The aim of this goal is to control the revolt with the presence of allied
troops. In support of that, each army has a potential that represents how powerful it is.

The new goal is added to the planning system, which tries to create a plan for it.
IncreasedPotential is the only precondition of ControlRevoltInTerritory, and it is
an effect of two other goals: MoveArmies and BuildArmies. Thus, the planner calls the
function for calculating the amount of potential needed to pacify the territory and
then tries to find a plan for each of the aforementioned subgoals.

In the first branch of the plan, the function that calculates the MoveArmies goal’s data
looks for surrounding armies, which could be moved to the target territory. It finds three
armies with the indicated potentials and adds them as parameters. The precondition of
MoveArmies is ArmiesInTerritory, which is an effect of the MoveArmiesToTerritory
task. This task uses the armies and territory parameters to compute the application cost
and the satisfaction value, which are passed back to the upper level.

The planner then analyzes the second branch. The goal BuildArmies computes
the types of the armies that must be built and adds them as new parameters. Its pre-
condition ArmiesBuilt is an effect of the task BuildArmiesInTerritory. The task
computes the satisfaction and cost values, which are then used in the top level.

After the two branches have been planned, the planner uses the computed satis-
faction and cost values to sort and select which goals should be part of the main goal’s
plan. In this example, both branches are valid and needed to completely satisfy the
original ControlRevoltInTerritory goal so they both will be part of the plan.

Building and moving armies take several turns to be completed. For example,
while an army is being moved, the enemy could destroy it. In that case, the MoveArmies
goal would detect this situation and notify the planner that its part of the plan is no
longer valid. Therefore, partial replanning of the branch below the MoveArmies goal
would be performed leaving the other branch of the plan unchanged.

Other Uses of the Architecture

This architecture is not only used for the manager AI. While studying the game’s
requirements, it became clear that the same architecture could be used elsewhere. The
first such place, as discussed previously, is the high-level AI in the RTS. Another is the
AI for General units. These units have the ability to command troops that have been
assigned to them. The player is able to give high-level orders to the Generals, who will
use the assigned units to satisfy them.

Generals are somewhat different because they do not have motivations. Instead,
they receive orders from superiors (such as the player), which are then transformed
into goals to be planned. This introduced the necessity of having pluggable layers in
the architecture; that is, the two layers into which the architecture is divided must be
independent.

380 Section 4 Tactics and Planning

Note that goals and tasks are shared between RTS Army-level AI and the Gener-
als, which promotes code reuse. Sharing the architecture allowed us to reuse goals,
tasks, and their code, which reduced the time needed to implement our AI systems.

Future Work

Our algorithm tries to satisfy preconditions by looking for goals and tasks whose
effects include them. As shown, the planner keeps searching for new goals and tasks
until the total satisfaction value is 1. This value can be exceeded in the current imple-
mentation if a goal or task returns a satisfaction value greater than needed. For exam-
ple, if a part of the plan has already covered 60% of the satisfaction value, and the
next goal or task returns a satisfaction of 0.8, then the total satisfaction value will be
1.4. Future implementations will correctly handle this situation by featuring partial
task execution, that is, tasks which can be executed to a greater or lesser extent. In the
previous example, which only required an additional satisfaction of 0.4, the associated
task should be executed just enough to generate that needed satisfaction, rather than
the full 0.8 that it is capable of producing. The implementation of this feature would
be task dependent. In the case of a MoveArmies goal, for example, it might mean mov-
ing only a portion of the available armies.

In this version of the architecture, resources are only distributed between plans
that ask for them at the same time. For example, if two plans are being created in the
same turn, they can compete for any resource, which will then be divided up. How-
ever, plans created in subsequent turns cannot ask for these resources, even when their
goals have a higher priority, until the plans that have control of the resources release
them. The next step in resource administration is to allow high-priority goals to with-
draw resources from previously created plans.

Conclusion

Planning systems represent a great step forward in the development of AI systems for
games. The use of imperative techniques to create behaviors could be considered a fast
and easy solution, but it entails huge problems as the AI complexity increases. Although
planning systems are usually contemplated as a merely academic solution, the presented
architecture proved to be very expressive and powerful in a real game environment.

The motivational approach, together with the capability to plan multiple goals in
parallel, helped to produce emergent behavior, thus enhancing the game experience.
Moreover, the features of the planning part of the architecture helped to create highly
adaptable behaviors, which could generate the best plan of action possible in any
situation. For example, in the manager part of the game, it is impossible to enumerate
every possible combination of situations. The use of different motivations, which gen-
erate goals independently, generates sequences of actions that are neither scripted nor
expressed in any way in the implementation.

Planning architectures take time to implement because they are much more complex
than imperative techniques. On the other hand, the architecture allows high levels of

4.2 An Advanced Motivation-Driven Planning Architecture 381

code reusability and modularity and is easily adaptable to game design changes that com-
monly arise during a project. Furthermore, the use of scripts to implement game-specific
AI makes it easy to create new content for the AI. In the long run, the time saved imple-
menting the AI more than makes up for the time spent building the architecture.

References

[Chiva03] Chiva, E., Devade, J., Donnart, J., and Maruéjouls, S., “Motivational
Graphs: A New Architecture for Complex Behavior Simulation.” AI Game Pro-
gramming Wisdom 2, Charles River Media, 2003.

[Dill06] Dill, K., “Prioritizing Actions in a Goal-Based RTS AI.” AI Game Program-
ming Wisdom 3, Charles River Media, 2006.

[Erol94] Erol, K., Hendler, J., and Nau, D. S., “HTN Planning: Complexity and
Expressivity.” Proceedings of the National Conference on Artificial Intelligence
(AAAI), 1994.

[Filion06] Filion, D., “A Unified Architecture for Goal Planning and Navigation.” AI
Game Programming Wisdom 3, Charles River Media, 2006.

[Fikes71] Fikes, R. E., and Nilsson, N., “STRIPS: A New Approach to the Applica-
tion of Theorem Proving to Problem Solving.” Artificial Intelligence, Vol. 2, no.
3/4, (1971): pp. 189–208.

[Gorniak07] Gorniak, P., and Davis, I., “SquadSmart Hierarchical Planning and
Coordinated Plan Execution for Squads of Characters.” Proceedings of AIIDE,
2007.

[Knoblock95] Knoblock, Craig A., “Planning, Executing, Sensing, and Replanning
for Information Gathering.” Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, Montreal, Canada, 1995.

[O’Brien02] O’Brien, John, “A Flexible Goal-Based Planning Architecture.” AI Game
Programming Wisdom, Charles River Media, 2002.

[Orkin03] Orkin, Jeff, “Applying Goal-Oriented Action Planning to Games.” AI
Game Programming Wisdom 2, Charles River Media, 2003.

[Orkin04] Orkin, Jeff, “Symbolic Representation of Game World State: Toward Real-
Time Planning in Games.” AAAI Challenges in Game AI Workshop Technical
Report, 2004.

[Orkin05] Orkin, Jeff, “Agent Architecture Considerations for Real-Time Planning in
Games.” Proceedings of AIIDE, 2005.

[Paoloucci00] Paolucci, Massimo, Shehory, Onn, and Sycara, Katia, “Interleaving
Planning and Execution in a Multiagent Team Planning Environment.” Technical
Report CMU-RI-TR-00-01, Robotics Institute, Carnegie Mellon University,
January, 2000.

[Wallace03] Wallace, Neil, “Hierarchical Planning in Dynamic Worlds.” AI Game
Programming Wisdom 2, Charles River Media, 2003.

[Wikipedia07] “Imperative Programming.” Wikipedia. Available online at http://en.
wikipedia.org/wiki/Imperative_programming, 2007.

382 Section 4 Tactics and Planning

http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming

383

4.3

Command Hierarchies Using
Goal-Oriented Action
Planning
David Pittman—Stormfront Studios, Inc.
david.pittman@gmail.com

Many games feature characters whose behaviors must be coordinated with the
actions of other characters to create a believable facsimile of human interaction.

For example, tactical squad-based shooters might require the members of a squad to
work together to achieve common goals, such as resolving a hostage situation or
destroying an enemy blockade. Goal-directed behavior is a practical choice for games
with these kinds of scenarios [Atkin05], but how should the individual tasks be coor-
dinated with the common objectives of the team?

This article describes the use of military-style command hierarchies in conjunc-
tion with the goal-oriented action planning (GOAP) architecture [Orkin04] to build
a flexible framework for coordinated AI behaviors. This method enables the decom-
position of high-level orders into atomic tasks and keeps the AI units at each tier of
the hierarchy decoupled from the decisions made on other tiers. Individual agents do
not implement any group behavior, and high-level units do not apply fine-grained
control over low-level units. This also affords each unit a degree of autonomy in its
decisions, so the immediate needs of the unit can take precedence over its orders. This
architecture produces varied, complex, and believable coordinated AI behaviors.

Goal-Oriented Action Planning

The GOAP architecture is a flexible system for goal-directed behavior. Its primary
benefits compared to other goal-based architectures are that its goals are satisfied by
sequences of actions (called plans) instead of single actions and that these plans are
generated at runtime. These properties increase the potential for complex and varied
behaviors without requiring a programmer or designer to explicitly develop anything
more than simple actions.

GOAP operates by using a state-space search to formulate ordered sequences of
Action objects to satisfy the properties described by Goal objects. For example, a
TakeCover goal might be satisfied by the Action plan “MoveToCoverNode, then

Crouch.” In a typical example of the GOAP architecture, each AI agent has an array of
Goals and an array of Actions (called the Goal Set and Action Set, respectively) that
indicate the gamut of goals the AI can satisfy and the behaviors it will use to achieve
them. Although a full explanation is beyond the scope of this article and available
elsewhere [Orkin04], this cursory introduction to GOAP will help explain the con-
cepts used in building a goal-based command hierarchy.

Command Hierarchies

A command hierarchy is a military-style organization of units designed to control the
flow of orders and information [Reynolds02]. A command hierarchy has at least two
tiers. At the top of the hierarchy is a commanding unit that has some number of sub-
ordinates, which might have subordinates of its own. Each unit has a one-to-many
relationship with its subordinate units. For example, a squad might contain two fire
teams, each of which is composed of four soldiers, but no soldier belongs to both fire
teams. Orders are propagated down the tree and subdivided into simpler tasks as
needed. In theory, information is propagated back up the tree, but for practical pur-
poses, a high-level unit can have a global view of all the information its subordinates
know.

This structure keeps the AI at each level comfortably decoupled from its superior
or subordinate AI. A soldier’s AI does not need to bother with the reason for its orders
any more than his fire team’s AI cares how those orders are fulfilled. This lets the AI
programmer work on each AI unit in a modular fashion instead of shoehorning group
logic code into a soldier’s AI. Figure 4.3.1 depicts a four-tier command hierarchy of
32 soldiers collected into 4-person fire teams and their superior squads and platoon.
(The right-hand portions of the graph have been collapsed to keep the graph a reason-
able size. The hierarchy is assumed to be balanced.)

384 Section 4 Tactics and Planning

Squad Squad

Platoon

FireteamFireteam

SoldierSoldier Soldier Soldier

Squad Squad

...

...

FIGURE 4.3.1 A command hierarchy is a natural fit for a military-themed squad shooter.

This article will refer to the leaf nodes in the hierarchy tree as atomic units. These
typically exist at the same level in the tree and represent the simplest autonomous AI
elements in the hierarchy (e.g., individual soldiers). Nonatomic elements in the hier-
archy can also be characters (e.g., a fire team leader) or simply an abstract collection of

subordinate units (e.g., a fire team). Either way, a nonatomic unit can be autonomous
(i.e., able to make decisions on its own), but an abstract collection only delegates
orders and is not concerned with physical Actions.

How Command Hierarchies Use GOAP

With a flexible goal-based architecture and a model for distributed tasks under our
belts, we can build an AI system that extends all the benefits of GOAP to the coordi-
nation of character behaviors. The fundamental concept of the technique presented
here is that the Actions of a superior unit suggest Goals to its subordinates. Figure
4.3.2 illustrates this principle, with a squad’s Action suggesting a Goal to one of its
fire teams, and the Action to satisfy that Goal suggesting a Goal to one of the fire
team’s soldiers.

4.3 Command Hierarchies Using Goal-Oriented Action Planning 385

GoalAction

GoalAction

Fireteam

Soldier

Squad GoalAction

FIGURE 4.3.2 The Actions of superior units suggest Goals for subordinate units.

A subtle consequence of this design is that a superior AI unit only tells its subor-
dinates what to do, not how to do it. Each AI unit formulates its own plan of Actions.
This extends the primary benefits of GOAP through the hierarchy and provides more
flexibility and variety in how high-level Goals are satisfied.

Giving Orders

A superior class’s Actions include properties that indicate which Goals its subordinates
should activate to complete the Action. For example, a FireteamClearRoom Action
would recommend a MoveToNode Goal for the members of the fire team. When the
fire team executes the FireteamClearRoom Action, its members will be alerted that
they should evaluate their Goal Sets and activate a new Goal if necessary. Some logic
might be performed to determine a point man and find each fire team member a spe-
cific movement target in the room.

Subordinate Goals are assigned floating-point values within each superior Action.
These values are used as additive modifiers when the subordinate units evaluate their
Goals, so a higher value represents a strong order, and a lower value means the order
is a loose suggestion and can be ignored with less consequence. By assigning a subor-
dinate Goal a negative modifier, the superior class can effectively prevent its subordi-
nates from activating that Goal. For example, a FireteamRetreat Action might apply
a –0.5 modifier to the KillEnemy Goal to keep the fire team members focused on run-
ning instead of fighting back.

Note that in this scheme, a superior Action can only recommend Goals that the
subordinate already has in its Goal Set. The superior cannot add new Goals to the
subordinate’s Goal Set because each unit’s Action and Goal Sets might be handcrafted
by designers to achieve fine-tuned behavior for individual units. The subordinate unit
might not have Actions to support the newly added Goal, or the Goal might simply
be one that the designer did not intend for the unit to activate. Of course, new Goals
can be added to the subordinate’s Goal Set, but the ramifications of that decision
should be considered. If new Goals can be added to an AI unit, the designer cannot
exclude behaviors by customizing that unit’s Goal Set.

Because the completion of the superior Action is dependent on the completion of
all its subordinates’ Goals (and so on, all the way down the hierarchy), the superior AI
unit must wait for reports from its subordinates that their Goals have been fulfilled or
invalidated. The Action’s success criteria are dependent on the nature of the Action. In
practice, the superior unit often needs to reconsider its world state after the subordi-
nate Goals are completed to determine if the Action was actually successful. For
example, a fire team’s AssaultEnemy Action could be successful even if one or more
soldiers reported a failure to complete their KillEnemy Goal, as long as all the enemy
units were defeated by some other means.

Receiving Orders

Whenever an AI unit needs a new plan (because its previous Goal was satisfied or
invalidated, or its plan failed in some way), it evaluates each Goal in its Goal Set to
determine which one is most relevant in the current world state context. Each Goal
performs some logic and returns a floating-point value between 0 and 1 to indicate its
relevance relative to the AI unit and its known information. The unit then queries its
superior class for the set of Goal modifiers. The highest-rated Goal after this addition
is activated.

Table 4.3.1 demonstrates how orders from a superior unit can produce a different
outcome than the unit would produce on its own. In this example, a soldier has deter-
mined, based on his context, that TakeCover is his most relevant Goal. However, his
fire team’s orders are to charge, which is manifested as a positive modifier on the
KillEnemy Goal and a negative modifier on the Retreat Goal. After the addition,
KillEnemy is the highest-valued Goal and will be activated.

386 Section 4 Tactics and Planning

Table 4.3.1 Based on Contextual Relevance and Active Orders, the KillEnemy Goal
is Selected

Goal Relevance Modifier Score

KillEnemy 0.6 0.5 1.1
TakeCover 0.8 0.0 0.8
Retreat 0.3 –0.5 –0.2
Patrol 0.0 0.0 0.0

The reason for this system of modifiers is to retain each unit’s autonomy. Con-
sider a fire team under orders to scout unexplored terrain ahead of its squad. The fire
team is given directed movement Goals by the squad leader, but these need not be
rigid orders. If the fire team is ambushed en route to its destination, it is desirable that
it would activate a Goal to return fire or take cover. These Goals would be highly rel-
evant in the context and most likely supersede the squad’s orders. If the fire team
instead chose its Goal based solely on the squad’s orders, the information regarding
the ambush would need to be propagated back up to the squad before anything use-
ful could be done with it. Furthermore, this would require the squad to reevaluate its
own Goal to respond to help the ambushed fire team, and the squad’s Goals are prob-
ably not designed to handle fine-grained situations for individual subordinates. By
this point, things would be looking grim for the fire team. Instead, the fire team is
able to override its orders and activate a Goal that makes sense in this context. Allow-
ing each unit to make autonomous decisions using its superior’s orders as an influence
ensures that information is processed quickly and at the appropriate level of granular-
ity. Table 4.3.2 illustrates the case of the ambushed fire team and how it produces the
desirable TakeCover Goal despite not having orders to do so.

Table 4.3.2 An Ambushed Fire Team Displays Autonomy by Taking Cover Despite Its
Orders

Goal Relevance Modifier Score

Charge 0.4 0.0 0.4
TakeCover 1.0 0.0 1.0
Retreat 0.6 0.0 0.6
Patrol 0.0 0.5 0.5

If an AI unit activates a suggested Goal (one with a positive modifier from its
superior), it might need additional information to formulate the plan correctly. For
example, a soldier that receives a KillEnemy order needs to know which enemy his fire
team is ordering him to kill. Existing implementations of GOAP tend to use an
agent-centric information scheme in which a unit is responsible for selecting its
current targets (such as enemies or movement nodes) [Orkin06]. In this case, instead

4.3 Command Hierarchies Using Goal-Oriented Action Planning 387

of querying its targeting subsystem for an enemy target, the soldier will query his fire
team. The fire team has its own target selection subsystem and will respond to the
soldier’s query with its selected enemy target. After the suggested Goal has been
finished, either by successful completion or by being invalidated, the AI unit must
report this status to its superior so that the superior unit’s Action can be completed.

Optimizations

A game’s AI architecture could be implemented primarily in a nonnative scripting
language. For example, the Carnival demo project on the accompanying CD-ROM
was written entirely in UnrealScript. Developing the AI in a scripting language can
offer certain benefits in terms of the ease of writing the code or quickly integrating
new ideas, but it also has the drawback of being much slower than native code. This
might not be a problem for simpler state-based AI, but GOAP requires a state-space
A* search to formulate a plan. That cost becomes significant when it is multiplied by
a handful of units and their command hierarchies are repeated every time the state of
the game changes substantially. Even if the game’s AI is written in C++ or hand-tuned
assembly, the scale of the game (e.g., an RTS with hundreds of AI units in a multi-
tiered command hierarchy) or a modest AI budget might necessitate some optimiza-
tions to keep things running smoothly. Two optimizations were considered in the
development of Carnival. A scheduler was implemented to prevent many units from
planning simultaneously and causing a frame rate hiccup, and the state-space search
was designed to be performed over a number of frames. Each of these optimizations
can be tuned to the needs of a specific game.

Planning Scheduler

AI units using GOAP do not generate plans constantly. Typically, a unit will spend at
least a few seconds executing each plan, and units high up in a command hierarchy
might idle for minutes at a time while their high-level plans are executed in small
increments by their subordinates. If the number of cycles per frame for an AI was
graphed over some span of time, it would probably appear as a low line with tall
spikes at each frame that the AI unit generated a plan. (This is assuming that the A*
to formulate the plan is the most complex part of the AI and ignoring the cost of
pathfinding and other intensive algorithms.) As long as these spikes aren’t big enough
to cause the frame rate to hiccup, everything should be fine—until two or three or a
dozen other AI units happen to formulate plans in the same frame, pushing the com-
putation time well over the allotted AI budget. This is the reason for a planning
scheduler: to queue up AI units that need plans and allow them to take their turns
over subsequent frames, ensuring a smooth frame rate.

In Carnival, a simple scheduler was implemented using a FIFO (first in, first out)
queue and allowing one AI unit to plan each frame. This required only a minimal
change to the architecture. Instead of directly calling its planning function, the AI
sends a request to the scheduler, which enqueues a reference to the AI unit. Each

388 Section 4 Tactics and Planning

frame, the scheduler dequeues the front AI reference and calls its planning function.
This simplistic scheme raises some questions about the impact of the scheduler on
gameplay. Does using the scheduler cause a perceptible pause before AI units react to
information? If two units request to plan in a single frame, which one gets priority?
Does that adversely affect the other unit?

In practice, the delay between when an AI receives information and when it
finally begins acting on its resulting plan is usually imperceptible. However, it will
scale with the number of units scheduled and could become significant in a large RTS
skirmish. More important is the question of which units get priority. In Carnival, the
units are processed in the order they request plans. This seems logical, but when mul-
tiple units request plans in the same frame, the order is essentially arbitrary (it is the
order in which the units are iterated by the calling code, which has no relevance to the
gameplay). This could result in all the enemy units getting their plans before any of
the player’s allies get theirs, and the split-second difference between when each unit
begins attacking could tip the scales in a fight. A reasonable solution is to use a prior-
ity queue and prioritize the units based on some heuristic. For example, friendly units
might be given priority over the equivalent enemy units. Highly visible units could be
processed before less visible ones, such as the abstract squad type units higher in the
command hierarchy. Noncombative characters could be given low priority if their
actions would not substantially affect gameplay.

Finally, an ideal scheduler should be tunable to allow the maximum number of
units per frame to plan without causing frame hitches. This could be a constant num-
ber set by an engineer or designer, or it could be computed at runtime based on the
performance of the player’s computer. In this latter scenario, the AI would be changed
in subtle but potentially significant ways by the performance of the platform, which
could, in the worst case, manifest as a quantum bug. Proceed with caution.

Interruptible A*

Another simple but useful optimization to this architecture is the addition of an inter-
ruptible search in the planning function. If the search takes too long, it will be paused
and resumed on a subsequent frame. Another way to think of it is that the search is
performed asynchronously over a number of frames. The venerable A* algorithm is
actually very simple to make interruptible—given the source and destination nodes,
its open and closed lists completely describe the state of the search.

Some heuristic value is used to determine when a search is running too long for a
single frame. This might be the number of iterations completed or the total time in
cycles or milliseconds spent in the search. After the heuristic is exceeded, the open and
closed lists are saved to a persistent location, and the search function exits with a flag
to indicate that it is incomplete. On a subsequent frame, the planning function is
called with a flag to remind it that a search was in progress, and the open and closed
lists are restored. The search continues from exactly where it was before and can be
interrupted as many times as necessary until it completes.

4.3 Command Hierarchies Using Goal-Oriented Action Planning 389

Interrupting a Scheduled Search

A final consideration in using these optimizations is how to reschedule units whose
planning searches are interrupted. The unit should not just continue to search on
every frame because the scheduler might be ordering other units to plan in those same
frames. The two systems must be coordinated. In Carnival, a unit with an in-progress
search will simply submit another request to the scheduler and wait its turn in the
FIFO queue as many times as needed. This can cause interrupted searches to take
many more frames to complete. An alternative, if using a priority queue for the sched-
uler, is to submit follow-up requests with an increased priority. This ensures that units
still take their fair turns, but units that have already begun to plan do not get stalled
by the scheduler.

To prevent units from just idling during this process, planning can be started
while the previous plan is still being executed. For this purpose, the planner can either
assume the success of the previous plan or simply use the current world state. If the AI
budget has cycles to spare, both plans could be generated and the appropriate one
chosen when the plan is needed. When the previous plan is completed, the unit will
already have a new plan ready to go and will not have to waste even a moment idling.
If the world state changes substantially before the new plan is executed, the plan could
be invalidated, so it is advantageous to begin planning as near to the end of the previ-
ous plan as possible while still allowing time to formulate the plan—for example, just
after the last Action in the previous plan is activated.

Demo on the CD-ROM

The full source code for the Carnival project referenced in this article is included on
the CD-ROM. The project is written in UnrealScript and requires Unreal Tournament
2004 [Epic04] to compile and run. For complete instructions, refer to the readme.txt
file included with the project.

Conclusion

Command hierarchies are a practical choice for coordinating AI behavior. They are an
effective model of the flow of orders and information in a military-style chain of com-
mand, and the tiered structure keeps the AI at each level decoupled from its superior
and subordinate AI. The method presented here for integrating command hierarchies
with a GOAP-based agent architecture extends the benefits of the GOAP architecture
throughout the hierarchy. Specifically, it affords structure and reusability in the code
and the potential for complex and varied behavior from each unit in the hierarchy.

This architecture is built upon the fundamental concept that a superior unit’s
Actions suggest Goals for the subordinate unit. These suggestions are applied as addi-
tive modifiers on the subordinate unit’s relevance scores for its Goals. This allows the
subordinate unit a degree of autonomy in the event that its orders do not correlate
well with its current context. A generic method of information sharing is not directly

390 Section 4 Tactics and Planning

addressed by this architecture, but the ad hoc solution of requesting Action targets
from a superior unit covers the primary need for information sharing.

The suggested optimizations help the technique perform efficiently and open its
use up to a range of potential scenarios, including script-based planning AI or larger-
scale RTS games. The planning scheduler in particular can be tuned to fit the precise
needs of any game design, and the interruption heuristic on the A* search provides a
simple way to scale back the per-frame cost of one of the most expensive parts of the
planning process.

Consider using this technique as a basis for coordinated behavior in your game,
especially if you are already using or are considering using a goal-based agent architec-
ture. The command hierarchy paradigm is simple and effective, and coupled with the
GOAP architecture, its potential for exciting team-based AI is endless.

References

[Atkin05] Atkin, Marc, and Abercrombie, John, “Using a Goal/Action Architecture
to Integrate Modularity and Long-Term Memory into AI Behaviors.” Game
Developers Conference Proceedings, 2005.

[Epic04] Unreal Tournament 2004. Epic Games/Digital Extremes/Atari, 2004.
[Orkin04] Orkin, Jeff, “Applying Goal-Oriented Action Planning to Games.” AI

Game Programming Wisdom 2, Charles River Media, 2004.
[Orkin06] Orkin, Jeff, “3 States and a Plan: The AI of F.E.A.R.” Game Developers

Conference Proceedings, 2006.
[Reynolds02] Reynolds, John, “Tactical Team AI Using a Command Hierarchy.” AI

Game Programming Wisdom, Charles River Media, 2002.

4.3 Command Hierarchies Using Goal-Oriented Action Planning 391

This page intentionally left blank

393

4.4

Practical Logic-Based
Planning
Daniel Wilhelm—California Institute
of Technology
dan@dkwilhelm.net

This article presents an easy-to-implement planner based on the principles of logic
programming. Although not as expressive as other planners for game AI [Cheng05,

Munoz-Avila06, Orkin99], it uses familiar IF/THEN structures and constructs plans
efficiently. Strategies, such as dynamic rule modification, for encoding rich environ-
ments are also discussed.

We show by example that planners do not have to be complex or require months
of work to implement. The simple planner developed here is not only efficient, but it
can be easily extended to accommodate more feature-rich environments. The ideas
presented here should encourage you to explore what planning has to offer game AI.

Why Planning?

Given a description of the initial environment, planners generate an ordered list of
actions required to achieve a goal. Planners can provide many benefits to game AI:

Strategies are dynamically reevaluated: A real-time planner can respond quickly
to environmental changes by automatically drafting new plans. No additional
coding is necessary to draft plans for new environment configurations.

Scripters can use high-level abstractions: By writing goal-oriented scripts for a
planner rather than traditional action-oriented scripts, scripters can focus on
strategy. The coordination of low-level actions is left to the planner.

Generated plans are flexible: As shown in this article, planners can often be
tweaked to satisfy game mechanics. Planners also can generate multiple
strategies to achieve a single goal, allowing the AI to appear less predictable.

A Simple Example

Suppose that the AI for a real-time strategy (RTS) game is instructed to build a bar-
racks. First, it gathers facts about the environment—a worker is present (W), and a
town center is present (T).

Besides the environment facts, three implicit production rules are known that can
be described using IF/THEN statements. IF a worker and town center are present, THEN
gold can be produced (G). IF a worker and town center are present, THEN lumber can
be produced (L). IF a worker is present, and gold and lumber can be produced, THEN
a barracks can be produced (B).

Each parenthesized symbol denotes a proposition—a statement that is either true
or false. We can summarize the previous facts and rules using propositional logic,
where A → B denotes “IF A THEN B” (or alternatively, “A IMPLIES B”), and
denotes “AND”:

W Environment fact

T Environment fact

Production rule

Production rule

Production rule

Note that each production rule also implies an action. For the previous rules, the
actions may be mining gold, harvesting lumber, and building a barracks, respectively.
Hence, the desired plan is a sequential list of actions that corresponds to the produc-
tion rules invoked to “prove” that a barracks can be produced:

G (from) “Assign the worker to mine gold.”

L (from) “Assign the worker to harvest lumber.”

B (from) “Assign the worker to build a barracks.”

When a production rule is used, it generates a new fact about the environment.
For the sixth line, a worker is present (W), and a town center is present (T), so gold
can be produced (G). Hence, G is now a fact that can be used later in the proof (line
8). In mathematical logic, proofs can be even more detailed, but this procedure is
enough for our purposes. Of course, a second plan is also valid—harvesting lumber
first, then mining gold, and then building the barracks.

You may have noticed that several important features are ignored in this simple
example. For example, rules may require access to continuous values rather than true/
false propositions; propositions may need to be negated to indicate the lack of some-
thing; and in many scenarios, certain rules should not be present until other actions
allow their inclusion. Strategies for handling these issues will be presented later.

Planners

As in the previous example, a planner requires knowledge of environment facts, produc-
tion rules, and a goal state. Environment facts are single propositions that describe the
game world. Production rules are IF/THEN statements that describe the preconditions

W G L B∧ ∧ →

W T L∧ →

W T G∧ →

W G L B∧ ∧ →

W T L∧ →

W T G∧ →

∧

394 Section 4 Tactics and Planning

(the IF clause or antecedent) and the postconditions (the THEN clause or consequent) of
actions. The goal state is a fact that represents the desired final state of the game world.

In this planner, each production rule is mapped to an action. For example, the
rule “IF a worker and a town center are present, THEN gold can be produced” may
be mapped to the action “Assign the worker to mine gold.” Inside the planner, a the-
orem prover attempts to show that a sequence of rules exists that transforms the initial
facts into the goal state. The immediate output of the prover is a list of production
rules that achieves the goal state when its rules are applied in succession. After trans-
lating each production rule used in the proof into an action, a plan is produced that
can be parsed by the game engine. See Figure 4.4.1 for a flowchart of the relationship
between the planner and the game engine.

4.4 Practical Logic-Based Planning 395

Input States
(FACTS)

Goal State
(FACT)

Production Rules
(IF/THEN)

PROVER
Searches for proofs

of the goal state

Proof Using
Production Rules

(IF/THEN)

GAME ENGINE

Plan
(ACTIONS)

PLANNER

FIGURE 4.4.1 The planner receives input states, production rules, and a goal state from
the game engine. If possible, the theorem prover constructs a proof that the goal state can be
reached. The planner then translates each line of the proof into an action, returning this final
plan to the game engine for execution.

General theorem provers for first-order logic are often too inefficient for practical
applications. To counteract this, specialized planners have been written for games
[Orkin99]. Specialized planners typically use heuristic search, Graphplan, or satisfiabil-
ity algorithms to search the space of possible plans [Cheng05]. This article introduces
the use of a propositional satisfiability planner for game AI. Satisfiability planners con-
struct a Boolean formula describing the environment and goal and then try to find an
assignment of truth values that satisfies it.

By only allowing facts and IF/THEN production rules called Horn clauses, an effi-
cient, easy-to-implement satisfiability planner can be written. IF/THEN structures,
such as rule-based systems [Christian02], have been used extensively in game AI and
are well understood. Hence, they provide a natural starting point for our adventure.

Inside a Logic-Based Planner

Now that we know the inputs and outputs of the planner and how it interacts with the
game engine, we are ready to dive into its inner workings. Here, we will discuss the
implementation of a simple planner and then investigate optimization strategies.

Modus Tollens

Our IF/THEN planner relies on a classical rule of logic called modus tollens. We know
that IF a dog is here, THEN a mammal is here. Suppose that a mammal is not here.
Then, we can conclude that a dog is not here. In general, for any propositions A and
B, each a statement that is either true or false, modus tollens states that if A → B, and
we know that B is false, then we can conclude that A is false.

With our planner, we will begin with a single goal; suppose that we want to pro-
duce gold. We will represent this goal state using the proposition from the earlier
example:G—“Gold can be produced.” The central idea for a logic-based planner is to
use a proof technique called contradiction to show that a proposition is true. Using
contradiction, we suppose that our goal cannot be attained (

–
G—“Gold cannot be

produced,” where the overhead bar denotes negation). Now, we try to derive an
impossibility, for example, that a proposition is both true and false. If successful, then
our initial assumption

–
G must be incorrect because it was used to deduce an impossi-

ble scenario! Hence, because any proposition is either true or false, then G must be
true. The production rules used to prove it constitute the proof.

We will use modus tollens to make our first deduction. We suppose
–
G, and we

know that from the prior example. Using modus tollens, we can deduce
. So, if gold cannot be produced, then a worker and a town hall cannot both be

present. This makes sense! We now treat as a new negated goal because we
showed that it must be true if the original negated goal

–
G is true.

We will continue applying similar deductions until we deduce a contradiction.
However, our new negated goal is now a conjunction of several propositions,
and so modus tollens can no longer be used for inferences. Hence, we need a more
powerful inference rule.

The Resolution Inference Rule

We will now continue our quest for G. From , we know that either a worker is
not present, a town hall is not present, or both are not present. From the environment
facts, we know that a worker is present (W). Hence, a town hall must not be present.
We will write this deduction as follows, with a dashed line representing “Given the
statements above the line, we can deduce the statements below the line”:

W

W T

T

∧
− − − − − − − −

W T∧

W T∧

W T∧
W T∧

W T G∧ →

396 Section 4 Tactics and Planning

We deduced that the town hall cannot be present, but we know from the environ-
ment facts in the first example that the town hall is present. We have reached a contra-
diction! Hence, our initial assumption, that gold cannot be produced, must be false;
by supposing it, we deduced an impossible scenario. The single production rule

was used, which we map to the action “Assign the worker to mine gold.”
Because we reached a contradiction without using any additional production rules,
this constitutes the plan. By executing it, we obtain gold as desired.

The previous deduction is still inadequate—often single facts do not directly apply
to our negated goal. Using a similar proof, we can generalize further and derive a gen-
eral inference rule called resolution. Given a production rule and
a negated goal , we can deduce a new negated goal that lacks :

As an example application of this rule, suppose that our goal is to construct a
barracks. We use modus tollens on and to produce .
(Modus tollens is actually a special instance of resolution.) Now, we notice that one of
the possible production rules implies L. Hence, using the resolution rule, we can
eliminate L from the negated goal as follows:

For any proposition W, note that is true if, and only if, W is true; hence,
any duplicate propositions in the goal can be removed. Because of this,
can be simplified to , and this becomes our new negated goal.

Backward Chaining

In the first example, a proof was found by moving forward—beginning with the envi-
ronment states W and T, and then continually using production rules until the goal B
was reached. Because environment facts describing units and resources likely are used
in many production rules, moving forward may not be an efficient proof strategy.
Hence, as in the previous section, we will move backward, beginning with the negated

W T G∧ ∧
W T W G∧ ∧ ∧

W W∧

W T L

W G L

W T W G

∧ →

∧ ∧

− − − − − − − − − − − − −

∧ ∧ ∧

W G L∧ ∧BW G L B∧ ∧ →

A A A B

B B B
n

m

1 2 1

1 2

∧ ∧ ∧ →

∧ ∧ ∧

− − − − − − − − − − − − − − − − − − − −

…
…

∧ ∧ ∧ ∧ ∧ ∧A A A B B
n m1 2 2

… …

B
1B B B

m1 2
∧ ∧ ∧…

A A A B
n1 2 1

∧ ∧ ∧ →…

W T G∧ →

4.4 Practical Logic-Based Planning 397

goal state and determining which rules and environment facts are necessary to achieve
it. To summarize the complete backward inference of B as begun in the previous sec-
tion, see Figure 4.4.2. Note that if multiple production rules have a consequent in the
negated goal, then the depicted tree will branch.

398 Section 4 Tactics and Planning

FIGURE 4.4.2 Using backward chaining, a proof of B is given based on the rules and facts
from the first example. At each double arrow head, resolution is performed. The proof queue
contains the sequential production rules at the left of each stage. Note that two of the pro-
duction rules could resolve with , creating two possible paths down the tree
although only one is depicted.

W G L∧ ∧

The following is a formal algorithm for a simple prover using backward chaining:

function ruleQueue = BACK-CHAIN(ruleList R, negatedGoal g):

1. If g is empty, then return empty queue.

2. For each rule and fact r in R:

a. If the consequent of r is a proposition in g:

i. Let newGoal = RESOLUTION(r, g).

ii. If (Q = BACK-CHAIN(R, newGoal)) != NULL:

1. Enqueue r in Q.

2. Return Q.

3. Return NULL.

As each recursion step that contributes to finding the goal state terminates, we
enqueue the production rule used. Recall that the resulting queue of production rules
constitutes a plan because each production rule maps directly to an action.

Several quick extensions can be made to this algorithm. First, if one proposition
is required to derive several rules, then its generating rule may be repeated multiple
times in the proof. A single pass through the proof can remove these repeats if desired.

Second, we can find the shortest proof by performing an iterative deepening search of
the proof tree. Here, all n-rule proofs are attempted, incrementing n by one until a
proof is found. (See the accompanying code on the CD-ROM for an implementa-
tion.) For more information on inference techniques, planning, and extensions to this
implementation, see [Russell02].

Optimizations

We will store each production rule and the antecedent of each goal as bit vectors,
where each bit indicates the presence of a unique proposition. For example, if the
third bit position represents the proposition W, and the second represents T, then the
binary value 110 represents the conjunction . Negated goals will also be repre-
sented as bit vectors, but the negation will be implicit.

By assuming that each consequent is a single proposition, the backward chaining
algorithm can be executed very efficiently. In the following, we assume that there are,
at mos,t 32 possible propositions, so they can be stored in a single 32-bit variable:

struct Rule

{

ULONG antecedent; // Bit vector (max 32 propositions)

ULONG consequent; // Index of a single proposition

};

Use this method to represent production rules; optimizations follow that are imple-
mented in the accompanying source code for an arbitrary number of propositions:

Use bitwise operators: If an n-bit bit vector is used to represent, at most, n
propositions as earlier described, then resolution becomes a simple bitwise
operation.

We have seen that after resolution, propositions listed multiple times in the new
negated goal are redundant. Hence, if either the goal or the antecedent of the
production rule contains a certain proposition, then the resulting goal will
contain a single instance of that proposition. This is a logical OR statement.

After this, the single proposition present in both the consequent and the negated
goal must be removed:

// Resolution

resolution = negatedGoal | rule.antecedent;

resolution &= ~mask; // Remove the repeated proposition

Store facts as IF/THEN rules: Note that resolution can also be applied to facts.
Facts are a special type of IF/THEN statement. For example, the fact W can be
represented as , where is the empty set (or empty bit vector),∅∅ →W

W T∧

4.4 Practical Logic-Based Planning 399

indicating that nothing is required to conclude that W is true; hence, it is always
true. With this representation, facts can be treated as production rules and used
in resolution:

// Representation of the fact “W” (bit position 2)

rule.antecedent = 0; // No propositions in IF

rule.consequent = 0x02; // Only “W” in THEN

Order rules by consequent: For each proposition in the negated goal, we search
for all production rules for which the proposition is the consequent. Hence,
we can store rules with the same consequent together in a list. Then, an array
indexed by consequent can point directly to the relevant list of rules. Instead of
searching through every rule, now a list of relevant rules is supplied immediately.
The following is an implementation of steps 1 and 1a in the backward chaining
algorithm using this optimization:

// Loop through all possible propositions

ULONG mask = 1;

for (int bitNum = 0; bitNum < bitsPerULONG; bitNum++)

{

// Is proposition ‘bitNum’ in the goal?

if (negatedGoal & mask)

{

// Try all rules that imply proposition ‘bitNum’

std::list<Rule>::const_iterator ruleIter;

for (ruleIter = rulesByConsequent[bitNum]->begin();

ruleIter != rulesByConsequent[bitNum]->end();

ruleIter++)

{

// Resolution, recursion

...

}

}

mask << 1;

}

Representing Rich Environments

In this section, extensions to the planner that allow for the description of rich game
environments will be discussed. Each technique is demonstrated in the source code
on the accompanying CD-ROM.

Dynamic Rule Insertion and Removal

Production rules were previously available for use at any step of a proof. Now, to bet-
ter model the real world, at every step only a subset of the rules will be available.
When used in a proof, each production rule can now insert and/or remove a fixed set
of other rules. Here, we will show how to achieve this using backward chaining.

400 Section 4 Tactics and Planning

As we work backward from the negated goal, the availability of the production
rule used at each step is unknown because we are working backward. Hence, we will
now examine the conditions under which a rule we add will be valid, that is, added
only when it is available. See the four example proofs in Figure 4.4.3 for reference.

4.4 Practical Logic-Based Planning 401

Rule 3

Rule 4

Rule 5

Insert Rule 5

Rule 2

Rule 3

Rule 4

Rule 5

Remove Rule 5

Insert Rule 5

Rule 5

Rule 3

Rule 4

Rule 5

Insert Rule 5

Rule 5 will be valid

Rule 5:
ruleUsed = true
ruleValid = false

Rule 5 will still be valid

Rule 5:
ruleUsed = true
ruleValid = true

Rule 5 will not be valid

Rule 5:
ruleUsed = true
ruleValid = true

Rule 3 Insert Rule 5

Proof A Proof B Proof D

Rule 3

Rule 4

Rule 5

Remove Rule 5

Rule 3 is inconsistent

Rule 5:
ruleUsed = true
ruleValid = false

Proof C

Rule 2 Remove Rule 5

Rule 3 Remove Rule 5

Rule 5

FIGURE 4.4.3 In each of these proofs, the right column indicates the insertions and deletions
associated with using each production rule in the left column. Here, we are constructing the
proof backward from Rule 5, and we are considering whether to add the shaded rule. In Proof
C, adding Rule 3 would be inconsistent, and so we will not add it. In Proof D, we must set
ruleValid to false when we use Rule 5 again because we no longer know whether Rule 5
is valid.

Suppose that we decide to use a rule R, and we place it in the proof. If no rule
before it modifies its availability, then R is valid if, and only if, it is initially available.
Instead, suppose that multiple rules before R modify its availability (Proof B). Then,
the validity of R is only affected by the modification rule immediately before it. If the
rule inserts R, then R is valid. If the rule removes R, then R is not valid.

Using this logic, we can associate two flags with each rule: ruleUsed, set to true
when the rule is used in the proof, and ruleValid, set to true only if we are certain
that the rule is valid. Constructing the proof backward from the goal, at each step we
will consider rules from the entire set of rules because their validity is unknown.

If a rule is used below the rule that inserts it, and no rules removing it are in-
between, then the inserted rule is valid (Proof A). Now suppose that a rule we will use
removes a rule below it (Proof C). Then, if ruleValid is false for the rule that will be
removed, indicating that another rule did not insert it in-between, and then using the
rule in the proof would make the proof inconsistent. Hence, we cannot use the rule
requiring the removal.

Using this method will ensure internal consistency—the use of each rule is consis-
tent with the other rules’ insertions and deletions. However, it does not ensure external
consistency—that each rule used is initially available. Hence, the validity of each con-
structed proof must be verified. This is easy and efficient—each rule is valid only if

ruleValid is true and/or the rule is initially present. This is not obvious, so we will
examine a tricky case. Suppose that a rule is initially present, but that it is removed and
not reinserted below the removal (Proof C). Then, the proof would not be valid. How-
ever, because our logic does not allow internal inconsistencies to occur, this case will
never arise.

This leads to the following algorithm for dynamic rule insertion and removal.
Note that in the previous algorithm, we constructed the proof only when we found a
solution. Because we must now test the validity of each proof, we must construct the
proof as we explore the solution space so that we will have the proof ready when we
find a solution:

function PROVER(ruleList R, negatedGoal g, proofStack P):

1. If G empty:

a. If ValidateProof(P), then return Success.

2. For each rule and fact r in R:

b. If the consequent of r is a proposition in G:

i. Let newGoal = RESOLUTION(r, g).

ii. Let oldValid = ruleValid[r].

iii. Let addNewRule = true.

iv. For each rule u inserted by r:

1. If ruleUsed[u], then ruleValid[u] = true.

v. For each rule u removed by r:

1. If ruleUsed[u] and !ruleValid[u],

then addNewRule = false.

vi. If addNewRule is true:

1. Push the current rule onto P.

2. Let ruleUsed[r] = true.

3. Let ruleValid[r] = false.

4. If PROVER(R, newGoal, P) succeeds:

a. Return Success.

5. Otherwise revert the changes:

a. Pop a rule from P.

b. Let ruleUsed[r] = false.

c. Let ruleValid[r] = oldValid.

3. Return Failure.

This algorithm always avoids inconsistent removal rules. It also finds all proofs
that require insertion rules but only when those rules are logically required, that is,
those that imply a proposition in the current goal. Hence, a proof will not be found if
a rule must be applied only to insert a necessary logical rule. This can be alleviated at
each stage by trying all rules that are either logically required or that add a rule that
has already been used below it in the proof. However, this is not as efficient.

Negated Propositions

Rule insertion and removal can be used to implement negated propositions, for exam-
ple, W (“A worker is present.”) and notW (“A worker is not present.”). The trick is to
assign two propositions to represent one statement as just shown; however, both can-
not be asserted at once, or a contradiction will occur. When scripting, the dual propo-

402 Section 4 Tactics and Planning

sitions are easy to enter—simply establish a convention that a negated proposition
begins with a “not.” Then, it will automatically be treated as a unique proposition by
the parser because it is typographically distinct.

Suppose we are given that a worker is present, a town center is not present, and
the rule “A town center can be built if a worker is present, and a town center is not
present”:

W Environment fact

notT Environment fact

Production rule

From these rules, can be derived, which is a seeming contradiction.
However, if we use the techniques from the last section to remove notT after T is
derived, then both cannot exist simultaneously, and no contradiction can occur.

Be careful, however, because the previous example is really a matter of semantics.
The English sentence actually would translate so that T indicates that “a town center
can be produced [in the future],” and notT indicates the same negated but “in the
present.” Hence, T and notT are not truly opposites. However, because we still do not
want both to be true simultaneously, this notation is still desirable.

It is also important to avoid cyclic states. P → P will cycle endlessly, as will the
pair S → notS and notS → S. These conflicts can be removed as shown previously; if
one rule is used, we can remove the other. Even more wisely, cycles should be avoided
altogether.

Value Functions for Representing Time and Quantity

Each production rule can have a change in value associated with its use. These value
changes are most useful for representing continuous values, such as quantity or time.
They are also useful if the value can be continuously incremented or decremented
given that certain preconditions are met, for instance, mining gold continuously if a
worker is present. Note that in many games, costs tend to be associated with goals
rather than plans. Building a barracks, for example, has a fixed cost.

First, the planner determines how a resource, such as gold, can be continuously
obtained, for example, by training a worker. Next, it constructs a plan for the desired
goal, beginning with the amount of gold the player has and then incrementing or
decrementing the total when each production rule is used. Each line of the develop-
ing plan has a cost associated with it indicating the cost of the plan so far. This cost
can then be used by the planner to accept or reject plans at any stage. For example, if
a plan requires the player’s gold to dip below zero, then the plan should likely be
rejected at an early stage.

T notT∧

W notT T∧ →

4.4 Practical Logic-Based Planning 403

The Next Step

More expressive planners may provide additional benefits. For example, an extension to
this one used in PROLOG allows variables in addition to objects [Russell02]. Variables
allow production rules to apply to certain classes of objects. For example, instead of
writing a separate statement for each unit type mentioning that it can rally at the town
center, a single statement can be written with variable x :

IsUnit(x) → CanRallyAt(x, TownCenter)

Conclusion

An easy-to-implement, efficient satisfiability planner was described in addition to
methods for representing a rich game environment in logic statements. Several easy
extensions to the planner, such as adding iterative deepening search to find the short-
est plan, adding negations, inserting and removing rules dynamically, and supporting
continuous values, were discussed. If more expressive planners are found necessary,
the references point to accessible resources on more advanced topics.

References

[Cheng05] Cheng, Jamie, and Finnegan, Southey, “Implementing Practical Planning
for Game AI.” Game Programming Gems 5, Charles River Media, 2005.

[Christian02] Christian, Mike, “A Simple Inference Engine for a Rule-Based Archi-
tecture.” AI Game Programming Wisdom, Charles River Media, 2002.

[Munoz-Avila06] Munoz-Avila, Hector, and Hoang, Hai, “Coordinating Teams of
Bots with Hierarchical Task Network Planning.” AI Game Programming Wisdom
3, Charles River Media, 2006.

[Orkin99] Orkin, Jeff, “Symbolic Representation of Game World State: Toward Real-
Time Planning in Games.” AAAI Challenges in Game AI Workshop Technical
Report. Available online at http://www.jorkin.com/WS404OrkinJ.pdf, 1999.

[Russell02] Russell, Stuart, and Norvig, Peter, Artificial Intelligence: A Modern
Approach, Prentice-Hall, 2002.

Abstract

An efficient, easy-to-implement planner is presented based on the principles of logic
programming. The planner relies on familiar IF/THEN structures and constructs plans
efficiently, but it is not as expressive as other planners. Many easy extensions to the
planner are discussed, such as inserting and removing rules dynamically, supporting
continuous values, adding negations, and finding the shortest plan. The accompanying
source code provides easy-to-follow implementations of the planner and the proposed
extensions.

404 Section 4 Tactics and Planning

http://www.jorkin.com/WS404OrkinJ.pdf

405

4.5

Simulation-Based Planning
in RTS Games
University of Alberta
Frantisek Sailer
sailer@cs.ualberta.ca

Marc Lanctot
lanctot@cs.ualberta.ca

Michael Buro
mburo@cs.ualberta.ca

RTS game developers face the problem of creating AI systems capable of playing
well in a team and against a large variety of opponents. The common approach is

to script behaviors with the goal of covering the most important strategies used by
human players. Creating scripts that perform well for RTS games, however, is hard—
it resembles writing good chess programs based solely on static rules without a way of
evaluating future developments. To offset the lack of such planning capabilities, game
designers often resort to giving AI systems unfair advantages, such as complete infor-
mation, faster build times, or more resources. Although this approach may be suffi-
cient to create challenging single-player campaigns for novices, it cannot replace the
planning, reasoning, and opponent modeling required when playing at a more
advanced level. To increase game AI competence in future game titles, more CPU-
intensive methods need to be considered. The advent of multiprocessor hardware
platforms helps to make this possible.

In this article, we present RTSplan, a practical planning framework for RTS games
that addresses this issue by simulating scripts and computing best-response strategies
based on opponent modeling in real time. From an RTS game design perspective,
RTSplan offers several interesting features:

• It makes use of scripted policies that AI programmers are familiar with.
• During a game, it frequently selects a script to follow next from the set of scripted

policies with the goal of defeating each fixed individual script, provided no script
is dominant.

• It monitors the opponent and adapts its strategy selection accordingly.
• The CPU load generated by RTSplan is adjustable. More frequent replanning

will lead to better performance, but simulations can also be spread over multiple
frames if necessary.

In the remainder of the article, we first set the stage for RTSplan by describing the
RTS game environment our planning algorithm is tested in. Next we present RTS-
plan, its opponent modeling extension, and implementation details. Third, we discuss
our experimental results, and then we conclude with a brief description of the RTS-
plan software on the accompanying CD-ROM.

Game Environment

We study the effectiveness of RTSplan by applying it to an army deployment prob-
lem: how to coordinate multiple units to defeat the opponents’ forces. The approach
taken extends to other aspects of RTS games quite naturally, so we chose the most
interesting aspect of the game and cover it in detail. We begin this section by describ-
ing the dynamics of the game environment in which we tested RTSplan.

The game environment is a simplified, abstract version of an RTS game. The only
objects present are groups (of units) and bases, and the only actions available are
movement and combat. The objective is to destroy all of the opponent’s bases before
he destroys all of ours. An example of what our environment looks like and how a typ-
ical game progresses is shown in Figure 4.5.1.

In this example, the two opposing players are executing different strategies, with
one player choosing to spread out and attack the enemy bases, while the other first gath-
ers all forces into a large army that will be used to wipe out the enemy forces afterward.

Game Cycle

RTS games must execute in real time. A low frame rate, unexpected choppiness, and
lag are unacceptable. Because planning is computationally intensive, calculations may
have to be spread out over multiple game cycles to ensure a minimal frame rate. The
game cycle can conceptually be described as follows:

while (game not finished) {

if (planning finished)

select new current strategy

else

continue planning

continue executing current strategy

apply actions

graphics and network activities

}

406 Section 4 Tactics and Planning

Planning is dynamic: if there is CPU time available, then RTSplan can take
advantage of it by continuing the planning process. Otherwise, it executes the last
strategy chosen by the planner. When the planning process is complete, the current
strategy is updated, and the system starts executing it as seen in Figure 4.5.2. In mod-
ern multicore architectures, the cycle can be executed in multiple threads.

4.5 Simulation-Based Planning in RTS Games 407

Attack base

Groups join here

Attack base

FIGURE 4.5.1 A snapshot of the game environment. Circles are tanks, and
squares are bases.

FIGURE 4.5.2 Simulation timeline showing interleaving of planning and
execution.

Simulation-Based Planning

Traditional two-player games, such as tic-tac-toe and chess, have perfect information:
both players can see the full state of the game (e.g., the set of board positions of all
pieces) and can reconstruct any state given an initial state and sequence of moves
made by the players. Minimax search (and its improvement alpha-beta) is the tech-
nique of choice for perfect information games [Russel95]. In its simplest form, this
algorithm assesses the quality of each possible move, maximizing the potential gain
and minimizing the opponent’s potential gain in the worst case by searching the set of
valid states a fixed number of moves into the future. It is tempting to use minimax
search in RTS games to lessen the burden of creating rule sets able to cope with a large
variety of situations in favor of an algorithmic approach that takes the game dynamics
into account. However, given hundreds of units under player control and games that
last thousands of game cycles, alpha-beta search is infeasible when applied to the raw
RTS game state representation, which consists of unit and structure locations, health
points, list of discovered regions, and so on. Moreover, RTS games require fast deci-
sions and do not provide players with perfect information. In what follows, we will
present a planning technique that addresses most of these problems by means of state
and action space abstraction and simulation.

Reducing the Search Space via Abstraction

To look ahead in such complex decision domains requires us to simplify the problem.
A common approach is to abstract the state representation and the available actions.
For RTSplan, we did this by greatly reducing the number of possible actions. Rather
than assessing each individual unit’s action, we restrict the AI’s choice to selecting
scripted policies that implement high-level strategies, such as joining forces and attack-
ing bases. Such strategies are composed of lower-level actions that are determined by
the policy’s high-level goals. Here are some sample policies that we implemented to test
RTSplan:

Null: All groups stop what they are doing and do not move. They do, however, still
attack any groups or bases within range.

Join Up and Defend Nearest Base: This policy gathers all the groups into one
army, with groups joining at their combined center of mass to speed up joining
time, and then moves the army to defend the base that is closest to an enemy
group.

Mass Attack: All groups form one army in the same manner as in the Join policy,
and then the army goes to attack the nearest enemy base until no enemy bases
remain.

Spread Attack: All groups attack the nearest enemy base, and this repeats until all
enemy bases are destroyed.

Half Base Defense Mass Attack: Groups are divided into two armies. One defends
nearby bases, while the other executes the Mass Attack policy.

408 Section 4 Tactics and Planning

Hunter: Groups join with their nearest allied groups and then attack the nearest
enemy group.

Attack Least Defended Base: This policy first creates one army like the Join policy,
and then sends it to attack the least defended enemy base, which is the base that
is farthest away from its friendly forces. The least defended base is reconsidered
periodically, in case the opponent moves forces to defend the target base.

Harass: This policy harasses the enemy but never engages in direct combat if it can
be helped. Several groups of armies are formed, and each is sent at the nearest
enemy base. However, if an enemy army gets near any of our harassing armies,
our armies retreat in the direction of one of our bases. When they are
sufficiently far enough from the enemy, however, they proceed to attack the
nearest base once again.

Choosing Strategies

By selecting scripts rather than individual units’ actions, the number of choices is
drastically reduced. Given this action abstraction, how can we select strategies? Bor-
rowing again from the minimax idea, we look ahead to gauge the merit of our move
decisions. Here, moves consist of selecting a strategy and following it for a certain
period of time. In the simplest case—minimax search at depth 2—we could select one
of our available strategies at a time and loop through all opponent strategies executing
the strategy pairs until the end of the respective game is reached. This way we select
strategies that maximize our chance of winning against the strongest counterstrategy.
However, a problem arises from limiting each player’s selection to only one strategy
without the prospect of reconsidering later: by alternating the strategy selection, the
second player will be able to choose the right counter-measure every time. A good
analogy is rock-paper-scissors (RPS): if one player announces his move (say, Rock),
the other player can win all the time (by playing Paper in this case). To counter this
effect, we will require our RTS game players to choose their strategies simultaneously,
just like in rock-paper-scissors.

Acting Optimally in Simultaneous Move Games

Game theory tells us that in RPS we need to randomize our move selection. If we
were to play one move with probability greater than 1⁄3 repeatedly and stick to our
(randomized) strategy, our opponent can win against us in the long run by playing the
respective countermove all the time.

Game theory also provides us with a method for finding optimal strategies for
zero-sum simultaneous move games. These games can be described by a payoff matrix
in which we note the payoff for player 1 for each pair of move decisions. Player 2
receives the corresponding negative amounts. The payoff matrix for RPS is shown in
Figure 4.5.3.

4.5 Simulation-Based Planning in RTS Games 409

For fixed player strategies x and y and payoff matrix R, the expected payoff for the
first player is the matrix product y'Rx. There exist strategies x and y with

maxx miny y'Rx = miny maxx y'Rx

for which both players receive their optimal payoff when facing the strongest opposi-
tion [Neumann28]. In the case of RPS, the minimax strategies are given by probabil-
ity distribution x = y = (1⁄3, 1⁄3, 1⁄3), which selects each move with probability 1⁄3. x and
y can be found by solving a linear program (LP) of the following form:

Find the maximum value for Z such that:

x1,x2,x3,...,xn � 0

x1 + x2 +...+ xn = 1

x1R [1][1] + x2R [1][2] +...+ xnR [1][n] � Z

x1R [2][1] + x2R [2][2] +...+ xnR [2][n] � Z

…

x1R [m][1] + x2R [m][2] +...+ xnR [m][n] � Z

where n, m are the number of moves for player 1 and 2, and Z is the maximal payoff
player 1 can expect to receive. Note that x is a probability distribution, and the inter-
mediate equations ensure that x performs well against each single opponent move. An
analogous LP exists for y. As an example, consider the LP for RPS:

Find the maximum value for Z such that

xrock, xpaper, xscissors � 0

xrock + xpaper + xscissors = 1

xpaper – xscissors � Z

xscissors – xrock � Z

xrock – xpaper � Z

410 Section 4 Tactics and Planning

FIGURE 4.5.3 Payoff matrix
for rock-paper-scissors.

which has solution Z = 0 (on average no gain, no loss) and xrock = xpaper = xscissors = 1⁄3.
Efficient software exists to solve these systems; one example is the GNU Linear Pro-
gramming Kit [GLPK].

The RTSplan Algorithm

We are now in the position to formulate the RTSplan algorithm. The moves RTSplan
considers are scripted policies. Each row of the payoff matrix corresponds to a script
that player 1 (the AI) chooses, and each column represents a policy of player 2 (the
opponent). Entry R [i][j] of the payoff matrix then is the expected result when pitting
strategy j of player 1 against strategy i of player 2. RTSplan computes each entry by
executing the corresponding strategies until the game is finished. If the strategies
themselves are randomized, or there are other chance events in the game, each strategy
pair should be simulated multiple times to better estimate the expected payoffs. After
establishing all matrix entries, RTSplan computes the mixed minimax strategy x for
the first player and selects the strategy to follow next by sampling from distribution x.
For example, for x = (1⁄2,1⁄3,1⁄6), we would pick policy 1 with probability 1⁄2, 2 with 1⁄3,
and 3 with probability 1⁄6.

The following code summarizes the simulation approach to selecting an appro-
priate policy from a given set of policies:

int RTSplan(ourPolicies, theirPolicies, curState) {

int n = ourPolicies.size;

int m = theirPolicies.size;

int R[m][n];

for (i=0; i < m; i++) {

for (j=0; j < n; j++) {

R[i][j] = ourScore(curState,

ourPolicies[j],

theirPolicies[i]);

}

}

return ourPolicies[sample(SolveLP(R))];

}

SolveLP() returns a probability distribution over policy indexes, from which an
element gets sampled by sample().

Opponent Modeling

Playing the minimax strategy maximizes the gains against strong players. However, it
does not exploit their weaknesses. Consider a RPS player who always chooses Rock.
Against it, the minimax strategy (1⁄3,1⁄3,1⁄3) only achieves an even score, whereas the
Paper player would win all the time. So, rather than playing the minimax strategy, we
want to model the opponent and play a best-response strategy that maximally exploits
the opponent’s weaknesses.

4.5 Simulation-Based Planning in RTS Games 411

In the RTSplan framework, a straightforward way to determine what the oppo-
nent is doing is to observe the opponent’s actions for some time period and to see how
the state changes from the first point of observation to the last point of observation.
We can then go back to the beginning of the observation period repeatedly to observe
the results of our own policy playing against every opponent policy. If a produced
end-state is exactly the same as the state at the last point of observation that the oppo-
nent is in, then it is very likely that the opponent is following the chosen strategy.

To generalize this concept, a distance metric can be used to gauge how similar
two states are. If two identical states are passed to the distance function, then zero
should be returned, whereas the distance between two completely different states
should be high. Such distance measures are application specific.

In our army deployment problem, we track object positions and compute their
total pair-wise distance. If the number of objects in the two states are different (due to
combat), the distance is set to a high value indicating that the states are “very” differ-
ent from each other. An example of the technique is visualized in Figure 4.5.4.

412 Section 4 Tactics and Planning

FIGURE 4.5.4 An example of an observed behavior, described by
the trajectory between initial state (Si) and end state (Se), and simu-
lated end states using four different strategies (SS1, SS2, SS3, and SS4).
The opponent is using a strategy that most resembles the third strat-
egy because the distance between Se and SS3 is the smallest.

Opponent Modeling Algorithm

Following is the algorithm for opponent modeling:

1. Starting with the state at the beginning of the observation period, compute
SS1 ... SSn, that is, the states that result from following some opponent strat-
egy while replaying our policy.

2. Compute policy distances di = dist(Se,SSi), where Se is the state reached at
the end of the observation period.

3. Set threshold h = average (di) ⋅ f, where f is a constant (we chose f = 0.5).
4. Collect all active opponent strategies i with di � h. If this set is empty, con-

sider all opponent strategies active.

Active strategies are those that most closely match the observed behavior. In Fig-
ure 4.5.4, SS3 would almost certainly be an active strategy, SS2 and SS4 might be
depending on the value of f, and SS1 would almost certainly not be active. After cer-
tain opponent strategies have been ruled out, the corresponding rows can be removed
from the payoff matrix. The effect is a reduced computation time because the payoff
matrix is smaller and a strategy subset that allows RTSplan to detect opponents who
keep using the same strategy and select proper counterstrategies that maximally
exploit their weaknesses.

Implementation Issues

There are a few implementation considerations when using RTSplan. Most impor-
tantly, we need a mechanism to speed up forward simulations because they need to be
significantly faster than the actual game to be useful. We also need ways to deal with
combat and pathfinding.

Simulation Process

When RTSplan with opponent modeling is implemented, the main loop of our sim-
ulator looks like this:

currTime = 0;

while (!isGameOver()) {

for (int i=0; i < players.size(); ++i) {

Strategy bestStr = calcBestStrategy(policies,

curState, players[i]);

players[i].updateOrders(bestStr);

}

currTime += timeIncrement;

if (isTimeToUpdateActiveStrategies())

recalculateActiveStrategies();

updateWorld(currTime);

}

The function calcBestStrategy() uses RTSplan to compute the result matrix
and return the new best strategy. Regardless of whether a strategy was changed, the
world advances forward in time by the specified time increment in updateWorld().

4.5 Simulation-Based Planning in RTS Games 413

The given time increment could be a constant value (for running experiments) or the
actual time elapsed between subsequent calls to this function (when run in a real-
world situation). The function isTimeToUpdateActiveStrategies() is only used for
opponent modeling and calculates the size of the opponent’s strategy set.

Fast-Forwarding Strategies

Each of our forward simulations runs a game all the way to the end or to some point in
the far future. Therefore, it is crucial to compute successor states quickly. However,
such simulations can be expensive, especially if we were to simulate every single time
step. To reduce this cost, we instead calculate the next “interesting” point in time and
advance there directly. This time point is derived in such a way that there is no need to
simulate any time step in between our start time and the derived time because nothing
interesting will happen during that time interval. We call this method fast-forwarding.
In our RTS game simulation environment, the next interesting point in time is the
minimum of the return values of the following four functions:

• nextCollideTime() is calculated by solving a quadratic equation with the input
being the direction vectors of the two groups in question. The quadratic equation
may not be solvable (no collision), or it my produce a time of collision. Two
groups are considered to be colliding if either one of them is within attack range
of the other. The collision time is computable this way because all units travel in
straight lines.

• getNextOrderDoneTime() is a simple calculation. Divide the distance to the goal for
a group by its maximum velocity. We do this for every group and return the time at
which the first group reaches its goal.

• getNextShootingTime() applies to groups that are already within range of an
enemy group and are recharging their weapons. This function returns the next
time at which one of these groups can fire again.

• getNextStrategyTimeoutTime() function returns the next time that any one of the
strategies in question is allowed to reevaluate the game state to give out new orders
if necessary. Thus, this is the only time when units could change their direction of
travel, for example.

Fast-forwarding allows us to safely skip all simulation steps during which nothing
of importance happens. It can also be applied to settings with more complex maps, as
long as the pathfinder provides a series of waypoints as orders to our groups. For more
complex abstract models than we use here, it may become more difficult to find the
next time of interest, and it is likely that the times of interest will be closer to each
other, thus reducing the effectiveness of fast-forwarding. Thus, to best use fast-for-
warding, the model should be kept as abstract as possible.

414 Section 4 Tactics and Planning

Combat Simulation

Because we are creating an AI for the high-level commander who deals with army
deployment, we abstract individual units into groups. A human player usually sends
out groups of units and deals with individual units only in combat situations. Our
combat simulation method does not deal with combat tactics; instead, we have a sim-
ple combat model that generally favors numerical advantage.

Pathfinding

None of our scenarios contain obstacles. Pathfinding is irrelevant in this particular
application, and, therefore, no sophisticated pathfinding algorithm is included in the
simulator. However, the subject of pathfinding is not ignored. Our algorithm is meant
to work in conjunction with any type of pathfinder. In a full RTS game environment,
a pathfinder would examine the terrain and find a path composed of waypoints. These
waypoints would then be passed to our abstract model as orders to be executed sequen-
tially by the groups.

Experiments

The ultimate test of game AI systems is to compare their performance with that of
human players. While using our GUI for playing, we have gathered some anecdotal
evidence that the RTSplan players are indeed stronger than the individual strategies.
To test the effectiveness of RTSplan more rigorously, we ran tournaments to compare
RTSplan with and without opponent modeling against single fixed strategies. We also
gathered some execution time information.

To make the experimental results independent of specific hardware configura-
tions, the simulator used an internal clock. Thus, processor speed did not affect our
experimental results. To do this, we had to slightly modify our main execution loop
because we could no longer use an execution time limit for interleaving world execu-
tion and planning. We instead calculated a specified number of entries (eight for these
experiments) in the payoff matrix before allowing the world to move forward, which
leads to real-time performance of 2–40 world ticks a second on average running on
common computing hardware (see Table 4.5.3 later in this article).

Results of Experiments Without Opponent Modeling

First, we tested how well RTSplan does against the single strategies. The results shown
in Table 4.5.1 indicate that RTSplan wins easily against most opponents. RTSplan
struggles against the more aggressive strategies, however, because they manage to
inflict losses on it before it has computed its first strategy. One way of mitigating this
effect would be to pick a random strategy to start with.

4.5 Simulation-Based Planning in RTS Games 415

Table 4.5.1 RTSplan Versus Fixed Policy, with Opponent Modeling Disabled
and Enabled

Opp. Mod. Disabled Opp. Mod. Enabled

Fixed Policy Wins Losses Ties Wins Losses Ties

Null 100 0 0 100 0 0
Join Defense 98 2 0 97 1 2
Mass Attack (base) 98 2 0 99 1 0
Mass Attack (units) 98 2 0 99 1 0
Spread Attack (base) 51 49 0 92 8 0
Spread Attack (units) 51 49 0 92 8 0
Half Defense-Mass Attack 98 2 0 99 1 0
Hunter 31 69 0 95 4 1
Attack Least Defended Base 100 0 0
Harass 93 8 9

Results of Experiments with Opponent Modeling

Next, we enabled opponent modeling for RTSplan, set its parameters to t = 2.0 and
f = 0.5, and repeated the first experiment. As shown in Table 4.5.1 the addition of
opponent modeling allows for RTSplan to clearly defeat the single strategies, even the
ones it had trouble with earlier. This is not surprising because the opponents never
deviate from their strategies. After we correctly detect what strategy they are using, we
can execute a proper counterstrategy.

RTSplan Against Unknown Strategies

In real game scenarios, it is unlikely that the opponent will be following a strategy we
have in our strategy set. To test how RTSplan copes with “unknown” strategies, we
designed an experiment in which we removed the policy the opponent was using from
the active policy set. This meant that is was impossible for the AI to detect their oppo-
nent’s strategy. The results shown in Table 4.5.2 indicate that RTSplan plays well,
even against opponents that are doing something completely unexpected. There is an
additional disadvantage for RTSplan in this setting compared to a real-world situa-
tion: we blindfolded it to major strategic options that players would employ.

Table 4.5.2 RTSplan with Opponent Modeling Versus Fixed Unknown Policy

Unknown Policy Wins Losses Ties

Null 95 5 0
Join Defense 97 3 0
Mass Attack (base) 98 2 0
Mass Attack (units) 98 2 0
Spread Attack (base) 61 39 0

→

416 Section 4 Tactics and Planning

Unknown Policy Wins Losses Ties

Spread Attack (units) 61 39 0
Half Defense-Mass Attack 100 0 0
Hunter 41 59 0
Attack Least Defended Base 100 0 0
Harass 45 53 2

Execution Times

For our algorithm to be useful in a real RTS game setting, computations must be able
to finish in a reasonable amount of time. Table 4.5.3 shows the execution time per-
centiles for computing a single forward simulation. Different scenarios, sizes, numbers
of policies, and the effects of opponent modeling are shown. All runs were executed on
a dual-processor Athlon MP CPU (2 GHz), of which only one CPU was used. Even
though some slight spikes in performance are exhibited, as can be seen in the max
value, generally the execution time of a single simulation is low. Even in the worst of
our test cases, the simulation took less time than it takes a human to blink (350 ms).

Table 4.5.3 Execution Time Percentiles (Milliseconds)

Map Size (# of policies) 10th 25th Median 75th 90th Max

3 bases (8) 1.13 2.08 3.34 5.42 9.16 71.39
5 bases (8) 2.26 4.72 7.83 21.93 38.92 194.85
4 bases (10) 18.62 38.3 67.01 102.12 132.22 225.57
4 bases (10) (modeling) 5.19 11.5 28.21 50.15 95.4 220.3

These results show that even while computing several forward simulations every
frame, we can still run at a real-time speed, with the number of simulations run per
frame determined by available CPU time. These numbers are mainly dependent on
the simulation timeout parameter. Lowering this parameter will result in faster execu-
tion times, at the cost of lower playing strength. If the execution times are unaccept-
ably high, it is possible to simulate a shorter time into the future by decreasing the
simulation length parameter. Currently, we simulate the entire game. Lowering this
threshold will decrease execution time significantly.

Conclusion

Our simulation-based planning approach RTSplan takes a set of scripted AI policies,
repeatedly determines which one is currently optimal based on some simplifying assump-
tions, and follows this policy for a certain period of time before replanning. RTSplan
interleaves adversarial planning with plan execution, and its CPU demand is adjustable,

4.5 Simulation-Based Planning in RTS Games 417

making it well suited for RTS games and other real-time games. Furthermore, adding
simple opponent modeling makes RTSplan-based AI even stronger and faster.

RTSplan is easy to implement, suggesting that the algorithm would be a valuable
addition to an RTS game AI. It is an important first step toward RTS game AI sys-
tems that are capable of judging the merit of actions, as opposed to executing simple
rule-based policies.

Future Work

RTSplan is an original planning framework. Presented in the article are initial imple-
mentations and results that show the usefulness of the concept. Several aspects of the
algorithm can be improved. For example:

• There is room for performance optimizations, mainly in the forward simulation
section. The collision-detection algorithm that is currently used runs in quadratic
time and therefore does not scale well.

• The algorithm also needs to be tested in a full RTS game setting. This requires all
the other parts of the AI system to be completed. This includes a working scout AI,
base management AI, pathfinder, and so on. These were not available at the time of
writing, but we plan to integrate RTSplan into our RTS game engine [ORTS].

• Although our current set of strategies captures many of the common strategies
used in RTS games, it is by no means complete. Adding more complex strategies
will improve the performance of RTSplan-based players.

Source Code and Documentation

The accompanying CD-ROM contains software for our game environment, RTSplan,
and a graphical interface that allows human players to play against RTSplan in a vari-
ety of scenarios. Our program compiles under Linux and Cygwin. The README.txt
file describes the installation process and how to run the application. We also included
the master’s thesis this article is based on.

References

[GLPK] The GNU Linear Programming Kit. Available online at http://www.gnu.org/
software/glpk/.

[Neumann28] von Neumann, J., “Zur Theorie der Gesellschaftsspiele.” Math. Ann.
100, (1928): pp. 295–320.

[ORTS] A free software RTS game engine. Available online at http://www.cs.ualberta.
ca/~mburo/orts.

[Russell95] Russell, S., and Norvig, P., Artificial Intelligence: A Modern Approach.
Prentice Hall Series in Artificial Intelligence, 1995.

418 Section 4 Tactics and Planning

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.cs.ualberta.ca/~mburo/orts
http://www.cs.ualberta.ca/~mburo/orts

419

4.6

Particle Filters and
Simulacra for More Realistic
Opponent Tracking
Christian J. Darken—The MOVES Institute
cjdarken@nps.edu

Bradley G. Anderegg—Alion Science and
Technology Corporation
bradanderegg@gmail.com

The AIs for games such as the Halo and Thief series feature searching for the player
as a prominent and entertaining behavior. Hiding from the player is also a com-

mon AI feature. We believe that for some games, realistic searching and hiding might
make for more interesting gameplay than cheating (i.e., approaches based on letting
the AI know where the player is). A realistic way for the AI to decide where to search
or where to hide is by having a representation of where its opponent might be (i.e., by
tracking the possible location of the opponent). Predicting an opponent’s location is a
limited form of mental simulation, one of the ways human decision makers solve
problems [Kunde06].

Space-based techniques for opponent tracking compute the likelihood that the
target player or agent is in each region of space [Tozour04, Isla06]. A logical alterna-
tive is to represent a sampling of precise coordinates where the target might be. The
basic technique for doing this is called the particle filter. Particle filters have computa-
tion and memory costs that can be quite different from occupancy maps and, there-
fore, are a less expensive alternative in some applications. We describe the basic
particle filter technique, and then consider adding some intelligence to the particles,
resulting in simulacra that more accurately imitate the behavior of the agents or play-
ers they represent.

Occupancy Maps

We first summarize a space-based opponent tracking approach, the occupancy map,
for easy comparison to particle filters, which we introduce next.

Data

Let’s assume that the game level is represented by a directed graph of the same type as
that used for navigation. Each node of the graph has specific coordinates but can also
be taken to represent the part of the level closer to that node than to any other (i.e.,
the node’s Voronoi region). An edge between two nodes means that it is possible to
move from the first node to the second. Each node A stores a value pA, a “weight” that
is proportional to the probability of the target being at the corresponding place on the
level. The sum of the pA is also stored. Let’s call the sum p. Then the expected proba-
bility of the opponent being at node A is just pA/p. Each pair of nodes is assigned a
parameter, λAB, which is the probability of moving directly from node A to node B in
one update of the occupancy map. If there is no edge from A to B, λAB is zero. Obvi-
ously, for each node A, �B λAB � 1.

Initialization

In the instant that a visible target moves out of sight, its position is known. The model
can be initialized to track this target by setting pA to one at the known location and
zero everywhere else. A more uncertain awareness of target, for example, from hearing
a noise, might be modeled by making pA nonzero over the entire range of locations
where the noise could have originated.

420 Section 4 Tactics and Planning

FIGURE 4.6.1 The agent is the black triangle. His target has recently moved out of sight
around the eastern edge of a building, outlined in black. These diagrams are snapshots of
various possible models that the agent could have of the target. (Left) An occupancy map on
a rectangular graph of nodes (Isla model). (Center) An occupancy map on a more sparse
navigation graph. (Right) A small particle filter. Each dot represents one possible location of
the target.

Update

The occupancy map must be periodically updated via a move-cull process.

