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Preface

Seven years have now passed since I wrote the first edition of this book. My
aim is still not to provide a full survey of the field, but instead a practical
introduction to writing fluid solvers. I have tried to distill my knowledge of
the research field and my experience in the visual effects industry to hit on
what I think now are the most important points, giving enough motivation
that hopefully it is clear how and why things work. I hope nobody will be
upset if I missed their research: I make no claim to properly overview the
field, but am just carving out a path I believe is useful.

Compared to the first edition there is plenty of new material, for ex-
ample new chapters on level sets and vortex methods. The ordering of
topics has changed to make more sense when read the first time through,
and I have upgraded several parts according to my experience. I still as-
sume the reader has no background in fluid dynamics, and not much in the
way of numerical methods, but a comfort with vector calculus, ordinary
differential equations, and the standard graphics mix of linear algebra and
geometry is necessary.

Previously I thanked Ron Fedkiw, who introduced me to graphics and
fluids; my coauthors and students (many more now!); Marcus Nordenstam
with whom I wrote several important fluid solvers including Naiad and now
Bifrost; Jim Hourihan, Matthia Müller-Fischer, Eran Guendelman, and
Alice Peters (of A K Peters) who all helped in the process of turning ideas
and enthusiasm into the first edition. To these I would also add Wei-Pai
Tang who got me started in numerical methods; the University of British
Columbia Computer Science Department; Michael Nielsen; and the staff
at Taylor and Francis who have made this second edition possible. Above
all I would like to thank my family, especially my wife, for supporting me
through the late nights, stress, one-sided conversations, and all the rest
that accompany writing a book.

Robert Bridson
April 2015
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Part I

The Basics





1

The Equations of Fluids

Fluids surround us, from the air we breathe to the oceans covering two
thirds of the Earth, and are at the heart of some of the most beautiful and
impressive phenomena we know. From water splashing, to fire and smoke
swirling, fluids have become an important part of computer graphics. This
book aims to cover the basics of simulating these effects for animation. So
let’s jump right in with the fundamental equations governing their motion.

Most fluid flow of interest in animation is governed by the famous in-

compressible Navier-Stokes equations, a set of partial differential equations
that are supposed to hold throughout the fluid. The equations are usually
written as

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~g + ν∇ · ∇~u, (1.1)

∇ · ~u = 0. (1.2)

These may appear pretty complicated at first glance! We’ll soon break them
down into easy-to-understand parts (and in Appendix B provide a more
rigorous explanation), but first let’s begin by defining what each symbol
means.

1.1 Symbols

The letter ~u is traditionally used in fluid mechanics for the velocity of the
fluid. Why not ~v? It’s hard to say, but it fits another useful convention
to call the three components of 3D velocity (u, v, w), just as the three
components of position ~x are often taken to be (x, y, z).

The Greek letter ρ stands for the density of the fluid. For water, this is
roughly 1000 kg/m3, and for air in usual sea-level conditions this is roughly
1.3 kg/m3, a ratio of about 700 : 1.

It’s worth emphasizing right away my insistence on using real units
(meters, kilograms, etc.): long experience has shown me that it is well
worth keeping all quantities in a solver implicitly in SI units, rather than
just set to arbitrary values. It is tempting when starting to program a

3
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new solver to just fill in unit-less values like 1 for physical quantities such
as density or to drop them altogether from expressions, whether you’re
operating from a quick-and-dirty just-make-it-work point of view or a more
mathematically founded non-dimensionalization rationale1. However, this
often comes back to haunt you when simulations don’t quite look right, or
need to be resized, or adjusted in other ways where it’s not clear which of a
plethora of nonphysical parameters need to be tweaked. We’ll discuss the
ramifications of this in algorithm design as well throughout the book.

The letter p stands for pressure, the force per unit area that the fluid
exerts on anything.

The letter ~g is the familiar acceleration due to gravity, usually
(0,−9.81, 0) m/s2. Now is a good time to mention that in this book we’ll
take as a convention that the y-axis is pointing vertically upwards, and the
x- and z-axes are horizontal. We should add that in animation, additional
control accelerations (to make the fluid behave in some desired way) might
be added on top of gravity — we’ll lump all of these into the one symbol ~g.
More generally, people call these body forces, because they are applied
throughout the whole body of fluid, not just on the surfaces.

The Greek letter ν is technically called the kinematic viscosity. It
measures how viscous the fluid is. Fluids like molasses have high viscosity,
and fluids like mercury have low viscosity: it measures how much the fluid
resists deforming while it flows (or more intuitively, how difficult it is to
stir).

1.2 The Momentum Equation

The first differential equation (1.1), which is actually three in one wrapped
up as a vector equation, is called the momentum equation. This really
is good old Newton’s equation ~F = m~a in disguise. It tells us how the fluid
accelerates due to the forces acting on it. We’ll try to break this down
before moving onto the second differential equation (1.2), which is called
the incompressibility condition.

Let’s first imagine we are simulating a fluid using a particle system
(later in the book we will actually use this as a practical method, but
for now let’s just use it as a thought experiment). Each particle might
represent a little blob of fluid. It would have a mass m, a volume V , and
a velocity ~u. To integrate the system forward in time all we need is to

1Non-dimensionalization is a strategy for mathematically simplifying physical equa-
tions by rewriting all quantities as ratios to characteristic values of the problem at the
hand, like the usual density of the fluid and the width of the container, rather than using
SI units. This can reduce the number of constants that appear in the equations to the
minimal set that matter, making some analysis much easier.
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figure out what the forces acting on each particle are: ~F = m~a then tells
us how the particle accelerates, from which we get its motion. We’ll write
the acceleration of the particle in slightly odd notation (which we’ll later
relate to the momentum equation above):

~a ≡ D~u

Dt
.

The big D derivative notation is called the material derivative (more on
this later). Newton’s law is now

m
D~u

Dt
= ~F .

So what are the forces acting on the particle? The simplest is of course
gravity: m~g. However, it gets interesting when we consider how the rest of
the fluid also exerts force: how the particle interacts with other particles
nearby.

The first of the fluid forces is pressure. High-pressure regions push on
lower-pressure regions. Note that what we really care about is the net
force on the particle: for example, if the pressure is equal in every di-
rection there’s going to be a net force of zero and no acceleration due to
pressure. We only see an effect on the fluid particle when there is an im-
balance, i.e. higher pressure on one side of the particle than on the other
side, resulting in a force pointing away from the high pressure and toward
the low pressure. In the appendices we show how to rigorously derive
this, but for now let’s just point out that the simplest way to measure
the imbalance in pressure at the position of the particle is simply to take
the negative gradient of pressure: −∇p. (Recall from calculus that the
gradient is in the direction of “steepest ascent,” thus the negative gradi-
ent points away from high-pressure regions toward low-pressure regions.)
We’ll need to integrate this over the volume of our blob of fluid to get
the pressure force. As a simple approximation, we’ll just multiply by the
volume V . You might be asking yourself, but what is the pressure? We’ll
skip over this until later, when we talk about incompressibility, but for now
you can think of it being whatever it takes to keep the fluid at constant
volume.

The other fluid force is due to viscosity. A viscous fluid tries to resist
deforming. Later we will derive this in more depth, but for now let’s
intuitively develop this as a force that tries to make our particle move at
the average velocity of the nearby particles, i.e., that tries to minimize
differences in velocity between nearby bits of fluid. You may remember
from image processing, digital geometry processing, the physics of diffusion
or heat dissipation, or many other domains, that the differential operator
that measures how far a quantity is from the average around it is the
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Laplacian ∇ · ∇. (Now is a good time to mention that there is a quick
review of vector calculus in the appendices, including differential operators
like the Laplacian.) This will provide our viscous force then, once we’ve
integrated it over the volume of the blob. We’ll use the dynamic viscosity
coefficient, which is denoted with the Greek letter µ (dynamic means we’re
getting a force out of it; the kinematic viscosity from before is used to get
an acceleration instead). I’ll note here that near the surface of a liquid
(where there isn’t a complete neighborhood around the blob) and for fluids
with variable viscosity, this term ends up being a little more complicated;
see Chapter 10 for more details.

Putting it all together, here’s how a blob of fluid moves:

m
D~u

Dt
= m~g − V∇p+ V µ∇ · ∇~u.

Obviously we’re making errors when we approximate a fluid with a small
finite number of particles. We will take the limit then as our number of
particles goes to infinity and the size of each blob goes to zero. Of course,
this clearly makes a different sort of error, as real fluids are in fact composed
of a (very large) finite number of molecules! But this limit, which we call
the continuum model, has the advantages of mathematical conciseness
and independence from the exact number of blobs, and has been shown
experimentally to be in extraordinarily close agreement with reality in a
vast range of scenarios. However, taking the continuum limit does pose a
problem in our particle equation, because the mass m and volume V of the
particle must then go to zero, and we are left with nothing meaningful. We
can fix this by first dividing the equation by the volume, and then taking
the limit. Remembering m/V is just the fluid density ρ, we get

ρ
D~u

Dt
= ρ~g −∇p+ µ∇ · ∇~u.

Looking familiar? We’ll divide by the density and rearrange the terms a
bit to get

D~u

Dt
+

1

ρ
∇p = ~g +

µ

ρ
∇ · ∇~u.

To simplify things even a little more, we’ll define the kinematic viscosity
as ν = µ/ρ to get

D~u

Dt
+

1

ρ
∇p = ~g + ν∇ · ∇~u.

We’ve almost made it back to the momentum equation! In fact this
form, using the material derivative D/Dt, is actually more important to us
in computer graphics and will guide us in solving the equation numerically.
But we still will want to understand what the material derivative is and
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how it relates back to the traditional form of the momentum equation. For
that, we’ll need to understand the difference between the Lagrangian and
Eulerian viewpoints.

1.3 Lagrangian and Eulerian Viewpoints

When we think about a continuum (like a fluid or a deformable solid)
moving, there are two approaches to tracking this motion: the Lagrangian
viewpoint and the Eulerian viewpoint.

The Lagrangian approach, named after the French mathematician La-
grange, is what you’re probably most familiar with. It treats the continuum
just like a particle system. Each point in the fluid or solid is labeled as a
separate particle, with a position ~x and a velocity ~u. You could even think
of each particle as being one molecule of the fluid. Nothing too special here!
Solids are almost always simulated in a Lagrangian way, with a discrete set
of particles usually connected up in a mesh.

The Eulerian approach, named after the Swiss mathematician Euler,
takes a different tactic that’s usually used for fluids. Instead of tracking
each particle, we instead look at fixed points in space and see how mea-
surements of fluid quantities, such as density, velocity, temperature, etc.,
at those points change in time. The fluid is probably flowing past those
points, contributing one sort of change: for example, as a warm fluid moves
past followed by a cold fluid, the temperature at the fixed point in space
will decrease—even though the temperature of any individual particle in
the fluid is not changing! In addition the fluid variables can be changing
in the fluid, contributing the other sort of change that might be measured
at a fixed point: for example, the temperature measured at a fixed point
in space will decrease as the fluid everywhere cools off.

One way to think of the two viewpoints is in doing a weather report.
In the Lagrangian viewpoint you’re in a balloon floating along with the
wind, measuring the pressure and temperature and humidity, etc., of the
air that’s flowing alongside you. In the Eulerian viewpoint you’re stuck on
the ground, measuring the pressure and temperature and humidity, etc., of
the air that’s flowing past. Both measurements can create a graph of how
conditions are changing, but the graphs can be completely different as they
are measuring the rate of change in fundamentally different ways.

Numerically, the Lagrangian viewpoint corresponds to a particle sys-
tem, with or without a mesh connecting up the particles, and the Eulerian
viewpoint corresponds to using a fixed grid that doesn’t change in space
even as the fluid flows through it.

It might seem the Eulerian approach is unnecessarily complicated: why
not just stick with Lagrangian particle systems? Indeed, there are schemes,
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such as vortex methods (see, e.g., [YUM86, GLG95, AN05, PK05]) and
smoothed particle hydrodynamics (SPH) (see, e.g., [DC96,MCG03,PTB+03])
that do this. However, even these rely on the Eulerian-derived equations
for forces in the fluid, and in this book we will largely stick with Eulerian
methods for a few reasons:

• It’s easier to analytically work with the spatial derivatives like the
pressure gradient and viscosity term in the Eulerian viewpoint.

• It’s much easier to numerically approximate those spatial derivatives
on a fixed Eulerian mesh than on a cloud of arbitrarily moving par-
ticles.

The key to connecting the two viewpoints is the material derivative.
We’ll start with a Lagrangian description: there are particles with positions
~x and velocities ~u. Let’s look at a generic quantity we’ll call q: each particle
has a value for q. (Quantity q might be density, or velocity, or temperature,
or many other things.) In particular, the function q(t, ~x) tells us the value
of q at time t for the particle that happens to be at position ~x: this is an
Eulerian variable since it’s a function of space, not of particles. So how fast
is q changing for the particle whose position is given by ~x(t) as a function
of time, i.e., the Lagrangian question? Just take the total derivative (a.k.a.
the Chain Rule):

d

dt
q(t, ~x(t)) =

∂q

∂t
+∇q · d~x

dt

=
∂q

∂t
+∇q · ~u

≡ Dq

Dt
.

This is the material derivative!
Let’s review the two terms that go into the material derivative. The

first is ∂q/∂t, which is just how fast q is changing at that fixed point in
space, an Eulerian measurement. The second term, ∇q ·~u, is correcting for
how much of that change is due just to differences in the fluid flowing past
(e.g., the temperature changing because hot air is being replaced by cold
air, not because the temperature of any molecule is changing).

Just for completeness, let’s write out the material derivative in full,
with all the partial derivatives:

Dq

Dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
+ w

∂q

∂z
.

Obviously in 2D, we can just get rid of the w- and z-term.
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Note that I keep talking about how the quantity, or molecules, or parti-
cles, move with the velocity field ~u. This is called advection (or sometimes
convection or transport; they all mean the same thing). An advection
equation is just one that uses the material derivative, at its simplest set-
ting it to zero:

Dq

Dt
= 0,

i.e.,
∂q

∂t
+ ~u · ∇q = 0.

This just means the quantity is moving around but isn’t changing in the
Lagrangian viewpoint.

1.3.1 An Example

Hopefully to lay the issue to rest, let’s work through an example in one
dimension. Instead of q we’ll use T for temperature. We’ll say that at one
instant in time, the temperature profile is

T (x) = 10x;

that is, it’s freezing at the origin and gets warmer as we look further to the
right, to a temperature of 100 at x = 10. Now let’s say there’s a steady
wind of speed c blowing, i.e., the fluid velocity is c everywhere:

~u = c.

We’ll assume that the temperature of each particle of air isn’t changing —
they’re just moving. So the material derivative, measuring things in the
Lagrangian viewpoint says the change is zero:

DT

Dt
= 0.

If we expand this out, we have

∂T

∂t
+∇T · ~u = 0,

∂T

∂t
+ 10 · c = 0

⇒ ∂T

∂t
= −10c;

that is, at a fixed point in space, the temperature is changing at a rate
of −10c. If the wind has stopped, c = 0, nothing changes. If the wind is
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blowing to the right at speed c = 1, the temperature at a fixed point will
drop at a rate of −10. If the wind is blowing faster to the left at speed
c = −2, the temperature at a fixed point will increase at a rate of 20. So
even though the Lagrangian derivative is zero, in this case the Eulerian
derivative can be anything depending on how fast and in what direction
the flow is moving.

1.3.2 Advecting Vector Quantities

One point of common confusion is what the material derivative means
when applied to vector quantities, like RGB colors, or most confusing of
all, the velocity field ~u itself. The simple answer is: treat each component
separately. Let’s write out the material derivative for the color vector
~C = (R,G,B):

D~C

Dt
=





DR/Dt
DG/Dt
DB/Dt



 =





∂R/∂t+ ~u · ∇R
∂G/∂t+ ~u · ∇G
∂B/∂t+ ~u · ∇B



 =
∂ ~C

∂t
+ ~u · ∇~C.

So although the notation ~u · ∇~C might not strictly make sense (is the
gradient of a vector a matrix? what is the dot-product of a vector with a
matrix?2) it’s not hard to figure out if we split up the vector into scalar
components.

Let’s do the same thing for velocity itself, which really is no different
except ~u appears in two places, as the velocity field in which the fluid is
moving and as the fluid quantity that is getting advected. People some-
times call this self-advection to highlight that velocity is appearing in
two different roles, but the formulas work exactly the same as for color. So
just by copying and pasting, here is the advection of velocity ~u = (u, v, w)
spelled out:

D~u

Dt
=





Du/Dt
Dv/Dt
Dw/Dt



 =





∂u/∂t+ ~u · ∇u
∂v/∂t+ ~u · ∇v
∂w/∂t+ ~u · ∇w



 =
∂~u

∂t
+ ~u · ∇~u,

or if you want to get right down to the nuts and bolts of partial derivatives,

D~u

Dt
=







∂u
∂t + u∂u

∂x + v ∂u
∂y + w ∂u

∂z
∂v
∂t + u ∂v

∂x + v ∂v
∂y + w ∂v

∂z
∂w
∂t + u∂w

∂x + v ∂w
∂y + w ∂w

∂z






.

If you want to go even further, advecting matrix quantities around, it’s
no different: just treat each component separately.

2With slightly more sophisticated tensor notation, this can be put on a firm footing,
but traditionally people stick with the dot-product.
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1.4 Incompressibility

Real fluids, even liquids like water, change their volume. In fact, that’s just
what sound waves are: perturbations in the volume, and thus density and
pressure, of the fluid. You may once have been taught that the difference
between liquids and gases is that gases change their volume but liquids
don’t, but that’s not really true: otherwise you wouldn’t be able to hear
underwater!

However, the crucial thing is that usually fluids don’t change their vol-
ume very much. It’s next to impossible, even with an incredibly powerful
pump, to change the volume of water much at all. Even air won’t change
its volume much unless you stick it in a pump, or are dealing with really
extreme situations like sonic booms and blast waves. The study of how flu-
ids behave in these situations is generally called compressible flow. It’s
complicated and expensive to simulate, and apart from acoustics doesn’t
enter that visibly into everyday life — and even sound waves are such tiny
perturbations in the volume and have so small of an effect on how fluids
move at a macroscopic level (water sloshing, smoke billowing, etc.) that
they’re practically irrelevant for animation.

What this means is that in animation we can generally treat all fluids,
both liquids and gases, as incompressible, which means their volume
doesn’t change.3 What does this mean mathematically? There’s a more
rigorous explanation in Appendix B again, but we can sketch out a quick
argument now.

Pick an arbitrary chunk of fluid to look at for some instant in time. We’ll
call this volume Ω and its boundary surface ∂Ω (these are the traditional
symbols). We can measure how fast the volume of this chunk of fluid is
changing by integrating the normal component of its velocity around the
boundary:

d

dt
volume(Ω) =

∫∫

∂Ω

~u · n̂.

If the surface is moving tangentially, that doesn’t affect the volume; if
it’s moving in the outward/inward direction, volume increases/decreases
proportionally. For an incompressible fluid, the volume had better stay
constant, i.e., this rate of change must be zero:

∫∫

∂Ω

~u · n̂ = 0.

Now we can use the divergence theorem to change this to a volume integral.
Basically, this is a multi-dimensional version of the Fundamental Theorem

3Even if we need to somehow animate sonic booms and blast waves, they’re basically
invisible and extremely fast moving, thus most audiences have no idea really how they
behave. It’s probably a much better idea, from an artistic/perceptual/economic view-
point, to hack together something that looks cool than try to simulate them accurately.
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of Calculus: if you integrate the derivative of a function, you get the original
function evaluated at the bounds of your integration (see Appendix A for
a review if you need to brush up on your vector calculus). In this case, we
get

∫∫∫

Ω

∇ · ~u = 0.

Now, here’s the magical part: this equation should be true for any choice of
Ω, any region of fluid. The only continuous function that integrates to zero
independent of the region of integration is zero itself. Thus the integrand
has to be zero everywhere:

∇ · ~u = 0.

This is the incompressibility condition, the other part of the incompressible
Navier-Stokes equations.

A vector field that satisfies the incompressibility condition is called
divergence-free for obvious reasons. One of the tricky parts of simulating
incompressible fluids is making sure that the velocity field stays divergence-
free. This is where the pressure comes in.

One way to think about pressure is that it’s precisely the force needed
to keep the velocity divergence-free. If you’re familiar with constrained
dynamics, you can think of the incompressibility condition as a constraint
and the pressure field as the Lagrange multiplier needed to satisfy that
constraint subject to the principle of zero virtual work. If you’re not, don’t
worry. Let’s derive exactly what the pressure has to be.

The pressure only shows up in the momentum equation, and we want
to somehow relate it to the divergence of the velocity. Therefore, let’s take
the divergence of both sides of the momentum equation:

∇ · ∂~u
∂t

+∇ · (~u · ∇~u) +∇ · 1
ρ
∇p = ∇ · (~g + ν∇ · ∇~u). (1.3)

We can change the order of differentiation in the first term to the time
derivative of divergence:

∂

∂t
∇ · ~u.

If the incompressibility condition always holds, this had better be zero.
Subsequently, rearranging Equation (1.3) gives us an equation for pressure:

∇ · 1
ρ
∇p = ∇ · (−~u · ∇~u+ ~g + ν∇ · ∇~u)

This isn’t exactly relevant for our numerical simulation, but it’s worth
seeing because we’ll go through almost exactly the same steps, from looking
at how fast a volume is changing to an equation for pressure, when we
discretize.
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1.5 Dropping Viscosity

In some situations, viscosity forces are extremely important: e.g., simulat-
ing honey or very small-scale fluid flows. But in most other cases that we
wish to animate, viscosity plays a minor role, and thus we often drop it:
the simpler the equations are, the better. In fact, most numerical methods
for simulating fluids unavoidably introduce errors that can be physically
reinterpreted as viscosity (more on this later) — so even if we drop viscos-
ity in the equations, we will still get something that looks like it. In fact,
one of the big challenges in computational fluid dynamics is avoiding this
spurious viscous error as much as possible. Thus for the rest of this book,
apart from Chapter 10 that focuses on high or even varying viscosity fluids,
we will assume viscosity has been dropped.

The Navier-Stokes equations without viscosity are called the Euler
equations and such an ideal fluid with no viscosity is called inviscid.
Just to make it clear what has been dropped, here are the incompressible
Euler equations using the material derivative to emphasize the simplicity:

D~u

Dt
+

1

ρ
∇p = ~g,

∇ · ~u = 0.

It is these equations that we’ll mostly be using. Do not forget they are a
further approximation, and it’s not that water and air are actually ideal
inviscid fluids — it’s just that the contribution of their viscosity to a nu-
merical simulation is usually dwarfed by other errors in the simulation and
thus not worth modeling.

1.6 Boundary Conditions

Most of the, ahem, “fun” in numerically simulating fluids is in getting
the boundary conditions correct. So far, we’ve only talked about what’s
happening in the interior of the fluid: so what goes on at the boundary?

For now, let’s focus on just two boundary conditions, solid walls and
free surfaces.

A solid wall boundary is where the fluid is in contact with a solid. It’s
simplest to phrase this in terms of velocity: the fluid had better not be
flowing into the solid or out of it, thus the normal component of velocity
has to be zero:

~u · n̂ = 0.

Things are a little more complicated if the solid itself is moving too. In
general, we need the normal component of the fluid velocity to match the
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normal component of the solid’s velocity, so that the relative velocity has
zero normal component:

~u · n̂ = ~usolid · n̂.
In both these equations, n̂ is of course the normal to the solid boundary.
This is sometimes called the no-stick condition, since we’re only restricting
the normal component of velocity, allowing the fluid to freely slip past in
the tangential direction. This is an important point to remember: the
tangential velocity of the fluid might have no relation at all to the tangential
velocity of the solid.

So that’s what the velocity does: how about the pressure at a solid
wall? We again go back to the idea that pressure is “whatever it takes to
make the fluid incompressible.” We’ll add to that, “and enforce the solid
wall boundary conditions.” The ∇p/ρ term in the momentum equation
applies even on the boundary, so for the pressure to control ~u · n̂ at a solid
wall, obviously that’s saying something about ∇p · n̂, otherwise known as
the normal derivative of pressure: ∂p/∂n̂. We’ll wait until we get into
numerically handling the boundary conditions before we get more precise.

That’s all there is to a solid wall boundary for an inviscid fluid. If
we do have viscosity, life gets a little more complicated. In that case, the
stickiness of the solid generally influences the tangential component of the
fluid’s velocity, forcing it to match. This is called the no-slip boundary
condition, where we simply say

~u = 0,

or if the solid is moving,
~u = ~usolid.

For fluids with very low but nonzero viscosity, this is actually more ac-
curate than the no-stick condition when looking in microscopic detail at
the flow next to the solid, but typically the effect of viscosity and the no-
stick condition are only seen in a vanishingly thin boundary layer around
the solid, and elsewhere in the fluid it’s as if we had a no-stick boundary.
Boundary layers are a difficult area of research, but since they usually are
far thinner than what we can resolve in an animation simulation, we won’t
worry about them and just use no-stick except for high viscosity goop.
Again, we’ll avoid a discussion of exact details until we get into numerical
implementation.

You may be puzzled if you think about these boundary conditions in
the context of a drop of liquid falling off a solid: how can it actually
separate from the solid if its normal component of velocity is zero at the
surface of the solid? At some level the answer is that separation isn’t
really properly treated by the continuum model: it’s a molecular-scale
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process and can’t be abstracted away. Generally we either get plausible
separation for free from the numerical errors in a simulation method, or we
hack it in if it doesn’t look plausible. Batty et al. [BBB07] introduced a
more principled “macroscopic” model of separation into graphics with an
inequality condition allowing the fluid to move away from the wall but not
into it:

~u · n̂ ≥ ~usolid · n̂.
The ramifications of this condition, both physical and algorithmic, are still
quite unclear so we will not follow up further in this book though it is a
prime direction of research.

As a side note, sometimes the solid wall actually is a vent or a drain
that fluid can move through: in that case, we obviously want ~u · n̂ to be
different from the wall velocity. It should rather be the velocity at which
fluid is being pumped in or out of the simulation at that point.

The other boundary condition that we’re interested in is at a free sur-
face. This is where we stop modeling the fluid. For example, if we simulate
water splashing around, then the water surfaces that are not in contact
with a solid wall are free surfaces. In this case there really is another fluid,
air, but we may not want the hassle of simulating the air as well. And since
air is 700 times lighter than water, it’s not able to have that big of an effect
on the water anyhow (with a few notable exceptions like bubbles!). So in-
stead we make the modeling simplification that the air can be represented
as a region with constant atmospheric pressure. In actual fact, since only
differences in pressure matter (in incompressible flow), we can set the air
pressure to be any arbitrary constant: zero is the most convenient. Thus
a free surface is one where p = 0, and we don’t control the velocity in any
particular way.

The other case in which free surfaces arise is where we are trying to
simulate a bit of fluid that is part of a much larger domain: for example,
simulating smoke in the open air. We obviously can’t afford to simulate
the entire atmosphere of the Earth, so we will just make a grid that covers
the region we expect to be “interesting.” (I’ll preemptively state here that
to simulate smoke, you need to simulate the smoke-free air nearby as well,
not just the smoky region itself — however, we can get away with not
simulating the air distant enough from all the action.) Past the boundaries
of the simulated region the fluid continues on, but we’re not tracking it;
we allow fluid to enter and exit the region as it wants, so it’s natural to
consider this a free surface, p = 0, even though there’s not actually a visible
surface.4

4Technically this assumes there is no gravitational acceleration ~g included in the
equations. If there is, we would take the hydrostatic pressure p = ρ~g · ~x as the open
boundary condition. To avoid having to do this, we can write the momentum equation
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One final note on free surfaces: for smaller-scale liquids, surface tension
can be very important. At the underlying molecular level, surface tension
exists because of varying strengths of attraction between molecules of dif-
ferent types. For example, water molecules are more strongly attracted to
other water molecules than they are to air molecules: therefore, the water
molecules at the surface separating water and air try to move to be as
surrounded by water as much as possible. From a geometric perspective,
physical chemists have modeled this as a force that tries to minimize the
surface area or, equivalently, tries to reduce the mean curvature of the sur-
face. You can interpret the first idea (minimizing surface area) as a tension
that constantly tries to shrink the surface, hence the name surface ten-
sion; it can be a little more convenient to work with the second approach
using mean curvature. (Later, in Chapter 8 we’ll talk about how to ac-
tually measure mean curvature and exactly what it means.) In short, the
model is that there is actually a jump in pressure between the two fluids,
proportional to the mean curvature:

[p] = γκ.

The [p] notation means the jump in pressure, i.e., the difference in pressure
measured on the water side and measured on the air side, γ is the surface
tension coefficient that you can look up (for water and air at room tem-
perature it is approximately γ ≈ 0.073N/m), and κ is the mean curvature,
measured in 1/m. What this means for a free surface with surface tension
is that the pressure at the surface of the water is the air pressure (which
we assume to be zero) plus the pressure jump:

p = γκ. (1.4)

Free surfaces do have one major problem: air bubbles immediately col-
lapse (there’s no pressure inside to stop them losing their volume). While
air is much lighter than water, and so usually might not be able to transfer
much momentum to water, it still has the incompressibility constraint: an
air bubble inside water largely keeps its volume. Modeling the air bubble
with a free surface will let the bubble collapse and vanish. To handle this
kind of situation, you need either hacks based on adding bubble particles
to a free surface flow, or more generally a simulation of both air and wa-
ter (called two-phase flow, because there are two phases or types of fluid
involved).

in terms of the pressure perturbation from hydrostatic rest: p = ρ~g ·~x+p′. Substituting
this into the pressure gradient cancels out ~g on the other side, and we can use the simpler
open boundary condition p′ = 0.



2

Overview of

Numerical Simulation

Now that we know and understand the basic equations, how do we discretize
them to numerically simulate fluids using the computer? There are an awful
lot of choices for how to do this, and people are continuing to invent new
ways; we won’t be able to cover even a fraction of the field but will instead
focus on some well-established approaches for graphics.

2.1 Splitting

The first choice we take is something called splitting: we split up a com-
plicated equation into its component parts to be solved separately in turn.
If we say that the rate of change of one quantity is the sum of several terms,
we can numerically update it by computing each term and including their
effect one after the other.

Let’s make that clearer with an incredibly simple “toy” example, a
single ordinary differential equation:

dq

dt
= 1 + 2.

You of course already know that the answer is q(t) = 3t + q(0), but let’s
work out a numerical method based on splitting. We’ll split it into two
steps, each one of which looks like a simple forward Euler update (if you
want to remind yourself what forward Euler is, refer to Appendix A):

q̃ = qn + 1∆t, (2.1)

qn+1 = q̃ + 2∆t. (2.2)

17
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The notation used here is that qn is the value of q computed at time step
n, and ∆t is the amount of time between consecutive time steps.1 What
we have done is split the equation up into two steps: after the first step
(2.1), we get an intermediate quantity q̃ that includes the contribution of
the first term (= 1) but not the second (= 2), and then the second step
(2.2) goes from the intermediate value to the end by adding in the missing
term’s contribution. In this example, obviously, we get exactly the right
answer, and splitting didn’t buy us anything.

Let’s upgrade our example to something more interesting:

dq

dt
= f(q) + g(q). (2.3)

Here f() and g() are some black box functions representing separate soft-
ware modules. We could do splitting with forward Euler again:

q̃ = qn +∆tf(qn), (2.4)

qn+1 = q̃ +∆tg(q̃). (2.5)

A simple Taylor series analysis shows that this is still a first-order–accurate
algorithm if you’re worried. If you’re not, ignore this:

qn+1 = (qn +∆tf(qn)) + ∆tg(qn +∆tf(qn))

= qn +∆tf(qn) + ∆t (g(qn) +O(∆t))

= qn +∆t(f(qn) + g(qn)) +O(∆t2)

= qn +
dq

dt
∆t+O(∆t2).

Wait, you say, that hasn’t bought you anything beyond what simple old
forward Euler without splitting gives you. Aha! Here’s where we get a little
more sophisticated. Let’s assume that the reason we’ve split f() and g()
into separate software modules is that we have special numerical methods
that are really good at solving the simpler equations

dr

dt
= f(r),

ds

dt
= g(s).

This is precisely the motivation for splitting: we may not be able to easily
deal with the complexity of the whole equation, but it’s built out of separate

1In particular, do not get confused with raising q to the power of n or n + 1: this
is an abuse of notation, but it is so convenient when we add in subscripts for grid
indices that it’s consistently used in fluid simulation. On the rare occasion that we do
raise a quantity to some exponent, we’ll very clearly state that: otherwise assume the
superscript indicates at what time step the quantity is.
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terms that we do have good methods for. I’ll call the special integration
algorithms F(∆t, r) and G(∆t, s). Our splitting method is then

q̃ = F(∆t, qn), (2.6)

qn+1 = G(∆t, q̃). (2.7)

If F() and G() were just forward Euler, then this is exactly the same as
Equations (2.4) and (2.5), but again the idea is that they’re something
better. If you do the Taylor series analysis, you can show we still have a
first-order–accurate method2 but I’ll leave that as an exercise.

Splitting really is just the principle of divide-and-conquer applied to
differential equations: solving the whole problem may be too hard, but
you can split it into pieces that are easier to solve and then combine the
solutions.

If you’re on the ball, you might have thought of a different way of com-
bining the separate parts: instead of sequentially taking the solution from
F() and then plugging it into G(), you could run F() and G() in parallel and
add their contributions together. The reason we’re not going to do this
but will stick to sequentially working through the steps, is that our spe-
cial algorithms (the integrators F() and G() in this example) will guarantee
special things about their output that are needed as preconditions for the
input of other algorithms. Doing it in the right sequence will make every-
thing work, but doing it in parallel will mess up those guarantees. We’ll
talk more about what those guarantees and preconditions are in the next
section.

2.2 Splitting the Fluid Equations

We’re going to use splitting on the incompressible fluid equations. In par-
ticular, we’ll separate out the advection part, the body forces (gravity)
part, and the pressure/incompressibility part. If viscosity is important, we
can also elect to separate it out: see Chapter 10.

2There are more complicated ways of doing splitting in fluid dynamics, which can get
higher-order accuracy, but for now we won’t bother with them. At the time of writing
this book, this has remained a sadly overlooked area for improvement within graphics:
the first-order time-splitting error can be very significant indeed.
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That is, we’ll work out methods for solving these simpler equations:

Dq

Dt
= 0 (advection), (2.8)

∂~u

∂t
= ~g (body forces), (2.9)

∂~u

∂t
+

1

ρ
∇p = 0

such that ∇ · ~u = 0. (pressure/incompressibility) (2.10)

We used the generic quantity q in the advection equation because we may
be interested in advecting other things, not just velocity ~v.

Let’s call our algorithm for solving the advection, Equation (2.8),
advect(~u,∆t, q): it advects quantity q through the velocity field ~u for
a time interval ∆t. Chapter 3 will cover some good approaches to do this.

For the body force, Equation (2.9), forward Euler ~u← ~u+∆t~g is fine.
For the pressure/incompressibility part, Equation (2.10), we’ll develop

an algorithm called project(∆t, ~u) that calculates and applies just the
right pressure to make ~u divergence-free and also enforces the solid wall
boundary conditions. Chapter 5 deals with this part (and explains the odd
choice of word, “project”).

The important precondition/guarantee issue we mentioned in the pre-
vious section is that advection should only be done in a divergence-free
velocity field. When we move fluid around and want it to conserve volume,
the velocity field we are moving it in must be divergence-free: we covered
that already in Chapter 1. So we want to make sure we only run advect()
with the output of project(): the sequence of our splitting matters a lot!

Putting it together, here is our basic fluid algorithm:

• Start with an initial divergence-free velocity field ~u0.

• For time step n = 0, 1, 2, . . .

• Determine a good time step ∆t to go from time tn to time tn+1.

• Set ~uA = advect(~un,∆t, ~un).

• Add ~uB = ~uA +∆t~g.

• Set ~un+1 = project(∆t, ~uB).

2.3 Time Steps

Determining a good time-step size is the first step of the algorithm. One
obvious concern is that we don’t want to go past the duration of the current
animation frame: if we pick a candidate ∆t but find tn +∆t > tframe, then
we should clamp it to ∆t = tframe−tn and set a flag that alerts us to the fact
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that we’ve hit the end of the frame. (Note that checking if tn+1 = tframe

may be a bad idea, since inexact floating-point arithmetic may mean tn+1

isn’t exactly equal to tframe if compilers have taken any liberties.) At the
end of each frame we’ll presumably do something special like save the state
of the fluid animation to disk, or render it on the screen.

Subject to that clamping, we should select a ∆t that satisfies any re-
quirements made by the separate steps of the simulation: advection, body
forces, etc. We’ll discuss these in the chapters that follow. Selecting the
minimum of these suggested time steps is generally safe (but not guaranteed
in all instances!).

Finally, for the quality desired of the simulation, we may need to take
even smaller time steps to adequately resolve the fluid phenomena. Of-
ten this is based around on calculating how fast things are moving in the
simulation, and limiting how far they can go in one step by adjusting the
time stamp accordingly. For example, overly large time steps might mean
that the position of a fast-moving solid is only sampled before and after it
travels through a smoky region, and this undersampling will result in the
smoke not being properly disturbed. Limiting the time step size so that the
solid will definitely be sampled at intermediate times in the smoky region
will give much better quality results.

However, in some situations we may have a performance requirement
that won’t let us take lots of small time steps every frame. If we only
have time for, say, three time steps per frame, we had better make sure
∆t is at least a third of the frame time. This might be larger than the
suggested time-step sizes from each step, so we will make sure in this book
that all the methods we use can tolerate the use of larger-than-desired time
steps—they should generate plausible results in this case, even if they’re
quantitatively inaccurate.

2.4 Grids

In this numerical section, so far we have only talked about discretizing in
time, not in space. While we will go into more detail about this in the
subsequent chapters, we’ll introduce the basic grid structure here.

In the early days of computational fluid dynamics, Harlow and Welch
introduced the marker-and-cell (MAC) method [HW65] method for solving
incompressible flow problems. One of the fundamental innovations of this
paper was a new grid structure that (as we will see later) makes for a
very effective algorithm for enforcing incompressibility, though it may seem
inconvenient for everything else.

The so-called MAC grid is a staggered grid, i.e., a grid where the
different variables are stored at different locations. Let’s look at it in two
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Figure 2.1. The two-dimensional MAC grid.

dimensions first, illustrated in Figure 2.1. The pressure in grid cell (i, j)
is sampled at the center of the cell, indicated by pi,j . The velocity is
split into its two Cartesian components. The horizontal u-component is
sampled at the centers of the vertical cell faces, for example indicated by
ui+1/2,j for the horizontal velocity between cells (i, j) and (i + 1, j). The
vertical v-component is sampled at the centers of the horizontal cell faces,
for example indicated by vi,j+1/2 for the vertical velocity between cells (i, j)
and (i, j + 1). Note that this means we aren’t storing a velocity vector
anywhere: the different components of velocity are sampled at different
locations, and can’t simply be combined into a vector. Also note that for
grid cell (i, j) we have sampled the normal component of the velocity at
the center of each of its faces: this will very naturally allow us to estimate
the amount of fluid flowing into and out of the cell.

In three dimensions, the MAC grid is set up the same way, with pressure
at the grid cell centers and the three different components of velocity split
up so that we have the normal component of velocity sampled at the center
of each cell face (see Figure 2.2).

We’ll go into more detail about why we use this staggered arrangement
in Chapter 5, but briefly put it’s so that we can use accurate central
differences for the pressure gradient and for the divergence of the velocity
field without the usual disadvantages of central differences. Consider just a
one-dimensional example: estimating the derivative of a quantity q sampled
at grid locations . . . , qi−1, qi, qi+1, . . .. To estimate ∂q/∂x at grid point i
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Figure 2.2. One cell from the three-dimensional MAC grid.

without any bias, the natural formula is the first central difference:

(

∂q

∂x

)

i

≈ qi+1 − qi−1

2∆x
. (2.11)

This is unbiased and accurate to O(∆x2), as opposed to a forward or back-
ward difference, such as

(

∂q

∂x

)

i

≈ qi+1 − qi
∆x

, (2.12)

which is biased to the right and only accurate to O(∆x). However, formula
(2.11) has a major problem in that the derivative estimate at grid point i
completely ignores the value qi sampled there! To see why this is so terrible,
recall that a constant function can be defined as one whose first derivative
is zero. If we require that the finite difference (2.11) is zero, we are allowing
q’s that aren’t necessarily constant—qi could be quite different from qi−1

and qi+1 and still the central difference will report that the derivative is
zero as long as qi−1 = qi+1. In fact, a very jagged function like qi = (−1)i
(here we are using an exponent) which is far from constant, will register
as having zero derivative according to formula (2.11). On the other hand,
only truly constant functions satisfy the forward difference (2.12) equal to
zero. The problem with formula (2.11) is technically known as having a
non-trivial null-space: the set of functions where the formula evaluates to
zero contains more than just the constant functions to which it should be
restricted.
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How can we get the unbiased second-order accuracy of a central differ-
ence without this null-space problem? The answer is by using a staggered
grid: sample the q’s at the half-way points, qi+1/2 instead. Then we natu-
rally can estimate the derivative at grid point i as

(

∂q

∂x

)

i

≈ qi+1/2 − qi−1/2

∆x
. (2.13)

This is unbiased and accurate to O(∆x2) but it doesn’t skip over any values
of q like formula (2.11). So if we set this equal to zero we can only have q
constant: the null-space is correct. The MAC grid is set up so that we use
this staggered form of the central difference wherever we need to estimate
a derivative in the pressure solve (i.e., the incompressibility condition).

The staggered MAC grid is perfectly suited for handling pressure and
incompressibility, but it’s frankly a pain for other uses. For example, if
we actually want to evaluate the full velocity vector somewhere, we will
always need to use some kind of interpolation even if we’re looking at a
grid point! At an arbitrary location in space, we’ll do separate bilinear
or trilinear interpolation for each component of velocity, but since those
components are offset from each other we will need to compute a different
set of interpolation weights for each component. At the grid locations
themselves, this boils down to some simple averaging. In two dimensions
these averages are

~ui,j =

(

ui−1/2,j + ui+1/2,j

2
,

vi,j−1/2 + vi,j+1/2

2

)

,

~ui+1/2,j =

(

ui+1/2,j ,
vi,j−1/2 + vi,j+1/2 + vi+1,j−1/2 + vi+1,j+1/2

4

)

,

~ui,j+1/2 =

(

ui−1/2,j + ui+1/2,j + ui−1/2,j+1 + ui+1/2,j+1

4
, vi,j+1/2

)

.

In three dimensions the formulas are similar:

~ui,j,k =

(

ui−1/2,j,k + ui+1/2,j,k

2
,

vi,j−1/2,k + vi,j+1/2,k

2
,

wi,j,k−1/2 + wi,j,k+1/2

2

)

~ui+1/2,j,k =









ui+1/2,j,k,

vi,j−1/2,k + vi,j+1/2,k

+vi+1,j−1/2,k + vi+1,j+1/2,k

4
,

wi,j,k−1/2 + wi,j,k+1/2

+wi+1,j,k−1/2 + wi+1,j,k+1/2

4
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~ui,j+1/2,k =









ui−1/2,j,k + ui+1/2,j,k

+ui−1/2,j+1,k + ui+1/2,j+1,k

4
, vi,j+1/2,k,

wi,j,k−1/2 + wi,j,k+1/2

+wi,j+1,k−1/2 + wi,j+1,k+1/2

4









~ui,j,k+1/2 =









ui−1/2,j,k + ui+1/2,j,k

+ui−1/2,j,k+1 + ui+1/2,j,k+1

4
,

vi,j−1/2,k + vi,j+1/2,k

+vi,j−1/2,k+1 + vi,j+1/2,k+1

4
, wi,j,k+1/2









Finally, a word is in order about the curious half indices, such as i+1/2.
These are convenient theoretically and conceptually, fixing the location of
the sample points with respect to the grid. However, an implementation
obviously should use integer indices. A standard convention is needed, for
example:

p(i,j,k) = pi,j,k, (2.14)

u(i,j,k) = ui−1/2,j,k, (2.15)

v(i,j,k) = vi,j−1/2,k, (2.16)

w(i,j,k) = wi,j,k−1/2. (2.17)

Then for an nx × ny × nz grid, the pressure is stored in an nx × ny × nz

array, the u component in a (nx+1)× ny× nz array, the v component in a
nx× (ny+1)× nz array, and the w component in a nx× ny× (nz+1) array.