Move
If we define pA(n) to be the value of pA after the nth update, then

.

Roughly speaking, because pA is only proportional to the probability and not the
probability itself, the probability that the target is at A is reduced by the amount of
probability that moves to adjoining locations and is increased by the amount of prob-
ability coming in from adjoining locations.

Cull
If at any time it is observed that the target is not at location A, we subtract pA from p,
and set pA to zero. The exact nature of this test involves a key design decision, namely
whether to consider a visibility test of a single point sufficient (i.e., testing the node
coordinates) or whether checking multiple points or even a volumetric approach is
necessary.

The Isla Model

The model we have presented is a more general version of Isla’s [Isla02]. This model
reduces to his if each node has four neighbors (because the places the nodes represent
are centers of a rectangular grid, for example, as in Figure 4.6.1 left). Furthermore,
if all of the probabilities of motion are identical (i.e., for all adjacent nodes A and B)
λAB = λ, then this model becomes identical to Isla’s.

Analysis

Occupancy maps have several weaknesses. Each update, some probability always
bleeds from each node to each connected node, independent of whether enough time
has elapsed for the target to move between those nodes or not. The “wavefront” of
where the probability values are greater than zero moves independent of, and is possi-
bly much different from, the maximum speed of the target. This results not only in
quantitative error in the probability values but also in the serious qualitative error of
assigning nonzero probability to places where the target could not possibly be or zero
probability to places the target might be. Spacing location nodes uniformly and
synching the map update rate to the speed of the target can eliminate this problem,
but neither is necessarily convenient in a game context.

If the AI cannot observe locations A or B, but it can observe the only route
between them, probability should not move between A and B; however, it might in the
model, especially if the cheapest approach to culling (visibility testing the node coordi-
nates only) is used. This causes the target to seem to teleport directly between the two
points.

p n p n p n p n
A A AB A CA C

CB

() () () ()+ = − +∑∑1 λ λ

4.6 Particle Filters and Simulacra for More Realistic Opponent Tracking 421

The memory and computation requirements are proportional to the number of
nodes in the graph, which might be arbitrarily large.

In the Isla model, it is considered equally likely that the target will move in any
direction, which might not be correct for many targets. In comparison, simulacra
(described later) allow us to apply different movement behaviors depending on the
context.

Particle Filters

Particle filters represent the location of the target as a finite set of possibilities called
particles [Arulampalam02, Bererton04].

Data

Each particle has a “weight,” a value proportional to its probability, which indicates
how likely that possibility is. Typically, each particle consists of a single position that
could be the target’s current location. We will use N to represent the current number
of particles, xn to represent the vector position of the nth particle, and pn for its weight.
We use p to represent the sum of pn, so the probability that the target is at xn is taken
to be pn/p.

Initialization

When a visible target moves out of sight, the model is initialized by placing some
desired number of particles at an extrapolated position for the target that is not visi-
ble. If the target is detected via a sensory modality that has significant positional error
(such as sound, sonar, etc.), the particles are placed by sampling the position uncer-
tainty distribution, if known, or by uniformly sampling the approximate region of
uncertainty.

Update

As with occupancy maps, particle filters are periodically updated via a move-cull cycle.

Move
Each particle is updated by independently selecting a direction of motion by uni-
formly sampling [(0, 360) degrees and then attempting to move the particle the dis-
tance it could have moved at maximum velocity since the last update. If obstacles exist
that might interfere with motion, which there usually are for random direction move-
ment in game levels, each particle’s movement must be collision tested, and the parti-
cle’s motion adjusted if a collision occurs.

Cull
After each particle is moved, a visibility check to the owning agent is performed. If the
agent can see particle n, it is removed from the filter, and p is reduced by pn.

422 Section 4 Tactics and Planning

Analysis

Particle filters avoid many of the problems of occupancy maps:

• The particles move at the exact maximum velocity of the target.
• Particles can be spotted while in motion (i.e., no teleportation).
• The memory requirements of a particle are completely independent of the size of

the level or the number of nodes in its navigation graph.

Particle filters also have several weaknesses:

• The random choice of movement direction does not match the behavior of many
targets, as was our complaint of the Isla model. Movement choices depending upon
context are not possible.

• The filters need to test during update to make sure the particles are not moving
through walls, up impassably steep cliffs, and so on.

• The computational expense of particle filters is directly proportional to the num-
ber of particles. If the particle set is too small for the region in which the target
could be, the particle set will no longer represent the target’s possible position
well (i.e., the sampling error, associated with representing a continuum of possi-
ble locations with the finite set of particles, becomes large). Although methods to
“regularize” or repopulate the particle set after it has been created have been sug-
gested [Arulampalam02], the existing methods run the risk of creating particles
where no particle could possibly be, given previous culls.

• Tracking multiple enemies requires multiple sets of particles.

Simulacra

For us, a simulacrum is one agent’s (NPC’s) behavior model for another agent or the
player. That is, simulacra represent how an agent believes another agent or the player
will act. Simulacra can solve, partially or completely, many of the problems of particle
filters described earlier. The behavior of a simulacrum must be simpler than that of
the agent it represents for several reasons:

• To maintain realism, the simulacrum should not have access to the environmen-
tal information that is driving the behavior of the actual agent. For example, a
simulacrum could have a rule that triggers a behavior that would occur when it
sees an object whose position is known to the agent but not when it sees an object
whose position the agent is not aware of.

• Also, for maintaining realism, the simulacrum might not have an accurate idea of
the intentions or behavior models of the actual agent. For example, a simulacrum
might only be capable of an aggressive fighting behavior, where the agent it mod-
els is also capable of a “hide and heal up” behavior.

• To keep simulacra computationally tractable, each must use only a small fraction
of the computation time of an actual agent because each agent might need to
maintain simulacra for multiple targets.

4.6 Particle Filters and Simulacra for More Realistic Opponent Tracking 423

The occupancy map and particle filter techniques previously described both make
implicit use of a simulacrum. In fact, both use the same simulacrum. Both techniques
implicitly assume that the target is performing the wandering behavior referred to in the
mathematical literature as a “random walk.” The most probable location for a target that
moves out of sight, according to a random walk model, is immediately adjacent to its
last known location, as is clearly visible in Figure 4.6.1. This is a highly inappropriate
model for many targets in a game context. Often, the most unlikely behavior would be
for the target to stop just out of sight. We contend that we will get more realistic hiding
and searching behavior with better simulacra. If we know that the opponent will hide in
a building, for example, searching based on a hiding simulacrum (see Figure 4.6.2 cen-
ter) is bound to be more realistic than searching based on a wandering simulacrum (see
Figure 4.6.2 left).

Simulacra are simple to implement because they are just lightweight, nonren-
dered agents, and the agent infrastructure of a game can generally be easily repurposed
to support simulacra.

Data

Simulacra are particles, so they have a position xn and weight pn. Additionally, simu-
lacra have a behavior state variable bn, which might be a structure storing arbitrary
amounts of data. For the simplest simulacra, no behavior state is needed. Because it is
necessary for reasons previously described to keep the simulacra simple, generally the
behavior state should be small. As for particles, we store the sum of the pn in a variable
p. N stores the current number of simulacra, and N* stores the desired number.

424 Section 4 Tactics and Planning

FIGURE 4.6.2 The same scenario as in Figure 4.6.1 but with different target location
models. (Left) Simulacra that wander constrained to the navigation graph. Size is used to
represent the weight (relative probability) of each simulacrum. (Center) A hider simulacrum
that moves directly to the nearest location inside a building. (Right) Simulacra that all hide,
and then switch to a wander behavior with some transition probability. Hider simulacra are
represented as the square particle, and wander simulacra as the circular ones. The wander
simulacra will soon occupy most of the graph, including sharing the node occupied by the
hiders.

Update

Before moving, if N � N*, simulacra might be split. The simplest approach to split-
ting is to select a random simulacrum using pn/p as the probability of selection. The
selected simulacrum is then split into two identical simulacra each with weight pn/2,
and N is incremented. This procedure can be repeated until N reaches N*. The weak-
ness of this simple approach to stabilizing the size of the simulacrum set is that it is
really only helpful if the “move” part of the update assigns different movements to the
newly split twin simulacra. A more sophisticated approach to splitting could enforce
this by taking place during “move” and only allowing the split when the twins will
move differently. This approach could also capitalize on knowledge of how likely dif-
ferent movement choices are according to the movement logic. For example, if there
is a 75% chance of going left and 25% of going right, one twin could be chosen to go
left and its weight changed to 0.75pn with the other going right and assigned weight
0.25pn.

Move
Simulacra can be assigned arbitrary movement logic that depends on their behavior
state, bn. Although they might be made to move like particles, rather than moving in
a random direction, they could alternatively be made to move only to adjacent nodes
in a navigation graph. They might even choose target destinations based on their state
and plan paths to them, storing the paths in their bn. We give some examples in a later
section.

Cull
Simulacra are culled exactly like particles (i.e., for each simulacrum, a visibility check
to the owning agent is performed). If the agent can see simulacrum n, it is deleted,
and p is reduced by pn.

Analysis

How do simulacra solve the problems of basic particle filters? The main difference is
that the movements simulacra make are not necessarily those of a random walk. Com-
pare Figure 4.6.2 left with Figure 4.6.2 center for an extreme example of tighter local-
ization of the target based on knowledge of its behavior. Examples of alternative
movement policies are described in a later section. Consider the problem of needing
to check the particle’s motion for collisions, and so on. If the simulacrum is designed
to move only on a carefully constructed navigation graph in the same manner as a
rendered agent, this need disappears. The two simulacrum splitting approaches men-
tioned solve the problem of repopulating heavily culled simulacra sets so that all sim-
ulacra are guaranteed to be consistent with all previous culls. Problems of needing
large numbers of simulacra under some circumstances and of requiring multiple sim-
ulacra sets to represent multiple targets are inherited from particle filters. As Figure
4.6.2 illustrates, however, one simulacrum with the right behavior can be worth a
large cloud of wanderers. For this reason, generating just a few simulacra with more

4.6 Particle Filters and Simulacra for More Realistic Opponent Tracking 425

expensive behavior (e.g., including path planning) should be considered in applica-
tions where the opponent’s behavior is relatively predictable.

Examples

The following are a few examples of types of simulacra that might be used to model
the behavior of different agents.

The Wanderer
As previously mentioned, the particles of the basic particle filter technique perform an
unconstrained wandering behavior (refer to Figure 4.6.1). To avoid collision check-
ing, wanderer simulacra can have their motion constrained to a navigation graph
(refer to Figure 4.6.2 left). This is implemented by having simulacra arriving at a node
of the graph and selecting a random neighbor node to move to.

The Hider
Consider a simulacrum of an agent that is the hider in a game of hide-and-seek. A
simple model might be that the simulacrum chooses one out of a set of known good
positions to hide in. When the seeker starts the countdown, the hider proceeds to his
chosen location via the shortest path. Each simulacrum would store the path to its hid-
ing place, which would not change after initialization, in its behavior state variable.

Likewise, a simulacrum can be built for a ship that is attempting to evade the
agent. When the agent turns on radar to detect the ship but fails, it is possible that the
ship detects the radar and will use this information to run away, as shown in Figure 51
of Borovies [Borovies07]. Each simulacrum requires a Boolean behavior state variable
describing whether the ship is in the flee state. The simulacrum move logic would
contain a conditional so that movement choices are consistent with the mode.

The Hunter
Similarly, consider a simulacrum of a ship that is attempting to find the agent. When
the agent turns on radar to detect the ship but fails, it is possible that the ship detects
the radar and will use this information to set a course toward the agent, as shown in
Figure 52 of Borovies [Borovies07]. As with the hider, each simulacrum requires a
Boolean variable to change to capture mode.

The Capture the Flag Player
A simulacrum could be used specifically to represent the possible locations of an
opposing Capture the Flag player who has just taken the agent’s flag. Obviously, the
initial location of the target is known (he’s at the flag), as is his destination (his own
base). One simulacrum could be used to trace each route back. The cull logic could be
changed slightly to allow all members of the agent’s team to collaborate in eliminating
simulacra. If the agent’s team takes a flag as well, this could trigger the simulacra to
change to a “hide” behavior.

426 Section 4 Tactics and Planning

Source Code and Demo

The CD-ROM includes simulacrum demos in the context of simple games in 3D
urban-style environments.

Conclusion

Tracking the possible location of an opponent is a potentially important game AI
capability for enabling intelligent hiding from, or searching for, the opponent. This
article provides an introduction to particle filters for this purpose. Particle filters have
a very different performance profile from occupancy maps and thus represent an
interesting alternative. We also show how adding a small amount of intelligence to the
particles, transforming them to simulacra, can improve the quality of tracking.
Finally, we note that there is vast potential for hybrid approaches integrating the best
features of simulacra and occupancy maps.

References

[Arulampalam02] Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T., “A Tuto-
rial on Particle Filters for On-line Non-Linear/Non-Gaussian Bayesian Track-
ing.” IEEE Transactions on Signal Processing, Vol. 50, no. 2, (2002): pp. 174–188.

[Bererton04] Bererton, C., “State Estimation for Game AI Using Particle Filters.”
Proceedings of the AAAI Workshop on Challenges in Game AI, Technical Report
WS–04–04, AAAI Press, 2004.

[Borovies07] Borovies, D., “Particle Filter Based Tracking in a Detection Sparse Dis-
crete Event Simulation Environment.” Master’s Thesis, Naval Postgraduate
School, Monterey, California. Available online at http://www.nps.edu/Library/
index.html, 2007.

[Isla06] Isla, D., “Probabilistic Target Tracking and Search Using Occupancy Maps.”
AI Game Programming Wisdom 3, Charles River Media, 2006.

[Kunde06] Kunde, D., and Darken, C., “A Mental Simulation-Based Decision-Mak-
ing Architecture Applied to Ground Combat.” Proceedings of BRIMS, 2006.

[Tozour04] Tozour, P., “Using a Spatial Database for Runtime Spatial Analysis.” AI
Game Programming Wisdom 2, Charles River Media, 2004.

4.6 Particle Filters and Simulacra for More Realistic Opponent Tracking 427

http://www.nps.edu/Library/index.html
http://www.nps.edu/Library/index.html

This page intentionally left blank

429

4.7

Using Bayesian Networks to
Reason About Uncertainty
Devin Hyde
devinhyde@gmail.com

The goal of this article is to help you understand the fundamentals of Bayesian net-
works. The article shows how a Bayesian network can be created to model a prob-

lem description that could fit into a video game. By the end of the article, you should
know how to form and solve similar problems on your own. This article presents
Bayesian network information through examples that step through the process of
designing the layout of the presented Bayesian network solutions. Implementations of
the examples are provided on the accompanying CD-ROM. These working models
require the use of the free demo version of Netica (available at www.norsys.com) and
are useful for showing how beliefs are updated based on observations. Unfortunately,
it is beyond the scope of this article to explain all the math required to implement the
Bayesian networks shown in this article.

Bayesian Network Introduction

Bayesian networks may also be referred to as Bayes nets, Bayes networks, and belief
networks. To illustrate Bayesian networks and how to build one, we’ll work through an
example based on a question in Russell and Norvig’s textbook on AI [Russell03]. This
example shows a Bayesian network acting as a diagnostic system. Later examples will
show that these same principals can be applied more directly to video game situations.

A Bayesian network has a graphical part and a numerical part. The graphical part
is a directed acyclic graph (DAG). The nodes represent random variables, which can
have discrete or continuous domains. For simplicity’s sake, this article uses discrete
domains. The directed arcs between nodes show a causal relationship between those
two variables. The node at the tail of the arc is called the parent of the node at the
head of the arc [Russell03]. The arrangement of nodes in the graph shows conditional
independence. Each node also contains probability information.

Russell and Norvig’s question involves building a Bayesian network to act as a
diagnostics system for a car. If you were having problems with your car, some things
you could check include whether the car starts, if the radio works, if the gas tank is
empty, if the ignition creates a spark, and if the battery is dead. We will represent these

http://www.norsys.com

five checks with five Boolean values: Starts, Radio, Gasoline, Ignition, and Battery.
More complicated examples could use variables with larger domains. For this example,
it’s sufficient to say that if the car starts, then Starts = true; if the battery is charged,
then Battery = true; if the gas tank contains fuel, then Gasoline = true; and so on.

Now that the variables have been defined, we could jump right to defining prob-
abilities for them. Your first thought might be to define a probability for each combi-
nation that the five variables could have. This would allow us to look up the
probability of any of the 32 combinations of values that our 5 variables could possess.
Although this might seem viable, the number of combinations will continue to grow
as we add variables. This problem is made worse if the variables’ domains contain
more than two values. Luckily, we can define smaller conditional probability tables
(CPTs) based on the relationships between variables expressed in the graph. A CPT
defines the probability of a variable, given the value of its parent variable(s). After we
have finished defining probabilities using CPTs, we’ll have 20 values. This may seem
like a modest savings, but its impact will increase as the size of the examples increase.

As mentioned before, a directed acyclic graph, or DAG, is the structure used for a
Bayesian network. Figure 4.7.1 shows the DAG for the car diagnostic system exam-
ple. The nodes of the graph represent the five variables we defined earlier. Connection
arcs between the variables are directed and often show a causal relationship between
those variables. The variable at the arrowhead of the arc is affected by the variable at
the tail of the arc. Variables connected by arcs have a cause-and-effect relationship.
Our Bayesian network is a model that we’ll use to approximate the world. We want to
show when a given part is dependent on one or more of the other parts in the vehicle.
In our example, the battery needs to work for the radio and ignition to work. The
ignition needs to spark, and we need gasoline in the car for the engine to start. These
relationships between variables define how we will draw the graph for this problem.

430 Section 4 Tactics and Planning

FIGURE 4.7.1 The DAG for a car diagnostic system.

We can now return to the probability section of this Bayesian network. The prefer-
able way to assign probabilities is with the help of an expert in that area or by using
statistical data. The car’s owner may suffice as an expert for this example. A more com-
plicated system could require a trained mechanic and/or information from various parts
manufacturers. Probabilities are assigned to each possible value of the variable, given
each possible combination of values that the parent(s) of this variable can take on.

For each variable in our DAG, we’ll create a CPT. Variables with no parents in the
DAG may be a good place to start assigning probabilities. In our example, Battery
and Gas have no parents. We need to decide the probability that the battery has a
charge, denoted P(Battery = true). P(Battery = false) = 1 - P(Battery = true),
which is to say that probability tables must sum to 1.

Variables with one or more parent have more complicated CPTs. These tables assign
probabilities to the variable, given each combination of values that the parent variables
can be assigned. From Figure 4.7.1, we can see the need to define P(Radio | Battery),
P(Ignition | Battery), and P(Starts | Ignition, Gasoline). The CPT for P(Starts
| Ignition, Gasoline) could be defined with the data in Table 4.7.1.

Table 4.7.1 Conditional Probability Table for P(Starts | Ignition, Gasoline)

Ignition Gasoline Starts = true Starts = false

True True 0.94 0.06
True False 0.03 0.97
False True 0.02 0.98
False False 0.01 0.99

A Bayesian network’s graph structure directly shows dependence between nodes.
Through active and blocked paths, the graph also shows conditional independence.
Conditional independence means that the value of one variable has no effect on the
value of another. More formally, the probability of variables A and B given C is the
same as the probability of A given C times the probability of B given C [Russell03].
When a Bayesian network has been completed, the value assigned to each node will
be updated based upon active and blocked paths in the DAG.

To elaborate on the independence and dependence shown in a DAG, we’ll look at
three types of paths that can be formed by groups of three nodes. We’ll call the three
nodes X, Y, and O. In each case, we want to look at the path from node X to node Y,
going through node O. In the three types of paths, when nodes X and Y are indepen-
dent, the path between them is blocked. If X and Y are dependent, the path between
them is active.

A linear, or serial, path has an arc from node X to node O and an arc from node O to
node Y. Reversing both these arcs also forms a linear path. If we have not observed the
state of node O, then, in a linear path, the knowledge that we have about node X influ-

4.7 Using Bayesian Networks to Reason About Uncertainty 431

ences the value of node Y, and vice versa. This is because the child node (Y) is depen-
dent on its parent (O), which is dependent on its parent (X). Observing the center node
breaks the dependence that the last node has on the first. An example of a linear path
can be seen on the left side of Figure 4.7.2. In the car example, the path from Battery
to Ignition to Starts is a linear path. If we have only observed the value of Starts, it
influences the value of Battery, and we have an active path between these two vari-
ables. In other words, if the car doesn’t start, then we might not have ignition, which
could mean that the battery is dead. If we then observe the value of Ignition (e.g., by
discovering that the ignition works), then our knowledge of Starts no longer influ-
ences the value of battery—we know the battery is likely to be good even though the
car is not starting. In this case, the path between Starts and Battery is blocked.

A diverging path is one where node O is a parent of both node X and node Y. If we
have not observed node O, then once again we have an active path between nodes X
and Y. If we have not observed the parent node, then the knowledge about one child
node influences the value of a sibling node. An example of a diverging path can be
seen in the center of Figure 4.7.2. Returning to Figure 4.7.1, the Battery’s arcs to
Radio and Ignition form a diverging path. If we have not observed the value of the
Battery, then observing the value of Radio will influence the value of Ignition—if
the radio works, then the battery is probably good, which means that the ignition
should work, too. Observing the value of Battery stops the observation of one child
node from influencing the value of a sibling node. Again, the path from one sibling to
the other is blocked.

A converging path is when nodes X and Y share a common child, node O. Nodes X
and Y are independent, unless the child node is observed. If node O is observed, then
the path between X and Y is activated, and observations about the state of one node
affect our belief in the state of the other. An example of a converging path can be seen
on the right side of Figure 4.7.2. In the car example, Ignition and Gasoline share a
common child, Starts. Observing the value of Ignition only influences the value of
Gasoline if we have observed the value of Starts. For example, if we know that the
car doesn’t start, but it has ignition, this will increase the probability that we are out of
gasoline. If we have not checked whether the car starts but know that the ignition
works, this does not change the probability that the car has gas.

Our CPTs provide probabilities for many connections, both direct and indirect,
but they will not cover every possibility. When we don’t have a probability in our
table, we need to use Bayes’ theorem. An in-depth explanation of Bayes’ theorem is
beyond the scope of this article. The examples presented here do not require that you
understand the theorem, but it will be helpful when translating Bayesian networks
into code. Robert Cowell has written an article that offers three problems involving
Bayes’ rule to work through [Cowell99]. The first one is fairly straightforward. The
other two may require additional explanation if you are unfamiliar with Bayesian net-
works. Eugene Charniak offers a good starting place for further reading on Bayesian
networks [Charniak91]. Judea Pearl offers a great deal of information about how
beliefs are passed around a Bayesian network [Pearl86].

432 Section 4 Tactics and Planning

Solutions

This section of the article presents detailed solutions for two problems. These prob-
lems have been created to help motivate the use of Bayesian networks in video games.
The solutions are written to help you understand the steps taken and allow you to
form and solve similar problems. These examples start with a story that could fit into
a video game. The Bayesian networks created are models that approximate the world
created in the story.

Thief Bayesian Network

The following example is inspired by the Bayesian network example presented in the
first AI Game Programming Wisdom volume [Tozour02]. The situation we will be mod-
eling involves an NPC guard who is stationed outside of a building, protecting it from
thieves. The player controls a thief, and one of the thief ’s objectives is to get inside this
building without being detected. While on patrol, the guard might hear a muffled
noise, see a subtle movement in the dark, or discover a footprint. The building is in a
rundown part of town, so either rats or a thief could have caused the movement and
noise. Footprints would obviously not be caused by a rat but could be caused by a thief.
These factors will be treated as uncertain evidence. We’ll build a Bayesian network to
model this part of the world, and the guard’s actions will be drawn from this model.
This is done as an alternative to scripting the guard’s actions.

Tozour’s original thief example uses a DAG consisting of four parent nodes and one
child node. The parents are Saw Something, Noises, Dead Body, and Hit By an Arrow.
Each of these nodes contains one arc from it to a node labeled Conclusion = {Thief,
Rats}.

4.7 Using Bayesian Networks to Reason About Uncertainty 433

FIGURE 4.7.2 Linear, diverging, and converging paths in Bayesian networks.

Most Bayesian networks are used to model the world—gasoline and ignition cause
a car to start, or an earthquake causes a house’s alarm system to sound. After observed
evidence has updated the probabilities of the rest of the nodes in the model, the user
(perhaps an NPC or a person using a diagnostic system) draws conclusions from the
Bayesian network. Note that the parent in each case is something about the state of the
world that we might want to infer (the cause), whereas the child is something that we
might observe (the effect). Thus the network is a model of how the world works. It
allows us to generate expectations about the state of the world (expressed as probabili-
ties) based on our observations.

The solution presented in this section allows a separate probability to be assigned
to the presence of both thieves and rats, whereas Tozour’s Bayesian network generates
a single probability that one or the other is present. In Tozour’s DAG, a converging
path is created from one parent node, to the conclusion node, to another parent node.
Given that we do not observe the conclusion node, the parent nodes (which represent
the observable evidence) are independent. This is counterintuitive because seeing
something and hearing noises are not independent events. When two variables should
be dependent but are arranged so all the paths between them are blocked, then the
model might give unintuitive results.

The first step in building the Bayesian network is to decide on our variables and
their graph structure. The three pieces of evidence the guard can observe are noise,
movement, and footprints, so we will create corresponding nodes. These nodes will
each have a value of true if the guard observes this piece of evidence, and false if the
guard does not. Our world only provides two possible sources for these pieces of evi-
dence: rats or a thief. Thus, we will create a Rats node and a Thief node. People rea-
son from observations to conclusion, but as we explained earlier, we do not want to
model this explicitly. Instead, we will model from cause to effect. In this case, only a
thief will leave footprints, whereas either rats or a thief can cause noise or movement.
Correspondingly, arcs should be drawn from Rats to Noise, from Rats to Movement,
from Thief to Noise, from Thief to Movement, and from Thief to Footprints. The
final graph structure can be seen in Figure 4.7.3.

Before this Bayesian network is ready to use, we need to populate the CPTs. We
can start with the parentless nodes in the graph.

This building is not in a very well kept area, so it’s likely that there are rats nearby.
The presence of rats is not a part of the original specification, so an assumption about
their presence will be made—there is a 60% chance of rats being nearby (and a 40%
chance of them being absent).

The building holds important corporate secrets, which makes it a likely target for
thieves. In the past year, there have been 30 attempts at robbing the building. We do
not have any data on why the thieves chose those days. We might then decide that any
day is equally likely for a thief to attempt to break in. The 30 attempts divided by 365
days gives us approximately an 8% chance of a thief being on the premises on any
given day.

434 Section 4 Tactics and Planning

The next step is to determine the conditional probabilities of Movement, Noise,
and Footprint. For the movement node, we need to determine P(Movement | Rats,
Thief). This means we need to come up with probabilities that there will be some
noticeable movement given that rats are or are not present and that a thief is or is not
present. We determine that if both rats and a thief are present, the guard has a 60%
chance of catching some movement out of the corner of his eye. This value may be
refined later, of course, after we investigate some actual occurrences of movement and
find out what caused them. Similarly, if just rats are present, then the guard has a 55%
chance of seeing movement. If just a thief is present, then he has a 10% chance of see-
ing movement. Finally, if neither rats nor a thief is present, then there is still a 5%
chance of the guard seeing something—perhaps the wind blowing some leaves
around, for example. These values are summarized in Table 4.7.2. Note that the total
probability for each line on the table has to add up to 100%.

When looking through the Netica implementation of this example, it’s more
important to see changes in P(Rats) and P(Thief) given the observed evidence, than
to worry about the exact probabilities of child nodes, given the values of their parents.

Table 4.7.2 CPT for P(Movement | Rats, Thief)

Rats Thief Movement = True Movement = False

True True 0.60 0.40
True False 0.55 0.45
False True 0.10 0.90
False False 0.05 0.95

4.7 Using Bayesian Networks to Reason About Uncertainty 435

FIGURE 4.7.3 Bayesian network for detecting a thief.

Table 4.7.3 is similarly constructed for P(Noise | Rats, Thief). The numbers
are weighted based on the assumption that rats are likely to make some noise, while
thieves generally remain very quiet. If both rats and a thief are present, then they
would each cause the other to make more noise than if they were alone.

Table 4.7.3 CPT for P(Noise | Rats, Thief)

Rats Thief Noise = True Noise = False

True True 0.90 0.10
True False 0.55 0.45
False True 0.33 0.67
False False 0.15 0.85

P(Footprint | Thief), given in Table 4.7.4, is constructed with the belief that a
thief will probably leave behind some evidence of where he has traveled. This assump-
tion could be changed for different environments. For example, a thief is more likely
to leave footprints in mud. In a rainstorm, evidence left behind by a thief will be
quickly washed away. A further revision might be to add a weather node and a surface
node, both of which would influence the Footprint node.

Table 4.7.4 CPT for P(Footprint | Thief)

Thief Footprint = True Footprint = False

True 0.60 0.40
False 0.01 0.99

After the graph and the CPTs are complete, rules could be designed to use the
Bayesian network because it only calculates probabilities. Observed evidence will be
noted on the Bayesian network. For example, the guard has seen movement and heard
a noise but has not found any footprints. This information is passed though the net-
work, and the probabilities of Rats and Thief are updated. A simple rule to use is that
if the probability of a thief being present, given the observed evidence, exceeds a certain
threshold, then the guard should sound an alarm or call for backup. This probability
does not have to be as large as 90%—the building owner might want his guards to err
on the side of caution if they think a thief is on the premises. More intricate rule
systems could take different actions for different beliefs that a thief is present. P(Thief)
= 0.20 might result in the guard being more alert, for example, whereas P(Thief) =
0.30 would cause the guard to report his suspicion to his boss, and P(Thief) = 0.40
would cause him to call for backup.

436 Section 4 Tactics and Planning

Baseball Manager Bayesian Network

Our next example is based on another article from the first volume in this book series,
which proposes software to help a baseball manager [Laramée02]. The manager needs to
make a series of decisions related to his pitcher. If the pitcher is nervous, then the man-
ager could send the pitching coach in to talk to him. If he is tired, then the manager
could put in a relief pitcher. The manager’s observations on pitch speed, whether the
pitch is hit, who is at bat, and the presence of runners on base can affect his conclusion.

Laramée’s article states that this problem has too many variables and too many
interdependencies for Bayesian networks to be used successfully [Laramée02]. The
purpose of this section is to show that a Bayesian network can be created to serve
approximately the same purpose as Laramée’s solution. Much larger Bayesian net-
works have been created for medical diagnosis and genealogy applications. The exam-
ples presented in this article are tractable. Models do not have to represent every
interaction that takes place in the real world to be useful. The Bayesian network is
modeling the video game’s constructed world, which will not model every interaction
that exists in the real world either.

Laramée also objected to the use of Bayesian networks because the values for condi-
tional probabilities are too difficult to define. Not being able to use Bayesian networks
because the required probability distributions are not, or cannot, be known is a reason-
able concern. This concern is less reasonable when creating models in a computer game
because the world is fully constructed by humans. In a scientific application, you may not
know if a certain environmental factor causes cancer or how to define the CPT that
expresses that. As a developer, you know if the world was created with that factor con-
tributing to cancer. Knowing that the cause-and-effect relationship is true does not mean
that the AI has to cheat by modeling the exact interactions in the game’s world, but it
does greatly simplify the task of building a Bayesian network for its decision making.

The first two variables we will look at are Tired and Nervous. The pitcher could be
one, the other, both, or neither. We want this Bayesian network to determine a proba-
bility that the pitcher is nervous and/or tired based on factors that we can observe. The
nodes Tired and Nervous can each have a value of true or false.

The manager can observe the speed of the pitch. The speed can be affected by
whether or not the pitcher is tired or nervous. True and false are obviously not very
useful values for the speed of a pitch. Further, the speed of a nonfastball pitch (such as
a curve ball) is not a good indicator of whether the pitcher is tired or nervous. Thus,
we assign a number of possible values for different speeds of a fastball, plus a value for
pitches other than fastballs. The original article suggested four ranges for fastball
speed, so we will use that as well. Specifically, we separate pitches into fastballs above
93 mph, fastballs between 87 and 92 mph, fastballs below 87 mph, and pitches that
are not fastballs. These ranges could be changed for faster or slower pitchers. Ranges
are used because continuous variables are computationally more difficult to deal with
than discrete values. In the diagram, an arc will be drawn from the Tired node to the
Speed node, and from the Nervous node to the Speed node.

4.7 Using Bayesian Networks to Reason About Uncertainty 437

Next, our manager can observe the outcome of the pitch—a ball, a strike, a hit, or
an out (from a hit). The outcome of the pitch may depend on other factors as well.
Whether or not a runner is on base might affect the batter’s strategy and therefore
would affect the outcome of the pitch. Who is at bat would also have an effect. We
will now talk briefly about these two variables.

Onbase’s value can be set to true or false. The assumption is that a runner on base
might cause the pitcher and batter to take a different approach than if the bases were
empty. Later revisions could account for the number of runners on base and what bases
they are on. For now, we will stick to a Boolean and draw an arc from Onbase to Outcome.

The current batter also has an effect on the outcome of the pitch. Three values
were decided on for this node: good, average, and poor. They are based on an explana-
tion of Major League batting averages available in Wikipedia’s “Batting Average” arti-
cle. A batting average of over .300 is considered good, .250-.300 is average, and below
.250 is poor. Note that averages below .200 are generally considered to be unaccept-
able, whereas averages above .400 are nearly impossible [Wikipedia06]. An arc is
drawn from Batter to Outcome. The current batter also influences whether the pitcher
is nervous. A batter with a high batting average could make a pitcher nervous, so an arc
is drawn from Batter to Nervous.

Other factors, such as the current score of the game, could also contribute to the
batter’s nervousness. These factors will be left out of the model at this time, although
we could add them later if we were unhappy with the results of our current model.

A given batter will typically receive anywhere from one to six pitches while at the
plate or even more if the batter hits a number of foul balls. Rather than dealing with
all the possible combinations of strikes, balls, and fouls, and changing probabilities
accordingly, we will assume that each pitch for a batter is independent. Again, we can
always account for this factor later if we find that it is significant.

Figure 4.7.4 shows the graph structure for one pitch. You could expand this graph
further by creating additional copies of the Outcome, Speed, Onbase, and Batter nodes.
Looking at the last several pitches will provide a better evaluation of whether the
pitcher is nervous or tired. In addition, if we use information from multiple pitches,
then the DAG could be used to predict the outcome of the next pitch.

When declaring probabilities for Tired and Nervous, we will use values that make
sense for our particular pitcher. These values can be changed each inning and will be
different for each individual pitcher. For example, a rookie pitcher might be more
likely to be nervous, regardless of who is at bat. A veteran pitcher may have a higher
P(Tired = true) value if he is not as physically fit as a younger pitcher.

A CPT has to be created for P(Speed | Tired, Nervous). The probabilities given
in Table 4.7.5 suggest that if the pitcher is tired, then he is most likely to throw a pitch
below 86 mph and will only very rarely throw one above 93 mph. Similarly, if he is
nervous, according to these values, it is more likely that he will pitch between 87 and
92 mph. These values could be improved by studying actual pitchers.

438 Section 4 Tactics and Planning

Table 4.7.5 CPT for P(Speed | Tried, Nervous)

Fastball Fastball Fastball Not a

Tired Nervous 93+ 87-92 86- fastball

True True 0.05 0.20 0.55 0.20
True False 0.05 0.25 0.50 0.20
False True 0.10 0.35 0.30 0.25
False False 0.50 0.22 0.10 0.18

The probability that there is a runner on base was arbitrarily set to 33%. This
value is not that important because we will always be able to observe whether or not
someone is on base.

The probability of Batter = average is set to 0.60. The probability of Batter =
good is set to 0.10. The probability of Batter = poor is set to 0.30. We could popu-
late a better CPT by examining the batting averages of all the players on the opposing
team or by looking at all batters in the league. Once again, the manager will always be
able to observe the player who is at bat. Prior to the game, the team should be able
to access each player’s batting average, making it easy to classify the batter as good,
average, or poor.

The CPT for Outcome is a larger table. Its values are based on the corresponding
batting average of the given batter. Table 4.7.6 shows a section of the completed CPT
(which is available in its entirety on the CD-ROM). If Nervous and/or Tired are true,
then the probability of a base hit is greater than the corresponding batting average. If
Nervous and Tired are false, then the probability of a base hit is less than the corre-
sponding batting average of a given batter. This table could be further improved if sta-
tistics were gathered on the average number of strikes and balls a pitcher throws, as
well as the number of hits that are caught for an out.

4.7 Using Bayesian Networks to Reason About Uncertainty 439

FIGURE 4.7.4 One pitch Bayesian network for determining the state of a pitcher.

Table 4.7.6 CPT for P(Outcome | Tired, Nervous, Onbase, Batter)

Base Out

Tired Nervous Onbase Batter Strike hit from hit Ball

True True True Good 0.15 0.35 0.10 0.40
True True True Average 0.15 0.30 0.15 0.40
True True True Poor 0.15 0.25 0.20 0.40
True True False Good 0.18 0.35 0.10 0.37
True True False Average 0.18 0.30 0.15 0.37
True True False Poor 0.18 0.25 0.20 0.37

If the model is extended, we could observe evidence for the last n pitches. More
observed evidence might give us a better overall picture about the actual values for
Tired and Nervous, which we could use to reduce the effect of lucky hits and unlucky
pitches. Because Tired and Nervous are never actually observed, if we observe n–1 sets
of Outcome, Speed, Onbase, and Batter, there will be an active path from them to the
nth set of Outcome and Speed. This active path means that the observed values influence
the value of the nth pitch. This value can serve as a prediction about the next pitch.
Rules could be developed to send in the pitching coach or pull the pitcher if the man-
ager is not happy with the prediction. If P(Nervous = true), given the observed evi-
dence, is greater than P(Tired = true), given the observed evidence, then the manager
should send in the pitching coach to try to calm down the batter. If P(Tired = true)
is above some threshold, such as 40%, then the manager should warm up the relief
pitcher. Finally, if P(Tired = true) is above 60%, then the manager should put the
relief pitcher in.

Conclusion

This article has offered an introduction to Bayesian networks, as well as suggesting
several articles for further reading. The examples provided will help you formulate
similar problems and complete Bayesian network solutions. The next step is to turn
the Bayesian networks into code that can be used in a video game. One approach to
that problem is to use existing software, such as Netica, a software application that
offers APIs for working with Bayesian networks in C and Java. Alternately, a good ref-
erence on implementing Bayesian networks using a minimal amount of space can be
found in [Grant05].

References

[Charniak91] Charniak, E., “Bayesian Networks Without Tears: Making Bayesian
Networks More Accessible to the Probabilistically Unsophisticated.” AI Maga-
zine, Vol. 12, no. 4, (1991): pp. 50–63.

440 Section 4 Tactics and Planning

[Cowell99] Cowell, R., “Introduction to Inference for Bayesian Networks.” Learning
in Graphical Models, Jordan, M. I. Editor, The MIT Press, (1999): pp. 9–26.

[Grant05] Grant, K., and Horsch, M., “Practical Structures for Inference in Bayesian
Networks.” Available online at http://www.cs.usask.ca/research/techreports/2005/
TR-2005-04.pdf, 2005.

[Laramée02] Laramée F., “A Rule-Based Architecture Using the Dempster-Shafer
Theory.” AI Game Programming Wisdom, Charles River Media, 2002.

[Pearl86] Pearl, J., “Fusion, Propagation, and Structuring in Belief Networks.” Artifi-
cial Intelligence, Vol. 29, No. 3, (1986): pp. 241–288.

[Russell03] Russell, S. J., and Norvig, P., Artificial Intelligence: A Modern Approach.
Second Edition. Prentice-Hall, 2003.

[Tozour02] Tozour, P., “Introduction to Bayesian Networks and Reasoning Under
Uncertainty.” AI Game Programming Wisdom, Charles River Media, 2002.

[Wikipedia06] Wikipedia. “Batting Average.” Available online at http://en.wikipedia.
org/wiki/Batting average#Baseball, 2006.

4.7 Using Bayesian Networks to Reason About Uncertainty 441

http://www.cs.usask.ca/research/techreports/2005/TR-2005-04.pdf
http://www.cs.usask.ca/research/techreports/2005/TR-2005-04.pdf
http://en.wikipedia.org/wiki/Battingaverage#Baseball
http://en.wikipedia.org/wiki/Battingaverage#Baseball

This page intentionally left blank

443

4.8

The Engagement Decision
Baylor Wetzel—Brown College
baylorw@yahoo.com

You have 3 tanks, 2 fighters, and 5 infantry. Close by is the enemy’s army of 1 tank
and 18 infantry. Should you attack? That is the engagement decision.
Whether or not to engage in battle—there are numerous ways to answer this

question, each with its own advantages and disadvantages. In this article, we look at
some of the ways to make this decision.

Deciding at Random

We should never discuss video game AI without mentioning random numbers. If we
are faced with an opponent, it is certainly possible to decide whether or not to attack
based on the flip of a coin or roll of a die.

Random numbers have many positive attributes, such as being easy to design,
easy to implement, and quick to execute at runtime. On this, most people agree. But
the goal of a video game AI technique is not merely to be efficient (although that is
important, too) but to produce behavior our player is happy with, and on this, many
people feel random numbers are the worst possible option, which in certain circum-
stances is true. There are, however, a number of common situations where random
numbers produce perfectly acceptable behavior. For the past three quarters, my AI
students were required to play a simple turn-based strategy game against 14 different
AI opponents we’ve created. Students are given one week to play each opponent as
many times as they choose and document which target selection strategy they believe
the AI is using. They must also rate how fun and human-like each AI opponent is.
One of those opponents, Moe, makes every decision completely at random. Before
the assignment, students seem in agreement that a random decision strategy would be
easily spotted and not very much fun. Despite this, Moe is consistently ranked as
being human-like and a lot of fun. This AI is currently the second highest rated oppo-
nent (the top opponent, Allen, chooses his opponents in alphabetical order).

So, under the right circumstances, a strategy of making decisions completely at
random can produce acceptable results. One of those circumstances is that there can-
not be any options that are glaringly, obviously wrong. If an AI must decide between
casting a fireball or an ice bolt (assuming the target takes equal damage from either) or
between attacking a weak target or a strong one, there is no obviously incorrect

option. There will certainly be those who vehemently argue that it is better to attack
the strongest targets first and then the weak ones, but there are just as many people
who will passionately argue the opposite. When there is uncertainty, people dream up
those details necessary to make almost any option seem plausible. And when an AI
acts in a way the person does not understand, more often than not, the person simply
assumes the AI has a different, but perfectly valid, strategy. For example, in the target
selection exercise described earlier, many students have documented that one of the
AI opponents, George, always attacks bandits, dwarves, and other units before black
dragons, bone dragons, and dragon golems. They have explained this away through a
complex back-story that involves George being afraid of dragons; in reality, George
attacks opponents based on the lengths of their names.

In most games, the previous condition does not apply for engagement decisions.
Quite often, a battle is so lopsided that it is suicide for one side to attack. If the
enemy’s army contained 10 black dragons, 100 vampires, and 1,000 dwarves, and my
army consisted only of a small, half-dead gerbil, it would make no sense for me to
attack the enemy and only slightly less sense for the enemy to not attack me. Yet with
a purely random approach, such things can happen.

So a completely random strategy is unlikely to be a good option. This does not
mean that randomness does not have its place. We will come back to random num-
bers when we discuss some of the more advanced techniques.

The Simple Strategy

When we discuss simple strategies, we are referring only to those strategies so simple
that they involve no (or almost no) calculation. An “attack anyone” strategy falls into
this category as does “run away from anyone.” You could also have the strategies
“attack anyone who gets within a certain distance,” “attack when our side outnumber
theirs,” “attack if they’re all human-sized or smaller,” “attack unless they have people
who look magical,” “attack anyone who looks wounded,” “attack anyone carrying
food,” “attack females,” and “attack anyone wearing white.”

Perhaps the most obvious simple strategy is the berserker strategy—always attack.
This strategy is extremely common in arcade, FPS, RPG, and action games, where
every guard, cave rat, robot, and alien slave charges at the player the minute he walks
into view. Games where the actor attacks regardless of outcome are probably more
common than the alternative. However, even in games where the controller (AI or
human) must make a discrete decision to attack, there are times when certain units
will always attack. For example, while guards might consider alternatives to attacking,
such as retreating, taking up defensive positions, or surrendering, guard dogs and
automated turrets would likely always attack.

Using a simple strategy has the advantage of being easy and quick to design,
implement, and execute. For many games, where the player is a normal-looking
human wandering through an enemy base containing carefully placed enemy guards,
this strategy makes perfect sense. It also makes sense for certain types of creatures—

444 Section 4 Tactics and Planning

even in a strategy game, one expects bees, zombies, and trained guard dogs to attack,
even when there is no chance of winning.

Power Calculation

In many games, the decision of whether or not to start a fight depends on whether or
not you think you can win that fight, which, in turn, depends on how powerful you
believe each side to be.

To answer this question, we need some way of calculating the power of a given
side. Techniques for doing this range from very simple to quite complicated, but, ulti-
mately, they depend on the design of your game.

Basic Formulas

Suppose we have a game in which combat is done by rolling a 6-sided die for each
piece, and, if the number is less than or equal to that piece’s attack score, it kills an
enemy. Infantry have an attack score of 1, fighters and tanks a 3, and bombers a 4.
There are no other statistics for these pieces other than the cost to build them. In this
situation, the most obvious way to calculate the combat value of the army is to add
the attack scores of all the pieces together. So if we had 10 infantry, 2 tanks, and a
bomber, the combat value of the army would be (10 � 1) + (2 � 3) + (1 � 4) = 20.

Now let’s assume a more complicated game where each piece has a level, attack
score, defense score, health points, speed, movement, damage range, and cost. As with
the previous example, we can calculate the combat value of each piece using a single
attribute, such as level. For example, if we had 10 first-level skeletons, 2 third-level
vampires, and a fourth-level bone dragon, the combat value of the army would be
(10 � 1) + (2 � 3) + (1 � 4) = 20.

The previous calculation, of course, assumes that a single level-two unit is worth
the same as two level-one units. In many games, that’s not the case. Suppose a unit at
a given level is worth four units of the next lower level. In this case, there is exponen-
tial growth, so the formula to determine the combat value of a single unit would
be 4level–1 and the combat value of our army would be (10 � 40) + (2 � 42) + (1 � 43) =

(10 � 1) + (2 � 16) + (1 � 164) = 106.
In the previous formula, we use a single attribute, in this case, level. We could cer-

tainly use a more involved formula. For example, we could use the formula shown in
Equation 4.8.1.

value = (10 � 4level–1) + (2 � defense) + (2 � attack) + health (4.8.1)

So for a level-three vampire with a defense score of 30, an attack score of 30, and
health of 75, the combat value of the unit would be (10 � 42) + (2 � 30) + (2 � 30) +
75 = 355, and the combat value of a level-one bandit with a defense of 10, attack of
10, and health of 10 would be (10 � 40) + (2 � 10) + (2 � 10) + 10 = 60.

4.8 The Engagement Decision 445

Creating the Formula

Equation 4.8.1 uses quite a bit more data and, unsurprisingly, took significantly more
time to create. The computer can execute the formula quickly enough, but it still
takes the human a fair amount of time to think up the formula, test it, and then tune
it. And the result isn’t great—a level-three vampire is now worth roughly as much as
six level-one bandits, which, based on our earlier discussion about the exponential
growth of power, probably isn’t quite right.

So how do you come up with the formula?
One option is to build a formula—any formula—and then play test and revise

until it feels right. This, obviously, takes time, along with requiring a decent amount
of skill at the game.

A second option is to find someone who has done this before. A considerable
amount of knowledge exists in board games and military schools, and a large amount
of this knowledge is available online, including both background information and
actual formulas you can bring directly into your game (a good overview is given in
[Sidran04]; a game-oriented explanation of Lanchester’s Square Law is presented in
[Adams04], inspired by [Paulos03]).

A third option is to simply do away with complex formulas, at least ones similar
to Equation 4.8.1. Simple formulas can often be as good as or better than compli-
cated ones, at least in the real world because attributes of the same object tend to be
linked. A unit with a high level often has a lot of health and a high attack power,
whereas a low-level unit has low health and low attack power. As an example, lions
tend to be both stronger and harder to kill than house cats, which in turn are both
stronger and harder to kill than mice. So a formula that determines the power of a
unit by combining the various attributes of the unit will likely get the same relative
ranking and spread as a formula that used a single attribute.

This is often more true of video game worlds than the real world. If a game has
been professionally play-balanced, each unit (or option) at a given level or cost will be
roughly as valuable as the other units at the same level or cost (although, given the
rock-paper-scissors approach used in many games, a unit might be weak against
another unit of equivalent power; we’ll discuss this in more detail in the “Context-
Dependent Values” section). For example, in the game we use in my class (which is
based on an award-winning commercial strategy game), students are adamant that
some units are simply better, more powerful units than others (on average, I hear five
claims of this in each class, always on five different units). We hold tournaments in
class where each student is given $20,000 in gold to purchase their armies and,
despite student predictions to the contrary, so far no army configuration has pro-
duced noticeably better performance than any other.

Note that because all the attributes tend to signify the same thing (the relative
combat value of the unit), you can often pick one of the attributes at random and get
the same result as picking either a combination of attributes or the “best” attribute
(usually level or cost because these are essentially summaries of the other attributes).

446 Section 4 Tactics and Planning

We’ve tested this in the AI course, where students play a turn-based strategy game
against multiple AI opponents, some of which use complicated formulas and several
of which base their decisions on a single attribute of the opponent (level, cost, attack,
health, etc.). The students are unable to tell the difference (the sole exception is the
attribute speed, which in our game determines the order of attack and is unrelated to
the overall power of the unit).

Unit-Specific Formulas

In the previous discussion, we assumed that we had a relatively small number of units
with a set amount of “power.” This isn’t true of all games. For example, in many
RPGs, mages are weak at a low level, compared to fighters, and extremely powerful at
high levels. The fighter’s power grows linearly, whereas the mage’s grows exponen-
tially. Because of this, we might use different power calculations based on the class of
the character. For a fighter, the combat value might simply be the fighter’s level (or,
more realistically, his level times a health multiplier so that a wounded fighter with
one health point remaining is not treated the same as an unwounded one). For the
mage, we might use the formula value = 2(level–2)*0.3. Using this formula, a level-one
fighter is worth 1.0, and a level-one mage is worth 0.8. At level six, the fighter is
worth 6.0 and the mage 2.3. At level 15, both are worth 15. At level 20, the fighter is
worth 20, and the mage is now worth 42, twice as much as the fighter (the formula in
your game, obviously, would depend on your game).

Summing Variables

There are limits to what you can put in a single formula and still have it be manage-
able, both to write and understand. Suppose we’re working on an RPG where charac-
ters level up, learn spells, and have different types of weapons and armor. In this
instance, a level 10 fighter with leather armor and a short sword should not be seen as
equally challenging as a level 10 fighter with 100% magic resistance, +10 brimstone
armor, and a +10 dancing vorpal sword.

At this point, things get a little complicated. Putting all of the possible options
into a predefined formula would be fairly difficult, especially if we are dealing with
collections (e.g., the unit might have in their inventory an arbitrary number of magic
items that affect their combat value). We need to break the problem down into pieces,
so we turn to summing variables. We’ll give the unit a base combat value and then
modify it for each significant feature of the unit. Suppose we have decided that the
base combat value of a unit is its level (in this case, 10), the combat value of weapons
and armor is half of their modification values (10 for both the leather armor and short
sword), the combat value of being brimstone (which we’ll say offers fire resistance) is
two, dancing four, vorpal five, and magic resistance a tenth of its strength (which here
is 100%). So the combat value of our 10th level, fully magic resistant fighter with +20
brimstone armor and a +5 dancing vorpal sword is:

4.8 The Engagement Decision 447

//—- The unit’s base value is 10

int value = unit.level;

//—- 100% magic resistance = +10 value

//—- The unit’s value is now 20

value += unit.getMagicResistance() / 10;

//—- +10 armor = +5 value

//—- The unit’s value is now 25

value += unit.getArmor().getValue() * 0.5;

//—- brimstone armor = +5, total is now 30

value += unit.getArmor().getModifiers().getValue();

//—- +10 sword = +5 value, total is now 35

value += unit.getWeapon().getValue() * 0.5;

//—- dancing + vorpal = +9, total is now 44

value += unit.getWeapon().getModifiers().getValue();

So the combat value of this fighter is 44, roughly twice the combat value of a 10th

level fighter with no armor, weapon, or special ability.

Context-Dependent Values

In the previous example, the combat value of each feature is fixed. We’ve decided that
100% magic resistance is worth 10 points. But suppose we are deciding whether to
attack a given team, and we don’t have any magic users? Then the fact that that team has
magic resistance means nothing to us. Likewise, if we have nothing but magic users, the
fact that they’re completely resistant to magic is probably much more important than
how we’re valuing it here.

If both our army and the opponent’s army have a single type of unit, say magic-
wielding genies for us, magic-resistant dragons for theirs, we can use a valuation for-
mula specific to our unit type. Thus, our genies would have a genie-specific formula
for valuing the opposing army, and the opposing dragons would have a dragon-
specific power calculation used to value our army. Unfortunately, in these types of
games, the armies are rarely made up of a single unit type. To solve this problem, we
could perhaps have every unit in our army calculate the combat value of the opposing
army and then take the average, but as you can see, this situation quickly becomes
complicated. And complicated means it’s hard to hold everything in the designer’s
head at one time, error-prone to code, and time-consuming to test and tune.

Adapting to the Player

So far, we have discussed the creation of formulas that will, at runtime, calculate the
combat value of a given unit and set of units. After play testing, these formulas will
hopefully result in an AI that plays well against the game’s designers. This does not,
however, guarantee that it will play well against all game players.

Players can be unpredictable, so it is helpful to be able to adapt the AI to the player.
In terms of determining a unit’s combat value, one option is to add a historical bias
factor. The combat value formula allows you to predict how well one set of units will
do against another. If the actual outcome is significantly different from the predicted

448 Section 4 Tactics and Planning

outcome, this information can be stored and used in future calculations. A good exam-
ple of this is seen in [Dill06].

Power Lookup

With power calculation, we look at the traits of a unit and decide its combat value at
runtime. With power lookup, the designer determines the combat value of the unit at
design time, and the AI loads this value at runtime. For example, rather than using a
formula based on level, health, attack power, and so on to determine that a vampire is
worth 355 “points” and a bandit is worth 60, the designer simply says it is true, and
the AI believes it.

This approach has many advantages. One is that the designer has complete con-
trol over the relative combat values of the pieces. The second is that the designer is not
required to come up with a formula—he may simply feel that dragons are worth 64
times as much as orcs and that is the end of it. The caveat is that the designer might
have guessed wrong—the values still need to be play tested and tuned. Of course, tun-
ing hard-coded combat values is probably a bit easier than tuning a formula.

The disadvantage to the power calculation approach is that it is not particularly
mod-friendly. If an expansion pack comes out, someone must spend time determin-
ing the combat value of the new pieces relative to the old ones (although you might be
able to automate this process using reinforcement learning or a similar technique),
and if the AI designer on the expansion pack is different from the original designer (or
if the original designer simply no longer remembers), time must be spent asking why,
exactly, are dragons worth 60 points? After this, the new values must be play tested
and tuned, which can be a fair amount of work. Compared to the power calculation
method, then, the power lookup method requires less upfront work but potentially
more long-term work.

The previous analysis assumes that you have access to the original source code or
data files and the ability to modify them. This is often not the case with user mods.

We said in the previous section that the power calculation method works well
when the types of pieces are clearly defined but has a harder time when pieces are con-
figurable or relatively unique, such as a fighter carrying magic armor or a battle mech
that can be configured with flame throwers, machine guns, or rocket launchers. We
also said the power calculation method had problems dealing with abilities, such as
magic resistance, and special abilities that are important in some contexts and not
others. In this respect, power lookup and power calculation are the same.

Monte Carlo

In the previous techniques, we used intelligence and reasoning to determine the combat
value of various units and attempted to predict how a battle might turn out. The Monte
Carlo method does none of these things. The Monte Carlo method is an empirical
method—it tries a given action multiple times and then tells you how it turned out.

4.8 The Engagement Decision 449

Suppose we have 5 tanks, 2 fighters, and 8 infantry, and the enemy has 1 tank and
18 infantry. Rather than use reason to guess about whether we’ll win, we attack and
make a note of whether we won or lost. We do this 50 times and note that, overall, we
won 6 times and lost 44 times. We now know that the chance that we’ll win this
battle is roughly 12% (a note about performance: for the particular game this was
tested on, the Monte Carlo method can both run 80,000 tests and display the results
in roughly 1 second on a 1.86 GHz Pentium M).

Obviously, you would not actually attack the player in the game. This method
assumes that the game has exposed the combat engine to the AI and allows the AI to
simulate potential battles.

The Monte Carlo approach allows us to predict with reasonable accuracy how
likely a given result is if we behave one way, and the other person behaves a certain
way. Obviously, this depends on our ability to predict how the other person will act.
In some games, the player simply doesn’t have that many good options. In other
games, the player has quite a few, although they might be qualitatively the same.
Assume that we have a game where the pieces can either attack or cast buffing spells
and where they can determine, to an extent, the order of their attack. The pieces
might choose to attack the first chance they get; they might choose to cast spells that
increase their speed, health, or attack by 25%, or they might choose to cast spells to
protect them from fire, evil, chaos, or other such properties. When they choose to
attack, the weaker pieces might go on their turn, or they might wait for the stronger
pieces to soften the opponent up. In this situation, you would need to simulate each
of these possible strategies and then gauge the success of each.

This is worth a little more discussion. Suppose that we had a band of vampires
and that vampires have the ability Life Drain, which allows them to heal themselves
and resurrect any vampire in their group that has been slain. Suppose further that this
army contained a variety of other units but that none of them were as strong as the
vampires. The player might choose a strategy in which he only attacks with vampires
and never with the other units. In this way, the weaker units never get hurt and the
vampires are always able to heal themselves. This is not a strategy someone is likely to
predict (although with play testing it might become obvious to the designer of the
game).

How does this affect our Monte Carlo solution? Not as much as you might think.
In normal battles, regardless of which pieces attack or who they choose as their target,
the combat value of the vampires and the effect of their healing powers will impact the
outcome, causing both a general and a vampire-specific battle to have roughly the same
outcome when both sides are of roughly equal power. When the vampire side is much
stronger than the other side, both the player and Monte Carlo simulation of the player
using a non-vampire-specific strategy will still win. When the other side is much
stronger than the vampires, the player, with his intimate knowledge of vampire tactics,
might lose by fewer pieces than the Monte Carlo method might predict, but he will
still lose. Because vampires can only heal from living units, if the vampires face an army

450 Section 4 Tactics and Planning

of equal combat value composed of nonliving creatures (gold golems, skeletons, cata-
pults, etc.), the vampires will lose, as both the player and the Monte Carlo method will
learn. Where Monte Carlo’s predictions and the actual outcome diverge will be only on
those borderline cases where both sides are relatively balanced, and even then, Monte
Carlo will not say that the player will lose, it will merely say, perhaps, that the player
has a 45% chance of victory when, in fact, the actual number is really 55%. Although
this is a difference between a win and a loss, the probability is close enough that the AI
can (and should) accommodate it in other portions of the system.

The Monte Carlo method does not technically tell us whether we won or lost a bat-
tle. Instead, it tells us the state of the world after some set of actions. Although we can
simplify this to “if I still have units left, I won,” we can also use it to evaluate the quality
of the win. For example, if the end result is that we would win the battle but lose half
our army in the process, we might decide that this leaves us too weak to hold off the
enemy’s next attack, and, therefore, engaging in this battle is a bad idea. Of course, we
might not have a better option—if we lose this battle or retreat, perhaps the enemy takes
the capitol, and the game is over. Determining the outcome of a battle and making a
decision based on that data are two separate issues. So far, we have only covered how to
predict an outcome. We cover the actual decision making in the next section.

Making the Decision

The previous techniques have told us how strong a given army is and what the chances
are of us winning a given battle, but they have not told us whether we should or should
not engage in battle. We still need to make a decision.

Rules and Intelligent Randomness

Based on the information we have, there are a number of ways to decide whether to
engage the enemy in combat. The most obvious is to start a fight with anyone you are
stronger than or (if you use the Monte Carlo) where the chances of you winning are
greater than 50%. If you want a defensive AI, you might only attack when you are
twice as strong as the enemy. If you want a bold AI, you might attack anyone up to
twice as strong as you.

There are more sophisticated ways of making the engagement decision. Consider
this excerpt from an AI design document.

1. The predicted outcome is based on the ratio of the armies’ combat values.

Category Ratio

Significant Win > 200%
Likely to Win 121% – 200%
Evenly Matched 80% – 120%
Likely to Lose 50% – 79%
Significant Loss < 50%

4.8 The Engagement Decision 451

2. Whether the computer-controlled player attacks depends on the AI diffi-
culty level.

Difficulty Level Attack When

Easy Likely to Lose: 50% chance
Likely to Win: 25%
Significant Win: 90%
Other categories: do not attack

Medium >= Significant win
Hard >= Likely to win

The first rule takes the ratio of the combat value of the two armies and binds them
into one of five Predicted Outcome Categories. If my army’s combat value is 10, and
the other person’s is 21, we categorize it as a Predicted Significant Loss. We convert the
raw numbers into an easier-to-use form to make our other rules easier to write.

The second rule looks at the Predicted Outcome Category and the game’s current
difficulty level and uses that to decide the probability that we will attack. On the nor-
mal difficulty level, the AI plays defensively and thus only attacks when it is sure of a
significant win. On hard, the AI is aggressive and attacks when it believes it will win.

Now let’s discuss how decisions are made. On the easy difficulty level, the AI has
a 50% chance of attacking when it is likely to lose, but a 0% chance when it believes
it will be a significant loss. A Predicted Outcome Category of Likely To Lose means
that, done enough times, the army will lose more often than it will win, but it still has
a chance of winning. Thus, attacking at this point does not seem suicidal, merely
optimistic. On the easy level, we want the player to win the majority of the battles,
but we do not want him to think that we are purposely throwing the game. For this
reason, we never attack when the Predicted Outcome Category is Significant Loss
because it is obvious to everyone that the AI will not win. If the AI were to attack
under those conditions, the player would either feel insulted or consider the AI to be
extremely poor. With a Predicted Outcome Category of Likely To Lose, the outcome
is far more in doubt, and the AI’s actions begin to look plausible (especially because
this game’s combat system is heavily based on random numbers, the AI will win from
time to time).

The AI has a 25% chance when it believes it can win and a 90% chance of attack-
ing when it is convinced of a significant victory. The first condition is to prevent the
AI from pressing its advantage (although, as with Likely To Lose, it does stand a
chance of losing) without making the player think that the AI is afraid or throwing
the game. Humans have a remarkable ability to perceive in-depth strategy in areas
where there is none, and attacking 25% of the time is random enough to make most
players believe the AI has an ulterior motive other than making it easier for the player.

452 Section 4 Tactics and Planning

The AI almost always attacks when the Predicted Outcome Category is Significant
Win because to not do so would insult the player and cheapen those battles that the
player had already won (the player would be left wondering, “Did I only win because
the AI is throwing the game?” which upsets most players even more than actually
beating them).

Personality Statistics

Whether or not a particular AI agent engages in combat can (and in most cases prob-
ably should) be based on the agent’s personality. For example, consider the case of a
squad-based shooter where a four-person SWAT team has arrived to find a group of
terrorists holed up in an abandoned building playing kick the puppy. Using one of the
techniques discussed earlier, the AI has decided that there is only a 50% chance of sur-
viving a rescue attempt. The player, as team captain, decides not to engage.

Whether his AI-controlled squad mates engage the enemy could depend on their
personality. Suppose Bob had a Self-Preservation score of 0, Discipline of 100, Emo-
tional Stability of 0, and a Love of Furry Animals of 90. Bob would be happy to charge
in to rescue the puppy but because he was given a direct order by the player, would
simply stand there and complain. Carl, with a Self-Preservation score of 30, Discipline
of 60, Emotional Stability of 70, and a Love of Furry Animals of 100 would likely dis-
obey the player’s order and charge in. And Don, with a Self-Preservation score of 100,
Discipline of 10, Emotional Stability of 10, and a Love of Furry Animals of 50 would
feel bad for the puppy but would still run off to hide in a closet.

Alternatives and Best Options

The previous examples have assumed that the AI only has two options—attack or do
nothing. In many games, you’ll often have other options. These include both combat
options (wait for reinforcements, take defensive position, etc.) and noncombat options
(collect resources, build, explore, etc.). Choosing between these options is beyond the
scope of this article.

Conclusion

Ultimately, the proper technique to use for the engagement decision will depend on
the game you’re working on. What types of battles you have, the number of attributes
for each piece, the uniqueness of your units, the number of qualitatively different
strategies you have in your game, the skill level of your designers, the time you have for
play testing, whether your customers will be able to create new units, and many other
factors will determine which technique is right for you. After reading this article, you
should better understand what options you have and the pros and cons of each.

4.8 The Engagement Decision 453

References

[Adams04] Adams, E., “Kicking Butt by the Numbers: Lanchester’s Laws.” Available
online at http://www.gamasutra.com/features/20040806/adams_01.shtml, August
4, 2004.

[Dill06] Dill, K., “Prioritizing Actions in a Goal-Based RTS AI.” AI Game Program-
ming Wisdom 3, Charles River Media, 2006.

[Paulos03] Paulos, J. A., “Lanchester’s Law: Too Few American Soldiers?” Available
online at http://abcnews.go.com/Technology/WhosCounting/story?id=97277&page=1,
March 30, 2003.

[Sidran04] Sidran, D. E., “A Calculated Strategy: Readings Directed Towards the Cre-
ation of a Strategic Artificial Intelligence.” Available online at http://www.cs.
uiowa.edu/~dsidran/ReadingsForResearch2.pdf, Spring 2004.

454 Section 4 Tactics and Planning

http://www.gamasutra.com/features/20040806/adams_01.shtml
http://www.cs.uiowa.edu/~dsidran/ReadingsForResearch2.pdf
http://www.cs.uiowa.edu/~dsidran/ReadingsForResearch2.pdf
http://abcnews.go.com/Technology/WhosCounting/story?id=97277&page=1

455

S E C T I O N

5
GENRE SPECIFIC

This page intentionally left blank

457

5.1

A Goal Stack-Based
Architecture for RTS AI
David Hernández Cerpa—
Enigma Software Productions
david.hernandez.cerpa@gmail.com

In a real-time strategy (RTS) game, the AI needs to make decisions at different levels
of abstraction, from high-level issues, such as which city should be attacked, to low-

level ones, such as moving a single unit to a certain location. To make this feasible, the
usual approach is to create different decision-making modules, one for each level in
the chain of command.

The AI for the RTS part of the game War Leaders: Clash of Nations is divided into
three levels. This article is focused on the architecture developed for the lower two of
these levels, that is, the AI levels for units, groups, and formations. This architecture is
based on the concept of a goal stack as a mechanism to drive the agent behavior. The
end result is an AI system that has loose coupling with the game logic engine.

The Need for AI Levels

Having a hundred units under your control and figuring out what has to be done with
each of them to defeat your enemy is a daunting task. The key to success in the man-
agement of large groups of individuals is to introduce levels of abstraction, making it
easier for higher levels to command all of the elements that are below them. Military
chains of command constitute an example of how an AI system might be divided to
tackle the problem [Kent03, Ramsey03].

The characteristics of the game determine what levels the AI system should have.
Questions that help an AI engineer delimit the needed levels and their responsibilities
include the following:

• Can units satisfy orders individually, or can they only be satisfied by groups?
• Can they join together to create groups or formations?
• Are they able to behave autonomously?
• Are they part of an army that must act as a whole?

Following an analysis of our game, we felt it necessary to create three levels of AI:
one for units, one for groups and formations, and one to control the entire army. The
army-level AI selects high-level tactics for defeating its enemies. This level is beyond
the scope of this article.

Although units, groups, and formations might seem different in terms of their AI
needs, similarities between them are apparent:

• They must respond to orders from their superiors.
• They are able to act autonomously in certain situations.
• They might temporarily suspend their current actions to execute others of higher

priority.
• They should be notified by the game logic about events that happen in the world.

With this analysis at hand, a unique architecture was developed that can be shared
by both levels.

The Architecture

In addition to the requirements described in the analysis earlier, there was a desire to keep
the AI system loosely coupled to the rest of the game engine. To satisfy this constraint, AI
system classes were isolated so that they communicate with the rest of the engine through
a very simple interface. The architecture’s main components are goals, the goal stack,
orders, events, and behaviors. These are shown in Figure 5.1.1 and introduced in the
following sections.

458 Section 5 Genre Specific

Order

Event Event

Goal

Order

Goal

Order Handler

Event Handler

Goal Handler

Order

Event

Behavior

Game Logic Generic AI System Game-Specific AI
Order Queue

Event Queue

Goal Stack

Goal Creator Function

FIGURE 5.1.1 Architecture overview showing the main components.

Goals

Goals are the architecture’s foundation. They represent the objective that a unit, group,
or formation (referred to as an agent from this point on) is trying to achieve. An agent
can’t do anything without a matching goal. A goal’s description includes its type and a
variety of information describing how it can be satisfied. That information is specific to
the type of goal and could include, for example, a target position or a target entity.

Goal Stack

Just as a military unit in the real world is not limited to a single objective, agents are
not limited to a single goal. The goal stack contains all of the goals that the agent is
pursuing at any given time. Only the goal at the top is active and accessible by the rest
of the AI system. The agent will always try to satisfy this goal while the others goals
remain dormant.

On each decision-making step, goals might be pushed onto the stack or popped
from it in response to orders or game events. For example, a unit that receives a GoToPos
order, indicating that a movement to a target position must be performed, might satisfy
it by pushing a GoToPos goal onto the stack. Suppose that, while the unit is moving, it
detects that a grenade is going to explode close to its position. The unit might decide
to push an AvoidExplosion goal to avoid the grenade. In this case, the GoToPos goal
becomes inactive and the AvoidExplosion goal becomes the one that must be satisfied.
There is no limit to the size of the goal stack, so it’s perfectly possible for this goal to be
interrupted in turn. After the goal at the top of the stack is completed, it is popped. In
our example, if the AvoidExplosion goal is satisfied, then it will be popped from the
stack, the previous GoToPos goal will become active again, and the unit will continue
with its movement after avoiding the grenade.

The resulting behavior is similar to a subsumption architecture [Yiskis03], where
low-priority behaviors are executed until a high-priority one becomes active. After that
happens, the low-priority behaviors are inhibited until the high-level ones are com-
pleted. There are several important differences from the subsumption scheme, how-
ever. First, behaviors are not always active and processing the inputs from the game
logic. Second, the hierarchy is not fixed; that is, it does not have to be determined at
design time, which promotes emergent behavior [Wotton06]. This allows easy addi-
tion of new goals to the system as new actions become available to the agents. Finally,
priorities have not been defined. This architecture does not make use of an explicit
concept of priority, although there is an implicit ordering in the goal stack.

Behaviors

Goals are satisfied by executing their corresponding behaviors. Whenever the goal on
the top of the stack must be satisfied, a goal handler is called. This handler will decide
which behavior to execute based on the goal type and will pass the goal’s associated
data to that behavior.

5.1 A Goal Stack-Based Architecture for RTS AI 459

460 Section 5 Genre Specific

Behaviors are not part of the AI system. They link the AI with the game logic and
are used to produce an effect over the agents when a decision has been made. This
decouples the AI system from the implementation of the concrete actions that still
reside in game logic classes.

Using the previous example, if a GoToPos goal is at the top of an agent’s goal stack,
the goal handler will be called with the goal as a parameter. The handler detects the
goal type and calls the corresponding method on the unit’s class, passing the available
data for that goal. This method will effectively move the unit to the target position.

Orders

Superiors do not directly push goals on to their agents’ goal stacks. Instead, they send
orders to be accomplished. Orders have an associated handler whose responsibility is to
interpret them and produce the appropriate changes in the goal stack. Usually this
means that new goals are pushed onto the stack. When a goal from an order is pushed,
any previous goals the agent might have been pursuing are removed. Clearing the goal
stack prevents the agent from inappropriately returning to previous actions when it sat-
isfies these new orders.

As in real chains of commands, orders represent the wishes of a superior that must
be satisfied in one way or another. Orders decouple what has to be done from how it is
accomplished, so that different agents can pursue the same goal in different ways. For
example, suppose the player has two infantry units selected, one of which is standing,
while the other is kneeling on the ground. They both receive a GoToPos order to reach
a target position. This order is simple for the standing unit because it only needs to
push a GoToPos goal. The kneeling unit, on the other hand, pushes both a GoToPos and
a StandUp goal. As the top goal is the active one, this unit will stand up, pop that goal,
and then start to move.

An order is not directly processed when it is received. An agent’s AI state has a
queue where orders are stored. They will be processed later during the decision-making
process. Order queuing is a common technique used in RTS games [Rabin01]. Having
an order queue allows higher-level AIs to send a chain of commands to their subordi-
nates with the certainty that they will satisfy all of them one after another. Thus, the
higher-level AIs can associate a sequence of orders to a complex concept, such as a
“flank attack.”

When a goal is popped, the AI system checks to see if the goal came from an order.
If so, and if the goal is the last one on the goal stack, then the current order is removed.
There are no longer any goals associated with that order, so it must be complete.

Events

For performance reasons, the AI does not poll the game logic to know whether an exe-
cuting goal has been completed. Instead, the behavior sends an event up to the AI
when it finishes. Events are used any time the game logic detects a situation that the
AI might need to know about. For example, when a unit arrives at its destination, it

sends an AtDest event to the AI. Note that the game logic does not know which goal
is on the top of the stack. It sends the AtDest event whether or not the AI is pursuing
a related goal. It is the AI’s responsibility to interpret the meaning of the event. As
with orders, events are not handled when received. Instead, they are stored in a queue
for later processing.

The AI system has event handlers that are responsible for producing the appropri-
ate operations on the goal stack. In many cases, this means that the event handlers pop
the topmost goal from the stack because most events indicate that some behavior has
finished. Continuing with the earlier example, when the handler receives the AtDest
event, it pops the GoToPos goal. Note that the AtDest event handler just pops the top
goal from the goal stack, which in this case is the GoToPos goal. However, the top goal
could just as easily be another that implies movement, such as ApproachEnemy.

In other cases, the event handler might push goals onto the stack. This happens
with events informing the AI about situations that have arisen in the game. For exam-
ple, the game logic sends an EnemyOutOfRange event when an enemy goes out of the
range of the weapon being used to attack it. In this case, the event handler might push
an ApproachEnemy goal to try to get the enemy in weapon range again.

The Decision-Making Process

The decision-making process examines each agent’s current state, along with the order
and event queues, and determines what the agent should do next. The algorithm is
composed of the following steps:

1. Process received events. This step iterates through the event queue and
calls the event handler for each one. This might update the goal stack by pop-
ping or pushing goals. It is important to do this first because it synchronizes
the AI with the game logic.

2. Process the current order. If there is an unsatisfied order, then the handler
is called for it. This can also produce changes in the goal stack.

3. Call the Goal Creator Function. If after processing the events and orders
the goal stack is empty, a special “Goal Creator Function” might be called if
the agent can perform actions autonomously (see the “Improvements” sec-
tion). For example, medical units use this function to detect if there are units
around them that need their help. For performance reasons, this function is
not called every frame. A configuration parameter determines how often it is
invoked.

4. Satisfy the top goal. After every possible change to the goal stack has been
applied, the algorithm checks whether the goal on top of the stack is already
being satisfied. If it isn’t, the goal handler is called for it, which in turn calls
the behavior associated with the goal type.

After these four steps have been applied, the AI state has been updated, the agent
has decided what to do, and appropriate methods to start doing it have been called.

5.1 A Goal Stack-Based Architecture for RTS AI 461

Improvements

The architecture presented so far constitutes the basic version of our AI. As more
requirements were added, the architecture was expanded with several improvements.
Some of them are introduced in the following sections.

Chained Goals

Some situations require knowing that several goals in the stack belong to the same
conceptual group. For example, if a tank receives an AttackEnemy order, it will push an
AttackEnemy goal. Later, the enemy goes out of range, and the tank receives an Enemy-
OutOfRange event informing it of this situation. In response to this event, the handler
pushes an ApproachEnemy goal whose associated behavior will move it toward the
enemy. Suppose that, while moving, the tank receives an EnemyDeath event indicating
that the assigned enemy has died due to fire from another allied unit. In this case, the
event handler should pop both goals from the stack, not just the ApproachEnemy goal.
Although, conceptually, the tank is attacking an enemy, it had to push more goals to
satisfy the order.

To handle these situations, the concept of chained goals was introduced. Chained
goals are conceptually connected to others that are below them in the stack. Continu-
ing with the example, ApproachEnemy is a chained goal because it is in the stack to help
to satisfy the AttackEnemy goal. With this addition, the event handler for the Enemy-
Death event pops the chained goals together with the AttackEnemy goal. A chained
goal is pushed on the stack as a normal one but with a control flag indicating its con-
dition. Thus, ApproachEnemy doesn’t always have to be a chained goal. We know that
it is in this case because the handler flagged it as such when it was pushed.

Delayed Goals

Orders can be sent to a group of agents. For example, the player might have selected
several units or formations and ordered all of them to move. In the naïve approach,
every unit would try to satisfy the order in the next decision-making process. This
would cause all the units to start their movements at the same time, which is an
unnatural-looking behavior.