2.5 Dynamic Sparse Grids

For a basic fluid solver, especially if the fluid fills most of its bounding
box, the basic 3D grid above works fine, and is the simplest structure to
implement and use. However there are three problems in general.

The first is the easiest to deal with: if the region the fluid occupies
changes significantly throughout the simulation (for example, water flood-
ing through an initially dry scene) then taking a single static grid that
covers the entire region that may ever see fluid can be enormously waste-
ful. The obvious solution is to dynamically adjust the grid dimensions and
where it lies in space at every time step, just to cover the region of interest.
For a liquid, this is probably just the bounding box of the liquid’s previous
state, adjusted by the fluid velocity field times the time step as an estimate
of where it could move, plus at least a few grid cells’ worth of padding for
safety (and to avoid awkward edge-of-grid boundary conditions affecting
the water). For smoke it may be trickier as the fluid being simulated, the
air, extends off into the atmosphere as a whole: in that case, criteria such as
a minimum padding distance around the region where smoke concentration
is visibly nonzero can work well.
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The second problem is just efficiency on modern hardware. Points
(i, j, k) and (i, j, k + 1) will be nx×ny elements distant from each other
in memory, so most of our common operations on grids will not have as
good data locality as would like—we can expect more page faults and cache
misses than strictly necessary.

The third and most severe problem is how much memory and processing
is wasted when the fluid occupies only a small fraction of the volume of its
bounding box. Examples of this abound: a sinuous river, liquid splashing
from a tipped-over glass, a waterfall above a pool, a thin smoke trail from
the curving trajectory of an aircraft, small flames on a non-flat surface.

The solution to these last two, and which subsumes the first, is to use
sparse blocked grids [Bri03, LKHW03, MCZ07,Mus11, Mus13]. We con-
ceptually begin with an extraordinarily large virtual grid, say 232 along
each dimension and indexed by signed 32-bit integers in each coordinate
(so that negative indices as well as positive may be used for convenience).
This virtual grid is large enough to cover any fluid simulation we under-
take, without having to adjust its origin or dimensions. We then partition
the grid into fixed size blocks or tiles, say of dimensions 6 × 6 × 6 each,
which are stored as tiny contiguous 3D arrays. Finally, we only allocate
and store the blocks we need for a given time step, in an associative data
structure that maps from indices to the stored blocks. Since we only store
the blocks of the grid we care about, this is a sparse structure and nicely
addresses the first and third problems: we don’t waste storage or process-
ing on voxels far from the action. Because we map blocks of voxels rather
than individual voxels, the overhead of the associative data structure can
be minimized; meanwhile operations inside a block have extremely good
data locality which resolves the second problem.

My original implementation of sparse blocked grids [Bri02] used a simple
two-level hierarchy, a 3D “coarse” array of pointers to the fine blocks, but
later work showed that extending this to a three or four level tree is much
more effective [Bri03,Mus13]. Alternatively, to avoid some tree structure
overheads and potentially allow an even larger index space, you can use
a hash table to store references to the fine blocks [Bri03], but with the
disadvantage that parallel updates to hash tables are much trickier.

Writing code around sparse blocked grids is somewhat trickier than for
dense grids: instead of just three nested loops for the entire domain with
simple indexing, you also need an outer loop over the blocks and a bit
more logic in accessing neighboring voxels (which may be in a different
block, or not there at all). Another subtle difficulty is the staggering of the
MAC-grid: a block for the u component must have the same dimensions as
any other component, for example, so there is the risk of slightly breaking
symmetry in a smoke simulation by including an extra degree of freedom
for u on the negative side of the blocks than on the positive side. The
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remedy is to ignore (despite storing) the extra layer of u-samples on the
negative side of any block with no negative-in-x neighboring block and so
forth. Due to complications like these, I would highly recommend sticking
to dense 3D arrays for your first fluid solver, and (as with everything in
this book!) to prototype a sparse grid simulation in 2D before doing it in
3D.

2.6 Two Dimensional Simulations

That last point bears repeating, and emphasizing, redundantly and multi-
ple times as necessary. Always prototype a 3D solver in 2D first. Always
prototype a 3D solver in 2D first. Even once you get to a working 3D
solver, keep your 2D prototype around and up-to-date so that you can eas-
ily jump back to it when working out new features or old bugs. In fact, if
it’s at all meaningful (which for incompressible flow is not always the case)
prototype in 1D before 2D.

Even though ultimately we almost always care just about the results
from 3D simulations, not 2D, so it may seem like a bit of a waste of time to
implement algorithms in 2D—and sometimes a little awkward since con-
tent creation tools for 3D graphics typically don’t have a 2D mode—my
experience over a decade, with many code bases, projects, institutions and
companies, is that this gives you a huge boost in productivity. Fluid solvers
rarely work at all the first time you write them, and even after they get to
the point of giving acceptable results, infrequent and subtle bugs that oc-
casionally ruin your simulations may persist for a long time. We are going
up against some really hard unsolved problems after all. Expect to spend
a large amount of time chasing down strange artifacts, NaN’s, iterations
that don’t converge, etc., and think about optimizing your development
time around that reality.

Solvers in 2D need somewhat less code than 3D, run at least an or-
der of magnitude faster, scale up to high resolution far more gracefully,
occasionally avoid the “curse of dimensionality” that hits some geometric
algorithms (e.g. robustly finding if a point is inside a 2D polygon is much
simpler than finding if a point is inside a 3D mesh), and generally involve
fewer indices and simpler mathematical formulas—all of which make pro-
gramming and debugging far more efficient. Above all else, visualizing and
analyzing results in 2D is far easier than in 3D: one image or even a spread-
sheet of numbers can instantly tell you exactly what’s happening in a 2D
velocity field, but trying to see the same thing in 3D is a major problem
in its own right for scientific visualization. At the same time, most of the
lessons learned in 2D carry over to 3D, so the time and effort spent making
a solver work in 2D is invariably recovered many times over when jumping
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to 3D.
Having said that, it is worth warning about one particularly common

bug due to porting a 2D code to 3D: incomplete copy-and-paste. Beginning
with 2D code like this,

u(i,j) = (phi(i,j) - phi(i-1,j)) / dx;

v(i,j) = (phi(i,j) - phi(i,j-1)) / dx;

one might easily copy and paste the last line and add k indices to extend
it to 3D,

u(i,j,k) = (phi(i,j,k) - phi(i-1,j,k)) / dx;

v(i,j,k) = (phi(i,j,k) - phi(i,j-1,k)) / dx;

w(i,j,k) = (phi(i,j,k) - phi(i,j-1,k)) / dx;

but forget to change the copied v formula to be correct for w:

w(i,j,k) = (phi(i,j,k) - phi(i,j,k-1)) / dx;

This kind of bug is particularly difficult to spot when reading over code,
and may be quite mysterious in terms of interpreting the output. While
many standard debugging practices help here, such as unit tests to check
small sections of your code against analytic test cases or assertions guarding
array indexing etc., it’s also good to be forewarned about the likelihood of
such bugs so you can specifically look for them, and know to spend a bit
of extra care when copying and pasting.
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Advection Algorithms

In the previous chapter we saw that a crucial step of the fluid simulation
is solving the advection equation

Dq/Dt = 0.

We will encapsulate this in a numerical routine

qn+1 = advect(~u,∆t, qn),

which given a velocity field ~u (discretized on a MAC grid), a time step
size ∆t, and the current field quantity qn returns an approximation to the
result of advecting q through the velocity field over that duration of time.

It bears repeating here: advection should only be called with a divergence-
free velocity field ~u, i.e., one meeting the incompressibility constraint, which
also satisfies the required boundary conditions. Failure to do so can result
in peculiar artifacts, such as gain or loss of fluid and its momentum.

3.1 Semi-Lagrangian Advection

The obvious approach to solving Dq/Dt for a time step is to simply write
out the PDE, e.g., in one dimension:

∂q

∂t
+ u

∂q

∂x
= 0

and then replace the derivatives with finite differences. For example, if we
use forward Euler for the time derivative and an accurate central difference
for the spatial derivative we get

qn+1
i − qni

∆t
+ uni

qni+1 − qni−1

2∆x
= 0,

which can be arranged into an explicit formula for the new values of q:

qn+1
i = qni −∆t uni

qni+1 − qni−1

2∆x
.

29
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At first glance this seems just fine. But there are disastrous problems
lurking here!

First off, it turns out that forward Euler is unconditionally unstable for
this discretization of the spatial derivative: no matter how small we make
∆t, it will always eventually blow up! (If you know about the stability
region of forward Euler, what’s happening is that the eigenvalues of the
Jacobian generated by the central difference are pure imaginary, thus al-
ways outside the region of stability. If you don’t, don’t worry: we’ll get to
a method that works soon enough!)

Even if we replace forward Euler with a more stable time integration
technique, in fact even if we were to somehow exactly solve the time part
of the PDE, the spatial discretization will give us major troubles. At first
glance it’s not clear why: this is a pretty accurate estimate of the derivative,
after all, and some fancy analysis can show that such a scheme will exactly
conserve properties like the “energy” (the 2-norm) of the problem, just as
the exact solution does. However, trying it out on a simple 1D problem
will immediately show the problems lurking here. Remember from the
last chapter that discussion of the problem null-space of standard central
differences? Well, it raises its ugly head here too: high-frequency1 jagged
components of the solution, like (−1)i, erroneously register as having zero
or near-zero spatial derivative, and so don’t get evolved forward in time—or
at least move much more slowly than the velocity u they should move at.
Meanwhile the low frequency components are handled accurately and move
at almost exactly the right speed u. Thus the low frequency components
end up separating out from the high-frequency components, and you are left
with all sorts of strange high-frequency wiggles and oscillations appearing
and persisting that shouldn’t be there!

We won’t go into a more rigorous analysis of the problems of simple
central differences, but rest assured there is plenty of high-powered nu-
merical analysis, which not only carefully identifies the disease but also
supplies a cure with more sophisticated finite difference formulas for the
spatial derivative.

We will instead first take a different, simpler, and physically-motivated
approach called the semi-Lagrangian method. The word Lagrangian
should remind you that the advection equation Dq/Dt = 0 is utterly trivial
in the Lagrangian framework, and if we were using particle system methods
it’s solved automatically when we move our particles through the velocity
field. That is, to get the new value of q at some point ~x in space, we could

1By frequency in this context, we mean frequency in space, as if you performed
a Fourier transform of the function, expressing it as a sum of sine or cosine waves
of different spatial frequencies. The high frequency components correspond to sharp
features that vary over a small distance, and the low frequency components correspond
to the smooth large-scale features.
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Figure 3.1. To find a fluid value at grid point ~xG at the new time step, we need
to know where the fluid at ~xG was one time step ago, position ~xP , following the
velocity field.

conceptually just find the particle that ends up at ~x and look up its value
of q.

We can apply that reasoning on our grid to get the semi-Lagrangian
method introduced to graphics by Stam [Sta99]. We want to figure out
the new value of q at a grid point, and to do that in a Lagrangian way we
need to figure out the old value of q that the particle that ends up at the
grid point possesses. The particle is moving through the velocity field ~u,
and we know where it ends up—so to find where it started we simply run
backwards through the velocity field from the grid point. We can grab the
old value of q from this start point, which will be the new value of q at the
grid point! But wait, you say, what if that start point wasn’t on the grid?
In that case we simply interpolate the old value of q from the old values on
the grid, and we’re done.

Let’s go through that again, slowly and with formulas. We’ll say that
the location in space of the grid point we’re looking at is ~xG. We want
to find the new value of q at that point, which we’ll call qn+1

G . We know
from our understanding of advection that if a hypothetical particle with
old value qnP ends up at ~xG, when it moves through the velocity field for
the time step ∆t, then qn+1

G = qnP . So the question is, how do we figure out
qnP ?

The first step is figuring out where this imaginary particle would have
started from, a position we’ll call ~xP . The particle moves according to the
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simple ordinary differential equation

d~x

dt
= ~u(~x)

and ends up at ~xG after time ∆t. If we now run time backwards, we
can go in reverse from ~xG to the start point of the particle—i.e., finding
where a particle would end up under the reverse velocity field −~u “starting”
from ~xG. Figure (3.1) illustrates this path. The simplest possible way to
estimate ~xP is to use one step of “forward” Euler going backwards in time:

~xP = ~xG −∆t ~u(~xG),

where we use the velocity ~u evaluated at the grid point to take a ∆t-step
backwards through the flow field. It turns out forward Euler is sometimes
adequate, but significantly better results can be obtained using a slightly
more sophisticated technique such as a higher-order Runge-Kutta method.
See Appendix A to review time integration methods. In particular, at least
a second-order Runge-Kutta method is recommended as a bare minimum,
such as

~xmid = ~xG −
1

2
∆t ~u( ~xG),

~xP = ~xG −∆t ~u(~xmid).

Here a half-step is taken to get an intermediate position ~xmid approximating
the particle’s position halfway along the trajectory. The velocity field is
interpolated from the grid at this intermediate location, and that velocity
value is used to finally get to ~xP . Even better results, particularly around
swirls and other rotational flow elements, can be had with a third order
method; the RK3 scheme given in the appendix is the best default to use.
Depending on how large ∆t is—see later in this chapter—it may even be
wise to split the trajectory tracing into smaller substeps for better accuracy.

We now know the position where the imaginary particle started; next
we have to figure out what old value of q it had. Most likely ~xP is not on the
grid, so we don’t have the exact value, but we can get a good approximation
by interpolating from qn at nearby grid points. Trilinear (bilinear in two
dimensions) interpolation is often used, though this comes with a serious
penalty which we will fix at the end of the chapter.

Putting this together into a formula, our basic semi-Lagrangian formula,
assuming the particle-tracing algorithm has tracked back to location ~xP
(typically with RK2 above), is

qn+1
G = interpolate(qn, ~xP ). (3.1)
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Note that the particle I’ve described is purely hypothetical. No particle
is actually created in the computer: we simply use Lagrangian particles
to conceptually figure out the update formula for the Eulerian advection
step. Because we are almost using a Lagrangian approach to do an Eulerian
calculation, this is called the semi-Lagrangian method.

Just for completeness, let’s illustrate this in one dimension again, using
linear interpolation for the semi-Lagrangian operations. For grid point
xi, the particle is traced back to xP = xi − ∆tu. Assuming this lies in
the interval [xj , xj+1], and letting α = (xP − xj)/∆x be the fraction of the
interval the point lands in, the linear interpolation is qnP = (1−α)qnj +αqnj+1.
So our update is

qn+1
i = (1− α)qnj + αqnj+1.

In practice we will need to advect the velocity field, and perhaps addi-
tional variables such as smoke density or temperature. Usually the addi-
tional variables are stored at the grid cell centers, but the velocity compo-
nents are stored at the staggered grid locations discussed in the previous
chapter. In each case, we will need to use the appropriate averaged ve-
locity, given at the end of the previous chapter, to estimate the particle
trajectory.

3.2 Boundary Conditions

If the starting point of the imaginary particle is in the interior of the fluid,
then doing the interpolation is no problem. What happens though if the
estimated starting point happens to end up outside of the fluid boundaries?
This could happen because fluid is flowing in from outside the domain (and
the particle is “new” fluid), or it could happen due to numerical error (the
true trajectory of the particle actually stayed inside the fluid, but our
forward Euler or Runge-Kutta step introduced error that put us outside).

This is really the question of boundary conditions. In the first case,
where we have fluid flowing in from the outside, we should know what the
quantity is that’s flowing in: that’s part of stating the problem correctly.
For example, if we say that fluid is flowing in through a grating on one
side of the domain at a particular velocity ~U and temperature T , then any
particle whose starting point ends up past that side of the domain should
get velocity ~U and temperature T .

In the second case, where we simply have a particle trajectory that
strayed outside the fluid boundaries due to numerical error, the appropri-
ate strategy is to extrapolate the quantity from the nearest point on the
boundary—this is our best bet as to the quantity that the true trajectory
(which should have stayed inside the fluid) would pick up. Sometimes that
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extrapolation can be easy: if the boundary we’re closest to has a specified
fluid velocity we simply use that. For example, for simulating smoke in
the open air we could assume a constant wind velocity ~U (perhaps zero)
outside of the simulation domain.

The trickier case is when the quantity isn’t known a priori but has to
be numerically extrapolated from the fluid region where it is known. We
will go into more detail on this extrapolation soon, in Chapter 4. For now,
let’s just stick with finding the closest point that is on the boundary of the
fluid region and interpolating the quantity from the fluid values stored on
the grid near there. In particular, this is what we will need to do for finding
velocity values when our starting point ends up inside a solid object or for
free surface flows (water) if we end up in the free space.

Taking the fluid velocity at a solid boundary is not the same as the
solid’s velocity in general. As we discussed earlier, the normal component
of the fluid velocity had better be equal to the normal component of the
solid’s velocity, but apart from in viscous flows, the tangential component
can be completely different. Thus we usually interpolate the fluid velocity
at the boundary and don’t simply take the solid velocity. However, for the
particular case of viscous flows (or at least, a fluid-solid interaction that
we want to appear viscous and sticky), we can indeed take the shortcut of
just using the solid’s velocity.

3.3 Time Step Size

A primary concern for any numerical method is whether it is stable: will
it (or any of the numerical errors we make) blow up? Happily the semi-
Lagrangian approach above is unconditionally stable: no matter how
big ∆t is, we never blow up. It’s easy to see why: wherever the particle
starting point ends up, we interpolate from old values of q to get the new
values for q. Linear/bilinear/trilinear interpolation always produces values
that lie between the values we’re interpolating from: we can’t create larger
or smaller values of q than were already present in the previous time step.
So q stays bounded. This is really very attractive: we can select the time
step based purely on the accuracy versus speed trade-off curve. If we want
to run at real-time rates regardless of the accuracy of the simulation, we
can pick ∆t equal to the frame duration for example.

In practice, the method can produce some strange results if we are too
aggressive with the time step size. A good rule of thumb from Foster and
Fekiw [FF01] is to limit ∆t so that the furthest a particle trajectory is
traced is at most some constant number of grid cell widths, such as five:

∆t ≤ 5∆x

umax
, (3.2)
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where umax is an estimate of the maximum velocity in the fluid. This could
be as simple as the maximum velocity currently stored on the grid. A more
robust estimate takes into account velocities that might be induced due to
acceleration g from gravity (or other body forces like buoyancy) over the
time step. In that case,

umax = max(|un|) + ∆t |g|.

Unfortunately this estimate depends on ∆t (which we’re trying to find),
but if we replace ∆t with the upper bound from inequality (3.2) we get

umax = max(|un|) + 5∆x

umax
|g|.

Solving for umax and taking a simple upper bound gives

umax = max(|un|) +
√

5∆x g.

This has the advantage of always being positive, even when the initial
velocities are zero, so we avoid a divide-by-zero in inequality (3.2).

In some cases artifacts will still be present with a time step of this
size; one possible remedy that avoids the expense of running the entire
simulation at a smaller time step is to just trace the trajectories used in
semi-Lagrangian advection with several small substeps. If each substep is
limited to |~u(~x)|∆t < ∆x, i.e., so that each substep only traverses roughly
one grid cell, there is little opportunity for problems to arise. Note that
this substep restriction can be taken locally: in fast-moving regions of the
fluid more substeps might be used than in slow-moving regions.

3.3.1 The CFL Condition

Before leaving the subject of time-step sizes, let’s take a closer look at
something called the CFL condition. There is some confusion in the
literature about exactly what this condition is, so in this section I’ll try
to set the story straight. This section can be safely skipped if you’re not
interested in some of the more technical aspects of numerical analysis.

The CFL condition, named for applied mathematicians R. Courant, K.
Friedrichs, and H. Lewy, is a simple and very intuitive necessary condi-
tion for convergence. Convergence means that if you repeat a simulation
with smaller and smaller ∆t and ∆x, in the limit going to zero, then your
numerical solutions should approach the exact solution.2

2As an aside, this is a sticky point for the three-dimensional incompressible Navier-
Stokes equations, and at the time of this writing nobody has managed to prove that
they do in fact have a unique solution for all time. It has already been proven in two
dimensions, and in three dimensions up to some finite time; a million-dollar prize has
been offered from the Clay Institute for the first person to finish the proof in three
dimensions.
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The solution q(~x⋆, t⋆) of a time-dependent partial differential equation,
such as the advection equation, at a particular point in space ~x⋆ and time
t⋆ depends on some or all of the initial conditions. That is, if we modify
the initial conditions at some locations and solve the problem again, it will
change q(~x⋆, t⋆); at other locations the modifications may have no effect.
In the case of the constant-velocity advection equation, the value q(~x⋆, t⋆)
is exactly equal to q(~x⋆ − t⋆~u, 0), so it only depends on a single point in
the initial conditions. For other PDEs, such as the heat-diffusion equation
∂q/∂t = ∇ · ∇q, each point of the solution depends on all points in the
initial conditions. The domain of dependence for a point is precisely
the set of locations that have an effect on the value of the solution at that
point.

Each point of a numerical solution also has a domain of dependence:
again, the set of locations in the initial conditions that have an effect on
the value of the solution at that point. It should be intuitively obvious that
the numerical domain of dependence, at least in the limit, must contain the
true domain of dependence if we want to get the correct answer. This is,
in fact, the CFL condition: convergence is only possible in general if, in
the limit as ∆x→ 0 and ∆t→ 0, the numerical domain of dependence for
each point contains the true domain of dependence.

For semi-Lagrangian methods the CFL condition is satisfied if, in the
limit, the particle trajectories we trace are close enough to the true trajectories—
close enough that we interpolate from the correct grid cells and get the
correct dependence. This should hold, since unless we do something terri-
bly wrong, in the limit the particle tracing should converge to the correct
trajectories.

That said, for standard explicit finite difference methods for the advec-
tion equation, where the new value of a grid point qn+1

i is calculated from a
few of the old values at neighboring grid points, i.e., from points only C∆x
away for a small integer constant C, there is a much more apparent CFL
condition. In particular, the true solution is moving at speed |~u|, so the
speed at which numerical information is transmitted, i.e., C∆x/∆t, must
be at least as fast. That is, for convergence we will require

C∆x

∆t
≥ |~u|,

which turns into a condition on the time step:

∆t ≤ C∆x

|~u| . (3.3)

Here is where most of the confusion arises. This is often the same, up to a
small constant factor, as the maximum stable time step for the method—
and in particular, in the original paper by Courant et al. [CFL28], these



3.4. Diffusion 37

were identical. Thus sometimes the CFL condition is confused with a
stability condition. In fact, there are methods that are unstable no matter
what the time-step size is, such as the forward Euler and central difference
scheme that began this chapter.3 There are also explicit methods that are
stable for arbitrary time-step sizes—however, they can’t converge to the
correct answer unless the CFL condition is met.

To further muddy the waters, there is a related quantity called the CFL
number, often denoted α. If c is the maximum speed of information prop-
agation in the problem—assuming this concept makes sense, for example
in the advection equation we’re studying (where c = max |~u|) or in certain
wave equations where it might be termed the “speed of sound”—then the
CFL number α of a given discretization is defined from

∆t = α
∆x

c
. (3.4)

Thus the time step we talked about above, inequality (3.2), could be ex-
pressed as taking a CFL number of five. The CFL condition for explicit
finite difference schemes can be expressed as a limit on the CFL num-
ber; similarly the stability of some, though not all, explicit finite difference
schemes can be conveniently expressed as another limit on the CFL num-
ber. The CFL number by itself is just a useful parameter, not a condition
on anything.

3.4 Diffusion

Notice that in the interpolation step of semi-Lagrangian advection we are
taking a weighted average of values from the previous time step. That is,
with each advection step, we are doing an averaging operation. Averaging
tends to smooth out or blur sharp features, diffusing or dissipating them.
In signal-processing terminology, we have a low-pass filter. A single blurring
step is pretty harmless, but if we repeatedly blur every time step, you can
imagine there are going to be problems.

Let’s try to understand this smoothing behavior more physically. We’ll
use a technique called modified PDEs. The common way of looking at
numerical error in solving equations is that our solution gets perturbed
from the true solution by some amount: we’re only approximately solving

3Interestingly, despite being unconditionally unstable, this method will still converge
to the correct solution at a fixed end time T if the initial conditions are adequately
smooth and in the limit ∆x → 0 the time step is reduced as O(∆x2). Taking the time
step much smaller than the grid spacing reduces the rate of exponential blow-up to zero
in the limit, though of course this is not an efficient method. Naturally it satisfies the
CFL condition since it converges.
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the problem. The approach that we’ll now use, sometimes also called back-
wards error analysis, instead takes the perspective that we are solving
a problem exactly—it’s just the problem we solved isn’t quite the same
as the one we started out with, i.e., the problem has been perturbed in
some way. Often interpreting the error this way, and understanding the
perturbation to the problem being solved, is extremely useful.

To make our analysis as simple as possible, we’ll solve the advection
problem in one dimension with a constant velocity u > 0:

∂q

∂t
+ u

∂q

∂x
= 0.

We’ll assume ∆t < ∆x/u, i.e., that the particle trajectories span less than
a grid cell—the analysis easily extends to larger time steps too, but noth-
ing significant changes. In that case, the starting point of the trajectory
that ends on grid point i is in the interval [xi−1, xi]. Doing the linear
interpolation between qni−1 and qni at point xi −∆tu gives

qn+1
i =

∆t u

∆x
qni−1 +

(

1− ∆t u

∆x

)

qni .

We can rearrange this to get

qn+1
i = qni −∆t u

qni − qni−1

∆x
, (3.5)

which is in fact exactly the Eulerian scheme of forward Euler in time and a
one-sided finite difference in space.4 Now recall the Taylor series for qni−1:

qni−1 = qni −
(

∂q

∂x

)n

i

∆x+

(

∂2q

∂x2

)n

i

∆x2

2
+O(∆x3).

Substituting this into Equation (3.5) and doing the cancellation gives

qn+1
i = qni −∆t u

1

∆x

((

∂q

∂x

)n

i

∆x−
(

∂2q

∂x2

)n

i

∆x2

2
+O(∆x3)

)

= qni −∆t u

(

∂q

∂x

)n

i

+∆t u∆x

(

∂2q

∂x2

)n

i

+O(∆x2).

4If you’re interested, note that the side to which the finite difference is biased is the
side from which the fluid is flowing. This is no coincidence and makes perfect physical
sense—in the real physical world, you get information from upwind, not downwind,
directions in advection. In general, biasing a finite difference to the direction that flow
is coming from is called upwinding. Most advanced Eulerian schemes are upwind-
biased schemes that do this with more accurate finite difference formulas.
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Up to a second-order truncation error, we can see this is forward Euler in
time applied to the modified PDE :

∂q

∂t
+ u

∂q

∂x
= u∆x

∂2q

∂x2
.

This is the advection equation with an additional viscosity-like term with
coefficient u∆x! (Recall from the momentum equation of Navier-Stokes
that viscosity appears as the Laplacian of velocity, which in one dimension
is simply the second derivative.) That is, when we use the simple semi-
Lagrangian method to try to solve the advection equation without viscosity,
our results look like we are simulating a fluid with viscosity. It’s called
numerical diffusion (or numerical viscosity, or numerical dissipation—
they all mean the same thing in this context).

Fortunately the coefficient of this numerical dissipation goes to zero as
∆x → 0, so we get the right answer in the limit. However, in computer
graphics we don’t have the patience or supercomputing resources to take
∆x extremely small: we want to see good-looking results with ∆x as large
as possible!

So how bad is it? It depends on what we’re trying to simulate. If we’re
trying to simulate a viscous fluid, which has plenty of natural dissipation
already, then the extra numerical dissipation will hardly be noticed—and
more importantly, looks plausibly like real dissipation. But, most often
we’re trying to simulate nearly inviscid fluids, and this is a serious annoy-
ance which keeps smoothing the interesting features like small vortices from
our flow. As bad as this is for velocity, in Chapter 8 we’ll see it can be
much much worse for other fluid variables.

3.5 Reducing Numerical Diffusion

There are many approaches to fixing the numerical diffusion problem. We’ll
outline one particularly simple but effective strategy for fixing the semi-
Lagrangian method presented so far. As we saw in the last section, the
problem mainly lies with the excessive averaging induced by linear interpo-
lation (of the quantity being advected; linearly interpolating the velocity
field in which we trace is not the main culprit and can be used as is). Thus,
the natural next step is to use sharper interpolation. For example, Fedkiw
et al. [FSJ01] proposed using a specially limited form of Catmull-Rom in-
terpolation; we will go even further with a more accurate and significantly
less diffusive interpolant.

Tracing back through the velocity field is the expensive part of semi-
Lagrangian advection, particularly with all its mixing of floating-point cal-
culations with integer arithmetic and dependent memory look-ups (finding
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grid points) and irregular memory reads (actually looking up velocity and
the fields to be interpolated). Once we have done all that, we may as well
do just a little more computation with an extra layer of values (which were
probably also fetched in cache anyhow) to get a much better result.

In one dimension, we do this with a cubic interpolant. If we are esti-
mating the value of q at fraction s between grid points xi and xi+1, the
linear interpolant is

q ≈ (1 − s)xi + s xi+1.

This is the value of the linear polynomial which passes through (xi, qi)
and (xi+1, qi+1). The interpolant is exact for linear polynomials, obvi-
ously; it also matches smooth functions up to the first term of their Taylor
series, but leaves a quadratic remainder term. We instead can use the cu-

bic polynomial which passes through (xi−1, qi−1), (xi, qi), (xi+1, qi+1), and
(xi+2, qi+2), including an additional data point on either side, with this
formula:

q ≈
[

− 1
3s+

1
2s

2 − 1
6s

3
]

qi−1

+
[

1− s2 + 1
2 (s

3 − s)
]

qi

+
[

s+ 1
2 (s

2 − s3)
]

qi+1

+
[

1
6 (s

3 − s)
]

qi+1.

(3.6)

You can double-check this is exact if q is really any cubic polynomial; it also
matches smooth functions up to the third term of their Taylor series, leaving
a much tinier quartic remainder term. This is two orders of magnitude more
accurate than linear interpolation.

Figure (3.2) shows the difference cubic interpolation can make. This is
a pure advection example with a constant velocity, so the original profile of
the function should ideally be translated unchanged. However, on the left
linear interpolation quickly diffuses an initial sharp triangular pulse down
to a smooth hump; the cubic interpolation on the right does gradually
smooth out the shape as well, but keeps it much sharper and higher for
much longer.

In two or three dimensions, we can extend cubic interpolation to bicubic
or tricubic just the same way we do with linear interpolation, doing it di-
mension by dimension. For example, in two dimensions we can interpolate
data along the x-axis first (using w−1, w0, . . . for the weighting coefficients
shown in equation (3.6) above):

qj−1 = w−1(s)qi−1,j−1 + w0(s)qi,j−1 + w1(s)qi+1,j−1 + w2(s)qi+2,j−1,

qj = w−1(s)qi−1,j + w0(s)qi,j + w1(s)qi+1,j + w2(s)qi+2,j ,

qj+1 = w−1(s)qi−1,j+1 + w0(s)qi,j+1 + w1(s)qi+1,j+1 + w2(s)qi+2,j+1,

qj+2 = w−1(s)qi−1,j+2 + w0(s)qi,j+2 + w1(s)qi+1,j+2 + w2(s)qi+2,j+2.
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Figure 3.2. Numerical diffusion illustrated in semi-Lagrangian advection of a
triangular signal transported at constant velocity. From top to bottom, we see the
initial signal, after one time step, after ten time steps, and after a hundred time
steps. The left side shows plain linear interpolation; the right side shows cubic
interpolation. The correct behaviour is for the triangle to translate unchanged.
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Then we can interpolate between these results along the y-axis:

q = w−1(t)qj−1 + w0(t)qj + w1(t)qj+1 + w2(t)qj+2.

It’s easy to work out that interpolating along the y-axis first and then the
x-axis gives the same answer.

The one oddity with the cubic interpolant is that it can “undershoot”
or “overshoot” the data. The weighting coefficients w−1, w0, w1, and w2

add up to one but aren’t all non-negative, so the interpolated value isn’t
just a weighted average of the data points: it can be less than or greater
than the data. In figure (3.2) you should be able to see it slightly goes
below zero, although the initial data was all non-negative. At a theoreti-
cal level, with certain nonlinear equations (with additional terms beyond
just advection), this raises a greater risk of instability developing—but in
practice, for the fluid solvers this book discusses, it appears not to be an
issue. The biggest practical issue to be aware of is that quantities which
you think should always be non-negative, such as the concentration of soot
in a smoke simulation, may end up being slightly negative after an advec-
tion step: if that could cause a problem, just clamp any negative values to
zero.



4

Level Set Geometry

Before continuing on to the heart of our basic fluid solver, the pressure
projection step to make the fluid incompressible and satisfy its boundary
conditions, we need to take a diversion into geometry. In the previous chap-
ter we already ran up against boundary conditions and related geometric
problems:

• when is a point inside a solid? (the point may be where we traced
back to during semi-Lagrangian)

• what is the closest point on the surface of some geometry?

• how do we extrapolate values from one region into another?

The first two queries are extremely common in fluid solvers. We also more
generally want representations of geometry which play well with equations
discretized on grids, and one of the most practical answers is the level set
method.

In this book we’ll touch on just the basics we need; readers might look
at the book by Osher and Fedkiw [OF02], for example, for a more detailed
study of the numerics and applications of level sets.

The first query above suggests the right approach is implicit surfaces.
While there are potentially a lot of ways to generalize this, we will focus on
the case where we have a continuous scalar function φ(x, y, z) which defines
the geometry as follows:

• a point ~x is outside the geometry when φ(~x) > 0,

• it’s inside the geometry when φ(~x) < 0, and

• a point ~x is on the surface when φ(~x) = 0.

In some other contexts within computer graphics, the convention may be
reversed (the “outside” is the negative region) or a threshold value other
than zero could be used, but this is usually the way we do it in fluid
simulation.

43
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The surface can also be referred to as the zero isocontour of φ(~x),
“isocontour” referring to a contour where the value is everywhere the same
(“iso”) and “zero” indicating that special value. The term “level set” is also
used for this in calculus (the set of points where φ(~x) is at a certain level)
but in numerical methods and computer graphics it has come to mean a
lot more, which we’ll get to in this chapter.

If phi(~x) can be differentiated at a point on the surface, vector calculus
also tells us that the gradient vector, ∇φ(~x), must point in a direction
normal to the surface. Since φ is negative on the inside and increase to
positive on the outside, the gradient in fact has to be an outward-pointing
vector normal to the surface. This is often convenient information to have.

What if we were to ask that the gradient be exactly the unit-length
normal on the surface? In other words, demand that

‖∇φ(~x)‖ = 1,

at least near the surface? Since the gradient has to be parallel to the
normal, this would imply the directional derivative of φ in the normal
direction n̂ is exactly one,

∂φ(~x)

∂n̂
= 1,

which means for a small number d and a point ~x on the surface,

(

φ(~x + d n̂)− φ(~x)
)

d
≈ 1

⇒ φ(~x+ d n̂)− 0 ≈ d.

In this case d is literally the distance away from the surface we are eval-
uating φ in the outward direction, and this tells us that the value of φ
must approximately be that distance itself. More precisely, we are looking
at signed distance, where the value d is the negative of distance when
inside the geometry: it is the distance in the outward direction, which is
negative when we go inwards.

In fact, we can turn this around: given any geometric representation,
define φ(~x) as the signed distance function, sometimes abbreviated SDF.
The resulting φ will then serve as an excellent implicit surface description.

4.1 Signed Distance

Given any closed set S of points, the distance function for the set is

distanceS(~x) = min
~p∈S
‖~x− ~p‖;
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that is, it’s the distance to the closest point in S. If S divides space into a
well-defined inside and outside, then the signed distance function is

φS(~x) =

{

distanceS(~x) : ~x is outside,

−distanceS(~x) : ~x is inside.

Signed distance has many useful properties in addition to the gradient
being equal to the unit-length outward-pointing normal at the surface.
For example, at some point ~x outside the geometry, let ~p be the closest
point to ~x on the surface. Clearly the distance function φ will increase
fastest if we move directly away from the closest point on the surface, and
vector calculus tells us that the gradient ∇φ must point in the direction of
“steepest ascent.” In other words, outside the geometry, −∇φ(~x) always
points towards the closest point on the surface. Similar reasoning shows
that inside the geometry, ∇φ points toward the closest point on the surface.

Now let ĉ be the direction to the closest point:

ĉ =
~p− ~x
‖~p− ~x‖ .

Clearly if we move a small distance ǫ in this direction, to ~x∗ = ~x+ ǫĉ, the
closest point to ~x∗ is still ~p: the closest point on the surface doesn’t change
as you move directly closer to it! Therefore the distance function at the
new point, φ(~x∗), must be equal to φ(~x)− ǫ. This gives us the directional
derivative:

∂φ(~x)

∂ĉ
= lim

ǫ→0

φ(~x + ǫĉ)− φ(~x)
ǫ

= lim
ǫ→0

φ(~x)− ǫ− φ(~x)
ǫ

= lim
ǫ→0

−ǫ
ǫ

= −1.
We already know that the gradient outside the geometry is pointing in the
opposite direction from ĉ, and the directional derivative is just the dot-
product of the gradient with the direction, ∂φ/∂ĉ = ∇φ · ĉ, therefore we
can work out the gradient is just −ĉ outside the geometry. Again, similar
reasoning shows it is ĉ inside the geometry. In summary:

• outside the geometry, −∇φ is the unit-length vector pointing towards
the closest point on the surface,

• inside the geometry, ∇φ is the unit-length vector pointing towards
the closest point on the surface,

• and on the surface, ∇φ is the unit-length outward-pointing normal.
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If we combine this with the fact that the value of φ is the distance (or
negative distance inside) to the closest point, we get another useful fact:
for any point ~x,

~x− φ(~x)∇φ(~x)
is the closest point to ~x on the surface. Signed distance functions easily
give us answers to the first two queries listed at the start of this chapter!

Another beautiful consequence is that∇φ(~x) is the unit-length outward-
pointing normal to the surface at the closest point to ~x on the surface. In
other words, it gives us a sensible extension of the concept of “normal” to
points that aren’t even on the surface. For example, for fluid flow near but
not exactly on a solid surface, we can easily break the velocity ~u into a
component that is normal to the surface, ~u · n̂, and the remainder which is
tangential to the surface, ~u− (~u · n̂)n̂, using n̂ = ∇φ.

Diving deeper into the mathematical side of level sets, the fact that the
gradient is always unit-length can be expressed as a nonlinear PDE called
the Eikonal equation:

‖∇φ‖ = 1

It turns out that with the appropriate boundary conditions (namely that
φ = 0 at the surface of the geometry) and a technical condition on the
information flow in the problem, this is enough to define signed distance as
well. Some papers and algorithms work from this perspective, but we will
mostly stick with geometrical reasoning in this book.

It can be shown that in fact signed distance is smooth (i.e., ∇φ and
higher derivatives exist) everywhere except on the medial axis, consisting
of points that are equidistant to different parts of the surface. The medial
axis is exactly where there isn’t a unique closest point, such as the center
of a sphere and the middle plane inside a flat slab. It stretches out to touch
edges and corners of sharp geometry. Around concave geometry, there are
parts of the medial axis outside the geometry.

For typical surfaces the medial axis is a small, lower-dimensional set
which we don’t often have to worry about—and even on the medial axis, φ
is still continuous, just with a kink. In particular, where the surface itself
is smooth, signed distance is smooth on and near the surface. However,
it’s important to keep in mind that all of the above discussion about the
gradient ∇φ breaks down on the medial axis: the function isn’t even differ-
entiable there, so the gradient doesn’t exist. Numerical approximations to
the gradient, which we will discuss soon, will typically still give a vector,
but it may be much less than unit-length, perhaps even zero.

Higher derivatives of the signed distance function, where it’s smooth,
also can have geometric meaning. For example, the signed distance function
of a sphere of radius r centered at the origin is

φ(~x) = ‖~x‖ − r.
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The gradient is

∇φ(~x) = ~x

‖~x‖ ,

and the divergence of this, the Laplacian of the original signed distance
function, in three dimensions is (after a lot of tedious differentiation I am
not going to drag you through)

∇ · ∇φ(~x) = 2

‖x‖ .

In particular, on the surface where ‖x‖ = r, the Laplacian is exactly the
mean curvature 2/r of the sphere. This is no accident: it can be shown in
general for any smooth curved surface, the Laplacian of the signed distance
function evaluated at the surface is the mean curvature.

4.2 Discretizing Signed Distance Functions

So far we have worked with the exact signed distance function. For a few
geometric objects, this is easy enough to write out analytically. A sphere
of radius r centered at ~c has signed distance

φsphere(~x) = ‖~x− ~c‖ − r.

The infinite plane going through point ~p with outward-pointing normal n̂
has signed distance

φplane(~x) = (~x − ~p) · n̂.
The signed distance function for an axis-aligned box defined as [x0, x1] ×
[y0, y1] × [z0, z1] can be computed by checking first if the point is inside
or outside, then using the distance to the closest face on the inside but
directly finding the closest point if on the outside: see Figure 4.1 for details.
Cylinders and cones are also fairly simple, but thats about it for easy
formulas.

We will cover how to compute the signed distance to a triangle mesh
below, but it is significantly more complicated, and without optimized ac-
celeration structures, can be very slow. Clearly we’re not doing ourselves
a favor by rephrasing the inside/outside geometric query as just evaluat-
ing a signed distance function, if the signed distance function evaluation is
even more expensive than simply computing inside/outside directly from a
mesh. We also haven’t really changed the underlying geometric represen-
tation: we’ve just hidden it.

This is where the level set method comes into play. Instead of com-
puting signed distance analytically from some other geometric information,
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• If x0 < x < x1 and y0 < y < y1 and z0 < z < z1 (inside)

• Return φ = max(x0 − x, x− x1, y0 − y, y − y1, z0 − z, z − z1)
• Else (outside)

• (Find the closest point (p, q, r) on the surface of the box)

• If x < x0 set p = x0; else if x > x1 set p = x1; else set p = x.

• If y < y0 set q = y0; else if y > y1 set q = y1; else set q = y.

• If z < z0 set r = z0; else if z > z1 set r = z1; else set r = z.

• Return φ =
√

(x− p)2 + (y − q)2 + (z − r)2.

Figure 4.1. How to compute the signed distance function of an axis-aligned box

we will instead store values of signed distance directly on a grid, just like
any other fluid variable. Then when we need to evaluate φ(~x), we in-
terpolate an approximate value from the surrounding grid points. The
answer will not be exact in general, but is often good enough: all of fluid
simulation deals with approximate answers, in any case, so some approxi-
mation in the geometry is admissible too. This is the core of what people
more conventionally understand by the term “level set”: a signed distance
function that has been sampled on a grid.

Once we’re dealing with just grid values, evaluating φ is fast and easy
through interpolation. Approximating the gradient is also easy enough,
using finite differences. For example, an accurate finite difference estimate
of ∂φ/∂x is available halfway along the x-axis between any two grid points:

(

∂φ

∂x

)

i+1/2,j,k

≈ φi+1,j,k − φi,j,k
∆x

.

Likewise we can get estimates for the y-derivative and z-derivative at other
midpoints between grid values; we can then interpolate between these to
get an approximate gradient vector at any point in the grid. Usually this
is preferable to directly differentiating the interpolant of φ, since the inter-
polants we usually use (piecewise trilinear or piecewise tricubic) have jump
discontinuities in their derivative between grid cells.