To solve this problem, a maximum possible delay for being satisfied was added to
orders and goals. When an order is sent to a set of agents, it has a maximum delay that
depends on the number of elements in the set. This delay affects the goals, not the
order. In other words, the order is immediately processed in the next decision-making
step. However, the goals are assigned a random delay between zero and the order’s
maximum delay. When a delayed goal is going to be pushed, it is pushed onto a sepa-
rate stack (not the main goal stack). Goals on this stack remain dormant until their
delays have elapsed. When that occurs, they replace the ones that are on the main
stack as if they have been pushed from an order handler.

Other approaches are also valid to reach the same effect of delayed responses to
orders. For example, it would be possible to have delayed orders instead of immediate

462 Section 5 Genre Specific

orders and the delayed goal stack. The current implementation was determined by
some restrictions from the game logic and produced several bugs in the correspon-
dence between orders and the goals they generate. This issue will be addressed in the
future, after the restrictions have disappeared.

Parallel Goals

With the architecture described so far, agents are only able to do one thing at a time.
It is possible to do more than one thing at the same time by creating goals that repre-
sent a combined action. For example, it would be possible to create a MoveAndAttack
goal that would enable units to attack an enemy while moving. However, this is a very
restrictive approach. It requires the creation of a separate goal and its corresponding
behavior for every desired combination. In addition, there are problems presented by
units such as tanks or airplanes. These units have several weapons. It should be possi-
ble to assign an enemy to each weapon so that multiple enemies can be attacked at
once. To support this, a vector of goals was added to the AI state. They were called
parallel goals because they are satisfied in parallel to the ones in the main goal stack.

Note that a vector of goal stacks is not needed. Parallel goals are simple goals that
should not interfere with the main ones while executing. If an order or event results in
pushing more than one goal, those goals represent complex actions that must be per-
formed in sequence, not in parallel, so that all of the goals go on the main goal stack.
As an example, suppose that a tank is satisfying a GoToPos order and has a GoToPos goal
in its stack. While moving, it detects a new enemy that could be attacked with one of
the weapons in its turret. In this case, the AttackEnemy goal is pushed on a parallel free
slot, and the enemy is attacked while it is in range. If it goes out of range, the Attack-
Enemy goal is just popped. If an ApproachEnemy goal were pushed instead, both the
GoToPos and ApproachEnemy goals would try to take control of the unit. This would be
undesirable because the parallel goal would have interfered with the main goal stack.
The unit should not stop its movement while trying to satisfy other independent goals.

Autonomy

As has already been mentioned, agents are sometimes able to push goals autonomously.
Of course, we need to put limits on the permissible actions in some cases. For example,
the player’s units will not start a movement on their own because this would produce a
bad game experience. It is useful for AI-controlled units to be able to do so, however,
because this frees the higher-level AIs from having to control every unit in detail.

To solve this problem, an autonomous flag was added to the AI. When the
autonomous flag is activated, agents have more available actions and can initiate them
without waiting for an order. For example, consider a healing unit. Autonomous
medics would heal injured units around them without the need to receive an explicit
order. This approach helps to avoid the need to micromanage the entire army by giv-
ing units the ability to decide different courses of action on their own.

5.1 A Goal Stack-Based Architecture for RTS AI 463

Using the Architecture in Higher-Level AIs

This architecture is not limited to unit-level AI. Groups and formations receive orders,
generate goals to satisfy them, and are informed about situations in the world through
events in the same way as units. The only difference is the way that they implement
their behaviors.

For example, when a group receives a GoToPos order, the order handler pushes a
GoToPos goal on the goal stack as if it were a unit. The difference is that when a behav-
ior is called for this goal, it gets the data from the goal and sends an order to each of
the units that compose the group, rather than performing actions on an individual
unit. The behavior takes care of things, such as offsets between units in the group, so
each of them receives a GoToPos order with a different target position. Additionally,
the orders contain a maximum delay depending on the number of units in the group
as explained previously.

As the units reach their target positions, events arrive from the game logic and are
sent to the group that is able to keep track of how many units are still moving. When
all the units have reached their destinations, the goal is finished and can be popped,
which in turn removes the order from the group’s order queue.

Implementation Details

Following the general guidance of having a loosely coupled AI system, the core was
implemented in a set of C++ classes, while game-specific code was implemented using
Lua scripts. Goals, orders, and events are simple structures with a type and any neces-
sary data. In addition to data, there are some control attributes. For containers such as
stacks, queues, and vectors, the STL was used. The following code listing shows the
Goal struct.

struct Goal

{

enum GoalType {

NO_GOAL, // No goal

GOTO_POS, // Go to the target position

ATTACK_OBJECT, // Attack to the target object

HEAL_OBJECT, // Heal target object

// ... Many more goal types

};

GoalType type; // Goal type

Vector3 pos3D; // Target position in 3D

CObject *object; // Target object

dword delay; // Delay in execution

float number; // Numerical data

bool boolean, // Boolean data

fromOrder, // True if comes from an order

parallel, // True if parallel

chained, // True if chained

satisfying;// True if is being satisfied

}

464 Section 5 Genre Specific

The decision-making process is a C++ method in an AIModel class. This method
connects with the scripts when a handler is called for an event, order, or goal. In these
cases, the element to be processed is exported as a global variable, and the corresponding
handler is called. There is a generic function that just gets the element type and calls the
appropriate handler. To make this association, there are tables that map from a type to a
function. The following code listing shows an example of a table and two handlers:

InfantryUnitTable.OrderToGoalTable = {

[Order.GET_ON_TRANSPORT] =

InfantryUnitTable.GetOnTransportOrder,

}

function InfantryUnitTable.GetOnTransportOrder()

PushGoal(Goal.GET_ON_TRANSPORT, order.maxDelay,

true, — fromOrder?

false, — chained?

false) –- parallel?

— Copy data attributes

pushedGoal.object = order.object

end

function InfantryUnitTable.OnTransport()

PopGoal()

end

Future Work

As discussed earlier, the introduction of the delayed goal stack produced many bugs in
the correspondence between orders and their generated goals because they could be in
two possible stacks. A better approach would be to remove the delayed goal stack, adding
the concept of a delayed order, which will not be satisfied until its delay has elapsed. This
problem will be addressed in the future, simplifying the handling of delays.

Apart from the autonomous flag, other flags have been considered as possible
additions to the architecture. The idea is to have a fine-grained control over the avail-
able actions for agents. For example, an “aggressive flag” could activate behaviors that
would lead to more automatically offensive agents. This set of flags has to be carefully
considered because it has to fit within the game design and could cause a classification
of behaviors that could make them incompatible, resulting in strange and unrealistic
behavior from the agent.

Conclusion

The architecture presented here is flexible, scalable, and powerful enough to handle
the different types of units, groups, and formations in a typical RTS game. It is easy to
add new behaviors to an agent without changing existing ones. Because the game-
specific AI is in scripts, designers can modify current handlers or create new ones

5.1 A Goal Stack-Based Architecture for RTS AI 465

without assistance. Being able to reuse the same architecture for different AI levels is
very convenient from an engineering point of view. It allows us to share a lot of code
and to be familiar with only one technique, cutting down development times.

It is impossible to predict all the possible situations that an agent could face during
a battle. For that reason, emergent behavior is an important aspect of this AI system.
This architecture promotes emergent behavior by allowing the different components to
reason and act independently.

The concepts of orders, goals, and events are intuitive in an RTS game, but it
should be possible to use this architecture in other types of games. For example, each
bot in a squad-based FPS might behave as a unit in an RTS: receiving orders, pushing
goals to satisfy them, and reacting autonomously to changes in the world.

References

[Kent03] Kent, Tom, “Multi-Tiered AI Layers and Terrain Analysis for RTS Games.”
Game AI Programming Wisdom 2, Charles River Media, 2003.

[Rabin01] Rabin, Steve, “An Architecture for RTS Command Queuing.” Game Pro-
gramming Gems 2, Charles River Media, 2001.

[Ramsey03] Ramsey, Michael, “Designing a Multi-Tiered AI Framework.” Game AI
Programming Wisdom 2, Charles River Media, 2003.

[Wotton06] Wootton, Benjamin, “Designing for Emergence.” Game AI Programming
Wisdom 3, Charles River Media, 2006.

[Yiskis03] Yiskis, Eric, “A Subsumption Architecture for Character-Based Games.”
Game AI Programming Wisdom 2, Charles River Media, 2003.

466 Section 5 Genre Specific

467

5.2

A Versatile Constraint-Based
Camera System
Julien Hamaide—10Tacle Studios
Belgium/Elsewhere Entertainment
julien.hamaide@gmail.com

The camera has always been a central actor in the player’s experience; it’s the win-
dow on our virtual world. Camera glitches often frustrate the player because they

harm the continuity of play. This article tries to ease the camera-development process
by leveraging the power of a constraint-based system. Game designers are free to com-
bine a set of behaviors. From fixed-point to free cameras, the presented system pro-
vides a versatile environment for camera development.

Constraint-Based Camera System

Our system is built on a constraint-based system [Bourne06a] that evaluates the suit-
ability of a set of potential camera positions and then places the camera at the best
one. The suitability value of a position, S(Position), is given by the weighted sum of
suitability functions si (Position), which are the constraints.

S(Position) = wisi (Position)

The suitability function si (Position) maps a position in 3D space to a suitability
value, the smaller the better. A typical camera might have three constraints:

• A distance constraint, which gives maximum value when the potential position is
at the desired distance

• A height constraint, which gives maximum value when the potential position is at
the desired height

• An orientation constraint, which gives maximum value when the vector from the
character to the potential position is aligned with the character’s forward vector

In an ideal world, the set of potential positions would encompass the entire world.
Obviously, this is impractical, so we limit the search to a set of points around the current
camera position. This region is called the search space. In Bourne’s implementation, the

i

∑

search space is expressed as a box iterated with a sliding octree. This box is situated at the
current camera position and extends to a specified size. Its orientation is aligned to the
z-axis of the camera. The sliding octree algorithm cuts the box into eight smaller boxes.
The suitability function is evaluated at the center of each box. The center of the box is
then moved to the best-evaluated position. The algorithm stops after a given number of
iterations and the best-evaluated position is used as the new camera position. Figure
5.2.1 shows a typical setup from a top-down view.

468 Section 5 Genre Specific

Character

Camera

FIGURE 5.2.1 Top-down view from a typical setup.

We have revised the concepts presented in Bourne’s system based on problems we
encountered during the development of a 3D platform game, although we think that
our improvements could be used in other genres.

Constraint Responsibility

In a constraint-based system, each constraint is given responsibility for evaluating one
of the many factors that could contribute to determining the optimal behavior. A
constraint could try to keep the camera at a given distance behind or above the player,
for example.

After experimenting with this for awhile, however, we found that the weights
were difficult to tune even in simple cases, resulting in unexpected (and undesirable)
behavior. Our goal was to implement a camera that tries to stay at a given height and
a given 3D distance. When the character approaches a wall, the camera should rise up
the wall to stay at the given distance. Thus, we lowered the weight of the height con-
straint to allow the distance constraint to overcome its influence in this case. When
we did this, the camera started to dip down when the character was running. The sys-
tem was finding a better solution at that position because the distance constraint suit-
ability value was higher and also had a greater weight than the height constraint.

One solution would have been to use a learning approach to find the ideal
weights for the constraints [Bourne06b]. We had no resources available to create
training trajectories, however, so this was unsuitable. Moreover, a learning solution
would still be a compromise between the two behaviors, albeit a better balanced one.

We decided to approach constraints differently. A complete camera behavior can
easily be expressed as a suitability function. Equation 5.2.2 shows a simple way to cre-
ate a constraint from an existing algorithm, given Pideal as the desired position. The sys-
tem is now composed of a main constraint, trying to achieve a complex behavior (i.e.,
being behind the player at height x with distance y), and a set of specialized constraints
(e.g., collision and visibility handling). The goal of the other constraints is to influence
this behavior. Collision detection and player visibility are examples of constraints that
only influence the currently desired position. A center of interest constraint allows the
camera to show enemies and interesting objects with a better view than usual.

si (Position) = ⏐Position – Pideal⏐ (5.2.2)

This approach allows development of the behavior embedded in the main con-
straint as if the world was completely empty with no collisions, no visibility problems,
and no other objects. The camera system and modules are more loosely coupled, as
most behavior only needs to be implemented once (e.g., collision management).
Moreover, it allows finer and more precise control over the desired position, while
influence constraints adapt it to more complex situations.

Constraint Properties Ensure Stability

The solver is a weighted sum optimization system. If we want the system to be fair
(i.e., a constraint does not exert more influence than you expected), constraints must
respect certain properties [Garces06]. The smoothness of the camera trajectory is
ensured by this set of properties.

Range of the Constraint

The expected output range of a constraint is 1, extending from 0 to 1. The range of a
constraint inside a search space, as defined in Equation 5.2.3, is the difference between
its maximum and minimum values inside that search space. If the constraint’s range is
less than 1, its weight to the final suitability value will be less than expected.

To illustrate this point, consider the following example. A camera is set up with the
distance and height constraints presented earlier. The distance constraint is considered
more important and is assigned a weight of 2, whereas the height constraint is assigned
a weight of 1. The worst position for the distance constraint has a suitability value of
50% (0.5), whereas the best position’s value is 80% (0.8). The height constraint has
minimum and maximum values of 0% and 100%, respectively. The worst overall
point has a suitability value of (1 ⋅ 0.0) + (2 ⋅ 0.5) = 1, and the best point has a value of
(1 ⋅ 1.0) + (2 ⋅ 0.8) = 2.6. The range of the global suitability is 1.6. The contribution of

5.2 A Versatile Constraint-Based Camera System 469

the height constraint is 1.0, whereas the contribution of the distance constraint is only
0.6. Thus, the distance constraint will have less impact on the camera position than
desired.

To compensate for this effect, the effective weight of a constraint is equal to the
assigned weight multiplied by its range.

range(si, SearchSpace) = max si (SearchSpace) – min si (SearchSpace) (5.2.3)

The normalized version of Equation 5.2.2 is shown in Equation 5.2.4, where dmin

and dmax are the minimum and maximum distances from any potential position in the
search space to the ideal position. The constraints now have a range of 1.

(5.2.4)

Continuity of the Constraint

The suitability function must be continuous in both time and space. This property pre-
vents jumps in camera movement. We should also ensure that the constraint suitability
value does not oscillate between two values, often resulting in oscillation of the camera
position. A smoothing function can provide a solution to this problem but may result in
delay in the movement of the camera.

Uniqueness of Solution

Ideally, there should be a single best position for the entire search space. If several
positions are equally good, they should be contiguous. If not, slight changes in other
constraints’ suitability functions can cause oscillation between those positions.

Exceptions: Collision and Visibility Constraints

Constraints, such as collision avoidance and visibility, are special cases. If nothing is in
the way, these constraints have no influence on the position. In this case, the range
can be small, thus lowering the influence of the constraint. We built our collision and
visibility constraints with the following set of rules:

• The suitability function should be zero if the camera is beyond a threshold dis-
tance from the closest collision, or the main character is entirely visible (remem-
ber that we prefer small values).

• The suitability function should be one if the camera is just colliding, or the main
character is less than half-visible.

• The values in-between are linearly interpolated.
• The suitability function is independent of the search space position. This means that

the suitability value of a position is constant in time (i.e., it doesn’t ever change). For
the visibility constraint, this is only true if the main character is not moving.

s
i

ideal min

max mi

Position =
Position-P -d

d -d
()

nn

470 Section 5 Genre Specific

We first implemented both constraints using ray and shape casts, but the discrete
aspect of this approach produced shaking near obstacles. We decided to use a contin-
uous approach, in which a simple representation of the world is created, composed of
primitive shapes such as planes, boxes, spheres, and cylinders. The shortest distance
from the camera to a shape in the world is used to compute the suitability value of the
constraint using Equation 5.2.5. The constraint’s suitability function has a range of 0
if all points in the search space are farther from an obstacle than the threshold dis-
tance, thus having no influence at all on the solution. The same idea is used for visi-
bility, but we use the distance from the line-of-sight of the evaluated camera position
(the line that goes from the camera to the character’s position) as shown in Figure 5.2.2.

(5.2.5)s Position =
d > d

d
Position thresh

Posi

()
−

0

1
ttion thresh Position thresh

/d d d≤

⎧
⎨
⎪

⎩⎪

5.2 A Versatile Constraint-Based Camera System 471

Obstacle

Obstacle

Actor

Evaluated camera position
Free line-of-sight

FIGURE 5.2.2 Line-of-sight used to compute visibility constraint.

Profile-Based Architecture

A camera should be able to adapt to special situations, such as locomotion/wall-
climbing, in a third-person game or a cockpit/outside view in a driving game. Tuning
the same camera to behave adequately in all situations is not trivial. To limit the prob-
lem, we decided to create a specific camera for each problem. The scope of the camera’s
work is then smaller and easier to tune. A profile-based architecture allows us to dynam-
ically change the behavior of the camera. In Bourne’s implementation, profiles could
make changes in constraints’ weights, but they could not alter the number or type of
constraints. The new constraint concept, with a main constraint specialized for each
behavior, is not compatible with this architecture.

In our system, a profile is composed of a set of constraints and their weights. When
the profile is active, the solver evaluates its constraint list. The logic used to switch between
profiles is game-specific and camera-specific. For example, a fall camera can be activated
when the character is falling but only if there is no specific environment camera. When
switching between profiles, one of several transitions can be activated to ensure continuity
between camera behaviors:

• If the two profiles are already expected to be continuous, no special action need
be taken, so the new profile is applied directly.

• The solver can compute the suitability function of both profiles and interpolate
from one to the other. The disadvantage of this approach is that both profiles
must be evaluated, increasing the CPU requirements.

• If neither of the preceding approaches will provide a good result, we can simply
cut to the new profile’s best position. In this case, a bigger search space should be
used, so that we can be sure of finding the true best solution.

Suitability Value Transformations

One way to improve camera control is to give the game designers access to a set of suit-
ability value transformations. Value transformations are functions that can be applied
to the suitability value of a constraint. They are used to change the output value of a
constraint.

Transformations should map the input value to the range [0, 1]. Equation 5.2.6
shows the adapted suitability function of the system. A transformation is assigned to
each constraint and stored in the profile.

S(Position) = witi (Si (Position) (5.2.6)

Some common transformations include the following:

• We can apply a constant exponent (either greater or smaller than 1), as shown in
Equation 5.2.7.

• Ease-in ease-out transformations can be applied with a sigmoid, as shown in
Equation 5.2.8. α adjusts the slope of the curve.

• We can take the inverse of the constraint (so that a position attractor becomes a
repulsor, and vice versa), as shown in Equation 5.2.9.

t (x) = xα (5.2.7)

(5.2.8)

t (x) = 1 – x (5.2.9)

Figure 5.2.3 shows the effect of these transformations.

t x
x

()
(())

=
+ −

1

1 2 1exp α

i

∑

472 Section 5 Genre Specific

For example, the collision constraint outputs a value that is proportional to the
distance of the nearest wall. If you apply an exponential transformation (Equation
5.2.7) with α = 0.1, the suitability value quickly approaches 1, forcing the camera to
stay away from the wall.

Search Space Improvements

The original solver algorithm uses a box as the search space [Bourne06a]. In the next
section, problems inherent to this search space are exposed, and solutions are pro-
posed. Other kinds of search spaces are also presented.

Search Space Size

The box size gives the maximum displacement of the camera in one frame. So, if the
game runs at 60 fps, a frame lasts around 16 ms, and the search space extent is 1
meter, the maximum camera speed is 60 m/s or 216 km/h. Therefore, the search space
size should be chosen carefully, limiting unneeded computation. To allow indepen-
dent maximum speeds, a search space resized using the time step was tested, but the
variability of the size accumulated a rounding error that introduced shaking in the
camera. Because we use an octree to iterate over the box, it is also important to ensure
that the bigger the box, the bigger the approximation made by the octree.

5.2 A Versatile Constraint-Based Camera System 473

(a) (b)

(c) (d)

α = 0.1

α = 0.25

α = 0.5

α = 2
α = 5

α = 10

α = 25

α = 3

FIGURE 5.2.3 Transformation of suitability value:
(a) none, (b) exponent, (c) sigmoid, (d) inverse.

Sliding Octree Improvements

When using a sliding octree to iterate over the region, we found that the current
point, at the center of the box, could not be reached. As previously explained, the
sliding octree algorithm cuts the box into eight smaller boxes. The suitability function
is evaluated at the center of each box. The center of the box is then moved to the best-
evaluated position. The current center of the box is not tested at all, preventing the
search space from staying at its current position. The simple solution is to test the cen-
ter with the eight other points and move the box accordingly.

Other Search Spaces

Although the box search space allows complete freedom of movement, there are times
when you want to limit the camera to a specific path or region. Planes or splines can
be used to achieve this.

The search algorithm must be adapted to the search space. The algorithm is there-
fore moved to the search space class. Every search space class must be derived from an
abstract class that provides the interface with the following functionality:

• The search algorithm to be used by the solver
• A function for computing the minimum distance from a given point to the search

space
• A function for computing the maximum distance from a given point to the

search space
• Point projection or clamping used to remain inside the search space

The last three functions allow constraints to be implemented without any knowl-
edge of the search space. Figure 5.2.4a shows a setup where a torus can be used to
encircle an arena, and Figure 5.2.4b shows a setup using a spline.

474 Section 5 Genre Specific

Actor

Actor

Camera

Search Space

(a)

Actor

Actor

Camera

(b)

FIGURE 5.2.4 (a) Torus as a search space. (b) Spline as a search space.

Debugging the System

When the camera exhibits weird behavior, finding the fault can be difficult. Is one con-
straint not behaving as intended? Are the weights incorrectly balanced? To answer these
questions, a visual debugging system is needed. Every search space has the ability to
implement debug rendering. Evaluated points are displayed as colored points, with the
color representing the suitability of this point. Each constraint or the weighted sum
can be displayed independently. Our current implementation, when paused, switches
to a detached camera that can be moved around the scene. Then we can use a set of
command keys to iterate and study the different constraints independently. Figure
5.2.5 shows a screenshot of the debugger in action for a box search space, and a full-
color version can be found in Color Plate 6.

5.2 A Versatile Constraint-Based Camera System 475

FIGURE 5.2.5 Debugging system for visualizing evaluated points of a
box search space (also shown in Color Plate 6).

Source Code and Demo

A demo with the source code is provided on the CD-ROM. The demo covers most of
the topics presented here. Collision and visibility constraints are not included due to
dependency on other systems not provided here.

Further Work

We still need to address better techniques for smoothing camera movement. We orig-
inally thought that it would be a good idea to use constraints to limit the camera’s

speed and acceleration. Our first attempt was to try a 3D velocity constraint, but that
did not behave as expected. The problem was that the solver, following the minimum
cost path, was always trying to reduce the traveled distance. Figure 5.2.6 shows the
actual and expected paths to get from one point to another.

476 Section 5 Genre Specific

Camera

C
am

era

Actor

Actual path

Expected path

FIGURE 5.2.6 Path followed when using 3D velocity
constraint versus expected path.

Our next attempt was to develop a speed limiter constraint in a spherical coordi-
nate system. Although this system was better, tuning was difficult, and a central point
was needed to convert to the spherical coordinate system to world space.

A third solution consists simply of clamping the output position. Clamping has
been implemented in several speed coordinate systems: Euclidean, radial, and spherical.

Each solution has its own advantages and disadvantages, however, none are uni-
versal. You should try each one to find the one that best suits your needs.

If you don’t always want the camera to look at your main character, you might
want to use a constraint system to control its orientation. The suitability function
should map an orientation to a value. To express the orientation, Euler angles can be
used. The source code is designed (with the help of a template) to adapt easily to use
vectors of Euler angles. Search spaces must be adapted, and the warped nature of
Euler vectors should be handled with care. It might also be a good idea to use a sepa-
rate set of constraints for selecting the camera’s position and its orientation, so that the
orientation constraints do not influence the position.

Conclusion

This article presents a versatile camera system that uses a constraint-based solver. The
camera is defined by a set of profiles, with only one profile active at a time. The ability of
the camera to switch between profiles allows the camera to adapt to different situations.

A profile is composed of a main constraint, defining the base behavior, and influ-
encing constraints, such as collision and center of interest visibility. A suitability func-
tion is created by computing a weighted sum of the constraints’ suitability functions.
The position with the best suitability value is chosen as the solution.

The search space defines the region where the system searches for a solution. New
search spaces have been presented, extending the use to limited space and path cameras.

Several possible extensions were proposed, including constraints to adjust camera
velocity, acceleration, and orientation.

References

[Bourne06a] Bourne, Owen, and Sattar, Abdul, “Autonomous Camera Control with
Constraint Satisfaction Method.” AI Game Programming Wisdom 3, Charles
River Media, 2006: pp. 174–187.

[Bourne06b] Bourne, Owen, and Sattar, Abdul, “Evolving Behaviours for a Real-
Time Autonomous Camera. AI Game Programming Wisdom 3 CD Bonus Mater-
ial, Charles River Media, 2006.

[Garces06] Garces, Sergio, “Extending Simple Weighted-Sum Systems.” AI Game
Programming Wisdom 3, Charles River Media, 2006: pp. 331–339.

5.2 A Versatile Constraint-Based Camera System 477

This page intentionally left blank

479

5.3

Seeing in 1D: Projecting the
World onto a Line
Andrew Slasinski
ExtraStanlo@gmail.com

In game AI, vision can be simulated using line-of-sight testing. Line-of-sight checks
are often implemented by ray casts from an agent to a target. This has several disad-

vantages, however. Depending on the number of potential objects a ray can hit, the
tests can be very expensive. The obvious solution is to reduce the number of ray casts,
or even restrict yourself to a single one, but this technique can result in false negatives.
If only a few ray casts are made from one object to another, all of them might fail to
reach the target even though it is clearly visible, as shown in Figure 5.3.1.

FIGURE 5.3.1 A failed line-of-sight
check to an object that should be visible.

This article proposes an alternate solution for 2D games and 3D games with 2D
gameplay. By using the graphics processing unit (GPU), the world can be projected
onto a 1D line across an agent’s field of view. Intelligent decisions can then be made
using the data collected. Additionally, source code and a demo for this article are pro-
vided on the CD-ROM.

Overview

Using the GPU for simulated agent vision is straightforward. Here’s a quick summary
of the algorithm:

1. Draw objects in the scene as simplified bounding areas to a row of pixels in a
texture.

2. Draw interesting targets for an agent into the same area using a different color.
3. Read back the pixels of the texture.
4. Iterate over the pixels, and search for any colors matching that of the targets.
5. Make a decision based on the number of targets seen.

Drawing the World

To offload work from the CPU, a line representing the world is drawn onto an off-
screen surface using a graphics API, such as DirectX or OpenGL. The accompanying
demo uses DirectX, but the techniques can be implemented using OpenGL just as
easily.

Object Representations

For this technique to work, it must be possible to represent everything that an agent
can see as 2D geometric primitives, such as lines. In the case of a 3D game in which
agents are only able to interact on a 2D plane, a bounding visibility area must wrap
around the agent. In 3D, this might look like an inner tube around a character’s waist,
as shown in Figure 5.3.2. In memory, it would be represented as a 2D polyline. This
polyline is used as a proxy for the agent’s 3D geometry; therefore, it should maintain
a tight fit around the agent to prevent false positive results.

480 Section 5 Genre Specific

FIGURE 5.3.2 A 3D model and what its
bounding visibility area should logically look like.

In the case of a 2D sprite-based game, the bounding visibility area would be a
contour around the sprite. This concept is similar to generating bounding areas for
collision used by the physics engine in a game.

Projecting 2D to 1D

To draw in 1D, a view and projection transform are required just like normal 3D ren-
dering. Because most video cards only support square render targets, the viewport of
the 2D agent can take up a row of pixels on a square texture.

The view matrix transforms points in the world to a reference frame local to the
2D agent. A normal 3D camera can be used for this. If the 2D world were drawn on
a chalkboard, the 3D camera would be placed up against the chalkboard looking in
the same direction as the 2D agent. For the accompanying demo, the camera is ori-
ented so that the “up” direction for the camera points out of the chalkboard.

The projection matrix is determined by the way the 2D agent sees. It can either
see along a long column as an orthographic projection or a trapezoidal area as a per-
spective projection, as shown in Figure 5.3.3.

5.3 Seeing in 1D: Projecting the World onto a Line 481

FIGURE 5.3.3 An orthographic projection
on the left, and a perspective projection on
the right.

Component Labeling

Colors for the objects in the 2D scene must be selected to differentiate between scenery
and targets. In the demo, scene objects are labeled cyan, and targets are labeled dark
blue.

Multiple Viewers

To support views for multiple agents, rather than fetching data from a render target
after every view has been drawn, it is easier to render the views of multiple agents all
to the same render target. To keep them separate, simply adjust the viewport to render
each view on a different row of the texture.

Interpreting the Data

Now that a scene has been projected onto a 1D line, the data can be processed to get
information about the scene. Each pixel of the line can be thought to represent a ray
cast from the agent. For example, rendering 32 pixels to a render target is the same as
casting 32 rays and recording data about the first nearest intersection for each of
them. An example is shown in Figure 5.3.4.

482 Section 5 Genre Specific

FIGURE 5.3.4 A 2D view frustum with rays
that represent the meaning behind pixels drawn
to a render target. In this example, the rectangle
will cause two pixels to be drawn.

To check whether a specific target is visible to an agent, perform a search for that
target’s color in the agent’s row. The number of pixels matching the target’s color is
related to how well an agent can see the target. Fewer matching pixels will be present
if the target is far away, partially behind something, or out of the agent’s field of view.

Additional data can also be found from the scene. For example, the distance to
the viewer can be stored in each pixel when rendering the scene. This may be useful
for an agent that uses ray casting to steer itself around the environment. If an agent is
quickly approaching a wall or an obstacle, the agent can steer away or brake to prevent
a collision.

Querying as an Alternative

Rather than reading back the pixels of the render target from the GPU, occlusion
querying can be used instead. Occlusion querying works by submitting a fake draw call
to the GPU. The GPU returns a list of pixels that would have been drawn had it been
a real draw call. To use this feature, draw the 2D scene into a 1D line, and then use
occlusion querying with the targets in the scene. If no pixels would have been drawn,
the target would not appear in the scene. This may be faster than reading back texture
data, but it is less flexible because custom information cannot be saved to the texture.

Potential Issues

The most obvious issue is that by using this technique, game AI has become depen-
dent on the player’s video card. If the game is targeted toward a specific console, this
may be a nonissue. PC graphics cards that are shader model 1–compliant should be
decent candidates for this technique due to the general performance of the cards
released at the time. If shader model 2 cards are targeted, however, much more work
can be potentially offloaded onto the GPU due to the large pixel shader instruction
set. Some easy-to-implement ideas are presented in the next section.

Rendering the scenes must also be done in an intelligent manner. As few draw
calls as possible should be made to keep performance high. Visibility determination
techniques, such as frustum culling, can be adapted to reduce the amount of draw
calls made to the GPU.

Finally, the quality of the 1D scene is also important to the agent. A lower resolu-
tion render target means that fewer virtual rays are being cast, and there is a higher
chance to miss targets.

Extensions

A nice feature of this technique is that it provides a measure of how well a target can
be seen. Targets off in the distance take up fewer pixels using a perspective projection,
and partially occluded targets take up fewer pixels regardless of projection. Different
actions can be taken if a target is very visible, mostly visible, or barely visible.

Rather than reading back all the data into system memory, the GPU can process
the scene a bit first. For example, with some clever work, the GPU could count the
number of labeled pixels in a scene with a shader. This means less data needs to be
sent back to the CPU to process, offering better performance. The GPU could even
count the number of differently labeled targets in view, or even compute a direction
that an agent should steer toward, all in hardware using special pixel shaders.

Camouflaged targets can be simulated with this technique by testing pixels sur-
rounding a target. If the surrounding pixels are too similar in color, the agent may not
be able to see the target.

Drawing reflections in mirrors is nothing new to 3D graphics, and this technique
can support agents that see targets reflected in mirrors. They can even see targets reflected
by multiple mirrors! This would be quite difficult to implement using ray casts.

Source Code and Demo

Included on the CD-ROM is source code and a demo showing the concepts from this
article. In the demo, an agent rotates clockwise in a top-down 2D world. The result-
ing 1D vision information is then displayed in the top-left corner with white pixels
representing no visible object, cyan representing occluders (scene objects), and dark
blue representing targets (the star-shaped object). The 1D vision is stretched vertically

5.3 Seeing in 1D: Projecting the World onto a Line 483

to make it easier to see. When a target is seen, the borders of the screen turn red. An
image from the demo can be seen in Color Plate 7.

Conclusion

With a little bit of cleverness, the GPU can be coerced into performing non-graphics-
related operations for you with great results. Visibility determination is one of the few
components of AI that can take advantage of the massively parallel nature of new
GPU hardware. Although rendering a 3D scene onto a 1D line loses a great deal of
information that rendering to a 2D plane may not miss, the complexity of searching
a 2D texture for targets is exponentially larger. This technique is also simple enough
that smaller, 2D sprite-based games might take advantage of it for some new game-
play ideas using searchlights, security guards, or dynamic levels used by the player to
stay out of sight.

484 Section 5 Genre Specific

485

5.4

Reaction Time with
Fitts’ Law
Baylor Wetzel—Brown College
baylorw@yahoo.com

The player walks into a bot’s line-of-sight. How long should it take for the bot to
fire at the player? It’s an easy problem to solve—you could just make up a num-

ber—but it’s not an easy problem to solve well. If the bot reacts too slowly, it’s not as
exciting as playing against a human opponent. If the bot reacts too quickly, the player
will accuse your AI of cheating. Moreover, if you simply plug in a number without
taking into account variables such as how far away the player is, your AI will seem
both unintelligent and like it’s cheating.

If we want our bots to behave like humans, it’s helpful to know how humans
behave. In this article, we discuss Fitts’ Law, a model of human reaction time, and
how we can use it to simulate human-like reaction time in games.

Fitts’ Law

The player runs into your field of view. How long will it take for you to point your
weapon at him and pull the trigger? The answer depends on a few things. How long
does it take for you to notice that the player has appeared? How long does it take for
your brain to tell your hand to move? How far must you move your hand to point at
the target? How large is the target?

Fitts’ Law is named after Paul Fitts, a World War II–era psychologist who studied
equipment design and human factors engineering. As part of this work, he studied
how long it took people to move their hands to an object based on the object’s size
and how far the hand had to move. Based on this analysis, he created a formula that
could predict a person’s movement time. This model was based heavily on Claude
Shannon’s writings on information theory. Information theory deals with things such
as signal-to-noise ratios and encoding data in bits using binary logs, and as such can
be a little difficult to understand by nonengineers. So before we discuss the specifics
of Fitts’ Law, let’s talk about how to use it.

In the next section, we’ll discuss the formula as it is traditionally written. For now,
here is how we choose to write it:

indexOfDifficulty = log2

movementTime = reactionTime + (timePerBit ⋅ indexOfDifficulty)

Let’s try a quick example. Suppose an agent becomes aware of the player. The
center of the player is 32 units to the left of where we are currently aiming our
weapon, and the player appears to be 2 units wide. It doesn’t matter what the units are
(meters, inches, pixels, etc.) because we’ll be taking the ratio of the two. In our case,
the index of difficulty would be the following:

indexOfDifficulty = log2 = log2 (17) = 4.09 bits of “difficulty”

If the player was further away (say, 64 units rather than 32), or the target was
smaller (say, 1 unit wide rather than 2), then the index of difficulty would be higher.
Likewise, the larger the target or the closer it is, the less difficult it is.

To determine how long it will take for the agent to aim at the player, we need to
know both the reaction time and the time per bit. For now let’s use the numbers 304
ms and 125 ms. Later in the article, we’ll explain how to determine these numbers.

movementTime = 304 + 125 ⋅ 4.09 ≈ 304 + 511 ≈ 815 ms

Let’s do a few more examples to show how this works. Suppose the agent aims
for the player’s head, which is only one unit wide. Then the time to aim would be the
following:

movementTime = 304 + 125 ⋅ log2 ≈ 934 ms

Because he is aiming at a smaller target, it takes him longer to properly aim at the
target.

To make the shot easier, the agent uses a sniper rifle with a zoom that makes the
player’s head 4 units wide. To keep the example simple, assume that the player is still
only 32 units away.

movementTime = 304 + 125 ⋅ log2 ≈ 700 ms

A larger target means the player can aim at the target faster.
You might have noticed that all of the previous examples are subsecond response

times. Included on the CD-ROM is a program that allows you to measure your own
response time. My response times varied from 322 ms to 929 ms (depending on the

+
⎛

⎝
⎜

⎞

⎠
⎟

32

4
1

+
⎛

⎝
⎜

⎞

⎠
⎟

32

1
1

+
⎛

⎝
⎜

⎞

⎠
⎟

32

2
1

+
⎛

⎝
⎜

⎞

⎠
⎟1

distance

width

486 Section 5 Genre Specific

index of difficulty), which is in line with measurements taken from other groups
[Cuijpers07].

Here’s one last example. Assume the agent is aiming his weapon in a given direc-
tion when the player just pops up directly in his crosshairs. Assume that the width of
the player is one. The time it would take for the agent to aim and pull the trigger
would be the following:

movementTime = 304 + 125 ⋅ log2 = 304 + 0 = 304 ms

Even given a perfect shot, the shot is not instantaneous. The brain still needs time
to recognize the situation and give the command.

How It Works

Fitts’ Law has been modified (slightly) several times. The version we’ll discuss here is
called the Shannon formulation. This version is named after Claude Shannon, whose
work on information theory is the basis of Fitts’ original formula.

The Shannon formulation of Fitts’ Law is given here:

ID = log2

MT = a + (b ⋅ ID)

ID stands for index of difficulty and represents, for our purposes, how hard it is to
click the mouse button on the target. To calculate ID, take the distance from the
mouse to the center of the target (A for amplitude; if the name seems funny, it’s because
Fitts’ Law was derived from signal processing theory), and divide it by the effective
width of the target (W). Because Fitts’ Law measures data in bits, you’ll need to take
the base 2 log of this number. If the distance is less than the width, the resulting num-
ber is less than one, and the log of a number less than one is negative, meaning the
problem has a negative difficulty rating. Because this is an odd situation to be in, the
Shannon formulation adds one to the number to prevent it from becoming negative.

MT stands for movement time, which is the time it takes to move the mouse to
the target and click the fire button.

The variables a and b are more difficult to explain. Suppose you had someone play-
ing your game, and each time someone shot a target, you recorded his movement time
and the target’s index of difficulty. If you plotted those on a graph and then used linear
regression to run a line through the center of that data, a would be the x-intercept
(where the line runs through the x-axis), and b would be the slope of the line. There isn’t
an accepted definition for what those represent in the real world, but consider that for a
target of difficulty zero (meaning your mouse is already on the target, all you have to do

+
⎛

⎝
⎜

⎞

⎠
⎟1

A

W

+
⎛

⎝
⎜

⎞

⎠
⎟

0

1
1

5.4 Reaction Time with Fitts’ Law 487

is push the button), movement time (technically, the time to move and fire) will be
the same as intercept a. You might consider the intercept to be the time it takes the
actor to notice the event and react to it. If the intercept is the startup time, then slope
b is the amount of time it takes for each unit of difficulty. In reality, the meaning of
intercept and slope are probably a bit more complex than this, but these are useful
approximations.

Gathering the Data

The previous formula uses the constants a and b. Because they represent the base reac-
tion time and how quickly you can aim at targets of various difficulties, they will be
different for each person. That leads to the question, how do you get these numbers?

The constants a and b are obtained empirically, meaning that before we can pre-
dict how fast someone will be, we must first have the person aim at a few targets and
measure how quickly he reacts. Included on the CD-ROM is a program to do this.
The player aims at a number of objects, measures all the relevant variables (how large
the target is, how quick the player was, etc.), and saves them to a comma-delimited
file.

After you have this information, you determine a and b through linear regression.
An easy way to do this is to import the data file into Excel and use Excel’s slope and
intercept functions. If you stored the movement time in column A and the index of
difficulty in column B, you would get the constant a (the intercept) with the formula:

=INTERCEPT(A:A, B:B)

and the constant b (the slope) with the formula:

=SLOPE(A:A, B:B)

An example is included on the CD-ROM.
To give you an idea of what range of numbers you should expect to get, my per-

sonal values are 304 ms (a, the intercept) and 125 ms (b, the slope). The average for
my 11-year-old daughter Amber was 498 ms (a) and 121 ms (b). The average for the
Fittsbits project, which analyzed data from more than a thousand subjects (and which
used a slightly different formulation), was 460 ms and 130 ms for experienced com-
puter users and 480 ms/140 ms for novice users [Cuijpers07].

Details Worth Knowing

Fitts’ original goal was to be able to predict the average amount of time it would take
someone to make a quick but precise move in a single dimension to a stationary tar-
get. This has a couple of implications.

First, the movement time predicted by this formula is an average movement time.
Obviously, people do not always move at an average rate. Using my own performance
as an example (see Figure 5.4.1), over the course of 60 trials, I was within 10% of my

488 Section 5 Genre Specific

predicted time on roughly half the trials and within 20% on more than three-quarters
of the trials. I was more than 40% off on 7% of the trials (in each of these cases, I was
slow to notice the target; time spent moving was normal). The numbers for my 11-
year-old daughter Amber were similar. For this set of trials, predicted times ranged
from 322 to 929 ms.

5.4 Reaction Time with Fitts’ Law 489

0%

5%

10%

15%

20%

25%

30%

35%

40%

<1% 1-10% 10-20% 20-30% 30-40% >40%

Variance from Predicted Time

FIGURE 5.4.1 Fitts’ Law rarely predicted my movement time to
the precise millisecond, but it was often very close (in this graph,
10% variance ranged from 32 ms to 93 ms, depending on the trial).

Second, the assumption is that the user is aware that he is about to be aiming at a
target. This is a realistic assumption if your AI-controlled agent is in the middle of a
firefight or actively searching for the player, but it isn’t true for a guard sitting as his
post expecting a quiet night.

Third, the assumption is that the user is able to make this movement with rela-
tively few mistakes. Specifically, the user is expected to have an error rate of 4% (this
number doubles to 8% when approaching a target at a diagonal [MacKenzie92]), with
more of those errors being undershooting than overshooting [Oliveira05]. There is a
tradeoff between speed and accuracy. To click on the target the first time every time,
the user must move slower, whereas a user that moves faster will miss more often.

Fourth, the original work was designed for single-dimension movement. As a
result, the size of the target was always assumed to be its width. Later studies found that
Fitts’ Law holds up in two dimensions, but the size of the target needs to be calculated
somewhat differently. The method typically recommended and the one used in my
own work is to look at the object’s width and height and use whichever is smaller
(known in the literature as the SMALLER-OF model). Although it might sound
overly simple, studies have found it to give extremely good results [MacKenzie91].

Fifth, Fitts’ Law assumes that the target is stationary. The program included on
the CD-ROM allows you to analyze data for both moving and stationary targets. My
own tests showed that Fitts’ Law applies equally well to both moving and stationary
targets (see Figure 5.4.2), although the error rate with moving targets is higher. Specif-
ically, across 60 trials, the distribution of response times was roughly the same as
when aiming at stationary targets (45% of trials within 10% of predicted time, 68%
within 20%, 7% greater than 40%), but 17% of the trials resulted in more than one
press of the mouse button, representing a miss on the first shot (13% involved two
clicks, one trial resulted in three clicks, one trial contained four). In three of the 60
trials, the subject failed to hit the target before it left the screen.

490 Section 5 Genre Specific

0%

10%

20%

30%

40%

50%

<1% 1-10% 10-20% 20-30% 30-40%

Variance from Predicted Time

>40% Missing

FIGURE 5.4.2 When Fitts’ Law is used to predict movement
time to click on a moving target, accuracy remains qualitatively
the same.

There are two things to note about moving targets. First, in the author’s experience,
there was substantially more panic when trying to intercept a moving target and a firmly
held belief that small, quick targets were much harder to catch than large or slow ones.
The data, however, seems to indicate that performance was roughly the same.

Second, in these trials, the object moved at random angles and random speeds. In
a traditional FPS, objects are more likely to be moving along the horizontal plane, and
all objects of a certain class (soldier, rocket, tank, etc.) are likely to move at the same
speed in a predictable manner. Therefore, this test should represent a worst-case sce-
nario, with the exception that objects in this test moved in a straight line rather than
circle-strafing, randomly walking, or randomly jumping.

Future Work

This paper describes how quickly an AI-controlled agent will react but does not describe
what the movements will look like, which might be important to a game where the
player can view the world from the bot’s eyes. One possibility is to look into the Accot-
Zhai steering law, derived from Fitts’ Law, which handles the case of a user trying to
move a mouse through a 2D tunnel.

Conclusion

Reaction time is an important part of many games, so getting it right is a task worth
undertaking. With Fitts’ Law, you get a good model of human reaction time that’s
both widely accepted and extensively documented. Because it is an empirical method,
different AI agents can be based on different people, allowing you to customize the
reaction time of your AI-controlled agents. Requiring only two pieces of readily avail-
able data at runtime, Fitts’ Law is easy to add to your game. And, because it only
requires a few simple calculations per target, it’s fast. The code only needs to be writ-
ten once—to change reaction time, you change the input data, not the code. Fitts’
Law won’t solve every AI problem your game will have but it does a good job for reac-
tion time, meaning one less problem you have to worry about.

References

[Cuijpers07] Cuijpers, L., and Vervuurt, W., “Fittsbits: A Game Investigating Fitts’
Law.” Available online at http://www.rodo.nl/fittsbits/, April 17, 2007.

[MacKenzie91] MacKenzie, I. S. Fitts’ Law as a Performance Model in Human-Com-
puter Interaction. Doctoral dissertation, University of Toronto, 1991.

[MacKenzie92] MacKenzie, I. S., and Buxton, W., “Extending Fitts’ Law to Two
Dimensional Tasks.” Proceedings of the CHI ‘92 Conference on Human Factors in
Computing Systems, 1992.

[Oliveira05] Oliveira, F. T. P., Elliott, D., and Goodman, D. “Energy-Minimization
Bias: Compensating for Intrinsic Influence of Energy-Minimization Mecha-
nisms.” Motor Control, (2005): pp. 101–114.

5.4 Reaction Time with Fitts’ Law 491

http://www.rodo.nl/fittsbits/

This page intentionally left blank

493

5.5

Enabling Actions of
Opportunity with a Light-
Weight Subsumption
Architecture
Habib Loew—ArenaNet
habibloew@gmail.com

Chad Hinkle—Nintendo of America Inc.
hinks85@gmail.com

With the ever-increasing physical and graphical fidelity in games, players are begin-
ning to demand similar increases in the performance of unit AI. Unfortunately,

unit AI is still most often based on simple finite state machines (FSMs) or, occasionally,
rule-based systems. Although these methods allow for relatively easy development and
behavioral tuning, their structure imposes inherent limitations on the versatility of the
units they control. In this article, we propose an alternate methodology that allows units
to effectively pursue multiple simultaneous goals. Although our method isn’t a panacea
by any means, it has the potential to lead to far more flexible, “realistic” unit AI.

A Brief Review of Subsumption

To give our unit AI the ability to pursue multiple simultaneous goals, we use a simple
subsumption architecture [Brooks86, Yiskis04]. Subsumption is a layered approach in
which each layer represents a behavior or action. Lower priority layers operate within
the context set by the higher priority layers. If necessary, higher priority layers can com-
pletely override lower priority layers, ensuring that the overall behavior of the system
always encompasses (or subsumes) the goals of the highest priority layers. Subsump-
tion has a number of advantages, including robustness and flexibility. The principle of
subsumption is fairly simple, but in practice, subsumption architectures have a ten-
dency to become convoluted due to a lack of independence between the layers. We
have appropriated the layered approach from subsumption while greatly simplifying

our architecture by requiring a uniform interface to and between the layers. This was
done at the expense of some flexibility, but we believe the gains in maintainability and
layer portability are well worth the costs.

An Example Scenario

We will use a simple RTS as our example scenario. Suppose that we have a single air
unit that can be used as a scout but that also possesses moderate offensive capabilities.
The player has the ability to give our air unit orders to move, patrol, and attack. Addi-
tionally, our world contains a number of enemy tanks and a power-up that our air
unit can collect.

In our example, the player has given the air unit an order to patrol the unknown
territory to the north. Unbeknownst to the player, this patrol path will bring the air unit
into contact with enemy tanks and near to a desirable power-up. If an actual pilot were
controlling the air unit, we would expect them to alter their course slightly to collect the
power-up, or to briefly engage with the enemy, as long as those actions do not conflict
with their basic orders. Of course, there are many other possible actions for the pilot to
take here, including exploring new territory, avoiding enemies, seeking out friendly
units, and so on. For the sake of simplicity, we will only consider the first two oppor-
tunistic actions mentioned (engaging the enemy and seeking a power-up).

If the air unit used a simple FSM, it would likely be in a patrol state after receiving
the player’s order and would be unable to take advantage of the opportunities presented
by its path. Certainly an FSM could be constructed to allow the unit some flexibility
while patrolling; however, such an FSM would quickly become difficult to maintain as
each state would be linked to every other state. Furthermore, a complex system would
be required to ensure that the correct state was reentered after an opportunistic action
was completed. Our problem, then, is to construct an easily maintainable system that
will allow our air unit maximum flexibility to take advantage of opportunities while still
following the player’s orders effectively.

Light-Weight Subsumption

To solve our example problem, we have created a simple subsumption-inspired system
with three layers. Each of our layers is self-contained and enables a particular sort of
action or response. Our three layers (from lowest to highest priority) are the following:

Power-up Layer: Attempts to collide with power-ups.
Attack Layer: Attempts to engage enemy units by adjusting course and issuing

firing orders.
Command Execution Layer: Executes commands given by the player. In our

example, the patrol command is executed by this layer.

Each layer uses a standardized interface to manipulate the unit and interoperate
with the other layers. All of our units implement a common command interface that

494 Section 5 Genre Specific

allows us to mix and match layers between units with ease. Additionally, we can specify
the layer ordering for individual units, allowing us to give a semblance of personality to
units essentially for free.

Note that our layers are organized with the highest priority layer on the bottom to
conform to the standard convention used when describing subsumption architectures.

Layer Execution

To arrive at the final behavior of our air unit, we will execute each layer in order of pri-
ority. As each layer executes, we evaluate its output to determine if it can be effectively
combined with the layers that have already executed and, if so, combine the output of
the current layer into the cumulative output of the subsumption system. Deciding if a
given layer is compatible with its predecessors and combining the output of multiple
layers intelligently are the most difficult issues when implementing a system like this.

Unfortunately, there are no universal solutions to these problems. Evaluation of
when it is appropriate to execute a given layer is heavily application dependent and
layer dependent. Lower priority layers should be prevented from causing higher prior-
ity layers to fail, but this can be difficult to enforce if the layers operate in significantly
different ways. This is the main motivation for our standardized layer and command
interface.

In our example scenario, all of our units effectively operate in 2D, so our com-
mand system is built around manipulating their headings. We use bounds on the
headings to evaluate the appropriateness of a given layer as well as to combine the out-
put of the layers as they execute. As execution of a layer begins, it is provided with a
set of bounds on the possible headings it can choose by the higher priority layer(s)
below it. We will call these the layer bounds. The executing layer then calculates the
optimal heading that the unit should assume to achieve the layer’s goal. Next, the exe-
cuting layer uses this optimal heading to calculate bounds that indicate the maximum
allowable deviation from the optimal heading, which will still allow the goal of the
layer to be achieved. We call these the current bounds. This calculation should be as
simple as possible because it will be done for every layer for every unit in the system.
As long as any heading inside the current bounds will still allow the unit to achieve
the goal of the executing layer (via steering corrections in later updates), the bounds
are sufficiently correct. After the current and layer bounds have been calculated, we
compute their intersection. We call these the working bounds.

If we arrive at this point in the process, and there are no working bounds (i.e., the
intersection of bounds was the empty set), then the currently executing layer is ignored.
No heading currently exists that will allow the unit to pursue the current layer’s goal
while preserving the goals of higher priority layers. Execution then moves on to the next
layer with no changes made to the layer bounds.

If, however, the optimal heading lies within the working bounds, then the layer is
considered to have executed effectively. The unit’s target heading is then set to the
optimal heading, any instantaneous orders (such as firing) are issued, the working

5.5 Enabling Actions of Opportunity with a Light-Weight Subsumption Architecture 495

bounds are passed to the next layer as the layer bounds, and the entire process repeats.
When the final layer has either executed or been ignored, the heading of the unit will
satisfy the maximum number of layers, with higher priority layers winning out over
lower priority layers.

The demo included on the CD-ROM contains a full example of the layer execu-
tion process with all of the changing bounds illustrated.

Pitfalls and Misconceptions

The system we have presented here is highly simplified to make the layer interactions
as clear as possible. Specifically, we only consider the unit heading when evaluating
the layer interactions. A more robust implementation would have to take into account
all aspects of layer behavior when evaluating and combining layers. For example,
firing would be subjected to constraints other than unit heading, such as stealth,
resource management, and so on. The more complex the interactions between the
layers, the harder they are to codify. Even within our simple system, there are sub-
tleties that should not be overlooked.

One very important fact to keep in mind is that while the layers represent a prior-
itized set of actions, most of the time, no single action will be chosen to the exclusion
of all others. Instead, the system attempts to engage in as many simultaneous actions
as possible. This can lead to situations in which lower priority actions end up com-
pleting successfully while higher priority actions fail. As long as the bounds provided
by the highest priority layer are valid, in no case will the highest priority action fail
while lower priority actions succeed. The danger is only to the middle priority layers.
We have an explicit example of this behavior in the included demo.

After all the setup we went through to keep higher priority actions from getting
overrun by lower priority actions, how did we end up in this situation? Simplifying
assumptions in the calculation of the current bounds can be the source of problems
like this, but even without those assumptions, the danger remains. Each layer encom-
passes an action that the system will attempt to simultaneously pursue. Eventually,
adjustments made to accomplish very low priority actions “on the way” to completing
higher priority actions can cause some of the middle priority layers to be temporarily
excluded as the highest priority actions take precedence.

A specific example of this issue occurs in our demo. We set up the air unit with
the following layers (remember, the highest priority is on the bottom):

• Attack Layer
• Power-up Layer
• Command Execution Layer

Additionally, the air unit is given a player command to patrol a location directly
north of its starting position. About half way to the patrol point and just west of the
patrol path is an enemy tank, and west of the tank is a power-up. Without the Attack
Layer, the air unit would head directly for the power-up and then resume its path to

496 Section 5 Genre Specific

the patrol point. However, because the Attack Layer is the last to execute, the air unit
will always point at the tank as long as that path doesn’t violate any higher priority
layers. The air unit reaches a critical point when the power-up falls outside the bounds
set by the Command Execution Layer. This causes the Power-up Layer to be ignored.
The final behavior of the air unit is to attack the enemy tank on the way to the patrol
point without making any apparent effort to pick up the power-up, even though the
Power-up Layer is a higher priority than the Attack Layer. This situation can be diffi-
cult to visualize, so we encourage you to examine the included demo to get a better
sense of how things might go wrong.

Conclusion

The method we have presented allows for semiautonomous agents to take advantage of
unexpected opportunities and generally behave in a more flexible, believable fashion. By
standardizing the layer and command interfaces, complex unit behavior groups can be
created simply by mixing and matching layers that are in use by existing units. Control
over the ordering of the layers can be given to players to increase their sense of customiza-
tion of, and ownership over, their units. Giving individual units the ability to take more
actions of opportunity, and doing so in a way that meshes with the player’s own approach
to the game, can increase the realism and immersion of the battlefield dramatically and
at relatively little cost!

References

[Brooks86] Brooks, Rodney A., “How to Build Complete Creatures Rather than Iso-
lated Cognitive Simulators.” Available online at http://people.csail.mit.edu/brooks/
papers/how-to-build.pdf, December 1, 2006.

[Yiskis04] Yiskis, Eric, “A Subsumption Architecture for Character-Based Games.”
AI Game Programming Wisdom 2, Charles River Media, 2004.

5.5 Enabling Actions of Opportunity with a Light-Weight Subsumption Architecture 497

http://people.csail.mit.edu/brooks/papers/how-to-build.pdf
http://people.csail.mit.edu/brooks/papers/how-to-build.pdf

This page intentionally left blank

499

5.6

Toward More Humanlike
NPCs for First-/Third-Person
Shooter Games
National University of Ireland Galway
Darren Doherty
darren.doherty@nuigalway.ie

Colm O’Riordan
colm.oriordan@nuigalway.ie

In recent years, much effort has been put into increasing the believability of the
actions of nonplayer characters (NPCs) in first-/third-person shooter (FTPS)

games. Currently, NPCs in FTPS games generally use a common set of logic for rea-
soning, which can result in very monotonous and predictable behavior. If the agents
in the gaming environment act and appear like real human players and are given a
greater sense of individuality, then the experience will be more immersive for the
player. NPCs in FTPS games typically have a limited ability to interpret and react to
both changes in their environment and the actions of other characters.

Humans have personalities, display emotions, are unpredictable, and are influ-
enced by physiological stressors. They define goals they want to achieve and develop
plans to attain these goals. Humans have a memory enabling them to remember past
events from which they can learn. They have the ability to sense their environment
through sight, sound, touch, taste, and smell, and can communicate and coordinate
their behavior with others. Humans can reason about their environment, have definite
reaction times, and have a specific set of actions that they can perform. In addition, not
all humans possess the same skills or the same level of expertise in skills they do possess.
Rather than discuss briefly each of these human capabilities, we select a sampling of
these capabilities and discuss in detail how they can be used to make NPCs more indi-
vidual and humanlike.

Class-Based AI Systems

The emergence of squad-based FTPS games in recent years has given rise to more
complex behavioral systems being developed. Some developers have begun to incor-
porate class-based AI systems into their FTPS games to allow for the development of
different classes of NPCs, each with its own attributes, features, and modes of behav-
ior, (e.g., Battlefield 2 [BFII05]). Teams can then be comprised of agents from differ-
ent classes; for example, a team could consist of an engineer, a sniper, a medic, and a
rifleman, each with its own specific role on the team. NPCs in a particular class are
instilled with specific abilities or attributes common to their class, but an individual
NPC within a class is still indistinguishable from other NPCs in the same class.

The human behavioral capabilities discussed in this article can be applied to an
existing AI architecture, such as a class-based AI system, to create more humanlike
and individual NPCs. For example, all snipers may have common attributes, such as
good aim, but one sniper might be more patient than another, so he may choose to
camp at one location for long periods of time, whereas the other sniper might change
his location often.

Human Sensing

To make an NPC humanlike, our first challenge is to make its perceptual abilities
humanlike. NPCs should have limited sensory regions within which they can sense
information; they should not have superhuman sensing abilities or perfect knowledge
of the map. The sensory region is relative to the individual, and its size and shape dif-
fers for each sense. The perceptual systems inherent in FTPS AI engines deal mainly
with the tactile, visual, and aural sensing of an agent. However, depending on the
design parameters of the game, the senses of smell and taste could also be added.

Tactile Sensing

In modern games, tactile sensing is usually achieved through the use of a collision detec-
tion system and smart terrain. An NPC’s tactile sensing region is the area immediately
surrounding it on all sides. If the NPC touches something, or something touches the
NPC, the collision detection system will detect a collision between the NPC and another
game object. Smart terrain can then be used to tell the NPC about the properties of the
game object it has just collided with, allowing the NPC to “feel” the object. For exam-
ple, if an NPC touches a wall, then the wall can send a message to the NPC informing
the NPC that the object it has touched is a wall, what type of material the wall is made
from, if the wall is traversable, or if the NPC can break through the wall. Similarly, if
something touches the NPC—whether it is a bullet piercing its flesh or a falling obsta-
cle hitting it on the head, a message can be sent from the game object to the NPC telling
the type of object that hit the NPC; its weight, material, and velocity; how much dam-
age should be incurred, and so on.

500 Section 5 Genre Specific

Visual Sensing

To instill humanlike vision into an NPC, we need to model its visual system on that of
a human. An agent’s sensing region for sight should be cone-shaped and extend to a lim-
ited distance in front of the agent to simulate a binocular field of view and viewing dis-
tance [WauGra01]. With humans, the brain classifies any known objects that are sensed
visually. For FTPS games, game objects are tested to see which ones lie unobstructed
within the NPC’s viewing range based on the field of view and viewing distance. Those
that do are recorded as being sensed. The field of view and viewing distance can be
altered for different NPCs to give a greater sense of individuality, such as short-sighted-
ness or 20/20 vision.

Another idea is to allow NPCs to use binoculars, scopes, or even glasses. If an NPC
is equipped with a pair of binoculars or a scope, its viewing distance should be magni-
fied and its field of view narrowed accordingly. Likewise, if an NPC wears glasses, then
its viewing distance with the glasses should be better than without. In addition, an
agent who is blind in one eye should have monocular vision [WauGra01]. Its field of
view should be biased to the side its eye is on, and it should have difficulty judging the
distance and speed of objects. The agent’s ability to classify objects could also be rela-
tive to how far away from the agent the object is, as vision generally deteriorates with
distance. For example, an agent might sense another agent from a distance but might
not be able to tell if that agent is a friend or foe until it comes closer.

Lighting conditions can also affect an NPC’s ability to see. Flash-bang grenades
or bright lights shone directly into an NPC’s eyes could temporally blind it, rendering
its visual sensing abilities inoperable for a time. Furthermore, an NPC walking
around in a darkened environment should find it more difficult to visually sense other
game objects than if the environment were fully lit. Players could take advantage of
this by hiding in shadowed areas or by turning off the lights in a room when equipped
with night-vision goggles. It would also give the NPCs incentive to use flashlights,
wear night-vision goggles themselves, or search for a light switch in a darkened room,
making their behavior more akin to a human player. This has already been done to an
extent in some games, such as Splinter Cell [SpltrCell07]. However, if a light suddenly
goes out in a room, and the NPCs do not have flashlights or night-vision goggles, it
should generally cause panic among the NPCs and cause them to bump into objects
when trying to navigate around the darkened room. Also, a cautious NPC may be
reluctant to use flashlights because the light beam can give away the NPC’s position
and make it an easier target for the player.

Auditory Sensing

Sound waves have a pitch, timbre, and volume. The pitch is the frequency of the sound
waves, the timbre is the nature of the sound (combination of different frequencies), and
the volume is the loudness of the sound [MalBir98]. The volume of a sound attenuates
with distance and attenuates in different ways depending on the types of media it passes

5.6 Toward More Humanlike NPCs for First-/Third-Person Shooter Games 501

through along the way. To reflect this effect, an NPC’s auditory ability should also
degrade with distance. For example, if an explosion occurs close to an NPC, it should be
heard much more clearly than if it occurred far away. Hence, the NPC should become
more alert and anxious if it hears a loud noise in close proximity than if it barely senses
one far off in the distance. The pitch of a sound should affect human NPCs the same
way it affects humans; very high pitched sounds might hurt an NPC’s ears and cause it
to cringe. In addition, some animals (such as dogs, cats, and mice) can hear frequencies
outside of the human hearing range, so animal NPCs should be able to do the same.

An NPC’s auditory sensing region should be spherical in shape, as sounds can be
heard from any direction. Because the pinnae, or outer ears, of humans point forward,
it is slightly easier to hear sounds coming from the front. Some mammals, such as
dogs and cats, have movable pinnae that allow them to focus their hearing in a partic-
ular direction [EEIIME07]. This could allow for more interesting animal or beast
NPCs. Their auditory sensing region could be distorted according to the direction
their pinnae are pointing. The player could be made aware of this by displaying the
NPC’s auditory sensing region on the player’s radar, similar to the way the player is
made aware of an NPC’s visual sensing region in many FTPS games, for example,
Metal Gear Solid 3: Snake Eater [MGS305].

A human NPC should be able to hear all the sounds that a human player in the
same situation can hear. This includes any gunfire, explosions, or loud noises within
earshot of the NPC; any detectable enemy agents trying to sneak up from behind
(e.g., if the enemy steps on a twig or knocks something over); an ally’s cry for help; an
order from a commander; and background noises, such as radios, TVs, wind blowing,
chatter of allies, and so on.

Background noises could be used to influence an NPC’s fear or alertness levels. If
the background noises suggest a spooky atmosphere, an NPC might become afraid,
or if an NPC hears a TV or radio that was earlier turned off, it may become alerted
and investigate. Furthermore, the way humans perceive sound depends on ear shape,
age, and psychological state; not all humans perceive sound in the same way [Men-
shikov03]. This idea could be incorporated to make some NPCs better able to distin-
guish one sound from another or to make older NPCs hard of hearing, giving the
NPCs a greater sense of individuality.

Because some sounds are more significant than others, sounds in the game world
could be tagged with an importance level to indicate how relevant the sound is to the
NPC. This idea and suitable examples are provided by Tozour [Tozour02]. The auditory
sensing region of an NPC may grow or shrink depending on the state of an agent. This
means large, nearby explosions might temporarily deafen the agent, thus reducing the
region; or seemingly quiet environments might peak the agent’s alertness, thus increas-
ing its sensory region. NPCs should be able to use this concept to their advantage. For
example, snipers might wait for artillery fire in the background to mask the sound of
their gunshot, so that enemies are not aware of their presence. In the same way, if a
player is sneaking up behind an NPC, and there is a noisy wind blowing, the NPC

502 Section 5 Genre Specific

should not be able to sense the sound of the player’s footsteps over the sound of the
wind.

Olfactory Sensing

Olfactory sensing refers to the sensing of information from the environment via the
sense of smell. The sense of smell has not been used to the same extent as that of touch,
vision, or hearing in FTPS games because design parameters do not normally require
it. Including olfactory sensing would make NPCs more humanlike and the game more
interesting to play as a whole. An agent’s olfactory sensing region would be similar in
shape to its auditory sensing region but generally not as large because the sense of smell
is not usually as far-reaching as that of hearing. The human sense of smell is less sensi-
tive than in animals [WauGra01]. The olfactory region for a dog NPC, for example,
should be made much larger than that of a human NPC.

The smell coming from a game object could be emitted out across some smell
radius whose length depends on the strength of the smell. If the object emitting the
smell moves from one area to another, a trail of the smell could be left behind similar
to the pheromone trail of an ant. This smell left by the trail should deteriorate over
time as it disperses through the air. Half Life 2 [HLife06] uses a sort of smell sensing
using antlions and pheropods. When the player throws a pheropod and the pheropod
bursts, the antlions will “smell” the exposed contents and swarm on the location of
the burst pod.

Some smells can also get stronger or weaker over time, causing their smell radius
to grow or shrink, respectively. For example, the smell of an NPC’s corpse that the
player has killed and hidden away should get stronger as the corpse decays, making it
more likely to be found by another NPC. It should also be possible for the player to
use the environment to keep smells concealed to certain areas. For example, the smell
coming from a corpse hidden in a locker would not be as prominent as it would be if
the corpse were outside of the locker. Similarly, smells confined to enclosed spaces
should be a lot stronger than those that are out in the open. An agent might smell an
object more easily if it were in a small room than if it were outside.

Smells can be masked by other stronger smells. For example, the player could
mask its own smell with the smell of a strong-smelling plant or spray, or the player
could wear clothing belonging to an enemy NPC to lead dogs or other beasts off its
scent by disguising its smell as an ally rather than an enemy. Smells can also be used to
influence NPC behavior. In a sewer setting, an NPC might feel sick from the smell
and not be as effective in combat. In Gears of War [GOW07], the Berserker creatures
in the game are blind and can only sense the player through sound and smell.

Furthermore, there are the issues of anosmia and adaptation with respect to olfac-
tory sensing. Anosmia is an inflammation of the nasal mucosa that prevents odors
from reaching the olfactory nerves in the nose, essentially causing a loss of smell
[WauGra01]. For example, an NPC who has contracted a cold virus (a common cause
of anosmia) would be prevented from smelling objects in the game while the cold is

5.6 Toward More Humanlike NPCs for First-/Third-Person Shooter Games 503

active. Adaptation is the way in which the perception of an odor decreases (and even-
tually ceases) the longer an individual is exposed to it [WauGra01]. This could be an
interesting concept to bring into FTPS games. For example, a security guard NPC
might be stationed in a room where the player has just hidden a dead body. Over
time, the smell would be getting worse, but the NPC would also be adapting to it and
so might not sense it, whereas if another NPC entered the room, he would smell it
right away.

Gustatory Sensing

Gustatory sensing is the sensing of objects through taste. For FTPS games, taste is of
little importance because the amount of information that NPCs in a FTPS game can
sense through taste is very limited. However, gustatory sensing could bring many inter-
esting factors to an FTPS game. Beasts or monsters in the game could become more
aggressive when they get a taste for blood or raw meat. Thus, if an agent is bleeding
from an open wound, it’s in the agent’s interest to stop the bleeding as soon as possible
and to keep dead prey out of the path of the beasts.

Gustatory sensing could also be used to bring a fun element to the game by allow-
ing the player to play tricks on guards. For example, a guard might leave its lunch
unattended while it goes off to investigate a diversionary sound the player has made.
The player could then tamper with the unattended lunch and put something foul
tasting into it. When the guard comes back, he would be none the wiser and begin
eating, causing him to wretch at the taste, much to the amusement of the player.

Konami’s Metal Gear Solid 3: Snake Eater [MGS305] integrated a type of gusta-
tory sensing for the main character of the game. In the game, the player can kill and
eat snakes and other prey to replenish his health. However, each prey eaten has a dif-
ferent taste, and the amount of health recovered is determined by how tasty the prey
is. The player can also get sick from eating rotten food. If dead prey is stored for too
long in the player’s inventory, it can become stale and taste worse than it would if
eaten when it was freshly caught.

Summary of Human Sensing

FTPS games of the past have needed very little (if any) olfactory or gustatory sensing
because tactile, visual, and auditory sensing have been sufficient to create rudimentary
AI for NPCs that act in a somewhat rational manner. However, in recent years, gamers
are demanding more immersive experiences from their games and that means making
the NPCs more interesting, humanlike, and distinctive. Broadening the ways in which
NPCs can sense information from their environment is an essential element for achiev-
ing this.

Senses can also be combined to allow NPCs to more accurately sense information
from their environment. For example, if an NPC sees another agent in the distance, it
might not be sure if the other agent is an ally or an enemy. However, if the NPC also

504 Section 5 Genre Specific

hears the agent commanding an attack on the NPC’s position, it would be more cer-
tain that the sensed agent is an enemy and not an ally.

Memory

Three different kinds of memory exist: sensory memory, short-term memory, and long-
term memory [Gross01]. Each sense has a sensory memory associated with it that filters
significant information from the environment to the short-term memory. The short-
term memory of a human is like a temporary store of significant information that it has
just perceived. Short-term memory has limited capacity and deteriorates quickly. After
about 30 seconds, information is either forgotten or passed to long-term memory.
Long-term memory has a much larger capacity and duration than short-term memory
[MalBir98]. Memory and learning go hand in hand because humans need to be able to
remember in order to learn [Gross01].

The sensory systems of an NPC can be viewed as their sensory memory because
information from the game environment is fed into the NPC’s short-term memory
via their senses. The NPC’s short-term memory should have a limited memory span
and capacity. This means that an NPC should forget its oldest or least-significant
memories after a specified time of being perceived or when the capacity of its short-
term memory has been overloaded.

The memories of an NPC could be tagged with a timestamp and importance level
when perceived to facilitate this process. The importance level could be determined by
the NPC’s current state and the type of information perceived. For example, an enemy’s
location is of higher importance to an NPC with full health than a health pack’s location.

In a realistic setting, more important information should be sent to an NPC’s
long-term memory rather than being forgotten. Long-term memory stores are gener-
ally not included in the NPCs of most FTPS games because the NPC’s lifespan is too
short to make good use of long-term memory. However, FTPS games are moving
away from the old school style of cannon fodder NPCs, and games are becoming
more immersive. As a result, NPCs are becoming more intelligent and humanlike.
The longer they live, the better they can exhibit the sophistication of their AI.

Sandbox-style FTPS games are beginning to emerge, where the player is given goals
to complete, and the game is played in a nonlinear fashion. NPCs tend to live for much
longer in a sandbox-style game than in a conventional FTPS game, enabling them to
make good use of long-term memory. If a long-term memory were in place, the NPC
could remember the details of the environment and the enemies it encounters. This
could enable the NPC to learn or to make more informed decisions. NPCs might
remember such things as the fighting patterns of human players, the locations of good
sniping and cover positions, or the locations of weapon and ammunition stores.

Memory spans could be altered to affect game design. Both the short-term memory
and long-term memory stores of individual NPCs or classes of NPCs could be varied to
account for different remembering abilities of agents. For example, a team leader might
have a larger long-term memory store than a rifleman because a team leader must plan

5.6 Toward More Humanlike NPCs for First-/Third-Person Shooter Games 505

and make informed tactical decisions for his team, and as such, he must know as much
about the map and the enemy as possible. On the other hand, if we want to make an
inexperienced, rookie NPC (who is prone to making mistakes), we could simply give
him a high rate of forgetfulness to simulate the level of panic he would be experiencing
on the battlefield. In addition, an NPC’s ability to determine the importance of memo-
ries could vary. Thus, some NPCs might forget important game information because
they have not tagged it as being important, giving NPCs a greater sense of individuality.

Personality

One popular model used to describe personality is known as “The Big Five,” which
states that personality is comprised of five factors: extraversion, agreeableness, consci-
entiousness, neuroticism, and openness [Gross01]. Extraversion identifies the degree
to which a person is outgoing and sociable. The agreeableness of a person is the degree
to which they are friendly and appeasing as opposed to aggressive and domineering.
Conscientiousness describes the reliability and orderliness of a person. Neuroticism
defines whether a person is more pessimistic or optimistic. Lastly, openness defines
how open to new ideas and change a person is.

A simple method of adding personality to NPCs in games that use desirability
algorithms to decide on their course of action is to add a bias to the algorithms depend-
ing on the NPC’s personality. For example, if an NPC is aggressive, you could simply
bias its desirability algorithm for its “attack enemy” action. This is a very simple
method of giving NPCs a personality element and is not ideal. Instead, “The Big Five”
personality traits could be encoded into an NPC’s behavior by defining a fuzzy variable
for each of the five traits and a set of fuzzy rules that decide how they combine to influ-
ence a given NPC’s behavior. For example, if an NPC has a very high extraversion level
and very low levels of neuroticism and agreeableness, then the agent might like to
aggressively explore the map for enemies with little fear of getting hurt. In addition, an
agent who has high levels of conscientiousness and agreeableness and a low level of
openness might follow an order he is given exactly, whereas an agent with low levels of
conscientiousness and agreeableness and a high level of openness might not follow an
order at all or decide to change his course of action halfway through fulfilling the order
because another opportunity presented itself.

Personality can have a number of very interesting applications to the FTPS genre
of games because every behavior of an individual NPC can be affected by its person-
ality. Whether an NPC is passive or aggressive can determine how (and indeed if) it
fires its weapon. An aggressive agent would naturally be more trigger-happy, whereas
a passive agent would want to confirm that the enemy is actually an enemy and that
there is a clear shot before attempting to shoot it. Whether the agent is spontaneous
and laid back or reliable and routine-orientated could determine an NPC’s patrol pat-
terns or how effectively an NPC follows orders. The list of possibilities for using per-
sonality traits to influence NPC behaviors is vast and gives them a uniqueness needed
to make them truly humanlike.

506 Section 5 Genre Specific

Emotions

Emotion is a very subjective experience, and as such, it is difficult to define precisely
what an emotion is. Over the years, a number of conflicting theories of emotion have
emerged that endeavor to define and categorize emotions and what causes us to experi-
ence them. Plutchik proposes an emotional model that defines eight primary emotions.
They are arranged in a circle so that adjacent emotions combine to form more complex
emotions, and opposites on the circle describe contrary emotions [Plutchik80]. The eight
primary emotions identified are joy, acceptance, fear, surprise, sadness, disgust, anger,
and anticipation. Adjacent pairs of these can be combined to form more complex emo-
tions, such as optimism (anticipation and joy), love (joy and acceptance), and disap-
pointment (surprise and sadness). Some researchers argue that emotions have behaviors
associated with them and cause physiological changes to occur over which we have little
control [Gross01]. Emotions such as fear, joy, and anticipation can cause physiological
changes, such as alterations in blood pressure and increased heart rate [WauGra01]. Fur-
thermore, the associated behavior might be crying or hiding for fear, smiling or laugh-
ing for joy, and restlessness or fidgeting for anticipation.

Most commercial games do not have any infusion of emotions into their agents,
which can leave the agents appearing lifeless and thus not humanlike. Although there is
no absolute model to say how emotions impact human behavior, its incorporation into
games would make NPCs more humanlike [Laird00]. For example, a human player
might kill an NPC’s teammate; the NPC might initially be sad and shocked at the sight
of his teammate’s body but then be overwhelmed with anger toward the human player.
As a result, it would aggressively seek out and attack the player with less regard for his
own health and safety than before. An NPC might also feel fear if it’s in unfamiliar and
intimidating surroundings. For example, walking down a bombed out street with explo-
sions going off in the distance might cause the NPC to become more afraid (and corre-
spondingly more alert). At the other extreme, joy or happiness could also be expressed
by NPCs to make them more humanlike. For example, two guards at the entrance to a
military compound could be joking and laughing with one another, not paying full
attention to their duties, which could make them easier for the player to dispatch.