Moreover, we can do many interesting geometric operations simply by
directly manipulating the values stored of φ stored on the grid. We’ll return
to this later in the chapter.
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4.3 Computing Signed Distance

If we don’t have a simple analytic formula for a given piece of geometry, but
we want to produce a level set of it, we need an algorithm to compute signed
distance on the grid. One particularly helpful footnote is that the algorithm
needn’t be exact: when we interpolate, we already introduce errors, so small
errors in the grid values themselves can be tolerated, especially away from
the surface itself.

There are two main approaches to computing level sets: from geom-
etry (finding closest points and measuring the distance to them) or from
PDEs (solving the Eikonal equation ‖∇φ‖ = 1). Both have their uses: the
geometric approach is typically more accurate, and easier to understand,
but the PDE approach applies in cases where the geometry isn’t explicitly
known (it is described implicitly as the zero contour of a function that is
not signed distance, and we want signed distance instead).

4.3.1 Distance to Points

We’ll begin with a special case that is nonetheless a common operation:
finding the distance to a finite set of points, computed with the geometric
approach. Note that there is no “inside” so whether this distance is signed
or not is moot. The algorithm is given in Figure 4.2, with one key ingredient
left unspecified: the order in which we loop over the grid to propagate
distance information. It is based on algorithm 4 in Tsai’s article [Tsa02].
For a review of many other algorithms, see the paper by Jones et al. [JBS06].

In the first stage we compute exact distance and closest point informa-
tion directly in the grid cells immediately surrounding the input points,
without needing any fancy geometric data structures. The second stage
can efficiently propagate that from neighbor to neighbor through the grid,
again without need for extra data structures. However, it is not exact: the
point closest to a given grid cell may not be the same as the points closest
to any of its neighbors. That being said, the distance to the true closest
point can never be very different from the distance to the almost closest
point calculated by this method: in practice, this works extremely well.

4.3.2 Loop Order

There are two suggestions for the loop order given by Tsai et al. [Tsa02],
one based on the fast marching method [Set96,Tsi95] and one based on the
fast sweeping method [Zha05].

The fast marching method is based on the realization that grid points
should get information about the distance to the geometry from points that
are closer, not the other way around. We thus want to loop over the grid
points going from the closest to the furthest. This can be facilitated by
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• Begin with a 3D array of distances φi,j,k set to ∞ (or some finite
upper bound on all possible distances), and a 3D array of integer
indices for the closest point ti,j,k set to −1 to indicate unknown.

• (Initialize the arrays near the input geometry)

• Loop over the input points ~pe for e = 0, 1, . . . , n− 1:

• Locate point ~pe = (p, q, r) in the grid, so that xi ≤ p ≤ xi+1,
yj ≤ q ≤ yj+1, and zk ≤ r ≤ zk+1.

• If the distance d = ‖~xi,j,k − ~pe‖ between the grid point and ~pe
is less than φi,j,k:

• Set φi,j,k = d and ti,j,k = e.

• (Propagate closest point and distance estimates to the rest of the
grid)

• Loop over the grid points (i, j, k) in a chosen order:

• For each neighboring grid point (i′, j′, k′) worth considering,
if e = ti′,j′,k′ 6= −1:
• If the distance d = ‖~xi,j,k − ~pe‖ between the grid point and
~pe is less than φi,j,k:
• Set φi,j,k = d and ti,j,k = e.

Figure 4.2. Computing distance on a grid to a set of points.

storing unknown grid points in a priority queue (typically implemented as
a heap) keyed by the current estimate of their distance. We initialize the
heap with the neighbors of the known grid points, with their distance values
and closest points estimated from those known grid points. We select the
minimum and remove it from the priority queue, set it as known, and then
update the distance and closest-point information of its unknown neighbors
(possibly adding them to or moving them up in the priority queue). And
then do that again, and again, until the priority queue is empty. This runs
in O(n log n) time for n unknown grid points.

The fast sweeping method approach draws a different tactic from the
fact that information propagates out from closer points to farther points.
For any grid point, in the end its closest point information is going to come
to it from one particular direction in the grid—e.g., from (i + 1, j, k), or
maybe from (i, j − 1, k), and so on. To ensure that the information can
propagate in the right direction, we thus sweep through the grid points in
all possible loop orders: i ascending or descending, j ascending or descend-
ing, k ascending or descending. There are eight combinations in three
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dimensions, four in two dimensions. For more accuracy, we can repeat
the sweeps again; in practice two times through the sweep gives excellent
results, though more iterations are possible.

The benefit of fast sweeping over fast marching is that it is O(n), re-
quires no extra data structures beyond grids, and thus is extremely simple
to implement. When computing distance across a full grid, fast sweeping
is probably the best bet.

However, as mentioned earlier, a modern fluid solver will probably use
sparse tiled grids, which complicates sweeping. In this case, a hybrid ap-
proach is possible. We can run fast sweeping efficiently inside a tile to
update distances based on information in the tile and its neighbors, but
we can choose the order in which to solve tiles (and re-solve them when
neighbors are updated) in a fast marching style. Begin with the tiles con-
taining input points as the set to “redistance”. Whenever a tile has been
redistanced with fast sweeping, check to see if the distance value in any
face neighbor is more than ∆x larger than the distance stored in this tile:
if so, add the neighboring tile to the set needing redistancing.

4.3.3 Finding Signed Distance for a Triangle Mesh

Let’s tackle more interesting geometry next: a closed triangle mesh. We’ll
take the same general approach, but instead of keeping track of closest
points, we’ll track closest triangles for better accuracy. We’ll also take an
additional stage to figure out inside/outside information, first computing
raw absolute distance and fixing the signs in the last loop. Figure 4.3 gives
the pseudo-code. Again the loop order for distance propagation is left
unspecified: fast sweeping, fast marching, or a hybrid tiled combination
applies equally well here.

Computing the distance between a point and a triangle is a core oper-
ation in this algorithm. Jones provides details on two possible techniques
in technical report worth reading [Jon95]. The more direct but potentially
slower approach first solves for the barycentric coordinates α, β, γ of the
closest point to x0 on the plane through triangle vertices ~x1, ~x2, and ~x3,
with the following 2× 2 linear system:

[

~x21 · ~x21 ~x21 · ~x31
~x21 · ~x31 ~x31 · ~x31

] [

β
γ

]

=

[

~x21 · ~x01
~x31 · ~x01

]

α = 1− β − γ,

where ~x21 is short for ~x2 − ~x1 and so forth. If the barycentric coordinates
are all non-negative, the closest point in the plane is inside the triangle,
and you can use the distance between ~x0 and α~x1 + β~x2 + γ~x3. Otherwise,
the closest point must lie on one of the triangle’s edges. If a barycentric
coordinate is positive, the opposite edge needn’t be checked (α is opposite
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• Begin with a 3D array of distances φi,j,k set to ∞ (or some finite
upper bound on all possible distances), and a 3D array of integer
indices for the closest triangle ti,j,k set to -1 to indicate unknown,
and a 3D array of integers ci,j,k to keep intersection counts along
grid edges.

• (Initialize the arrays near the input geometry)

• Loop over the input triangles Te for e = 0, 1, . . . , n− 1:

• Loop over the grid edges (i, j, k) − (i + 1, j, k) which exactly
intersect triangle Te (consistently breaking ties at endpoints):

• Increment ci,j,k.
• If the distance d between grid point ~xi,j,k and triangle Te
is less than φi,j,k:
• Set φi,j,k = d and ti,j,k = e.

• (Propagate closest triangle and distance estimates to the rest of
the grid)

• Loop over the grid points (i, j, k) in a chosen order:

• For each neighboring grid point (i′, j′, k′) worth considering,
if e = ti′,j′,k′ 6= −1:
• If the distance d between grid point ~xi,j,k and triangle Te
is less than φi,j,k:
• Set φi,j,k = d and ti,j,k = e.

• (Determine signs for inside/outside)

• For each horizontal grid line (j, k):

• Set the cumulative intersection count C = 0 at the minimum
i coordinate.

• Loop over i to maximum grid coordinate:

• If C is odd, set φi,j,k = −φi,j,k (grid point is inside).
• Set C = C + ci,j,k.

Figure 4.3. Computing distance on a grid to a closed, watertight triangle mesh.

to ~x2− ~x3 etc.), but in some cases two edges must both be considered, and
the minimum distance from the two taken.

Computing the distance between a point ~x0 and an edge ~x1−~x2 follows
a similar procedure. First compute the barycentric coordinate θ of the
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closest point along the infinite line containing the edge:

θ =
(~x2 − ~x1) · (~x0 − ~x1)

‖~x2 − ~x1‖2
.

If θ < 0 the closest point is ~x1, if θ > 1 the closest point is ~x2, and otherwise
the closest point is (1− θ)~x1 + θ~x2.

The other tricky point, in fact a much trickier point, in the algorithm
is the determination of inside/outside. It essentially determines whether
a grid point is inside the mesh by casting a ray along the negative x-axis
to minus infinity, counting the number of intersections with triangles, and
deciding on “inside” if the intersection count is odd. This assumes that at
minus infinity, we are outside the mesh, and that if we were to move back
along the axis, every time we cross a triangle we must be switching from
inside to outside or vice versa. This is indeed true for closed, “watertight”
triangle meshes.

For this algorithm to be robust, the intersection routine has to be very
carefully written. If an intersection is missed, the count will be off and
the results wrong. If two triangles meet exactly along an x-aligned grid
line, and we count zero or two intersections, the count will be off and the
results wrong: we can count one and only one intersection in this case. If
a triangle lies parallel to the x-axis and exactly on a grid line, which fre-
quently happens if the geometry happens to include an axis aligned plane,
we should be sure not to count any intersections. Getting all these cases
correct every time goes beyond the scope of this book; my code relies on
Shewchuk’s robust predicates for computing sign-exact orientation deter-
minants [She97], along with careful symbolic perturbations to consistently
“break ties” when triangles line up with the grid exactly, following the
strategy of Simulation Of Simplicity (SOS) [EM90].

Sometimes, of course, input triangle meshes are not perfect watertight
structures. They might have cracks, or overlapping parts that don’t quite
meet, for example, or only one side has been specified (for example, the top
surface of an ocean without the bottom given). We can still compute a dis-
tance field for the triangles with the algorithm above, but the intersection
counts and inside/outside signs are unreliable.

If the input triangles all have consistent outward-pointing normals, one
possibility is to set the sign (inside/outside) of nearby grid points in the
initial loop according to the dot-product of (~xT − ~xi,j,k) · n̂T between the
vector from the grid point ~xi,j,k to the closest point ~xT on the triangle and
the triangle’s normal. Then in the distance propagation loop, we use |φi,j,k|
instead of φi,j,k to compare distances, and we take the sign (inside/outside)
from the neighbor.

With even rougher models, more complicated schemes to estimate in-
side/outside (which may not be at all clear) are necessary. The most thor-
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ough recent example is Jacobson et al. [JKSH13], who essentially compute
the probability that a random ray fired in any direction will cross an odd
number of triangles to decide on a “raw” estimate of inside/outside, and
then further process the results at all points to get a clean segmentation.

4.4 Recomputing Signed Distance

The previous section used geometrically-based algorithms to compute signed
distance directly from explicitly given geometry. Another common case we
encounter is where we have a level set defined by values on a grid which are
far from being signed distance, and we want to recompute the signed dis-
tance accurately, or redistance, the level set. This commonly happens as
the result of geometric processing algorithms which don’t preserve distance
exactly.

Here we don’t have explicit geometry available to provide convenient
closest points, so instead we take the PDE approach and solve the Eikonal
equation directly. This follows the original fast marching method [Set96,
Tsi95] and fast sweeping method [Zha05].

Our first step is to estimate distance accurately immediately next to
the surface, i.e. in grid cells where there is a sign change (some corners are
negative, others are positive). If we are confident these are close enough
to distance already, we can leave them untouched. Otherwise we need
to estimate where in the grid cell the zero isocontour lies, and use signed
distance to that. Suppose the old function is F , and at grid point (i, j, k) we
find that Fi,j,k has a different sign from Fi+1,j,k. We can linearly interpolate
F along the edge between those two points, and solve for the fraction along
the edge where the linear interpolant is zero:

θ =
Fi,j,k

Fi,j,k − Fi+1,j,k
.

We can provisionally set φi,j,k = sign(Fi,j,k) θ∆x, i.e. the distance to that
intersection point inheriting the sign (inside/outside) from F . Of course,
we should do the same calculation for all neighbors with a different sign in
F , and take the signed distance value closest to zero. For a slightly more
accurate result, we can even fit a segment or triangle through collections
of these intersection points (in fact, locally producing a Marching Cubes
[WMW86,LC87] style of mesh) and take the closest point to that.

After settling φ for the grid points immediately adjacent to the surface,
we set the remainder to ±∞, or otherwise an upper bound for all possible
distances with sign positive or negative according to the input F . We then
loop through the grid propagating distance as before, with sweeping or
marching or a hybrid. However, instead of using geometric calculations to
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determine distance values, we directly solve the Eikonal equation. Recall
again this is just the statement that the gradient of the signed distance
function should have unit length:

(

∂φ

∂x

)2

+

(

∂φ

∂y

)2

+

(

∂φ

∂z

)2

= 1

To estimate signed distance φi,j,k at a grid point from some known neigh-
boring values, we substitute in finite differences for the partial derivatives
and solve the resulting quadratic equation for the unknown value. The
critical principle at play, however, is that we can only compute distance at
a grid point from points that are closer to the surface (that have smaller
absolute distance values).

Suppose, for example, we are estimating φi,j,k from neighbors φi−1,j,k,
φi,j+1,k, and φi,j,k−1. Discretizing the equation above, if we actually can
use all three, would give something like:

(

φi,j,k − φi−1,j,k

∆x

)2

+

(

φi,j+1,k − φi,j,k
∆x

)2

+

(

φi,j,k − φi,j,k−1

∆x

)2

= 1

For simplicity, assume all values are positive (just flip the signs if not,
compute the new value, and then flip the sign again). Let those three
neighboring values be φ0 ≤ φ1 ≤ φ2 in sorted order. We then try using
one, two, or three neighboring values to estimate the distance, taking the
smallest computed distance only if it’s smaller than our existing estimate
for φi,j,k. See Figure 4.4.

4.5 Operations on Level Sets

The level set approach to geometry pays extra dividends when it comes to
what you can do efficiently with them. First let us take a look at geometric
queries. We already saw that determining inside versus outside is a simple
matter of interpolating φ from nearby grid points and checking its sign;
estimating the normal or the direction to the closest point on the surface
is as simple as taking some finite differences to approximate ∇φ.

Actually finding the closest point ~p on the surface from a given point
~x is not quite as simple as we made it out to be initially. With an exact
signed distance function, ~p = ~x − φ(~x)∇φ(~x). However, if we have errors
in the values of φ and errors from interpolation and finite differences, this
formula isn’t guaranteed to give a point exactly on the surface. A simple
iterative procedure can be used to give more reliable results, taking steps
along the gradient as long as the value of φ keeps getting closer to zero:
see Figure 4.5.
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• (Try just the closest neighbor)

• Set d = φ0 +∆x.

• If d > φ1:

• (Try the two closest neighbors)

• Set d = 1
2 (φ0 + φ1 +

√

2∆x2 − (φ1 − φ0)2).
• If d > φ2:

• (Use all three neighbors)
• Set

d = 1
3

(

φ0 + φ1 + φ2+
√

max(0, (φ0 + φ1 + φ2)2 − 3(φ20 + φ21 + φ22 −∆x2))
)

.

• If d < φi,j,k set φi,j,k = d.

Figure 4.4. Updating distance φi,j,k from the Eikonal equation on a grid, given
neighboring distance values φ0 ≤ φ1 ≤ φ2 along the three axes.

• Set ~p = ~x, φp = φ(~p), ~d = ∇φ(~p).
• For up to N iterations:

• Set α = 1.

• For up to M iterations:

• Set ~q = ~p− αφp ~d.
• If |φ(~q)| < |φp|:
• Set ~p = ~q, φp = φ(~q), ~d = ∇φ(~q).
• If |φp| < ǫ for some tolerance ǫ, return with ~p.

• Else set α = 0.7α (scale back the step by some conservative
amount)

• Return ~p as best guess seen.

Figure 4.5. Finding from ~x the closest point ~p on the level set surface.

Level sets can be ray-traced directly for rendering, and intersecting a
ray against a level set may also be of use elsewhere. One possibility is
to march through the grid treating it as a regular ray-tracing acceleration
structure: you can skip through a grid cell if all the values of φ at the
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corners have the same sign (so the zero isocontour does not pass through
the grid cell). This can be further accelerated with octrees or coarse grids.
Another possibility to speed up tracing is to use the signed distance values
themselves: if they are accurate enough, they provide a conservative lower
bound on how far along the ray you can travel without touching the surface
(since the distance to the closest point on the surface is a lower bound
on the distance along the ray to the surface). Once close enough to the
surface, and in particular once two points on the ray have been found with
differing signs, numerical root-finding algorithms like bisection search or
secant search can be used to get the intersection.

It should be noted that the interpolation method used for the level set
plays a big role in what it will look like when ray-traced. Simple piecewise
trilinear interpolation gives smooth trilinear patches within grid cells, but
the normal to the surface can discontinuously jump from one grid cell to
the next: this can be very obvious even with a diffuse shader. Smoother
C1 approaches are usually necessary, such as using quadratic B-splines.

Level sets, like any other field, can be advected by a velocity field. We
will return to this in Chapter 8 where this is an important component of
simulating liquids like water. In particular, if we want to move a surface
around with a velocity field ~u, the points where φ(~x) = 0 should follow
d~x/dt = ~u while keeping their value of φ at zero. More generally we could
say every point in the domain should move with the velocity field and keep
its value of φ as it goes, giving the equation:

Dφ

Dt
= 0. (4.1)

This will move the surface as desired, up to numerical errors, producing a
new level set. Usually the new level set will no longer be exactly signed
distance, so we decide to recompute distance each frame, but in most cases
the values directly next to the surface will be “good enough” and do not
require recomputing (which could cause artifacts). Level set advection is
very sensitive to numerical diffusion, so it’s essential to at least use the
sharp cubic interpolation we discussed at the end of Chapter 3. Even
so, over time, sharp features are bound to be smoothed away and even
disappear: small holes can fill in, thin structures can vanish. How to better
handle this will be left to later in the book.

Advection can also be used to apply displacement textures or freeform
deformations to level sets, thinking of the volumetric displacement field as
basically integrating one step of velocity to deform the original level set
geometry. Alternatively, carefully designed “bump map” fields can just be
directly added to the level set values to perturb the geometry slightly in the
normal direction, though this can be an unreliable way to texture geometry
if taken too far.
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Adding a constant to a level set will grow or shrink the geometry. Con-
sider again the level set of a sphere of radius r:

φ(~x) = ‖~x‖ − r.

If we add d to the values, φ = φ+ d, it’s obvious we get a sphere of radius
r − d. This applies generally: if we add a positive value d to the level set,
it shrinks the level set inwards along the normal by a distance d, and if we
add a negative value d it grows or “dilates” the level set outwards along
the normal by a distance |d|. However, a cautionary note: except in very
simple cases like the sphere, the resulting level set might not be true signed
distance anymore. Following an operation like this, it may be necessary to
recompute distance.

Smoothing and sharpening filters can also be applied to level sets di-
rectly, as if they were any other 3D data. These generally have the ex-
pected results, except where the filter kernel overlaps the medial axis (the
“halfway point” between two or more different parts of the surface): in this
case, information from another part of the surface starts to contaminate
the calculation. A smoothing filter whose radius is wider than the thickness
of one part of the surface can cause that part of the surface to completely
vanish. Two disjoint surface components can affect each other if they are
closer than the filter kernel’s radius.

Boolean or Constructive Solid Geometry (CSG) operations can be com-
puted very easily, at least approximately, with level sets. The complement
of an object (turning inside to outside and vice versa) can be accomplished
simply by reversing the sign to −φ. The union of two objects with level
sets φ1 and φ2 can be computed as

φ = min(φ1, φ2),

and the intersection as
φ = max(φ1, φ2).

In the former, a point is in the union (has a negative value) if and only
if the point is in at least one of the objects (the minimum of the two
values is negative), with similar logic for the latter. Note that taking the
minimum of two interpolated values can be very different from interpolating
the minimums: if you compute a new level set sampled on the grid by taking
minimums or maximums between other level sets, and then work with the
new level set with standard interpolation, you will find the “seam” where
the earlier geometry intersects has been smoothed away. This can be a
good thing or a bad thing, depending on what you want. The result of
Boolean operations like union and intersection also locally still satisfies the
Eikonal equation, but may be very far from true signed distance: again,
redistancing may be required.
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4.6 Contouring

One last common operation for level sets is to reconstruct a mesh of the
zero isocontour. Although level sets make some operations easy or even
trivial, others are far easier or faster with a mesh, like accurately estimat-
ing surface integrals or rendering with rasterizing GPU hardware. Some
software libraries only accept meshes as input geometry, not level sets.

The standard approach is the Marching Cubes algorithm, invented
first by Wyvill et al. [WMW86] and then independently by Lorensen and
Cline [LC87]. The essential idea is to put a mesh vertex wherever the zero
isosurface crosses an edge of the 3D grid, and then connect up the vertices
with faces inside each grid cell which will naturally approximate the zero
isosurface.

Finding if and where the zero isosurface crosses an edge of the grid is
easy enough, assuming linear interpolation of the level set function between
values stored at grid cell corners. For example, there is a zero crossing on
the edge between (i, j, k) and (i + 1, j, k) if and only if the sign of φi,j,k is
opposite the sign of φi+1,j,k, and the zero of the linear interpolant between
those two points happens at fraction

θ =
φi,j,k

φi,j,k − φi+1,j,k
,

i.e. at location ((i + θ)∆x, j∆x, k∆x).
If one or more of the level set values on the grid is exactly zero, φi,j,k = 0,

it can be really hard to make a robust algorithm which will produce a
watertight mesh. The simplest solution is to replace any exact zeros with
an extremely small nonzero instead, like 10−36 for single-precision floating
point numbers. A number this small will not in general have any effect
on the location of mesh vertices, due to rounding errors, but it will avoid
the need for any special cases in the mesh generation code which is a huge
advantage.

In a grid cell which contains the zero isosurface, i.e. which has differing
signs for φ at its corners, figuring out how to connect up the mesh vertices
generated on the appropriate edges is not trivial. There are 254 different
cases to consider, and even with look-up tables to help control the com-
plexity, Lorensen and Cline’s original method still on occasion produces
holes in the final mesh due to topological ambiguities [Dür88]. There are
several possibilities to solve this, but the one I prefer is Marching Tetrahe-
dra [MW99], where we first decompose each grid cell into a set of smaller
tetrahedra (which themselves line up at shared grid faces to form a valid
tetrahedral mesh of all space), construct zero crossing vertices on the edges
of those tetrahedra, and connect up the vertices to form mesh faces within
each tetrahedron independently.
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The great advantage of working in a tetrahedron instead of a cube is
that the linear interpolation of φ from the corners of the tetrahedron has
a flat (planar) zero isocontour which can be unambiguously meshed: in
a cube, with trilinear interpolation, the zero isosurface is typically curved
and can have more complicated topology (such as splitting into multiple
disconnected components). In fact, the zero isocontour cutting through a
tetrahedron can only be single triangle or a quadrilateral, which can be split
along either diagonal to give two triangles. There are also only 16 cases
of signs to consider, reducing the code complexity. The only downside
to using tetrahedra instead of cubes is that, on average, somewhat more
triangles will be emitted than are strictly necessary.

The one slightly tricky point in making Marching Tetrahedra work is in
coming up with the set of tetrahedra. The minimal subdivision of the cube
is into five tetrahedra, with an equilateral tetrahedron in the middle and
four surrounding it. In fact, there are two ways to do this. For the unit
cube we can use the following tetrahedra, listed as consistently-oriented
4-tuples of vertex coordinates:

• (0, 1, 1)− (1, 0, 1)− (0, 0, 0)− (0, 0, 1)

• (0, 0, 0)− (0, 1, 1)− (0, 1, 0)− (1, 1, 0)

• (1, 0, 1)− (0, 1, 1)− (0, 0, 0)− (1, 1, 0) (equilateral)

• (1, 0, 0)− (1, 0, 1)− (0, 0, 0)− (1, 1, 0)

• (1, 1, 1)− (0, 1, 1)− (1, 0, 1)− (1, 1, 0)

or the mirror image (geometrically reflected but with the same orientation):

• (0, 0, 1)− (1, 1, 1)− (1, 0, 0)− (1, 0, 1)

• (1, 1, 1)− (1, 0, 0)− (1, 1, 0)− (0, 1, 0)

• (1, 1, 1)− (0, 0, 1)− (1, 0, 0)− (0, 1, 0) (equilateral)

• (0, 0, 1)− (0, 0, 0)− (1, 0, 0)− (0, 1, 0)

• (1, 1, 1)− (0, 1, 1)− (0, 0, 1)− (0, 1, 0)

For grid cell (i, j, k), simply add i, j, k to the coordinates listed above. It
turns out we need to use both to get a valid tetrahedralization of all space.
Just using one or other leads to a mismatch between tetrahedra across a
common face in the grid; instead we have to alternate between the two in
a “checkerboard” pattern. For example, you can use the first set for the
grid cell with least corner (i, j, k) if i+ j+ k is odd, and use the second set
if i+ j + k is even.
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The triangle meshes generated from marching typically aren’t of great
quality. If the isosurface just barely includes a grid point, then the triangles
generated nearby will often be “slivers,” with one or more very short edges.
In most scenarios some further mesh smoothing is required: move each
vertex towards the average of its neighbor vertices, then project it back to
the zero isosurface using the underlying level set. This tends to produce
much better shaped triangles of more uniform size, while staying faithful
to the level set.

Williams’ thesis on constructing high quality meshes to wrap around
fluid particles takes us a step further [Wil08]. The first observation is
that regular Marching Cubes and Marching Tetrahedra using the above
decomposition, or many others, typically generates triangle meshes with
many degree four vertices, i.e. vertices incident on only four triangles. Such
vertices can cause problems for further mesh processing (e.g. the simple
mesh smoothing doesn’t work as well near them, and subdivision surfaces
tend to have curvature problems there). Degree four vertices only can
occur where only four tetrahedra in the underlying tetrahedral mesh share
an edge. However, in an acute tetrahedralization of space, where every
dihedral angle is strictly less than 90◦, at least five tetrahedra must meet
at every edge (since the sum of dihedral angles around an edge is 360◦).
Therefore, if we march on acute tetrahedra, the output mesh cannot have
a vertex with degree less than five: this gives much better connectivity,
which leads to much better mesh improvement, subdivision, and other post-
processing.

Williams used a fairly convenient acute tetrahedralization earlier iden-
tified by Üngör [Ü01]. Unfortunately, while it tiles space in a grid-like way,
the tetrahedra don’t neatly decompose cubic grid cells: the repeating tile
resembles a “dented” cube. However, we don’t actually care so much about
the geometry of the tetrahedra: the important point is their connectivity,
that at least five meet at every shared edge. It turns out we can warp
this tetrahedralization back to line up perfectly with a regular grid, where
we use a carefully selected decomposition of each grid cell into five or six
tetrahedra depending on the parity of the coordinates taken individually.
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If i ≡ 0, j ≡ 0, k ≡ 0(mod2):

• (0, 1, 1)− (1, 0, 1)− (0, 0, 0)− (0, 0, 1)

• (0, 0, 0)− (0, 1, 1)− (0, 1, 0)− (1, 1, 0)

• (1, 0, 1)− (0, 1, 1)− (0, 0, 0)− (1, 1, 0)

• (1, 0, 0)− (1, 0, 1)− (0, 0, 0)− (1, 1, 0)

• (1, 1, 1)− (0, 1, 1)− (1, 0, 1)− (1, 1, 0)

If i ≡ 1, j ≡ 0, k ≡ 0(mod2):

• (1, 1, 1)− (0, 0, 0)− (1, 0, 0)− (1, 1, 0)

• (0, 0, 0)− (1, 1, 1)− (0, 0, 1)− (0, 1, 0)

• (1, 1, 1)− (0, 0, 0)− (0, 0, 1)− (1, 0, 1)

• (1, 1, 1)− (0, 1, 1)− (0, 0, 1)− (0, 1, 0)

• (0, 0, 0)− (1, 1, 1)− (1, 0, 0)− (1, 0, 1)

• (0, 0, 0)− (1, 1, 0)− (1, 1, 1)− (0, 1, 0)

If i ≡ 0, j ≡ 0, k ≡ 1(mod2):

• (0, 0, 1)− (1, 0, 1)− (1, 1, 1)− (1, 0, 0)

• (0, 0, 1)− (1, 0, 0)− (0, 1, 1)− (0, 0, 0)

• (0, 1, 1)− (1, 0, 0)− (0, 1, 0)− (0, 0, 0)

• (0, 1, 0)− (1, 1, 0)− (1, 0, 0)− (0, 1, 1)

• (1, 1, 1)− (0, 1, 1)− (0, 0, 1)− (1, 0, 0)

• (1, 1, 0)− (0, 1, 1)− (1, 1, 1)− (1, 0, 0)

If i ≡ 1, j ≡ 0, k ≡ 1(mod2):

• (0, 0, 0)− (1, 1, 1)− (0, 0, 1)− (0, 1, 1)

• (1, 1, 1)− (0, 0, 0)− (0, 0, 1)− (1, 0, 0)

• (1, 1, 1)− (0, 1, 0)− (0, 1, 1)− (0, 0, 0)

• (0, 0, 0)− (1, 1, 0)− (1, 0, 0)− (1, 1, 1)

• (1, 0, 1)− (1, 0, 0)− (1, 1, 1)− (0, 0, 1)

• (0, 1, 0)− (1, 1, 1)− (1, 1, 0)− (0, 0, 0)
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If i ≡ 0, j ≡ 1, k ≡ 0(mod2):

• (1, 1, 1)− (1, 1, 0)− (0, 1, 0)− (1, 0, 1)

• (0, 1, 0)− (0, 0, 1)− (1, 0, 0)− (0, 0, 0)

• (1, 0, 1)− (1, 1, 0)− (0, 1, 0)− (1, 0, 0)

• (1, 0, 1)− (0, 0, 1)− (0, 1, 0)− (0, 1, 1)

• (0, 0, 1)− (1, 0, 1)− (0, 1, 0)− (1, 0, 0)

• (0, 1, 0)− (1, 1, 1)− (1, 0, 1)− (0, 1, 1)

If i ≡ 1, j ≡ 1, k ≡ 0(mod2):

• (0, 1, 0)− (0, 0, 1)− (1, 0, 1)− (0, 0, 0)

• (0, 1, 0)− (1, 0, 0)− (0, 0, 0)− (1, 0, 1)

• (1, 0, 0)− (0, 1, 0)− (1, 1, 0)− (1, 0, 1)

• (1, 0, 1)− (0, 1, 0)− (1, 1, 0)− (1, 1, 1)

• (0, 1, 0)− (0, 1, 1)− (1, 1, 1)− (0, 0, 1)

• (0, 0, 1)− (0, 1, 0)− (1, 0, 1)− (1, 1, 1)

If i ≡ 0, j ≡ 1, k ≡ 1(mod2):

• (1, 0, 0)− (0, 0, 0)− (0, 1, 0)− (0, 0, 1)

• (0, 1, 1)− (1, 1, 0)− (0, 1, 0)− (1, 0, 0)

• (0, 0, 1)− (0, 1, 1)− (1, 0, 0)− (1, 0, 1)

• (0, 1, 1)− (0, 0, 1)− (1, 0, 0)− (0, 1, 0)

• (0, 1, 1)− (1, 1, 1)− (1, 1, 0)− (1, 0, 0)

• (1, 1, 1)− (0, 1, 1)− (1, 0, 1)− (1, 0, 0)

If i ≡ 1, j ≡ 1, k ≡ 1(mod2):

• (0, 1, 1)− (0, 1, 0)− (0, 0, 0)− (1, 1, 0)

• (0, 0, 0)− (1, 0, 1)− (0, 0, 1)− (0, 1, 1)

• (0, 1, 1)− (0, 0, 0)− (1, 0, 1)− (1, 1, 0)

• (0, 0, 0)− (1, 0, 0)− (1, 0, 1)− (1, 1, 0)

• (1, 1, 0)− (1, 1, 1)− (1, 0, 1)− (0, 1, 1)
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4.7 Limitations of Level Sets

Level sets are a very powerful tool, but they are not a panacea. They can
only reliably represent non-intersecting geometry with a well-defined inside
and outside, obviously enough. The surface is defined where φ interpolates
to zero, and most interpolation schemes can’t reliably produce a zero unless
some of the values are negative and others positive. A thin piece of cloth
without an interior has a well-defined positive distance field, but its surface
simply won’t show up in a level set algorithm unless you first dilate it,
thickening it up by some amount.

In fact, a level set on a grid with spacing ∆x cannot reliably represent
any features that are less than ∆x thick. For anything thinner than that,
whether or not it shows up in a grid sample at all will depend on how the
grid lines up: shift the grid a small amount and it may fall between grid
samples and disappear. Indeed, taking into account that strange things can
happen across the medial axis (poor gradient estimates for normals, etc.),
a better rule of thumb is that only features at least 2∆x thick can reliably
be handled. It may, in some cases, be appropriate to use a finer grid for
the level sets in a solver. Exploiting modern sparse tiled grid technology
and storing values only near the surface can make this quite practical.

Sharp features also cannot be reliably represented with a level set. Stan-
dard interpolants, even the piecewise cubic we used at the end of Chapter
3, inevitably produce smooth variations in between grid cells. Nonstandard
interpolants which try to estimate where sharp features may occur inside
a grid cell are a possibility, but there is no standard method out there yet.

4.8 Extrapolating Data

We close the chapter with one particularly important operation commonly
associated with level sets, extrapolation. This is where we have known val-
ues at some grid points, and we want to extend or extrapolate those values
to the rest of the grid. For example, we will commonly do this in a fluid
solve where we compute velocity in the fluid region, and then extrapolate
that velocity to the rest of the domain (inside solids, for example), so we
can apply advection without any worries near boundaries.

The simplest and in some cases the best choice for extrapolation is to
use a simple breadth-first search. Say we begin with a 3D array containing
the known values F , an auxiliary integer array d initialized to zero for the
known values and the maximum integer (at least larger than the sum of
the array dimensions) for the unknown values, the algorithm in Figure 4.6
extends the data to the rest of the grid.

However, this approach doesn’t always give the most convincing ex-
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• Begin with a 3D array of values Fi,j,k, an integer marker array
mi,j,k set to 0 for known values and the maximum integer for
unknown values, and an empty array W of grid indices in the
“wavefront.”

• (Initialize the first wavefront)

• Loop over the entire grid with (i, j, k):

• If di,j,k 6= 0 but at least one neighbor has d = 0:

• Set di,j,k = 1.
• Push (i, j, k) onto W .

• Set t = 0.

• While t < length(W ):

• Let (i, j, k) =W [t].

• Set Fi,j,k equal to the average of neighbors (i′, j′, k′) of (i, j, k)
where di′,j′,k′ < di,j,k.

• For any neighbor (i′, j′, k′) with di′,j′,k′ equal to the
maximum integer:

• Set di′,j′,k′ = di,j,k + 1, and push (i′, j′, k′) onto W .

• Set t = t+ 1.

Figure 4.6. Extrapolating data in F using a breadth-first search.

trapolation. Values close to the surface are quite reasonable, and if that’s
all that’s needed, it’s hard to do better. However, farther away, grid arti-
facts show up, with values extending through space along axis lines a little
unnaturally.

If a signed distance function is being computed geometrically, with aux-
iliary closest point information computed at each grid point along the way,
then the closest point field can be used to directly extrapolate data every-
where: simply set the value at a grid point equal to the value on the input
geometry at that closest point. This is very useful in the common case
where you want to turn input geometry into a level set, but also want to
voxelize other data stored on the geometry (like a velocity field, or texture
information).

Finally, if we have data sampled at the same grid points as a signed
distance field (not staggered, like a MAC-grid velocity field might be),
with known values where φ ≤ 0 and unknown values where φ > 0, we can
also directly use the level set itself in guiding extrapolation. If we want the
value F (~x) at a point ~x to be the same as the value F (~p) at the closest
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point ~p on the surface, then that value will be taken at every point along
the straight line back to the closest point on the surface. That is, the value
F should be constant moving along the direction −∇φ, and in particular
its directional derivative should be zero:

∂F

∂∇φ = ∇F · ∇φ = 0.

We can discretize this simple PDE similar to how we treated the Eikonal
equation, and sweep or march through the grid setting values. However,
I will leave the details of this algorithm unspecified, as in practice the
previous two algorithms (breadth-first search and closest point) are much
more important.
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Making Fluids Incompressible

In this chapter we’ll look at the heart of a fluid simulation, making the fluid
incompressible and simultaneously enforcing boundary conditions: imple-
mentation of the routine project(∆t, ~u) we mentioned earlier in Chapter 2.

The project routine will subtract the pressure gradient from the inter-
mediate velocity field ~u,

~un+1 = ~u−∆t
1

ρ
∇p,

so that the result satisfies incompressibility inside the fluid,

∇ · ~un+1 = 0,

and satisfies the solid wall boundary conditions

~un+1 · n̂ = ~usolid · n̂ at solid boundaries,

while also respecting the free surface boundary condition that pressure be
zero there:

p = 0 at free surfaces.

Before we jump into discretization of these equations, and methods
to solve them numerically, we need to model the fluid domain discretely.
We will begin the chapter with a “voxelized” model, where each voxel is
discretely labeled as fluid, solid, or empty. The fluid voxels contain fluid,
the solid voxels are solid, and the empty voxels (if there are any) contain
nothing at all—in a free surface liquid simulation they represent the un-
modeled air. The voxel faces between solid and fluid voxels will be where
we impose the solid boundary condition, and the voxel faces between fluid
and empty voxels are our free surface. See Figure (5.1) for an illustration.
We will forego a full discussion of determining the discrete labeling, as later
in the chapter we will switch to a more accurate geometric model using level
sets, but this is not a difficult proposition: checking if the center of each
voxel is inside a solid or inside the fluid, or neither, is trivial if you have
level set geometry available.

67
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Figure 5.1. A two-dimensional example of a voxelized fluid domain. F stands for
fluid, S for solid, and E for empty.

With this model in mind, we will first write down the discretization
of the pressure update: how do we approximate the pressure gradient on
the MAC grid (assuming we know the pressure)? After that we’ll look
at defining the discrete divergence on the MAC grid and, putting the two
together, come up with a system of linear equations to solve to find the
pressure. We’ll cover both the system and some effective ways to solve it.

5.1 The Discrete Pressure Gradient

The raison d’être of the MAC grid, as we briefly discussed before, is that the
staggering makes accurate central differences robust. For example, where
we need to subtract the ∂/∂x-component of the pressure gradient from the
u-component of velocity, there are two pressure values lined up perfectly on
either side of the u-component just waiting to be differenced. You might
want to refer back to Figure 2.1 to see how this works.
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So without further ado, here are the formulas for the pressure update
in two dimensions, using the central difference approximations for ∂p/∂x
and ∂p/∂y:

un+1
i+1/2,j = ui+1/2,j −∆t

1

ρ

pi+1,j − pi,j
∆x

,

vn+1
i,j+1/2 = vi,j+1/2 −∆t

1

ρ

pi,j+1 − pi,j
∆x

,

(5.1)

and in three dimensions, including ∂p/∂z too:

un+1
i+1/2,j,k = ui+1/2,j,k −∆t

1

ρ

pi+1,j,k − pi,j,k
∆x

,

vn+1
i,j+1/2,k = vi,j+1/2,k −∆t

1

ρ

pi,j+1,k − pi,j,k
∆x

,

wn+1
i,j,k+1/2 = wi,j,k+1/2 −∆t

1

ρ

pi,j,k+1 − pi,j,k
∆x

.

(5.2)

These pressure updates apply to every velocity component that has a valid
fluid pressure on either side, and actually borders some fluid. One of the
trickiest parts of writing a correct pressure solve is keeping track of which
velocity and pressure samples are “active,” so it’s good to keep this in
mind or perhaps refer to a diagram near you while you program. For the
voxelized fluid model, fluid-containing voxels have an unknown pressure to
be solved for (at which point it is valid), solid voxels do not have a valid
pressure, and empty voxels have a valid pressure that’s already fixed at
zero. The active velocity components we will update with Equation (5.1)
or (5.2) are those adjacent to at least one fluid voxel, zero or one empty
voxels, and no solid voxels.

Focus on the empty voxels again: because the free surface boundary
condition specifies pressure is zero, we set the pressures in empty voxels to
zero. This is called a Dirichlet boundary condition if you’re interested in
the technical lingo: Dirichlet means we’re directly specifying the value of
the quantity at the boundary. This is usually the simpler sort of boundary
condition to handle in a numerical solve.

The more difficult pressure boundary condition is at solid walls, though
it’s still not too troublesome when dealing with the voxelized geometry ap-
proximation, where the staggered velocity components exactly line up with
the solid surfaces, both in position and normal. We can go one step be-
yond the pressure gradient update above and directly set the fluid velocity
components on solid voxel faces adjacent to fluid equal to the solid veloc-
ity there. We will do this as a post-process, part of the pressure gradient
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update. We can even think of this as an extension of the pressure gradi-
ent update by conceptually including a ghost value for pressure inside the
solid voxel. For example, if the u-component of velocity at (i + 1/2, j, k)
is between a solid voxel at (i, j, k) and a fluid voxel at (i + 1, j, k), then
setting

un+1
i+1/2,j,k = usolidi+1/2,j,k

is compatible with the usual pressure gradient update

un+1
i+1/2,j,k = ui+1/2,j,k −∆t

1

ρ

pi+1,j,k − pghosti,j,k

∆x

as long as the ghost pressure in (i, j, k) satisfies

pghosti,j,k = pi+1,j,k −
ρ∆x

∆t

(

ui+1/2,j,k − usolidi+1/2,j,k

)

. (5.3)

This isn’t important for programming, but it is a worthwhile concept to
wrap your head around: we can extend a fluid quantity, pressure, into the
solid to make the usual equations we use in the interior of the fluid also
handle the boundary condition.

In fact, with just a little rewriting, the pressure condition at this solid
boundary is

∆t

ρ

pi+1,j,k − pghosti,j,k

∆x
= ui+1/2,j,k − usolidi+1/2,j,k.

We can see this as a finite difference approximation to

∆t

ρ

∂p

∂x
= u− usolid.

Going back to the continuum equations, if we likewise substitute the pres-
sure gradient update into the solid boundary condition we get, more gen-
erally,

∆t

ρ
∇p · n̂ = (~u − ~usolid) · n̂.

When solving for pressure, the solid boundary condition amounts to spec-
ifying the normal derivative of pressure, ∂p/∂n̂ = ∇p · n̂, rather than the
value of pressure. This is technically known as a Neumann boundary
condition in the study of PDEs.

Using the same convention for storage from Chapter 2, Equations (2.14)–
(2.17), the pressure update can be translated into code similar to Figure
5.2. We use the trick of directly setting solid wall velocities instead of
working it out as a pressure update. The terms such as usolid(i,j,k)
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scale = dt / (density*dx);

loop over i,j,k:

# update u

if label(i-1,j,k)==FLUID or label(i,j,k)==FLUID:

if label(i-1,j,k)==SOLID or label(i,j,k)==SOLID:

u(i,j,k) = usolid(i,j,k);

else

u(i,j,k) -= scale * (p(i,j,k) - p(i-1,j,k));

else

mark u(i,j,k) as unknown;

# update v

if label(i,j-1,k)==FLUID or label(i,j,k)==FLUID:

if label(i,j-1,k)==SOLID or label(i,j,k)==SOLID:

v(i,j,k) = vsolid(i,j,k);

else

v(i,j,k) -= scale * (p(i,j,k) - p(i,j-1,k));

else

mark v(i,j,k) as unknown;

# update w

if label(i,j,k-1)==FLUID or label(i,j,k)==FLUID:

if label(i,j,k-1)==SOLID or label(i,j,k)==SOLID:

w(i,j,k) = wsolid(i,j,k);

else

w(i,j,k) -= scale * (p(i,j,k) - p(i,j,k-1));

else

mark w(i,j,k) as unknown;

Figure 5.2. Pseudocode for the pressure gradient update. Fluid velocities are
set, and the remainder are marked as unknown.

may well be replaced with simple expressions rather than actually stored
in an array. We also highlight where fluid velocities are left unknown: we’ll
deal with those a little bit later in the chapter.