In the past, some developers have attempted to add emotions to the NPCs of
their games (e.g., The Sims [TheSims00], Fable [Fable04]), but the behaviors associ-
ated with the emotions appear very scripted and unhumanlike. Perhaps, if the person-
ality of the NPC is combined with the emotions it can experience, it may lead to
more humanlike behavior. For example, conscientious, pessimistic NPCs might not
excite as easily as spontaneous, optimistic NPCs, or passive NPCs might not anger as
easily as aggressive NPCs. As well as the influence an NPC’s emotions might have on
its behaviors, the expression of the NPC’s emotions displayed by the animation and
sound systems of the game engine would give the NPC a more human feel.

5.6 Toward More Humanlike NPCs for First-/Third-Person Shooter Games 507

Physiological Stressors

Physiological stressors include any factors (whether real or anticipated) that cause a sig-
nificant change in the human body to occur [Gould06]. Stressors include such things as
muscle fatigue, pain, health levels, anxiety or fear, exposure to cold or hot temperatures,
chemicals, and hunger. The physiological changes that occur in the body can often
influence human behavior. For example, when we get tired, we tend to be less alert than
usual. Or, if we are in a stuffy room, we might have trouble breathing, prompting us to
open a window. Physiological stressors could also be applied to the NPCs of FTPS
games to give them more humanlike qualities.

Fatigue is a physiological stressor that is already prominent in a number of titles,
such as Pro Evolution Soccer 6 [PES06]. Fatigue negatively impacts the reaction time
and error rate of individuals. The more fatigued an NPC is, the slower he would be to
react and the more prone he would be to making mistakes, such as missing a ball or
misfiring a weapon.

Fear and anxiety are both a physiological stressor and an emotional construct, and
as such have been talked about already in the preceding section.

Health is a physiological stressor that some developers have incorporated into
their games to affect their characters’ behaviors. If an NPC has low health, he should
appear wounded, move slower, and actively search for a health pack or medic rather
than continuing to engage his enemy.

If an NPC is in a room with a very high temperature, such as a boiler room, he
should be perspiring. He may feel drowsy or tired, and his vision may be blurred with
the heat coming off the surfaces in the room. Likewise, if an agent is in an extremely
cold environment, he should be shivering, making it more difficult to aim and fire his
weapon. Furthermore, remaining in hot or cold conditions for long periods of time
could lead to death (as was seen in the game The Thing [Thing02]).

The handling of chemicals could cause an allergic reaction or burns to NPCs,
causing them to scratch the affected area or even reduce their health. This could cause
NPCs to go looking for some sort of ointment to relieve the pain or itch. Some types
of NPC may be more prone to being affected by chemicals than others, such as those
that generally do not wear gloves or are not used to handling chemical substances. In
S.T.A.L.K.E.R. [Stalker07], players can become affected by radiation poisoning,
which in turn causes their health to diminish. To halt the effects of the radiation, play-
ers can use med-packs, anti-radiation injections, or drink vodka.

Hunger is another physiological stressor that could be incorporated into FTPS
games. Agents could have a hunger level that gradually depletes over time. When NPCs
get hungry, it could affect their fatigue and energy levels, causing them to have trouble
concentrating and eventually leading to their death. In S.T.A.L.K.E.R. [Stalker07], the
player must satisfy his hunger by eating food to avoid fainting.

The human player could use these physiological stressors to his advantage against
the NPCs. Examples of this might include locking NPCs out in the cold, hiding food

508 Section 5 Genre Specific

that the NPCs may have stored, or turning off the air conditioning. Incorporating
physiological stressors into computer games and allowing them to affect NPC behav-
ior could lead to a very immersive gameplaying experience for the player because it
gives the NPCs more human abilities and allows the player the freedom to come up
with innovative ways of disposing of opponents beyond simply shooting them.

As a final note, it’s possible for people to perceive stressors differently, and some
people might be better able to cope with certain stressors than others [Gould06].
What might cause one person great excitement might not interest another, for exam-
ple. Similarly, one individual might have an innate ability to endure pain, whereas
another might succumb easily. Thus, physiological stressors have great potential to
give NPCs more individuality within FTPS games.

Weapon Proficiency and Skills

Not all humans are trained in the use of firearms, and of those that are, not all are
equally competent in using them. Some soldiers are more proficient at using certain
types of weapons than others. A marksman, for example, is an expert with a sniper rifle
because his hand is steady and his aim precise. Heavy weaponry, such as rail-cannons
and rocket-launchers, might be better suited to larger and stronger soldiers. Just as
humans have different proficiency levels for handling different types of weapons, so
too should the NPCs of FTPS games. Sniper NPCs could have high proficiency in
using rifles and sniper rifles but might be less skilful with an AK-47 or a grenade-
launcher. Similarly, riflemen may be highly competent in using assault rifles but not
very skilled in using sniper rifles.

In addition, there could be different levels of skill based on the NPC’s level of
experience. Both a rookie sniper and an expert sniper would be specialized in using
sniper rifles, but the expert would still be more proficient than the rookie. In a sand-
box-style FTPS game, where the NPCs would tend to live longer, you might allow the
rookie’s weapon proficiency to increase with time and experience.

This idea of NPC proficiency is not limited to weapons. NPCs could also have a
proficiency level for using tools, chemicals, and other game objects. For example,
engineers might be very proficient in using tools, or scientists might be expert in han-
dling chemicals, but neither might be very good at firing weapons. Drivers could be
good at navigating vehicles, whereas commanders might be good at reading maps.
Some types of NPCs might even be better at target selection than others when attack-
ing the enemy. For example, snipers tend to take out officers first as it causes confu-
sion and panic among the rest of the soldiers. Likewise, commanders might be able to
pick out strategic enemy positions to destroy with a rocket launcher, whereas a rookie
might not use the rocket ammunition as effectively. All in all, varying the skills and
proficiency levels of NPCs would give them more humanlike qualities and a greater
sense of individuality.

5.6 Toward More Humanlike NPCs for First-/Third-Person Shooter Games 509

Conclusion

Giving NPCs more humanlike qualities and a greater sense of individuality will create
more immersive gameplaying experiences that capture and hold the player’s attention
and interest. In this article, we discussed providing NPCs with realistic human sensing
and memory systems, as well as personality and emotions. We discussed the impact that
physiological stressors might have on NPCs’ behaviors, the different weapon-handling
skills of NPCs, and how these factors can all contribute to making the NPCs of FTPS
games more individual and humanlike.

Most sensory systems of FTPS games only include tactile, visual, and auditory
sensing, and memory-management systems rarely contain a long-term memory ele-
ment for their NPCs. Emotions, personality, physiological stressors, and weapon-han-
dling skills are rarely handled to any degree in FTPS games, but they have great
potential to make NPCs more humanlike and distinctive. Creating these NPCs to be
more individual and humanlike will provide a more immersive environment for the
player, which is the ultimate goal for any developer.

References

[BFII05] Digital Illusions, “Battlefield 2.” Available online at http://www.ea.com/offi-
cial/battlefield/battlefield2/us/.

[EEIIME07] Ear Encyclopedia II, “The Mammalian Ear.” Available online at
http://www.experiencefestival.com/a/The_mammalian_ear/id/593677.

[Fable04] Lionhead Studios, “Fable.” Available online at http://fable.lionhead.com/.
[GOW07] Epic Games, “Gears of War.” Available online at http://gearsofwar.com/.
[Gould06] Gould, Barbara E., Pathophysiology for the Health Professions. 3rd ed. Saun-

ders, 2006.
[Gross01] Gross, Richard, Psychology: The Science of Mind and Behaviour. 4th ed.

Hodder and Stoughton, GB, 2001.
[HLife06] Valve Corporation, “Half Life 2.” Available online at http://half-life2.com/.
[Laird00] Laird, John, et al., “Design Goals for Autonomous Synthetic Characters.”

Available online at http://ai.eecs.umich.edu/people/laird/papers/AAAI-SS00.pdf.
[MalBir98] Malim, Tony, and Birch, Ann, Introductory Psychology. Palgrave Ltd., 1998.
[Menshikov03] Menshikov, Aleksei, “Modern Audio Technologies in Games.” Avail-

able online at http://www.digit-life.com/articles2/sound-technology/index.html.
[MGS305] Konami Computer Entertainment Japan, “Metal Gear Solid 3: Snake

Eater.” Available online at http://www.konami.jp/gs/game/mgs3/english/index.html.
[PES06] Konami, “PES 6.” Available online at http://uk.games.konami-europe.com/

game.do?idGame=118.
[Plutchik80] Plutchik, R., Emotion: A Psychobioevolutionary Synthesis. Harper & Row.
[SpltrCell07] Ubisoft, “Tom Clancy’s Splinter Cell.” Available online at http://splin-

tercell.uk.ubi.com/.

510 Section 5 Genre Specific

http://www.ea.com/official/battlefield/battlefield2/us/
http://www.ea.com/official/battlefield/battlefield2/us/
http://www.experiencefestival.com/a/The_mammalian_ear/id/593677
http://ai.eecs.umich.edu/people/laird/papers/AAAI-SS00.pdf
http://www.digit-life.com/articles2/sound-technology/index.html
http://www.konami.jp/gs/game/mgs3/english/index.html
http://fable.lionhead.com/
http://gearsofwar.com/
http://half-life2.com/
http://uk.games.konami-europe.com/game.do?idGame=118
http://uk.games.konami-europe.com/game.do?idGame=118
http://splintercell.uk.ubi.com/
http://splintercell.uk.ubi.com/

[Stalker07] GSC GameWorld, “S.T.A.L.K.E.R.” Available online at http://www.
stalker-game.com/.

[TheSims00] Maxis, “The Sims.” Available online at http://thesims.ea.com/.
[Thing02] Computer Artworks, “The Thing.” Available online at http://www.

thethinggames.com/.
[Tozour02] Tozour, Paul, “First Person Shooter AI Architecture.” AI Game Program-

ming Wisdom, Charles River Media, 2002.
[WauGra01] Waugh, Anne, and Grant, Allison, Anatomy and Physiology in Health

and Illness. Churchill Livingstone, London, 2001.

5.6 Toward More Humanlike NPCs for First-/Third-Person Shooter Games 511

http://www.stalker-game.com/
http://www.stalker-game.com/
http://thesims.ea.com/
http://www.thethinggames.com/
http://www.thethinggames.com/

This page intentionally left blank

513

5.7

Stop Getting Side-Tracked
by Side-Quests
University of Alberta

Curtis Onuczko
onuczko@cs.ualberta.ca

Duane Szafron
duane@cs.ualberta.ca

Jonathan Schaeffer
jonathan@cs.ualberta.ca

Computer role-playing games (CRPGs) are story-driven games in which the player
character (PC) is the protagonist in an interactive story. Most CRPGs contain a

complex main storyline and a series of smaller optional independent stories called
side-quests. Side-quests serve four principal purposes:

• Create an open-world feeling because they provide the PC with choices about how
to independently explore the world, rather than just following a predetermined
storyline.

• Provide opportunities for the PC to gain rewards and experience in a variety of
different ways, instead of simply performing monotonous predictable tasks, such
as repeatedly fighting hostile nonplayer characters (NPCs). Without a believable
mechanism to gain rewards and experience, the PC’s capabilities would vary
through such a narrow range during the story that it would be difficult to create
an appropriate story arc (rising tension) through escalating challenges.

• Add optional texture to a story without complicating the main storyline. For
example, you can use optional side-quests to allow the player to discover/create
aspects of a back-story, to develop the personality of the PC and NPCs, and to
provide motivation and optional clues for pursuing the main storyline.

• Reward exploration with interesting content, such as custom locations, novel
creatures, and unusual game objects.

Increasing the number of high-quality side-quests in a game will result in a richer
player experience, but it also increases the amount of content that must be created.
Side-quests are a useful complement for the game, but they should not detract from
the time and resources invested to create the main story. How do you find time to cre-
ate entertaining side-quests, without adversely affecting the main story?

This article describes a Side-QUEst GEnerator tool (SQUEGE) that reduces the
time and effort required to add side-quests to a game story. SQUEGE generates a rich
diversity of side-quests for you to choose from, each guaranteed to have at least one
path that is playable to completion. It provides a detailed outline for each side-quest,
which you fill out by writing the character dialog and the scripts that control each side-
quest. Alternatively, a game-dependent script generator can be constructed to automat-
ically translate outlines to game scripts without the need for programmer support. For
example, we are currently connecting SQUEGE to ScriptEase [McNaughton04] so
that scripts can be automatically generated for BioWare’s Neverwinter Nights.

Patterns for Side-Quests

A side-quest is a small adventure that is independent from the main story. A side-quest
is often short, simple, and optional. However, you can combine several side-quests into
a themed mini-story.

Consider the following example. The PC wants to obtain a map from an old
man. The old man asks the PC to slay a dragon that has been terrorizing the sur-
rounding area in exchange for the map. The PC travels to the dragon’s lair, kills the
beast, and then reports back to the old man that the dragon is dead. For successfully
accomplishing this quest, the old man relinquishes the map, and the PC is awarded
500 experience points (XP).

Many side-quests share similarities. For example, here is a second side-quest. As the
final step in the process of becoming a knight, the queen commands the PC to evict an
evil black knight from her kingdom. The PC travels to the black knight, and the con-
frontation turns into a battle. The PC kills the black knight, and reports his death to the
queen. The queen rewards the PC by granting knighthood and awarding 1000 XP.

Both quests involve the same set of actions: Obtain the quest from the quest giver,
travel to the antagonist, kill the antagonist, and report back to the quest giver to receive a
reward. Note that the player might think that there are different quest-resolution actions
available in the second side-quest. The player is only instructed to convince the black
knight to leave the area, not to kill him. The black knight’s dialog tree might be con-
structed so that he refuses to leave, however, forcing the player to fight him. Thus two
quests that appear different to the player can be different flavors of the same quest “pat-
tern.” There is variety in the presentation, while the underlying structure is the same.

514 Section 5 Genre Specific

By recognizing these structural similarities, we have abstracted quests into com-
mon groups that we call patterns. This process is similar to using design patterns in
software engineering [Gamma95]. Selecting a pattern and then adapting it to the
specifics of your game can create a side-quest. For example, our two quest examples are
instances of a quest pattern called assassinate antagonist. This pattern has a structure
consisting of three stages: talk to quest giver, kill antagonist, and report antagonist dead.

The CD-ROM provides code for eight quest patterns. These patterns do not gen-
erate all imaginable side-quests, but they show how a small set of simple patterns can
effectively generate a large number of different quests. The eight patterns are as follows:

Talk chain: The PC talks with a chain of one or more NPCs. If the last NPC dies,
then the quest fails. This pattern can create chains of arbitrary length.

Acquire item: The PC finds the location of an item and then acquires the item.
Deliver item: The PC acquires an item and then delivers the item to an NPC.
Kill antagonist: The PC finds the location of an NPC and then kills the NPC.
Assassinate antagonist: The PC kills an NPC and then reports the assassination to

another NPC.
One of many tasks: The PC is presented with several tasks and must complete one

of them. The tasks are generated using one or more of the other patterns. The
implementation on the CD-ROM supports only two tasks, but this pattern can
be easily adapted to support an arbitrary number.

All of many tasks: This pattern is similar to the one of many tasks quest, except that
the PC must complete all of the tasks specified. After all the tasks are completed,
the PC must report to an NPC to finish the quest. Again, the version on the
CD supports only two tasks.

Chain quest: The PC completes a chain of quests, one after another. This pattern
creates quest chains of arbitrary length.

The last three quests are actually meta-quests that can be used to combine simple
quests into more complex adventures.

Other patterns can be added to the pattern catalog. For example, escort NPC,
locate object, defend NPC, and defend location quests could be added. Sometimes, what
appears to be a new pattern can be treated as an existing pattern or a combination of
existing patterns. For example, a discover a secret quest can be expressed as an instance
of one of many tasks, where there are two tasks: acquire item (a book) or talk chain
(where an NPC reveals the secret). Similarly, an assemble an item quest can be expressed
as an instance of an all of many tasks, where there are several acquire item tasks.
Although these quests can be constructed from existing quests, it is useful to include
them so their intent is clear. Adding patterns to SQUEGE is discussed later.

To manually create a simple side-quest instance (without SQUEGE), you can
select a pattern, create an instance of it, and then adapt the instance by selecting
options by hand. To create an assassinate antagonist side-quest, for example, you first
select the pattern to create an instance of it. Next, adapt it by setting its options: a

5.7 Stop Getting Side-Tracked by Side-Quests 515

node in a conversation tree where the PC receives the quest from the quest giver, the
antagonist to kill, a conversation node where the PC reports success, and the rewards
that are given to the PC. Although SQUEGE automates this process by selecting pat-
tern instances and options for you, the concept of a quest pattern is independent of
this tool, and options and other adaptations can be done manually.

More radical adaptations to a quest instance, beyond just setting its options, are
available. You can add or remove quest points (the stages of a quest), change the nature
of a quest point, and even insert a whole pattern in place of a quest point to create a
subquest inside of a quest. As an example, you could add a new quest point called
acquire magic sword before the kill antagonist quest point in the assassinate antagonist
quest pattern instance for the dragon side-quest. We will explain these adaptations in
more detail later.

Using SQUEGE

Figure 5.7.1 gives a summary of the side-quest generation process. First SQUEGE uses
its pattern catalog and the lists of NPCs, items, and containers to generate an outline
of a side-quest instance. You can also supply other settings as input to SQUEGE (e.g.,
the number of side-quests to generate). After accepting an outline, you can adapt it,
add story content by placing items and writing dialog, and finally give the outline to a
programmer or generative script system to create the required scripts to control the
side-quest. There is a random element to how SQUEGE selects which pattern a side-
quest will be generated from and which game objects are associated with it. If the
process is repeated, you will obtain a different side-quest, likely using a different pat-
tern and different NPCs, containers, and items in the same setting.

516 Section 5 Genre Specific

SQUEGE

Quest Patterns

Containers

Items

NPCs

Quest
Outline

Designer Adapts
Quest Outline

Manual
or

Automatic
Creation of Scripts

Game
Adventure

Designer Accepts
or Rejects Outline

SQUEGE Options

Designer Adds
Story Content

FIGURE 5.7.1 The process SQUEGE uses for generating side-quests.

Here is a simple example of how to use SQUEGE to generate the outline for one
simple side-quest. Later we’ll show how SQUEGE can be used to generate multiple
side-quests of arbitrary complexity within the same CRPG story.

First, you create a setting for the game story. For example, you might use a city set-
ting with several buildings that the PC can enter. Next, populate the setting by creating
game objects in three categories: NPCs, containers (that can hold items), and items
(that can be stored and carried). Note that each game object must have a label that can
be used to uniquely identify it. Place the NPCs and containers at various locations

inside and outside the buildings, but do not place the items yet. Their locations will be
determined later through the side-quest generation process.

The version of SQUEGE that is provided with the CD-ROM is independent of
any specific CRPG. As a result, you will need to provide SQUEGE with lists of the
labels of all the NPCs, containers, and items that can be used in the generated side-
quests. Any game object that you do not want to be used in a side-quest should not be
included in these lists. For example, if an NPC is important to the main story, you
might not want that NPC to be the antagonist in an assassinate antagonist side-quest.
However, excluding this NPC from the lists prevents SQUEGE from using the NPC
in any other side-quest role. This might make the side-quests feel too independent
from the main story. Therefore, you might want to exercise finer control by including
at least some of the story NPCs in SQUEGE’s lists. If necessary, some story NPCs in
the generated side-quests can be replaced by other NPCs on those occasions where the
generated roles are contrary to your main story.

This version of SQUEGE has only three different types of game objects listed:
NPCs, containers, and items. Other types of game objects can be created to use in the
patterns. For example, the NPC list could be split into protagonist and antagonist lists.
This allows specific NPCs to be specified as protagonists and antagonists so that in the
assassinate antagonist quest, only antagonist NPCs are selected to be assassinated, and
protagonist NPCs are selected to give the quest. Furthermore, instead of providing
separate lists of objects, each object provided as input can be given a set of tags. In the
previous example, only objects with an antagonist tag are selected as antagonists.

SQUEGE also requires a catalog of the quest patterns to be used in your story. For
each side-quest to be generated, SQUEGE selects a quest pattern from its catalog at
random. The various options of the quest pattern are then instantiated from the lists of
objects provided. SQUEGE does not create game objects; it only selects them from its
lists. However, if you want to simulate the creation of game objects, fictitious labels
can be included in the object lists (e.g., NPC-1, NPC-2, … NPC-N). SQUEGE may
generate side-quests that include some of these labels.

SQUEGE produces a graphical outline for each side-quest that it generates. This
outline contains all the information needed to implement the side-quest. Four tasks
must be performed to implement a side-quest. First, place any item referenced in the
outline in an appropriate location. For example, the outline might require that a spe-
cific item be placed in a specific container so that the PC can retrieve it. Second, write
any dialog that is necessary for the side-quest, including motivation and, optionally,
any connection to the main storyline. For example, the outline might specify that the
PC must talk to a quest giver to obtain the quest. If a conversation for the quest giver
has already been written, then an additional conversation node must be added to
enable the quest giver to assign the quest. Otherwise, an entire conversation for the
quest giver must be written, including the conversation node that assigns the quest.
Third, provide additional actions that will occur in response to the PC reaching spe-
cific points in the quest. For example, in the assassinate antagonist quest, when the PC

5.7 Stop Getting Side-Tracked by Side-Quests 517

reports the antagonist’s death, some additional actions might make the quest giver
jump up and down in jubilation over the antagonist’s death. Fourth, write the game-
dependent scripts necessary to control the quest points in the quest.

The placement of the items and creation of the conversations use game-specific
tools. Although a game-dependent version of SQUEGE could place the items, you
must also use the outline to write the scripts. Fortunately, the outline is specific
enough that all of the information necessary to convey the structure of the side-quest
is contained in it. The controlled and limited vocabulary of the outlines should pre-
vent errors resulting from a difference between the intent of the quest structure and
the programmer’s implementation of the scripts. Naturally, outlines cannot prevent
programming blunders that are unrelated to structural intent. Ideally, a visual script-
ing system, such as that found in McNaughton et al. ([McNaughton06]), would be
implemented to work with SQUEGE to allow any changes made to the side-quest
outline to be immediately realized in the scripts.

Figure 5.7.2 shows a graphical outline generated by SQUEGE. This deliver an
item side-quest instance has three main actions for the PC to perform. First, the side-
quest is started when the PC reaches a conversation node while talking to Robbie. Sec-
ond, the PC locates and acquires the Magic Boots. Third, the PC gives the Magic
Boots to Sifton to complete the quest. However, locating and acquiring the Magic
Boots is a subquest, where the PC talks to a chain of NPCs to discover the location of
the boots and then acquires them by removing them from Alana’s Armoire. In fact,
talking to a chain of NPCs is another subquest, but for brevity, it is collapsed in Figure
5.7.2 to hide its details. In addition, talking to the chain of NPCs is optional, so the
PC could just discover the location of the Magic Boots by accident.

518 Section 5 Genre Specific

Acquire Magic Boots (Item) and deliver to Sifton (NPC)
(Normal) Locate and acquire Magic Boots (Item) to acquire the item

(Normal) Talk to a chain of NPCs
to eventually talk to Kelps (NPC)

to find the location of the item

(Close-Succeed) Disturb Alana's
Armoire (Container) to acquire

Magic Boots (Item) to complete the
quest

(Normal) Talk to Robbie
(NPC) to give the quest

(Close-Succeed) Talk to Sifton
(NPC) to give Magic Boots
(Item) to complete the quest

FIGURE 5.7.2 The outline for a deliver an item side-quest generated by SQUEGE.

You can decide whether to use the side-quest as generated by SQUEGE, to adapt
it manually, or to reject it and generate a new one. There are many reasons for manu-
ally adapting or rejecting side-quests. First, the side-quest might have an adverse affect
on a game object that is critical to the main story (as described earlier). Second, there
might be too many similar side-quests already in the story. A particular game object
might appear repeatedly in the side-quests so that the story becomes too intercon-
nected or too repetitious, for example. Third, a set of side-quests might take the PC to
an area too often or never take the PC to an important area.

Another common reason for adapting or rejecting a side-quest is that it is either
too simple or too complex. For example, the side-quest in Figure 5.7.2 is hierarchical

with two levels of subquests in the main quest. This might not be the required level of
complexity for your needs. Fortunately, SQUEGE has some internal parameters that
can be adjusted to increase or decrease the complexity of the side-quests by specifying
the probability that a quest point will become a subquest. These parameters can be
adjusted to control the complexity of the side-quests generated.

Because SQUEGE does not automatically implement its side-quests in your game,
you retain complete freedom to adapt them as needed or to generate a multitude of
options and reject the ones you don’t like. For example, you might want to adapt the
side-quest in Figure 5.7.2 to allow the PC to choose to keep the Magic Boots instead of
delivering them to Sifton. The side-quest could be adapted to support this by adding
an alternate ending in which the PC returns to Robbie and lies, telling him that the
boots could not be found. This adaptation is simple because it only requires one more
quest point to be added to the outline. The new point must be connected to the locate
and acquire subquest to show that lying about the boots follows locating and acquiring
them. This change can be made at a high level, rather than thinking about it at the level
of individual scripts. You can also adjust SQUEGE’s output by editing the game object
lists to prevent certain objects from being selected in future side-quests or simply to
increase the chances that the remaining game objects will be selected.

Quest Patterns and Instance Details

A quest pattern represents a commonly occurring story scenario at a high level, focus-
ing on the actions that the PC can take to directly affect the quest. It abstracts the
low-level details, such as how the quest is scripted, so that you do not have to be con-
cerned about them. To use a quest pattern, simply create an instance of it and then
adapt that instance to suit your story. The simplest form of adaptation is setting the
options for the quest pattern instance.

A fully adapted quest pattern instance should completely determine which
actions are available to the PC at any point in the quest. By looking at an instance,
you should be able to understand its structure and all of the ways that the quest might
unfold in your story. A programmer can examine a quest instance and clearly under-
stand what scripts are needed to control it. We now provide a structure for quest pat-
terns that satisfies these properties.

Each quest pattern consists of a set of quest points. A quest point corresponds to
an important encounter that the PC experiences during the quest (a stage in the
quest’s mini-story). The assassinate antagonist quest described earlier has three quest
points: talk to quest giver, kill antagonist, and report antagonist dead. Each quest point
can be in one of three states: disabled, enabled, or reached.

At the beginning of the assassinate antagonist quest the PC is told about the antag-
onist by the quest giver. Although this pattern only specifies a single quest giver, the
pattern can be adapted so that there are multiple quest givers. The talk to quest giver
point is enabled, whereas the other points are disabled. When the PC actually talks to
the quest giver, the point changes from enabled to reached. Reaching a point can

5.7 Stop Getting Side-Tracked by Side-Quests 519

cause other points to become enabled or disabled. In this example, when the talk to
quest giver point is reached, the kill antagonist point becomes enabled. When the PC
kills the antagonist, this quest point becomes reached, and the final quest point,
report antagonist dead, is enabled. This is an example of a linear quest. Not all quests
are linear. We give an example of a branching (nonlinear) quest later.

Contents of Quest Points

Each quest point includes a label, a type, a list of quest point enablers, and a list of
possible encounters (actions). When any of the quest point enablers is reached, that
quest point becomes enabled. You can also use the enablers list to specify that a quest
point is enabled at the start of the quest. As soon as one of the encounters for a quest
point has occurred, and the quest point becomes enabled, the quest point changes its
state to reached.

These two conditions can happen in either order. Normally, a quest point is enabled
before its encounter occurs. For example, the PC would first speak with the quest giver to
reach the talk to quest giver point, which would enable the kill antagonist point. Then the
PC would have an encounter that kills the antagonist. At this point, the kill antagonist
quest point would be reached. However, the conditions can also happen in the reverse
order. The PC can stumble upon the antagonist and kill it in an encounter. Because the
kill antagonist quest point is not enabled, it does not immediately become reached. Later,
when the PC speaks with the quest giver to reach the talk to quest giver point, this causes
the kill antagonist point to be enabled. Because the encounter has already occurred, this
quest point is immediately reached. This is the desired semantics in most CRPGs (Nev-
erwinter Nights, Oblivion, Fable, Star Wars: Knights of the Old Republic, etc.). In essence, if
the encounters for the quest have already occurred, the author would like to credit the PC
for the quest as soon as the quest is assigned. To support this common practice, the
SQUEGE model and outlines differentiate between the encounter occurring and the
quest point being reached. State is maintained at the quest point to record whether it is
enabled or reached, independent of the occurrence of the encounter.

When SQUEGE creates a quest instance from a pattern, it uses one of the possi-
ble encounters listed for a quest point as its only encounter. This allows encounters to
differ between quests. For example, when acquiring an item in a quest, the item might
be acquired through a conversation with an NPC or by removing it from a container.
The specifics behind how the encounter is selected are discussed later.

Types of Quest Points

The three different types of quest points are normal, optional, and close.
When a PC reaches a normal quest point, all points in the quest become disabled

except for those that have this point in their enablers list. This means that if there are
two quest branches and each contains normal quest points, then as soon as one of these
points is reached on either branch, the PC cannot progress on the other branch. For
example, consider a quest that can be accomplished either by killing an antagonist or

520 Section 5 Genre Specific

by sneaking past the antagonist. Assume each of these is represented by a normal quest
point, kill antagonist and sneak past antagonist, respectively, and that both are enabled
when a talk to quest giver point is reached. We have a branching quest. If the PC sneaks
past the antagonist, then the sneak past antagonist quest point will be reached (it is
already enabled). If specified, a journal entry will be displayed indicating that the PC
has sneaked past the antagonist. The kill antagonist quest point will be disabled because
it is now irrelevant. This does not prevent the PC from going back and killing the
antagonist. However, this encounter will no longer cause the kill antagonist quest point
to be reached because it is now disabled. No journal entry will appear, which is appro-
priate because the PC has already advanced this quest on another branch.

An optional quest point is a point that does not need to be reached during a quest.
Previously enabled quest points are not eliminated when an optional point is reached.
Optional quest points provide a way for the PC to proceed on two different quest
branches simultaneously. For example, an instance of the assassinate antagonist (dragon)
quest discussed at the beginning of this article could be adapted by adding two
branches that each contain an optional quest point to help give the PC an edge in
fighting the dragon. The first, acquire sword, might involve acquiring an enchanted
sword from a nearby sorcerer, whereas the second, acquire potion, might involve acquir-
ing a potion of strength from an alchemist. The player would have the option of doing
one, both, or neither of these quest points before killing the dragon, depending on how
easy the player thinks the dragon will be to defeat.

A close quest point completes a quest. When a close point is reached, all points for
the quest become disabled and no new points can become enabled. If the game jour-
nal is segregated into active and completed quests, the journal entry or entries for that
quest are moved to the completed section when the quest is closed. Note that there
are actually two flavors of the close point: close-succeed and close-fail. You use a close-
fail quest point to indicate that the quest has failed. For example, in a talk chain, if
one of the NPCs dies, a close-fail point is reached. The distinction between close-
succeed and close-fail is particularly important in subquests (discussed later).

Quest Graphs

Quest patterns and instances of quest patterns can be represented as graphs, giving a
visualization of the quest. Each quest point has a corresponding graph node that is
labeled with a description. Appearing in parentheses at the beginning of the description
is the type of quest point (normal, optional, close-succeed, or close-fail). Each graph has
a starting point (represented as a triangle) that serves to describe which quest points are
initially enabled. Arcs connect related points where the quest point at the head of the arc
is enabled when the quest point at the tail is reached.

Quest pattern graphs are a high-level visualization of the quest. They do not dis-
play the journal entries, experience awarded, conversations, and additional actions
associated with each quest point. The quest point labels are often enough information

5.7 Stop Getting Side-Tracked by Side-Quests 521

to remind the author what extra information occurs at each point. Figure 5.7.3 shows
the graph for the assassinate antagonist quest where the player is asked to kill a dragon.

522 Section 5 Genre Specific

(Normal) Receive
quest from Old Man

(Optional) Acquire
Enchanted Sword

(Optional) Acquire
Potion of Strength

(Normal) Kill
the Dragon

(Close-Succeed) Report
Dragon's death to Old Man

FIGURE 5.7.3 Graph of the example quest where the PC kills a dragon.

Side-Quest Generation

With quest patterns, generating a quest is simple. Each quest pattern describes a dif-
ferent type of quest. Producing a new side-quest can be done by simply specifying the
NPCs and/or objects that interact with the PC. For example, you might have a quest
pattern where the PC acquires an item from a container. Selecting the item acquired
(Magic Boots) and the container (Alana’s Armoire) fully specifies the quest instance.

When generating a side-quest instance, SQUEGE first randomly selects a pattern
from its catalog of quest patterns. The implementation of SQUEGE on the CD-ROM
comes with an initial catalog of eight patterns. For example, SQUEGE might choose
a deliver an item quest pattern. This pattern contains three quest points: talk to a quest
giver, acquire item, and deliver item. Figure 5.7.4 shows the outline for this quest pattern.

(Normal) Talk to quest giver (Normal) Acquire item
(Close-Succeed) Deliver

item

FIGURE 5.7.4 The outline for the deliver an item quest pattern used by SQUEGE.

Next, SQUEGE selects encounters. Each quest point in the pattern includes a set of
possible encounters. Each encounter has a weight associated with it. SQUEGE selects
one of the encounters based on their weights. An encounter with a higher weight has a
greater chance of being selected. The encounter SQUEGE selects becomes associated
with its quest point in the quest instance. For example, the acquire item quest point in
Figure 5.7.4 has two possible encounters: talk to an NPC to acquire an item and remove
an item from a container. Both of these encounters have a weight of one, meaning that
they are equally likely to be selected. If the first encounter had a weight of two, and the
second encounter had a weight of one, then the first encounter would be twice as likely
to be selected over the second. In this example, SQUEGE selects the talk to an NPC to
acquire an item encounter to be used in the quest instance.

Finally, each encounter has a number of options associated with it. The talk to an
NPC to acquire an item encounter has two options: an NPC and an item. SQUEGE
selects both options from the lists of NPCs and items provided as input. After all of
the options for each encounter are specified, the side-quest instance is generated.
SQUEGE outputs an outline for the side-quest in graph form.

Subquest Generation

Figure 5.7.2 showed a side-quest where one of the encounters is a subquest to locate
and acquire a pair of Magic Boots. This subquest contains a quest point that is really
another subquest where the PC talks to a chain of NPCs to discover the item’s loca-
tion. SQUEGE facilitates the generation of subquests by allowing them to appear in
the list of possible encounters associated with each quest point. When SQUEGE
selects an encounter that represents a subquest, a new quest instance is generated and
inserted as the encounter. SQUEGE then recursively generates the contents for this
instance. By modifying the weights of the encounter random variables, you can deter-
mine how often subquests are generated relative to normal encounters.

Two types of subquests can be listed as possible encounters. The first type is a
normal quest, which implies that the PC is beginning a new mini-story. All journal
entries for the subquest will appear under a new heading in the PC’s journal, and the
PC is made aware of the subquest.

You don’t always want the PC to begin a new mini-story. Sometimes a subquest
should behave as an extra set of encounters within the original quest. This type of sub-
quest is called a quasi-quest, and it allows the PC to proceed along a subquest without
the player recognizing it as a subquest. The quest and all of its quasi-quests share the
same quest heading for their journal entries.

Using subquests allows arbitrarily complex side-quests to be generated. The
deliver an item pattern shown in Figure 5.7.4 has an acquire item quest point. This
quest point can use an acquire item quasi-quest as its encounter. The acquire item
quest pattern has two encounters, talk to discover item location and acquire item. Figure
5.7.5 shows the quest outline of the deliver an item pattern that contains an acquire
item quasi-quest. The quasi-quest is displayed as a rectangle with a dashed line. If this
subquest were a normal quest, then the rectangle would be displayed with a solid line.

The difference between close-succeed and close-fail is important for subquests. If
a subquest ends in a close-succeed, then it enables its next quest point. However, if a
subquest ends in a close-fail, then the next quest point in its enclosing quest is not
enabled.

5.7 Stop Getting Side-Tracked by Side-Quests 523

(Normal) Acquire item

(Normal) Talk to discover
item location

(Close-Succeed) Acquire
item

(Normal) Talk to quest
giver

(Close-Succeed) Deliver
item

FIGURE 5.7.5 Deliver an item outline that contains an acquire item quasi-quest.

Specifying Patterns in SQUEGE

Designing patterns is a one-time investment. The contents of a library of patterns can
be used and reused many times within the current game or across multiple games.
Thus, time should be invested in pattern design to ensure that the patterns have desir-
able properties (e.g., generally useful, not too specific, not too general, etc.). The CD-
ROM provides eight patterns that are useful across many CPRG games to get you
started, as described earlier in the article. Expect to add and delete patterns, based on
your experience and the genre of your game.

To create new patterns for SQUEGE, you need to specify the quest points and
possible encounters for each quest point. A new quest pattern specification can be eas-
ily created by starting off with a copy of an existing pattern specification and then
extending/adapting it as needed.

The patterns on the CD-ROM are designed to show how quests can be generated
without making the description of SQUEGE complicated. However, more complexity
can be added to the patterns so that the generated side-quests become more intricate.
Current patterns only use three encounters for talking to an NPC: talk to an NPC, talk
to an NPC to acquire an item, and talk to an NPC to give an item. New encounters that
add requirements to reach a quest point can be created. For example, the persuade NPC
encounter can be added, in which a persuade skill check that is higher than a threshold
is required. Similarly, three new encounters can be added for acquiring an item from an
NPC: persuade NPC acquire item (requires a persuasion skill check), steal item from
NPC (requires a pickpocket skill check), and kill NPC take item.

As an example of how quest patterns are specified, here is the entry for the deliver
an item quest pattern in SQUEGE’s pattern catalog. It has been edited for brevity.

QUEST_PATTERN:

NAME: Deliver item

OPTIONS: <QuestGiver>, <Item>, <ItemOwner>

DESCRIPTION: Deliver <Item> to <ItemOwner>

QUEST_POINTS:

QUEST_POINT:

LABEL: GiveQuest

TYPE: Normal

DESCRIPTION: to give the quest

ENABLERS: initially_enabled

POSSIBLE_ENCOUNTERS:

ENCOUNTER:

WEIGHT: 1

NAME: Talk to

OPTIONS: <QuestGiver>

NOTHING:

WEIGHT: 1

QUEST_POINT:

LABEL: AcquireItem

TYPE: Normal

DESCRIPTION: to acquire the item

ENABLERS: GiveQuest

524 Section 5 Genre Specific

POSSIBLE_ENCOUNTERS:

QUASI_QUEST:

WEIGHT: 1

NAME: Acquire item

OPTIONS: <_>, <Item>

QUEST_POINT:

LABEL: DeliverItem

TYPE: Close

DESCRIPTION: to complete the quest

ENABLERS: AcquireItem

POSSIBLE_ENCOUNTERS:

ENCOUNTER:

WEIGHT: 1

NAME: Talk to NPC to give item

OPTIONS: <ItemOwner>, <Item>

This quest pattern specification has three options: the NPC that the PC converses
with to begin the quest, the item that the NPC must acquire and deliver, and the NPC
that the PC must deliver the item to. These three options are referenced in the pattern
specification using the variable names <QuestGiver>, <Item>, and <ItemOwner>, respec-
tively. Quest options allow quest points to share the same values for their encounter
option variables. For example, the AcquireItem and DeliverItem quest points both use
the <Item> quest option. This ensures that the corresponding encounter option vari-
ables for these two quest points are set to the same value. When generating a side-
quest, SQUEGE will not select the same option twice unless it has been specified using
quest options.

In the preceding pattern specification, the GiveQuest quest point has two possible
encounters. The first encounter is for the PC to talk to the quest giver NPC (as refer-
enced by the <QuestGiver> option). The second encounter is a special construct with
the heading NOTHING. If SQUEGE selects this encounter, the quest point will not exist
in the generated quest instance. This allows the PC to initially acquire the item and
deliver it without ever having to talk to a quest giver. The AcquireItem quest point
uses the acquire item quasi-quest as its only possible encounter. This quasi-quest takes
two options: the NPC the item is acquired from and the item itself. The former is
specified using <_>, meaning that a new creature object, which is different from the
other creature objects specified in the pattern, should be used for this option. The
DeliverItem quest point has one possible encounter where the PC must talk to the
item owner to give the item. Both the item owner and item are specified using the
quest options <ItemOwner> and <Item>, respectively.

Changing the pattern specification causes SQUEGE to generate different side-
quest instances. For example, you might remove the <ItemOwner> option from the pattern.
In the final quest point, you would use the <QuestGiver> instead of the <ItemOwner>
option. This would result in the item being delivered to the same NPC that gives the
PC the side-quest. Other adaptations, such as adding a new quest point or changing
the weights of the possible encounters, can be easily made as well.

5.7 Stop Getting Side-Tracked by Side-Quests 525

SQUEGE Implementation

The implementation of SQUEGE included on the CD-ROM uses a Prolog program to
generate side-quests. Default input files for SQUEGE are provided on the CD-ROM.
You can change any of the input files, adding your own patterns, for example, as you
see fit.

SQUEGE outputs quest outlines in an XML file format. An external Quest
Viewer program (included on the CD-ROM) is used to render the XML output as a
graph (e.g., refer to Figure 5.7.2). It allows you to view the side-quest graphs, rearrange
the visual layout of the side-quests, and produce an image file of the side-quests.

Conclusion

In this article, we presented SQUEGE, a tool that uses commonly occurring story
scenarios (quest patterns) to generate side-quest outlines. You must write the charac-
ter dialog and scripts that control each side-quest. However, writing good dialog is
something that most game developers enjoy and do very well. SQUEGE’s side-quest
outlines are detailed enough that a programmer can quickly produce the scripts
needed, or a game-dependent script generator can be built to automate this process.
The emphasis in this approach is on allowing the game author to have the final say as
to what is included in the game. This ensures that the side-quests are of the same high
quality that you would normally create. The difference is that the side-quests take less
time and effort to produce.

A trial was conducted to determine if SQUEGE could save an author’s time and
generate high-quality side-quests. A detailed description of this trial is beyond the
scope of this article (see [Onuczko07]). Briefly, three side-quests were removed from a
Neverwinter Nights community story and replaced by three SQUEGE-generated side-
quests, using the NPCs, containers, and items in the original story. An author read
the SQUEGE outlines, added the conversations manually, and used a prototype ver-
sion of ScriptEase to add the quest patterns to the story module. The quest-control-
ling scripts were then generated by ScriptEase. The time required was much less than
the time required to write the scripts manually. The side-quests in the original story
and the side-quests generated by SQUEGE were then demonstrated to a group of
university students. Students evaluated the original side-quests and SQUEGE side-
quests without knowing which were computer generated. The results showed an
interleaving of the ratings of the side-quests in this order: original, SQUEGE, origi-
nal, SQUEGE, SQUEGE, and original. This provides preliminary evidence that
SQUEGE is capable of producing quality side-quests. This trial showed that
SQUEGE saves time when used in conjunction with a script generator and that it
generates quality side-quests. If you use SQUEGE, we are very interested in receiving
feedback.

526 Section 5 Genre Specific

References

[Gamma95] Gamma, Erich, et al., Design Patterns: Elements of Reusable Object-Orien-
tated Software. Addison Wesley Professional, 1995.

[McNaughton04] McNaughton, Matthew, et al., “ScriptEase: Generative Design Pat-
terns for Computer Role-Playing Games.” Proceedings of 19th IEEE International
Conference on Automated Software Engineering (ASE), (September 2004): pp.
88–99.

[McNaughton06] McNaughton, Matthew, and Roy, Thomas, “Creating a Visual
Scripting System.” AI Game Programming Wisdom 3, Charles River Media, 2006:
pp. 567–581.

[Onuczko07] Onuczko, Curtis, Quest Patterns in Computer Role-Playing Games.
M.Sc. Thesis, University of Alberta, 2007.

5.7 Stop Getting Side-Tracked by Side-Quests 527

This page intentionally left blank

529

S E C T I O N

6
SCRIPTING AND

DIALOGUE

This page intentionally left blank

531

6.1

Spoken Dialogue Systems
University of Sheffield

Hugo Pinto
hugo@hugopinto.net

Roberta Catizone
R.Catizone@dcs.shef.ac.uk

S ince the 1970s, game developers have pursued the goal of allowing the user to
interact and communicate with the game using natural language. From Adven-

ture [Montfort03] to Neverwinter Nights [Infogrames02], language interaction has
often been present, even if discreetly.

Spoken language provides one of the most natural ways to interact with a charac-
ter. Voice recognition programs, such as Voice Buddy, Microsoft Sidewinder, and VR
Commander, try to address part of the issue by providing ways for the player to issue
simple commands to the game. However, for more complex interactions, full dialogue
processing is necessary. In an adventure game setting, the character might need to ask
the player to clarify his request, and then interpret the player’s explanation according
to the dialogue history. The adventure game Lifeline [Sony04] is an example of a game
that tried to deliver such capability while providing a full speech-based interface.
Non-player characters (NPCs) in RPGs, adventures, and social simulation games are
obvious examples of applications that could benefit from state of the art speech-based
dialogue systems.

Unfortunately, despite the huge progress in graphics and general game AI, spoken
dialogue technology has not kept the same pace in games. However, academia,
telecommunications, and transport industries have been pursuing research in the field
aggressively in the past 15 years and offer interesting insights and suggestions for game
development. Among the applications already delivered are speech-controlled cars,
houses, and personal information management assistants. There are helpdesk systems
that engage in complex dialogue with the user and even a couple of less-known games.

This article provides an overview of modern spoken dialogue systems. We start by
presenting the issues of voice recognition, language processing, dialogue management,
language generation, and speech synthesis. Next, we analyze two robust speech-based

interactive systems, examining how they solved each of the issues involved in spoken
dialogue. Finally, we examine the particulars of the game domain and provide sugges-
tions on how to approach them, with illustrations from the presented systems.

Spoken Dialogue Concepts and Particularities

Before embarking on the analysis of speech-based dialogue systems, let’s clarify some
terms. What exactly do we mean by dialogue? How do our conceptualizations of dia-
logue impact the engineering of the dialogue system? What are the particular charac-
teristics of spoken dialogue language?

There are three main views of dialogue, each complementary to the other: dialogue
as discourse, dialogue as purposeful activity, and dialogue as collaborative activity
[McTear04].

When we view dialogue as discourse, we focus on how words, phrases, and utter-
ances are interpreted considering a related group of sentences. Usually, a discourse is
segmented into different contexts, each of which usually has a topic and salient enti-
ties. A dialogue participant needs to be able to interpret each discourse element in
relation to the current context and know how the entities are related across contexts.

When we approach dialogue as purposeful activity, we will be mostly interested in
why a dialogue participant said something in a certain way. That is, our focus will be
on the effects of the utterances in a certain context, which might go beyond the mean-
ings of the words used. Consider the meaning of “I am hungry.” We could envision at
least four functions for this utterance:

• A neutral statement about your inner body status, as in response to a physician’s
question

• A confirmation that you want food, after a food offer
• A request for money or help, coming from a beggar
• A demand for food, from a two-year-old to his dad

This view of an utterance as an action is the basis of the idea of speech acts, fur-
ther explained in the “Dialogue Management” section later in this article.

A dialogue involves at least two participants, and they are expected to collaborate
at least to let each other have a turn at speaking (turn-taking) and to confirm that what
they said has been understood (called grounding in dialogue systems terms). These two
issues form the skeleton of the view of dialogue as a collaborative activity.

We should mention some properties of spoken dialogue. The utterances in spo-
ken dialogue are usually simpler than in written language, and spoken dialogue is
filled with disfluencies. Disfluencies include false starts as in, “Do do do you wanna
dance?”; hesitation markers such as “uh,” “oh,” and “err”; and fillers such as “[…]you
know. . . .” Silence is not just the absence of speech; it may act as a communicative act
itself or indicate some problem.

The next section presents the standard components of spoken dialogue systems
and illustrates the concepts of this section.

532 Section 6 Scripting and Dialogue

Standard Components of Speech-Based Dialogue Systems

Five components form the core of most spoken language dialogue systems: speech rec-
ognizer, language understanding module, dialogue manager (DM), language genera-
tor, and text-to-speech module. The speech recognizer is responsible for transforming
sequences of sounds into words and expressions. The language understanding module
is responsible for interpreting a sequence of words into a definite meaning. The DM
decides what to say at each time step based on what the user said, the system’s goals,
and the dialogue history. The language generator transforms a decision from the man-
ager into an actual phrase or sequence of phrases. Finally, the text-to-speech module
converts the phrases of the generator into an appropriate sequence of sounds.

Speech Recognition

Recognizing a word from a sequence of sound units (phonemes) is a daunting task.
The recognizer must be able to choose between different words that sound almost the
same, such as “right,” “write,” and “rite” or the pair “mist” and “missed.” The recog-
nizer must also recognize different sequences of sounds that represent the same word,
for example, a Yorkshire Englishman and a Texan American ordering a “bottle of
water.” Even the same individual can sound different when he wakes up compared to
in the middle of his workday.

The first problem is usually addressed by exploiting the context and biasing or
constraining the options of what will be reasonably recognizable at each point in a
conversation. For example, when talking about the weather, it’s reasonable to associate
a higher probability to “mist” instead of “missed” whenever the sound sequence asso-
ciated with them appears. If the word before “mist” or “missed” was already recog-
nized as Thomas, then “missed” would usually make more sense, unless a proper
name had previously qualified the noun “mist” in that context. When talking about
hurricanes, for example, a qualifying proper name would not be unusual.

The set of mappings of phoneme sequences to recognizable words and their asso-
ciated probabilities is called the acoustic-language model. The most common way of
building this model is by collecting a series of dialogues using a simulated system and
real users. The system is simulated by a human, without the users being aware of it.
This technique is known as Wizard of Oz. The spoken dialogues are then manually
annotated with information, such as word boundaries and word transcriptions, and
then probabilities and rules are derived using automatic methods. Often, the system is
bootstrapped with domain knowledge by a speech recognition expert, and the auto-
matically generated results are again pruned and extended manually.

In many speech-recognition toolkits, the acoustic-language model is actually sepa-
rated into two parts: the acoustic model and the language model. The acoustic model
deals just with the mapping of phonemes to words, and the language model deals with
the valid words that will be recognized in an application, together with their probabili-
ties, if any.

6.1 Spoken Dialogue Systems 533

534 Section 6 Scripting and Dialogue

As you might have inferred, the usual output of an automatic speech recognition
(ASR) system is a ranked list of words/expressions. The language interpretation mod-
ule or the DM can use domain knowledge and other kinds of information to select
among them.

Developers will probably use a third-party ASR toolkit instead of developing a
system from scratch. The work will basically be tuning the acoustic and language
models, including new words, pronunciation examples, and rules, and then retraining
the system. There are literally dozens of ASR solutions, both commercial and public
[Sphinx07, Julius07]. In the commercial toolkits, you can expect to have acoustic
models for the most common words of English and language models for some scenar-
ios. Often, present are programs to extend and modify those models.

Natural Language Understanding

Consider a bulletproof ASR system or a typed text scenario. All that is left to deal with
is the interpretation of the sequence of words into a definite meaning. There are sev-
eral challenges from the outset:

• How to group the words into phrases?
• How to check if a given sentence makes any sense?
• How to discover the possible meanings of a sentence?
• How to select the right meaning?

Sentence splitting is the computational linguistics name for this grouping of
words into phrases. Sometimes this is done partially or totally in the ASR module;
more often, it will be the job of the natural language understanding (NLU) module.
When dealing with speech, quite often there will be incomplete and elliptical phrases,
such as “brown,” or “the other,” especially in response to a question. There are two
approaches to deal with this—tune the NLU module to treat it, or just accept the
incomplete sentence and send it for further interpretation in the DM.

The process of checking if a sentence is valid is called parsing or syntactic analysis.
There are several different parsing paradigms, and for each, many available parsers.
The most suitable parsers for a spoken language system are those that can output par-
tial analysis and deal with incomplete sentences. Popular parsers are the dependency-
based ones, such as Connexor’s Machinese Syntax and CMU’s Link Parser. When a
sentence does not make any sense, the parser rejects it.

However, just knowing if the sentence makes any sense is not enough. The system
needs to select the right interpretation of the sentence. In some cases, this is a matter
of just selecting among the several available parses. Consider the sentence “Mike saw
the man with the telescope.” Did Mike see the man by means of a telescope, or did
Mike see a man who was holding a telescope? The only way for the system to guess is
by exploiting the context and background knowledge. For example, if the system
knows that Mike has a telescope, it would interpret it in the first way. The system
could also select the first if it had encountered many examples and determined that

the first interpretation was correct. However, in a dialogue system, it is often prefer-
able to keep the two possibilities open with a measure of confidence for each and let
the DM decide—after all, the system can just ask the user a clarifying question to
come to a conclusion!

Returning to the NLU problem, the cases where all the system has to do is select
the right parse are few and rare. Often, the system needs to know what pronouns and
words refer to, what classes words belong to, and what particular meanings words
have. For instance, consider “Mike said to Jane that he does not love her.” To properly
interpret this, we need to know that Mike and Jane are people and that Mike is male
and Jane is female. The process of discovering the categories to which a noun belongs
is usually called named entity recognition. The process of attaching pronouns and
nouns to other nouns or definite entities is called reference resolution.

Let’s consider yet another phrase, “John ate the bass.” To properly interpret this
sentence, we need to know that bass is a fish, not a musical instrument. We could
know this by at least three means: exploiting background knowledge that the verb eat
usually requires an argument of type food; using statistical information that would
show that in most cases when bass appears near eat, it is in the food sense; or if avail-
able, through pronunciation information because bass (the fish) and bass (the instru-
ment) are pronounced in quite different ways.

You can expect to use sentence splitters and parsers just as they come off-the-
shelf, without any significant customization. Named entity recognizers are usually the
components that have to be tuned, either by providing annotated examples and train-
ing a model or by modifying the entity-detection rules, if you are not lucky enough to
find a recognizer that totally matches your needs. Three toolkits that have compo-
nents for most NLU tasks and that are easy to customize are GATE [GATE07],
NLTK [NLTK07], and OpenNLPTools [OpenNLP07].

The results of this phase—the phrase(s) discovered, the syntactic analysis (parse),
the entity types, and the referents—are fed into to the DM. The DM, using higher
level information and the dialogue history, will be able to complement, extend, and
correct these results, and based on them, decide what to do in the next step.

Dialogue Management

The DM is responsible for deciding what to say at each time step based on the infor-
mation from NLU and ASR, what has been said so far, its knowledge, and its goals. A
good background in agents or robotics helps; a DM is very similar to the control
structure of an agent or robot. If you substitute the agent actions for speech acts and
the agent perceptions for the inputs from NLU and ASR, you get a DM!

A DM’s output is basically a speech act coupled with information on how to
perform it. Speech acts [Searle69] are based on the view that saying something is per-
forming an action—commanding, requesting, clarifying, complaining, and so on. In
cognitive terms, it can be viewed as the intention of the person when saying something
and the intention the person ascribes to something someone says when the person hears

6.1 Spoken Dialogue Systems 535

it. A good way to catch what speech acts are really about is seeing some examples—
Table 6.1.1 provides utterances tagged with Human Communication Research Centre
Map Task tags [Carletta97].

Table 6.1.1 Dialogue Acts with Their Descriptions and Examples

Dialogue Act Example Description

Instruct Could you bring me a cup Speaker tells hearer to do something.
of tea, please?

Explain I am Pinto, Caio Pinto. Speaker says something without being
asked by hearer.

Query-w Who is John Galt? A “who” or “what” question.
Reply-w John is a character of Ayn Rand. Reply to a Query-w question.
Acknowledge I see… Acknowledges the understanding of

the previous utterance.
Query-yn Do you want another piece A question to which the answer is

of cake? equivalent to yes/no.
Reply-y Sure thing! Reply to a query that is equivalent to

yes/no.

One of the most common operations in a DM is recovering from or preventing
misunderstandings. Let’s get back to the sentence “Mike saw the man with the tele-
scope.” Suppose the DM gets these two interpretations as input:

• {[Mike- > saw, saw->man, saw ->with telescope], 0.51}
• {[Mike- > saw, saw->man, man ->with telescope], 0.49}

As both have very close probabilities/confidences, the system might decide to ask
the user which one he means. It could ask “Did the man have the telescope?” using
the speech act confirm(man->with telescope). By using clarification questions or explic-
itly asking for more information, the DM can overcome or resolve many of the prob-
lems that the ASR and NLU modules might face. The caveat is that care must be
taken not to turn the dialogue into a painful experience for the user, where the system
keeps confirming and clarifying every utterance it encounters. The TRIPS system,
presented in the second case study, usually opts for the risk of a wrong guess instead of
confirming.

The DM is probably the component that will need the most attention because it
determines in greater part the interaction with the character and its perceived person-
ality. The DM is likely to exploit every cognitive capability of the character to bring
about its functionalities in a way that will probably be defined closely with the game
designer. A more complete handling of DMs is given in Article 6.5 Dialogue Managers
[Pinto08] in this volume. The rest of this section details how the speech act will be
transformed into an actual spoken phrase.

536 Section 6 Scripting and Dialogue

Natural Language Generation

If language understanding takes a phrase and assigns to it a definite meaning, natural
language generation (NLG) does the reverse—it starts from a definite piece of knowl-
edge and turns it into a textual passage. Here too can be many possibilities—the order
of the facts or pieces of information to convey, the type of language to be used, the
mood desired to impart, the level of politeness, and the cognitive aspects of the char-
acter, all might play a role on the generated language. However, in most commercially
deployed spoken language systems, language generation is quite simplistic—canned
or template based.

Canned NLG is the kind of language used in Warcraft II, The Secret of Monkey
Island, Ultima VIII, and most games. It consists of predefined, immutable phrases
that will be output depending on certain conditions. It is quite popular in various
industries, and the most popular solution in the telecom sector. Canned language can
be used by retrieving what has to be said from some database—flight booking systems
and telecom systems that try to provide instructions are the archetypical examples of
canned-language in dialogue systems.

Template-based NLG is the most popular paradigm in current commercially
deployed systems. In this scenario, the system selects a template and fills in the details
according to the semantic content—the information the system has is used not just to
select a text passage, but also to fill in its details or slots. Template-based NLG works
well when presenting the same set of messages with slight variations.

Template-based generation can be used to implement simple interactions and
characters, for example, a shopkeeper or a soldier that just follows orders and reports
simple facts. If a more complex interaction is needed, such as a bar fellow that chats
about the local past and future events at the local tavern with the players, then the
developers might need to delve into proper language generation and address the ques-
tions presented in the beginning of the section. These include what information to
present, the order in which to present it, and how to present it. In this scenario, NLG
is also an area where special attention needs to be devoted because it also determines
in great part the personality of the character and the style of the interaction. The dif-
ficulty of implementing such an NLG module depends on the kind of DM being
used. If the DM is already linked to a cognitive model and keeps track of emotions
and moods, then the work is made simpler because this information can just be
included in the DM output and exploited when making decisions. However, if the
developers are using a simple DM, they probably need to use additional information
from external modules or include them in the NLG component. Additional informa-
tion to consider might be whether to use simple or pompous language, be polite or
blunt, and so on.

Unlike other components, it’s unlikely that developers will find an off-the-shelf
NLG module. GATE (General Architecture for Text Engineering) [GATE07] has a
prototypical NLG component that can be customized. Most projects in spoken dia-
logue systems start with canned language, evolve to template-based approaches, and

6.1 Spoken Dialogue Systems 537

only then proceed to more sophisticated NLG. This usually ties in well with a spoken
dialogue system development lifecycle because in the initial stages, the team is proba-
bly tuning the ASR and NLU modules, which greatly constrain the design of the
DM. The development of the NLG, like the DM, requires close involvement of the
game designers to properly deliver its results.

After generating textual output, the output is made into actual speech.

Text-To-Speech

Text-to-speech (TTS) is seldom developed in-house or even customized. The majority
of spoken dialogue implementers use an off-the-shelf solution. Most ASR providers
also have TTS solutions, giving many choices once again. Current TTS technology has
improved significantly in past years, and current systems often display good perfor-
mance regarding the similarity of the generated sounds to human speech.

The main problem with TTS is that most solutions have few voices to choose
from (usually just a couple), presenting a problem for developers who need different
voices for different characters. If the game has several speaking characters, or if some
character needs a special kind of voice, the developers might need to get involved in
speech synthesis. Up to a certain point, they could just use sound effects on a given
voice to try to achieve different pitches and contours—the sound effects specialist
could play a key role in this!

A brief review of the issues involved in a TTS system will create an appreciation
of the work inside a TTS module and an understanding of the technical language of
the solution vendors. Usually the speech synthesis is divided into two phases: text
analysis and speech generation.

The text analysis starts in a way similar to NLU—there is segmentation of the
text into phrases and syntactic analysis, followed by normalization, and then the mod-
eling of continuous speech. Normalization involves basically putting abbreviations,
currencies, measures, and times into a form suitable to be spoken. The modeling of
continuous speech must deal with the variations in speech that happen when two or
more words are spoken together. Consider the “of” in “I want a bottle of water” and
in “I can’t recall a girlfriend I am not still fond of” for the different sounds. Some-
times, by the text analysis, we may be able to infer prosodic information—informa-
tion about intonation, pitch contour, intensity, and so on. At other times, we can
provide it externally—in our case, it would be the output of NLG.

The results of the text analysis and prosody information are passed on to a speech
generator. There are three main paradigms for speech synthesis: articulatory, formant,
and concatenative. The first is based on the modeling of the speech articulators, the
second in the properties of the sound signal, and the third aims to smoothly join pre-
recorded units of speech.

538 Section 6 Scripting and Dialogue

If the game has a relatively small set of utterances to be spoken, and they are
known in advance, then the game will probably be better off with recorded speech
from professional actors. Nonetheless, TTS might be useful to get a feel of the game
during prototyping and production [Kirby98]. Operation Flashpoint used this
approach until shortly before the game release, when voice actors were called in to
record the characters’ utterances [Codemasters01].

The following two case studies show how it all fits together in deployed systems.

Case Studies

In this section, we will examine two robust dialogue systems: The Rochester Interac-
tive Planning System (TRIPS) [Allen07] and the NICE Game system [NICE07].
Both have demonstration videos on their Web sites.

The NICE game system was done as part of a three-year European Union project
that involved five partners from academia and industry, including the game company
Liquid Media. It not only demonstrates key issues in the design of a dialogue system
but also features solutions dear to game developers, such as a domain-independent
kernel coupled to domain-dependent scripts to control the agent’s behavior.

The TRIPS system actually stands for a big family of different implementations
and has been in development for almost 10 years. The brief discussion here focuses on
a small part of the family. TRIPS shows a different approach to solve the issues of a
spoken dialogue system, although there are noticeable commonalities with NICE—
both systems, at the lowest level, use a hub-and-spoke architecture. One feature that
will be dear to game developers is the strong separation of domain and generic knowl-
edge in the system—the parser, the generator, and the planner have domain-indepen-
dent cores, allowing a great deal of reuse.

The NICE Game System

The NICE game system was built to investigate the interaction of adults and children
with game characters using dialogue and mouse clicks [Gustafson05]. Although a
commercial game company was involved in its creation, NICE was mainly a research
project. Interesting issues addressed in the game demo are the speech recognition of
children and adults, the interaction of ASR and NLU, how to make up for ASR
errors, how to exploit the game scenario and game plot for dialogue management, and
how to tune the speech to match the desired personalities of the various characters.

The game world is a typical 3D adventure setting—there are several objects, each
with certain properties, and the user must do a series of tasks using them for the story to
unfold. What is not so typical is that the user interacts with the game characters via
mouse clicks and speech for them to carry out the actions necessary for game progres-
sion; the user does not directly manipulate anything in the game world. This indirection

6.1 Spoken Dialogue Systems 539

in task performance was part of the game design, to bring interaction with the charac-
ters to the forefront of the game.

The game plot is very simple—the player must operate a machine, explore the
world, and traverse a bridge. It has two main scenes—in the first, the user has to oper-
ate a “story machine,” where he needs to guide his faithful assistant, Cloddy Hans, to
put the right objects into the proper places in the machine for it to function. This first
scene is designed to make the player familiar with the game controls. In the second
scene, the player needs to help Cloddy Hans traverse a bridge. For this, the player and
Hans have to convince another character, Karen, to lower the bridge so they are able
to pass. Karen will only lower the bridge after bargaining for some item that is in the
opposite end of the gap. Cloddy Hans does more than carry out user commands and
answer player questions; he can also talk directly to Karen and provide the player with
tips on what she might want.

Hans and Karen had the requirements to have distinct personalities. Hans is a
dunce and slow to understand but is honest, friendly, polite, and eager to help. Karen
is intelligent, frivolous, confident, unfriendly, touchy, and anxious. These different
roles and personalities will bring about different requirements in their DMs, genera-
tors, and TTS systems, not to mention their animations. For example, Cloddy Hans
displays small, slow, and deliberate body gestures, whereas Karen uses large and fast
body movements.

Architecture
The system uses a hub-based, event-driven, asynchronous architecture to mediate
communication between the various components. Communication is through mes-
sage passing over TCP/IP. The central hub, called Message Dispatcher, timestamps
every message and coordinates input and output by means of a set of rules that deter-
mines what to do for each message type. This allows simple reactive responses when
receiving a message. This central hub also issues timeouts to enable the system to keep
track of the passage of time. The various modules of the system could (and actually
did) exist in different machines, and it was possible to render different scenes on dif-
ferent machines.

Automatic Speech Recognition (ASR)
The ASR module was made by training a statistical language model over 5,600 utter-
ances of 57 children aged 9 to 15. Those dialogues were collected over a 5-month
period, in 4 different sections, using a method similar to the Wizard of Oz. This data
was used not only to do the ASR module but also to drive the building of this system’s
parser. The results of the ASR were not very good—only about 38.6% of the words
were properly recognized. One of the reasons was that children’s speech was less con-

540 Section 6 Scripting and Dialogue

sistent than adults’ [Gustafson04]. However, as shown in the following section, the
NLU system was able to compensate for part of this.

Natural Language Understanding (NLU)
The NLU module consists of a parser that combines pattern matching and limited
inference to output a simple semantic representation of the ASR output. The input is
the best hypothesis of the speech recognizer, and the output is a dialogue act represented
as a typed tree. The parser is implemented using two phases: a domain-dependent pat-
tern-matching phase and a domain-independent rule-rewriting phase.

The pattern matching, based on a set of syntactic rules, is done left-to-right and
results in a list of semantic constraints. The most common kind of constraint is the
stipulation of the existence of an object or action. For example, if the parser finds the
noun “nail,” it would put the constraint nail_thing, meaning that there is a “nail” of
type “thing.” If the parser encountered the verb “drop,” it would put the conjunction
drop(x,y)_action ^ x_character ^ y_thing, which means there is a drop action where “x”
is a character and “y” is a thing. Other types of semantic constraints are inequality and
equality constraints. The rules are specified using a definite clause grammar. An exam-
ple of a rule set able to interpret a command to pick up a banana or an apple follows:

PickUpHints([pickUp(X,Y)_action, X_character, Y_character| MoreHints

],Tail) -> [take,the], thingHints([Y_character | moreHints], Tail).

PickUpHints([pickup(X,Y)_action, X_character,

Y_character|Tail],Tail) -> [take].

ThingHints([banana_thing|Tail],Tail) -> [banana].

ThingHints([apple_thing|Tail],Tail)->[apple].

The algorithm tries to match the right side of a rule with an initial segment of
input. If the match is successful, the semantic constraints in the left side are added to
the output list, and the input segment matched is discarded. If no match on any rule
is possible, then the initial segment is discarded, and the process starts over. The rules
are matched in the order that they appear in the rule base, so it is important to put the
rules that match longer inputs first, enabling the parser to match smaller parts of the
input if the longer match fails.

Another source of constraint in the parsing process is the particular mouse input.
If the user says “pick up this” and clicks on the hammer, it will add a constraint
hammer_thing. This is a nice example of how natural language processing might fit
into an adventure game—instead of wholly substituting the point-and-click interac-
tion, it can be used to extend and complement it, as well as being enriched by it.

The rule-rewriting phase uses the constraints parsed to build a dialogue act sug-
gestion for the DM. It unifies the proposed objects with concrete instances, expands
the set with the constraints that can be inferred from the current ones, merges actions

6.1 Spoken Dialogue Systems 541

and objects, filters out trivially true facts, and, finally, binds all free variables into a
dialogue act. Some examples of parsed utterances are shown in Table 6.1.2.

Table 6.1.2 Sentences and Corresponding NICE Dialogue Acts

Sentence Dialogue Act

User: I will give you the ruby. Offer(user,Karen, ruby)
User: I am 14 years old. Tell(user, Cloddy, 14[user.age=14])

The particularly good result of the parser is that it partially compensates for the
bad speech recognition. If the concepts expressed are considered instead of just the
words, the parser achieved a 53.2% accuracy [Boye06].

Dialogue Management
The DM in this system not only processes the dialogue acts coming out of the NLU
module but also acts as the whole brain of the character, deciding what to do in
response to events in the environment and changes in the characters’ goals. It is imple-
mented as a kernel, which provides common functionality, coupled with scripting
code, which deals with the game-specific and scene-specific events.

The kernel issues timed events in response to changes in the environment,
results from ASR and NLU, and its internal state. The scripting code can react to
events by using callbacks. Among the events accepted as input are ParserEvent
(NLU has produced a dialogue act), PerformedEvent (animation has completed),
RecognitionFailureEvent (ASR failed to recognize utterance), WorldEvent (an event
happened in the world), AlreadySatisfiedEvent (the goal added to the agenda has
already been satisfied), CannotSolveEvent (an insolvable goal has been put in the
character’s agenda), and TimeoutEvent (a timeout has expired). The scripting code
can access the kernel to bring about the actual dialogue behavior via the following
operations: interpret an utterance, convey a dialogue act, perform an action, add a
goal to the character’s agenda, remove a goal from the character’s agenda, and pursue
the next goal in the agenda.

The agenda keeps track of the character’s actions, goals, and the relations between
them in a tree-like structure. It is the main driving force of the dialogue behavior—
the character does its actions, including utterances, to fulfill its goals. In addition to
the agenda, the DM keeps a discourse history, composed basically of a list of dialogue
acts in reverse chronological order and a domain model. The dialogue history is used
mainly for reference resolution, whereas the domain model is used to constrain the
possible choices of actions; that is, picking up a hammer would be allowed but pick-
ing up a house would not.

542 Section 6 Scripting and Dialogue

Finally, the outputs of the dialogue system as a whole are convey<dialog_act>, which
will transform the dialogue act into words by the NLG module, and perform<action>,
which sends a command to the animation system for performance of the action.

Spoken Language Generation
Language generation in the system picks the dialogue act output by the DM and con-
verts it into a text string using a 200-rule definite clause grammar.

The TTS module was implemented with the Snack toolkit [Snack07] using a
concatenative approach, as mentioned in the “Text-to-Speech” section. The authors
report that all they had to do was provide the system with a set of speech recordings
and the matching orthographic transcription files to get a basic voice. One aim in the
making of the TTS system was to have symmetric analysis and synthesis components
to hopefully have better performance. The voice actors were told to read the utter-
ances made for training in a way that matched the desired personalities of the charac-
ters. As a result, Karen’s voice had a higher pitch and speaking rate than Cloddy Han’s.
To further accentuate this difference, the utterances were resampled changing speak-
ing rate and voice pitch, making Karen sound younger and Hans sounding larger.

TRIPS—The Rochester Interactive Planning System

TRIPS is well described by its subtitle, The Rochester Interactive Planning System,
because its main goal is building and executing a plan iteratively with the user to
accomplish a concrete task. The system has many versions, which were deployed in sev-
eral different scenarios, including crisis management (Pacifica and TRIPS-911), multi-
robot exploration (Underwater survey), and a medical advisor. Our exposition will
focus on the crisis management scenarios and will be based on the project Web site
[Allen07] and on the expositions of [McTear04] and [Allen00, Allen01a, Allen01b].

TRIPS is composed of a set of loosely coupled components divided in three basic
clusters: interpretation, behavior, and generation. Each cluster has one central compo-
nent and shares one or more mediating components. Logical communication hap-
pens between the central components directly and from them to the mediating
components. The language used for communication is a variation of the Knowledge
Query Manipulation Language (KQML). Physically, all components are connected to
a central hub that routes the messages between the components and coordinates ini-
tialization and shutdown of the whole system. Figure 6.1.1 depicts a functional repre-
sentation of the architecture. It shows the central components (the interpretation
manager (IM), the behavioral agent, and the generation manager), and the discourse
context, reference, and task manager mediating the interaction between the clusters.

What follows is a principled analysis of the system, similar to what was done with
NICE.

6.1 Spoken Dialogue Systems 543

544 Section 6 Scripting and Dialogue

Behavioral
Agent

Discourse
Context

Reference

GUI Input
Speech

Input

Parser

Speech
Output

GUI
Output

Surface
Generation

Task
Manager

Planner Scheduler Monitors Events

Input from User Output to User

Interpretation Generation

Behavior

Output to World Input from World

Generation
Manager Manager

Interpretation

FIGURE 6.1.1 TRIPS architecture.

Speech Recognition
Speech recognition is based on the Sphinx-II system from Carnegie Mellon University.
Sphinx-II is a general-purpose, user-independent system. TRIPS developers used the
Sphinx-II’s acoustic models to create their own language models based on the task they
were implementing. One problem they faced that might afflict a game developer devel-
oping a new game was the lack of utterance examples in their domain to create new
language models. They used two techniques to ameliorate this problem: creating an arti-
ficial corpus and adapting corpora from other domains. In the first, they invented a few
hundred sentences, derived a context-free grammar (CFG) from it, and then used the
grammar to generate a bigger corpus. In the second, they tagged the words in the cor-
pora using generic concepts, derived a language model based just on the concepts, and
then expanded these concepts using words of the target model. They reported good
results using these techniques, both in combination and by themselves [Galescu98].

Natural Language Understanding (NLU)
NLU is centralized in the interpretation manager (IM). It communicates with the
parser, the reference manager, the discourse context, the task manager, and the behav-
ioral agent to form an interpretation of what was said taking into account the current
task and context.

The parser receives as input the ranked list of the speech recognizer and the
mouse clicks from the GUI. It also requests information from the reference manager
and updates it with new information. The parser is speech-act based, instead of sen-
tence-based. It searches for speech acts anywhere in the utterance and chooses the
shortest sequence of acts that cover as much of the input as possible. This way, the
parser is able to deal with ungrammatical sentences, which are common in spoken
language. The parser is implemented as a best-first bottom-up chart parser using a
feature-augmented CFG with semantic restrictions. The grammar has a generic part
and an application-dependent part. The generic part represents the core meanings of
conversational English. The application-specific part has domain-specific words and
semantic categories, as well as mappings between the general categories of the original
grammar and the specific ones in the application. The parser’s output is a list of
speech acts, which are realized with predicates from both grammars.

The task manager abstracts away the domain-specific task knowledge from the
other parts of the system. It has information about particular goals and subgoals, what
particular actions can be used as part of solutions for the objectives, what domain-
specific resources are used by the actions, and so on. The central service it provides to
the IM is discovering what a speech-act means in that problem-solving context—
mapping a speech-act into a problem-solving act. The mapped problem-solving act is
returned to the IM with two scores: the recognition score and the answer score. The
recognition score is the confidence of the task manager about the mapping, and the
answer score is an estimate of the viability of the problem-solving act given the cur-
rent problem-solving context.

The discourse manager manages the knowledge about the discourse, keeping a
speech-act history, whose turn it is to speak, the obligations of the participants, and a
model of the salient entities of the dialogue. The reference manager queries it about
salient entities and updates its entities’ entries. The IM uses information about the
obligations of the participants and whose turn it is to speak to decide how to interpret
a given speech-act.

Dialogue Management
The behavior agent (BA) is responsible for deciding what to do at each step, based on
the system’s goals and obligations, the current problem-solving act, the external events,
and the task being carried out. BA implements a general problem-solving model that
encompasses concepts such as objectives (goals and restrictions on goals), solutions
(plans that fulfill a goal), resources (objects used in solutions), and situations (the state
of the world). An utterance here is interpreted as a manipulation of one of these con-
cepts—the creation or deletion of a goal, a description of a solution, and so on.

The BA queries the task manager to interpret the problem-solving act that comes
from the IM and to carry out actions specific to the domain. In this way, domain-
specific and generic problem-solving knowledge is separated, which is a good
approach to a game with several different subplots and scenes.

6.1 Spoken Dialogue Systems 545

Event notification modules and monitors might be linked to the behavioral man-
ager, which would be able to decide whether to inform the user about what happened
and the implication for the current problem-solving task.

The BA, upon coming to a decision, sends a request to the generation manager to
issue the corresponding utterance.

Natural Language Generation (NLG) and Speech Synthesis
The generation manager will decide what to actually output to the user based on the
messages from the BA and the discourse context. It has some degree of autonomy in
that it can plan a response before receiving a message from the behavioral agent based
just on a change in the discourse context. Whenever the generation manager actually
sends a response for surface generation, it updates the discourse context. The messages
to surface generation are still in logical form. The surface generator realizes the output
as text and objects in the GUI. The actual text generation was done using templates
and simple CFGs for noun phrases [Stent99].

Speech synthesis was done with the TrueTalk generation engine from Entropics,
Inc. [Allen07]. Because, in this system, the voice was used just to convey information,
there was no need to further develop the TTS system.

Discussion

We saw the main characteristics and issues of spoken dialogues, proceeded to an analy-
sis of the standard components of speech-based dialogue systems, and finally studied
two robust systems. This section reflects on what has been touched on so far and on
how the particulars of the game domain affect the design of dialogue systems.