Boundary conditions can be complicated and are the usual culprit when
bugs show up. It could be worth your time going over this section slowly,
with a drawing of the MAC grid (like Figure 2.1) in front of you, looking at
different configurations of solid, fluid, and air cells until you feel confident
about all this.
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scale = 1 / dx;

loop over i,j,k where label(i,j,k)==FLUID:

rhs(i,j,k) = -scale * (u(i+1,j,k)-u(i,j,k)

+v(i,j+1,k)-v(i,j,k)

+w(i,j,k+1)-w(i,j,k));

Figure 5.3. Calculating the negative divergence, which will become the right-
hand side of the linear system for pressure.

5.2 The Discrete Divergence

Now for the easy part of the chapter! In the continuum case, we want our
fluid to be incompressible: ∇·~u = 0. On the grid, we will approximate this
condition with finite differences and require that the divergence estimated
at each fluid grid cell be zero for ~un+1.

Remember the divergence in two dimensions is

∇ · ~u =
∂u

∂x
+
∂v

∂y

and in three dimensions is

∇ · ~u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
.

Using the obvious central differences (take a look at the MAC grid again),
we approximate the two-dimensional divergence in fluid grid cell (i, j) as

(∇ · ~u)i,j ≈
ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆x
(5.4)

and in three dimensions, for fluid grid cell (i, j, k) as

(∇ · ~u)i,j,k ≈
ui+1/2,j,k − ui−1/2,j,k

∆x
+
vi,j+1/2,k − vi,j−1/2,k

∆x

+
wi,j,k+1/2 − wi,j,k−1/2

∆x
. (5.5)

In terms of the storage convention used earlier, with divergence stored in
the same way as pressure, this can be implemented as in the pseudocode
of Figure 5.3. It turns out (see below) that we actually are more interested
in the negative of divergence, so we store that in a vector we will call rhs
(standing for the right-hand side of a linear system).

Note that we are only ever going to evaluate divergence for a grid cell
that is marked as fluid. For example, our fluid simulation is not concerned
with whether solids are changing volume or not.
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Another way of interpreting the discrete divergence we have defined here
is through a direct estimate of the total rate of fluid entering or exiting the
grid cell. Remember that this (in the exact continuum setting) is just the
integral of the normal component of velocity around the faces of the grid
cell:

∫∫

∂cell

~u · n̂.

This is the sum of the integrals over each grid cell face. We have the normal
component of velocity stored at the center of each face, and can treat that as
a good (technically second order accurate) estimate of the average normal
velocity over the face. Therefore we can estimate the integral easily by
just multiplying the normal component of velocity by the area of the face.
Be careful with signs here—in the above integral the normal is always
outwards-pointing, whereas the velocity components stored on the grid
always are for the same directions, as shown in Figure 2.1, for example).
After rescaling, this leads to exactly the same central difference formulas—
I’ll let you work this out for yourself if you’re interested. This numerical
technique, where we directly estimate the integral of a quantity around the
faces of a grid cell instead of looking at the differential equation formulation,
is called the finite volumemethod—more on this later in the chapter when
we deal with irregular solid boundaries.

Finally we can explain why the MAC grid is so useful. If we used a regu-
lar collocated grid, where all components of velocity were stored together
at the grid points, we would have a difficult time with the divergence. If
we used the central difference formula, for example,

(∇ · ~u)i,j ≈
ui+1,j − ui−1,j

2∆x
+
vi,j+1 − vi,j−1

2∆x
,

then we have exactly the null-space issues we mentioned back in Chapter 2.
Some highly divergent velocity fields such as ~ui,j = ((−1)i, (−1)j) will
evaluate to zero divergence. Therefore, the pressure solve won’t do anything
about correcting them, and so high-frequency oscillations in the velocity
field may persist or even grow unstably during the simulation. There are
two possible fixes to get around this while still using a collocated grid.
The first is to use a biased, one-sided difference approximation—and while
this works, it does introduce a peculiar bias to the simulation that can
be disturbingly obvious. The second is to filter out the high-frequency
divergent modes (i.e., smooth the velocity field, or at least the divergent
components) before doing the pressure solve, to explicitly get rid of them—
but this can easily introduce more unwanted numerical smoothing. Even
with filtering in place, there are some even thornier issues with the linear
solve (below) when it comes to collocated velocities, thus we stick to the
MAC grid.
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5.3 The Pressure Equations

We now have the two ingredients we will need to figure out incompress-
ibility: how to update velocities with the pressure gradient and how to
estimate the divergence.

Recall that we want the final velocity, ~un+1 to be divergence-free inside
the fluid. To find the pressure that achieves this, we simply substitute
the pressure-update formulas for ~un+1, Equations (5.1) in 2D and (5.2) in
3D, into the divergence formula, Equation (5.4) in 2D and (5.5) in 3D.
This gives us a linear equation for each fluid grid cell (remember we only
evaluate divergence for a grid cell containing fluid), with the pressures as
unknowns. There are no equations for solid or air cells, even though we
may refer to pressures in them (but we know a priori what those pressures
are in terms of the fluid cell pressures).

Let’s write this out explicitly in 2D for fluid grid cell (i, j):

un+1
i+1/2,j − u

n+1
i−1/2,j

∆x
+
vn+1
i,j+1/2 − v

n+1
i,j−1/2

∆x
= 0,

1

∆x

[(

ui+1/2,j −∆t
1

ρ

pi+1,j − pi,j
∆x

)

−
(

ui−1/2,j −∆t
1

ρ

pi,j − pi−1,j

∆x

)

+

(

vi,j+1/2 −∆t
1

ρ

pi,j+1 − pi,j
∆x

)

−
(

vi,j−1/2 −∆t
1

ρ

pi,j − pi,j−1

∆x

)]

= 0,

∆t

ρ

(

4pi,j − pi+1,j − pi,j+1 − pi−1,j − pi,j−1

∆x2

)

=

−
(

ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆x

)

. (5.6)
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And now in 3D for fluid grid cell (i, j, k):

un+1
i+1/2,j,k − u

n+1
i−1/2,j,k

∆x
+
vn+1
i,j+1/2,k − v

n+1
i,j−1/2,k

∆x
+
wn+1

i,j,k+1/2 − w
n+1
i,j,k−1/2

∆x
= 0,

(5.7)

1

∆x

[(

ui+1/2,j,k −∆t
1

ρ

pi+1,j,k − pi,j,k
∆x

)

−
(

ui−1/2,j,k −∆t
1

ρ

pi,j,k − pi−1,j,k

∆x

)

+

(

vi,j+1/2,k −∆t
1

ρ

pi,j+1,k − pi,j,k
∆x

)

−
(

vi,j−1/2,k −∆t
1

ρ

pi,j,k − pi,j−1,k

∆x

)

+

(

wi,j,k+1/2 −∆t
1

ρ

pi,j,k+1 − pi,j,k
∆x

)

−
(

wi,j,k−1/2 −∆t
1

ρ

pi,j,k − pi,j,k−1

∆x

)]

= 0,

∆t

ρ











6pi,j,k − pi+1,j,k − pi,j+1,k − pi,j,k+1

− pi−1,j,k − pi,j−1,k − pi,j,k−1
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−







ui+1/2,j,k − ui−1/2,j,k

∆x
+
vi,j+1/2,k − vi,j−1/2,k

∆x

+
wi,j,k+1/2 − wi,j,k−1/2

∆x






. (5.8)

Observe that Equations (5.6) and (5.8) are numerical approximations to
the Poisson problem −∆t/ρ∇ · ∇p = −∇ · ~u.

If a fluid grid cell is at the boundary, recall that the new velocities on
the boundary faces involve pressures outside the fluid that we have to define
through boundary conditions: we need to use that here. For example, if
grid cell (i, j + 1) is an air cell, then we replace pi,j+1 in Equation (5.6)
with zero. If grid cell (i+1, j) is a solid cell, then we replace pi+1,j with the
value we compute from the boundary condition there, as in formula (5.3).
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Assuming (i − 1, j) and (i, j − 1) are fluid cells, this would reduce the
equation to the following:

∆t

ρ





4pi,j −
[

pi,j +
ρ∆x
∆t

(

ui+1/2,j − usolid
)

]

− 0− pi−1,j − pi,j−1

∆x2





= −
(

ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆x

)

,

∆t

ρ

(

3pi,j − pi−1,j − pi,j−1

∆x2

)

=

−
(

ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆x

)

+

(

ui+1/2,j − usolid
∆x

)

.

We can observe a few things about this example that hold in general and
how this will let us implement it in code. First, for the air cell bound-
ary condition, we simply just delete mention of that p from the equation.
Second, for the solid cell boundary condition, we delete mention of that
p but also reduce the coefficient in front of pi,j by one—in other words,
the coefficient in front of pi,j is equal to the number of non-solid grid cell
neighbors (this is the same in three dimensions). Third, we increment the

scale = 1 / dx;

loop over i,j,k where label(i,j,k)==FLUID:

if label(i-1,j,k)==SOLID:

rhs(i,j,k) -= scale * (u(i,j,k) - usolid(i,j,k));

if label(i+1,j,k)==SOLID:

rhs(i,j,k) += scale * (u(i+1,j,k) - usolid(i+1,j,k));

if label(i,j-1,k)==SOLID:

rhs(i,j,k) -= scale * (v(i,j,k) - vsolid(i,j,k));

if label(i,j+1,k)==SOLID:

rhs(i,j,k) += scale * (v(i,j+1,k) - vsolid(i,j+1,k));

if label(i,j,k-1)==SOLID:

rhs(i,j,k) -= scale * (w(i,j,k) - wsolid(i,j,k));

if label(i,j,k+1)==SOLID:

rhs(i,j,k) += scale * (w(i,j,k+1) - wsolid(i,j,k+1));

Figure 5.4. Modifying the right-hand side to account for solid velocities.
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negative divergence measured on the right-hand side with a term involving
the difference between fluid and solid velocity. This can be implemented
in code as an additional loop to modify rhs, as shown in Figure 5.4.

5.3.1 Putting It In Matrix-Vector Form

We have now defined a large system of linear equations for the unknown
pressure values. We can conceptually think of it as a large coefficient
matrix, A, times a vector consisting of all pressure unknowns, p, equal to a
vector consisting of the negative divergences in each fluid grid cell, b (with
appropriate modifications at solid wall boundaries):

Ap = b. (5.9)

In the implementation we have discussed so far, of course, p and b are
logically stored in a two or three-dimensional grid structure, since each
entry corresponds to a grid cell.

We needn’t store A directly as a matrix. Notice that each row of A
corresponds to one equation, i.e., one fluid cell. For example, if grid cell
(i, j, k) is fluid, then there will be a row of the matrix that we can label
with the indices (i, j, k). The entries in that row are the coefficients of all
the pressure unknowns in that equation: almost all of these are zero except
possibly for the seven entries corresponding to pi,j,k and its six neighbors,
pi±1,j,k, pi,j±1,k, and pi,j,k±1. (In two dimensions there are at most four
neighbors of course.) We only have non-zeros (i, j, k) and its fluid cell
neighbors. It is of course pointless to store all the zeros: this is a sparse
matrix.

Let’s take a closer look at A. In the equation for (i, j, k), the coefficients
for neighboring fluid cells are all equal to −∆t/(ρ∆x2), and if there are
ni,j,k fluid- or air-cell neighbors the coefficient for pi,j,k is ni,j,k∆t/(ρ∆x

2).
One of the nice properties of the matrix A is that it is symmetric. For

example, A(i,j,k),(i+1,j,k), the coefficient of pi+1,j,k in the equation for grid
cell (i, j, k), has to be equal to A(i+1,j,k),(i,j,k). Either it’s zero if one of
those two cells is not fluid, or it’s the same non-zero value. This symmetry
property will hold even with the more advanced discretization at the end
of the chapter. Thus we only have to store half of the non-zero entries in
A, since the other half are just copies!

This leads us to the following structure for storing A. In two dimen-
sions, we will store three numbers at every grid cell: the diagonal entry
A(i,j),(i,j) and the entries for the neighboring cells in the positive directions,
A(i,j),(i+1,j) and A(i,j),(i,j+1). We could call these entries Adiag(i,j),
Ax(i,j), and Ay(i,j) in our code. In three dimensions, we would simi-
larly have Adiag(i,j,k), Ax(i,j,k), Ay(i,j,k), and Az(i,j,k). When
we need to refer to an entry like A(i,j),(i−1,j) we use symmetry and instead
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scale = dt / (density*dx*dx);

loop over i,j,k:

if label(i,j,k)==FLUID:

# handle negative x neighbor

if label(i-1,j,k)==FLUID:

Adiag(i,j,k) += scale;

# handle positive x neighbor

if label(i+1,j,k)==FLUID:

Adiag(i,j,k) += scale;

Ax(i,j,k) = -scale;

else if label(i+1,j,k)==EMPTY:

Adiag(i,j,k) += scale;

# handle negative y neighbor

if label(i,j-1,k)==FLUID:

Adiag(i,j,k) += scale;

# handle positive y neighbor

if label(i,j+1,k)==FLUID:

Adiag(i,j,k) += scale;

Ay(i,j,k) = -scale;

else if label(i,j+1,k)==EMPTY:

Adiag(i,j,k) += scale;

# handle negative z neighbor

if label(i,j,k-1)==FLUID:

Adiag(i,j,k) += scale;

# handle positive z neighbor

if label(i,j,k+1)==FLUID:

Adiag(i,j,k) += scale;

Az(i,j,k) = -scale;

else if label(i,j,k+1)==EMPTY:

Adiag(i,j,k) += scale;

Figure 5.5. Setting up the matrix entries for the pressure equations.

refer to A(i−1,j),(i,j) =Ax(i-1,j). See Figure 5.5 for pseudocode to set up
the matrix in this structure.

5.3.2 The Conjugate Gradient Algorithm

The matrix A is a very well-known type of matrix, sometimes referred to
as the five- or seven-point Laplacian matrix, in two or three dimensions
respectively. It has been exhaustively studied, serves as the subject of
countless numerical linear algebra papers, and is the prototypical first ex-
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ample of a sparse matrix in just about any setting. More effort has been put
into solving linear systems with this type of matrix than probably all other
sparse matrices put together! We won’t look very far into this vast body of
work, as that could fill a book on its own, but we will look at some effective
and easy to implement methods. The first method is called MICCG(0),
or more fully Modified Incomplete Cholesky Conjugate Gradient,
Level Zero. Quite a mouthful! Let’s go through it slowly.

One of the many properties that A has is that it is symmetric positive
definite (SPD). Technically this means that A is symmetric and qTAq >
0 for any non-zero vector q, or equivalently that its eigenvalues are all
positive.

Actually, before going on I should be a little more careful. A might just
be symmetric positive semi-definite, meaning that qTAq ≥ 0 (with zero
achieved for some non-zero vector q). If there is some fluid region entirely
surrounded by solid walls, with no empty air cells, then A will not be
strictly positive definite. In that case, A is singular in fact—it doesn’t have
an inverse. That doesn’t necessarily mean there isn’t a solution, however. If
the divergences (the right-hand side) satisfy a compatibility condition
then life is good and there is a solution. The compatibility condition is
simply that the velocities of the solid walls are compatible with the fluid
contained within being incompressible—i.e., the fluid-solid boundary faces
have wall velocities that add up to zero, so that the flow in is balanced
by the flow out. (We will discuss how to ensure that this is the case at
the end of the chapter.) In fact, not only will there be a solution, but
there are infinitely many solutions! You can take any solution for pressure
and add an arbitrary constant to it and get another solution, it turns out.
However, when we take the pressure gradient for the velocity update, the
constant term is annihilated so we don’t actually care which solution we
get. They’re all good.

One of the most useful algorithm for solving symmetric positive semi-
definite linear systems in general is called the conjugate gradient algo-
rithm, usually abbreviated as CG. It’s an iterative method, meaning that
we start with a guess at the solution and in each iteration improve on it,
stopping when we think we are accurate enough. CG chooses the iterative
updates to the guess to minimize a particular measure of the error and can
be guaranteed to converge to the solution eventually. Another very nice as-
pect of CG, as compared to Gaussian elimination for example, is that each
iteration only involves multiplying A by a vector, adding vectors, multi-
plying vectors by scalar numbers, and computing a few dot-products—all
of which are very easy to code, even in parallel, and can achieve very high
efficiency on modern hardware.

The problem with CG for us, however, is that the larger the grid, the
longer it takes to converge. It can be shown that the number of iterations
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it takes to converge to some desired accuracy is roughly proportional to the
width of the grid: the maximum number of grid cells in any one direction.
Moreover, the hidden constant isn’t particularly good. In practice, when
limited to a small maximum number of iterations there are simpler algo-
rithms such as Gauss-Seidel and Successive Over-Relaxation (SOR)
that tend to be much more effective than plain CG, even if they are slower
at achieving full accuracy. However, there is a trick up our sleeve that
can speed CG up immensely, called preconditioning. Preconditioned
conjugate gradient (PCG) is what we will be using.

Roughly speaking, CG takes more iterations the farther A is from being
the identity matrix, I. It should be immediately obvious that solving a
system with the identity matrix is pretty easy—the solution of Ip = b is
just p = b! How exactly we measure how far A is from the identity is
beyond the scope of this book—a precise characterization for CG involves
the nature of the distribution of eigenvalues of A—but we needn’t get too
detailed. The idea behind preconditioning is that the solution of Ap = b
is the same as the solution of MAp = Mb for any invertible matrix M . If
M is approximately the inverse of A, so that MA is really close to being
the identity matrix, then CG should be able to solve the preconditioned
equations MAp = Mb really fast. PCG is just a clever way of applying
CG to these preconditioned equations without actually having to explicitly
form them.

Before we get to the details of PCG, we need to talk about convergence.
When do we know to stop? How do we check to see that our current guess
is close enough to the solution? Ideally we would just measure the norm
of the difference between our current guess and the exact solution—but of
course that requires knowing the exact solution! So we will instead look at
a vector called the residual:

ri = b−Api.

That is, if pi is the ith guess at the true solution, the ith residual ri is
just how far away it is from satisfying the equation Ap = b. When we
hit the exact solution, the residual is exactly zero.1 Therefore, we stop
our iteration when the norm of the residual is small enough, below some
tolerance.

That brings us to the next question: how small is small enough? And
what norm do you use to measure ri? Think back to what ri means phys-
ically. These equations resulted from deriving that b − Ap is the negative
of the finite difference estimate of the divergence of ~un+1, which we want
to be zero. Thus the residual measures exactly how much divergence there

1In fact, it’s not hard to see that the residual is just A times the error: ri = A(pexact−
pi).
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will be in the velocity field after we’ve updated it with our current estimate
of the pressure. It seems sensible, then, to take the infinity norm of the
residual (the maximum absolute value of any entry) and compare that to
some small number tol, so that we know the worst case of how compress-
ible our new velocity field could possibly be. The dimensions of tol are one
over time: O(1/tol) is a lower bound on how long it will take our inexact
velocity field to compress the fluid by some fraction. Thus tol probably
should be inversely proportional to the time length of our simulation. In
practice, this either doesn’t vary a lot (a few seconds for most shots) or we
are doing interactive animation with a potentially infinite time length—
so in the end we just pick an arbitrary small fixed number for tol, like
10−6 s−1. (The s−1 is one over seconds: remember again that this quan-
tity has dimensions one over time.) Smaller tolerances will result in less
erroneous divergence but will take more iterations (and time) to compute,
so there’s a clear trade-off in adjusting this number up or down.2 This is
particularly important since typically most of the time in a fluid simulation
is spent in the pressure solver: this is the code that usually demands the
most optimizing and tuning.

That said, the fact that our absolute tolerance on stopping PCG has
physical units (of one over time) can also be worrisome. While most vi-
sual effects simulations run in seconds, occasionally we see a need for super
slow-motion, or accelerated time, where the time scale is quite different.
Later in the book we’ll also look at including additional dynamics in the
linear system, such as viscosity, where it’s peculiar to translate the accom-
panying residual terms to one-over-time units; it may also be desired to
have a generic linear solver available in the code, which doesn’t make as-
sumptions about the units of the system. Therefore we often use a relative

residual measure for convergence: stop when the ratio between the current
residual norm and the initial right-hand-side norm is smaller than a given
dimensionless tolerance (with no physica units needed). That is, stop when

‖r‖ = ‖b−Ap‖ ≤ tol‖b‖,

where tol is typically also on the order of 10−6. Alternatively put, you
can scale the relative tolerance set by the user with the maximum absolute
value of the input vector b to get the absolute tolerance for convergence.
Also note that we use less than or equal to, to handle the case (which
happens from time to time) where b = 0 and an initial guess of p = 0 is
the exact solution.

Typically we will also want to guard against inexact floating-point arith-
metic causing the algorithm not to converge fully, so we stop at a certain

2However, one of the great features of PCG is that the rate of convergence tends to
accelerate the farther along you go: reducing the tolerance may not slow things down
as much as you think.
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maximum number of iterations. Or, we may have a computation time con-
straint that limits the number of iterations we can use—a good default to
begin with is 200. The solver shouldn’t ordinarily hit the maximum number
of iterations (because the solution you get may be of dubious quality), and
whenever it does it should be reported as a potential error—maybe there’s
a bug in the discretization, or the tolerance is nonsensical, and at the very
least the user should know that if they get strange results it’s probably due
to the linear solver failing.

A final issue is what the initial guess for pressure should be. One nice
thing about PCG is that if we start with a good guess, we can get to an
acceptable solution much faster. In some circumstances, say when the fluid
has settled down and isn’t changing much, the pressure from the last time
step is a very good guess for the next pressure: it won’t change much either.
However, these situations usually can easily be solved from an initial guess
of all zeros also. In the more interesting cases (and really, why would you
be simulating fluids that are just sitting still?), the pressure can change
significantly from one time step to the next, or in fact may be defined
on different grid cells anyhow (e.g., as liquid moves from one grid cell to
another) and can’t be used. Therefore we usually use the vector of all zeros
as the initial guess.