One of the most interesting particularities of games is that designers can lower the
performance requirements of the system by exploiting the game design and plot. In
NICE, Cloddy was presented as a dunce that was slow to understand. This fitted in
well with the flaws of the speech-recognition system and with the relatively long pro-
cessing time it took until he started acting on a user request. Karen, on the other
hand, was presented and perceived by the players as more intelligent, even though she
used the same underlying technology. The key to hide a lack of intelligence that was
as big as Cloddy’s was to present her as stubborn and with her own goals. This allowed
her DM to have faster responses and to make sensible utterances more often than
Cloddy’s, contributing to the perception of her superior intelligence.

Another way to simplify the system considers the character’s role in the game. To
simplify the language model of a bartender, the bartender could be made to say that he
was very busy or not interested in what the player said whenever the player strayed from
bar service vocabulary. A similar principle applies to the generation module—a shy or
secondary character could have few possible phrases, all with the same emotional tone.

A similar, but more risky possibility, is retroactively introducing elements to the
game that would explain the character’s limitations. For example, if there is no prob-
lem for the story and setting to have the user interact with a key character that is very

546 Section 6 Scripting and Dialogue

old, ASR problems can be attributed to the character being hard of hearing. The same
goes for limitations in the other components—having “the dumb assistant” instead of
just “the assistant” covers for a limited DM. A messenger can be very shy to compen-
sate for his limited language generation. Here, the integration with the animation to
convey these personality traits is key for believability.

Games provide particular challenges for ASR. The system must be able to recog-
nize voices from many different users, each with its particular accents and inflections,
because a game is targeted at hundreds of thousands of players. Shouting, laughing,
and screaming usually present problems to current systems, and these are quite com-
mon in a game setting. In RPGs and adventure games, they might be less common
than in FPSs. Adaptation for game genres where these phenomena are common
should be expected. The language model, however, can be made manageable by tun-
ing it for a given context or scene. Contrary to systems deployed in the real world,
game developers know in advance what utterances are sensible in a given scene and
context, making the language model building task far easier.

We have seen three approaches to parsing: the archetypical, standard approach
described in the introduction; the logic-based, domain-dependent approach of NICE;
and the dialogue act-based one from TRIPS. NICE made the parser domain-dependent
and tightly coupled to overcome the complexity of the language, even though its rewrit-
ing phase is generic. TRIPS, on the other hand, encapsulates all task- and domain-
dependent information in the task manager. The NICE approach might be easier to
implement and test, but the more modular approach of TRIPS might lead to greater
reuse.

Both TRIPS and NICE used a goal-oriented action planner as the core of their
DMs. This is good news for game developers because this subject is certainly more
advanced in the games community than in the dialogue world. Starting a DM from a
planner, such as the one described in [Orkin06], might be a sensible approach.

The voices of the game character have a far greater impact than in other applica-
tions, such as an airline flight reservation system. The text output must not only have
correct pronunciation, rhythm, and intonation but also must be appropriate to the
character. Professional actors might have to be used to record the voices that will be
the basis of the game’s TTS. Quite often, sound processing of the TTS output might
be needed to enhance some aspect of the voice. For less demanding situations, apply-
ing simple sound transformation on the TTS output might be enough to provide the
needed characteristics.

Conclusion

We have seen that spoken dialogue technology has reached a level where it is feasible
to build characters that engage in spoken conversation with the player. By carefully
considering the game plot and scenes, game developers are able to simplify the build-
ing of their systems. Games also provide the opportunity to turn some of the system’s
limitations into harmless features, if they can be justified as plausible character traits.

6.1 Spoken Dialogue Systems 547

Goal-oriented action planning is in the core of the dialogue systems examined here,
providing a familiar ground for game developers to start implementing their dialogue
systems.

References

[Allen00] Allen, James, et al., “An Architecture for a Generic Dialogue Shell.” Journal
of Natural Language Engineering, special issue on Best Practices in Spoken Language
Dialogue Systems Engineering, Vol. 6, no. 3, (December, 2000): pp. 1–16.

[Allen01a] Allen, James, et al., “Towards Conversational Human-Computer Interac-
tion.” AI Magazine, (2001).

[Allen01b] Allen, James, et al., “An Architecture for More Realistic Conversational
Systems.” Proceedings of Intelligent User Interfaces 2001 (IUI-01), Santa Fe, NM,
(January 14–17, 2001).

[Allen07] Allen, James, et al., “The Rochester Interactive Planning System.” Available
online at http://www.cs.rochester.edu/research/cisd/projects/trips/, June 14, 2007.

[Boye06] Boye, Johan, et al., “Robust Spoken Language Understanding in a Com-
puter Game.” Speech Communication, Vol. 48, (2006): pp. 335–353.

[Carletta97] Carletta, Jean, et al., “The Reliability of a Dialogue Structure Coding
Scheme.” Computational Linguistics, Vol. 23, no. 1, (1997): pp. 13–32.

[Codemasters01] Operation Flashpoint. Codemasters, UK, MS Windows, PC plat-
form, 2001.

[Galescu98] Galescu, Lucian, et al., “Rapid Language Model Development for New
Task Domains.” Proceedings of the ELRA First International Conference on Lan-
guage Resources and Evaluation (LREC), Granada, Spain, (May 1998).

[GATE07] General Architecture for Text Engineering. Available online at
http://gate.ac.uk, June 15, 2007.

[Gustafson04] Gustafson, Joakim, and Sjoelander, K., “Voice Creation for Conversa-
tional Fairy-Tale Characters.” Proceedings of the 5th ISCA Speech Synthesis Work-
shop, Carnegie Mellon University 14–16, (June 2004).

[Gustafson05] Gustafson, Joakim, et al., “Providing Computer Game Characters
with Conversational Abilities.” Proceedings of Intelligent Virtual Agents, 5th Inter-
national Working Conference, IVA 2005, Kos, Greece, (September 12–14, 2005).

[Infogrames02] Neverwinter Nights, published by Infogrames, USA, PC platform,
2002.

[Julius07] Open-Source Large Vocabulary CSR Engine Julius. Available online at
http://julius.sourceforge.jp/en_index.php?q=en/index.html, June 15, 2007.

[Kirby98] Kirby, Neil, “Lies, Damn Lies, and ASR Statistics.” Proceedings of Com-
puter Game Developers Conference, (1998).

[McTear04] McTear, Michael F., Spoken Dialogue Technology: Toward the Conversa-
tional User Interface. Springer Verlag, London. 2004.

[Montfort03] Montfort, Nick. Twisty Little Passages: An Approach To Interactive Fic-
tion. The MIT Press, 2003.

548 Section 6 Scripting and Dialogue

http://www.cs.rochester.edu/research/cisd/projects/trips/
http://gate.ac.uk
http://julius.sourceforge.jp/en_index.php?q=en/index.html

[NICE07] Nice Project. Available online at http://www.niceproject.com, June 9, 2007.
[NLTK07] Natural Language Toolkit. Available online at http://nltk.sourceforge.net,

June 15, 2007.
[OpenNLP07] Open NLP Tools. Available online at http://opennlp.sourceforge.net,

June 15, 2007.
[Orkin06] Orkin, Jeff, “3 States & a Plan: The AI of F.E.A.R.” Proceedings of Game

Developers Conference, (2006).
[Pinto08] Pinto, Hugo, “Dialogue Managers.” AI Game Programming Wisdom 4.

Charles River Media, 2008.
[Snack07] Snack Sound Toolkit. Available online at http://www.speech.kth.se/snack/,

June 15, 2007.
[Sony04] Lifelines, published by Sony Computer Entertainment and Konami, USA,

Playstation 2 platform, 2004.
[Sphinx07] CMU Sphinx. Available online at http://sourceforge.net/projects/cmusphinx,

June 15, 2007.
[Stent99] Stent, A., “Content Planning and Generation in Continuous-Speech Spo-

ken Dialog Systems.” Proceedings of the KI-99 Workshop May I Speak Freely?
(1999).

6.1 Spoken Dialogue Systems 549

http://www.niceproject.com
http://www.speech.kth.se/snack/
http://nltk.sourceforge.net
http://opennlp.sourceforge.net
http://sourceforge.net/projects/cmusphinx

This page intentionally left blank

551

6.2

Implementing Story-Driven
Games with the Aid of
Dynamical Policy Models
Fabio Zambetta—School of Computer
Science & IT, RMIT University
fabio@cs.rmit.edu.au

Although strategy games have often integrated policy as a key gameplay element,
RPGs have generally lacked in this area. You need only consider games such as

Balance of Power, the Civilization franchise, or Rome Total War to realize how political
components can be successfully integrated in the gameplay to provide fun and inter-
esting experiences for players. RPG designers, on the other hand, are not totally obliv-
ious to the basic building blocks needed to recreate political scenarios, but they have
failed so far in tying all the elements into a coherent picture. For example, games such
as Diablo, Neverwinter Nights, Planescape Torment, or Oblivion provide a gameplay
experience relying on epic and intricate storylines.

At the same time, most of these titles provide factions, which are defined in poli-
tics as “a group of persons forming a cohesive, usually contentious minority within a larger
group.” Factions provide a mechanism that groups PCs and NPCs of an RPG game
based on the homogeneity of their behavior by specifying how members of a faction
feel about the reputation of a member of another faction. Unfortunately, reputation is
seldom modified in-game, and even worse, it is only rarely used throughout the plot
arc to influence the game’s story and the player experience. Our approach attempts to
address both limitations by means of a dynamical policy model based on Richardson’s
Arms Race model [Goulet83]. First, we reshaped the original model semantics to fit
the RPG games context, and second, we extended Richardson’s model by means of a
scaling operator so that the new model can manage interactive scenarios.

Although interactive scenarios tend to be stochastic in nature, the original model
generated deterministic solutions. Therefore, our improved model can be regarded as
an HCP (Hybrid Control Process) [Branicky94] because it exhibits both continuous
and discrete dynamic behavior: The former is usually modeled via a system of ODE
(Ordinary Differential Equations) [Boyce04], whereas the latter is represented by
FSMs (finite state machines).

The remainder of this article is organized as follows: We analyze Richardson’s
model in the first section, and then we proceed to clarify the rationale and the details
of our improved model in the second section. The third section details possible
applicative scenarios of our model, and the fourth section details some experimental
results obtained so far. Finally, the fifth section wraps up the article by introducing
our future work: Two Families: A Tale of New Florence, and an NWN2 (Neverwinter
Nights 2) mod currently in development in our labs.

Richardson’s Arms Race Model

A dynamical system is a mathematical abstraction (or model) of a real-world system
whose behavior can be described by a fixed rule governing the change in its state (a
real valued vector). The rule of the dynamical system is deterministic, and it is usually
modeled by differential equations. One such system comes from Lewis Fry Richard-
son, a renowned English mathematician and psychologist. Richardson is deemed
to have started the scientific analysis of conflict, an interdisciplinary field devoted to
systematic investigation of the causes of war and peace. His model of an arms race was
devised to predict whether armament build-up between two alliances was a prelude to
a conflict [Goulet83].

The model consists of a system of two linear ODEs, but it can be easily general-
ized to a multidimensional case [Goulet83].

Richardson’s assumptions about the system he modeled are given here:

• Arms accumulate because of mutual fear.
• A society will internally be opposed to a constant increase in arms expenditures.
• There are factors independent of expenditures that are conducive to the prolifer-

ation of arms.

The equations describing the intended behavior are given here:

⋅x = ky – ax + g
⋅y = lx – by + h

Rewriting the equations in matrix form yields:

⋅z = Az + r

r
g

h
=

⎛

⎝
⎜

⎞

⎠
⎟

z
x

y
=

⎛

⎝
⎜

⎞

⎠
⎟

A
a k

l b
=

−

−

⎛

⎝
⎜

⎞

⎠
⎟

552 Section 6 Scripting and Dialogue

The solutions of the system [Boyce04] will mainly depend on the relative magni-
tude of the values involved and on the signs of g and h. The constants k and l are the fear
constants (induced by mutual fear), a and b are the restraint constants (internal opposition
against arms expenditures), and g and h are the grievance terms (independent factors,
which can be interpreted as grievance against rivals). Only g and h are allowed to assume
negative values. To analyze the equilibrium of the model, you need to take into account
the optimal lines where the first derivatives of x and y equal 0; the equilibrium point
P* = (x*, y*) where the optimal lines intersect; and the dividing line L* for cases where
the equilibrium depends on the starting point. System trajectories heading toward posi-
tive infinity are said to be going toward a runaway arms race, whereas the ones going
toward negative infinity are said to be going toward disarmament.

Two cases can occur in practice, in the general assumption that det(A) � 0:

• All trajectories approach an equilibrium point (stable equilibrium, see Figure
6.2.1, left). An equilibrium point is considered stable (for the sake of simplicity,
we will consider asymptotic stability only) if the system always returns to it after
small disturbances.

• Trajectories depend on the initial point, and they can either drift toward posi-
tive/negative infinity after small disturbances or approach a stable point if they
start on the dividing line (unstable equilibrium, see Figure 6.2.1, right).

It can be proven that if ab � kl, we will reach stable equilibrium, whereas if ab � kl,
we will obtain unstable equilibrium.

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 553

FIGURE 6.2.1 System trajectories showing stable and unstable equilibrium.

An Improved Arms Race Model

The bulk of our work has been aimed so far at refining Richardson’s model for use in
an RPG and has involved three main steps:

1. Reinterpret the model semantics to fit an RPG game context.
2. Improve the model to produce a satisfactory representation of faction

interaction.
3. Feed a classic RPG faction system (in our scenario, the Neverwinter Nights

2 faction system) with the model output.

Our improved version of the model can produce alternating phases of stability
and instability as required in a computer RPG scenario. It yields variable results that
give rise to a rich simulation of faction dynamics because alliances can be repeatedly
broken leading to war, or conflicts can be halted temporarily.

Reinterpreting the Model Semantics

We will start our analysis by naming two factions X and Y, and by reinterpreting x
and y as the (greater than or equal to zero) level of cooperation of faction X and Y,
respectively. The parameters of the model will assume new semantics as highlighted in
Table 6.2.1. In our version of the model, increasing values will signify increasing coop-
eration instead of increasing conflict. It should be noted that having both a belligerence
and a pacifism factor allows for a fine-grain modeling of a faction. In fact, it isn’t nec-
essarily true that each push toward belligerence will cause an equal reaction toward
pacifism or vice versa. On the other hand, friendliness accounts for the innate predis-
position of a faction toward another, or in other words, it factors in all the history of
conflict or cooperation between them.

The level of cooperation of each faction will lead the system either to a stable
equilibrium point P * or to an unstable equilibrium that will drive the system toward
increasing levels of competition or cooperation (where decreasing cooperation indi-
cates increasing competition). We will restrict to the case of unstable equilibrium
because we are interested in obtaining a behavior that mimics the interactive and
changeable scenarios provided by video games.

Table 6.2.1 The Parameters and Semantics Have
Been Reinterpreted in Our Model

Parameters Semantics

K Faction X belligerence factor
L Faction Y belligerence factor
A Faction X pacifism factor
B Faction Y pacifism factor
G Friendliness of X toward Y
H Friendliness of Y toward X

554 Section 6 Scripting and Dialogue

A Satisfactory Representation of Faction Interaction

The formulation of Richardson’s model in an unstable equilibrium case implies that
the final state of the system will be determined by its initial conditions. The initial
condition of the system will give rise to one of three possible outcomes:

• If P lies in the half-plane above the dividing line L*, then the system will be driven
toward infinite cooperation.

• If P lies in the half-plane below the dividing line L*, then the system will be driven
toward infinite competition.

• If P lies on the dividing line L*, then the system will be driven toward a stable
condition of neutrality.

Even though Richardson’s model seems to posses the main ingredients to formal-
ize conflict, it still lacks in two respects: first and foremost, it does not cater for inter-
activity, and second, it is deterministic. An ODE solver [Boyce04] would start to
approximate its solution, leading always to the same outcome in any given run (any of
the three listed previously, depending on the initial position of P). Video game sce-
narios, on the other hand, will involve stochastic PC and NPC actions interacting
with each other and the game world. Therefore we developed a stop-and-go version of
Richardson’s model where the ODE solver initially computes the solution of the sys-
tem until an external event is generated in-game.

When such an event occurs, the parameters of the model listed in Table 6.2.1 are
conveniently recomputed, and the dividing line L* is moved. This alters the direction
of motion of the current system trajectory, possibly leading to a change in equilib-
rium. We will recalculate the parameters by scaling the matrix of the model so that:

Anew = λAold

How will the scaling of A influence the equilibrium of the system? To appreciate
that, let’s first compute the equation of L*, which is the locus of points where both the
derivatives in our system will go to zero.

The equation of L* is:

⋅x + ⋅y = (ky – ax + g) + (lx – by + h) = (l – a)x + (k – b)y + (g + h) = 0

Scaling A will yield:

⋅x + ⋅y = λ(l – a)x + λ(k – b)y + (g + h) = 0

Thus, we will have in the end:

l −() + −() +
+()

=a x k b y
g h

λ
0

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 555

Hence, three cases may occur:

0 � λ � 1: L* is moved in its original upper half-plane, giving rise to a possible
decrease in cooperation.

λ = 1: The scale factor does not change A.
λ � 1: L* is moved in its original lower half-plane, giving rise to a possible increase

in cooperation.

To verify these claims, you need only look at Figure 6.2.2 (the scale is exaggerated
for illustration purposes), where the case 0 � λ � 1 is depicted. The dividing line is
initially L1, and the point describing the trajectory of the system is P : the ODE solver
generates increasing values of cooperation until P1 is reached, when an external event
occurs. Now, A is scaled, and as a result of that, L2 becomes the new dividing line. The
new dividing line brings P1 in the lower half-plane, leading to decreasing values of
cooperation (increasing competition). Generalizing from this example, suppose that
initially L1 ⋅ P1 � 0 (increasing cooperation) and that 0 � λ � 1. Then we will have
three alternatives when an external event occurs:

L2 ⋅ P1 � 0: The level of cooperation keeps on increasing.
L2 ⋅ P1 � 0: The level of cooperation starts to decrease.
L2 ⋅ P1 � 0: The level of cooperation moves toward a stable value.

Clearly, if L1 ⋅ P � 0 and λ � 1, then L2 ⋅ P1 � 0. Similar conclusions can be
drawn when L1 ⋅ P � 0.

556 Section 6 Scripting and Dialogue

x

y

L1

L2

P

P1

P2

FIGURE 6.2.2 The effect of scaling A on the system.

Any application using our model will need to provide a set (or a hierarchy) of
events, along with a relevance level λj,j 	 {1 ... M} that could be either precomputed in
a lookup table or generated at runtime. Obviously, all the events having λj � 1 will cor-
respond to events that increase cooperation, whereas events having 0 � λj � 1 will

exacerbate competition. The effect of the λ-scaling is to change partitioning of the first
quadrant, giving rise from time to time to a bigger semi-plane either for cooperation or
for competition. This improved version of Richardson’s model can be characterized in
terms of an HCP [Branicky94], a system involving both continuous dynamics (usually
modeled via an ODE) and controls (generally incorporated into an FSM). The system
possesses memory affecting the vector field, which changes discontinuously in response
to external control commands.

Converting to the Neverwinter Nights 2 Faction System

Converting the to the NWN2 faction system is straightforward after the proper values of
cooperation have been computed. A few function calls are available in NWN script
[Lexicon06] to adjust the reputation of NPCs (e.g., AdjustReputation, ga_faction_
rep, etc.). In NWN2 faction standings, assume a value in the [0, 100] range per each
faction: values in [0, 10] indicate competition (in NWN hostility), whereas values in
[90, 100] represent cooperation (in NWN friendship).

The most straightforward conversion possible would simply use x and y as the
faction standings for each faction: x would indicate the way NPCs in faction X would
feel about people in faction Y and vice versa. Another approach would introduce a
scaling factor that could represent the relative importance of each NPC in a faction: It
is often reasonable to expect that more hostility or friendship would be aroused by
people in command positions. Hence, splitting a faction (say, X for explanatory pur-
poses) in N different ranks, and setting some coefficients
i, with i 	 {1 ... N}, we will
have:

xNWN = x
i

Converting to other games’ faction systems may entail different types of linear
transformations, but the essence of the approach will remain unchanged.

Applicative Scenarios

The interactions underpinning our conceptual model imply that the level of coopera-
tion or competition is influenced by the player actions, but in turn, the model alters
the game world perceived by the player in a feedback loop. First, we present some
ideas related to the generation of random encounters in an RPG, such as Neverwinter
Nights 2. Second, we concentrate our attention on possible ways to integrate our
model in a piece of nonlinear game narrative, the main motivator of our research.
Other applications are also possible, as detailed in [Zambetta06].

Generating Random Encounters in an RPG

Random encounters are commonly used in RPGs, for example, to attenuate the
monotony of traversing very large game areas. However, expert players will not sus-
pend their disbelief if creatures are spawned without any apparent rationale. Values of

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 557

cooperation/competition generated by our model can be used as cues for the applica-
tion to drive the random encounters generation process and to provide some context.

In a scenario where players joined faction X, their actions cause specific in-game
events that can influence the equilibrium of the system. The game AI could deliberate
that the higher the level of competition of X toward Y, the harder and the more frequent
the encounters will be. Also, players could encounter NPCs willing to negotiate truces
or alliances if the level of cooperation is sufficiently high to render the interaction more
believable and immersive. This improved process for random encounter generation can
be designed by using fuzzy rules [Zadeh73] describing which class of encounters should
be candidates for spawning creatures based on the level of competition/cooperation.

For example, possible rules will resemble this form:

R1: IF cooperationX IS LOW THEN ENCOUNTER

R2: IF cooperationX IS HIGH THEN NEGOTIATION_ENCOUNTER

Note that NWN2 already provides five classes of standard encounters (very easy,
easy, normal, hard, very hard), but they all assume players can only take part in hostile
encounters. Ultimately, our goal becomes to extend the existing set of encounters
with another five classes of encounters aimed at negotiation. The defuzzification
process could use some of the parameters included in the encounter classes, first to
decide whether a standard or a negotiation encounter takes place, and second to cali-
brate the level of difficulty of such an encounter. Going back to the rules R1 and R2

with levels of membership r1 and r2, our defuzzification operator will compute:

K = max(r1,r2)

C = round(NK)

Here N represents the number of encounter classes, and C is the class candidate
to spawning creatures. It makes sense to order the classes for a hostile encounter from
very low to very high and to do the reverse with negotiation encounters. Such a mech-
anism could be refined using some of the parameters included in the classes (e.g.,
number of monsters spawned, monsters challenge rating, etc.).

Navigating Nonlinear Game Narrative

Consider a game with narrative content that is arranged as a nonlinear story. We will
visualize its structure as a collection of game scenes (see Figure 6.2.3). Each circle
marked with a bold label represents a scene of the game where multiple paths are
allowed, whereas the other circles represent ordinary scenes that will make the story-
line progress linearly. Striped circles indicate start or end scenes. Attaching scripting
logic to each of the selection nodes, alternative paths can be taken based on the cur-
rent level of competition. Thus, if our players replayed the game multiple times, they
could visit different subplots as a result of the strategies adopted in any specific game
session.

558 Section 6 Scripting and Dialogue

We will adopt fuzzy logic to express selection conditions and their formal proper-
ties. Because of the quasi-natural linguistic variables, fuzzy logic can be better under-
stood by game designers. Fuzzy logic is also renowned for providing robust solutions
to control problems.

For example, plausible fuzzy rules would resemble:

R: IF cooperation IS HOSTILE THEN State3.2

or

R': IF cooperation IS NEUTRAL THEN State3.1

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 559

1 2

3.1

3.2

4.1

4.2

4.3

3.3

4.4

4.5

5.1

5.2

6

FIGURE 6.2.3 The depiction of a game narrative based on a nonlinear plot.

For example, the fuzzy predicate cooperation will use fuzzy membership functions
as depicted in Figure 6.2.4. In practice, scene transitions will likely be triggered by
conditions that contain both fuzzy predicates and crisp conditions relating to com-
mon in-game events such as quests completion, items retrieval, and so on. A game
structure will be needed to preserve nonlinear design without leading to exponential
resource consumption. In literature, this is referred to as a convexity [Rabin05].

Ultimately, in this approach, role-playing and real-time strategy (RTS) are blended
so that the story-driven approach familiar to RPG players can contain strategic ele-
ments influencing the gameplay experience.

Experimental Results

To conduct a functional test of the model, we have implemented a prototype that will
be integrated in our main scenario dubbed Two Families, an NWN2 module currently
in development in our labs.

The ODE solver necessary for the task has been based on the midpoint method
(or Runge-Kutta order two) [Vetterling02], a good compromise between accuracy
and efficiency in our specific situation. The scripts solving the ODE can be hooked
up as an event handler in NWN2, in our case, the module’s OnHeartbeat, which is
invoked by the game engine every six seconds of real time.

The following code implements the ODE solver:

void main()

{

if(GetGlobalInt(“first”)==0)

{

SetGlobalInt(“first”,1);

}

else

{

// Get objects and globals

object oPC=GetObjectByTag(“city”);

object oKal=GetObjectByTag(“kalkarin”);

float x=GetGlobalFloat(“x”);

float y=GetGlobalFloat(“y”);

float dt=GetGlobalFloat(“dt”);

float a=GetGlobalFloat(“A”);

float b=GetGlobalFloat(“B”);

float g=GetGlobalFloat(“G”);

560 Section 6 Scripting and Dialogue

0

1

10

Hostile Neutral Friendly

35 65 90 100

FIGURE 6.2.4 Membership functions chosen to
model fuzzy cooperation predicates.

float h=GetGlobalFloat(“H”);

float k=GetGlobalFloat(“K”);

float l=GetGlobalFloat(“L”);

// first evaluation of the derivative

float dx1=dt*(-a*x+k*y+g);

float dy1=dt*(l*x-b*y+h);

// second evaluation

float dx2=dt*(-a*(x+0.5*dx1)+k*(y+0.5*dy1)+g);

float dy2=dt*(l*(x+0.5*dx1)-b*(y+0.5*dy1)+h);

// ODE update

x+=dx2;

y+=dy2;

SetGlobalFloat(“x”,x);

SetGlobalFloat(“y”,y);

// adjust reputation now

SetFactionReputation(oPC,oKal,FloatToInt(x));

SetFactionReputation(oKal,oPC,FloatToInt(y));

AssignCommand(oKal, DetermineCombatRound());

AssignCommand(oPC, DetermineCombatRound());

}

}

First and foremost, the first if…else clause is used to delay the execution of the ODE
solver by a few seconds: Apparently, there seems to be a delay between the end of the
loading phase of a module and its execution (due to unpacking and other initialization).

The first instructions will retrieve two creatures representing their factions, and
then all the parameters values will be copied to temporary variables: NWN2 has
global variables that can be retrieved via GetGlobalType statements, where Type is the
type of the variable (Float in the previous example). Later on, two evaluations of the
derivative are computed, and the final update is written to the global variables x and
y. The last portion of code updates the reputation of the two factions’ members, and
a command is executed to determine whether hostilities will start. The SetFaction-
Reputation function is not standard in NWN2, hence its code is listed here:

void SetFactionReputation(object oPC, object oSource, int nReputation)

{

int nCurrentReputation =

GetReputation(oPC, oSource);

int nDelta = nReputation - nCurrentReputation;

AdjustReputation(oPC, oSource, nDelta);

}

Even though we have not yet built an entire module integrating all the features of
our model, we are going to present some relevant results obtained simulating in-game
external events (in the sense explained in the section “An Improved Arms Race
Model”). We maintain that being able to analyze in advance how the parameters
affect the model’s long-term behavior is a clear advantage. The model is random in

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 561

nature, and the sources of external events can be either the players or the decision-
making component of the game AI; we will draw no distinction between them to
obtain more robust and general results.

However, before illustrating our results, here is some clarifications on the experimen-
tal data. First of all, we used a portion of the first quadrant (the subset I = [0,100] �
[0,100]) to constrain the trajectories of the system: This is a natural choice because we
want to obtain positive values for both x and y. Besides, NWN2 accepts reputation values
in the range [0,100] with lower values indicating a tendency to conflict.

Second, we assumed that if the value of competition for any faction falls outside
the prescribed range, first it will be clamped, and after a certain amount of time, reset
to a random coordinate indicating neutrality. This can be implemented by providing
a constant that counts the number of times the system trajectory has been “banging”
on the border of I. This assumption makes sense because we do not want to keep the
system in a deadlock for too long.

The formulas currently used for resetting the system trajectory are:

x = 50 + 25 ⋅ (0.5 – r)

y = 50 + 25 ⋅ (0.5 – r)

Here r is a random number in the [0,1] range, which means that after resetting
the point, each coordinate will lie in [37.5,62.5]. Clearly, other formulas could be
used to bounce P, but this seems to produce interesting and robust results.

Finally, the examples provided here sample the state of the system over 5,000 iter-
ations: Assuming our ODE solver is hooked to our module’s OnHeartbeat, this will
result in a time span of around 8.3 hours (a good-sized game session). Under these
assumptions, we will inspect the qualitative effect of using different parameter sets
and how this can be related to game scenarios. Let’s examine the following cases:

Changing Richardson’s model parameters set (a,b,k,l,g,h)

• Selecting different starting points
• Altering the probability distribution of the external events set
• Altering the λ–values

Changing the Original Parameters Set

The values of the parameters used in this first set of experiments are listed in Table
6.2.2.

Table 6.2.2 The Value of the Parameters Used in Our First Experiments

Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4

a 10 100 1000 1
b 10 100 1000 1
k 20 200 2000 15

→

562 Section 6 Scripting and Dialogue

Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4

l 20 200 2000 15
g –400 –4000 –40000 –400
h –600 –6000 –60000 –600
Starting point (30,50) (30,50) (30,50) (30,50)
Prob. distribution {0.5,2} {0.5,2} {0.5,2} {0.5,2}

The effect of changing the fundamental parameters of the model is portrayed in
Figures 6.2.5 and 6.2.6. Increasing the magnitude of the parameters has the effect of
causing the system trajectory to bounce off the borders more often, being randomly
reset to a new position as a result. Hence, the smaller the coefficients, the more deter-
ministic the system is going to be. Because the number of possible paths is small, after
some time, the same path will be taken again. In practice, game designers could fine-
tune these values to tie in different types of political scenarios with their storylines and
predict the average behavior of the system.

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 563

FIGURE 6.2.5 A simple trajectory and the recurrent double arrow shape.

Selecting Different Starting Points

The moderate impact of selecting different starting points on the long-term behavior
of the system did not come as a surprise. Given the random nature of the system
(induced by external events and the reset mechanism), the starting point becomes a
small factor in the whole picture. Clearly the magnitude of the original parameters
plays a much bigger role as evidenced in the previous subsection. Nevertheless, we
report in Figure 6.2.7 examples of different starting points in the hypothesis of having
the original parameters set as in the previous section (Experiment 1).

Altering the Probability Distribution of the External Events Set

A very important role for the overall behavior of the system is played by the probabil-
ity distribution of external events. Recalling that external events are in our current
definition both induced by players and by the game AI, we proceed to present an
interesting experiment.

564 Section 6 Scripting and Dialogue

FIGURE 6.2.6 A thicker recurrent double arrow and an unusual arrow.

Let’s examine a case where only two possible events are allowed: one intensifies
the cooperation level, and the other weakens it. The effect of different probability dis-
tributions is provided in Figure 6.2.8. If we increase the probability of one event over
the other, then we will witness either the system trajectories gathering around the ori-
gin (uttermost competition) or the opposite corner (total cooperation).

We want to stress that this conclusion is true in a probabilistic sense: If the system
is more likely to be in a cooperative state, it does not mean it will never enter a phase
of competition. This is in accordance with the examples provided earlier where the
system gathered around the two points (0,0) and (100,100), giving rise to a peculiar
double-arrowed shape. By adjusting the probability distribution, a game designer can
steer a scenario more toward cooperation or competition.

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 565

FIGURE 6.2.7 Starting from (10,75) and (50,50).

Altering the λ-Values

The values of λ for each coefficient play a role similar to that of the probability distri-
bution (see Figure 6.2.9). It is intuitive to think of the probability distribution as a set
of weights for the λ-values, but a formal proof will need to be provided in the future.

Some simple results are given in Figure 6.2.9 that show how different values of λ
influence the system trajectories. The same remarks on competition/cooperation
given previously apply in this case as well.

566 Section 6 Scripting and Dialogue

FIGURE 6.2.8 Using a {0.05,0.25} and a {0.5,0.25} distribution
for external events.

Future Work

We plan to analyze our model in more depth. It is not entirely clear if increasing the
number of classes of events will cause the solution generated by the model to vary con-
siderably. More classes of events clearly require more λ-values and more complex prob-
ability distributions, and a step in this direction will only be justified by a remarkable
gain. Also, we will focus on clarifying the interaction between the manipulations of dif-
ferent parameters: For example, what would happen if λ-values and probability distri-
butions were changed at the same time? Subsequently, the interaction between our
model and the fuzzy rules presented here will be tested and incrementally refined.

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 567

FIGURE 6.2.9 λ={0.25,4} and λ={0.025,1.05}.

Considerable resources will also be put into creating a narrative apparatus that
can showcase, and at the same time, profit from the technical infrastructure provided
here. Finally, while building a nonlinear NWN2 module, the need will likely arise for
a plugin of the Electron toolset [Electron07] that can preview the result of selecting a
specific combination of parameters on the system.

Conclusion

We have introduced our stop-and-go variant of Richardson’s model that can provide
game designers with a tool to integrate political scenarios in their story-driven games
and game mods. We have discussed the formal properties of the model, its advantages
over existing approaches, and its current limitations.

The models and techniques introduced here will support Two Families: A Tale of
New Florence, our NWN2 module featuring a nonlinear plot. In Two Families, the
player will take the side of one of two influential families in the fight for supremacy in
a fictional recreation of medieval Florence, and decide whether to further their fac-
tion’s political agenda or to act as a maverick. Treachery, political schemes, and plot-
ting will be the main ingredients of our upcoming piece of interactive drama whose
development is involving staff and students from the School of Computer Science &
IT, and the School of Creative Media at RMIT University.

Our model provides for a complete way to modulate political balance in games,
but it must not be necessarily limited to that. As long as a fundamental gameplay fea-
ture can be identified in a game, and an HCP can be built that abstracts its interaction
with the game world, the game’s AI programmers will be able to support the game’s
design team.

We hope that the discussion provided here will further developments in the area
of formal methodologies for game design, game AI, and interactive storytelling, but
even more, that game developers will find imaginative new ways to incorporate these
ideas in their work.

References

[Boyce04] Boyce, W., and DiPrima, R., Elementary Differential Equations and Bound-
ary Value Problems. John Wiley & Sons, 2004.

[Branicky94] Branicky, M., et al., “A Unified Framework for Hybrid Control.” Pro-
ceedings of the 33rd IEEE Conference on Decision and Control, Vol. 4, (1994): pp.
4228–4234.

[Electron07] The Electron Toolset. Available online at http://en.wikipedia.org/wiki/
Electron_toolset, May 31, 2007.

[Goulet83] Goulet, J., “Richardson’s Arms Model and Arms Control.” Proceedings of
the SIAM Conference on Discrete Math and Its Application, 1983.

[Lexicon07] The NWN Lexicon. Available online at http://www.nwnlexicon.com/,
May 31, 2007.

568 Section 6 Scripting and Dialogue

http://www.nwnlexicon.com/
http://en.wikipedia.org/wiki/Electron_toolset
http://en.wikipedia.org/wiki/Electron_toolset

[Rabin05] Rabin, S. (ed.), Introduction to Game Development. Charles River Media,
2005.

[Vetterling02] Vetterling, W. T., and Flannery B. P., Numerical Recipes in C++: The
Art of Scientific Computing. Cambridge University Press, 2002.

[Zadeh73] Zadeh, L. A., “Outline of a New Approach to the Analysis of Complex
Systems.” IEEE Transactions on Man, Systems, and Cybernetics, Vol. 3 (1973): pp.
28–44.

[Zambetta06] Zambetta, F., “Shaping Interactive Stories by Means of Dynamical Pol-
icy Models.” Proceedings of the GDTW2006 Conference, 2006.

6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models 569

This page intentionally left blank

571

6.3

Individualized NPC Attitudes
with Social Networks
Christian J. Darken—The MOVES Institute
cjdarken@nps.edu

John D. Kelly—U.S. Navy
wackonian@aol.com

Making the player feel that his actions are meaningful is a primary consideration
in game design. To capture the social consequences of player actions, faction

systems are a common choice. In a simple faction system, each NPC (nonplayer char-
acter, i.e. computer-controlled character) is assigned membership in a single faction.
The faction’s attitude toward the player is captured by a single number. When the atti-
tude number is at one extreme, the faction hates the player. At the other extreme, the
faction loves the player. Each possible player action is manually tagged with the
numeric change in attitude that will occur for each faction if the action occurs.

Even a simple faction system adds significance to the player’s choice of actions.
First, the attitude number captures the history of the player’s interaction with the fac-
tion, so the player’s actions have long-term social consequences. Second, the grouping
of NPCs into factions broadens the social implications of the player’s actions; that is,
if he offends one member of a faction, not only the one NPC, but also all of the other
members of his faction will be hostile.

Despite these positives, this simple faction system has a frustrating limitation.
Each NPC belonging to a given faction will have exactly the same attitude toward the
player. This is simply not realistic enough for some applications. Real people partici-
pate in many faction-like relationships. Their loyalties are often in conflict. It is not
uncommon for different members of the same faction to have wildly different atti-
tudes toward a single issue or individual. In principle, this problem can be solved by
considering each individual to be his own faction. In practice, this solution breaks
down for even moderate numbers of NPCs and actions because specifying attitude
changes for each action and NPC combination is too onerous. This article attempts to
solve this problem through a technique that largely automates the computation of
attitude changes.

In the next section, we describe how our mathematical attitude model is derived
from the relationships among NPCs. We then describe an efficient implementation of
the model and provide advice on content generation for it. We conclude with a brief
discussion of how we tested the model.

The Attitude Model

In this section, we incrementally build up the attitude model, starting from our basic
assumptions on how attitude and interpersonal relationships will be modeled, and pro-
ceeding through two candidate models before arriving at the model we think is best.

Let’s assume that an NPC’s attitude toward the player is described by a single
floating-point number, where zero is a neutral attitude, and more positive means a
more favorable attitude. Our primary goal is to compute an attitude change toward
the player given his latest action. The attitude change can then be added to the NPC’s
previous attitude, possibly limiting the result to lie within a desired interval, such as
[–1, +1], where –1 is hatred, and +1 is love.

Social Networks

Social networks represent the social relationships among a group of individuals as a
mathematical graph. Individual people are the nodes of the graph, and the directed
edges represent the relationships that exist between the connected individuals.
Directed edges let us model asymmetric situations, such as that of a false friend or a
father who keeps his eye on a son who is not aware of his existence. The edge direction
convention we will use is that the “to” node of an edge perceives that he has the indi-
cated relationship with the “from” node. The study of behavior as it is influenced by
social networks is called social network analysis and is an active area of behavioral sci-
ence research [Wasserman95].

Given the social network in Figure 6.3.1, we expect that actions that are good for
Bill are also welcomed by Art, although to a lesser extent than an equally helpful
action done directly for Art. Similarly, actions that are good for Cal are bad for Bill as
Cal’s enemy and thus somewhat bad for Art as well.

Social Networks as Dynamical Systems

We will now reconceptualize the social network as a dynamical system, that is, a set of
mathematical equations that precisely defines the changes in attitude that result from
any single player action. One pass through the equations reflects each NPC reacting
only to those NPCs that it cares about. The equations can then be applied repeatedly
to model higher-order effects, for example, the reaction of one NPC to another
NPC’s reaction to a third NPC. The state of the system will be a vector containing
each NPC’s attitude change toward the player resulting from the action. Let’s assume
that the attitude change that each action precipitates in each NPC if there were no
other people in the world is known. We call these change numbers the “direct effect”

572 Section 6 Scripting and Dialogue

of the action. If each NPC did not care about any NPC other than himself, the result
of a player action simply adds the direct effect of the action to the NPC’s attitude
toward the player.

NPC-to-NPC Affinity
We now add to our model a notion of affinity. Each NPC X has an affinity of zero
with all NPCs Y with which he has no relationship, that is, all NPCs Y such that there
is no edge from Y to X (note the direction) in the social network. For all NPCs with
which X has one or more relationships, we summarize that relationship as a single
number. A positive affinity means that X’s attitude toward the player will improve
(increase) if the player helps Y. A negative affinity means that X’s attitude toward the
player will deteriorate (decrease) if the player helps Y. The larger the magnitude of
affinity, the greater this effect will be for any given action. For completeness, we will
also include a self-affinity value that moderates how sensitive an NPC is to direct
effects versus effects on the other NPCs that it cares about.

First Approach: Linear Model
Consider the following approach to completing our model. When a player takes an
action, we initialize the value at each node (NPC) to be the direct effect of the action
on that NPC times his self-affinity. Now we want these values to propagate around
the system to get effects as described in Figure 6.3.1. For each NPC X’s node, we
could simultaneously update X’s attitude change to be the direct effect on X times his
self-affinity, plus the sum of the product of the other NPC’s attitude changes with X’s
affinity for the NPC. This already represents changes in the attitude of NPC X due to
actions that have no (zero) direct effect on him but do affect other NPCs with which
he has either positive or negative affinity. To add in higher-order effects, such as Art’s
reaction to a player action with a direct effect only on Carl, we can repeat the update
multiple times.

Let’s try to put some numbers to this example. Consider an action that only directly
affects Carl and with magnitude +1.0; that is, Carl likes it. The direct effects on Art, Bill,
and Carl, respectively, can therefore be represented as the vector (0.0 0.0 1.0)T. Art’s
affinities for Bill and Carl can be represented as the vector (0.0 0.5 0.0). Note that the
first position in the vector represents his affinity for himself, which is represented

6.3 Individualized NPC Attitudes with Social Networks 573

Art Bill Cal

friend

friend

enemy

enemy

FIGURE 6.3.1 A simple social network.

elsewhere as we choose to construct the model. He has a positive affinity for Bill and
none for Carl. Bill’s affinities might be (0.4 0.0 –0.3); that is, he likes Art, but a little
less than Art likes him, and he dislikes Carl. Carl’s affinities are (0.0 –0.3 0.0); that is,
he returns Bill’s dislike. We can put the affinities together in the form of a matrix:

. Letting the self-affinities all be 1.0 and putting them on the diagonal

of a matrix gives us a self-affinity matrix of . This matrix modifies the

direct effects by multiplying them, which does nothing with this choice of self-affinity
values. Initializing the attitude change vector to be the self-affinity matrix times the
direct effect vector yields x(0) = (0.0 0.0 1.0)T. Carl is happy, and the other two guys
do not care. But Carl’s happiness is bound to make Bill unhappy. To reflect this, we
should update the attitude changes as follows:

.

Now Bill is unhappy, but to see any effect on Art, we need to update again:

.

Notice that Carl is now even happier than before because his enemy has become
unhappy. Note that the additive term, which is simply the self-affinity matrix multi-
plied by the vector of direct effects, remains the same in each iteration.

But with multiple updates, some ugly questions arise. Clearly the attitude change
values will be altered with each update, so how many times should the update be
repeated? And will the NPC attitude change converge to stable values, oscillate, or
maybe even blow up? The answer is that any of these behaviors are possible. Fortu-
nately, the linear model can be enhanced to avoid this problem.

Second Approach: Recurrent Neural Network Model
To keep the attitude change value bounded, we might then pass the attitude through
a saturating sigmoidal function, such as tanh (hyperbolic tangent), which is never
larger than +1 or less than –1. The result is a classic recurrent neural network. We
mention this fact merely as a point of interest for those of you who may be interested

x()

. . .

. . .

. . .

2

0 0 0 5 0 0

0 4 0 0 0 3

0 0 0 3 0 0

= −

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟⎟

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

−

−

⎛

⎝

⎜
x()

.

.

.

.

.

.

1

0 0

0 0

1 0

0 15

0 3

1 09
⎜⎜
⎜

⎞

⎠

⎟
⎟
⎟

x()

. . .

. . .

. . .

1

0 0 0 5 0 0

0 4 0 0 0 3

0 0 0 3 0 0

= −

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟⎟

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= −

⎛

⎝

⎜
⎜
⎜

⎞

x()

.

.

.

.

.

.

0

0 0

0 0

1 0

0 0

0 3

1 0 ⎠⎠

⎟
⎟
⎟

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

. . .

. . .

. . .

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 0 0 5 0 0

0 4 0 0 0 3

0 0 0 3 0 0

. . .

. . .

. . .

−

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

574 Section 6 Scripting and Dialogue

in the application of neural networks. Recurrent neural networks are able to produce
an incredibly broad range of behavior. This type of model might be interesting for
applications that require a complicated response to a single player action unfolding
over time, but it is overkill for our immediate problem.

Recommended Approach: Constrained Linear Model
The main model we want to study is a linear model that is subject to constraints on
the affinity values to ensure that the model converges nicely. Let’s assume that for each
NPC, the sum of the magnitudes of all its affinities to other NPCs is strictly less than
one.

Our system can then be mathematically described as follows:

• A: Matrix of affinities.
• Ai,j : The affinity of NPC i for NPC j. Ai,j = 0 for all i as we handle self-affinity

below.
• B: Diagonal matrix of self-affinities
• Bi,j : The self-affinity of NPC i. Bi,j = 1 if i = j, and zero otherwise.
• u: The vector of direct effects.
• x(n): The attitude change after n updates.

Our constraints are that for all i, Bi,j � 0 and .

The matrix update equation is simply: x (n + 1) = Ax(n) + Bu, where x(0) = Bu.

Convergence of the Constrained Linear Model

The most important property of the constrained linear model is that the attitude
change vector always converges; that is, it never oscillates forever or blows up. The
point of the following discussion is to show that the model does have this property.
This section may be skipped if desired.

If x(n) converged to a constant vector, what would that vector be? If x(n) con-
verged, then we would have x(n + 1) = x(n). In this case, let’s name this value x̃. If
x̃ is the converged value, it must satisfy the so-called fixed point equation, x̃ = A x̃ +
Bu. Let’s define y(n) = x(n) – x̃. If x(n) converges to x̃, then clearly y(n) converges to
zero and vice versa.

We will now show that y(n) does converge to zero. y(n + 1) = x (n + 1) – x̃, so by
the matrix update equation:

y(n + 1) = Ax(n) + Bu – x̃ = Ax(n) + Bu – x̃ + (Ax̃ – Ax̃) = Ay(n) + Bu – x̃ + Ax̃ + Ay(n)

The first and last expressions from the extended equality constitute an update
equation for y, namely y(n + 1) = Ay(n). We know from the constraints, that the
magnitudes in each row of A sum to less than 1. Let α � 1 be the largest sum of mag-
nitudes from any row, and ymax be the magnitude of the largest element of y(n). Thus,

Ai j
j

,∑ <1

6.3 Individualized NPC Attitudes with Social Networks 575

the largest element in y(n + 1) can be no larger than αymax. We see that the largest ele-
ment in y(n) is shrinking at least as fast as α n, and because α n converges to zero, so
does y(n), and thus x (n) converges to x̃.

Implementation

In this section, we provide advice on implementing the model and also on content
creation for it, that is, the practical aspects of defining the parameters of the model.
We will show that iterating the dynamical system we defined in the previous section is
not necessary; the solution can be directly computed. We suggest a “divide and con-
quer” approach to the development of affinity matrices for games with large numbers
of NPCs. Finally, we discuss one specific potential problem—NPCs with very differ-
ent numbers of relationships—and how it can be managed.

Solving for Attitude Change Without Iteration

Although the previous analysis shows that the constrained linear model converges at
an exponential rate, it also indicates that iterating the model until it converges is not
strictly necessary. x (n) converges to x̃, and we know that x̃ = Ax̃ + Bu. This equation
can be directly solved to yield x̃ = (I – A)–1Bu. So if we are willing to pay the roughly
O(n3) cost of inverting the appropriate matrix, we can compute the attitude change
vector corresponding to a vector of direct effects by a simple matrix multiplication.
Note that if the NPC affinities do not change at runtime, this matrix inversion can be
precomputed. If affinities do change at runtime, it may be more efficient to use tech-
niques that directly solve for x̃ without matrix inversion [Press07].

Construction of Affinity Matrices

Constructing affinity matrices is a challenging aspect of this technique when the
number of NPCs and types of relationship become large. To better manage large
examples, several matrices, one per relationship type, can be created separately. We
used three matrices in our large example: family, work, and friends/foes. We then
combined the matrices by summing them and then normalizing the total magnitude
to satisfy the constraint. For even larger systems, we suggest constructing a rule-based
system that turns each relationship into an increment or decrement of one of the
affinity values in a generic way; for example, “coworkers get a +0.1 increment.” The
values resulting from running the rules can then be tweaked to enhance NPC individ-
uality and represent special circumstances before being magnitude-normalized.

For very large numbers of NPCs, such as required for a massively multiplayer
game, we further suggest a hierarchical approach to determining attitude changes.
Each faction or other group can be conceptualized as an “abstract individual” that
participates in relationships with the other factions and groups. As a preliminary step,
the mechanics previously described can determine an “official group attitude change”

576 Section 6 Scripting and Dialogue

vector v. Group membership for individual NPCs can be represented as having posi-
tive affinities toward the “abstract individuals” represented in an additional matrix C.
Individuals that are proximate to one another and strongly interacting can then be
modeled separately with the update equation x (n + 1) = Ax (n) + Bu + Cv, having
fixed point solution x̃ = (I – A)–1(Bu + Cv) . We have thus decomposed what would
otherwise be a massive matrix equation into a hierarchy of much smaller ones.

Modeling Individuals with Vastly Different Numbers of Relationships

Modeling individuals with vastly different numbers of relationships represents a spe-
cial challenge. For example, when we were developing our test scenarios, we created
an event where a child’s life was saved, but we only had a direct effect on the child her-
self. Because the child’s friends had very few relationships, and the child’s parents had
many, this resulted in the child’s friends having a larger positive change in affinity
than the parents of the child. This problem can be solved either by modeling the
action as having a positive direct effect on the parents or by simply scaling the child
friendship affinities down relative to the parents and adjusting the magnitude of the
direct effect on the child appropriately.

Testing

We have shown that the constrained linear model is well behaved: it always converges
to a single value that is in a known range. But how realistic are the attitude changes it
predicts? This is a daunting question that cannot be dealt with authoritatively. How-
ever, we can create some extreme scenarios where we have a clear intuition as to the
“correct” attitude change, and see how the model compares. We modeled both a tiny
scenario of 5 NPCs and a larger, more complicated, social network with 27 NPCs and
put them through testing [Kelly07]. Because the test set includes more than 70 cases,
we refrain from a detailed discussion here. In each case, we found the model was capa-
ble, with proper tuning, of matching our qualitative expectations of behavior change.
The most problematic case involved NPCs with very different numbers of relation-
ships, and we resolved it as discussed in the previous section. The spreadsheet contain-
ing the test examples and results is provided on the CD-ROM.

6.3 Individualized NPC Attitudes with Social Networks 577

JP
GP

CD

RD

PD

fa
m

ily
familyfamily

family

foe

foefoe

friend
friend

friendfriend

fri
en

d
friend coworker

FIGURE 6.3.2 Detail of 5 NPCs from a social network of 27 NPCs.

Source Code and Demo

The CD-ROM includes a spreadsheet containing 5-person and 27-person test cases
and an implementation of the constrained linear model written in Python, either of
which may be useful for testing other sample cases.

Related Work

This article has focused on a single aspect of building a system to track and exploit
NPC attitudes. Two previous articles give a better big-picture system view, as well as
offering interesting mechanisms of their own, such as specific event knowledge track-
ing [Alt02] and a multidimensional approach to modeling attitude [Russell06].

Conclusion

This article introduced a method for largely automating NPC changes in attitude due
to a player action. The method resolves the conflicting loyalties of the NPCs to pro-
duce a single number per NPC that can be used to update the NPC’s feelings toward
the player and drive future player-NPC interactions. This simple model could be fur-
ther developed in a straightforward way by allowing NPC affinities to vary at runtime.
A more difficult but extremely interesting improvement might involve modeling the
time delay required for information to propagate through the social network. Our tests
of more than 70 cases involving scenarios of 5 and 27 NPCs support our belief in the
utility of the model.

References

[Alt02] Alt, Greg, and King, Kristin, “A Dynamic Reputation System Based on Event
Knowledge.” AI Game Programming Wisdom, Charles River Media, 2002: pp.
426–435.

[Kelly07] Kelly, John, “Automated Run-Time Mission and Dialog Generation.” Mas-
ter’s thesis, Naval Postgraduate School 2007. Available online at http://www.nps.
edu/Library/index.html.

[Press07] Press, William, Teukolsky, Saul, Vetterling, William, and Flannery, Brian,
Numerical Recipes: The Art of Scientific Computing, 3rd ed.. Cambridge University
Press, 2007.

[Russell06] Russell, Adam, “Opinion Systems.” AI Game Programming Wisdom 3,
Charles River Media, 2006: pp. 531–554.

[Wasserman95] Wasserman, Stanley, and Faust, Katherine, Social Network Analysis:
Methods and Applications. Cambridge University Press, 1995.

578 Section 6 Scripting and Dialogue

http://www.nps.edu/Library/index.html
http://www.nps.edu/Library/index.html

579

6.4

Scripting Your Way to
Advanced AI
Alistair Doulin—Auran Games
alistair@doolwind.com

In the past, AI has primarily been created by programmers to meet the needs of game
designers. This article discusses the advantages of using scripting to empower game

designers to create advanced AI themselves. By tightly linking each level’s script with
its AI, designers create the AI as the level is being prototyped. This allows natural AI
creation because each level has its own specialized behaviors created by the designers.

To highlight the benefit of AI scripting, an example is given of how the designer
on Battlestar Galactica (BSG) [Auran07] for Xbox Live Arcade used script to create
the single-player AI. Through a good mix of native code and script, advanced AI can
be created, taking advantage of the flexibility of script while leveraging the perfor-
mance of native code.

This article opens with an introduction to GameMonkey Script (GM) along with
a discussion on the types of functions that should be bound. Next, the reasons for
using script for AI instead of relying solely on programmer-created AI are discussed.
Following this are details on the implementation used in BSG and the common pit-
falls of using script for AI. The article concludes with a discussion on the future
opportunities for script use.

An Introduction to GameMonkey (GM) Script

This article is relevant to any scripting language. However, due to first-hand experi-
ence and knowledge, GM will be the focus. GM is an embedded scripting language
designed specifically for games. It has concepts similar to Lua and has a C-style syn-
tax, which makes it easily accessible to game programmers. GM natively supports
multithreading and the concept of states for use in finite state machines (FSMs). It is
free for any use, and its C++ code base is easily modified.

The following is a short example of a GM script used to make a unit kill an enemy:

KillEnemy = function(a_enemy)

{

MoveTo(a_enemy.GetPosition());

result = FireOnEnemy(a_enemy);

if(result.status == SUCCESS)

{

// Insert code to kill other enemies

}

};

Most of this script should be familiar to C/C++ programmers with the main
exception being the function declaration itself. In GM, functions are treated as vari-
ables and therefore have a slightly different syntax than C++. Because GM is loosely
typed, the single parameter to the KillEnemy function does not need its type specified.

The first line of KillEnemy calls the MoveTo function, passing in the enemy’s posi-
tion, and will block/wait until the entity has reached it. FireOnEnemy will also block
until either the player or the enemy is killed and returns SUCCESS if it was successful.

As a full introduction to GM is beyond the scope of this article, refer to the
GM script reference [Douglas05] or other online tutorials [Wilkinson06] for more
information.

Binding Functions to GM

The key to using GM is binding C++ functions to script, making them accessible to
designers within their script files. The online tutorials and source code included with
this article have details for achieving this.

The following code shows an example of a bound C++ function:

int GM_CDECL GameSys_GetImageWidth(gmThread * a_thread)

{

GM_CHECK_NUM_PARAMS(1);

GM_CHECK_INT_PARAM(a_imageID, 0);

int width = GetWidth(a_imageID);

a_thread->PushInt(width);

return GM_OK;

}

All bound functions take a gmThread as their only parameter, which is used to
interact with the script system. The first two lines of the function contain two macros
built in to GM that check for one parameter and then read the first parameter into
the variable a_imageID. The next line is general game code that finds the width of an
image given an ID. The PushInt function is used to return a value back to the GM
system, allowing it to be read by the script that calls this function. GM_OK is returned to
the GM system to inform it that the function completed successfully.

580 Section 6 Scripting and Dialogue

The following code shows an example of calling the previous C++ function from
within script:

width = gameSys.GetImageWidth(imageID);

A single parameter is passed in, with a single return value being stored in width.
BSG used helper functions to automate binding, making it relatively seamless and
painless. The following is an example of the syntax used:

Bind(“GetImageWidth”, &GetWidth, “i”, ‘i’);

This code automates the process of binding the script’s GetImageWidth function
to the native GetWidth function. The third and fourth parameters specify that the
bound function takes and returns an int parameter, respectively. This single line
removes the need for the GameSys_GetImageWidth function, simplifying the task of
binding C++ functions to script.

Game Data in GM

Another feature of GM is its data structure support. GM allows game data to be
stored in a convenient and flexible format. It has advantages over simple XML data
structures due to its human-readable syntax, simple commenting, and expression
evaluation. The simplest AI scripts can be nothing more than data structures that are
edited by designers and loaded in by the C++ code at runtime. Although this usage
will not take full advantage of GM, it’s a good way of introducing GM to designers to
demonstrate the flexibility they can achieve. The following is an example of how game
data can be stored in a GM script:

print(“Parsing Level Data”);

global config =

{

levelDisplayName = “Level1\nFirst Level”,

levelFilename = `\levels\level1.lvl`,

localizedName = LanguageString(“STR_Level1”),

numLives = 3,

// difficulty: 0 = easy, 1 = medium, 2 = hard

difficulty = GameSys.GetDifficulty(),

difficultyFactors = { 0.75, 1.0, 1.25 },

enemyHealth = 500 * difficultyFactors[difficulty],

};

// On hard, one less life

if(config.difficulty == 2)

{

config.numLives-=1;

}

6.4 Scripting Your Way to Advanced AI 581

This example shows a number of GM features that support game data structures,
some of which are listed here:

• Printing debug information for the user
• Different data types, including strings, integers, and floating-point numbers
• C++-style commenting
• Arrays
• Function calls to query or calculate values
• Conditionals

Choosing Functions to Bind

Function choice is an integral part of empowering designers for scripting AI. With the
right selection of functions, designers can access the functionality they require with-
out worrying about the implementation details of different techniques.

When binding these functions, the AI programmer must determine how low
level or high level the functions should be. Low-level functions allow access to the
inner workings of game objects and tend to be better suited to technical designers or
programmers. High-level functions are better suited to more complex operations,
such as navigation. Should the core workings of game objects be bound, or should
more high-level functions be created that do a lot of work to help the designer? The
core user of the functions will be the level designers, so their skill and preferences will
help determine the type of bound functions.

Advantages and Disadvantages of Low-Level and High-Level Bindings

The following is a list of each style’s advantages and disadvantages:
Low-level advantages include the following:

• Designers have complete freedom to create any behaviors they choose.
• Each function maps directly to a single action, making them easily understandable.
• They are quick and easy for programmers to implement.
• No design specification is needed because programmers simply bind the proper-

ties of game objects that are required.

Low-level disadvantages include the following:

• It can be confusing for nontechnical designers to deal with raw object interactions.
• AI becomes script-heavy, and performance must be monitored.
• Experimentation by other team members can be reduced because they must

explicitly code every behavior.
• There is less abstraction from straight C++ code. Any major changes to C++ code

can require entire rewrites of script.

High-level advantages include the following:

582 Section 6 Scripting and Dialogue

• AI is executed quickly because the AI functionality is primarily written in native
code.

• Complex solutions can be hidden and abstracted into a single function.
• It is easier to use for nontechnical designers.
• Programmers still have control over the core workings of AI.
• Complexity of scripts is reduced.

High-level disadvantages include the following:

• Designers have less flexibility.
• A large investment of programmer time is required.
• A good design specification must be set out before programmers can begin creat-

ing functions.

Often, the best solution is to use a mix of low-level and high-level functions. For
clarity, it is good practice to keep different types of functions separated into groups
when documenting. This separation makes the types clear to the designers and allows
them to focus on the style they prefer while having the option to experiment.

Low-level functions must be explained to nontechnical designers because they will
generally be overwhelmed by the complexity of the functions. Experience has shown
that giving examples of a function’s use is the best way to bridge the gap for most
designers. When designers see the flexibility that can be achieved, they will take the
time to understand how the functions work and experiment with them. Tables 6.4.1
and 6.4.2 show a comparison of functions used in the AITest example source code. The
functions are called on the player’s ship to access its properties and invoke its actions.

Table 6.4.1 Low-Level Functions from Example Source Code

Function Parameters Description

Turn Float Turn the craft left or right.
Input ranges from –1.0f to +1.0f.

Fire Boolean Turn bullet firing on or off.
GetX None Returns the x position on screen of this ship.
GetVX None Returns the velocity in the x direction of this ship.

Input ranges from –1.0f to +1.0f. Fire Boolean Turn bullet firing on or off. GetX
None Returns the x position on screen of this ship. GetVX None Returns the velocity
in the x direction of this ship.

Table 6.4.2 High-Level Functions from Example Source Code

Function Parameters Description

MoveTo Float, Float Move this ship to a position.
AttackPlayer Table Make this ship attack the enemy ship.

The parameter is a table representing the enemy ship.
EvadeSun None Stop this ship from running into the sun.

6.4 Scripting Your Way to Advanced AI 583

Binding Other Objects

There are two other types of objects that require bound functions along with the
game objects. The first is the game system object, which includes functions such as
returning the world size and returning the game’s last frame time. This object exposes
functions allowing designers to interact with the game engine. The second includes
any helper objects that are used within the script. These can include different data
types, such as a vector or math library.

Although these objects do not relate directly to the game objects that designers
will be interacting with to add AI, they are an integral part of creating the AI scripts.
The functionality for these objects should be created as early as possible and should be
well documented so that designers can take full advantage of them.

Rapid Prototyping

One of the key advantages of using GM to write AI code is its support for rapid pro-
totyping. Due to language features, such as simple threading and data manipulation,
GM makes many tasks faster to develop than C++.

Scripts can be changed and reloaded at runtime, reducing the time to fix and retest
problems. When an error occurs, the entire game is not broken, instead the problem is
kept within a level or even a single game object. This saves time because designers will
make many mistakes as they begin creating AI scripts. GM allows a designer to change
a few lines of code and retest immediately rather than waiting for recompilation of
their code.

Because game-level scripting and AI are tightly linked, the AI can be prototyped
along with the level. Rather than creating a full level and its gameplay before the AI
code is added, the designer has control over the AI throughout all stages of level devel-
opment. This also helps to find problems in the level’s design that the AI might not
support early in its development. It can also feed back into the level-creation process
if the AI is particularly intelligent in areas that can be expanded.

An example of this tight linking is the creation of a level boss. If the boss’s AI is
particularly strong when fighting in close quarters, then the designer can create large
sections of the map that require close-quarters combat. If the boss has a particular
weakness when trying to navigate up stairs, the designer can make sure to keep stairs
to a minimum in the level. Level design then becomes more natural for the designer
because he interacts with the AI during its creation. Designers build the level around
the AI rather than creating a level that the AI must fit into.

Another advantage of rapid prototyping is that designers, or any other team mem-
bers, are able to take a build and experiment with the AI without interrupting program-
mers or requiring an intricate knowledge of the game systems. This experimentation can
be invaluable as ideas that might usually be overlooked due to time constraints can be
prototyped by any team member in a short period of time. On BSG, all team members
from QA to management have been interested enough to experiment and bring new
ideas to the designer.

584 Section 6 Scripting and Dialogue

Specialization FSM Example

GM also allows rapid prototyping through the use of specialization. Rather than creat-
ing new classes for each behavior, specialized functions are created. The following is an
example of how specialization can be used to create powerful scripts specific to each
level of the game. The first code sample shows a generic FSM that would be executed
in all AI entities:

// CurrentState is a variable of type function

entity.CurrentState = function() { yield(); };

while(true)

{

// Call the function represented by CurrentState

result = entity.CurrentState();

}

Throughout its lifetime, the entity calls the function represented by its current
state. CurrentState is a variable holding a function. Any function within the script
can be assigned to this variable.

Within each particular game level, specialized code can then be written and is
assigned to the CurrentState variable. The following is an example of a function that
searches for an enemy:

InitLevel = function()

{

playerAlly = GetPlayerAlly();

playerAlly.CurrentState = SearchForEnemy();

};

SearchForEnemy = function()

{

enemy = FindClosestEnemy();

while(!IsFacing(enemy))

{

TurnTowards(enemy.GetDirection());

yield();

}

entity.CurrentState = AttackEnemy();

};

In this example, the InitLevel function is called at the start of the level and assigns
the SearchForEnemy function to the ally’s current state. The generic AI FSM will then
call this specialized function. Also notice that when the entity is facing the enemy, it
changes its own state to AttackEnemy, another specialized function. Through this spe-
cialization, powerful AI behaviors are created that can be shared between missions or
written specifically for level entities.

6.4 Scripting Your Way to Advanced AI 585

Nontechnical Designers

The term nontechnical is used to describe designers who have little to no scripting or
coding experience. These designers must be taught the basics of programming followed
by an introduction to GM. We spent a number of days teaching the designer these
basics followed by weeks of sitting with him and creating his first AI scripts. The fol-
lowing is an overview of the lessons learned from this, with tips on how to best help
designers learn the complex task of AI scripting.

Nontechnical designers will generally use one of the following techniques for their
development while they are learning to script [Poiker02]:

• Copying and pasting code from other examples, and changing values and small
pieces of code.

• Trial and error by spending countless hours testing and retesting different code.
Because GM scripts can be reloaded at runtime, this process was far shorter than
performing it in C++.

• Searching through the GM and bound script function documentation.
• One-on-one time spent with programmers asking them for advice on solving

complex problems or learning different techniques of development.

An important problem when nontechnical designers create AI scripts is the per-
formance overhead. Because they do not have a thorough knowledge of software
development, they will often create solutions that are suboptimal. Care must be taken
to continually review their scripts to make sure no major bottlenecks are being cre-
ated. Designers will often create endless loops rather than using a more event-based
system. Both styles can be used for convenience in prototyping gameplay; however,
care must be taken when game performance begins to suffer.

To aid the nontechnical designer, a template style of development was imple-
mented. Programmers create the core script with most of the levels’ functionality,
allowing the designer to simply change the existing code. Because the AI is a strong
part of the level, it evolves in the same way. The basic steps are as follows:

1. The programmer creates the script.
2. The programmer sits with the designer and explains each part of the script.
3. The designer spends time tweaking the code that is there and takes code

from other levels if necessary.
4. When the designer is happy with the basic functionality, he goes through

their modifications with the programmer to make sure there are no major
problems.

5. The designer polishes the level until it is complete.

This template system was a great help to the designer while he created his first
levels and became accustomed to writing AI script. He created a number of boss-type
characters, which exhibited some excellent AI that surprised both him and the pro-
gramming team. After the designers are capable of creating levels on their own, the

586 Section 6 Scripting and Dialogue

programmer’s job becomes one of simple maintenance and support, allowing them to
move on to other areas.

GM’s ease of use for nontechnical designers was proven by the designer’s ability to
create moderately advanced AI within one month of learning to write script. This AI
included different unit behaviors, bosses, and intelligent teammate design. The
designer then went on to create an entire single-player game with only 40 bound
script functions relating to AI.

Common Pitfalls

AI scripting will not solve all problems, and trying to make it do so will result in an
underperforming and bloated script. The weaknesses of script must be taken into
account when trying to solve a problem. Some games are simply too complex to allow
designers to create the AI. The following is a list of the core weaknesses of script with
information on how to overcome them.

Performance

GM is 10 to 100 times slower than native C++ code. Small simple tasks can be com-
pleted in script, however, anything complex should be moved into native code and
bound to script. A good example of this is navigation. All of the complexities of navi-
gation—navigation mesh generation, A* calculations, and so on—are kept in native
code while a simple function MoveTo() is bound to script. This function is difficult to
abuse because it is a simple function that sets the destination for a game object. In the
object’s next native code update loop, it can then do all the work necessary to path to
the destination, without the designer knowing anything of its implementation.

Performance was never a problem with any of the scripts the designer created for
BSG. This was made easier by the fact that the designer had never programmed before
and therefore had not picked up any bad habits in the past. A proactive attitude was
taken when dealing with performance issues to make sure they were caught and fixed
before they became problems.

Limited Debugger Support

Unfortunately, there is little debugging support in GM at the moment. This encour-
ages keeping scripts short and robust, with an emphasis on making them event-driven.
It is important that designers are aware of the common programming techniques for
debugging without a full IDE. Simple techniques, such as Print() statements and
onscreen debug text, should be shown to designers as well as techniques for using
these to find and solve problems. Although it’s fun for experienced programmers to
try and write infallible scripts, it is a nightmare for designers and will be another bar-
rier for experimentation for the rest of the team.

6.4 Scripting Your Way to Advanced AI 587

In the source code included on the CD-ROM with this article, all debugging
errors are printed to the console window. In BSG, the designer knew that whenever a
problem occurred, he should check the console for any errors to help solve the prob-
lem. He was then able to fix the problem, reload the script, and continue testing
immediately without the need for recompilation or restarting the game.

The GME command-line executable is included with GM. It can compile script
outside of the game. It provides limited compile-time error checking that allows basic
syntax-style errors to be caught. Use gme.exe, located in the bin directory of the GM
source, to compile scripts as shown in the following example:

gme.exe player2AI.gm –d

This will compile the script in player2AI.gm. The –d switch will compile it in
debug mode so that if any problems are encountered, the exact line will be displayed.

Complexity

The two main areas of complexity that grow as AI and levels become more advanced
are bound functions and level files. The AI programmer must continually check these
issues and fix them before they become a problem.

Bound function issues include the following:

• Each piece of functionality exposed to designers adds another function they must
learn about and remember.

• When the list grows over 100 functions, designers can become overwhelmed
because they waste time searching for functions.

• Related functions should be grouped together, and AI functions should be com-
pletely separated from the other bound functions.

• If there are multiple AI programmers, functions might be duplicated, which leads
to confusion for the designers.

Level file issues include the following:

• Level files can become quite complex during their development.
• AI code might only take up 30% of a level file, however, because it is mixed in

with the rest of the level files’ code, it is more difficult to maintain.
• Level files can grow into the thousands of lines making them difficult for design-

ers to keep track of.
• Designers should be encouraged to clean up their code as it is developed. BSG expe-

rienced problems where a level was rewritten several times, and the script increased
in size each time, leaving a lot of wasted code. When the designer was forced to clean
up the level file, over 50% of the code was removed, making it easier to maintain.

Part of the programmer’s job is to help the designer keep these two areas of com-
plexity under control. As the designer’s reliance on the programmer decreases, the
programmer should begin cleaning up the work that has already been completed.
Nearly all problems of complexity can be removed by keeping documentation up to

588 Section 6 Scripting and Dialogue

date, cleaning out unused parts of script, and rewriting any functions that become
bloated.

Source Code

Included on the CD-ROM is the source code for a Space Wars [Cinematronics77]
clone. All of the AI for this game has been written in GM. The game itself is also writ-
ten in GM with the C++ executable simply loading and rendering images. This was
done to show the power of GM and give more reference to its uses. In the real world,
a full game would not be programmed entirely in GM. The game uses SDL for ren-
dering and input. The art was created by Shaun Campbell at www.squidtank.com.

Experimentation with the code is encouraged as well as creating completely new
script files. Both high-level and low-level functions have been bound to show exam-
ples of their usage.

Future Work

There is great opportunity to use AI scripting for game development in the future.
The following is a discussion about two areas that will greatly benefit from moving AI
into script.

Mod Creators

Developing AI through script lends itself well to being modified by the community.
Mod creators who create their own levels will have access to the same tools for AI cre-
ation as the designers. Because the AI is bound to script (rather than being simple
configuration files), mod creators have greater flexibility when creating AI. After mod
creators have learned the skills required to create regular level modifications, it is a
small step for them to start modifying the AI.

Player Creation

Another exciting area that AI script can move into in the future is empowering play-
ers to create scripts. Players will have the ability to create the scripts for their team-
mates or the units under their control. As games become more complex, and units
have more complex AI, the player has less control over them. By allowing players to
write their own scripts, they are able to tailor their units to their own play style.

As games like Spore [Maxis07] move toward more player-created content, should
not AI do the same? Instead of only having players compete against each other, they
can create their own AI and have the AI compete. This adds a new level of gameplay
only seen in games such as Robot Battle [Schick02]. Features like this make excellent
selling points.

To keep complexity and performance acceptable, most bound functions should
be high level. An example of this is exposing the “Commander’s” AI in an RTS game
rather than individual units. This involves allowing the player to decide which units

6.4 Scripting Your Way to Advanced AI 589

http://www.squidtank.com

should attack which areas, rather than how each individual unit will react to a given
situation.

Another method for achieving simplicity for players is having a GUI for them to
modify their scripts. This could be achieved in-game, allowing players to feel like they
are still playing the game rather than programming. Games could begin with simple
options that most games have today (such as pursuit range and damage tolerance) and
move toward more advanced options. Players could drag and drop behaviors for their
units, creating seemingly complex behaviors while simply changing data values within
script files. As research into this develops, the scripts themselves could possibly be
generated on the fly.

Many hurdles must be overcome before players will want to get involved in creat-
ing their own AI; however, this as an exciting possibility for the future. If care is taken
to simplify interactions between players and the AI script, the barrier for entry will be
reduced substantially.

Conclusion

In this article, the use of scripting to write advanced AI in games was discussed. With
a focus on GameMonkey Script, the language basics were shown with source code
supplied for further study. Using script for AI has many advantages over straight C++
code with the following core benefits:

• Rapid prototyping allows faster development of AI as well as experimentation by
both designers and other team members.

• Nontechnical designers can quickly pick up GM and begin writing AI scripts
after only a few weeks.

• Game data structures can be stored in GM scripts.
• Mod creators will have access to the same tools as designers when creating AI.
• In the future, players might customize their teammate or unit AI by writing their

own simple scripts.

For these reasons, AI should start moving into script. As discussed, the Battlestar
Galactica’s designer, with no programming experience, used script to create an entire
single-player game with all of its AI in only a few months. By empowering designers
with the tools required for creating advanced AI, games will show more natural and
specialized AI behaviors.

References

[Auran07] Auran/Sierra Entertainment, Inc., Battlestar Galactica. Available online at
http://www.bsgarcade.com/, 2007.

[Cinematronics77] Space Wars. Cinematronics Inc., 1977.

590 Section 6 Scripting and Dialogue

http://www.bsgarcade.com/

[Douglas05] Douglas, Greg, et al., “Game Monkey Script Reference.” Available
online at http://www.somedude.net/gamemonkey/GameMonkeyScriptReference.pdf,
January 23, 2007.

[Maxis07] Maxis/Electronic Arts Inc., Spore. Available online at http://www.spore.
com/, 2007.

[Poiker02] Poiker, Falko, “Creating Scripting Languages for Nonprogrammers.” AI
Game Programming Wisdom, 2002: pp. 524–525.

[Schick02] Schick/GarageGames Inc., Robot Battle. Available online at http://www.
robotbattle.com/, 2002.

[Wilkinson06] Wilkinson, Oli, “Introduction to GameMonkey Script Part 1.” Avail-
able online at http://www.gamedev.net/reference/programming/features/gmscript1/,
2006.

6.4 Scripting Your Way to Advanced AI 591

http://www.somedude.net/gamemonkey/GameMonkeyScriptReference.pdf
http://www.spore.com/
http://www.spore.com/
http://www.robotbattle.com/
http://www.robotbattle.com/
http://www.gamedev.net/reference/programming/features/gmscript1/

This page intentionally left blank

593

6.5

Dialogue Managers
Hugo Pinto—University of Sheffield
hugo@hugopinto.net

S ince the 1970s, with Colossal Cave Adventure, game developers have pursued the
goal of allowing the user to interact with the game using natural language.

Progress in the area has been slow but steady, as shown by Neverwinter Nights and
Lifeline. These games pushed the boundaries of text-based and speech-based interac-
tion in games.

At the center of every interactive language system, be it speech or text-based, lies
the dialogue manager (DM). This component is responsible for determining what
will be said at any time, based on what has already been talked about, the goals of the
character, and its possible actions.

In this article, we present the main techniques and paradigms of dialogue man-
agement, with references to games, industrial applications, and academic research. We
cover DMs based on stacks, finite state machines (FSMs), frames, inference-engines,
and planners. For each technique, we point out its strengths, applicability, and issues
when integrating into a broader dialogue system in a game setting.

Introduction

First, let’s clarify what exactly the term dialogue management means because histori-
cally it has been used with several distinct meanings. We approach dialogue manage-
ment as the process of deciding what a character is to say at each time step. This is
based on what has just been spoken to the character, the character’s goals, the charac-
ter’s knowledge, and what has been said so far. This is very similar to a goal-oriented
control structure of a game bot that chooses its actions based on its knowledge and
perceptions of the environment. Substituting utterances from the dialogue partici-
pants for the bot’s perceptions and possible speech acts of the character for the bot’s
actions yields a dialogue manager!

To fully appreciate the issues of dialogue management and the advantages of each
approach, you need to know how the DM fits into a full dialogue system and what are
the distinctive properties and views of dialogue. These are discussed in the first two
sections of the article “Spoken Dialogue Systems,” in this volume [Pinto08].
Although the discussion in that article is focused on speech-based systems, it applies

to text-based systems as well. The main difference is that text-based systems do not
worry about speech recognition or speech synthesis.

Historically, discussion of dialogue management has been centered on initiative:
whether a DM favored system-initiative, user-initiative, or mixed-initiative. Although
we will mention whether an approach favors the user, the system, or both to lead the
conversation, the focus here will be on the core engineering characteristics of each
approach and how they can be applied to the solution of dialogue management issues
in a game.

Approaches to Dialogue Management

This section presents five fundamental dialogue management techniques: FSMs,
frames, stacks, inference engines, and planners. Each is first demonstrated in a problem
that it tackles naturally and then in a harder problem that it is not suited to tackle. The
harder problem will be comfortably solved by the next technique presented. This
shows models capable of dealing with progressively more complex dialogues.

Finite State Machines (FSMs)

FSMs are probably the most popular dialogue management paradigm and implemen-
tation technique of commercial spoken dialogue systems. They are extensively used in
industry and constitute the backbone of several dialogue description languages, includ-
ing VoiceXML [Oshry07]. This is good news for game developers because FSMs are
pervasive in the games industry [Houlette03], with several caveats and tips for design
[Carlisle02] and implementation [Alexander03] in a game setting.

FSMs have a distinctive advantage when dealing with spoken language: we can
use a specially tuned acoustic-language model for each dialogue state because we
know what utterances to expect, making the automatic speech recognition task much
easier. They are specially suited for situations when the system has most of the dia-
logue initiative, and the dialogue states and the dependencies between them are well
defined and not many. A simple example is a coffee-shop assistant dealing with a user
request for his breakfast beverage (Figure 6.5.1 shows an FSM that would support this
dialogue):

Bartender: Hello, would you like some coffee, tea, or cake?

User: Coffee, please.

Bartender: Brazilian, South African, or Italian?

User: Brazilian.

Bartender: What about sugar?

User: No.

Bartender: Would you like it with milk?

User: Yes.

Bartender: Enjoy your Brazilian Latte! Thank you!

594 Section 6 Scripting and Dialogue

FSMs provide a straightforward way to go from a task breakdown to the DM
implementation. It is also easy to check for uncovered conditions, shortest paths,
cycles, and so on. The problem is that FSMs become very difficult to manage as the
possible paths in the dialogue grow. Some workarounds, such as appropriate graphical
tools [Carlisle02] or scripting languages [Yiskis03] can alleviate the problem. This
path-escalation problem makes FSMs a difficult solution in the face of user interrup-
tions to the system-directed dialogue with a request of their own. These can be han-
dled by extensions, such as augmenting the DM with stacks, as will be shown in the
“Stacks” section. The standard approach in this case is ignoring the request and steer-
ing the user back to the dialogue. Considering the coffee-making bartender, we could
just answer the user with a “Please let me finish your <beverage/food>, first.” and pre-
sent the question again, as in the following excerpt:

Bartender: Hello, would you like some coffee, tea, or cake?

(…)

Bartender: Would you like it with milk?

User: Yes.

Bartender: What about sugar?

User: I want some cake, too.

Bartender: Please, let me finish your coffee first. Do you want some

sugar?

User: No.

Bartender: Enjoy your Brazilian Latte! Thank you!

In a game setting, FSMs would be a good choice for very simple, informative char-
acters, or to implement task-oriented subdialogues. Being simple and quite familiar to
game developers, they could be a good starting point when implementing characters

6.5 Dialogue Managers 595

Choose
coffee

Choose
Food

SA

It

Br

Br
Sweet

Br
Not

Sweet

Brazilian

Italian

S
ou

th
 A

fr
ic

an

Sugar

No Sugar

Milk

Milk

No Milk

No Milk

Br
Sweet
Latte

Br
Sweet

Br
Latte

Br
Pure

T
ea

C
ak

e

FIGURE 6.5.1 Partial coffee-shop bartender FSM.

with dialogue capabilities. However, some of their limitations could be quite annoying,
particularly the need for all the data in a particular task to adhere to specific ordering
constraints and any information not expected in a state to be discarded. For an exam-
ple, consider the following coffee-ordering dialogue:

Bartender: Hello, would you like coffee, tea, or cake?

User: I would like a Brazilian coffee, with milk and sugar.

Bartender: Brazilian, South African, or Italian?

User: Uh? Brazilian!

Bartender: Would you like it with milk?

User: Yes, milk and sugar!

Bartender: What about sugar?

User: YES, YOU IDIOT! I WANT SUGAR IN MY COFFEE!

Bartender: Here you go. Thank you!

The user was not very satisfied in the previous dialogue, and you might wonder
how long it would take to ask for two differently prepared coffees, a tea, and a cake.
Frame-based systems were created to properly deal with this kind of situation.

Frames

Frame-based systems are probably the second most popular dialogue-modeling tech-
nique, being a foundational paradigm of VoiceXML [Oshry07] and widely used in
many commercial dialogue systems. Most of these systems use a dialogue to fill a form
and populate and/or query a database. Typical applications are getting transport
timetable information and call routing [Chu-Carroll99].

Frame-based dialogue systems (FBDS) do not directly translate into a particular
architecture but rather get this name from the way information is usually gathered
from the user. A frame can be viewed as an object in the object-oriented paradigm that
has no methods defined in it. What is common among most systems is a frame that
keeps track of the wanted information, and an algorithm that will determine what to
do to fill the missing items. Usually, the system starts by prompting an initial question,
fills as many slots as possible with the user’s current utterance, and then asks questions
to clarify existing information or fill the remaining slots. A frame-based system for the
coffee-making bartender would be able to handle the following interaction:

Bartender: Hello, would you like coffee, tea, or cake?

User: I would like a Brazilian coffee, with sugar and milk.

Bartender: Here you go. Thank you.

To keep track of the information and spawn clarification questions, some systems
keep a confirmation flag and a confidence value associated with each slot. Slots filled
with high confidence are marked automatically as confirmed, whereas slots filled with
low confidence are candidates for a clarification question. Note that this issue of clar-
ification in form filling is stronger in the case of spoken dialogue systems, due to the

596 Section 6 Scripting and Dialogue

potential errors in automatic speech-recognition, but we might also have to clarify
information due to ambiguity in the sentence or other interpretation problems, which
happen in text-based systems as well. In the following example, the DM checks with
the user to see if “with sugar and milk” applies just to the tea or to both the tea and
coffee.

Bartender: Hello, would you like a coffee, tea, or cake?

User: I would like a Brazilian coffee and an Earl Grey tea, with

sugar and milk.

Bartender: Ok, the Brazilian coffee with sugar and milk too?

User: Yes.

Bartender: Here you go. Thank you.

Frame-based systems allow a more efficient and natural interaction with the user
because the system is able to use information that was not explicitly asked for but still
relevant to the frame. They also ease the burden on the software engineer because we
are allowed to specify the dialogue rules for each frame declaratively, and the manage-
ment algorithm generates the appropriate dialogue moves dynamically.

These advantages over FSM-based systems do not come without a price: to use a
frame-based DM in a spoken dialogue system, any automatic speech recognition
component must be far more robust. It needs to be able to deal with the utterances
used to describe all of the items in a given frame. The same goes for the natural lan-
guage understanding module, which might be faced with long coordinated phrases,
negations, and embedded clarifications.

FBDSs are unable to deal with information that falls out of the current frame but
that still might be relevant and supported by the system. This forces the use of
recourses similar to the ones employed in FSMs to deal with unexpected utterances.
Consider the following dialogue, where the bartender can now also make table reser-
vations in the coffee shop:

Bartender: Hello, how may I help you?

User: I would like a Brazilian coffee with sugar.

Bartender: Ok, would you like some milk too?

User: Ah, I want to reserve a table for two, for nine p.m., is it

possible?

Bartender: Please, let me finish your coffee. Ok, would you like some

milk too?

User: Uh, ok…yes.

Bartender: Here you go. Anything else?

User: Nevermind…

To ask the user if he wanted something else after postponing his table reservation
was clearly inappropriate for a polite bartender. The system should have caught up
with the user and resumed the table-booking conversation upon completion of the
coffee talk or, conversely, dealt with the table reservation before finishing the gather-
ing of the information of the client’s coffee. Stacks provide just such a capability.

6.5 Dialogue Managers 597

Stacks

Besides being a fundamental computer science data structure, stacks provide a natural
way to change the topic of a conversation and then resume the halted conversation
from where the speaker left off. Any new conversation is pushed over the old ones,
and when it is over, the stack is popped to continue with the previous conversation.
Remarkably, the basic idea is very similar to using stacks and FSMs to allow the stop-
ping and resuming of game bots behaviors [Tozour03, Yiskis03].

Stacks can be a complement to both FSMs and FBDSs. They can be either the
data structure used to implement a hierarchy of FSMs or frames, or an independent
data structure where we put FSMs or frames for later revisiting.

The COMIC [Catizone03] system used a stack and augmented finite state
machines (AFSM) as the basis of its DM. These AFSMs were called Dialogue Action
Forms (DAF) and had as main differences from ordinary FSMs the abilities to execute
an arbitrary action in a state transition, to wait for arbitrary and external information
in a given state, and to have indexing terms, such as keywords, associated to it. Like in
hierarchical FSMs [Champandard03], each state of a DAF could stand for a whole
DAF, allowing cascaded calls to more specific DAFs to solve a problem.

The really novel information from a game programming perspective is how the
DAF creation, indexing, and selection were made. For a DM, this is how it changes
topics. When each DAF was built, the designer associated with it some properties:
verbs, nouns, entities, and restrictions on world properties (such as time > 18:00). A
combination of these formed a key, with which the DAF was put into an index. When
the system received a user utterance, it would make such a key from extracted bits of
information from the sentence (verbs, nouns, and entities) and the application (world
properties). It would then select the DAF that most closely matched this key. This
selected DAF would be put on top of the current one, and the dialogue would pro-
ceed according to it. When it was finished, it would be popped, and the previous one
would be resumed from where the user left off.

Augmenting a frame-based system with a stack in the vein of the COMIC pro-
ject, we could now deal with the dialogue of the preceding section in an appropriate
way:

Bartender: Hello, how may I help you?

User: I would like a Brazilian coffee with sugar.

Bartender: Ok, would you like some milk too?

User: Ah, I want to reserve a table for two, for nine p.m., is it

possible?

Bartender: Sure. In the smoking or non-smoking area? (Started the

reservation DAF)

User: In the smoking.

Bartender: Ok, your reservation is complete. (Pops reservation and

resumes coffee DAF)

598 Section 6 Scripting and Dialogue

Bartender: Do you still want the coffee?

User: Yes.

Bartender: I remember it is a Brazilian coffee with sugar. Do you

want it with milk?

User: Yes, that would be great.

Bartender: Here you go. Anything else?

The combination of stacks with frames or FSMs gives more power, as dialogue
systems are now able to change a topic and come back to it later, or pursue subdia-
logues necessary for a broader conversation. Again there is no free lunch; any ASR
(automatic speech recognition) system needs to have at least one general layer capable
of identifying all utterances that might lead to a topic or task shift in the dialogue.
The natural language understanding module needs to be able to spot keywords,
dependencies, and entities that signal a topic shift. Some dialogue systems go as far as
using an additional specialized module for the detection of these shifts. Finally, tuning
the indexing and retrieval mechanism can be a challenging task in itself, depending on
the nuances of the tasks being pursued. Moreover, it should be noted that a system
with task-resuming capabilities also needs a more sophisticated language generation
module that is capable of summarizing what was said before and introducing appro-
priate cues and introductions to resume the previous conversation.

Despite its augmented capabilities, there are still plenty of situations that will be
difficult to solve with stacks and FSMs or FBDSs, unless augmented with explicit
checks and tricks. Consider the following situation, again with the now tired coffee-
shop bartender:

Bartender: Hello, how may I help you?

User: I would like a Brazilian coffee with sugar.

Bartender: Ok, would you like some milk too?

User: Actually I want a tea instead of coffee.

What now? The proper action should be to pop the current task and its associated
conversation and initiate the tea-making task with its associated chat. A COMIC-like
system would need to have a special module to detect when a topic or task should be
dropped on user request because there is no innate support for that. In COMIC
specifically, task dropping is implemented as a special DAF that is matched by several
“topic dropping” words, and that DAF then performs a hard-coded dialogue to con-
firm which DAF to drop. It then inspects the stack and marks the dropped DAF as
“ignorable.” When an ignored DAF is reached, the system will just pop again, with-
out reinstating any ignored DAFs as the current topic. The COMIC stack then is
effectively a list where normal insertions and deletions are from a single side, but par-
ticular conditions might call for inspection and removal of elements from any place in
the list. This violates a pure stack behavior. An inference-engine coupled with some
declarative rules could be a better tool for this job.

6.5 Dialogue Managers 599

Inference-Based Systems

Inference-based dialogue systems (IBDS) try to satisfy a proposed axiom by firing a
series of rules from a knowledge base. Despite their power and flexibility, inference-
based systems are not very widespread in the dialogue systems community except in
academia. One reason is that most commercial systems do well enough without such
capabilities, although for computer games, its advantages might be needed.

An inference-based DM will have basically four components: knowledge base,
inference engine, working memory, and facts selector.

The knowledge base is usually composed of a set of declarative rules in a standard
logical formalism, such as propositional logic (PL) or first-order logic (FOL). Some of
the rules (at least the terminal ones) will have actions associated with them. FOL and
its approximations offer existential quantification (entering facts such as “there exists
K” and “all X are K”), but the inference engines usually support these operations only
in a limited way.

The inference engine is responsible for finding a valid proof for a given fact, or
conversely, to find and fire the appropriate rules given some fact. When a rule is
matched, a new fact is entered into the working memory. The most common opera-
tions an inference engine supports are unification—finding predicates that can be
filled with the selected values/facts from the working memory—and forward-chain-
ing and backward-chaining. Backward-chaining starts with a given goal and fires rules
in a sequence that terminates into a set of facts known to be true. Forward-chaining
starts from a set of facts known to be true and uses them to derive as many other facts
as necessary to satisfy a desired goal.

The working memory is where the facts of current interest are kept. The facts
selector is the algorithm that chooses and combines the facts of interest before feeding
them into the inference system. Usually a planner is used as part of the facts selector
to add new facts and choose among existing ones.

The NICE game system is an example of a hybrid of IBDS and a plan-based
system used in a game domain. It uses a formalism that lies between PL and FOL to
represent its knowledge and a simplified form of unification and forward-chaining in
its parser. NICE uses a planner as its facts selector. See “Spoken Dialogue Systems,” in
this volume for a review of the system and further references. Without going into a
step-by-step demonstration of an inference-based cycle in the NICE system, we will
revisit the dialogue of the last section to show how an IBDS might handle it gracefully:

Bartender: Hello, how may I help you?

User: I would like a Brazilian coffee with sugar.

Bartender: Ok, would you like some milk too?

User: Actually I want a tea instead of coffee.

Bartender: Ok, and how to you want your tea?

User: An Earl Grey with sugar and milk.

Bartender: Here you go. Enjoy!

600 Section 6 Scripting and Dialogue

Here, after the second user utterance, the system would exploit the following rule
to discover that it should drop the old topic and start the new one:

InsteadOf(x,y) -> drop(y)^execute(x)

It is very difficult to use tuned automatic speech recognition models for different
dialogue parts with an IBDS. Such systems really need to have a system capable of rec-
ognizing all user utterances supported. Also, the language-understanding module
needs to provide enough information to populate the working memory with all rele-
vant facts of the current utterance, which in some cases might involve complicated
language processing operations. An upside is that having a knowledge base in place
for the DM often improves the language-understanding module by using the knowl-
edge-base information to guide the interpretation of the utterances.

Plan-Based Systems

Planners are an integral part of most research and cutting-edge commercial dialogue
management systems. Even systems based on inference engines usually employ plan-
ners to select the facts of interest. The basic structure of a planner is a set of operators
and a procedure to find a sequence of operators that achieve one or more goals. The
operators are usually specified in terms of preconditions and effects. A planner can
actually be seen as an inference system and vice versa—the conditions and effects of
the operator correspond to the facts and goals of the knowledge base, in this order.
The inference engine can be used in this way to draw a plan that corresponds to the
set of steps in the inference process. Conversely, a planner can be used to do infer-
ence—the last step of the plan will be the conclusion arrived at. Usually the knowl-
edge base of a hybrid system is used to store the task-independent knowledge, and the
planner is used to store the task-dependent one.

There are basically two common uses of a planner in a dialogue system: encoding
the speech-acts/DM output directly into the operators’ actions and using the planner
to select the facts of interest to be fed into the inference system.

The main benefit of a planner comes when the user and the system have to build
a solution to a task together. Consider the following situation:

Bartender: Hello, how may I help you?

User: I want to organize a dinner with a few friends.

Bartender: Ok. How many of them will be coming?

User: Nine or Ten.

Bartender: Excellent, we will need a large table. We have one in the

balcony and two in the upper part.

User: Can’t I take that one in the ground floor?

Bartender: Sorry, that one is already reserved.

User: I want one in the upper floor then.

6.5 Dialogue Managers 601

Bartender: Perfect. Do any of the guests have special needs?

User: Ah, yes, Mike uses a wheelchair.

Bartender: In this case I suggest you take the table in the balcony

because the upper ones are not wheelchair-accessible.

User: Ah, ok then.

There is an ordering between the actions to organize a dinner: we need to know how
many people will come and then consider where the group will sit. Also, as we know new
facts, we might need to revise our plan—in the example, knowing that a member was in
a wheelchair triggered the search for a table that was wheelchair-accessible. Just querying
the user for a long list of facts and keeping track of all the dependencies would be too
cumbersome and difficult to manage without a planner, even with a frame-based system.

A plan-based system offers the same complications for automatic speech recogni-
tion and natural language understanding (NLU) as an inference-based system. Luck-
ily, developers can exploit its structure to inform the NLU and natural language
generation (NLG) systems. For example, the path computed in the planning process
can be an input to the NLG, and the dependencies between the phases can be used as
information for NLU. In the previous example dialogue, the last utterance from the
bartender clearly illustrates the exploitation of this information in a causative sen-
tence. In most cutting-edge research systems, such as TRIPS[Allen07], this is exactly
what happens—the task-dependent part of its planner is used to inform both the gen-
eration and understanding processes.

Conclusion

We have seen five dialogue management techniques, each capable of dealing naturally
with ever more complex dialogue phenomena. This increase in power does not come
without a price; the systems interacting with the DM usually have to be made more
complex for it to exert its full power. Fortunately, the structure and operation of the
more advanced DMs can be exploited to inform the other components of the system,
particularly the NLU and NLG modules. Stacks and FSMs have been used in game
development for over a decade, and planning systems are becoming ever more popu-
lar, as the articles on the AI of F.E.A.R. [Orkin06] and Full Spectrum Command [Dyb-
sand03] illustrate. Perhaps the time for dialogue-enabled characters is arriving?

References

[Allen07] Allen, J. et al., “The Rochester Interactive Planning System.” Available
online at http://www.cs.rochester.edu/research/cisd/projects/trips/, June 14, 2007.

[Alexander03] Alexander, Thor, “Parallel-State Machines for Believable Characters.”
Massively Multiplayer Game Development, Thor Alexander(Ed.), 2003.

[Carlisle02] Carlisle, P., “Designing a GUI Tool to Aid in the Development of Finite
State Machines.” AI Game Programming Wisdom, Charles River Media, 2002.

602 Section 6 Scripting and Dialogue

http://www.cs.rochester.edu/research/cisd/projects/trips/

[Catizone03] Catizone, R., Setzer, A., and Wilks, Y., “Multimodal Dialogue Manage-
ment in the COMIC Project.” Workshop on Dialogue Systems: interaction, adapta-
tion and styles of management, (EACL)Budapest, Hungary, 2003.

[Champandard03] Champandard, A., AI Game Development. New Riders Publishing,
2003.

[Chu-Carroll99] Chu-Carroll, Jennifer, “Form-Based Reasoning for Mixed-Initiative
Dialogue Management in Information-Query Systems.” Proceedings of the Euro-
pean Conference on Speech Communication and Technology, Vol. 4, (1999): pp.
1519–1522.

[Dybsand03] Dybsand, E., “Goal-Directed Behavior Using Composite Tasks.”
AI Game Programming Wisdom 2, Charles River Media, 2003.

[Houlette03] Houlette, R., and Fu, D., “The Ultimate Guide to FSMs in Games.”
AI Game Programming Wisdom 2, Charles River Media, 2003.

[Orkin06] Orkin, J., “3 States and a Plan: The AI of F.E.A.R.” Proceedings of the
Game Developers Conference, 2006.

[Oshry07] Oshry, M. et al., “Voice Extensible Markup Language 2.1.” Available
online at http://www.w3.org/TR/voicexml21/, August 4, 2007.

[Pinto08] Pinto, Hugo, “Spoken Dialogue Systems.” AI Game Programming Wisdom
4, Charles River Media, 2008.

[Tozour03] Tozour, Paul, “Stack-Based Finite-State Machines.” AI Game Program-
ming Wisdom 2, Charles River Media, 2003.

[Yiskis03] Yiskis, Eric, “Finite-State Machine Scripting Language for Designers.”
AI Game Programming Wisdom 2, Charles River Media, 2003.

6.5 Dialogue Managers 603

http://www.w3.org/TR/voicexml21/

This page intentionally left blank

605

S E C T I O N

7
LEARNING AND

ADAPTATION

This page intentionally left blank

607

7.1

Learning Winning Policies in
Team-Based First-Person
Shooter Games
Lehigh University

Stephen Lee-Urban
sml3@lehigh.edu

Megan Smith
mev2@lehigh.edu

Héctor Muñoz-Avila
hem4@lehigh.edu

Imagine designing challenging and flexible AI team behavior for a first-person
shooter (FPS) game. Among the decisions that must be made are whether to use sta-

tic or dynamic strategies, whether or not these strategies should be represented sym-
bolically, whether the AI should be able to learn, and, finally, the extent to which the
actions that are taken by individual team members will be controlled by the team
strategies.

This article presents an approach, called RETALIATE, which addresses these ques-
tions using an online reinforcement learning (RL) algorithm. In a case study performed
using the Unreal Tournament (UT) game engine, we found that RETALIATE can
quickly develop winning strategies against opponents of various levels of sophistication.
Furthermore, the approach taken in RETALIATE is easy to implement because it frees
the developer from having to create complex planning and communication systems for
team coordination and automatically learns effective strategies and adapts them to
changes that occur at runtime.

Coordinating Bots in Domination Games

UT is a typical FPS game in which the immediate objective for a player is to shoot and
kill an opponent. An interesting feature of UT is that it offers the choice of several dif-
ferent game variants, one of which is called a domination game. In a domination game,
teams of players compete to control or “own” domination locations. A domination
location is considered to be owned by the team of the last player that touched it, and
UT scores teams by assigning one point every four seconds to the team that controls
each location. A domination game ends when one team scores a predetermined num-
ber of points and is declared the winner. Because there are typically multiple domina-
tion locations on each map, proper coordination of team behavior is important to win
a domination game.

Reinforcement Learning (RL)

RL is a form of machine learning that can be used in a game to allow an agent or team
of agents to learn a policy—what action to select in every perceived state of the game
world—in a potentially stochastic environment online and in real time. The goal in RL
is to arrive at an optimal policy, which maximizes the rewards that are received, through
a process of trial and error. For an overview of RL in general, see [Manslow03]. Unlike
some other learning algorithms, RL requires neither annotated training examples to
learn nor an expert to provide feedback.

In RL, interaction with the world is the only way an agent gains information: the
agent (1) senses the state of the environment, (2) chooses an action, (3) performs the
action, and (4) receives a reward or punishment [Sutton98]. For the developer of
game AI, the use of RL means that little or no time is spent in the design, coding, and
debugging of strategies nor is time spent “teaching” the AI how to behave. With RL,
time is instead spent creating the representation of the game state, called the “problem
model”—that is, how the various complexities of actual game states are abstracted
into a simpler form that RL can use. This is typically significantly easier than manu-
ally designing and coding individual and team behavior in symbolic representations,
such as scripts.

RETALIATE is an implementation of RL that is designed specifically for control-
ling teams of bots in domination games.

Reinforcement Learning for Coordinating Bots

RETALIATE focuses on controlling which domination locations team members are
sent to, so the low-level behavior of the bots in a team can be controlled by a standard
finite state machine (FSM). RETALIATE makes no a priori assumptions about what
that behavior is, which allows bots to be used as plugins. In principle, this allows the
design decisions for the team AI to be made independent of the design decisions relat-
ing to the control of individual bot behavior. Similarly, by using bots as plugins, the

608 Section 7 Learning and Adaptation

game developer can swap different bot types in and out of the game and even use bots
developed for single-player nonteam game modes in multiplayer games.

Problem Model: Definition of States and Actions

When deciding upon the problem model to use in RL, you must consider the crucial
features of the problem being addressed. For example, while the amount of ammuni-
tion remaining might be important for an individual team member, the overall team’s
strategy might safely ignore this detail. A problem model that takes into consideration
too many features of the game state can lead to a learning problem that is very diffi-
cult to solve in a reasonable amount of time. Similarly, an overly simplified problem
model leads to a system that does not play very well and can only learn the most basic
of strategies.

In RETALIATE, game states are represented in the problem model as a tuple
indicating the owner Oi of domination location i. For instance, if there are three dom-
ination locations, the state (E,F,F) describes the state where the first domination loca-
tion is owned by the enemy, and the other two domination locations are owned by
our friendly team. Neutral ownership of a domination location is also considered and
is represented by an N in the relevant location in the tuple. For 3 domination loca-
tions and 2 teams, there are 27 unique states to the game, taking into account that
domination locations are initially not owned by either team.

The addition of other features to this representation, such as the ammo of each bot
on a team, was considered, but their effect was to reduce the speed of learning without
producing an increase in the complexity of the strategies that were learned. In contrast,
not only did the simple representation produce much more rapid learning, but, as our
results show, it also contained sufficient information to develop a winning policy. Fea-
tures, such as a bot’s ammo, form part of the conditions in the FSM that controls indi-
vidual bot behavior, and the separation of parameters—those used to define team
tactics versus those used for individual bot behavior—is one of the central qualities of
RETALIATE. This separation is reminiscent of hierarchical RL but with the difference
that there is no commitment to using RL at all levels in the AI hierarchy.

In RETALIATE, states are associated with a set of team actions that tell the team
what to do. A team action is defined as a tuple indicating the individual action Ai that
bot i should take—for a team of 3 bots, a team action tuple consists of 3 individual
actions. An individual action specifies to which domination location a bot should
move. For example, in the team action (Loc1, Loc2, Loc3), the 3 individual actions
send bot1 to domination location 1, bot2 to domination location 2, and bot3 to
domination location 3, whereas in (Loc1, Loc1, Loc1), the individual actions send all
3 bots to domination location 1. If a bot is already in a location that it is told to move
to, the action is interpreted as instructing the bot to stay where it is. Individual bot
actions are executed in parallel and, for a game with 3 domination locations and three
bots, there are 27 unique team actions because each bot can be sent to 3 different
locations.

7.1 Learning Winning Policies in Team-Based First-Person Shooter Games 609

610 Section 7 Learning and Adaptation

Despite the simplicity in the representation of our problem model, it not only
proves to be effective, but it actually mimics how human teams play domination
games. The most common mistake that is made by novice players is to fight opponents
in locations other than the domination ones; these fights should be avoided because
they generally do not contribute to victories in these kinds of games. Part of the reason
is that if a player is killed away from a domination location, it will not directly affect
ownership and will not affect the score. Consequently, it is common for human teams
to focus on coordinating to which domination points each team member should go,
which is precisely the kind of behavior that our problem model represents.

The RETALIATE Algorithm

Figure 7.1.1 shows a flow diagram of RETALIATE. RETALIATE is designed to run
across multiple game instances so that the policy, and therefore the RETALIATE-
controlled team, can adapt continuously to changes in the environment while keeping
track of what was learned in previous games. Such changes might be changes in
RETALIATE’s own team (e.g., wielding new weapons), changes in the opponent team
(e.g., changes in tactics), or changes in the game world (e.g., a new map).

Init./restore state-
action table & initial

state

Begin Game

Observe State

Choose

Random applicable
action

Applicable action
with max value in
state-action table

Execute Action

Calculate reward &
update state-action

table

Probability ε Probability 1 – ε

Game Over?

No Yes

FIGURE 7.1.1 A flow diagram of the RETALIATE
algorithm.

RETALIATE is controlled by two parameters: ε, and α. ε is known as the
epsilon-greedy parameter and controls the tradeoff between exploration and exploita-
tion by setting the rate at which the algorithm selects a random action rather than the
one that is expected to perform best. α is referred to as the step size parameter and
influences the rate of learning. For our case study, we found that setting ε to 0.1 and
α to 0.2 worked well.

The particular form of RL that is used in RETALIATE uses a Q-table that maps
pairs of states s and actions a to a value Q(s,a), which represents the expected reward

that will be received for taking action a in state s. RETALIATE starts by either initial-
izing all entries in the Q-table with a default value, which was 0.5 in our case study, or
by restoring the Q-table from a previous game. A new game is then started, and the
game state representation s is initialized to each domination location having neutral
ownership (N,N,N).

The following computations are iterated through until the game is over. First, the
next team action to execute, a, is selected using the epsilon-greedy parameter; this
means that a random team action is chosen with probability ε, or the team action
with the maximum value in the Q-table for state s is selected with probability 1 – ε.
By stochastically selecting actions, we ensure that there is a chance of trying new
actions or trying actions whose values are less than the current maximum in the
Q-table. This is important to ensure that RL experiments with a wide range of behav-
iors before deciding which is optimal.

The selected action a is then executed, and the resulting state s' is observed. Each
bot can either succeed in accomplishing its individual action or fail (e.g., the bot is
killed before it could reach its destination). Either way, executing a team action takes
only a few seconds because the individual actions are executed in parallel. Updates to
the Q-table occur when either all individual actions have completed (whether success-
fully or unsuccessfully), or domination location ownership changes because of the
actions of the opposing team.

Next, the reward for the new state s' is computed as the difference between the
utilities in the new state and the previous state s. Specifically, the utility of a state s is
defined by the function U(s) = F (s) – E (s), where F (s) is the number of friendly dom-
ination locations, and E (s) is the number that are controlled by the enemy. This has
the effect that, relative to team A, a state in which team A owns two domination loca-
tions and team B owns one has a higher utility than a state in which team A owns only
one domination location and team B owns two. The reward function, which deter-
mines the scale of the reward, is computed as R = U (s') – U (s).

The calculated value of the reward R is used to perform an update on the Q-table
entry Q(s,a) for the previous state s in which the last set of actions a were ordered.
This calculation is performed according to the following formula, which is standard
for computing the entries in a Q-table in temporal difference learning [Sutton98]:

Q(s, a) ← Q(s, a) + α (R + γ maxa' Q(s', a') – Q(s, a))

In this computation, the entry in the Q-table for the action a that was just taken
in state s, Q(s,a), is updated. The function maxa' returns the value from the Q-table of
the best team action that can be performed in the new state s', which is simply the
highest value associated with s' in the table for any a'.

The value of γ, which is called the discount factor parameter, adjusts the relative
influences of current and future rewards in the decision-making process. RETALI-
ATE diverges from the traditional discounting of rewards by setting γ equal to 1 so
that possible future rewards are as important in selecting the current action as rewards
that are available immediately. Initially, we set γ < 1 to place more emphasis on imme-

7.1 Learning Winning Policies in Team-Based First-Person Shooter Games 611

diate rewards but found that the rate of adaptation of RETALIATE was slower than
when γ was set to 1. In general, however, care should be taken when setting γ to 1 as
doing so can prevent RL from converging.

Case Study

We performed a series of experiments that were designed to assess the effectiveness of
RETALIATE in controlling a team of UT bots in a domination game. Our methodol-
ogy, and the results that we were able to obtain, are described in the following sections.

Overall System Architecture

To experiment with RETALIATE, we integrated with UT using the approach shown
in Figure 7.1.2. The RETALIATE-controlled team’s and an opposing team’s decision
systems interfaced with the UT game engine through the GameBots API. GameBots
serves as middleware between the decision systems and the UT game engine [Game-
bot07] and allows UT to be controlled over a network. GameBots connects to a UT
server, which sends it information about the game state. The decision systems process
this information to decide what actions the bots should take, and GameBots sends the
corresponding instructions back to the UT server. Both of the decision systems, the
one controlling the RETALIATE team and the one controlling the opposing team,
are built independent of the AI controlling the behavior of the individual bots, which
therefore work as “plugins” that can easily be changed.

612 Section 7 Learning and Adaptation

UT

GameBots API

RETALIATE

Plug-in Bot Plug-in Bot Plug-in Bot

Opponent Team

Plug-in Bot Plug-in Bot Plug-in Bot

FIGURE 7.1.2 The data flow between the systems used in the experiments.

To ensure fairness in the experiments, both RETALIATE and its opposing teams
used bots with the same FSM. This guaranteed that any performance differences that
were observed were the result of the team strategies rather than of individual bot behav-
ior. We took as our starting point for the experiments the bots that were readily available
in the GameBots distribution and made some enhancements to them. The behavior
encoded in the FSMs of these enhanced bots had the following basic functionality:

• At any point in time, a bot is performing a single task (e.g., going to location X).
• If, while performing the task, the bot encounters items that it needs, it will pick

them up.
• If the bot encounters an opponent, it will engage them and continue with its

original task when they have been eliminated.

Note that the these behaviors are independent of team strategies, allowing for
modular design of the AI.

The Opponents

The teams that competed against RETALIATE in the experiments that we performed
were controlled according to the following strategies:

Opportunistic Control: Did not coordinate team members whatsoever and moved
bots randomly from one domination location to another. If a location was under
the control of the opposing team when a bot arrived, it captured it.

Possessive Control: Assigned a different location to each bot. The bots attempted
to capture their respective locations and hold them for the whole game.

Greedy Control: Attempted to recapture any location that was taken by the
opponent. If more than one location needed to be recaptured, bots were
assigned to them randomly.

HTN control: Used the HTN team environment described by Hoang [Hoang05],
which makes use of a hierarchical task network (HTN) planning techniques.
HTN control kept track of the state of a game, and when it changed dramatically,
HTN planning techniques were used to (dynamically) generate a new strategy.

HTN control was able to consistently defeat the other three control strategies and
hence was expected to be the most difficult for RETALIATE to beat.

Performance Results

We ran several domination game experiments, pitting a single RETALIATE team
against a single opposing team. Games were played until one team had accumulated
50 points. Their durations varied but averaged around five minutes, and the number
of updates to the Q-table per game was typically in the region of 150. Five tourna-
ments of three games each were played against each opponent. At the beginning of
each tournament, RETALIATE started untrained (i.e., all entries in the Q-table were
initialized to the same value of 0.5), but the values of the entries in the Q-table were
retained between games within each tournament so that learning would continue
from one game to the next.

Against the opportunistic, possessive, and greedy control strategies, RETALIATE
won all three games in each tournament. Furthermore, within the first half of the first
game, RETALIATE developed a competitive strategy. This was observed by comput-
ing the slope of the curve that represents the difference in scores between the RETAL-
IATE team and the opposing team. When the slope was near zero, both teams were

7.1 Learning Winning Policies in Team-Based First-Person Shooter Games 613

accumulating points at approximately the same rate, and the performance of the
RETALIATE team was competitive with that of the opposing team. Because a win-
ning strategy was developed in the first game, and the opposing teams have no
dynamic behavior, RETALIATE led the second and third games from the outset.

As expected, the competition against the HTN-controlled team was very close.
RETALIATE was sometimes able to develop a competitive strategy within the first
game of a tournament, although it also sometimes lost the first game. The RETALI-
ATE team usually won the second and third games, however, and a winning strategy
that the HTN team could not successfully counter was usually discovered roughly
one-quarter to one-half of the way through the second game. The results of a typical
pair of games against the HTN team are shown in Figure 7.1.3. The first game, which
is shown in the first graph in the figure, was very close, and the difference in the final
scores was only 2 points. In the second game, which is shown in the second graph,
around the first quarter of the game, RETALIATE started winning, and by the end of
the game, RETALIATE had more than a 10-point advantage over the HTN team.

614 Section 7 Learning and Adaptation

-10

0

10

20

30

40

50

1 21 41 61 81 101

Time (score updates)

S
co

re

RETALIATE

HTN team

Difference

0

10

20

30

40

50

1 21 41 61 81

Time (score updates)

S
co

re

RETALIATE

HTN Team

Difference

FIGURE 7.1.3 Graphs of score versus time for two successive games between
the RETALIATE and HTN teams. The first game, which is shown in the first
graph, is very close, as shown by the difference between scores hovering around
zero. RETALIATE discovers a winning strategy roughly a quarter of the way
through the second game, which is shown in the second graph.

To see how RETALIATE would cope with changing opponent strategies, we ran a
study of 5 tournaments of 10 games. As before, the entries in the Q-table were reinitial-
ized at the start of each tournament but retained between the individual games within
them. During each tournament, games were successively played against the opportunis-
tic, possessive, and greedy opponents. Table 7.1.1 shows the average number of points
by which RETALIATE beat each opponent during the tournaments and shows that it
was able to perform well even when the opposing strategy was continually changing.

Table 7.1.1 The Average Difference in the Final
Scores of RETALIATE and Its Opposing Teams
Across 5 Tournaments of 10 Games Apiece.

Team Difference in Final Score

Opportunistic 13
Possessive 20
Greedy 25

In each game of each tournament, the opposing team was selected by round-
robin selection over the opportunistic, possessive, and greedy teams. Each game was
played to a maximum of 50 points.

The competitiveness of the HTN team in our experiments shows that such
dynamic, symbolic, nonlearning AI can be effective. However, RETALIATE was still
eventually able to learn a winning strategy, which shows the importance of using
online learning techniques to provide maximum adaptability. Furthermore, RETALI-
ATE was able to learn winning strategies against a new opponent, even when it had
previously learned to play against a completely different one. This suggests that a
game could be shipped with a RETALIATE-style AI that had already learned to play
against the most common strategies and could still adapt to new strategies that it
encountered after release.

Sample Learned Strategy

Regardless of which team RETALIATE was playing against, it always converged toward
a strategy that aimed to maintain control of two of the three domination locations that
were closest to each other. There were several variations on how this strategy was enacted
depending upon the opposing team, but RETALIATE typically assigned bots to the two
domination locations that were closest together and made the third bot patrol between
them.

We speculate that this strategy was, in part, caused by the behavior of the FSM
that was controlling the bots. Specifically, the FSM made the bots fight whenever they
encountered an enemy, and because domination games are more about geographic
control than frags, the only times this aggressive behavior was useful was when the

7.1 Learning Winning Policies in Team-Based First-Person Shooter Games 615

enemy was between two friendly dominated locations or when an enemy approached
a location that was controlled by the RETALIATE team. RETALIATE therefore
learned a strategy that maximized the utility of the fixed behavior of the FSMs.

Demo on CD-ROM

Included on the CD-ROM are two video demos that show the early and late stages of
a domination game, before and after RETALITATE learned a winning strategy. The
field of view of members of the RETALIATE team are represented by red cones, and
those of members of the opposing team are represented by blue cones. The three
domination locations on the map are represented by solid points of either red or blue
depending upon whether they are controlled by RETALIATE or the opposing team.
The first video shows that, early in the game, RETALIATE simply clustered its bots
around a single domination location, whereas the second shows that it later learned to
control the two that were closest to each other. The full source code of RETALIATE
is available at www.cse.lehigh.edu/~munoz/projects/RETALIATE/.

Conclusion

In this article, we have described an adaptive domination game team AI called RETAL-
IATE. From our work with RETALIATE, we learned that it is beneficial to separate
individual bot behavior from team behavior because doing so dramatically simplifies
the learning problem, producing more rapid and reliable adaptation and offering
greater flexibility through the use of individual bot AI as plugins. We also learned that
it is important to develop a simple problem model to produce a system that can learn
quickly, and we have shown that such a model exists that can facilitate rapid real-time
learning of effective team strategies in UT domination games.

Acknowledgements

This research was in part supported by the National Science Foundation (NSF
0642882) and the Defense Advanced Research Projects Agency (DARPA).

References

[Gamebot07] Gamebot. Available online at http://www.planetunreal.com/gamebots/,
June 14, 2007.

[Hoang05] Hoang, H., Lee-Urban, S., and Munoz-Avila, H., “Hierarchical Plan Rep-
resentations for Encoding Strategic Game AI.” Proceedings of Artificial Intelligence
and Interactive Digital Entertainment Conference (AIIDE-05), AAAI Press, 2005.

[Manslow03] Maslow, J., “Using Reinforcement Learning to Solve AI Control Prob-
lems.” AI Game Programming Wisdom, Vol. 2, Charles River Media, 2003.

[Sutton98] Sutton, S., and Barto, A. Reinforcement Learning: An Introduction. MIT
Press, 1998.

616 Section 7 Learning and Adaptation

http://www.cse.lehigh.edu/~munoz/projects/RETALIATE/
http://www.planetunreal.com/gamebots/

617

7.2

Adaptive Computer Games:
Easing the Authorial Burden
Georgia Institute of Technology

Manish Mehta
mehtama1@cc.gatech.edu

Santi Ontañón
santi@cc.gatech.edu

Ashwin Ram
ashwin@cc.gatech.edu

Game designers usually create AI behaviors by writing scripts that describe the
reactions of game agents to all imaginable circumstances that can occur within

the confines of the game world. The AI Game Programming Wisdom series of books
[Rabin02, Rabin04] provides a good overview of the scripting techniques that are
currently used in the games industry. Despite its popularity, scripting is difficult, and
the behaviors it generates are often repetitive or fail to achieve their desired purpose.

Behavior creation for AI game agents typically involves generating behaviors and
then debugging and adapting them through experimentation. This is typically a com-
plex and time-consuming process that requires many iterations to achieve the desired
effects. In this article, we present techniques that provide assistance with, and improve
the efficiency of, this manual process by allowing behaviors to be learned from
demonstrations and then automatically adapted if they are found wanting at runtime.

Overview

Figure 7.2.1 provides an overview of the architecture that we have developed for
assisting in the development, and facilitating the adaptation of, game AI. The archi-
tecture contains two core functional components that perform behavior learning and
behavior adaptation.

In the behavior learning process, developers specify the required AI behaviors by
demonstrating them instead of explicitly coding them. The system observes these
demonstrations, automatically learns behaviors from them, and stores them in the
behavior library. At runtime, the system retrieves appropriate behaviors and revises
them according to the current game state.

In the behavior adaptation process, the system monitors the performance of
behaviors that are executed at runtime. It keeps track of the status of the executing
behaviors, infers from their execution trace what, if anything, might be wrong with
them, and adapts them after the game is over. This approach allows the AI to reflect
on potential problems in the learned behaviors and revise them in response to things
that went wrong during the game.

These techniques allow non-AI experts to define behaviors by demonstration that
can automatically be adapted to different situations, thereby reducing the develop-
ment effort that is required to address all contingencies that might occur in a complex
game.

The following sections describe the behavior learning and adaptation processes in
more detail and present the design of a behavior representation language that can sup-
port the automated reasoning required within the system. We will also show how the
techniques can be applied in the domain of the real-time strategy game Wargus, which
is an open source version of Warcraft II.

Behavior Representation Language

The fundamental constituent of any behavior language is the behavior. To support
automatic reasoning, a behavior must have two main parts: a declarative part that tells
the AI what the behavior does, and a procedural part that contains the executable code

618 Section 7 Learning and Adaptation

Behavior Library

Expert
Trace

Expert
Trace

Expert
Trace

Behavior
Learning Behavior

Behavior

Behavior

Behavior
Adaptation

GAME

Flawed
Behavior

Fixed
Behavior Trace

Behavior

FIGURE 7.2.1 Overview of an automatic behavior learning and
adaptation architecture.

of the behavior. Let’s present a particular definition of a language called the Behavior
Representation and Reasoning Language (BRL). BRL allows the developer to define
three kinds of declarative information: goals, context, and alive conditions.

• A goal is a representation of the intended aim of a behavior, and, for each domain,
an ontology of possible goals is defined. For example, a behavior might have the
goal of “building a tower.” The goal is the only declarative information that is
mandatory for the techniques presented in this article.

• Context is information that encodes the circumstances under which the behavior
makes sense. In BRL, two kinds of context information can be defined:

Preconditions: Conditions that must be true to execute the behavior. For
example, an “attack” behavior might have as its preconditions the existence of
an army and an enemy.

Game state: A more general definition of context that specifies a particular
game state in which the behavior is appropriate; if the current game state is
dissimilar to the specified game state, then the behavior is likely to be less
applicable.

• A set of alive conditions is a representation of the conditions that must be satisfied
during the execution of a behavior for it to succeed. If these alive conditions are
not met, the behavior is stopped because it will not achieve its intended goal. For
example, the peasant in charge of building a farm must remain alive for the entire
time it takes for the farm to be built; if he is killed, the farm will not be built.

BRL does not require the developer to define all of these pieces of information, but
the more information that is provided, the better the AI will understand the behaviors
that are available to it. The procedural part of a behavior consists of executable script,
and, as with any script in game AI, it is necessary to define two additional elements:

• Sensors are the variables that are used to represent the game state. For example, we
might define a sensor called path(x,y) that allows a script to verify whether there
is a path between locations x and y.

• Actions are the actions that our scripts can perform in the game world. In our imple-
mentation, we use all the possible actions available to a human player of Wargus,
so we have actions such as build(unit,x,y,building-type) and move(unit,x,y).

Our current implementation uses a common way to define sensors, preconditions,
and alive conditions because all our sensors are Boolean (although our approach can be
easily extended to non-Boolean sensors). At the implementation level, global classes
called Condition and Sensor are defined that contain test functions that check whether
the condition is satisfied or whether a sensor has fired based on the current game state.
By extending the classes for each different condition or sensor, different types of condi-
tions and sensors can be defined. For Wargus, we defined a variety of subclasses:

7.2 Adaptive Computer Games: Easing the Authorial Burden 619

BuildingComplete(unitID)

Gold(minGold)

UnitExists(UnitID)

And(condition1, condition2)

Not(condition)

A goal is a particular task that can be achieved in a given domain. For example, in
the Wargus domain, possible goals are win the game, build a base, gather resources,
and so on. To represent such goals, we need to define a goal ontology, which is nothing
more than a collection of possible goals. If there are relationships between goals, the
ontology might also describe them so that the system can reason about them, but, for
the purposes of this exposition, we will consider the goal ontology to be a plain list of
goal names. Goals might have parameters associated with them so that, for example,
we can define the goal BuildBuilding(type), which requires the type of building to
be constructed to be specified. For our Wargus implementation, we used the following
goal ontology:

WinWargus(playerToWin)

DefeatPlayer(playerToDefeat)

BuildUnits(player,unitType,number,x,y)

GetResources(player,gold,wood,oil)

KillUnit(player,unitID)

KillUnitType(player,enemyPlayer,unitType)

Research(player,researchType)

ResourceInfrastructure(player,nFarms,nPeasants)

In addition to the names and parameters of each goal, the AI needs a way to ver-
ify if a particular goal has been achieved. Thus, a simple way to implement goals is by
defining a Goal class, extending that class for each different goal type that we want to
define, and implementing a function called generateTest that returns a Condition
(built using the Condition or Sensor classes that were described earlier) that is capable
of testing whether the goal has been achieved. Behaviors can also contain subgoals
that must be completed by executing some other behavior. When a behavior contain-
ing a subgoal is executed, the AI will identify the behavior best suited to satisfying the
subgoal based on the nature of the subgoal and the context of any other behaviors that
are also being executed. This process is explained in detail later. The source code on
the companion CD-ROM includes a demo and the definition of our goal ontology.

Behavior Learning from Human Demonstrations

Automatic behavior learning can be performed by analyzing human demonstrations.
The techniques presented in this section differ from the approaches of classical machine
learning, which require lots of training examples, because these techniques can learn
behaviors from a single demonstration using a process of manual annotation. Annota-
tion involves a human expert providing the AI with information regarding the goal
being pursued for every action that is performed during a demonstration. Annotated

620 Section 7 Learning and Adaptation

demonstrations contain much more information than ones without annotation and
allow our system to automatically extract behaviors.

Let’s examine the annotation and behavior learning processes in more detail. The
output of a human demonstration is an execution trace, which is a list of the actions
that the human performed during the demonstration. The annotation process simply
involves labeling each action in the trace with the goals that the player was pursuing
when the player performed the action. This process might seem tedious but can be
automated in several ways. For example, the approach we used was to develop a tool
that loads the demonstration and allows an expert to associate groups of actions with
goals. An alternative and better approach is to develop a tool that runs alongside the
game that allows the player to select the goals he is pursuing in real time, thereby pro-
viding an annotated trace at the end of the game.

To learn behavior, the system analyzes an annotated trace to determine the tem-
poral relations between the individual goals that appear in the trace. The left side of
Figure 7.2.2 shows a sample annotated trace that shows the relationships among
goals, such as “the goal g2 was attempted before the goal g3” or “the goal g3 was
attempted in parallel with the goal g4.” The analysis that is needed to detect the tem-
poral ordering is based on a simplified version of the temporal reasoning framework
presented by Allen [Allen83], where 13 different basic temporal relations among
events were identified. For our purposes, temporal reasoning helps to figure out if two
goals are being pursued in sequence, in parallel, or if one is a subgoal of the other.

7.2 Adaptive Computer Games: Easing the Authorial Burden 621

g5, g1a902016

g5, g1a801705

g4, g1a701581

g3, g1a601457

g4, g1a501442

g3, g1a401126

g2, g1a30897

g2, g1a20798

g2, g1a10137

AnnotationsActionPlayerCycle

g5, g1a902016

g5, g1a801705

g4, g1a701581

g3, g1a601457

g4, g1a501442

g3, g1a401126

g2, g1a30897

g2, g1a20798

g2, g1a10137

AnnotationsActionPlayerCycle

Annotated Trace
Game

State 137
Goal g2

Sequence {
a1
a2
a3

}

Game
State 1126

Goal g3

Sequence {
a4
a6

}

Game
State 1442

Goal g4

Sequence {
a5
a7

}

Game
State 1705

Goal g5
Sequence {
a8
a9

}

Game State 137

Goal g1
Sequence {
Subgoal g2;
Parallel {

Subgoal g3;
Subgoal g4;

}
Subgoal g5;

}

2 3

1

4

5

FIGURE 7.2.2 Illustration of five behaviors being extracted from a sample annotated trace.

For example, we assume that if the temporal relation between a particular goal g
and another goal g' is that g happens during g', then g is a subgoal of g'. For example,
in Figure 7.2.2, g2, g3, g4, and g5 happen during g1; thus they are considered to be
subgoals of g1. In this example, we could imagine that g1 means “WinWargus,” and

g2 to g5 are individual steps that are required to win the game, such as “build a base,”
and so on. Notice that each action can be annotated with more than one goal, and
that, in principle, all the actions should be annotated at least with the top-level goal,
which is “WinWargus” in the Wargus domain.

From the temporal analysis, procedural descriptions of the behavior of the expert
can be extracted. Figure 7.2.2 shows that five behaviors were extracted from the exam-
ple trace. Each of these behaviors consists of three parts: the game state, a goal, and
the behavior itself. For example, behavior number 1 can be extracted, specifying that
to achieve goal g1 in the game state at game cycle 137, the expert first tried to achieve
goal g2, then attempted g3 and g4 in parallel, and pursued g5 after that. Then, a sim-
ilar analysis is performed for each one of the subgoals, leading to four more behaviors.
For example, behavior 3 states that to achieve goal g2 in that particular game state,
basic actions a4 and a6 should be executed sequentially. Notice that preconditions or
alive conditions cannot easily be extracted from the annotated trace, so we simply
leave them blank.

In our system, we do not attempt any kind of generalization of the expert’s
actions; if a particular action is Build(5,”farm”,4,22), it is stored in exactly that form
without any modifications. When the learned behavior is used to play a new scenario
in Wargus, it is likely that the particular values of the parameters in the action are not
the most appropriate (the coordinates 4, 22 might correspond to a water location, for
example). There are two possible ways to solve this problem. The first is to generalize
behaviors and simply store, for example, that a farm has to be built and then hand-
craft code to select the best location for it. The second, and the one we used, is to
apply a simple revision process based on the Case-Based Reasoning (CBR) paradigm.
CBR is a technique [Aamodt94] that is based on reusing previously found solutions
to solve new problems. Following that approach, the system stores the actions without
any modifications and, at runtime, when the behaviors have to be executed, they are
revised as necessary. The following section explains this process in detail.

Learned Behavior Execution

A BRL that supports automatic behavior learning and adaptation is much more pow-
erful than a standard behavior language; subroutine calls are replaced with subgoals,
and a behavior revision process is used at runtime. Let’s look at these two factors,
which change the execution of behaviors, in more detail. Initially, the system is started
by defining an initial goal, which, in the Wargus domain, is simply “WinWargus.”
The system retrieves a behavior for this initial goal from the behavior library; the
behavior library provides a behavior that has a similar goal and a similar context to the
current game state. The selected behavior is associated with the initial goal. If the
selected behavior has any subgoals, the system recursively performs the same process
of retrieving appropriate behaviors for them but only when the subgoals need to be
executed and hence dynamically expands the plan at runtime. Each time an action is

622 Section 7 Learning and Adaptation

ready to be executed, it is sent to the revision subsystem to adapt it for the current
game state.

The following sections consider the processes of behavior retrieval, plan expan-
sion, and behavior revision in more detail.

Behavior Retrieval

When the system needs to find a behavior for a particular goal in a particular game
state, it performs a two-step process. First, the system selects all the behaviors whose
preconditions are satisfied and then looks for the behavior with the most similar goal
and game state. To do so, similarity metrics among goals and among game states need
to be defined. To assess the similarity between game states, a set of features that repre-
sent the essential characteristics of the game state must be computed. These features
should capture the key elements in the game that a player would consider to decide
which actions to perform next. In the Wargus domain, we have defined 35 features
that represent the terrain, the number and composition of each player’s military force,
the buildings they have constructed, and the resources that are available to them. To
compute the similarity between 2 game states, we compute the values of their 35 fea-
tures and measure the Euclidean distance between them.

Assessing similarity between goals is a bit trickier. A simple approach would be to
assess the similarity between goals of different types to be zero and calculate similarity
between goals of the same type using the Euclidean distance between the parameters
of the goals. This simple similarity computation can be enhanced by making use of
the ontology by defining a base distance between goal types that represents their
difference and combining that with the distance that is computed based on their para-
meters. For example, we might decide that the goal “DefeatPlayer” is more similar to
“WinWargus” than to “GatherResources.” After the game state and goal distances
have been computed, they are simply averaged, and the behavior with the highest
average similarity is retrieved as the most appropriate. The underlying assumption
behind the similarity calculation is that the retrieved behavior should be the one with
the most similar goal that was learned in the most similar game state.

Plan Expansion

The plan expansion module is in charge of maintaining the current plan, which con-
sists of the current goals and the behaviors that are associated with them. Our current
implementation is based on the execution module of the A Behavior Language (ABL)
[Mateas2002], with which BRL shares some ideas. The current plan is represented as
a partial goal/behavior tree, which we simply refer to as the plan. The plan is a tree
composed of two types of nodes: goals and behaviors. Initially, the plan consists of the
single goal “WinWargus.” The plan expansion module requests a behavior for that
goal form the behavior library. The resulting behavior might have several subgoals, for
which the plan expansion module will recursively request behaviors at runtime. For

7.2 Adaptive Computer Games: Easing the Authorial Burden 623

example, the right side of Figure 7.2.3 shows a plan where the top goal is to “Win-
Wargus.” The behavior assigned to the “WinWargus” goal has three subgoals, namely
“build base,” “build army,” and “attack.” The “build base” goal has a behavior
assigned to it and contains no further subgoals. The rest of the subgoals still don’t have
a behavior assigned to them and hence are described as being open.

Open goals can either be ready or waiting. An open goal is waiting unless all the
behaviors that had to be executed before it have succeeded, in which case, it is ready.
For example, in Figure 7.2.3, “behavior 0” is a sequential behavior, and therefore, the
goal “build army” is ready because the “build base” goal has already succeeded and
thus “build army” can be started. However, the goal “attack” is waiting because
“attack’’ can only be executed after “build army” has succeeded.

624 Section 7 Learning and Adaptation

Current Plan

ready waiting

Planning
and

Execution

WinWargus

Build
Base

Build
Army Attack

Behavior 0

Executing

Behavior 1

succeeded
Execution

Plan
Expansion

Wargus

action

Update planfeedback

actions

open
goals

new
behaviors

game
state

FIGURE 7.2.3 Illustration of how the plan expansion module maintains the current plan.

As mentioned earlier, behaviors might contain basic actions that represent the
actions that can be performed in the game. When a behavior needs to execute a basic
action, the action is first sent to the Revision Module, which will revise its parameters
to make them better suited to the current game state. After the action is revised, it is
sent to the game engine for execution.

The plan expansion module also monitors the execution of behaviors. If a behav-
ior has alive conditions, it checks them periodically, and the behavior is cancelled if its
alive conditions are not satisfied because it has no further chance of succeeding.
Moreover, because the plan expansion module knows the goal that is associated with
a particular behavior, the goal is checked after the behavior completes to verify that
the behavior succeeded. Notice that knowing the goal that a particular behavior is try-
ing to achieve allows the AI to properly assess whether the behavior was successful or
not. A classical scripting language does not allow for the definition of the goals of
behaviors, so a classically scripted AI will not know whether a behavior has succeeded
and has no basis on which to adapt its behaviors.

If a behavior fails, the subgoal that is associated with it will be considered open,
and the plan expansion module will attempt to find another behavior to satisfy it. To
prevent the system from indefinitely trying to satisfy a subgoal, we limited the num-
ber of different behaviors it can try to three. If this maximum number of retries is
reached, and the goal has not been satisfied, then the subgoal is considered to have
failed, and the failure is propagated one level up so that the behavior of which the sub-
goal was a part is also considered to have failed. An additional consideration when
implementing such plan expansion systems is that if we allow parallel behaviors
(behaviors that can spawn subgoals in parallel or that can execute basic actions in par-
allel), we might have two parallel subtrees in the plan that can potentially interfere
with each other. One way of handling this problem is to ignore it and assume that the
expert who generated the demonstrations used two behaviors in parallel because they
can always be executed in parallel without interference. This approach has the disad-
vantage that it makes an assumption that might not always be correct.

An alternative approach is to make the plan expansion module responsible for
maintaining the consistency of the plan. Each behavior uses a set of resources, which
takes the form of spatial resources on the map (such as squares occupied by individual
troops), simulated resources (such as gold and oil), and in-game objects (such as indi-
vidual buildings or troops). The plan expansion module has to make sure that no two
behaviors that are executing in parallel use the same resource. In our Wargus imple-
mentation, we have created a simple version of this that only considers troops as
resources and does not consider more complex resource conflicts, such as where two
behaviors try to use the same map space. This issue should be addressed to make the
system more robust; however, we found that in our implementation this was not nec-
essary for the system to play at an acceptable level.

Behavior Revision

The behavior revision process is implemented as a series of rules that are applied to
each one of the basic actions that comprise a behavior so that they can be performed
in the current game state. Specifically, we have used two revision rules in our system:

Unit revision: Each basic action sends a particular command to a particular unit,
but when a behavior is applied to a different map, the particular unit that the
behavior refers to might not correspond to an appropriate unit or such a unit
might not even exist. Thus, the unit revision rule tries to find the most similar
unit to the one that is specified in the action. To do this, each unit is
characterized by a set of five features: owner, type, position, hit points, and
status. Status indicates whether it is idle, moving, and so on. The most similar
unit, as measured by the Euclidean distance between the unit’s feature vector
and the feature vector of the required unit, is assigned the required action.

Coordinate revision: Some basic actions, such as move and build commands, make
reference to particular coordinates on a map. To revise such coordinates, the

7.2 Adaptive Computer Games: Easing the Authorial Burden 625

revision module gets (from the context information of the behavior) a 5 × 5
window of the map centered on where the action was performed. It then looks
at the current map for a similar spot and uses those coordinates for the action.
To assess the similarity of two windows, we can simply compare how many of
the cells within them are identical. We found that assigning more weight to cells
closer to the center (e.g., a weight of 32 to the center cell, a weight of 3 to its
neighbors, and weights of 1 to the outermost cells) also produced good results.

After a basic action has been revised using the processes that have just been described,
it is sent to the game engine for execution. The process that has been described so far is
static in the sense that the same game state will always produce the same behavior. Our
system can also adapt behaviors, however, and the means for doing so will be described in
the following section.

Automatic Behavior Adaptation

Everything that has been described so far is sufficient to produce a system that can
play Wargus. However, the system as it has been described is static and suffers from
the same types of problems as if it had been hand-crafted. Even the behavior library
might not contain enough behaviors to respond intelligently to every event that
might occur in the game world, and when a behavior fails, the system has no way of
adapting. To overcome these problems, our system incorporates a reasoning layer that
can analyze failed behaviors and adapt them. One of the essential requirements for a
reasoning system that is responsible for behavior adaptation is that it must be able to
detect when adaptation should occur. BRL provides this by associating goals with
behaviors; if a behavior completes and its goal has not been achieved, the reasoning
layer knows that the current behavior library is not able to achieve its objectives and
should be modified. In addition to specifying goals, it is also possible to specify con-
straint conditions that should be satisfied during the game. For example, one of the
conditions that we defined for Wargus was that a peasant should not be idle for a sig-
nificant amount of time.

The reasoning layer consists of two components, the first of which identifies
whether behaviors have achieved their specified goals and whether constraint condi-
tions have been violated. If a behavior fails to achieve its goal or a constraint is vio-
lated, the system uses an execution trace to perform blame assignment, which aims to
identify one or more behaviors that contributed to the failure [Cox99] and need to be
changed. The execution trace records the events that occurred during the game, such
as which behaviors were started, when they were started, what the game state was,
whether they succeeded or failed, the delay between the behavior entering the ready
state and starting, and so on. To simplify the problem of reasoning about the execu-
tion trace, various data are extracted from it to produce an abstracted execution trace,
including data relating to the various units in the game (their hit points, location, sta-
tuses), combat data (when units attacked, were attacked, killed, or were killed), how

626 Section 7 Learning and Adaptation

many resources each player had gathered, and so on. Crucially, whenever a behavior
fails, the reason for the failure is recorded.

After failed behaviors have been identified, they are passed to the second compo-
nent in the reasoning layer where they are modified using a set of modification oper-
ators (called modops), which are described in the next section.

Detecting Failures from the Abstracted Trace

A modop consists of a failure pattern that is used to match a modop to the type of
failure that occurred and rules that describe how a behavior should be changed to pre-
vent the failure from happening in the future. After a modop has been applied to a
behavior, a new behavior is produced that consists of the same goal as the original
failed behavior, the game state for which the behavior was adapted, and the adapted
behavior itself. The new behavior can either be included in the behavior library along-
side the original or used as a replacement for it depending on the type and severity of
the original failure. The following are four examples of failure conditions and the
modops that are associated with them:

• Peasant idle failure detects if a peasant has been idle for a certain number of cycles,
which indicates that he is not being properly used by the existing behavior set in the
behavior library. The modops that are associated with this failure aim to use the
peasant to gather more resources or to create a building that could be needed later
on. Figure 7.2.4 shows how these modops can change the BuildBase behavior.

• Building idle failure detects whether a particular building has been idle for a cer-
tain number of cycles even though there were sufficient resources available to
make use of it. The modops that are associated with this failure aim to make use
of the free building. For example, a barracks could be used for creating footmen if
sufficient resources were available.

• Peasant attacked military units idle failure detects whether military units were idle
while peasants or buildings were under attack. One of the modops for this failure
type takes the form of inserting a basic action that issues an attack command to
offensive units.

• Basic operator failures detect when behaviors are failing due to the “preconditions,”
“alive conditions,” or “success conditions” not being met at runtime. For example,
the preconditions for a behavior that builds a farm or barracks could fail due to a
lack of resources or a peasant being unavailable to carry out the plan. Basic opera-
tor failures can be fixed by modops that add a basic action that addresses the cause
of the failure. For example, if the behavior failed due to a lack of resources, a basic
action is added to gather the required resources.

In our Wargus implementation, we currently have the four failure patterns listed
here and nine fixes. However, this could easily be expanded if necessary.

7.2 Adaptive Computer Games: Easing the Authorial Burden 627

Resulting AI Performance

To evaluate the potential of our system for creating effective AI, we performed exper-
iments on two player versions of the map “Nowhere to Run, Nowhere to Hide.” This
map separates the two players by a wall of trees down the center of the map. The dif-
ferent versions placed the town halls and goldmines in radically different locations as
well as changing the shape of the wall of trees so that, on one particular map, it was
thin enough to be tunneled through quite quickly. We recorded demonstration traces
for two variations of the map and used quite different strategies in each. In the first,
we used ballistae to fire over the trees, and in the second, we built towers to prevent
the enemy from chopping wood from them. Each of these traces contained about 50
to 60 actions and about 6 to 8 behaviors.

One interesting result of our experiments is how quickly we could produce new
AI. Specifically, to record a trace, an expert has to play a complete game (which took
about 10 to 15 minutes in the maps that we used) and then annotate it (which took

628 Section 7 Learning and Adaptation

FIGURE 7.2.4 The figure shows an adaptation to the “build base” behavior
that is made by inserting a ResourceGather(gold) basic operator. The
adaptation is carried out in response to the failure “peasant idle.”

about 5 minutes per trace). Therefore, in 15 to 20 minutes it was possible to train our
architecture to play a set of Wargus maps similar to the one where the trace was
recorded. In contrast, one of our team members took several weeks to hand-code a
strategy to play Wargus at the same level of play as our system. Moreover, our system
is able to combine several traces and select behaviors from whichever is most appro-
priate, so an expert trace does not have to be created for each individual map.

To assess the performance of our system, we used it to play 27 games against the
game’s built-in AI. In the first experiment, our system played without the behavior
adaptation module and won 17 of 27 games. Moreover, we noticed that when the sys-
tem used the behavior libraries generated from both expert traces, its performance
increased significantly; from the 9 games the system played using both expert traces,
it won 8 of them and never lost a game, tying only once. When we ran experiments
with the behavior adaptation module, we found that the system used resources more
effectively because the peasant idle fixes helped the AI collect resources more quickly.

Some of the other fixes ran into problems, however, due to weak AI decision mak-
ing at the lower levels. For example, one of the fixes was to add an attack behavior for
military units in situations where military units are idle for a significant time when
peasants or buildings are under attack. This fix tended to cause problems because the
low-level AI would move attacking ballistae too close to the enemy so that they were
quickly destroyed. This problem can be solved in two ways. First, the low-level decision
systems that are responsible for positioning the ballistae could be improved, and we are
working on adding an FSM-based tactical layer to the system for this purpose. Second,
it might be possible to create a learning component at the lower level that automati-
cally learns the appropriate parameters from the successes and failures of lower level
actions.

Discussion

The techniques that we have presented in this article have several advantages and, of
course, certain limitations. The main advantages are that they provide an easy way to
define behaviors by demonstration and a way in which behaviors can automatically be
adapted. The behavior adaptation system offers a clean way to specify domain knowl-
edge; by defining failure patterns with associated modops, the system can automati-
cally adapt any behavior. This system is also easily expandable because by adding new
failure patterns, the system is automatically able to detect them and modify any behav-
ior that might suffer from them. One of the difficulties with our approach is that the
features that are used to characterize the game states should reflect all the important
details in the game state because, if it fails to do so, the system might retrieve subopti-
mal behaviors. For example, if maps are characterized only as the percentages of them
that are covered by land and water, the system could not use different strategies on two
maps that have the same proportions of land and water even if the player and the AI
share a single island on one, but have their own islands on the other.

7.2 Adaptive Computer Games: Easing the Authorial Burden 629

Another problem arises from the fact that it is not always feasible for a player to
demonstrate what the AI should do to produce a behavior library. For example, in a
game where characters must adjust their facial expressions and body language, it
would be difficult for an expert to control every aspect of movement and gesture to
show the AI what to do. One solution to this problem could be to provide a high-level
abstracted action set to make it easier for the expert to provide a demonstration. For
example, instead of providing individual controls for all the muscles in a character’s
face and body, the expert could be provided high-level controls for mood and emo-
tion, and the underlying system would take care of the corresponding body and facial
movements. Finally, if the demonstration execution traces are long, the annotation
process could become tedious. In our experiments, annotation was easy but traces for
some other kinds of games might be more complex to annotate.

The work that has been described in this article can be taken in various directions.
First, the expert demonstrator currently has to play a complete game to provide game
traces from which the system can build a behavior library. A possible extension to this
process could be to provide the demonstrator with the ability to demonstrate only sub-
portions of the game by allowing the expert to see a performance of the learned behav-
ior library and to modify the learned behaviors by intervening at any point. The
subportions that need to be modified could be identified by the expert or suggested by
the behavior adaptation subsystem. The new demonstration could then be used as
replacements for existing behaviors or as new additions to the behavior library.

The BRL still doesn’t provide the capability to create daemons (behaviors that are
continually waiting for some condition to be true to start executing). Part of the rea-
son for this is that it’s difficult to automatically identify daemons from expert demon-
strations. One solution to this problem could be to define adaptation rules in the
behavior adaptation system that write daemons as part of fixing existing behaviors.
For example, instead of fixing the behavior library at the end of a game each time a
peasant idle failure is detected, the behavior adaptation system could create a daemon
that is always active at runtime and that detects the peasant idle condition and modi-
fies the behavior library by inserting a proper fix in the executing behavior set.

Conclusion

AI behaviors in games are typically implemented using static, hand-crafted scripts.
This causes two problems: First, it creates an excessive authorial burden where the
script author has to hand-craft behaviors for all circumstances that are likely to occur
in the game world. Second, it results in AI that is brittle to changes in the dynamics of
the game world. In this article, we have presented an approach that addresses these
issues using techniques that can dramatically reduce the burden of writing behaviors
and increase the adaptability of the AI’s behavior. We have described a behavior learn-
ing system that can learn game AI from human demonstrations and automatically
adapt behaviors at runtime when they are not achieving their intended purpose.

630 Section 7 Learning and Adaptation

References

[Aamodt94] Aamodt, Agnar, and Plaza, Enric, “Case-Based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches.” Artificial Intelligence
Communications, Vol. 7 no. 1(1994): pp. 39–59.

[Allen83] Allen, James, “Maintaining Knowledge About Temporal Intervals.” Com-
munications of the ACM, Vol. 26, No. 11 (1983): pp. 832–843.

[Cox99] Cox, Michael, and Ram, Ashwin, “Introspective Multistrategy Learning: On
the Construction of Learning Strategies.” Artificial Intelligence, Vol. 112, (1999):
pp. 1–55.

[Mateas2002] Mateas, Michael, and Stern, Andrew, “A Behavior Language for Story-
Based Believable Agents.” IEEE Intelligent Systems, Vol. 17, No. 4 (2002): pp.
39–47.

[Rabin02] Rabin, Steve, AI Game Programming Wisdom, Charles River Media, 2002.
[Rabin03] Rabin, Steve, AI Game Programming Wisdom 2, Charles River Media,

2003.

7.2 Adaptive Computer Games: Easing the Authorial Burden 631

This page intentionally left blank

633

7.3

Player Modeling for
Interactive Storytelling:
A Practical Approach
University of Alberta

David Thue
davidthue@gmail.com

Vadim Bulitko
bulitko@ualberta.ca

Marcia Spetch
mspetch@ualberta.ca

As computer graphics becomes less of a differentiator in the video game market,
many developers are turning to AI and storytelling to ensure that their title stands

out from the rest. To date, these have been approached as separate, incompatible tasks;
AI engineers feel shackled by the constraints imposed by a story, and the story’s authors
fear the day that an AI character grabs their leading actor and throws him off a bridge.

In this article, we attempt to set aside these differences, bringing AI engineers
together with authors through a key intermediary: a player model. Following an overview
of the present state of storytelling in commercial games, we present PaSSAGE (Player-
Specific Stories via Automatically Generated Events), a storytelling AI that both learns
and uses a player model to dynamically adapt a game’s story. By combining the knowl-
edge and expertise of authors with a learned player model, PaSSAGE automatically
creates engaging and personalized stories that are adapted to appeal to each individual
player.

Storytelling in Games: The Usual Suspects

To date, the vast majority of storytelling strategies in commercial video games have
used linear, branching, or player-created stories, or some combination of all three. In
this section, we discuss the advantages and disadvantages of each of these strategies
and motivate a new paradigm for both selecting and authoring story events.

634 Section 7 Learning and Adaptation

)d)c)b)a

FIGURE 7.3.1 Four common storytelling strategies: Linear (a), Branching (b), Player-
created (c), and Layered (d). Nodes represent events, solid arrows show predefined connec-
tions to subsequent events, and dashed arrows show potential player-created connections.

Linear Stories

Often favored by games in the first-person shooter (FPS) and action genres, linear sto-
ries present a highly expressive medium for game story authors (as can be seen in
games such as Half-Life and Halo). When player choices are limited to selecting which
side of a hallway to run along or which enemy to shoot first, authors can carefully
plan the precise sequence of events that the player will experience, knowing with cer-
tainty that no story-relevant alternatives can occur. This type of linear story structure
is shown in Figure 7.3.1a.

Unfortunately, this lack of alternatives severely restricts the replay value of such
games; although AI-controlled enemies might present different challenges during sub-
sequent plays, the novelty of experiencing a new, interesting story is lost after the first
play. Fans of FPS and action games might now raise the point that experiencing a com-
pelling story sits rather low among their concerns when choosing which games to play
and argue that compelling stories in such games are unnecessary. In fact, this argument
highlights an opportunity for FPS and action games to expand their appeal to a wider
audience; by allowing players to make story-relevant decisions while they play, players
who appreciate more compelling stories could be drawn into these genres.

The typical tactic for appealing to a wider audience in linear stories relies on
including events that, although appealing to some players, might greatly displease oth-
ers (such as adding puzzles to FPS games, or combat to adventure games). Given that
no alternative events exist in these stories, every player is forced to experience every
event, regardless of what they might prefer. In this article, we present a method for
authoring alternative story events that incorporates the author’s knowledge of how they

might be preferred by different types of players. By combining this knowledge with a
model of a player’s type, stories can be constructed that avoid potentially unappealing
events, and, given a large enough library of alternatives, improve the replay value of the
game when multiple event alternatives are well-suited to the player’s current type.

Branching Stories

Found most often in games in the adventure and role-playing genres (such as Star
Wars: Knights of the Old Republic), branching stories introduce a set of story-relevant
choices that allow the player to experience different sequences of events (as shown in
Figure 7.3.1b). Like linear stories, branching stories allow for highly expressive story-
telling, as each alternative sequence of events is created in a similar way to each linear
story.

Unfortunately, the number of choices that are presented to a player is typically
very small due to the cost of creating at least one alternative event (and usually many
more) for every choice that the player can make. Given this cost, the benefit of creat-
ing each alternative event (in terms of added player choices) is small, and creating a
large number of player choices is prohibitively expensive as a result. In addition, most
branching stories tend to implement a form of “foldback” scheme, wherein different
sequences of events all lead to the same event, diminishing the perceived impact of the
player’s decisions.

In this article, we propose to solve these problems by creating story events that are
generic: the details of where, when, and for whom they occur remain largely unde-
cided until runtime. By varying these details, multiple player choices can be presented
using a single generic event, greatly improving the returns gained for the work
involved in creating each event.

Player-Created Stories

In games from the simulation genre (such as Sim City and Spore), the stories that play-
ers perceive are created directly by the actions that they take and the events that they
experience. Short, self-contained sequences of game events are driven by sets of prede-
fined rules (represented by solid arrows in Figure 7.3.1c), and any two of these
sequences are related only by their proximity in the timeline of the player’s experience
(as shown by dashed arrows in Figure 7.3.1c); the occurrences of the events within
them are entirely independent of the events in other sequences. Although this strategy
affords a great deal of player choice, the stories that emerge rarely achieve the quality
of the stories that are created using the linear or branching techniques because the
rules that govern a simulation are typically insufficient to specify how events should
be sequenced to produce an entertaining story.

In this article, we present a strategy for authoring and sequencing story events
that chooses events from a sequence of libraries, each of which contains a set of events
written for a particular part of a story. By selecting events from these libraries that are
well-suited to the current player’s preferred style of play, entertaining stories can
emerge from a simulation-styled game.

7.3 Player Modeling for Interactive Storytelling: A Practical Approach 635

Layered Stories

A more recent trend for games from the RPG genre has been to combine the three
previous strategies in a layered approach; a linear or branching story is set in a simula-
tion-based world (as in games such as Fable and Oblivion). In between the events of
the main story, the player is free to roam the world, engaging in one of many optional
side-quests (as represented by dashed arrows between linear and player-created stories
in Figure 7.3.1d).

Although having the freedom to experience the substories offered by side-quests
gives players some sense of control, often the results of these side-quests have no sig-
nificant bearing on the course of the main story aside from making the player’s avatar
strong, fast, and smart enough to live to see the ending.

In this article, we attempt to improve upon the layered story approach by allow-
ing the player’s choices in every event to have an influence in adapting the story. By
learning a model of the player at runtime and using it to adapt the story, we aim to
make game stories player-specific.

Player-Specific Stories

In this section, we discuss techniques for both learning and using a representation of
the behavior, personality, or preferences of a player of a video game, in the context of
interactive storytelling. We refer to this representation as a player model, and the asso-
ciated learning problem as player modeling. Alongside descriptions of previous work,
we present our approach as a set of four techniques: (1) learning a player model, (2)
using a player model, (3) authoring generic events, and (4) telling a structured story.

Learning a Player Model

Before a game’s story can be adapted to its player, knowledge about that player must
be obtained. Although it would certainly be possible to ask each player to fill out a
questionnaire before starting to play (an approach called offline player modeling), we
prefer the less intrusive and more immersive approach of online player modeling,
which involves learning about players while they play by automatically observing their
in-game reactions to the events that occur. Although some player-modeling strategies
combine both offline and online modeling (e.g., [Sharma07]), we restrict the follow-
ing discussion to techniques that require only an online component, leaving offline
modeling as an optional addition.

Previous Work
In Mirage [SeifElNasr07], both player behavior and personality are modeled online;
mouse movements are tracked to gauge the player’s decisiveness, and the player’s
actions are used to adjust a vector of values representing tendencies toward various
traits such as reluctant hero, violent, self-interested, coward, and truth-seeker. Barber
and Kudenko have created an interactive soap opera generator [Barber07] that learns
the personality of its players by applying predefined increments or decrements to a

636 Section 7 Learning and Adaptation

vector of personality traits such as honesty, selfishness, and so on, in response to the
players’ choices.

Learning Styles of Play
The approach that we present in this article is similar to those described for Mirage and
in Barber and Kudenko’s work in that it maintains a vector of values, but we concern
ourselves with learning player preferences rather than behavior or personality. More
specifically, we chose five of Laws’ player types for pen-and-paper role-playing games
[Laws01], each of which represents a different style of play. We then model a player’s
preferences toward playing in each of those styles; this choice is similar to Peinado and
Gervás’ work on applying game mastering rules to interactive storytelling [Peinado04],
although their method of player modeling was strictly offline. The player types that we
chose were fighter, storyteller, method actor, tactician, and power gamer. For each type,
a numeric value tracks the degree to which players prefer to play in that style. Table
7.3.1 describes each type in more detail. Whereas Peinado and Gervás assume that
each player fits a single player type, we aim to model a single player as a mixture of five
player types, based on our intuition that the types are not mutually exclusive; some pri-
marily tactical players also enjoy combat, and others like complex plots.

Table 7.3.1 Player Types Used for Player Modeling

Player Type Player Preferences

Fighter Engaging in combat
Storyteller Following complex plots
Method Actor Performing dramatic actions
Tactician Solving puzzles
Power Gamer Gaining special items and skills

To learn about a player’s preferences, our PaSSAGE system leverages the expertise
and experience of game authors by incorporating their knowledge of how different
types of players might enjoy reacting to their story’s events. We refer to each potential
player reaction as a branch of the event in question because each reaction represents a
different player choice similar to those that are available in branching stories. For
example, consider the following story event:

Name: Murder
Initial Situation: Fred has been murdered in the park.

Clare is near Fred’s body, screaming for help.
The killer (Jim) is hiding in the basement of a mansion nearby.

Initial Action: Clare approaches the player and asks for help in catching the killer.

7.3 Player Modeling for Interactive Storytelling: A Practical Approach 637

Upon discovering the killer’s hideout, a player might react in one of several ways;
he might rush in headlong in a frontal assault, search around the mansion for a more
subtle solution, or make contact with the killer to hear his side of the story. By moni-
toring the different ways of performing each of these actions (such as attack initia-
tions, container inspections, or conversation initiations), the player’s choices can be
captured and used to adjust the player model. Many game scripting languages include
facilities for running code in response to player actions; in the following example, the
murderer’s OnAttacked script is used to increase the assessment of the player’s inclina-
tion toward the Fighter style of play, in addition to providing the usual response to
being attacked:

void OnAttacked(object oAttacker)

{

// increase the player’s inclination

// toward the fighter type by a lot

pmUpdateType(PM_FIGHT, PM_ADJUST_HIGH);

SpeakString(“Die!”); // shout “Die!”

ActionAttack(oAttacker)); // attack the player

}

As mentioned earlier, the player model is maintained as a vector of numbers, each
representing the player’s inclination toward playing in one of the five chosen styles of
play. Positive updates to a type’s value indicate that the player prefers that type; nega-
tive updates show that the player is less inclined to play in that style. This scheme
results in the following simple code for pmUpdateType; we simply add the update’s
value to the appropriate field of the player model’s type vector:

enum PM_Type{ PM_FIGHT, PM_STORY, PM_METHOD,

PM_TACT, PM_POWER };

const int PM_ADJUST_HIGH = 100; // large adjustment

const int PM_ADJUST_LOW = 40; // small adjustment

void pmUpdateType(PM_Type type, int value)

{

// add the adjustment to the proper type’s value

playerModel[type] += value;

}

Using a Player Model

After a model of the player’s personality, behavior, or preferences has been obtained, it
can be used to adapt the content of the story being told.

Previous Work
In Mirage [SeifElNasr07], the selection priority of each story event is adjusted based
on rules that monitor both the personality defined in the player model and the set of

638 Section 7 Learning and Adaptation

previous story events. For example, a rule might say that if event #4 is available to be
run, event #1 has already occurred, and the player has shown the “reluctant hero”
trait, then the priority of event #5 should be increased by 20 points. When several
story events are applicable in a given situation, the one with the highest priority is
chosen, thereby allowing the player model to influence the story.

The system described by Barber and Kudenko [Barber07] uses its model of the
player’s personality to predict his choices in a sequence of dilemmas that make up the
events of an interactive soap opera. By combining predefined measures of the “inter-
estingness” of each dilemma’s choices (which are independent of personality type)
together with the likelihood of each choice being made by the player as calculated
using their modeled personality type, the system presents the dilemma that has the
highest expected interestingness.

A recent version of Magerko’s Interactive Drama Architecture (IDA) [Magerko06]
uses a predefined model of player behavior to predict when player actions will fall out-
side the scope of what the story’s author intended. If such actions can be predicted far
enough in advance, IDA can employ subtle techniques to steer the player toward an
intended course of action; this is a welcome alternative to attempting to recover after a
story-invalidating action has occurred.

Unlike the work that has been described so far, Peinado and Gervás’ system
[Peinado04] was designed for more than one player. After having each player indicate
his preference toward one of Laws’ player types [Laws01], the system uses two similarity
metrics to select four events that are, respectively, the most obvious, most surprising,
most pleasing, and most challenging. It then chooses one of the four at random, ensures
that it satisfies a set of predefined rules, and then adapts its content to the current set of
players by adding elements that appeal to each of their types (such as surprise monster
attacks during a journey to appeal to fighter-style players).

Leveraging Author Experience
Similar to Peinado and Gervás’ system, PaSSAGE aims to please its players by select-
ing story events that are well-suited to their preferred styles of play. As mentioned ear-
lier, PaSSAGE leverages the authors’ knowledge of how different types of players
might prefer to react to the events that they create. For every branch of an event, a
vector of values is maintained that indicates that branch’s suitability for each of the
five player types. In the example of the murder event that was given earlier, we identi-
fied three potential player reactions; Table 7.3.2 shows how they might be annotated
by the author of the event. In the table, ticks indicate preferences toward a branch
held by the given player type, and crosses represent aversions. The number of symbols
shows the strength of the expected preference or aversion. Dashes show when players
of the given type are expected to be indifferent to a branch.

7.3 Player Modeling for Interactive Storytelling: A Practical Approach 639

Table 7.3.2 Annotations on Three Branches of the Murder Event.

Description Fighter Storyteller Method Actor Tactician Power Gamer

1. Headlong assault ���� – – � –
2. Subtle approach – – � ���� �
3. Converse with killer � � ��� ���� – –

For example, the third branch, “Converse with killer,” has been annotated to
indicate that while it will likely be preferred by storytellers and strongly preferred by
method actors, tacticians and power gamers will be indifferent to that approach, and
fighters will be averse to it.

Selecting Story Events
Given a library of story events where each event has one or more preference-annotated
branches, PaSSAGE chooses events based on a calculated measure of suitability. This
calculation is performed as follows:

To understand our reason for clamping negative values in the model to zero,
consider the following example in Table 7.3.3, where each branch’s suitability is calcu-
lated via an inner product between the author annotations on each branch and the
(unclamped) player model values.

Table 7.3.3 Branch Suitability Calculated via an Inner Product Between the Author
Annotations on Each Branch and the Unclamped Player Model Values

Player Type Player Model Branch 1 Branch 2 Branch 3

Fighter 1 4 0 –2
Storyteller 101 0 0 3
Method Actor –41 0 –1 4
Tactician 41 1 4 0
Power Gamer 1 0 1 0
Branch Suitability: 45 206 137

In this case, the model is fairly certain that the player is not a Method Actor, but
as a result, the simple inner product leads PaSSAGE to believe that Branch 2 is the
best choice. The error occurs in two places: for players who are not Method Actors,
whether or not branches are well-suited (Branch 3) or poorly suited (Branch 2) to
Method Actors is irrelevant; the other types should be considered exclusively instead.

Event Suitability= branches
author

annotat

max

iion
• clamp

player

model
, ,0 ∞⎡⎣)

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

640 Section 7 Learning and Adaptation

By clamping negative values in the model to zero, we achieve a better result, as shown
in Table 7.3.4.

Table 7.3.4 Branch Suitability Calculated via an Inner Product Between the Author
Annotations on Each Branch and the Negative Player Model Values Clamped to Zero

Player Type Player Model Branch 1 Branch 2 Branch 3

Fighter 1 4 0 –2
Storyteller 101 0 0 3
Method Actor 0 0 –1 4
Tactician 41 1 4 0
Power Gamer 1 0 1 0
Branch Suitability: 45 165 301

Steering the Player
A serious problem of game design in general lies in ensuring that players experience all
of the content that the designers intend for them to see. The usual storytelling strate-
gies solve this problem by either constraining players to a particular sequence of con-
tent and events or relying on players being persistent enough to find the content that
they enjoy (consider side-quests in layered stories, for example). While implementing
PaSSAGE, we discovered that we had the potential for a more flexible approach.
Given that we were already calculating which of a chosen event’s branches (i.e., ways
of reacting) the player would prefer, we realized that we could use that information to
direct the player to play along that particular branch: fighters could be given the pre-
text to fight, and power gamers could be tempted by the offer of a reward.

One means of achieving this sort of direction is to make the other branches of the
event impossible to experience; however, this is problematic if our model of the player
is poor because forcing the player to behave in an unnatural manner is precisely one of
the flaws of linear stories that PaSSAGE attempts to avoid. Even worse, if only one
way of behaving were available to the player, PaSSAGE would be unable to refine its
knowledge of the player’s preferred style of play. Given that players’ styles of play
might change while they play, continual learning in PaSSAGE is essential. To direct
the player while still retaining both the player’s perception of freedom and PaSSAGE’s
ability to learn the player’s style of play, we devised a strategy called hinting, which is
similar to previous work by Sharma et al. [Sharma07]. In hinting, each hint is
encoded as a slight, optional modification of the action of each story event that is
designed to subtly nudge the player toward playing out the branch that PaSSAGE
thinks is best. Continuing further with the murder example, Table 7.3.5 shows poten-
tial hints for each of the event’s three branches. By gently steering a player toward
what is hopefully his preferred style of play, PaSSAGE capitalizes on the author’s expe-
rience through the annotations on each event.

7.3 Player Modeling for Interactive Storytelling: A Practical Approach 641

Table 7.3.5 Potential Hints for Each Branch of the Murder Event

Branch Hint

1. Headlong assault Instead of waiting for the player to attack, the killer attacks the
player on sight; however, the player can still choose to start a
conversation instead of fighting back.

2. Subtle approach Clare (the witness) notices that the killer drops a key as he runs
away, and she gives it to the player. The key fits the door to the
basement that the murderer is hiding in; the key can usually be
found by searching the mansion’s main floor.

3. Converse with killer As the player approaches, the killer initiates a conversation;
however, the player can still choose to attack the killer or search
the mansion instead.

Making Decisions in General
Although selecting story events and steering the player toward expected enjoyable
behavior are two particular ways to use a player model, the potential exists to use the
player model to make story-related decisions in general. In the following section, we
present a method that takes advantage of the fact that, as we delay more and more of
the author’s decision processes to runtime, the number of decision-making opportu-
nities for player modeling will increase as well.

Expanding the Decision Space: Generic Events and Behaviors

In a previous publication, we described PaSSAGE as having three phases of decision
making when considering an event (Selection, Specification, and Refinement)
[Thue07], each designed to answer subsets of the questions “Who? What? When?
Where? Why? How?” The answers to these questions (as they pertain to a story’s events)
are typically fixed by authors long before a game is released, leading to the disadvantages
of linear and branching stories that were discussed earlier in this article. With PaSSAGE,
we aim to make the events that authors create reusable by delaying the answering of all
six of these questions to runtime. To do so, we ask authors to create story events that are,
as much as possible, independent of when, where, and for whom they occur, leaving
these details to be decided by PaSSAGE while the game is played, based on the player
model and a set of author-designed rules. For example, instead of defining our murder
event as given previously, we can abstract away its details of place and actor identity
(time has already been abstracted to enable anytime event selection):

Name: Generic Murder
Initial Situation: Someone has been murdered. Who? Where?

A witness stands near the body. Who is the witness?
The killer is hiding nearby. Who is the killer? Where is he/she?

Initial Action: The witness approaches the player for help in catching the killer.

642 Section 7 Learning and Adaptation

Along with this specification, the event’s author describes a set of conditions
(called trigger conditions) governing which of the storyworld’s characters can be selected
to play each role (victim, witness, or killer) in the event, considering their attributes,
location, and so on. Table 7.3.6 shows a set of conditions that might be desired for each
of the murder event’s roles. In this case, the author has specified that the victim must
be greater than 50 feet away from the player, the witness must be within 20 feet of the
victim, and the killer must be within 5 feet of the victim. Additionally, neither the vic-
tim nor the killer can be a child. After the murder event has been selected to occur,
PaSSAGE waits for characters in the storyworld to satisfy the event’s conditions; as
soon as they are satisfied, role passing is used to begin the event.

Table 7.3.6 Potential Trigger Conditions for Each
Role of the Murder Event

Role Condition

Victim distanceFrom(Player) > 50ft & not(child)
Witness distanceFrom(Victim) < 10ft
Killer distanceFrom(Victim) < 5ft & not(child)

Role Passing
Originally proposed by Horswill and Zubek [Horswill99] and later extended by Mac-
Namee et al. [MacNamee03], role passing refers to the practice of dynamically assigning
behaviors to intelligent agents based on their current situation. In PaSSAGE, storyworld
characters that simultaneously satisfy the trigger conditions of a selected event are
assigned roles corresponding to the conditions that they satisfy; that is, they assume the
behavior and dialogue that was authored for their role. For example, consider the
arrangements of storyworld characters in relation to the player in Figure 7.3.2a. No set of
characters currently satisfies the murder event’s trigger conditions, so nothing happens.
As soon as the highlighted character moves to the given location, however, the trigger
conditions are satisfied, and the three satisfying characters each take on their roles.

Telling a Story: Joseph Campbell’s Monomyth

To give stronger global structure to the sequence of events that it chooses, PaSSAGE
uses Joseph Campbell’s Monomyth to inform its decisions [Campbell49]. Although
originally intended as a tool for analyzing myths, the Monomyth has been used pre-
scriptively to create a number of blockbuster films (including the Star Wars and
Matrix trilogies) and helped to motivate our approach. The Monomyth describes a
heroic journey as a cycle of general phases, such as “Call to Adventure,” “Crossing the
Threshold,” and “Ordeal.” After dividing its library of events into groups correspond-
ing to each phase, PaSSAGE moves through the cycle, choosing only among the
events that are appropriate for the current phase. For a walkthrough of this process set

7.3 Player Modeling for Interactive Storytelling: A Practical Approach 643

in a storyworld based on the Little Red Riding Hood fairy tale, the reader is directed to
our previous publication [Thue07]. You might be worried that this approach is rather
wasteful: if only one of several possible events is chosen at each phase, the time spent
creating all of the other events seems to be wasted. You must realize, however, that the
Monomyth can be used as a cycle; when multiple (and perhaps coincidental) heroic
stories are told, events that are skipped in earlier iterations can occur later on.

Human User Study

To gain a better understanding of the value of using PaSSAGE to create player-spe-
cific stories, we conducted a user study wherein 90 university students played through
a short adventure based on the Little Red Riding Hood fairy tale, implemented in
BioWare Corp’s Aurora Neverwinter Toolset [BioWare07]. We compared PaSSAGE’s
stories to two prewritten plots through a postgame survey, where players gave ratings
of both “fun” (their enjoyment of the game) and “agency” (their sense of having influ-
ence over the story). We found that for female players who rated the game as being
“easy to follow,” with 86% confidence, player-specific stories had better agency, and
with 93% confidence, player-specific stories were more fun [Thue07]. Although our
study also included players who were male and players who found the game difficult
to follow, our results across all players, although encouraging, were not statistically
significant. By considering only female players who found the game easy to follow (59
out of 90 participants), we aimed to establish that this particular segment of the mar-
ket should be well-targeted by our player-specific approach. For further details, the
reader is encouraged to consult our previous work [Thue07].

644 Section 7 Learning and Adaptation

a)

V

W

K
3 ft

9 ft

53 ft

b)

FIGURE 7.3.2 The murder event’s trigger conditions are satisfied (in b) when the highlighted character
moves to the location shown in (a). Storyworld characters are circles (children are small), and the player is
the plus sign. V = Victim, K = Killer, and W = Witness.

Limitations and Future Work

In this section, we discuss the current limitations of our approach and suggest areas of
future work that lie along the path to achieving high-quality storytelling AI with the
help of a player model. The primary limitations of our approach rest in the practical
construction and effective use of PaSSAGE’s library of story events.

Building a Library of Events

For PaSSAGE to succeed in telling multiple successive stories, it must have a large
library of story events to draw on; otherwise, players might begin to find that an event
in one story is too similar to one that occurred in a story before. Although making
events generic by specifying roles, trigger conditions, and hints helps to alleviate this
problem with relatively small overhead, the burden of creating the events themselves
could make creating a large library impractical. To help solve this problem, we suggest
a model wherein players are given the opportunity to create the story events (using a
tool such as the Aurora Neverwinter Toolset). Although some might question the use-
fulness of this solution for creating content for a game’s initial release, there is some
precedent in the industry for releasing development tools to the community months
before a game is released (Neverwinter Nights 2 is a notable example). By collecting
player-created events in a professionally reviewed repository, new experiences could be
distributed to the community at little cost to the developer.

Running Out of High-Suitability Events

Although PaSSAGE’s generic events encourage reuse, care must be taken in reusing
any single event too frequently; the variations available for each event will eventually
run out. Unfortunately, restricting the reuse of events results in fewer and fewer high-
suitability events being available for selection as the story proceeds. The implementa-
tion of PaSSAGE presented in this article will exhaust the highest-suitability events
first, leaving only lower-suitability events remaining to continue the story. An alterna-
tive to this method is to include an element of pacing: intersperse lower-suitability
events with the chosen high-suitability events, extending the useful lifetime of the
library of events. Including this pacing also has the benefit of prompting PaSSAGE’s
player-modeling process to explore in its learning and adapt to changing player styles.

Conclusion

In this article, we presented PaSSAGE, a storytelling AI designed to help overcome
the limitations of existing storytelling techniques by basing its decisions on a model of
the player’s preferred style of play. We expanded the set of available storytelling deci-
sions through generic events and role passing, and suggested the Monomyth as a
viable way of achieving global story structure. Finally, we presented the current limi-
tations of PaSSAGE and suggested potential solutions, offering our vision of how
future work might proceed to achieve an ideal storytelling AI.

7.3 Player Modeling for Interactive Storytelling: A Practical Approach 645

References

[Barber07] Barber, Heather, and Kudenko, Daniel, “A User Model for the Generation
of Dilemma-Based Interactive Narratives.” Technical Report, AIIDE 2007 Work-
shop on Optimizing Player Satisfaction, Palo Alto, California, AAAI Press, 2007.

[BioWare07] BioWare Corp., “Aurora Neverwinter Toolset.” Available online at
http://nwn.bioware.com, 2007.

[Campbell49] Campbell, Joseph, The Hero with a Thousand Faces. Princeton Univer-
sity Press, 1949.

[Horswill99] Horswill, Ian D., and Zubek, Robert, “Robot Architectures for Believ-
able Game Agents.” Proceedings of the 1999 AAAI Spring Symposium on Artificial
Intelligence and Computer Games, AAAI Technical Report SS-99-02, 1999.

[Laws01] Laws, Robin, “Robin’s Laws of Good Game Mastering.” Steve Jackson
Games, 2001.

[MacNamee03] MacNamee, Brian et al., “Simulating Virtual Humans Across Diverse
Situations.” Technical Report, Computer Science Department, University of
Dublin, Trinity College, Dublin, Ireland, 2003.

[Magerko06] Magerko, Brian, “Intelligent Story Direction in the Interactive Drama
Architecture.” AI Game Programming Wisdom 3, Charles River Media, 2006.

[Peinado04] Peinado, Federico, and Gervás, Pablo, “Transferring Game Mastering
Laws to Interactive Digital Storytelling.” Proceedings of the 2nd International Con-
ference on Technologies for Interactive Digital Storytelling and Entertainment
(TIDSE 2004), Darmstadt, Germany: Springer, (2004): pp. 1–12.

[SeifElNasr07] Seif El-Nasr, Magy, “Interaction, Narrative, and Drama Creating an
Adaptive Interactive Narrative Using Performance Arts Theories.” Interaction
Studies, Vol. 8, No. 2, 2007.

[Sharma07] Sharma, Manu et al., “Player Modeling Evaluation for Interactive Fic-
tion.” Technical Report, AIIDE 2007 Workshop on Optimizing Player Satisfaction,
Palo Alto, California, AAAI Press, 2007.

[Thue07] Thue, David et al., “Interactive Storytelling: A Player Modelling Approach.”
Proceedings of the 3rd Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE), Palo Alto, California, AAAI Press, (2007): pp. 43–48.

646 Section 7 Learning and Adaptation

http://nwn.bioware.com

647

7.4

Automatically Generating
Score Functions for
Strategy Games
Universiteit Maastricht

Sander Bakkes
s.bakkes@micc.unimaas.nl

Pieter Spronck
p.spronck@micc.unimaas.nl

Modern video games present complex environments in which their AI is expected
to behave realistically, or in a “human-like” manner. One feature of human

behavior is the ability to assess the desirability of the current strategic situation. This
type of assessment can be modeled in game AI using a score function. A good score
function not only drives the decision making of the AI but also provides feedback on
the effectiveness of the playing style of human players. Furthermore, score functions
that change during gameplay can be used to implement adaptive strategies.

This article discusses our work on a means for automatically generating a score
function for strategy games. Due to the complex nature of modern strategy games, the
determination of a good score function can be difficult. This difficulty arises in partic-
ular from the fact that score functions usually operate in an imperfect information
environment. In this article, we show that machine learning techniques can produce a
score function that gives good results despite this lack of information.

Approach

Score functions can be used to rate the desirability of game states for the AI and have
a variety of applications. Such ratings can, for example, be used for the implementa-
tion of effective adaptive game AI, which has been explored with some success in pre-
vious research [Demasi02, Graepel04, Spronck04]. However, due to the complex
nature of modern video games, generating a good score function is often difficult.

This article discusses our work on automatically generating a score function for
strategy games. Our approach uses a machine learning algorithm to derive a score
function from a central data store of samples of gameplay experiences and is therefore
well suited to games that can access the Internet to upload gameplay experiences to a
central server [Spronck05], which allows the AI to be updated and for new versions to
be downloaded automatically by game clients.

In our research, we use Spring, which is a typical state-of-the-art, open source
RTS game. In Spring, as in most RTS games, a player needs to gather resources for the
construction of units and buildings. The aim of the game is to defeat an enemy army
in a real-time battle. A Spring game is won by the player who first destroys the oppo-
nent’s “Commander” unit (the gameplay mechanic and term “Commander” origi-
nated with the commercial RTS game Total Annihilation and its unofficial sequel
Supreme Commander).

In the following sections, we first discuss how to collect and represent the domain
knowledge about a strategy game in a data store and then show how to automatically
generate a score function, based on the collected data. We give a short introduction to
TD-learning (Temporal Difference learning), the machine learning technique that we
used to learn the effectiveness of different types of units in the game. We then discuss
how information on the phase of the game can be incorporated into a score function.
The results of an experimental evaluation of the performance of the generated score
function are then presented, and we describe how a score function can practically be
used in a game. We finish by providing conclusions and describing future work.

Data Store of Gameplay Experiences

We define a gameplay experience as a list of values that represent a set of observable
features of the game environment at a certain point in time. To create a data store of
gameplay experiences for Spring, we start by defining a basic set of features that play
an essential role in the game. For our experiments, we decided to use the following
five features:

• Number of units observed of each unit type
• Number of enemy units within a 2,000 radius of the Commander
• Number of enemy units within a 1,000 radius of the Commander
• Number of enemy units within a 500 radius of the Commander
• Percentage of the environment visible

Spring implements a line-of-sight visibility mechanism for each unit. This means
that the AI only has access to feature data for those parts of the environment that are vis-
ible to its own units. When the information that is available to a game’s AI is restricted
to what its own units can observe, we call this an imperfect-information environment.
When we allow the AI to access all information, regardless of whether it is visible to its
own units or not, we call this a perfect-information environment. It seems reasonable to

648 Section 7 Learning and Adaptation

assume that the reliability of a score function will be highest when it has access to per-
fect information. We therefore assume that the quality of the scores obtained using a
score function that is generated with perfect information sets an upper limit on the
quality of the scores that might be expected from using a score function that is based on
imperfect information.

For our experiments, we generated a data store consisting of three different data
sets: the first contained training data collected in a perfect-information environment,
the second contained test data collected in a perfect-information environment, and
the third contained test data collected in an imperfect-information environment.

Score Function for Strategy Games

The five aforementioned features were selected as the basis of a score function. To
allow the score function to deal with the imperfect information that is inherent in the
Spring environment, we attempted to map the imperfect feature data to a prediction
in the perfect feature data. Our straightforward implementation of this mapping is to
linearly extrapolate the number of observed enemy units to the unobserved region of
the environment. If the opponent’s units are homogeneously distributed over the
environment, the score function applied to an imperfect-information environment
will produce results close to those of the score function in a perfect-information envi-
ronment. Obviously, such a homogeneous distribution is not realistic, but when a rea-
sonably large part of the battlefield is observed, the straightforward mapping seems to
give good results.

Our score function consists of two terms, and is given by

v (p) = wpv1 + (1 – wp)v2

where wp is a free parameter that is used to determine the weight of each term vi of the
score function, which are explained in detail later, and p ∈ N is a parameter that rep-
resents the current phase of the game.

Material Strength

The term v1 in our score function represents material strength. It uses data from fea-
ture numbers 1 and 5 in the data store and is calculated using

where wu is the experimentally determined weight of unit type u, Cuo
is the number of

the AI’s units of type u, Ou1
is the observed number of the opponent’s units of type u,

and R ∈ [0,1] is the fraction of the environment that is visible to the AI. The values
wu are determined by TD-learning, as described later.

v = w C
O

Ru u

u

u
1 0

1−
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑

7.4 Automatically Generating Score Functions for Strategy Games 649

Positional Safety

The term v2 in our score function represents the safety of the current tactical position
and is designed to assess the threat to the Commander unit. In Spring, the Comman-
der is a strong and very useful unit, which the player must make good use of to win
the game. However, if the player allows the enemy to destroy it, he will lose the game.

Positional safety is computed using data from features 2, 3, 4, and 5 in the data
store as

where wr is the weight of the radius r, Or1
is the number of units belonging to the AI

that are observed by the opponent within a radius r of the opponent’s Commander,
Rri

∈ [0,1] is the fraction of the environment within radius r that is visible to the
opponent, Or0

is the observed number of opposing units within a radius r of the AI’s
Commander, D = {500, 1000, 2000}, and Rr0

∈ [0,1] is the fraction of the environ-
ment within radius r that is visible to the AI. The values of wr are experimentally
determined, as described later in this article.

TD-learning

Temporal Difference learning (TD-learning) [Sutton88] is a form of reinforcement
learning that can be used to create estimates of the utility values of game states, such
as our v (p). To achieve this, it estimates the long-term value of visiting a state by
updating the estimate of its value to make it more similar to the value of its successor
state when a state transition occurs. By repeating this procedure many times, the
information about the rewards or punishments that are associated with winning and
losing game states gradually propagate backward through the game to states that
occur much earlier.

The origins of TD-learning lie in animal learning psychology and, in particular, in
the notion of secondary reinforcers. A secondary reinforcer is a stimulus that has been
paired with a primary reinforcer, such as food or pain, and, as a result, has come to take
on similar reinforcing properties [Jonker07]. A famous example of the application of
TD-learning to game AI is the work of Tesauro on Backgammon [Tesauro92].
Tesauro’s program, TD-Gammon, was programmed with little knowledge of how to
play Backgammon and yet learned to play extremely well, near the level of the world’s
strongest grandmasters.

We used TD-learning to establish appropriate values wu for all unit types u (the
MatLab code that we used to do this is available on the CD-ROM), which is similar
to the work of Beal and Smith [Beal97] for determining piece values in chess.

v = w
O

R

O

Rr

r

r

r

rr D
2

1

1

0

0

−
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∈

∑

650 Section 7 Learning and Adaptation

Phase of the Game

Modern RTS games typically progress through several distinct phases as players per-
form research and create new buildings that provide them with new capabilities. The
phase of a game can be straightforwardly derived from the observed traversal through
the game’s tech tree. Traversing the tech tree is (almost) always advantageous, yet there
is a cost for doing so in time and game resources. In Spring, three levels of technology
are available. At the start of the game, a player can only construct Level 1 structures
and Level 1 units. Later in the game, after the player has performed the required
research, advanced structures and units of Level 2 and Level 3 become available.

Previous research performed in the Spring environment has shown that the accu-
racy of win-lose outcome predictions is closely related to the phase of the game in
which they are made [Bakkes07]. To distinguish game phases in the Spring game, we
map tech levels to game phases and distinguish between when tech levels are “new,”
and when they are “mature,” as indicated by the presence of units with a long con-
struction time. This leads us to define the following five game phases:

Phase 1: Level 1 structures observed.
Phase 2: Level 1 units observed that have a build time ≥ 2,500.
Phase 3: Level 2 structures observed.
Phase 4: Level 2 units observed that have a build time ≥ 15,000.
Phase 5: Level 3 units or Level 3 structures observed.

Experiments

To test our approach, we gathered data by pitting two game AIs against each other
and collected feature data for each player. Games were played in the mod Absolute
Annihilation v2.23. Multiple Spring game AIs are available online. We found one that
was open source, which we labeled AAI, and enhanced it with the ability to collect
feature data in a data store and the ability to disregard radar visibility so that perfect
information was available. As opposing AIs, we used AAI itself, as well as three others,
namely TSI, CSAI, and RAI. The following descriptions are based on information
provided by “neddiedrow” and “tow_dragon:”

• AAI is a configuration file-based skirmish AI developed by “Submarine,” also
known as Alexander Seizinger. It features powerful group handling, streamlined
economy management, and the ability to learn and adjust its behavior on the
basis of gameplay experiences. It can interpret zones of conflict, and the configu-
ration files allow game makers to tweak rates of expansion and production.

• TSI is a configuration file-based skirmish AI that was developed by Mateusz
Baran and Michal Urbańczyk and uses an extensive pathfinding system that is
good at finding and exploiting chokepoints on the map.

7.4 Automatically Generating Score Functions for Strategy Games 651

• CSAI was developed by Hugh Perkins as a proof of concept for a C#-based skir-
mish AI and implements an aggressive rapid “rush” strategy.

• RAI is a generalized skirmish AI developed by “Reth.” RAI features effective unit
handling of individuals and groups, rapid construction, and the ability to erect
secondary bases of operation.

Table 7.4.1 lists the numbers of games from which we built the data store. During
each game, feature data was collected every 127 game cycles, which corresponds to the
update frequency of AAI. With 30 game cycles per second, this resulted in feature data
being collected every 4.2 seconds. The games were played on a map called “SmallDi-
vide,” which is a symmetrical map without water areas. All games were played under
identical starting conditions.

Table 7.4.1 The Number of Spring Games Collected in the Data Store

#Games in #Games in #Games in
Training Set Test Set Test Set

Friendly Enemy (Collected with (Collected with (Collected with
Team Team Perfect Information) Perfect Information) Imperfect Information)

AAI AAI (self-play) 500 200 200
AAI TSI 100 200 200
AAI CSAI 100 200 200
AAI RAI – 200 200

We used a MatLab implementation of TD-learning (which is available on the
CD-ROM) to learn the unit type weights wu, which are used by the term v1 of the
score function. Unit type weights were learned from feature data collected with per-
fect information from the 700 games stored in the training set. We did not include
feature data collected in games where AAI was pitted against RAI because we wanted
to use RAI to test the generalization ability of the learned score function.

The values of the parameters that controlled TD-learning were chosen in accor-
dance with the research of Beal and Smith [Beal97]. The unit type weights were ini-
tialized to 1.0 before learning started, and the weights of the radii defined in the set D
were chosen by the experimenter to be 0.75, 0.20, and 0.05 for radii of 500, 1,000,
and 2,000, respectively, which reflected the experimenter’s prior belief about their
relative importance.

A gradient descent optimization algorithm [Snyman05] was applied to optimize
the term weights wp for all phases. A step value of 0.01 was used initially to allow the
algorithm to explore the state space using random jumps. Slowly, the step value was
decreased to 0.001, to encourage the algorithm to perform local optimization. The
term weights for each phase were initialized to 0.5 before learning started.

652 Section 7 Learning and Adaptation

Performance Evaluation

To evaluate the performance of the learned score function, we determined to what
extent it was capable of predicting the actual outcome of a Spring game. The predic-
tion was interpreted as being for a win if the output of the score function was positive
and for a loss otherwise. To assess the accuracy of these predictions, we defined the
measure “final prediction accuracy” as the percentage of games for which the outcome
is correctly predicted at the end of the game. It might seem easy to achieve a final pre-
diction accuracy of 100% but, in practice, there are several reasons why that is not the
case, which will be discussed later. For a score function to be useful, it is also impor-
tant that it has some ability to predict the eventual outcome of a game some time
before it finishes. To assess this ability, the predictions made by the score function
were recorded throughout a game and compared to its eventual outcome.

We determined performance using two test sets, one of which contained feature
data collected in a perfect information environment and the other contained feature
data collected in an imperfect information environment. Feature data, listed in Table
7.4.1, was collected from 800 games.

Results

In this section, we will discuss the unit type weights that were obtained with the TD-
learning mechanism first and then present the prediction accuracy results that were
obtained, which illustrate the effectiveness of our approach.

Learned Unit-Type Weights

The Spring environment supports more than 200 different unit types. During feature
data collection, we found that 89 different unit types were used (some were not used
due to the AIs’ preferences for different unit types and the characteristics of the map
on which the data was collected). The TD-learning algorithm learned weights for
these 89 unit types, a summary of which is given in Table 7.4.2.

Table 7.4.2 Summary of Learned Unit-Type Weights

Unit Type Weight

Advanced Metal Extractor (Building) 5.91
Thunder Bomber (Aircraft) 5.57
Metal Storage (Building) 4.28
Freedom Fighter (Aircraft) 4.23
Medium Assault Tank (GroundUnit) 4.18
... ...
Minelayer/Minesweeper with Anti-Mine Rocket (GroundUnit) –1.10
Arm Advanced Solar Collector (Building) –1.28
Light Amphibious Tank (GroundUnit) –1.52
Energy Storage (Building) –1.70
Defender Anti-Air Tower (Building) –2.82

7.4 Automatically Generating Score Functions for Strategy Games 653

It is interesting to observe that the highest weight has been assigned to the
Advanced Metal Extractor. At first glance, this seems surprising because this unit type
is not directly involved in combat. However, when the AI destroys an Advanced Metal
Extractor, not only is the opponent’s ability to gather resources reduced but also the
AI has likely already penetrated its opponent’s defenses because this unit is typically
well protected and resides close to the Commander. This implies that, when the AI
destroys an Advanced Metal Extractor, it is a good indicator that the AI is likely to
win the game.

It is also interesting to observe that some unit types obtained weights less than
zero. This indicates that these unit types are of little use to the AI and are actually a
waste of resources. For instance, the Light Amphibious Tank is predictably of limited
use because our test map contained no water. The weights of the unit types that are
directly involved in combat show that the Medium Assault Tank, Thunder Bomber,
and Freedom Fighter are the most valuable.

Prediction Accuracy

Table 7.4.3 lists the final prediction accuracies for the trials where AAI was pitted
against each of its four opponent AIs. For the score function in a perfect information
environment, the final prediction accuracy is 97% on average. For the score function
in an imperfect information environment, the final prediction accuracy is 90% on
average. From these results, we may conclude that the established score function is
effective in evaluating a game’s status at the end of the game and thus might form an
effective basis for a score function that can be used in all phases of the game (i.e., a
game-spanning score function).

We should point out here that a human player would probably score 100% on
correctly predicting the outcome of a game, when the game is at its very end. The fact
that the score function does not achieve human performance is not an indication that
it is badly designed, for two reasons. First, the score function is tuned to make predic-
tions that are good during a large part of the game, not only at the end, and hence it
will trade prediction accuracy at the end of the game for higher prediction accuracy
earlier in the game.

Second, if the goal of the game was to destroy all the opponent’s units, a correct
prediction would be easy to make at the end. However, the goal is to destroy the oppo-
nent’s Commander, and we found that it sometimes happens that a player who is
behind in military strength can win, often because the opponent’s Commander makes
a high-risk move, such as attacking strong enemy units on its own. A score function
that is based on a comparison of military force and positional safety cannot take such
moves into account other than allowing for their general statistical likelihood.

654 Section 7 Learning and Adaptation

Table 7.4.3 Final Prediction Accuracy Results

Trial Final Prediction Accuracy Final Prediction Accuracy
Perfect Information Environment Imperfect Information Environment

AAI-AAI 99% 92%
AAI-TSI 96% 88%
AAI-CSAI 98% 93%
AAI-RAI 95% 87%

Figure 7.4.1 shows the percentage of game outcomes that were correctly predicted
as a function of how far through the game the predictions were made. The figure com-
pares the predictions of the score function in a perfect information environment with
the predictions of the score function in an imperfect information environment. The
results reveal that these predictions are comparable, which suggests that our approach
to extrapolating to unobserved areas of the map did not limit the performance of the
score function in an imperfect information environment. Additionally, we observe that
later in a game, when the AI has more units and thus can observe a larger area of the
map, the reliability of the score function increases.

7.4 Automatically Generating Score Functions for Strategy Games 655

FIGURE 7.4.1 Comparison of outcomes correctly predicted as a function over time. The
black line represents the prediction performance of the score function in a perfect informa-
tion environment, and the gray line represents the prediction performance of the score func-
tion in an imperfect information environment.

The results that were obtained in the AAI-AAI trial are pleasing, considering that
reasonable predictions in this self-play trial were obtained relatively early in each game.
Similar results were obtained in the AAI-TSI trial, although the predictions became
accurate later in each game. The results that were achieved in the AAI-RAI trial are also
satisfactory considering that no AAI-RAI games were included in the training set; the
fact that the score function achieves greater than 50% accuracy demonstrates its ability
to generalize. The reason that the score function can more accurately predict the out-
come in self-play might be that the score function was overfitted to the training data
from the AAI-AAI games.

Games between AAI and CSAI were very short because CSAI employed a suc-
cessful rush strategy. The fluctuations in the prediction accuracy results for these
games is therefore less significant than it would at first appear. We note, however, that
at the beginning of the game, the score function in an imperfect-information environ-
ment can predict the outcome more accurately than it can in a perfect-information
environment. This phenomenon can be explained as follows: early in the game, CSAI
will rapidly send a large number of tanks to the base of AAI while AAI is still in the
process of constructing its base and can only see a small part of the map. Observing
the tanks, AAI will assume that many more tanks are stationed in the remaining large
part of the map that it cannot see. Thus, in this scenario, the score function overesti-
mates the strength of the CSAI opponent. Because CSAI employs a successful strategy
that will ultimately win the game, however, the overestimation of the score function
actually causes it to accurately predict the outcome of the game.

Discussion

Our experimental results show that our approach made it possible to automatically
generate an effective score function for the Spring game. However, game developers
should note that the effectiveness of the score function will largely depend on the train-
ing data provided to the TD-learning algorithm. For example, our results showed some
signs of overfitting, which might have resulted from the fact that most of the feature
data was collected from AAI-AAI games. To avoid overfitting, we recommend gather-
ing data from training games played against a relatively large number of different types
of opponents on different types of maps.

Additionally, developers who wish to incorporate our approach in a game should
note the following. In the AAI-AAI trial we observed a somewhat variable prediction
performance in the first phase of the game. A straightforward explanation of this phe-
nomenon is that it results from optimizing the term weights for each phase of the game.
For each phase, the optimization process is focused on obtaining the highest overall pre-
diction accuracy in that particular phase. This optimized result might well overfit part of
the data, as we observe in the first phase of the AAI-AAI game, where a large peak is fol-
lowed by a small valley. It is also important to remember that even with optimized term
weights, outcome predictions that are made in the early phases of the game will always
be unreliable because the future of the game will always be unclear at that time.

656 Section 7 Learning and Adaptation

How to Use a Generated Score Function

An automatically generated score function can be incorporated immediately into a
game to provide feedback to a player on the effectiveness of their play. Because the
value returned by the score function reflects the chance of winning, it can provide the
player with a useful indication of their performance relative to other players or to the
AI. Additionally, because score functions are typically composed of several compo-
nents, they can be used to provide feedback on the different strengths and weaknesses
of a player. For example, the score function that we have described consists of separate
terms for military advantage and positional safety. If the value of the latter is unusu-
ally low or negative, then it might indicate that the player should focus on improving
the safety of their Commander rather than increasing their military strength.

In games with relatively large action spaces, such as RTS games, you would typi-
cally implement a score function for the purpose of allowing the AI to establish high-
level game plans in predefined moments of the game. Adaptation of such game plans
can occur online, after receiving feedback, or offline when the game is finished, but
adaptive game AI always needs a score function to rate newly generated behaviors. An
automatically generated score function is more objective than a function that has been
created manually and can therefore produce better results. For example, in previous
research, we compared the results of learning with a manually designed score function
with the results of learning with an automatically generated score function, and found
that the resulting AI was learned more quickly, and performed more effectively, with
the latter approach [Ponsen05].

Using the techniques that we have described for automatically generating score
functions, it is also possible to cheaply generate map-dependent AI. Weights can be
learned for each different map, allowing the score function to rate effectiveness while
taking into account the specific characteristics of a map. For example, our experi-
ments were performed on a map without water, and hence the amphibious tank was
rated as having little value by the score function. Finally, an automatically generated
score function can provide insight into the balance of a game and thus help in testing
and debugging it. For instance, it might reveal that certain unit types are simply infe-
rior in all of the tested circumstances and thus might need a boost in attributes to
ensure that there is an incentive for players to build them.

Conclusions and Future Work

In this article, we discussed an approach for automatically generating a score function
for game AI in RTS games. The score function was developed within a framework that
contained a mechanism to take account of the phase of the game and two terms to eval-
uate a game’s state; a term based on material strength, and a term based on positional
safety. Our experimental results with the Spring game show that, just before the game’s
end, the score function was able to correctly predict the outcome of the game with an
accuracy that approached 100% and could make fairly accurate predictions before half

7.4 Automatically Generating Score Functions for Strategy Games 657

of the game was played. From these results, we conclude that the score function effec-
tively predicts the outcome of a Spring game and that the proposed approach is suitable
for generating score functions for highly complex games, such as RTS games.

For future work, we will extend the score function with more features and incor-
porate our findings on evaluating a game’s state into the design of an adaptation
mechanism for RTS games. We will also extend our work to other game genres.

References

[Bakkes07] Bakkes, Sander, Kerbusch, Philip, Spronck, Pieter, and van den Herik,
Jaap, “Automatically Evaluating the Status of an RTS Game.” Proceedings of the
Belgian-Dutch Benelearn Conference 2007, (2007).

[Beal97] Beal, Don F., and Smith, Malcolm C., “Learning Piece Values Using Tempo-
ral Differences.” International Computer Chess Association (ICCA) Journal, Vol.
20, no. 3, (1997): pp. 147–151.

[Demasi02] Demasi, Pedro, and de O. Cruz, Adriano J., “Online Coevolution for
Action Games.” International Journal of Intelligent Games and Simulation, Vol. 2,
No. 3, (2002): pp. 80–88.

[Graepel04] Graepel, Thore, Herbrich, Ralf, and Gold, Julian, “Learning to Fight.”
Proceedings of Computer Games: Artificial Intelligence, Design and Education
(CGAIDE), (2004).

[Jonker07] Jonker, Catholijn, “Learning Aspect in Analysis and Modelling of Cogni-
tive Processes.” Delft University of Technology, lecture notes of the SIKS Learn-
ing and Reasoning course.

[Ponsen05] Ponsen, Marc J. V., Muñoz-Avila, Héctor, Spronck, Pieter, and Aha,
David W. “Automatically Acquiring Adaptive Real-Time Strategy Game Oppo-
nents Using Evolutionary Learning.” Proceedings of the Twentieth National Con-
ference on Artificial Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference (IAAI-05), (2005).

[Snyman05] Snyman, Jan, Practical Mathematical Optimization: An Introduction to
Basic Optimization Theory and Classical and New Gradient-Based Algorithms.
Springer Publishing, 2005. ISBN 0-387-24348-8.

[Spronck04] Spronck, Pieter H. M., Sprinkhuizen-Kuyper, Ida G., and Postma, Eric
O., “Online Adaptation of Game Opponent AI with Dynamic Scripting.” Inter-
national Journal of Intelligent Games and Simulation, Vol. 3, No. 1, (2004): pp.
45–53.

[Spronck05] Spronck, Pieter, “A Model for Reliable Adaptive Game Intelligence.”
Proceedings of the IJCAI-05 Workshop on Reasoning, Representation, and Learning
in Computer Games, (2005): pp. 95–100.

[Sutton88] Sutton, Richard S., “Learning to Predict by the Methods of Temporal Dif-
ferences.” Machine Learning, Vol. 3, (1988): pp. 9–44.

[Tesauro92] Tesauro, Gerald, “Practical Issues in Temporal Difference Learning.”
Machine Learning, Vol. 8, (1992): pp. 257–277.

658 Section 7 Learning and Adaptation

659

7.5

Automatic Generation
of Strategies
Maastricht University, The Netherlands

Pieter Spronck
p.spronck@micc.unimaas.nl

Marc Ponsen
m.ponsen@micc.unimaas.nl

Real-time strategy (RTS) games are highly complex. They have extremely large deci-
sion spaces that cover military and economic research and development, civiliza-

tion building, exploration, and sometimes diplomacy. They are also highly chaotic,
and the outcomes of actions are often uncertain. This makes designing the AI for an
RTS game extremely challenging and time consuming.

In this article, we discuss how a genetic algorithm can be used to help AI develop-
ers create effective RTS AI by automatically generating strong strategies. We concen-
trate on the representation of a strategy in the form of a chromosome, the design of
genetic operators to manipulate such chromosomes, the design of a fitness function
for the evaluation of the effectiveness of the strategies, and the evolutionary process
itself. The techniques and their results are demonstrated in the game of Wargus, which
is an open source clone of WarCraft II.

Genetic Algorithms

In a genetic algorithm, a solution to a problem is encoded as a string of genes, called
a chromosome. The genes in a chromosome represent a parameterization of the solu-
tion that is encoded within it. A collection of chromosomes, called a population, is
processed by means of genetic operators that take one or more chromosomes, com-
bine them, and make small changes to them to generate new chromosomes that form
a new population. Each chromosome has a fitness value associated with it that repre-
sents the relative quality of the solution that it encodes. The higher the fitness value,
the higher the chance that the chromosome will be selected by a genetic operator to
contribute genes to the production of new chromosomes.

The goal of any genetic algorithm is to generate a chromosome with a fitness that
is sufficiently high that the solution it encodes is good enough to be practically useful
in its intended application. Because genetic algorithms are, in essence, performing a
directed random search through a solution space, they are not guaranteed to come up
with a good solution—not even a mediocre one. However, with careful design of the
encoding used in the chromosomes, the genetic operators, and fitness function,
genetic algorithms are known to be able to produce good solutions to highly complex
problems in an efficient manner.

This article will not cover the basics of genetic algorithms, which have been
described in detail in previous volumes of the AI Game Programming Wisdom series
[Laramée02, Buckland04, Sweetser04, Thomas06] and many other excellent books
on the subject [Goldberg89, Michalewicz92]. Instead, we will tackle the advanced
subject of how genetic algorithms can be applied to automatically generate complete
battle plans for RTS games, which are arguably among the most complex types of
games available today.

Strategic Decisions for RTS Games

In a typical RTS game, a player controls an army of units of which there are typically
several types, each with their own properties. Some units might be “workers” that
have the ability to gather resources and erect new buildings; others might be “fight-
ers,” whose purpose it is to fight enemy units and destroy enemy buildings. Typically,
not all unit types are available in the initial phases of a game; players must research
new technologies, or construct buildings, to be able to create more advanced unit
types. The goal of an RTS game is usually to annihilate all opposing forces.

Several levels of decisions can be distinguished in an RTS game. At the lowest, or
“operational” level, the actions of single units are defined. For example, individual
units are moved across the map or assault an enemy unit or building. At a somewhat
higher, or “tactical” level, a short sequence of actions is executed to achieve a specific
goal. For example, a small team of units might be commanded to perform a tactical
task, such as taking over an enemy city or guarding some territory. At the highest, or
“strategic” level, a plan for the whole game is formed, which will incorporate con-
structing buildings, training units, conducting research, and planning battles. Strate-
gic decisions might involve choosing between an offensive or defensive strategy, one
that relies on a full-scale ground offensive or one that uses small-scale tactical assaults.

In this article, we focus on evolving a plan that consists of decisions at a strategic
level only. We assume that the execution of a strategic plan at a tactical or operational
level is handled adequately by other parts of the game code. Thus, a part of the strate-
gic plan might specify that an attacking team must be constructed and that is must
consist of five foot soldiers and two knights, but it will not give tactical specifications,
such as where the team will move and what exactly it will attack. Similarly, the plan
might specify that a certain building must be constructed, but it will not specify at
what location. This approach reduces the complexity of the problem faced by the

660 Section 7 Learning and Adaptation

genetic algorithm and increases the likelihood that highly effective strategic decision-
making systems will evolve. Note, however, that you can also employ the techniques
described in this article to evolve tactical or operational plans.

Wargus

To demonstrate the techniques that we have developed, we use the game Wargus,
which is a clone of WarCraft II built on the open source engine Stratagus [Strata-
gus05]. The goal of a game of Wargus is to defeat the opponent or opponents by oblit-
erating all of their units. Four types of strategic decisions must be made in Wargus that
relate to the four main areas of gameplay:

• Construction decisions need to be made because buildings are required to produce
certain unit types, to perform research into more advanced types, and to make it
possible to construct more advanced buildings. In our Wargus setup, 10 different
types of buildings were available. A player never needs more than one of some
building types, whereas multiple instances of others might be useful.

• Combat-related decisions need to be made when constructing a team of fighting
units. They consist of specifying the number of each unit type that is in the team
and whether the team is meant for offensive or defensive purposes. In our Wargus
setup, six different types of fighting units were available, and each unit type comes
in several different versions, of which the more advanced become available only
after they have been researched.

• Economic decisions center around the gathering of resources. In Wargus, the num-
ber of worker units available determines the rate at which resources can be gathered.

• Research-oriented decisions are important because research can produce advance-
ments such as better weaponry and armor. In our Wargus setup, nine different
advancements were available for research, some of which required other research
to have been performed first.

The preceding list summarizes the key areas where a strategic RTS AI needs to
make decisions. A strategy consists of a set of such decisions.

Chromosome Encoding

To use a genetic algorithm to evolve strategies for playing Wargus, it is necessary to
encode a strategy as a chromosome, that is, to translate the sequence of actions that
form the strategy to a string by using some kind of mapping. For Wargus, we used the
following encoding procedure:

Construction: A construction action is translated to Bx, where x is the identifier of
the type of building that is constructed.

Combat: A combat action is translated to Csxyz, where s is the state number (which
will be explained later), x is the identifier of the team that is constructed, y is a
list of numbers representing how many of each of the unit types there should be

7.5 Automatic Generation of Strategies 661

in the team, and z is either a character o for offensive or d for defensive, which
indicates whether the team should be used in offensive or defensive actions.

Economy: An economic action is translated to Ex, where x is the number of worker
units that are trained.

Research: A research action is translated to Rx, where x is the identifier of the
advancement that is researched.

Any valid strategy can be represented as a string of these encoded actions. But
there is a snag. You can also encode invalid strategies this way, even when all the indi-
vidual variables are restricted to legal values. For example, a construction action might
specify the construction of a building that can only be created in the presence of more
basic buildings that do not yet exist. If the evolutionary process is allowed to create
such invalid strategies, the population gets tainted by useless chromosomes that should
not be used for further procreation because their descendants are very likely to be use-
less too. These chromosomes effectively reduce the size and diversity of the population
and thus reduce both the effectiveness and the efficiency of the evolutionary process.
We therefore had to ensure that the genetic algorithm did not generate invalid strate-
gies, and the best way to do that was to enhance the encoding mechanism so that it
simply did not allow for invalid strategies to be represented.

For Wargus, we realized that the available buildings determine which actions are
legal. Figure 7.5.1 represents the Wargus building state lattice, starting in state 1 at the
top, where only a Townhall and Barracks are available (which all players in our simu-
lations started a game with), and ending in state 20 at the bottom, where all buildings
are available. State transitions are effected by the construction of a new building. In a
Wargus game, players traverse this lattice from top to bottom, visiting a maximum of
9 of the 20 states.

By storing state information in the chromosome, genetic operators can be created
that take into account which actions are legal and which are not for particular states.
The chromosome architecture that we settled upon, with part of an example chromo-
some, is depicted in Figure 7.5.2. The chromosome consists of a sequence of states,
and each state consists of a state marker and state number, followed by a sequence of
actions. Except for the final state, the last of the actions in a state is always a construc-
tion action that causes a state transition. The next state is thus always determined by
the construction action that ended the previous state.

The actions are encoded as described earlier and consist of a marker with a value
B, Cs, E, or R, followed by one or more parameters. The B, E, and R markers and
their parameters are a straightforward translation of the actions that were defined at
the start of this section. The Cs marker and its parameters define a combat action,
where the state s determines the number and interpretation of the parameters. As
explained earlier, the first of the parameters is always a team identifier, and the last is
an indicator as to whether the team should be used for offensive or defensive pur-
poses. In between, there is a set of one or more parameters that give the number of
each of the unit types that are available in state s that will be in the team. For example,

662 Section 7 Learning and Adaptation

7.5 Automatic Generation of Strategies 663

FIGURE 7.5.1 The Wargus building state lattice.

in state 1 only “foot soldiers” are available, and the set therefore consists of one para-
meter that indicates the number of foot soldiers in the team. In state 11, both foot
soldiers and knights are available, but no other units. Thus, in state 11, the set consists
of two parameters, the first indicating the number of foot soldiers, and the second the
number of knights.

For the initial population, a random set of chromosomes was produced using the
following algorithm. First, the state marker for state 1 was placed at the start of the
chromosome. Then, random legal actions for state 1 were generated, encoded, and
appended to the chromosome. When a construction action that would cause a state
transition was generated, the state marker for the next state was appended, and from
that point on, the process was repeated for each new state. Since state 20 is the last
state, a fixed number of actions were produced in that state (a total of 20 in our
implementation), after which a constant attack loop was written to the chromosome
to finish it. In our experience, however, games in which state 20 were actually reached
were rare.

Genetic Operators

Genetic operators are used in the process of creating new chromosomes and generally
fall into two categories. Mutation operators take a single chromosome and make small
changes to it; crossover operators combine two or more parent chromosomes and pro-
duce one or more child chromosomes. Regular genetic operators, such as one-point
crossover and uniform crossover are not suitable for our chromosomes because they
are likely to produce invalid strategies. We therefore designed four new genetic opera-
tors that are guaranteed to produce valid strategies when their inputs consist of chro-
mosomes that also represent valid strategies.

664 Section 7 Learning and Adaptation

FIGURE 7.5.2 Chromosome design, with part of an example chromosome.

State Crossover: State Crossover is illustrated in Figure 7.5.3. This genetic operator
takes two parent chromosomes and produces one child chromosome by copying
complete states with their corresponding actions from one or the other parent
chromosome to the child chromosome. The operator is controlled by matching
states, which are states that exist in both parent chromosomes. As Figure 7.5.1
showed earlier, in Wargus, there are at least four matching states for any pair of
chromosomes, namely states 1, 12, 13, and 20. Using matching states, a child
chromosome is created as follows. States are copied to the child sequentially
from one parent, starting with state 1. When there is a transition to a state that
is also present in the other parent chromosome, there is a chance (in our
implementation 50%) that from that point, the states are copied from the other
parent. Such a switch can occur at all matching states. This process continues
until the last state has been copied into the child chromosome. In Figure 7.5.3,
parent switches occur at states 9 and 18.

7.5 Automatic Generation of Strategies 665

Start State 1 State 2 End Parent 1 State 6 State 9 State 12 State 13 State 16 State 18 State 20

Start State 1 State 2 End Child State 6 State 9 State 12 State 13 State 14 State 18 State 20

Start State 1 State 3 End Parent 2 State 4 State 9 State 12 State 13 State 14 State 18 State 20

FIGURE 7.5.3 Example of the State Crossover genetic operator.

Action Replacement Mutation: With the Action Replacement Mutation operator,
one parent chromosome is copied to a new child chromosome and, for each
action in the child chromosome, there is a chance (in our implementation
25%) that the action will be replaced by a randomly generated action.
Combat, Economy, and Research actions can all be replaced and can all act as
replacements. However, Construction actions are excluded from this process,
both for and as replacements to avoid the introduction of new state transitions,
which might produce an invalid chromosome.

Action Biased Mutation: With the Action Biased Mutation operator, one parent
chromosome is copied to a new child chromosome, and for each combat
and research action in the child chromosome, there is a chance (in our
implementation 50%) that the parameters that determine the number of desired
units are changed by adding a random value (which was in the range [–5,5] in
our implementation). Only positive values for the parameters are allowed
because it is impossible to train a negative number of units, so if the operator
produced a negative number it was set to zero.

Randomization: With the Randomization operator, a completely random new
chromosome is generated using the same process that was used to create the
chromosomes in the initial population.

In our implementation, the Randomization operator was used to generate 10%
of the child chromosomes and the other three 30% each of the child chromosomes.
Although our mutation rates might be considered high, they allow for a fast explo-
ration of the enormous space of possible Wargus strategies.

Fitness Determination

To evolve chromosomes that represent effective strategies, it was necessary to develop
a fitness measure that was correlated with the relative effectiveness of the strategy
encoded by a chromosome. Because the aim of the strategies is to win a game, pitting
them all against the same set of opponents allows us to assess their relative effective-
ness. It is not sufficient to measure only whether a strategy will win or lose, however.
Knowing the magnitude of the victory or defeat is important to rank the strategies
effectively. Therefore, we defined the fitness value F ∈ [0,1] as follows:

In this equation, Mc and Mo represent the “military points” scored by the evolved
strategy c and the opponent strategy o, respectively. Military points are an indication
of how well a strategy was able to build military units and destroy the military units of
its opponent. In Wargus, military points are a reasonably good way of measuring the
success of a strategy; for other games, a different measure might need to be designed.

The value b is supposed to be the fitness of a strategy that is about as equally pow-
erful as its opponent. Therefore, if the evolved strategy achieves a victory, it should get
at least a fitness b. However, if it is defeated, b is the maximum fitness it can achieve.
For our implementation, we chose b = 0.5. Finally, Ct is the time step at which a game
finished, whereas Cmax is the maximum time step to which games are allowed to con-
tinue. The factor Ct/Cmax ensures that losing strategies that manage to survive for a
long time are awarded a higher fitness than losing strategies that are defeated quickly.

If the fitness is assessed against multiple opponents or on multiple maps, simply
averaging the fitnesses achieved against each of the opponents on each of the maps is
sufficient to produce a measure of overall fitness.

F =

C

C

M

M + M
,b defeatt c

c o

min

max

max

⋅
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ { }

bb,
M

M + M
victoryc

c o

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ { }

⎧

⎨

⎪
⎪

⎩

⎪
⎪

666 Section 7 Learning and Adaptation

Evolutionary Process

The goal of the evolutionary process is to generate a chromosome that represents a
strategy that is able to consistently defeat its opponents. Clearly, from the way we
designed our fitness function, a fitness value of 1.0 is, in practice, unattainable, except
against an opponent that never builds any military units. However, we found that, in
Wargus, a fitness of 0.75 on large maps, or 0.7 on small maps, was sufficient to ensure
that the evolved strategy would consistently defeat the opponent strategies that it was
evolved against.

We used size-3 tournament selection to determine the parent chromosomes for the
genetic operators, which means that each time a parent was required, three chromo-
somes were selected randomly from the population, and the one with the highest fitness
was used as the parent. However, other selection mechanisms, such as straightforward
roulette wheel selection, are likely to work just as well. After a child chromosome is gen-
erated and its fitness determined, it is inserted into the population, replacing an existing
chromosome. For this we used size-3 crowding, which is similar to tournament selec-
tion, except that the selected chromosome with the lowest fitness is replaced.

It is common when using genetic algorithms to set a limit on the number of chil-
dren that can be generated before an experiment is aborted. Thus, an experiment ends
when either the target fitness is achieved or the maximum number of children has
been generated. In our experiments, we had a population size of 50 and set the maxi-
mum number of children to 250. For those who are familiar with genetic algorithms,
that number might seem uncomfortably low. However, we found that, more often
than not, the target fitness was reached within this limit.

Experimental Results

We used two different opponents against which to evolve strategies, one was used on a
small map, and the other was used on a large map. Both opponents implemented
“rush” strategies. On the small map, the rush strategy was based on low-level soldier
units that are available in the very first state of the game, so we called this opponent the
“soldier rush.” On the large map, the rush tactic was based on medium-level knight
units that are available in state 12, so we called this opponent the “knight rush.”

We evolved a strategy against each of these opponents and repeated the experiment
10 times. Against both opponents, strong strategies with high fitness scores were
evolved in a relatively short time, almost always within the limit of 250 children. The
few that did not reach the target fitness within that limit were typically very close to it.

We observed that, against the soldier rush, the only successful strategy was another
slightly more effective soldier rush. The typical pattern of behavior of the evolved
strategies was to start by building a Blacksmith, causing a transition to state 3, and then
build a steady line of defenses. The strategies would then research better weapons and
armor for soldier units, before finally creating large numbers of them. In a few cases,
the research was skipped, and the enemy was simply overwhelmed by sheer numbers.

7.5 Automatic Generation of Strategies 667

Several of the counterstrategies for the knight rush made a beeline to state 12, by
quickly building a Blacksmith, a Lumber mill, a Keep, and Stables, usually in that precise
order. State 12 is special because it is the first state where knights are available, and knights
are arguably the most powerful unit in the game. The evolved strategies used mainly
knights for offensive purposes, and, in virtually all the evolved strategies, their economies
were boosted by building additional resource sites (including associated defenses) and
training large numbers of workers. Also, many of the evolved strategies developed and
built units that were capable of stemming a knight rush, in particular large numbers of
catapults, before starting to use a knight rush themselves. All were viable strategies.

The preference for catapults is remarkable because domain experts often view
these units as inferior because catapults have a high cost and are also highly vulnera-
ble. However, their impressive damaging abilities and large range make them effective
for both defensive and offensive purposes. They work particularly well against tightly
packed armies, such as large groups of knights, which are encountered when playing
against the knight rush opponent.

Applications

We have described a procedure for automatically evolving strong strategies for RTS
games (which might work well in other game types too). But what are the applica-
tions of the procedure that we have developed?

• Testing and debugging: When a programmer has implemented a strategy in a
game’s AI, a genetic algorithm can be used to test it for weaknesses; if there are
weaknesses, they are likely to be discovered by the evolutionary process. Game
balancing issues will also come to light: if an undefeatable strategy exists, the evo-
lutionary process will probably find it.

• Generation of map-specific strategies: It is difficult for AI developers to build
a general strategy that takes into account the features of particular maps, and it
can be resource intensive to manually create map-specific strategies in a game that
might ship with dozens of maps. Although the evolutionary process will probably
not produce a generally applicable strategy unless fitness values are averaged over
a wide range of different kinds of maps, it is easy to evolve a different strategy for
each map individually.

• Generation of strategies for different difficulty levels: Starting with a fairly
weak, manually designed opponent, a strategy can be evolved that regularly
defeats this opponent. This strategy could be used for the lowest difficulty level
(although the evolutionary process should be aborted as soon as a reasonably
good strategy is constructed; otherwise, it might become too effective to be used
at the lowest difficulty level). The evolved strategy is then used as the opponent to
evolve a strategy for the next difficulty level. After that, we evolve an opponent for
the next higher difficulty level by evolving it against both of the previously cre-
ated opponents. By repeating this process, strategies can be evolved for all desired

668 Section 7 Learning and Adaptation

difficulty levels. Combining this with the previous application makes it possible
to create map-specific strategies at a range of difficulty levels, which is impractical
to do manually; if a game has 5 difficulty levels and 50 maps, 250 different strate-
gies would be needed.

• Automatic creation of knowledge bases for adaptive game AI techniques: We
applied dynamic scripting (described in volume 3 of AI Game Programming Wis-
dom [Spronck06]) to Wargus and automatically populated the dynamic scripting
knowledge bases with tactics discovered by the genetic algorithm that is described
in this article. This very efficiently produced strong game AI against a large vari-
ety of opponent strategies [Ponsen06].

Caveats

Some caveats have to be taken into account when using the techniques described here:

• The evolutionary process generates strategies that are rated purely according to their
ability to defeat an opponent. This does not mean that the generated strategies are
interesting or entertaining to play against. Using them directly as game AI might
not be opportune. There are two remarks we want to make in this respect. First, we
did find in our experiments that interesting strategies were actually generated, in the
sense that unexpected but quite strong tactics were part of them (e.g., the use of cat-
apults against the knight rush). Second, the evolved strategies consist of readable
code, which can, if necessary, be manually tweaked to make them more interesting.

• An evolved strategy is not necessarily able to defeat strategies other than the ones it
has been evolved against. In our experiments, strategies were evolved only against
the soldier rush and the knight rush. Because these are very strong strategies, the
evolved counterstrategies are likely to work well against most other strategies too,
and we found that that was the case. However, to evolve more generalized strate-
gies, the opponents should consist of a number of different strategies, and fitness
evaluations should be performed on a number of different maps. Some prelimi-
nary work has already been performed in this area [Ponsen06].

• The evolutionary process necessarily concentrates on the early game states
because the game is often finished before the later game states are encountered.
An evolved strategy might therefore fail when a game lasts longer than most of
the games that were played during its evolution. To overcome this problem, maps
of different sizes can be used. Bigger maps usually make games last longer, giving
the evolutionary process the opportunity to optimize the strategy in later game
states. Another solution to this problem is to assign high fitness values to chromo-
somes that participate in longer lasting games, thus driving the evolutionary
process toward chromosomes with more elaborate strategies.

• The techniques described here generate static strategies that cannot adapt during
gameplay and are therefore unable to take the behavior of their opponent into
account; they construct buildings when the strategy says it is time to construct
buildings and attack when the strategy says it is time to attack, regardless of what

7.5 Automatic Generation of Strategies 669

their opponent is doing. This problem can be overcome by evolving shorter
scripts for separate game states, which might include dependencies on opponent
behavior rather than a single script for the entire game, or to use adaptive tech-
niques, such as dynamic scripting [Spronck06].

Conclusion

In this article, we described how complete strategies for RTS games can be automati-
cally generated using an evolutionary process. We described how a chromosome can
represent a strategy, how genetic operators can be designed to ensure that child chro-
mosomes always represent valid strategies, and how a fitness function can be designed
to rank strategies according to their quality. Our experiments with the techniques in
the RTS game Wargus showed that the evolutionary process can finish quickly, and
that the resulting strategies are usually strong.

Evolved strategies can be used for testing and debugging purposes and also for
automatically generating map-specific strategies for different difficulty levels, which
would be far too time consuming to build by hand. Furthermore, we found that the
evolutionary process that we developed is particularly well suited to generating strong
knowledge bases that can be used by some forms of online adaptive game AI, such as
dynamic scripting.

References

[Buckland04] Buckland, Matt, “Building Better Genetic Algorithms.” AI Game Pro-
gramming Wisdom 2, Charles River Media, 2004: pp. 649–660.

[Goldberg89] Goldberg, David E., Genetic Algorithms in Search, Optimization &
Machine Learning. Addison-Wesley Publishing Company Inc., 1989.

[Laramée02] Laramée, François Dominic, “Genetic Algorithms: Evolving the Perfect
Troll.” AI Game Programming Wisdom, Charles River Media, 2002: pp. 629–639.

[Michalewicz92] Michalewicz, Zbigniev, Genetic Algorithms + Data Structures = Evo-
lution Programs. Springer-Verlag, Berlin, 1992.

[Ponsen06] Ponsen, Marc, Muñoz-Avila, Héctor, Spronck, Pieter, and Aha, David
W., “Automatically Generating Game Tactics with Evolutionary Learning.” AI
Magazine, Vol. 27, no. 3, (Fall 2006): pp. 75–84.

[Spronck06] Spronck, Pieter, “Dynamic Scripting.” AI Game Programming Wisdom 3,
Charles River Media, 2006: pp. 661–675.

[Stratagus05] Stratagus Team, “Stratagus–A Real-Time Strategy Game Engine.”
Available online at http://www.stratagus.org.

[Sweetser04] Sweetser, Penny, “How to Build Evolutionary Algorithms for Games.”
AI Game Programming Wisdom 2, Charles River Media, 2004: pp. 627–637.

[Thomas06] Thomas, Dale, “Encoding Schemes and Fitness Functions for Genetic
Algorithms.” AI Game Programming Wisdom 3, Charles River Media, 2006: pp.
677–686.

670 Section 7 Learning and Adaptation

http://www.stratagus.org

671

7.6

A Practical Guide to
Reinforcement Learning in
First-Person Shooters
Michelle McPartland—
University of Queensland
michelle@itee.uq.edu.au

The notion that bots could learn how to play a game, particularly one with the
complexities of a modern first-person shooter (FPS), might appear to be wishful

thinking, but it can actually be achieved using a class of algorithms known as rein-
forcement learning (RL). FPS bots are generally rule based and look at the informa-
tion available to them about their environment and internal state to decide what
actions they should take. As such, most FPS bots fall into the action-selection para-
digm; that is, they select an action to perform from a predetermined list.

RL provides an action-selection model that is well suited to controlling FPS bots
because it manages the conflicting requirements of short-term reactivity and long-
term goal-driven behavior. For example, a bot’s long-term goal could be to traverse
the map to a particular power up, but it will also need to react if it is attacked on the
way. RL can also save time in developing effective FPS bots because it can automati-
cally learn effective behaviors, thereby avoiding the need to design and code elaborate
sets of rules and tune parameters through play testing.

In this article, we present an overview of a form of RL called Sarsa and show how
it can be used to allow FPS bots to learn some of the behaviors that are necessary to
compete in a multiplayer-style FPS game.

Overview of Reinforcement Learning (RL)

RL provides a class of algorithms that allows an agent to learn by interacting with its
environment. A bot that is equipped with RL is therefore able to learn how to play a
game by playing against other RL-controlled bots, rule-based bots, human players, or
a combination of opponents. An RL-based bot does not have to be programmed or
taught in the same way as those that are based on rules or some other learning tech-
nologies, such as neural networks. The following section provides a brief overview of

RL and describes some of the design decisions that must be made when creating an
implementation.

RL Basics

In general, RL algorithms observe the state s of their environment and react to it by
selecting an action a. The environment might respond by producing a reward r and
might transition to a new state s'. The mapping that RL performs from states to actions
is referred to as the policy, and, by visiting each state many times and performing differ-
ent actions, RL is able to learn an optimal policy that tells it which actions to perform in
which states to maximize its reward. If rewards are provided in response to desirable out-
comes, RL is able to learn the sequences of actions and hence the behaviors that lead to
those outcomes.

There are a wide range of different types of RL algorithms that vary in the ways
they represent the information they gather about the rewards in their environments,
how they update that information, and how they use it to select actions. For example,
the RL algorithm TD-lambda associates rewards with states and relies on some extrin-
sic action-selection process to select an action that will cause a transition to a state
where a high-value reward can be obtained. The requirement for an extrinsic action-
selection process is fine for games, such as chess, that have very simple and well-
defined dynamics but extremely problematic for FPS games, so TD-lambda will not
be discussed further in this article.

Other RL algorithms, such as Q-learning [Watkins92] and Sarsa [Sutton98],
associate rewards with selecting specific actions in specific states, which are known as
state-action pairs and denoted (s,a). This means that they can select an action in any
state simply by choosing the one that is expected to produce the greatest reward. The
advantage of this approach is that action selection is intrinsic to the learning algo-
rithm, which learns the dynamics of the state space at the same time as it learns its
reward structure, thereby avoiding the need for an external action-selection process.
This major advantage does come at the cost of slower learning, however, which results
from the fact that the size of the space of state-action pairs is typically much larger
than the space of states and hence takes longer to explore.

Because Q-learning and Sarsa associate rewards with taking specific actions in
specific states, they need some representation of a mapping from each state-action
pair to the reward that is associated with it. This mapping is usually denoted by Q(s,a)
and is typically implemented as a lookup table or using a function approximator. A
lookup table simply has an entry for every possible combination of states and actions,
so it suffers from the disadvantage that it can only be used with discrete state and
action representations and can be extremely large if there are many states where many
actions can be performed. However, lookup tables are very popular because they offer
the advantages of fast learning, computational efficiency, numerical stability, as well as
being human readable.

672 Section 7 Learning and Adaptation

Function approximators can also be used to implement Q(s,a), and they have the
advantage of being able to generalize in a way that simple lookup tables cannot. An
agent using a function approximator-based RL implementation can make an intelli-
gent guess about how to act in a novel state based on its similarity to familiar states,
whereas one that uses a lookup table can only act randomly. Function approximators
typically suffer from problems such as slow learning, computational complexity, and
numerical instability when used in conjunction with RL, so the experiments that are
described in this article used a lookup table to represent Q(s,a).

When using a lookup table, selecting the best action a to perform in a state s is
simply a matter of searching the row or column of a lookup table Q(s,a) that corre-
sponds to state s for the action a that maximizes Q(s,a). Most of the time Q-learning
and Sarsa will exploit what has been learned and perform the best action. Occasion-
ally, however, they will explore some other action in case the reward estimates in the
lookup table are inaccurate and to give them the opportunity to learn something new.
There are a variety of different ways to manage this tradeoff between exploration and
exploitation [Sutton98], but the approach we take in this article is to use ε-greedy
selection, which is one of the simplest and most common and relies on selecting the
best action with probability ε and some other action with probability 1 – ε where ε is
a parameter that must be set by the user.

Sarsa

Sarsa works by selecting an action in a state and then updating its estimate of the
value of its selection based on the reward it receives and the estimated value of the
action it selects in the next state. This basic algorithm is called Sarsa(0) and can be a
little slow to learn because when a state is visited, information about how good it is
only propagates back to its immediate predecessor state. For example, the first time
that a large reward is encountered in a state, information about its existence will prop-
agate to the state’s immediate predecessor state; the next time that predecessor state is
encountered, information about the location of the reward is only propagated to its
immediate successor, and so on. In a large state space with sparse rewards, it therefore
takes a very long time for information about the locations of the rewards to spread
throughout the state space.

An enhancement to the basic Sarsa(0) algorithm is Sarsa(λ), which uses a tech-
nique called eligibility tracing to accelerate learning. Eligibility tracing enhances the
basic Sarsa algorithm by recording a history of the states that have been visited and
the actions that have been taken within them so that information can be propagated
much farther than one state back each time the algorithm is applied. Thus, if a reward
is encountered in a state, information about its existence can immediately be propa-
gated many states back rather than just to the state’s immediate predecessor, greatly
accelerating the speed with which sequences of actions can be learned.

7.6 A Practical Guide to Reinforcement Learning in First-Person Shooters 673

Table 7.6.1 gives the update algorithm for Sarsa. The algorithm begins on line 1
by initializing the policy Q(s,a) and eligibility trace e(s,a). The values inside the
lookup table Q(s,a), which define the policy, are usually initialized to zero or random
values close to zero, such as lie in the range [–0.1,+0.1]. Line 2 indicates that learning
can occur over multiple games. In deathmatch games, only a single game needs to be
played because bots can respawn after being killed. On line 4, the value of s', which
represents the state of the game world, is set up to represent the current game state.
This process will be discussed in greater detail later. On lines 5 and 6, an action a' is
selected based on the current state s', a transition occurs to a new state, and a reward r
is received.

Table 7.6.1 Sarsa Algorithm with an Eligibility Trace

1 Initialize Q (s,a) arbitrarily, set e (s,a)=0 for all s, a
2 Repeat for each training game.
3 Repeat for each update step t in the game.
4 Set s' to the current state.
5 Select an action a'.
6 Take action a' ; observe reward r.
7 δ ← r + γQ (s',a') – Q(s,a)
8 e (s,a) ← e (s,a) + 1
9 For all s, a:
10 Q(s,a) ← Q(s,a) + αδe (s,a)
11 e (s,a) ← γλe (s,a)
12 s ← s', a ← a'
13 Until end game condition is met.

Line 7 calculates the difference between the discounted estimated value of the
current state-action pair γ Q(s',a') plus the reward r, and the estimated value of the
previous state-action pair Q(s,a), where s and a correspond to the action a that was
selected in the previous state s. Note that the first time the algorithm is run, the previ-
ous state-action pair is not defined, so steps 7 to 11 are omitted. The discount factor
parameter γ is used to control the extent to which RL will forgo small rewards that
might be immediately available for much larger rewards that might take much longer
to reach. The role of this and other parameters will be discussed later.

Line 8 updates the eligibility trace e(s,a) for the previous state-action pair by incre-
menting its value. Line 10 updates estimates of the values of all the state-action pairs
using the learning parameter α, the difference that was calculated on line 7, and the eli-
gibility trace. Finally, line 11 decays all eligibility trace values by the trace factor λ and
the discount factor γ, and line 12 records the current state and the action that was
selected into variables representing the previous state and action ready for the next pass

674 Section 7 Learning and Adaptation

of the algorithm. This process is repeated until an end game condition is met, such as
a time limit is reached or a maximum number of deaths is exceeded. Refer to Update()
in SarsaTabular.cpp on the CD-ROM for an implementation in code.

The requirement to repeat lines 10 and 11 for every combination of states and
actions might seem unreasonable for all but the most trivial games, but, in practice,
the values of e(s,a) will be so small for all but the most recently visited state-action
pairs that the updates given in lines 10 and 11 only need to be performed on a small
number of state-action pairs that can easily be identified by a first-in first-out list of
those that have recently been visited. For example, e(s,a) for the nth most recent state-
action pair will typically be no greater than the order of γ n where γ < 1.

Designing the State Representation

The game state information on which an RL algorithm must base its decisions and
the set of actions that it can take in the game world need to be carefully designed for
each specific application. The game state representation s typically consists of many
variables that describe features of the game world that are likely to be relevant to the
decisions that the RL algorithm will have to make. If too few variables are chosen or
they do not contain relevant information, RL will perform poorly and will only learn
simple and relatively ineffective behaviors. If too many variables are chosen, the
lookup table that is required to store every combination of their values against every
possible action will become large, and RL will learn very slowly because it will have to
play many games to explore even a small part of the state-action space.

Some of the variables that need to be included in the state representation will be
discrete, such as whether the bot is holding a weapon of a specific type, whereas others
will be continuous, such as the level of the bot’s health. Because we are using a tabular
approach to store estimates of the values of state-action pairs, Q(s,a), we must discretize
continuous variables by breaking them up into a series of discrete ranges. For example,
a bot’s health could be broken up into three ranges of values: low, medium, and high.
Ranges should be defined to provide as much relevant information as possible in as few
ranges as possible because each additional range affects the size of the lookup table in
the same way, and the learning performance of RL as one extra variable.

Designing a good state representation is important for the success of RL, but
there is little practical advice for guiding the process other than to include as much
relevant information as possible in as few variables as possible and not to include two
variables that provide similar information. Some amount of trial and error might be
necessary to arrive at a good state representation, and analyzing the lookup table of
the estimated values of state-action pairs after a period of learning can also provide
clues as to how the representation can be improved. For example, if multiple states
differ only by the values of one variable but have very similar values for all actions,
then the differing variable is probably irrelevant and can be removed.

7.6 A Practical Guide to Reinforcement Learning in First-Person Shooters 675

Experimental Setup and Results

To investigate the potential of RL for the creation of FPS bots, we performed two
experiments that were designed to assess the ability with which RL was able to control
the navigation of a bot around its environment and to control it during combat. The
details of the state representations that were used in each of these experiments are
given later along with a description of the results that were obtained. At the start of
the experiments, the entries in the table Q(s,a) were initialized to 0.5. It was expected
that the values of most actions in most states would be lower than this, and hence this
form of initialization was expected to encourage exploration and ensure that the state-
action space was thoroughly investigated.

Navigation Controller

The aim of the first experiment was to create a bot that could navigate around its envi-
ronment. Although there are far more efficient techniques than RL that can be used for
pathfinding, this experiment provided a simple test bed for our RL implementation
that was useful for debugging it. First of all, we needed to decide how to represent the
relevant features of the game state, the actions the bot should be able to take, when it
should be presented with rewards, and how large they should be. The main aim in
designing the representation of the game state is to include the minimum amount of
information that is required to learn the task.

For the navigation task, we equipped the bot with two sets of sensors that indicate
the presence of obstacles and power-ups to the left of, in front of, and to the right of the
bot, and allowed them to indicate whether an obstacle or power-up was near (within 5
meters) or far. For example, if there was a wall near and to the left of the bot, and there
was a power-up far to the front of the bot, the values of the sensors would be {1 0 0 0 2
0}, where the first three values represent the left, front, and right obstacle sensors, and
the next three represent the left, front, and right power-up item sensors.

Next, we needed to decide what actions the bot could perform. Actions can be
defined as high-level composite actions, such as moving to a particular location on a
map, or low-level primitive actions, such as shoot. For simplicity, we decided to use only
primitive actions in our first experiment and to perform the selected action only for a
single time step. One problem with this approach is that the bot cannot perform more
than one action at a time, so it can move forward or turn but not turn while moving for-
ward. For this experiment, the bot was able to move forward, turn left, and turn right.

RL uses two types of rewards to reinforce good behavior and punish bad behavior:
goal and guide [Manslow04]. Goal rewards are given infrequently when a major event
occurs and tend to be quite large. Guide rewards are used to encourage behaviors that
will lead to a goal reward. They occur more frequently and should therefore be kept
very small to not overshadow the goal reward when it occurs. For a bot to navigate its
environment competently, we want to encourage it to avoid obstacles, move around
rather than staying in one place, and pick up items along the way. Table 7.6.2 shows
the rewards that were used in the navigation experiment to encourage these behaviors.

676 Section 7 Learning and Adaptation

Table 7.6.2 Goals and Rewards for the Naviga-
tion Experiment

Goal Reward

Runs into wall –1.0
Picks up item +1.0
Takes a step forward +0.00002

The four main parameters to tune in the tabular Sarsa algorithm with eligibility
traces are the decay rate (γ), the discount factor (λ), the learning rate (α), and the
ε-greedy parameter (ε). Hand-tuning is one option for finding the best values for
these parameters, but it is a long and tedious process. A second option is to automate
the process by loading a range of parameters from a file or writing an external pro-
gram that runs repeated experiments with different sets of parameters. Among the
advantages of automating the process is that it makes it easier to experiment with the
state representation, the action set, and when rewards are provided.

We performed a set of experiments using an automated process to evaluate all
combinations of the parameters listed in Table 7.6.3. This came to a total of 240 exper-
iments. The parameters were spread so far apart to examine a wide range of combina-
tions while keeping processing time down, to understand what values affect the learning
performance of RL, and to find combinations that should be explored further. Experi-
ments were run over 7,000 frames, and the Sarsa update procedure was applied once per
frame. A single experiment took approximately 5 minutes on an AMD 3500+ CPU
with rendering disabled.

Table 7.6.3 List of Parameters and Values
Tested for the Navigation Experiment

Parameter Values

Random Seed 101, 102, 103
Discount Factor (γ) 0.0, 0.4, 0.8
Eligibility Trace (λ) 0.0, 0.4, 0.8
Learning Rate (α) 0.0, 0.4, 0.8
ε-Greedy (ε) 0.1, 0.5, 0.9

A subset of the best and worst results obtained from these experiments is displayed
in Figure 7.6.1. To assess the performances of the bots, we counted the number of
power-ups that they collected and measured the distance they moved during a trial
replay period of 1,000 frames with ε and α set to zero, so that they always selected the
best action and did not learn. The number of power-ups collected and the distance
traveled by each bot is shown on the left y-axis scale, whereas the number of collisions

7.6 A Practical Guide to Reinforcement Learning in First-Person Shooters 677

with obstacles is shown on the right y-axis scale. The aim of the experiment was for RL
to learn to minimize the number of collisions with obstacles, maximize the number of
power-ups collected, and maximize the distance traveled.

The first experiment in Figure 7.6.1 was performed with the parameters γ = 0.0,
λ = 0.0, α = 0.0, and ε = 0.1, meaning that the bot did not learn, and its behavior was
based on the initial unlearned policy. We see here that the number of collisions is very
high (169), the number of power-ups collected is low (3), and the distance traveled is
medium (22 m).

678 Section 7 Learning and Adaptation

Rewards for Navigation Bot

0

10

20

30

40

50

Parameters

N
u

m
b

er
 o

f
It

em
s

C
o

lle
ct

ed
 a

n
d

D

is
ta

n
ce

 T
ra

ve
le

d

0

20

40

60

80

100

120

140

160

180

N
u

m
b

er
 o

f
C

o
lli

si
o

n
s

Items Distance Collisions

FIGURE 7.6.1 Rewards of the navigation bot with different parameters and random seed 103.

The overall best-performing bot was learned with parameters γ = 0.0, λ = 0.0,
α = 0.8, and ε = 0.5. This bot was able to travel a reasonable distance while picking up
the items in its path and avoiding obstacles. This, and most of the best-performing
bots, had an eligibility trace parameter and discount factor of zero. This seems a little
surprising because a nonzero discount factor is important for learning sequences of
actions. Such a sequence would be useful when a bot identifies a power-up far in front
of it, for example, when a sequence of move forward actions would allow the power-
up to be collected. Because a power-up that is far away is at least 5 m away and
will take 25 frames to reach, the effective reward for moving toward it is only, at most,
0.825 ≈ 0.004 using the largest tested value of the discount factor, which might have
been too small to have had any practical affect. This problem could be overcome by
experimenting with larger discount factors, such as 0.9 or 0.95; updating RL less
often than once per frame; or using a more detailed state representation of the dis-
tance to an object.

One of the overall worst-performing bots used the parameters γ = 0.4, λ = 0.4,
α = 0.4, and ε = 0.1. This bot did not collide with any obstacles but did not travel
very far or collect any items because the bot spent all of its time alternatively turning
left and then right, so it never collided with anything but never moved anywhere
either. This behavior is likely to have been the result of the replay trial starting in a
little-visited state where action selection was based essentially on the initial policy
values, which caused a transition to another state that had the same problem, which
caused a transition back to the first. This problem could be overcome by initializing
the values in Q(s,a) to 0 rather than 0.5, by running the learning experiments for many
more frames, or by using a function approximator for Q(s,a) rather than a lookup table
so that RL can make smarter guesses about what to do in unfamiliar states.

The last experiment displayed in Figure 7.6.1, with parameters γ = 0.8, λ = 0.8, α =
0.4, and ε = 0.5, was able to learn an overall good result in all three rewards; the num-
ber of collisions that it experienced were very low, and the distance it traveled and the
number of power-ups it collected were both close to the maximum recorded results.
Overall, the results that were achieved with different combinations of parameters were
varied, with some performing well, while others were not able to learn the desired
behaviors. A good proportion of bots were able to perform well, however, in terms of
collecting power-ups, avoiding collisions, and moving around the environment.

Figure 7.6.2 shows how the estimated values Q(s,a) of three state-action pairs
changed over time during the experiment with parameters γ = 0.8, λ = 0.8, α = 0.4,
and ε = 0.5. For the navigation setup, there were a total of 2,187 state-action pairs (36

state combinations × 3 actions). Although this is a lot of data to be presented on one
graph, it does give an idea of when the policy values have converged. In the case of the
navigation task, for example, most policy values remained stable after 4,000 time
steps; however, as can be seen in Figure 7.6.2, some were still changing quite signifi-
cantly up until the end of the experiment, which indicates that the bot’s behavior was
still adapting and that its performance might have improved further if the experiment
had been extended.

We can also see from the graph, that two state-action pairs were not visited until
after the 3,400th time step. Many other state-action pairs were not visited at all, so their
values did not change from their starting values of 0.5, which is one of the problems
with the tabular representation—those values tell the bot nothing about how it should
behave. To work around this problem, the training environment needs to be set up so
that all state-action pairs that the bot will need to use in a real game will be encoun-
tered many times. To achieve this, it will be necessary to include all combinations of
weapons, opponent types, room geometries, and so on, and to ensure that sufficient
training time is provided for them to be thoroughly experienced. Function approxima-
tors could also be used for Q(s,a), instead of a lookup table, to allow RL to generalize
more intelligently to novel states although it would still be necessary to provide a rich
learning environment to achieve good results.

7.6 A Practical Guide to Reinforcement Learning in First-Person Shooters 679

Combat Controller

The second experiment that we performed was to use RL to learn a combat controller
so that the bot could fight against other bots. In this example, the RL bot was fight-
ing against one rule-based bot, and two bots that moved around the environment but
could not shoot. The purpose of including bots that could not fight back was to give
the RL bot a chance to experience combat without the risk of being killed straight
away during the early phases of the learning process. The bot was given three sensors
that were similar to those used in the navigation experiment and defined regions to its
left, front, and right. Each sensor indicated whether or not there was a bot in sight,
and, if there was, how far away it was. A fourth sensor was provided that classified the
bot’s health as low or high.

So that multiple actions could occur at the same time, we defined actions for the
combat controller by interpreting the actions as initiations; for example, move forward
was interpreted as meaning start moving forward. The actions of the combat controller
included all of those that were available to the navigation controller with the addition
of being able to move backward, strafe left and right, shoot, stop moving, and stop
turning. During combat, the ultimate goal is to survive the fight and kill the enemy.
Guide rewards were therefore used to encourage these behaviors by rewarding accurate
shots and punishing being hit. Table 7.6.4 provides a list of the goals and rewards that
were chosen for the combat experiment.

680 Section 7 Learning and Adaptation

Policy Dynamics

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0 1000 2000 3000 4000 5000 6000 7000

Time Step

S
ta

te
-a

ct
io

n
 p

ai
r

va
lu

es

FIGURE 7.6.2 Sampled values of three state-action pairs.

Table 7.6.4 Goals and Rewards for Combat Task

Goal Reward

Killing another bot +1.0
Killed by another bot –1.0
Shot an enemy +0.0002
Shot by an enemy –0.000002

Multiple experiments were automatically run with the same combinations of para-
meters as were used in the navigation experiment, but each game was run for 5,000
frames. These frames were only counted when combat was actually in progress, so the
total length of the combat controller experiments was longer than the navigation con-
troller experiments even though the number of iterations that were experienced by the
learning algorithm was smaller. To further mitigate this effect, a small open map was
used for the combat experiment to maximize the amount of time that combat was in
progress. Rewards from the training games were recorded, and a subset of the best and
worst cases is displayed in Figure 7.6.3. The first three columns in the figure represent
the performance that was achieved without any learning, when behavior was deter-
mined by the initial policy.

7.6 A Practical Guide to Reinforcement Learning in First-Person Shooters 681

Combat Statistics

0

5

10

15

20

25

Parameters

V
al

u
e

Accuracy Death Count Kill Count

FIGURE 7.6.3 Rewards of trained combat bots with different parameters and random seed
100.

The parameter values γ = 0.8, λ = 0.0, α = 0.4, and ε = 0.5 produced the highest
kill rate, whereas the values γ = 0.8, λ = 0.8, α = 0.4, and ε = 0.5 produced good
accuracy while also being able to avoid being shot by the enemy, as evidenced by the
low death count. Both of these parameter sets have nonzero discount factors, and the
latter adds an eligibility trace to accelerate the learning of sequences of actions. This
suggests that the ability to learn sequences of actions might be useful in achieving
high accuracy and a reasonable kill rate.

The experiment with parameters γ = 0.4, λ = 0.4, α = 0.4, and ε = 0.1 produced
the highest hit accuracy, medium death count, and medium kill count. As seen in
Figure 7.6.3, the worst RL bots performed worse than when no learning had occurred.
It is not immediately obvious why this should have happened, but it is likely that 5,000
iterations were insufficient for the bots to learn effective behaviors. Examining the pol-
icy dynamics supported this idea by revealing that the values of many state-action pairs
were still changing significantly at the end of the experiments. Running the combat
controller experiments for significantly longer might therefore produce better results.

Although we decided to allow the bot to perform multiple actions simultaneously
by interpreting them as action initiations, this might have complicated the learning
process because the bot had no way of knowing what it was doing when deciding
what to do next because that information was not included in the state representa-
tion. Furthermore, the bot also had no access to information about its proximity to
obstacles and hence could easily become trapped. Although the bots in this setup
struggled to compete with the bots that could fire back, they were able to learn some
key aspects of combat, such as turning toward the enemy and shooting, and strafing
haphazardly when under fire.

Conclusion

This article has shown how RL can be used to learn low-level behaviors for deathmatch-
style FPS bots. The advantage of using RL is that the bots are able to learn how to play
through their own experience. Our example experiments have shown bots learning by
playing against other bots, and this demonstrates one of RL’s most appealing features:
that it should, theoretically, require less of a developer’s time to create and balance bot
behaviors with the help of RL, as well as make it possible for sophisticated emergent
behaviors to arise that had not been anticipated by the developers.

RL isn’t without its drawbacks, however. The developer must design a state repre-
sentation rich enough for the bot to learn complex behaviors but simple enough that
they can be learned quickly; a set of rewards must be designed that encourages desir-
able behaviors and punishes those that must be avoided; and the many parameters
that control the learning process need to be set so that learning proceeds smoothly
and converges on useful behaviors. Each of these might require multiple experiments
and significant amounts of computer time. Despite these problems, RL has great
potential in the field of FPS bot AI, and this article has demonstrated some of what
can be achieved.

682 Section 7 Learning and Adaptation

References

[Manslow04] Manslow, John, “Using Reinforcement Learning to Solve AI Control
Problems.” AI Game Programming Wisdom 2, Charles River Media, 2004.

[Sutton98] Sutton, Richard S., et al., Reinforcement Learning: An Introduction. The
MIT Press, 1998.

[Watkins92] Watkins, Christopher J., et al., “Q-learning.” Machine Learning, Vol. 8,
(1992): pp. 279–292.

7.6 A Practical Guide to Reinforcement Learning in First-Person Shooters 683

This page intentionally left blank

685

About the CD-ROM

This book’s CD-ROM contains source code and demos that demonstrate the tech-
niques described in the book. Every attempt has been made to ensure that the

source code is bug-free and that it will compile easily. Please refer to the Web site
www.aiwisdom.com for errata and updates.

Contents

The source code and demos included on this CD-ROM are contained in a hierarchy
of subdirectories based on section name and article number. Source code and listings
from the book are included. At each author’s discretion, a complete demo or video is
sometimes included. Demos were compiled using Microsoft Visual C++ 2005. Exe-
cutables for each demo are also included.

Related Web sites

There are many Web resources for game developers. Here are a few of the best:

AIWisdom: The home of this book is also a great place to research published game
AI techniques. AIWisdom.com features the only online listing of game AI
articles and techniques written for books, magazines, conferences, and the Web.
Article titles and their abstracts can be searched by topic, genre, or resource. The
Web site is at www.aiwisdom.com.

IntroGameDev: IntroGameDev.com is a more comprehensive version of
AIWisdom.com that lists over 1000 articles addressing all topics within game
development, such as graphics, physics, architecture, artificial intelligence, game
design, production, and asset creation. The Web site is at www.introgamedev.com.

GameAI: GameAI.com is a great place to go for tons of info and links on game AI.
The Web site is at www.gameai.com.

Game/AI: Game/AI is a blog co-written by six game-industry veterans. The Web
site is at www.ai-blog.net.

AIGameDev: AIGameDev.com has interesting articles and opinions on the state of
game AI. The Web site is at www.aigamedev.com.

AI-Depot: AI-Depot.com fosters its own AI community by providing articles, news,
and message boards. The Web site is at www.ai-depot.com.

AI-Junkie: AI-Junkie.com contains interesting AI articles by Mat Buckland. The
Web site is at www.ai-junkie.com.

http://www.aiwisdom.com
http://www.aiwisdom.com
http://www.introgamedev.com
http://www.gameai.com
http://www.ai-blog.net
http://www.aigamedev.com
http://www.ai-depot.com
http://www.ai-junkie.com
http://AIWisdom.com
http://IntroGameDev.com
http://AIWisdom.com
http://GameAI.com
http://AIGameDev.com
http://AI-Depot.com
http://AI-Junkie.com

Generation5: Generation 5 covers interesting developments and news stories
from the field of AI. It also has sections covering interviews, books, programs,
software, and competitions. Of particular value are the AI solutions page, the
discussion boards, and the great AI glossary section. The Web site is at
www.generation5.org.

GDConf: The Game Developers Conference is currently held every year in San
Jose, California (USA). Their Web site is at www.gdconf.com.

GDMag: Game Developer Magazine is an asset to the game development industry
and includes advice for all aspects of game development, including AI. It is
published monthly, and you might be able to subscribe for free in the U.S. if
you’re a professional developer. Source code from their articles can be found on
their Web site at www.gdmag.com.

Gamasutra: Gamasutra is the Web equivalent of GDMag. It publishes some of
the articles from Game Developer Magazine as well as articles written specifically
for the Web site. Gamasutra also includes industry news, community chat
areas, job listings, and a variety of other useful services. Find Gamasutra at
www.gamasutra.com.

GameDev: GameDev features news, discussions, contests, tutorials, and links for
game developers. Find GameDev at www.gamedev.net.

International Game Developers Association: The IGDA is a non-profit association
dedicated to linking together game developers around the globe and encouraging
the sharing of information among them. Their Web site is www.igda.org.

Next Generation: Next Generation is a daily news site for the games industry, based
on the former magazine of the same name. Find Next Generation at www.next-
gen.biz.

Games Industry: GamesIndustry.biz is a Web site specializing in press releases and
news stories from the games industry. Find their Web site at www.gamesindustry.biz.

Blue’s News: Blue’s News features daily PC game news, no matter how obscure. Not
necessarily for game developers, but it gives insight into what game developers
are working on. Find Blue’s News at www.bluesnews.com.

Penny Arcade: Penny Arcade features comics and commentary on the games
industry, with dead-on accuracy. Find Penny Arcade at www.penny-arcade.com.

686 About the CD-ROM

http://www.generation5.org
http://www.gdconf.com
http://www.gdmag.com
http://www.gamasutra.com
http://www.gamedev.net
http://www.igda.org
http://www.next-gen.biz
http://www.next-gen.biz
http://www.gamesindustry.biz
http://www.bluesnews.com
http://www.penny-arcade.com
http://GamesIndustry.biz

687

A
AABB (axis-aligned bounding box),

164–165
AABVH (axis-aligned bounding

volume hierarchy), 170
absolute distance, 351
abstract state machines (ASMs),

333–336
parameters, 343–345
referencing, 343–345

abstracted trace, failures from,
627–628

abstraction
information, 150–151
search, 151–153

abstractions, memory-efficient,
203–216

caching paths and costs, 215
creating, 203–206
dynamic world optimizations, 215
high-level control, 213–214
modifying, 211–212
nodes, 207
path refinement, 207–209
pathfinding, 207
region centers, 209–211
regions, 204, 214–215
sector size, 212
sectors, 204, 214–215
smoothing, 212–213
storing, 204–206

Acornsoft, 5
acoustic-language model, 533
action biased mutation, 665
action replacement mutation, 665
actions, 258, 619
active-load distribution, 299–300
activities, 322–323
actors, 242
adaptation, 504
adaptive computer games, 617–631

artificial intelligence performance,
628–629

automative behavior adaptation,
626–628

behavior learning, 620–622
behavior representation language,

618–620

learned behavior execution,
622–626

behavior retrieval, 623
behavior revision, 625–626
plan expansion, 623–625

overview, 617–618
AddDecision function, 225–226
AddRecord, 296
AddThreshold () function, 355
Adventure, 531–548
affinity matrices, 576–577
affordances, 76–77

identification of, 77–78
influence mapping, 78–79

affordances for actions, 75
AFSM (augmented finite state

machines), 598
Ageia Technologies, 160
agency, 9–10
agents, 288–291

communication, 226, 296–298
coordination, 226
memory, 289–290
ownership, 298–301

performance, 300–301
streaming/locality, 298–300

requests, 291
sensors, 288–289

agressive player (poker), 22
AI Game Programming Wisdom

(book), 108
AIModel class, 465
AIPathSystem, 161
alive conditions, 619, 624
alive state, 323
all of many tasks quest, 515
allies, 229
AlreadySatisfiedEvent event, 542
American football, 75
animation state, 34
anosmia, 503–504
antiobjects, 307
ANTS, 363
anytime algorithm, 146–147
application cost, 378
approach radius, 244
ApproachEnemy goal, 462
archetypes, 18–21, 104–105

architectures, 221–227
agent communication and coordina-

tion, 226
decision chaining, 225–226
decision weighting, 223
goal stack-based, 457–466
multiprocessor, 305–314
peer-to-peer, 295–304
perception system, 285–293

areas, 79
ArmiesBuilt, 380
ArmiesInTerritory, 380
arms race model, 553–557

faction interaction, 555–557
model semantics, 554

artificial intelligence, 35
designer, 27–38

authorability, 27–28
communication, 36–38
data-driven methods, 29–32
debugging tools, 34–36
scripting systems, 32–34
workflow, 28–29

ecological balance, 49–56
in gameplay analysis, 39–47
goal-based, 232–235

architecture, 232–233
bonuses, 234
data-driven design, 235
debugging tools, 235
exponents, 234
multipliers, 234
priorities, 234
shared conventions, 234

hierarchical, 261–263
decorators, 263
parallels, 263
selectors, 262
sequences, 262

make it fun approach, 26
procedural, 230–232
pure intelligence approach, 25
situationism in, 11–14
sophisticated algorithm approach,

25
artificial personality, 17–18

archetypes, 18–21
case study, 21–25

INDEX

ASMs. See abstract state machines
ASR (automatic speech recognition),

534, 540
assassinate antagonist quest, 515, 519
associative structures, 75–76
asymptotic stability, 553
atomic units, 384–385
attack goal, 232–233
attack layer, 494
attack least defended base, 408
AttackEnemy goal, 462
AttackIfPlayerNearby task, 343
attitude model, 571–578

affinity, 573
constrained linear model, 575–576
implementation, 576–577
linear model, 573–574
recurrent neural network model,

574–575
social networks, 572
testing, 577

auditory sensing, 501–503
augmented finite state machines

(AFSM), 598
Aurora Neverwinter Toolset, 644
authorability, 27–28
automatic speech recognition (ASR),

534, 540
avoidance, 241, 246
AvoidExplosion goal, 459
axis-aligned bounding box (AABB),

164–165
axis-aligned bounding volume

hierarchy (AABVH), 170

B
back-facing polygons, 132
backward chaining, 397–399
Balance of Power, 551
Baldur’s Gate, 151–153
base cells, 83–85

See also navigation mesh (navmesh)
clipping against intersecting edges,

88–89
clipping hulls to, 87–88
resetting, 90

baseball Bayesian networks, 437–440
basic operator failures, 627
Bates, Joseph, 6
Battlestar Galactica, 579
Bayesian networks, 429–440

baseball, 437–440
conditional probability tables,

430–431
converging path, 432

directed acyclic graph, 429–431
diverging path, 432
linear path, 431–432
thief, 433–436

beacon, 287–288
behavior, 30

and goals, 459–460
parts, 618–619
and places, 75
retrieval, 623
revision, 625–626
scripting, 33–34

behavior agent, 545–546
behavior cubes, 336
Behavior Editor, 333–346

abstract state machines, 333–336
compile-time vs. runtime, 345
data decomposition, 337–340
GUI for, 341–342
as Maya plugin, 336–337
workflow decomposition, 340
XML-based programming, 342–345

Behavior Representation and Reason-
ing Language (BRL), 618–620

behavior system, knowledge-based,
265–274

vs. decision trees, 270–272
vs. finite state machines, 270
implementation, 272–274
knowledge controller, 266–267
knowledge elements, 266
knowledge tree structures, 268–269
result entity execution cycle, 267
result entity priorities, 267–268

behavior task, 334
behavior trees (BTs), 262–263
berserker strategy, 444
Bicycle® Texas Hold’em, 21–25

difficulty levels, 24
improving, 24–25
personality archetypes in, 22–23
playing against AI in, 23
poker play styles in, 22

BioWare Corp., 203
bitwise operators, 399
blackboard systems, 296–298,

312–313
Blue Fang, 236
blue_key_possession, 320
bonuses, 236
both_keys_possession, 320
boundaries, 299–300
boundary points, 116–117
bounding volume, 85–86
Bourdieu, Pierre, 10

branching stories, 635
BRL (Behavior Representation and

Reasoning Language), 618–620
Broken Sword 3, 7
Brooks, Rodney, 49
BTs (behavior trees), 262–263
build templates, 236
BuildArmies goal, 380
BuildArmiesInTerritory task, 380
BuildBuilding goal, 620
builder archetype, 21
building idle failure, 627

C
c4 architecture, 12
camera system, constraint-based,

467–477
3D velocity constraint, 476
clamping output position, 476
constraint properties, 469–471

collision, 470–471
continuity, 470
range, 469–470
uniqueness of solution, 470
visibility, 470–471

constraint responsibility, 468–469
debugging, 475
one-dimension1D line, 469–471
overview, 467–468
profile-based architecture, 471–472
search space, 473–474

size, 473–474
sliding octree, 474

speed limited constraint, 476
suitability value transformations,

472–473
candidate data points, 163–164
canJump, 169
CannotSolveEvent event, 542
canWalk, 168
capture the flag player, 426
Carbonated Games, 21
Carnegie Mellon University, 6
Carnival, 388–390
cause entity, 266
cDebug, 245
CDecisionFramework, 356
CDT (Constrained Delaunay

Triangulation), 145
chain quest, 515
chained goals, 462
champion archetype, 20–21
Charniak, Eugene, 432
chokepoints, 364
chromosome encoding, 661–664

688 Index

chunks, 98
Church, Doug, 74
cinematic action-adventure RPG, 7
Civilization, 551
close quest point, 521
closure, 258
CMU, 534
Code Analyst, 308
collision constraints, 470–471
collision tests, 114–115
collision validation, 199
Colossal Cave Adventure, 593
combat controller, 680–682
combat simulation, 415
combat-related decisions, 661
comedian archetype, 21
COMIC system, 598
command execution layer, 494
command hierarchies, 383–390

giving orders, 385–386
goal-oriented action planning in,

385–388
optimizations, 388–390

interruptible A*, 389
planning scheduler, 388–389
rescheduling search, 390

receiving orders, 386–388
communication, 36–38

reference documentation, 37
system design goals and limitations,

36
training, 37

Company of Heroes, 61–69
destination formation, 68–69
destruction handling, 69
formation context, 65
leapfrogging, 65–67
move out, 62–63
softening shape, 63–65
squad formations, 61–69
squad makeup, 61–62
turns in, 191–201
virtual leader, 67–68

compile-time, 345
composite tasks, 262–263
computer games, adaptive,

617–631
artificial intelligence performance,

628–629
automative behavior adaptation,

626–628
behavior learning, 620–622
behavior representation language,

618–620

learned behavior execution,
622–626

behavior retrieval, 623
behavior revision, 625–626
plan expansion, 623–625

overview, 617–618
condition, 258
conditional probability tables (CPTs),

430–431
confident animation, 282
connections, 364, 368–369
Connexor, 534
constant radius turn, 194–196
Constrained Delaunay Triangulation

(CDT), 145
constrained edges, 145
constrained linear model, 575–576
Constrained Triangulation (CT), 145
constraint-based camera system,

467–477
3D velocity constraint, 476
clamping output position, 476
constraint properties, 470–471

collision, 470–471
continuity, 470
range, 469–470
uniqueness of solution, 470
visibility, 470–471

constraint responsibility, 468–469
debugging, 475
one-dimension1D line, 469–471
overview, 467–468
profile-based architecture, 471–472
search space, 473–474

size, 473–474
sliding octree, 474

speed limited constraint, 476
suitability value transformations,

472–473
construction decisions, 661
constructivism, 3–7

combination with reductionism,
6–7

strengths and weaknesses of, 4–6
context, 619
context-dependent values, 448
contextual animation, 12
contradiction, 396
ControlRevoltInTerritory goal, 380,

389
ControlRevolts motivation, 379–380
converging path, 432
convex hull, 86
convexity, 559

coordinate revision, 625–626
coroutine, 258
corridors, 150
coward archetype, 20
Cowell, Robert, 432
CPTs (conditional probability tables),

430–431
crossover operators, 664
CrouchInCover, 263
CT (Constrained Triangulation), 145
cTarget class, 243–245
CThreshold class, 355–356
cunning opponents, 229
current distance, 72
current target, 72
CurrentState variable, 585
curve turns, 192–193
cutscenes, 302
Cyberstrike 2, 159, 169

D
DAF (dialogue action forms),

598–599
DAG (directed acyclic graph),

429–431
data, 10–11

decomposition, 306–307, 337–340
extraction, 368–369
gatherer, 287–288
indirection, 31
orthogonality, 31
validation, 35–36

data-driven design, 29–32
consistent names and units in,

31–32
data indirection in, 30–31
data orthogonality in, 31
intuitive units in, 31–32
spatial markup, 30
tuning behavior in, 30

DDA (digital differential analyzer),
87

ddx() operator, 138
ddy() operator, 138
dead state, 318
DeathBlossom, 167
debugging tools, 235

cDebug, 245
data validation, 35–36
visual overlays, 34–35

deceleration rate, 200
decision chaining, 225–226
decision magnitude, 351–352
decision points, 150

Index 689

690 Index

decision trees, 270–272
decision weighting, 224–225
decision-making and control systems,

257–264
applications, 263–264
building blocks, 257–259

latent execution, 258
modular tasks, 258
termination status, 258–259

hierarchical artificial intelligence,
261–263

decorators, 263
parallels, 263
selectors, 262
sequences, 262

support framework, 259–261
global observers, 260–261
scheduler, 259–260
task observers, 261

decision-making process, 222–227
agent communication and coordina-

tion in, 226
decision chaining, 225–226
decision weighting, 223
in goal stack-based architecture, 461
pseudocode for, 223

declarative artificial intelligence, 229
declarative programming, 229
decorators, 263
DecreaseTaxes goal, 376
defender archetype, 20
DefendTerritory goal, 376
defensive design, 50
Delaunay Triangulation (DT), 144
deliver item quest, 515
dependencies, 102–103
designer artificial intelligence, 27–38

authorability, 27–28
communication, 36–38
data-driven methods, 29–32
debugging tools, 34–36
scripting systems, 32–34
workflow, 28–29

destination formation, 68–69
destination heading, 198–199
destruction, handling, 69
Deus Ex, 5
Diablo, 551
dialogue, 532
dialogue action forms (DAF),

598–599
dialogue management, 593–602

behavior agent, 545–546
finite state machines, 594–596

frames, 596–597
inference-based systems, 600–601
plan-based systems, 601–602
in speech-based systems, 535–536
stacks, 598–599

dictionary cost functions, 137
die event, 318
difficulty levels, 24
digital differential analyzer (DDA),

87
Dijkstra, 177
directed acyclic graph (DAG),

429–431
discontinuous path, 200–201
disfluencies, 532
diverging path, 432
domination games, 608
Don’t reevaluate task condition(s)

flag, 335
Dragon Age, 203
dramaturgical perspective, 76
DT (Delaunay Triangulation), 144
dual core X86 CPU, 138
dynamic mesh, 92–93
dynamic scripting, 237
dynamic terrain analysis, 13
dynamic thresholds, 349–351

diversity in agents, 350
diversity in unit types, 349–350
fuzzy threshold adjustments,

350–351
state-specific, 350

E
ecological balance, 49–56

defensive design, 50
level design, 52–54
principle of, 49–50
process models, 54–56
and working relationships, 51–52

ecological perception, 12–13
economic decisions, 661
Edge class, 181
edges, 83

clipping cell against, 88–89
inside, 85
outside, 85
storing information in, 179–182

Electronic Arts, 159
Elite, 5
embodied cognitive science, 11
Emotion Component, 275–283

act module, 279
sense module, 278

think module, 278–279
emotions, 276–277

coloring perceptions with, 278–279
in games, 277
group, 282
influencing behavior selection with,

278–279
multiple, 280–281
in non-playing characters, 507
showing, 282
single, 279–280
sustaining, 281–282

enactivism, 11
EnemyDeath event, 462
EnemyOutofRange event, 462
engagement decision, 443–453

alternatives and best options, 453
Monte Carlo method, 449–451
personality statistics, 453
power calculation, 445–449

adapting to players, 448–449
basic formulas, 445
context-dependent values, 448
creating formulas, 446–447
summing variables, 447–448
unit-specific formulas, 447

power lookup, 449
random, 443–444
rules and intelligent randomness,

451–453
simple strategy, 444–445

Entropics Inc., 546
environmental data, 286–287
Euclidean distance, 177
Evaluate () function, 273
event suitability, 640
events, 460–461
everyday life, role-playing in, 76
ExecuteResults () function, 274
execution trace, 621
extruded obstruction map, 135–136
extruded roof map, 135–136
extrusion maps, 135–136

F
Fable, 520, 636
factions, 551
false negatives, 28
false positives, 28
fast-forwarding strategies, 414
FBDS (frame-based dialogue sys-

tems), 596–597
F.E.A.R., 310–311
fear constants, 553

fighter, 637
FindRecord, 296
finite state machines (FSMs),

231–232
in dialogue management, 594–596
and emotions in games, 277
vs. knowledge-based behavior

system, 270
in MARPO system, 247–248
in multiprocessor AI architectures,

309–310
statecharts, 317–332

FireteamClearRoom action, 385
FireteamRetreat action, 386
first person shooters (FPSs), 499–510

linear stories in, 634–635
non-playing characters, 499–510
reinforcement learning in, 681–682
RETALIATE approach, 607–616

first-order logic, 600
first/third person shooters (FTPS),

499–510
FIST triangulation, 138
Fitts’ Law, 485–491

assumptions, 488–490
data gathering, 488
formula, 486–487
overview, 487–488
Shannon formulation, 487

Fitts, Paul, 485
Flee () entity, 269
float-based logic, 233
floor height manifolds, 132
football, 75
FPSs. See first person shooters
frame-based dialogue systems

(FBDS), 596–597
FSMs. See finite state machines
FTPS (first/third person shooters),

499–510
functional bodies, 75
functional decomposition, 306–307
funnel algorithm, 148–149
fuzzy-state machines (FuSMs), 277

G
game cycle, 406–407
Game Programming Gems (book), 95
Game Programming Gems 2 (book),

107
game theory, 409–410
game zones, 364
GameMonkey (GM) script, 579–590

binding functions to, 580–581
binding other objects, 584

complexity, 588–589
finite state machines, 585
game data in, 581–582
high-level binding, 582–583
limited debugger support, 587–588
low-level binding, 582–583
mod creators, 589
nontechnical designers, 586–587
performance, 587
player creation in, 589–590
rapid prototyping, 584–585

gameplay analysis, 39–47
gameplay experience, 648–649
GATE (General Architecture for Text

Engineering), 537
general archetype, 21
General Architecture for Text Engi-

neering (GATE), 537
generalized Voronoi diagrams, 362
genius archetype, 21
geometric terrain analysis, 362
GetThreshXatY () function, 356
GetThreshYatX () function, 356
Ghost Recon, 113–120
Gibson, James, 75–77
global observers, 260–261
GM. See GameMonkey
Goal Creator Function, 461
goal stack-based architecture,

457–466
architecture, 458–463

behaviors, 459–460
decision-making process, 461
events, 460–461
goal stack, 459
goals, 459
orders, 460

for higher-level AIs, 464
implementation details, 464–465
improvements, 462–463

autonomy, 463
chained goals, 462
delayed goals, 462–463
parallel goals, 463

goal-based artificial intelligence,
232–235

architecture, 232–233
bonuses, 234
data-driven design, 235
debugging tools, 235
exponents, 234
multipliers, 234
priorities, 234
shared conventions, 234

goal-based reasoning, 248–251

goal-oriented action planning
(GOAP), 237, 374, 383–384

goals, 459
and behavior, 619
in goal-based artificial intelligence,

232
in goal-based reasoning, 248
negotiation, 292
in planning systems, 376
stacks, 459

GOAP (goal-oriented action plan-
ning), 237, 374, 383–384

Goffman, Erving, 76
GoToPos goal, 459–460
GPU (graphics processing unit), 138
Grand Theft Auto, 7, 247
graph nodes, 135–136
graphical debugging tools, 235
graphics processing unit (GPU), 138
greedy control, 613
GridStepXY, 121
grievance terms, 553
grounding, 532
group psychology, 282

H
habitus, 10
half base defense mass attack, 408
Half Life 2, 8
Half-Life 2 engine, 308–309
Halo, 73
Halo 2, 73
harass, 408
Harel, David, 317–322
hash keys, 104–105
height field terrain, 98, 106
Hero Engine, 159
hider simulacra, 426
hierarchical artificial intelligence,

261–263
decorators, 263
parallels, 263
selectors, 262
sequences, 262

hierarchical finite state machines
(HSFMs), 257, 302

hierarchical task network (HTN), 374
control, 613
planning, 237

hierarchical thresholds, 355
high processing boundary, 300
high-level functions, 582–583
high-suitability events, 645
history states, 322
HitReaction () result entity, 268

Index 691

holism, 9–10
Horn clauses, 395
hotspots, 364, 368–369
HSFMs (hierarchical finite state

machines), 257, 302
HTN. See hierarchical task network
Human Communication Research

Centre Map Task, 536
human sensing, 500–505

auditory, 501–503
olfactory, 503–504
tactile, 500
visual, 501

hunter, 408
hunter simulacra, 426
hybrid architectures, 235–236
hybrid game architecture, 308–309

I
IDA (Interactive Drama Architec-

ture), 639
identity archetypes, 103
idiot archetype, 21
IF clause, 395
image processing, 366–367
immediate goal, 253
imperfect-information environment,

648
Improv, 12
IncreasedPotential, 380
independent thresholds, 353–354
index of difficulty, 487
individualism, 9–10
inference engines, 248–249
inference-based dialogue systems,

600–601
influence discs, 175
influence maps, 174–177

See also pathfinding
affordances, 78–79
limitations of, 79
risks, 176–177

InitLevel function, 585
insecure animation, 282
inside edges, 85
insistence, 232
intelligent scripting, 237
intent, 35
Interactive Drama Architecture

(IDA), 639
interactive storytelling, 633–645

branching stories, 635
decision-making, 642
generic events and behaviors,

642–643

high-suitability events, 645
human user study, 644
layered stories, 636
leveraging author experience,

639–640
library of events, 645
linear stories, 634–635
player-created stories, 645
player-specific stories, 636–645
role passing, 643
selecting story events, 640–641
steering the player, 641–642

interior edges, 88–89
interior vertices, 117–118
Interrupt () function, 273
interruptible A*, 389
intersecting edges, 88–89
intrinsic detail, 97–98
Ion Storm, 5
IsBeingShotAt, 263
Isla, Damian, 73
islands, 149
IsValid () function, 273
iteration speed, 29

J
join up, 408
jumping, 169

K
KBB system. See knowledge-based

behavior system
Kd-Tree, 168
kill antagonist quest, 515, 520
KillEnemy function, 580
KillEnemy goal, 386–387
Knowledge class, 273
knowledge controller, 266–267
knowledge groups, 269
knowledge states, 269
knowledge tree, 266, 268–269
knowledge units, 266
knowledge-based behavior (KBB)

system, 265–274
vs. decision trees, 270–272
vs. finite state machines, 270
implementation, 272–274
knowledge controller, 266–267
knowledge elements, 266
knowledge tree structures, 268–269
result entity execution cycle, 267
result entity priorities, 267–268

KnowledgeController class, 274
Kohan, 235
Kohan 2, 236

L
Lanchester’s Square Law, 446
last observed position, 72
last observed time, 72
latent execution, 258
layered stories, 636
leapfrogging, 65–67
learned unit-type weights, 653–654
Lefebvre, Henri, 74–75
level design, 52–54

precise timing, 53
predefined animation, 53–54
predictable movement, 53
specific event order, 52

level of detail (LOD), 97
level-0 nodes, 149
level-1 nodes, 149–150
level-2 nodes, 150
Lifeline, 531–548
light-weight subsumption, 493–497

example scenario, 494
layer execution, 495–496
layers, 494–495
overview, 493–494
pitfalls and misconception,

496–497
linear model, 573–574
linear path, 431–432
linear stories, 634–635
Link Parser, 534
Little Red Riding Hood, 644
local entities, 71–73
location state, 323
LOD (level of detail), 97
logic-based planning, 393–404

backward chaining, 397–399
benefits of, 393
dynamic rules, 400–402
modus tollens, 396
negated propositions, 402–403
optimizations, 399–400
planners, 394–396
resolution inference rule, 396–397
value functions, 403

long-term goal, 253
long-term memory, 505
loose player (poker), 22
low processing boundary, 300
lower-suitability events, 645
low-level functions, 582–583
Lua (programming language), 36

M
m_allowedFlag attribute, 190
m_g attribute, 181

692 Index

m_graphId attribute, 181–183, 186,
189–190

m_h attribute, 181
m_id attribute, 181–182
m_left attribute, 181
m_length attribute, 181
m_neighbor attribute, 181
m_position attribute, 181
m_predecesspr, 181
m_right attribute, 181
Machinese Syntax, 534
MADTFDA (Multi-Axial Dynamic

Threshold Fuzzy Decision
Algorithm), 347–357

adding thresholds, 355–356
classes, 354–357
code extensibility, 357
decision model, 349, 355
dynamic thresholds, 349–351

diversity in agents, 350
diversity in unit types, 349–350
fuzzy threshold adjustments,

350–351
state-specific, 350

fuzzy results, 351–353
absolute distance, 351
normalized distance, 351–353

hierarchical thresholds, 355
independent thresholds, 353–354
multiple thresholds, 354–355
overview, 347–348
results from, 356–357

make it fun approach, 26
maniacs (poker), 22
MARPO (Movement, Avoidance,

Routing, Planning, and Orders),
239–255

basic architecture, 241–245
debugging and testing, 245
target class, 243–245
Think/Act loop, 245
virtual yoke, 242–243

good practice, 241
interfaces, 240–241

avoidance, 241
movement, 241
orders, 240
planning, 240
routing, 240

overview, 239–240
task system, 246–254

finite state machine, 247–248
goal-based reasoning, 248–251
task class, 251

task hub, 252–254
task input/output, 252
task queues, 252–254

tiers, 245–246
mass attack, 408
massively multiplayer online (MMO)

games, 306
material strength, 649–650
Maya Command Port, 340
Maya Embedded Language (MEL),

337
mbCraft, 243
mChainedDecisions variable, 222,

225
mCurrentState, 251
mDecision variable, 222
MEL (Maya Embedded Language),

337
memories, 505–506
memory system, 289–290
memory usage, 109
memory-efficient abstractions,

203–216
caching paths and costs, 215
creating, 203–206
dynamic world optimizations, 215
high-level control, 213–214
modifying, 211–212
nodes, 207
path refinement, 207–209
pathfinding, 207
region centers, 209–211
regions, 204, 214–215
sector size, 212
sectors, 204, 214–215
smoothing, 212–213
storing, 204–206

Merleau-Ponty, Maurice, 75
MeshCleanup utility, 161
Message Dispatcher, 540
message ordering, 303
Metal Gear Solid 3: Snake Eater, 502
method actor, 637
mFlags variable, 222
mGas, 243, 246
Microsoft .Net, 330
minimum agent count, 300
Mirage, 646
mission data, 337
MMO (massively multiplayer online)

games, 306
mod creators, 589
modification operators, 627
modified funnel algorithm, 148–149

modular tasks, 258
modus tollens, 396
Molyneux, Peter, 5
Monomyth, 643–644
Monte Carlo method, 449–451
motivational graphs, 375
motivations, 375–378
MoveAndAttack goal, 463
MoveArmies goal, 380
MoveArmiesToTerritory task, 380
MoveArmyToTerritory task, 376
Movement, Avoidance, Routing,

Planning, and Orders. See
MARPO

movement-based expansion,
126–127, 131, 137

MoveToNode goal, 385
moving influences, 176
MSN Games, 21
mSteer, 243, 246
Multi-Axial Dynamic Threshold

Fuzzy Decision Algorithm. See
MADTFDA

multiple emotions, 280–281
multiple users, 29
multiprocessor architecture, 305–314

blackboard systems, 312–313
data decomposition, 306–307
finite state machines (FSMs),

309–310
functional decomposition, 306–307
hybrid decomposition, 308–309
planning systems, 310–312

multitasking, 138
mutation operators, 664

N
named entity recognition, 535
names, 31–32
natural language generation (NLG),

537–538, 546, 602
natural language understanding

(NLU), 534–535, 540–541,
543–545, 602

NaturalMotion, 12
navigable space, 115–116
navigation controller, 676–680
navigation graph generation, 125–140

3D rasterization, 127–128
creating graphs in, 134–137

connectivity, 136–137
cost filling, 136–137
extrusion maps, 135–136
graph nodes, 135–136

Index 693

navigation graph generation, (continued)
graphics processing unit (GPU) in,

138
movement-based expansion,

126–127, 137
render-generate algorithm, 131–134

floor height map passes, 132
obstruction passes, 133–134
roof height map passes, 133
walkable ground passes,

133–134
self-building dictionary, 137
system overview, 130–131

navigation mesh (navmesh), 83–94
creating, 87–89
definition of, 84
empirical generation of, 113–123

algorithm, 113–120
implementation guidelines, 122
optimizations, 120
tuning the results, 120

intrinsic detail, 97–98
pathfinding with, 90–94
points of visibility, 129
refinement, 106–107
search space comparisons, 108–111
static representation, 84–87

overlapping geometry, 85–86
quick hull algorithm, 87

updating, 90
nearest cover point, 72
Neverwinter Nights, 520, 531–548,

551, 557
Neverwinter Nights 2, 644
NICE game system, 539–542

architecture, 540
automatic speech recognition, 540
dialogue management, 542
inference engine in, 600
natural language understanding,

540–541
spoken language generation, 542

NLG (natural language generation),
537–538, 546, 602

NLU (natural language understand-
ing), 534–535, 540–541,
543–545, 602

No One Lives Forever 2, 312–313
no_key possession, 320
Node class, 181
nodes, 83, 180–182, 187–188
noise reduction, 364–365
nonlinear game narratives, 558–560
nonlinear mission-based narratives, 7

non-playing characters (NPCs),
499–510

attitude model, 571–578
affinity, 573
constrained linear model,

575–576
implementation, 576–577
linear model, 573–574
recurrent neural network model,

574–575
social networks, 572
testing, 577

behavior of, 3
class-based AI, 500
emotions, 507
human sensing, 500–505

auditory, 501–503
olfactory, 503–504
tactile, 500
visual, 501

memories, 505
personality, 506
physiological stressors, 508–509
visual overlays, 34–35
weapon proficiency and skills, 509

nontechnical designers, 586–587
normal quest point, 519–521
novices (poker), 22
NPCs. See non-playing characters
null, 408

O
object avoidance, 241
objective space, 73
object-oriented programming, 343
objects

partially demolishing, 186–189
removing, 182–183

Oblivion, 520, 551, 636
obstacle height map, 133–134
occupancy maps, 421–422

analysis, 421–422
cull, 421
data, 420
initialization, 420
Isla model, 421
move, 421
update, 421

offline player modeling, 636
olfactory sensing, 503–504
OnAttacked script, 638
OnDamaged script function, 302
one of many tasks quest, 515
1D line, 476

data interpretation, 482
drawing the world, 480–481

component labeling, 481
multiple viewers, 481
object representation, 480–481
projecting 2D to 1D, 481

extensions, 483
overview, 479–480
potential issues, 483
querying, 482

OnEntityAppear, 291
OnEntityDisappear, 291
onFinished () function, 261
online player modeling, 636
OnSubTaskReturn (), 252
OPCODE, 168
Operation Flashpoint, 537
opponent modeling, 412–415

algorithm, 412–413
combat simulation, 415
fast-forwarding strategies, 414
implementation, 413
pathfinding, 415
simulation process, 413–414

opponent tracking, 419–427
occupancy maps, 421–422
particle filters, 422–423
simulacra, 423–426

opportunistic control, 613
optional quest point, 521
orders, 79–80, 240, 460
outside edges, 85
overlapping geometry, 85–86
overlay, 34–36
ownership-acquiring minimum

boundary, 299
ownership-leaving maximum

boundary, 299
Oz project, 6

P
Pac-Man, 55
parallel goals, 463
parallel states, 320
parallels, 263
parameters, 376
ParserEvent event, 542
parsing, 534
partial behavior tree, 623–624
particle filters, 422–423

See also simulacra
analysis, 423
cull, 422
data, 422

694 Index

initialization, 422
move, 422
update, 422

passability map, 363
PaSSAGE, 639–640
passive load distribution, 298–300
passive player (poker), 22
patches, 105–106
path information, 35
path optimality, 109
path planning, 53
pathfinding, 28

considerations for, 146–147
in dynamic environments, 179–190

adding objects, 183–186
partially demolishing objects,

186–189
removing objects, 182–183
storing information, 179–180
verifying existing paths,

189–190
influence maps, 173–178
with navigation mesh, 90–94
in opponent modeling, 415
pathpoints, 91–92
rubber-banding, 92–93
in terrain analysis, 366
in triangulations, 144–147

pathfinding nodes, 164–165
algorithm, 160–161
candidate data points, 163–164
connectivity, 168–169
dynamic environments, 170
jump, 169–170
removing, 167
removing data points, 164–165
requirements and assumptions,

159–160
walking surfaces, 162–163
world geometry, 161

pathfinding simulation analysis,
362–363

pathpoints, removing, 91–92
Pawn (programming language), 36
Pearl, Judea, 432
peasant attacked military units failure,

627
peasant idle failure, 627
peer-to-peer architectures, 295–304

agent communication, 296–298
agent ownership, 298–301

active-load distribution,
300–301

passive load distribution,
298–300

cheating, 303
cutscenes, 303
message ordering in, 303
overall architecture, 295–296
scripted game logic, 302
security, 303
serializing agent state in, 301–302

perception, 35, 278–279
perception system, 285–293

agents, 288–291
memory, 289–290
requests, 291
sensors, 288–289

architecture, 285–288
beacon data, 287–288
data gatherer, 287–288
environmental data, 286–287
tactical data, 287

expanding, 291–292
goal negotiation, 292
priority scanning, 292
time slicing, 291–292

using, 292–293
perfect-information environment, 648
PerformedEvent event, 542
Perlin, Ken, 12
personality, 506
personality archetypes, 18–21

and random behaviors, 19
reinforcing, 19–20
samples of, 20–21

builder, 21
champion, 20–21
comedian, 21
coward, 20
defender, 20
general, 21
genius, 21
idiot, 21
psycho, 20

personality statistics, 453
Pfeifer, Rolf, 55
physical symbol systems, 49
physics influence maps, 138
PhysX SDK, 160
Pinter, Marco, 192–194
pixels, 138
places, 71–80

associative structures, 75–76
hierarchy in, 75
integration with behavior, 75
models of, 76–80
observer-dependent, 74
representation of, 79–80
umwelt, 71–73

plan-based systems, 601–602
planes, intersecting with volume, 86
Planescape Torment, 551
Planetside, 159
planners, 394–396
planning scheduler, 388–389
planning systems, 373–382

advantages of, 374
algorithm, 378
architecture, 375–378

goals, 376
motivations, 375–376
parameters, 376
planner, 376–377
predicates, 376
tasks, 377–378

example of, 379–380
logic-based, 393–404

backward chaining, 397–399
benefits of, 393
dynamic rules, 400–402
modus tollens, 396
negated propositions, 402–403
optimizations, 399–400
planners, 394–396
resolution inference rule,

396–397
value functions, 403

related work, 374–375
replanning, 379
simulation-based, 408–411

player modeling, 636
player-created stories, 645
players, 589–590
player-specific stories, 636–645

player modeling, 646
player types, 637–638

PlayStation 3 (PS3), 306–307
PMW (Python Mega Widgets), 342
point localization, 147
points of visibility, 129
Populous, 5
portal segmentation, 110
positional safety, 650
possessive control, 613
power calculation, 445–449

adapting to players, 448–449
basic formulas, 445
context-dependent values, 448
creating formulas, 446–447
summing variables, 447–448
unit-specific formulas, 447

power gamer, 637
power lookup, 449
power-up layer, 494

Index 695

predefined animation, 53–54
predicates, 376
predicted outcome categories,

452–453
prediction accuracy, 654–656
priority scanning, 292
priority spam, 235
Pritchard, Matt, 107
Pro Evolution Soccer 6, 508–509
procedural artificial intelligence,

230–232
finite state machines, 231–232
scripted, 230–231

procedural programming, 229
process models, 54–56
ProcessOverWatch (), 252
Production of Space, The (book), 74
profile-based architecture, 471–472
programs, 10–11
projected points, 86
property sheet, 246
propositional logic, 600
prototyping, 584–585
PS3 (PlayStation 3), 306–307
psycho archetype, 20
pure intelligence approach, 25
Python, 341
Python Mega Widgets (PMW), 342

Q
Q-learning, 682
querying, 482
quest points, 520–521

contents of, 520
states, 519
types of, 520–521

quick hull algorithm, 87

R
RAM (random access memory), 109
random behaviors, 19
random encounters, 557–558
random engagement decision,

443–444
random walk model, 424
randomization operator, 66
RangeAttack () result entity,

268–269
rapid prototyping, 584–585
reaction time, 485–491
reactive goal, 253
real-time strategy (RTS), 657–670

applications, 668–669
caveats, 669–670
chromosome encoding, 661–664

evolutionary process, 667
fitness determination, 666
genetic algorithms, 659–660
score functions, 647–658
simulation-based planning,

408–411
strategic decisions for, 660–661
terrain analysis, 361–371

RecognitionFailureEvent event, 542
recurrent neural network model,

574–575
red_key_possession, 320
reductionism, 3–7

combination with constructivism,
6–7

failure of, 8–9
strengths and weaknesses of, 4–6

reference documentation, 37
reference resolution, 535
regions, 204, 214–215, 364
Reil, Torsten, 12
reinforcement learning, 608–612

basic concepts, 672–673
combat controller, 680–682
in first person shooters, 671–682
navigation controller, 676–680
Sarsa, 673–675
state representation, 675

ReloadAmmo () result entity, 268
Remove on abort flag, 335
Remove on completion flag, 335
RemoveRecord, 296
render targets, 138
render-generate algorithm, 131–134

floor height map passes, 132
obstruction passes, 133–134
roof height map passes, 133
walkable ground passes, 133–134

Repenning, Alexander, 307
replay, 235
representational space, 74
represented space, 74
research-oriented decisions, 661
resolution inference rule, 396–397
ResolveResults () function, 274
restraint constants, 553
Restricted Quadtree Triangulation

(RQT), 98–99
archetype hash keys, 104–105
dependency marking, 102–103
features of, 99
mesh generation phase, 103–104
patch layout identification,

105–106
rejection phase, 99–102

result entity, 266
containers, 268–269
execution cycle, 267
priorities, 267–268

result zone, 348
RETALIATE approach, 607–616

algorithm, 608–612
case study, 612–616

learned strategy, 615–616
opponents, 613
overall architecture, 612–613
performance, 613–615

coordination bots in domination
games, 608

reinforcement learning, 608–612
Retreal goal, 386
retreat goal, 232
reverse, 196–197
Revision Module, 624
Reynolds, Craig, 307
Richardson, Lewis Fry, 552
Richardson’s Arms Race Model,

552–553
risk-adverse pathfinding, 173–178
Robot Battle, 589
rocks (poker), 22
Rockstar North, 7
role passing, 643
Rome Total War, 551
roof height manifolds, 133
rooted trees, 149
rotation speed, 193
routing, 240, 246
RQT. See Restricted Quadtree

Triangulation
RTS. See real-time strategy
RTSplan, 405–418

algorithm, 411
experiments, 415–417

execution times, 417
vs. unknown strategies,

416–417
without opponent modeling,

415–416
game environment, 406–407
opponent modeling, 411–415

algorithm, 412–413
combat simulation, 415
fast-forwarding strategies, 414
implementation, 413
pathfinding, 415
simulation process, 413–414

overview, 405–406
simulation-based planning,

408–411

696 Index

reducing search space, 408–409
simultaneous move games,

409–411
strategies, 409

RTTI (runtime type identification),
251

rubber-banding, 92–93
ruined temple scene, 138
rule-based reasoning, 248
run () function, 260
runtime, 345
runtime type identification (RTTI),

251

S
sampling, 114–115
sandbox gameworld, 7
Sarsa, 673–675
satisfaction value, 377
S.C.A.R.A.B., 159
scheduler, 259–260
SchedulerObserver class, 260–261
score functions, 647–658

data store, 648–649
experiments, 651–652
game phase, 651
learned unit-type weights, 653–654
performance evaluation, 653
prediction accuracy, 654–656
for strategy games, 649–650

material strength, 649–650
positional safety, 650

temporal difference learning, 650
using, 657

script debugging, 36
ScriptEase, 237, 514
scripted artificial intelligence,

230–232
scripted game logic, 302
scripting, 237
scripting systems, 32–34

behavior, 33–34
debugging tools, 36
failure cases, 34
framework, 32
GameMonkey (GM) script,

579–590
streamlining tasks in, 33
visual, 33

search space, 108–111
in constraint-based camera system,

473–474
for dynamic environments, 110
hierarchical solutions, 110

memory usage/performance, 109
offline generation, 109–110
orthogonality vs. visual representa-

tion, 110–111
path optimality, 109

Secret of Monkey Island, The, 537
sectors, 204, 214–215
SeedPointList, 121
selection logic, 233
selectors, 262
self-building dictionary, 131, 137
self-contained behaviors, 13
sensors, 288–289, 619
sensory-motor coordination, 11
sequences, 262
SetMaxX () function, 355
SetMaxY () function, 355
Shannon, Claude, 487
Shannon formulation, 487
sharks (poker), 22
short-term memory, 505
Side-Quest Generator tool

(SQUEGE), 516–519
implementation, 526
specifying patterns in, 524–525
using, 516–519

side-quests, 513–526
generating, 516–519, 522–523
patterns, 514–516, 524–525
purposes, 513–514
quest graphs, 521–522
quest pattern, 519–521
quest points, 516–517
subquest, 523

SIMD (single instruction multiple
data), 306

simple strategies, 444–445
SimplePatrol behavior, 343
Sims 2, The, 7
Sims, The, 13, 77
simulacra, 423–426

See also particle filters
analysis, 425–426
capture the flag player, 426
cull, 425
data, 424
hider, 426
hunter, 426
move, 425
update, 425
wanderer, 426

simulation-based planning, 408–411
reducing search space, 408–409
simultaneous move games, 409–411
strategies, 409

simultaneous move games, 409–411
Simutronics Corporation, 159
single instruction multiple data

(SIMD), 306
situation layering, 13–14
situationism, 9–14

in game artificial intelligence, 11–14
contextual animation, 12
ecological perception, 12–13
situation layering, 13–14

in psychology, 10
in sociology, 9–10

Skinner, B.F., 10
sliding octree, 474
slopes, 132
smart object model, 77
smart objects, 13
smart terrain, 13
SmartMines, 40–45
SmartNumbers, 46–47
smells, 502
Smith, Harvey, 5
smoothed curve turn, 194
smoothing, 212–213
Snack toolkit, 542
Snook, Greg, 95
social networks, 573
SolveIKTo, 246
Sony Online Entertainment, 159
sophisticated algorithm approach, 25
Space Invaders, 55
spaces, objective, 73
spatial markup, 30
spatial practice, 74
speech recognition, 533–534, 543
speech synthesis, 546
SPEs (synergistic processing ele-

ments), 306
Splinter Cell, 501
spoken dialogue systems, 531–548

case studies, 539–546
NICE game system, 539–542
The Rochester Interactive

Planning System, 543–546
components, 533–539

dialogue management, 535–536
natural language generation,

537–538
natural language understanding,

534–535
speech recognition, 533–534
text-to-speech, 538–539

dialogue concepts, 532
speech recognition, 533–534

spoken language generation, 542

Index 697

Spore, 589
spread attack, 408
Spring, 648–653
squad formations, 61–69

destination formation, 68–69
destruction handling, 69
formation context, 65
leapfrogging, 65–67
move out, 62–63
softening shape, 63–65
squad makeup, 61–62
virtual leader, 67–68

SQUEGE. See Side-Quest Generator
tool

stacks, 598–599
S.T.A.L.K.E.R., 508–509
Standard Template Library (STL),

222
StandUp goal, 460
Stanford Research Institute Problem

Solver (STRIPS), 310, 374
Star Wars: Knights of the Old Republic,

520, 635
sTaskIn argument, 251
sTaskOut argument, 251
state, 35
state crossover, 665
statecharts, 317–332

activities, 322–323
basic elements of, 318
concurrency through parallel states,

320
hierarchy through substrates,

318–320
interpreters, 324–327

activation/deactivation,
325–327

building, 327–329
processing events, 324–325
source code, 329–331
starting up, 324
transitions, 325

memory, 320–322
StateChartWindow, 330
stateless reactive model, 55
states, 231
state-specific thresholds, 350
static avoidance, 241
static influences, 176
stationary influences, 176
statistical analysis, 44, 235
STL (Standard Template Library),

222
stop path, 200–201
storyteller, 637

storytelling, 633–645
branching stories, 635
decision-making, 642
generic events and behaviors,

642–643
high-suitability events, 645
human user study, 644
layered stories, 636
leveraging author experience,

639–640
library of events, 645
linear stories, 634–635
player-created stories, 645
player-specific stories, 636–645
role passing, 643
selecting story events, 640–641
steering the player, 641–642

strengths and weaknesses of, 8–9
string-pulling method, 92
STRIPS (Stanford Research Institute

Problem Solver), 310, 374
structure, 9–10
styles, 80
subgoals, 248
subordinate goals, 386
subsumption architecture, light-

weight, 493–497
example scenario, 494
layer execution, 495–496
layers, 494–495
overview, 493–494
pitfalls and misconception,

496–497
success zone, 348
Sudoku, 40
suitability value transformations,

472–473
summing variables, 447–448
synergistic processing elements

(SPEs), 306
syntactic analysis, 534

T
tactical data, 287
tactical sensing, 500
tactician, 637
TakeCover goal, 386
talk chain quest, 515
target class, 243–245
target position, 240
Task must complete flag, 335
TaskObserver class, 261
tasks, 251–254

application cost, 378
composite, 262–263

hub, 252–254
input/output, 252
observers, 261
queues, 252–254
satisfaction value, 377

TDecision structure, 225
technical strength, 29
temporal difference learning, 650
Terdiman, Pierre, 160, 168
termination status, 258–259
terrain, 98, 128
terrain analysis, 361–371

See also real-time strategy (RTS)
algorithm, 364–369

analysis selection, 368
data extraction, 368–369
iterative image processing,

366–367
noise reduction, 364–365
random pathfinding, 366

basic concepts, 363–364
chokepoints, 364
connections, 364
game zones, 364
hotspots, 364
passability map, 363
regions, 364

future work, 370–371
geometric, 362
in goal-based artificial intelligence,

237
in identification of affordances,

77–78
information from, 370
pathfinding simulation, 362–363

Texas Hold’em, 21–25
difficulty levels, 24
improving, 24–25
personality archetypes in, 22–23
playing against AI in, 23
poker play styles in, 22

text-to-speech (TTS), 538–539
The Rochester Interactive Planning

System. See TRIPS
THEN clause, 395
thief Bayesian network, 433–436
Think ()/Act () loop, 245
Thread Profiler, 308
3D rasterization, 127–128
three-point turn, 196
three-tile analysis, 43–44
tight player (poker), 22
time slicing, 291–292
TimeOutEvent event, 542
TimGate, 235

698 Index

TINs (triangulated irregular networks),
98

Tkiner, 341
Tom Clancy’s Ghost Recon, 113–120
Tozour, Paul, 108
training, 37
transition rule, 334
transitions, 231, 325
trees, 149
triangle mesh, 119
triangle width, 147–148
triangulated irregular networks

(TINs), 98
triangulated regular networks

(TRNs), 98
triangulations, 144–156

abstraction, 149–155
modified funnel algorithm,

148–149
triangle width, 147–148

trigger conditions, 643
TRIPS (The Rochester Interactive

Planning System), 543–546
See also planning systems
dialogue management, 545–546
natural language generation, 546
natural language understanding,

543–545
speech recognition, 543
speech synthesis, 546

TRNs (triangulated regular net-
works), 98

TrueTalk generation engine, 546
TTS (text-to-speech), 538–539
turns, 192–194

constant radius, 194–196
and destination heading, 198–199
and discontinuity, 200–201
reverse, 196–197
search, 197–198
smoothed curve, 194

and stopping, 200–201
three-point, 196
validation of, 199

Two Families: A Tale of New Florence,
560–568

2D agents, 481

U
Ultima VIII, 537
UML (Unified Modeling Language),

318
umwelt, 71–73

global structure, 73
local entities, 72–73

unconstrained edges, 145
unexpected error, 259
Unified Modeling Language (UML),

318
unit revision, 625
units, 31–32
unit-specific formulas, 447
Unreal Tournament, 607–616
unrooted trees, 149
update () function, 260
Update () method, 245, 251
update boundary, 299
update function, 334

V
valley of Shaharit scene, 138
Varela, Francisco, 11
verb-adverb motion model, 12
VertexSpacingMax, 121
VertexSpacingMin, 121
virtual leader, 67–68
virtual yoke, 242–243
visibility constraints, 470–471
Visual C# Express, 330
visual overlays, 34–36
visual scripting systems, 33
visual sensing, 501

Visual Studio, 330
VoiceXML, 594
volume, intersecting with planes, 86
Voronoi diagrams, 362
voxelization, 127–128
vPos, 138

W
walkable surface height map,

133–134
walking surfaces, 162–163
wanderer simulacra, 426
War Leaders: Clash of Nations, terrain

analysis for, 361–371
Warcraft 2, 536
Warcraft 3, 151–153
Wargus, 619–622, 661–669
waypoints, 240
weapon proficiency and skills, 509
Wizard of Oz technique, 533
workflow, 28–29

existing tools, 28–29
iteration speed, 29
multiple users, 29
technical strength, 29

workflow decomposition, 340
working relationships, 51–52
world segmentation, 131
Wright, Will, 13, 77
wxPython, 341
wxWidgets, 341

X
Xbox 360 game console, 306–307
XML files, 338

Z
zero-point crossings, 13
Zoo Tycoon 2, 232, 236

Index 699

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and
conditions. If, upon reading the following license agreement and notice of limited warranty,
you cannot agree to the terms and conditions set forth, return the unused book with
unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc.
You are licensed to copy the software onto a single computer for use by a single user and to a
backup disc. You may not reproduce, make copies, or distribute copies or rent or lease the soft-
ware in whole or in part, except with written permission of the copyright holder(s). You may
transfer the enclosed disc only together with this license, and only if you destroy all other copies
of the software and the transferee agrees to the terms of the license. You may not decompile, re-
verse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Course Technology to be free of physical defects in materials
and workmanship for a period of sixty (60) days from end user’s purchase of the book/disc com-
bination. During the sixty-day term of the limited warranty, Course Technology will provide a
replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL
COURSE TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES,
INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL
CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS
INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF COURSE TECHNOL-
OGY AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT THE
POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY
AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK
OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW
FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL
OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY
TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to choice
of law principles. The United Convention of Contracts for the International Sale of Goods is
specifically disclaimed. This Agreement constitutes the entire agreement between you and
Course Technology regarding use of the software.

COLOR PLATE 1
This image shows the debug display for formations in Company of Heroes. Straight
green lines are unit paths. The green circle indicates a search for cover for leapfrog-
ging. The orange line is the path of the virtual leader. The blue arrow indicates the
virtual leader’s current position and heading. From the article 2.1 “Company of
Heroes Squad Formations Explained.”

COLOR PLATE 2
Screenshot from a demo included on the CD-ROM that allows you to experi-
ment with risk-adverse pathfinding and the effect of Dijkstra versus A* searches.
Red discs are areas of high risk and light green discs are areas of low risk. The
dark green areas are forest and the light blue areas are water. The purple squares
represent the optimal path from the light green square to the dark red square.
From the article 2.9 “Risk-Adverse Pathfinding using Influence Maps.”

COLOR PLATE 3
Debug visualization of the tessellated path for a jeep, generated by the turning system described in the article 2.11 “Post Processing
for High Quality Turns” (from the game Company of Heroes).

COLOR PLATE 4
Output preview of an intermediate step in the tactical terrain
analysis from the article 4.1 “RTS Terrain Analysis: An Image
Processing Approach.” White pixels represent impassable areas
while black pixels correspond to passable ones. Red areas con-
stitute choke points, that is, tactical valuable narrow corridors
which are traversed by paths shown as yellow lines. The
pathfinding information is very important to weigh the poten-
tial choke points in terms of tactical value.

COLOR PLATE 5
A tactical terrain tactical analysis which contains game zones
(pastel colors) and choke points (red colors) from the article 4.1
“RTS Terrain Analysis: An Image Processing Approach.”
Choke point tactical value is determined by the number of
traversing paths and is represented here by the brightness of the
red color. The brighter the red is, the more important is the
choke point.

COLOR PLATE 6
Debugging system for visualizing evaluated points for camera positions of a box search space. The color represents the suitability of the
point, as described in the article 5.2 “A Versatile Constraint-Based Camera System.”

COLOR PLATE 7
Screenshot from a demo included on the CD-ROM that allows you to experiment with agent vision projected onto a line. In the
demo, an agent rotates clockwise in a top-down 2D world. The resulting 1D vision information is then displayed in the top left corner
with white pixels representing no visible object, cyan representing occluders (scene objects), and purple representing targets (the star
shaped object). The 1D vision is stretched vertically to make it easier to see. When a target is seen, the borders of the screen turn red,
as in this example. From the article 5.3 “Seeing in 1D: Projecting the World onto a Line.”

	Cover
	Contents
	Preface
	About the Cover Image
	Acknowledgments
	About the Contributors
	SECTION 1 GENERAL WISDOM
	1.1 Situationist Game AI
	1.2 Artificial Personality: A Personal Approach to AI
	1.3 Creating Designer Tunable AI
	1.4 AI as a Gameplay Analysis Tool
	1.5 Ecological Balance in AI Design

	SECTION 2 MOVEMENT AND PATHFINDING
	2.1 Company of Heroes Squad Formations Explained
	2.2 Turning Spaces into Places
	2.3 Dynamically Updating a Navigation Mesh via Efficient Polygon Subdivision
	2.4 Intrinsic Detail in Navigation Mesh Generation
	2.5 Navigation Mesh Generation: An Empirical Approach
	2.6 Navigation Graph Generation in Highly Dynamic Worlds
	2.7 Fast Pathfinding Based on Triangulation Abstractions
	2.8 Automatic Path Node Generation for Arbitrary 3D Environments
	2.9 Risk-Adverse Pathfinding Using Influence Maps
	2.10 Practical Pathfinding in Dynamic Environments
	2.11 Postprocessing for High-Quality Turns
	2.12 Memory-Efficient Pathfinding Abstractions

	SECTION 3 ARCHITECTURE
	3.1 A Flexible AI Architecture for Production and Prototyping of Games
	3.2 Embracing Declarative AI with a Goal-Based Approach
	3.3 The MARPO Methodology: Planning and Orders
	3.4 Getting Started with Decision Making and Control Systems
	3.5 Knowledge-Based Behavior System—A Decision Tree/Finite State Machine Hybrid
	3.6 The Emotion Component: Giving Characters Emotions
	3.7 Generic Perception System
	3.8 Peer-To-Peer Distributed Agent Processing
	3.9 AI Architectures for Multiprocessor Machines
	3.10 Level Up for Finite State Machines: An Interpreter for Statecharts
	3.11 Building a Behavior Editor for Abstract State Machines
	3.12 Multi-Axial Dynamic Threshold Fuzzy Decision Algorithm

	SECTION 4 TACTICS AND PLANNING
	4.1 RTS Terrain Analysis: An Image-Processing Approach
	4.2 An Advanced Motivation-Driven Planning Architecture
	4.3 Command Hierarchies Using Goal-Oriented Action Planning
	4.4 Practical Logic-Based Planning
	4.5 Simulation-Based Planning in RTS Games
	4.6 Particle Filters and Simulacra for More Realistic Opponent Tracking
	4.7 Using Bayesian Networks to Reason About Uncertainty
	4.8 The Engagement Decision

	SECTION 5 GENRE SPECIFIC
	5.1 A Goal Stack–Based Architecture for RTS AI
	5.2 A Versatile Constraint-Based Camera System
	5.3 Seeing in 1D: Projecting the World onto a Line
	5.4 Reaction Time with Fitts’ Law
	5.5 Enabling Actions of Opportunity with a Light-Weight Subsumption Architecture
	5.6 Toward More Humanlike NPCs for First-/Third-Person Shooter Games
	5.7 Stop Getting Side-Tracked by Side-Quests

	SECTION 6 SCRIPTING AND DIALOGUE
	6.1 Spoken Dialogue Systems
	6.2 Implementing Story-Driven Games with the Aid of Dynamical Policy Models
	6.3 Individualized NPC Attitudes with Social Networks
	6.4 Scripting Your Way to Advanced AI
	6.5 Dialogue Managers

	SECTION 7 LEARNING AND ADAPTATION
	7.1 Learning Winning Policies in Team-Based First-Person Shooter Games
	7.2 Adaptive Computer Games: Easing the Authorial Burden
	7.3 Player Modeling for Interactive Storytelling: A Practical Approach
	7.4 Automatically Generating Score Functions for Strategy Games
	7.5 Automatic Generation of Strategies
	7.6 A Practical Guide to Reinforcement Learning in First-Person Shooters

	About the CD-ROM
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