Pseudocode for the PCG algorithm is shown in Figure 5.6. Be aware
that this statement of PCG uses different symbols than most text books:
I’ve tried to avoid the use of letters like x and ρ that have other meanings
in the context of fluids.

Note that PCG needs storage for an “auxiliary” vector z and a “search”
vector s (the same size as p, b, and r), and calls subroutine applyA to
multiply the coefficient matrix A times a vector and subroutine
applyPreconditioner to multiplyM by a vector (which we will talk about
next). Also note that the new residual in each iteration is incrementally
updated from the previous residual—not only is this more efficient than
calculating it from scratch each time, but it in fact tends to reduce the
number of iterations required due to some interesting round-off error in-
teractions. Since PCG tends to be the most time-consuming part of the
simulation, it pays to use optimized BLAS3 routines for the vector opera-
tions here. Finally, it’s worth noting that although most of the rest of the
fluid simulator may be effectively implemented using 32-bit single precision
floating-point numbers, 64-bit double precision is strongly recommended for

3The BLAS, or basic linear algebra subroutines, provide a standardized API for sim-
ple operations like dot-products, scaling and adding vectors, multiplying dense matrices,
etc. Every significant platform has at least one implementation, which generally is in-
tensely optimized, making full use of vector units, cache prefetching, multiple cores, and
the like. It can be very difficult (if not impossible without using assembly language)
to match the efficiency attained by the BLAS for vectors of any appreciable size, so it
generally pays to exploit it.
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• Set initial guess p = 0 and residual vector r = b (If r = 0 then
return p)

• Set auxiliary vector z = applyPreconditioner(r), and search
vector s = z

• σ = dotproduct(z, r)

• Loop until done (or maximum iterations exceeded):

• Set auxiliary vector z = applyA(s)

• α = σ/dotproduct(z, s)

• Update p← p+ αs and r← r − αz
• If max |r| ≤ tol then return p

• Set auxiliary vector z = applyPreconditioner(r)

• σnew = dotproduct(z, r)

• β = σnew/σ

• Set search vector s = z + βs

• σ = σnew

• Return p (and report iteration limit exceeded)

Figure 5.6. The preconditioned conjugate gradient (PCG) algorithm for solving
Ap = d.

PCG—at the very least, for the scalars (in particular when accumulating
the dot-products4). Single precision rounding errors can cause a significant
slow-down in convergence.

5.3.3 Incomplete Cholesky

We still have the question of defining the preconditioner. From the stand-
point of convergence the perfect preconditioner would be A−1, except that’s
obviously far too expensive to compute. The true ideal is something that is
both fast to compute and apply, and is effective in speeding up convergence,
so as to minimize the total solution time.

There are many, many choices of preconditioner, with more being in-
vented each year. Our default choice, though, is quite an old precondi-
tioner from the Incomplete Cholesky (IC) family. It’s both simple to
implement and fairly efficient, and moreover is highly robust in handling
irregular domains (like the shape of a liquid splash). Its chief problems

4If you do use single precision floating-point values for your vectors (pressure, etc.),
you should investigate the BLAS routine dsdot to compute the dot-product in double
precision.



84 5. Making Fluids Incompressible

are that it’s hard to parallelize effectively and that it’s not optimally scal-
able (the number of iterations required for PCG slowly increases with grid
size). Algorithms in the domain decomposition and multigrid family
of methods can provide both excellent parallelization and optimal scala-
bility (the time it takes to solve a problem is linearly proportional to the
number of grid cells) but are not trivial to implement in a way that is
robust to irregular domains. However, we’ll discuss below a simple form of
domain decomposition that can provide good parallelization for Incomplete
Cholesky.

Recall how you might directly solve a system of linear equations with
Gaussian elimination. That is, you perform row reductions on the system
until the matrix is upper-triangular, and then use back substitution to get
the solution one entry at a time. Mathematically, it turns out that this
is equivalent to factoring the matrix A as the product of a lower- and an
upper-triangular matrix and then solving the triangular systems one after
the other. In the case of a symmetric positive definite A, we can actually
do it so that the two triangular matrices are transposes of each other:

A = LLT .

This is called the Cholesky factorization. The original system Ap = b is
the same as L(LT p) = b, which we can solve as

solve Lq = b with forward substitution,

solve LTp = q with backward substitution.
(5.10)

The main reason that we don’t typically use this method for fluids is that
although A has very few non-zeros, L can have a lot. In three dimensions
the amount of fill-in (extra non-zeros in L) is particularly bad; direct
solvers that take this approach can easily fail on 3D problems due to lack
of memory.

Basic Incomplete Cholesky tackles this problem with a very simple idea:
whenever the Cholesky algorithm tries to create a new non-zero in a lo-
cation that is zero in A, cancel it—keep it as zero. On the one hand, the
resulting L is just as sparse as A, and memory is no longer an issue. On
the other hand, we deliberately made errors: A 6= LLT now. However,
hopefully the “incomplete” factorization is close enough to A that doing
the solves in Equation (5.10) is close enough to applying A−1 so that we
have a useful preconditioner for PCG!

Technically, performing Incomplete Cholesky only allowing non-zeros
in L where there are non-zeros in A is called level zero: IC(0). There
are variations that allow a limited number of non-zeros in other locations,
but we will not broach that topic here. For the relatively simple Laplacian
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matrix we are dealing with, they generally are not worth the computational
effort.

To make this more precise, IC(0) constructs a lower-triangular matrix
L with the same non-zero pattern as the lower triangle of A, such that
LLT = A in the locations where A is non-zero. The only error is that LLT

is non-zero in some other locations where A is zero.
Assume we order our grid cells (and the corresponding rows and

columns of A) lexicographically, say along the i-dimension first, then the
j-dimension, and finally the k-dimension.5 Suppose we split A up into its
strict lower triangle F and diagonal D:

A = F +D + FT .

Then, it can be shown for the particular A we’re solving—though we won’t
show it here—that the IC(0) factor L is of the form

L = FE−1 + E,

where E is a diagonal matrix. That is, all we need to compute and store
are the diagonal entries of L, and we can infer the others just from A!

Crunching through the algebra gives the following formulas for comput-
ing the entries along the diagonal of E. In two dimensions,

E(i,j) =
√

A(i,j),(i,j) − (A(i−1,j),(i,j)/E(i−1,j))2 − (A(i,j−1),(i,j)/E(i,j−1))2.

In three dimensions,

E(i,j,k) =

√

√

√

√

A(i,j,k),(i,j,k) − (A(i−1,j,k),(i,j,k)/E(i−1,j,k))
2

− (A(i,j−1,k),(i,j,k)/E(i,j−1,k))
2 − (A(i,j,k−1),(i,j,k)/E(i,j,k−1))

2.

In these equations, we replace terms referring to a non-fluid cell (or cell
that lies off the grid) with zero. Also note that the superscript two is an
exponent, nothing to do with time steps: those entries of E are squared.

5.3.4 Modified Incomplete Cholesky

Incomplete Cholesky is a good preconditioner that can effectively reduce
our iteration count when solving the pressure equations, and is often the

5It turns out that the order in which we take the dimensions doesn’t actually change
anything for IC(0) applied to our particular matrix, but that we take some lexicographic
order turns out to be critical for ensuring the power of the approximation.
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default choice when preconditioning any general matrix. But, for almost
no extra cost, we can do better for our particular A! A slight tweak to
IC, Modified Incomplete Cholesky (MIC), scales significantly better: if our
grid is n grid cells wide, regular IC(0) will require O(n) iterations but
MIC(0) will converge in only O(n1/2) iterations, with a fairly low hidden
constant. Modified Incomplete Cholesky works exactly like Incomplete
Cholesky, except instead of just discarding those unwanted non-zeros, we
account for them by adding them to the diagonal of L.

To make this more precise, MIC(0) constructs a lower-triangular matrix
L with the same non-zero pattern as the lower triangle of A, such that

• The off-diagonal non-zero entries of A are equal to the corresponding
ones of (LLT ).

• The sum of each row of A is equal to the sum of each row of (LLT ).

This boils down to a slightly different calculation for the diagonal entries:
the modified L is also equal to FE−1 + E, just for a different E. In two
dimensions,

E(i,j) =

√

√

√

√

√

√

√

A(i,j),(i,j) − (A(i−1,j),(i,j)/E(i−1,j))
2 − (A(i,j−1),(i,j)/E(i,j−1))

2

−A(i−1,j),(i,j)A(i−1,j),(i−1,j+1)/E
2
(i−1,j)

−A(i,j−1),(i,j)A(i,j−1),(i+1,j−1)/E
2
(i,j−1)

In three dimensions,

E(i,j,k) =

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

A(i,j,k),(i,j,k) − (A(i−1,j,k),(i,j,k)/E(i−1,j,k))
2

− (A(i,j−1,k),(i,j,k)/E(i,j−1,k))
2 − (A(i,j,k−1),(i,j,k)/E(i,j,k−1))

2

−A(i−1,j,k),(i,j,k)

× (A(i−1,j,k),(i−1,j+1,k) +A(i−1,j,k),(i−1,j,k+1))/E
2
(i−1,j,k)

−A(i,j−1,k),(i,j,k)

× (A(i,j−1,k),(i+1,j−1,k) +A(i,j−1,k),(i,j−1,k+1))/E
2
(i,j−1,k)

−A(i,j,k−1),(i,j,k)

× (A(i,j,k−1),(i+1,j,k−1) +A(i,j,k−1),(i,j+1,k−1))/E
2
(i,j,k−1)

If you’re curious, the intuition behind MIC (and why it outperforms IC)
lies in a Fourier analysis of the problem. If you decompose the error as
a superposition of Fourier modes, some low frequency (smooth) and some
high frequency (sharp), it turns out IC is only effective at removing the
high-frequency components of error. On the other hand, MIC is forced to
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match the action of A on the lowest frequency mode of all, the constant,
and thus is more effective at all frequencies.6

In practice, you can squeeze out even better performance by taking a
weighted average between the regular Incomplete Cholesky formula and
the modified one, typically weighting with 0.97 or more (getting closer to 1
for larger grids). See Figure 5.7 for pseudocode to implement this in three
dimensions. We actually compute and store the reciprocals of the diagonal
entries of E in a grid variable called precon, to avoid divides when applying
the preconditioner.

The pseudocode in Figure 5.7 additionally has a built-in safety tol-
erance. In some situations, such as a single-cell–wide line of fluid cells
surrounded by solids, IC(0) and MIC(0) become exact—except that A is

6Continuing this train of thought, looking for methods that work well on all frequency
components of the error can lead to multigrid that explicitly solves the equations at
multiple resolutions.

• Set tuning constant τ = 0.97 and safety constant σ = 0.25

• For i=1 to nx, j=1 to ny, k=1 to nz:

• If cell (i, j, k) is fluid:

• Sete = Adiagi,j,k − (Aplusii−1,j,k ∗ preconi−1,j,k)
2

− (Aplusji,j−1,k ∗ preconi,j−1,k)
2

− (Apluski,j,k−1 ∗ preconi,j,k−1)
2

−τ
[

Aplusii−1,j,k ∗ (Aplusji−1,j,k

+Apluski−1,j,k)

∗precon2i−1,j,k

+ Aplusji,j−1,k

∗ (Aplusii,j−1,k + Apluski,j−1,k)

∗ precon2i,j−1,k

+Apluski,j,k−1

∗(Aplusii,j,k−1 + Aplusji,j,k−1)

∗precon2i,j,k−1

]

• If e < σAdiagi,j,k, set e = Adiagi,j,k
• preconi,j,k = 1/

√
e

Figure 5.7. The calculation of the MIC(0) preconditioner in three dimensions.



88 5. Making Fluids Incompressible

singular in this case: the exact Cholesky factorization doesn’t exist. This
is manifested by hitting a zero or—when rounding error is factored in—
very small value for e, and it can safely be cured by replacing that small
value with, for example, the diagonal entry from A. This safety check also
comes in handy if you want to solve more general linear systems, where the
Incomplete Cholesky factorization (and even more so the Modified Incom-
plete Cholesky factorization) may fail to exist without this check.

• (First solve Lq = r)

• For i=1 to nx, j=1 to ny, k=1 to nz:

• If cell (i, j, k) is fluid:

• Set
t = ri,j,k − Aplusii−1,j,k ∗ preconi−1,j,k ∗ qi−1,j,k

− Aplusji,j−1,k ∗ preconi,j−1,k ∗ qi,j−1,k

− Apluski,j,k−1 ∗ preconi,j,k−1 ∗ qi,j,k−1

• qi,j,k = t ∗ preconi,j,k
• (Next solve LT z = q)

• For i=nx down to 1, j=ny down to 1, k=nz down to 1:

• If cell (i, j, k) is fluid:

• Set
t = qi,j,k − Aplusii,j,k ∗ preconi,j,k ∗ zi+1,j,k

− Aplusji,j,k ∗ preconi,j,k ∗ zi,j+1,k

− Apluski,j,k ∗ preconi,j,k ∗ zi,j,k+1

• zi,j,k = t ∗ preconi,j,k

Figure 5.8. Applying the MIC(0) preconditioner in three dimensions (z = Mr).

All that’s left is how to apply the preconditioner, that is, perform the
triangular solves. This is outlined in Figure 5.8 for three dimensions.

Finally, before going on, I should note that the nesting of loops is an
important issue for performance. Due to cache effects, it’s far faster if you
can arrange your loops to walk through memory sequentially. For example,
if pi,j,k and pi+1,j,k are stored next to each other in memory, then the i
loop should be innermost.

5.3.5 Domain Decomposition

Solving the linear system for pressure is one of the more expensive steps in
a typical fluid solve, so parallelization is crucial. Unfortunately, the compu-
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tation of Incomplete Cholesky described above, running through the system
in lexicographic order, is inherently sequential: the forward and backward
triangular solves needed at every step of PCG have data dependency that
eliminates the possibility for parallelization. It is possible to reorder the
matrix and the grid cells in a way that allows a parallel factorization, but
interestingly and frustratingly enough, such an ordering seriously harms
the power of the preconditioner, rendering it not much better than doing
nothing at all [DM89,Doi91,Eij91,BT00]. Research has continued in this
vein using graph multicolorings for parallelism, but generally a more com-
plex version of Incomplete Cholesky with more nonzeros in the sparsity
pattern is required at a minimum.

Luckily, we can take a different approach to parallelization, domain de-
composition. Domain decomposition is essentially the divide-and-conquer
principle applied to solving sparse linear systems: we partition our “do-
main” (the grid of unknowns) into “subdomains” (subsets of the unknowns),
solve the smaller linear system restricted to each subdomain independently,
and patch the results together into an approximate solution for the orig-
inal domain. Ideally almost all of the work takes place in solving the
subdomains, which can all be done in parallel, leading to excellent parallel
efficiency.

Domain decomposition itself could be a topic for an entire book [SBG04],
as there are many possibilities for how the subdomains are constructed, how
the problem is restricted to them, and how the subdomain solutions are
combined at the end. We will go with a particularly simple variant of what
is termed “Additive Overlapping Schwarz.”

First we need to partition our grid into subdomains. For simplicity, we
may as well take them to be subgrids. The critical requirements are:

• We need at least as many subgrids as parallel threads we want to use
(fewer is better for convergence, but having more than one subgrid
per thread can make dynamic load balancing work better).

• The subgrids, taken all together, have to cover the entire original
grid: we can’t leave any gaps.

• The subgrids should overlap a bit, i.e. have some grid cells in common
with their neighbors. The bigger the overlap, the fewer the number
of iterations we will need but the slower to compute each iteration
will be (and the more memory required).

For example, if we had a 100×100×100 original grid, we could split it into
eight 52×52×52 subgrids, with an overlap band of four grid cells—the grid
cells in the very center of the domain would be a part of all the subgrids.

For the z = applyPreconditioner(r) call in PCG, we have to first solve
or approximately solve each subdomain’s part of the equation Az = r, in-
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dependently. For each subdomain, this entails taking just the entries of A
and r in the grid cells of that subdomain, and ignoring the offdiagonal en-
tries of A that reference grid cells outside the subdomain. The solve could
be a full linear solve to maximum precision using some other technique,
but it is likely to be more efficient to just use one call to MIC(0) instead
(giving a very approximate solution). Because this is going to part of an
outer PCG loop, not every method is allowed here—approximations that
are unsymmetric, or nonlinear (such as taking a few “inner” iterations of
PCG without converging fully) can cause convergence troubles. Because
the solves are completely independent, this step is trivial to parallelize with-
out synchronization or communication required: just some shared reads to
A and r (but not shared writes). Once each subdomain has its own local
estimate of the solution z restricted to its subdomain, we simply add up
all the subdomain solves into one global estimate z, which is returned to
the outer PCG loop. This addition, in the overlap regions where multi-
ple subdomains contribute, does require some form of synchronization or
locking—or the calculation of the overlap entries can be left to a single
thread at the end.

When the number of subdomains becomes large, the convergence rate of
plain domain decomposition diminishes. To get an optimal high-performance
preconditioner, it is necessary to include a coarse grid correction. This
is basically a step (similar to multigrid) inside the preconditioner where
we solve a very coarse version of the problem, with one or just a few vari-
ables per subdomain, representing the smoothest components of the error.
We won’t pursue this in the book, but I will recommend the Discretely-
Discontinuous Galerkin (DDG) method of Edwards and Bridson [EB15]
as possibly the best option in terms of a very simple implementation that
can be applied to just about any sort of PDE problem, while providing
extremely good speed-up.

5.4 Projection

The project(∆t, ~u) routine does the following:

• Calculate the negative divergence b (the right-hand side) with modifi-
cations at solid wall boundaries.

• Set the entries of A (stored in Adiag, etc.).

• Construct the preconditioner (either MIC(0) for single threaded solves,
or a more complicated domain decomposition set up for parallel solves).

• Solve Ap = b with PCG.

• Compute the new velocities ~un+1 according to the pressure-gradient
update to ~u.
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We still haven’t explained why this routine is called project. You can
skip over this section if you’re not interested.

If you recall from your linear algebra, a projection is a special type of
linear operator such that if you apply it twice, you get the same result
as applying it once. For example, a matrix P is a projection if P 2 = P .
It turns out that our transformation from ~u to ~un+1 is indeed a linear
projection.7

If you want, you can trace through the steps to establish the linearity:
the entries of b are linear combinations of the entries of ~u, the pressures
p = A−1b are linear combinations of the entries of d, and the new velocities
~un+1 are linear combinations of ~u and p.

Physically, it’s clear that this transformation has to be a projection.
The resulting velocity field, ~un+1, has discrete divergence equal to zero.
So if we repeated the pressure step with this as input, we’d first evaluate
b = 0, which would give constant pressures and no change to the velocity.

5.5 More Accurate Curved Boundaries

Reducing the geometry of the problem to just labeling grid cells as solid,
fluid, or empty can introduce major artifacts when the boundaries are
actually at an angle or curved. For example, in the eyes of the simulator
a solid slope becomes a sequence of flat stair steps: obviously water flows
down stairs very differently than down an inclined slope. If you render
an inclined slope but your water pools at regular intervals along it instead
of flowing down, it looks terrible—and isn’t easy to fix up later. As a
general rule of thumb, you can only expect physically plausible motion for
things the simulator can “see” (i.e., those that are taken into account in
the numerical discretization of the physics), not details to which only the
renderer has access.

To close out this chapter, we will focus on the issue of accurately ac-
counting for solid boundaries that don’t line up with the grid. Later, in
Chapter 8 on water, we will also look at a more accurate treatment of the
free surface. Dealing with solids turns out to be all down to the divergence
condition; the pressure gradient we will leave alone (while for the free sur-
face, it turns out to be all about the pressure gradient, irrespective of the
divergence condition).

From a finite-difference perspective, the tricky part of handling solids
that don’t line up with the MAC grid is that the normal component of ve-
locity is no longer conveniently stored on the grid: attempts to interpolate

7Technically speaking, if we have non-zero solid wall velocities then this is an affine
transformation rather than a linear one, but it still is a projection. For the purpose of
simplicity, we’ll ignore this case here.
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that component from the staggered u-, v-, and w-values and then constrain
the interpolant to match the solid velocity have met with limited success.

One interesting alternative is to replace the grid with an unstructured
tetrahedral mesh, with a boundary that matches up with the solid surfaces.
However, this can impose a serious performance overhead in constructing
and working with an unstructured mesh which we’d prefer not to be forced
into taking if we can avoid it. Luckily we can get around these problems,
for most scenarios, with just a regular Cartesian grid if we rethink our
discretization.

5.5.1 The Finite Volume Method

The leading solution on grids is to be found in the finite volume method,
mentioned earlier. Ng et al. have worked this out in detail for our particular
case [NMG09]. We begin with the integral form of the incompressibility
condition:

∫∫

∂C

~u · n̂ = 0,

where ∂C is the boundary of a control volume C. In particular, in
the interior of the flow, we take each grid cell as a control volume and
approximate the boundary integral over each face of the cell as the area
∆x2 of the face times the normal component of velocity stored at the face
center. At the boundary, it gets more interesting. If a solid cuts through a
face of a grid cell / control volume, the integral of ~u·n̂ has two contributions
from both the fluid velocity (over the fluid part of the cell faces) and the
solid velocity (over the solid part of the cell faces). Our approximation is
then likewise the sum of the fluid velocity times the area of the fluid part of
the face with the solid velocity times the remaining solid area of the face.
Dividing through by ∆x2, the equation for such a cut cell is then

−Fi−1/2,j,kui−1/2,j,k + Fi+1/2,j,kui+1/2,j,k

−Fi,j−1/2,kvi,j−1/2,k + Fi,j+1/2,kvi,j+1/2,k

−Fi,j,k−1/2wi,j,k−1/2 + Fi,j,k+1/2wi,j,k+1/2

−(1− Fi−1/2,j,k)u
solid
i−1/2,j,k + (1− Fi+1/2,j,k)u

solid
i+1/2,j,k

−(1− Fi,j−1/2,k)v
solid
i,j−1/2,k + (1 − Fi,j+1/2,k)v

solid
i,j+1/2,k

−(1− Fi,j,k−1/2)w
solid
i,j,k−1/2 + (1 − Fi,j,k+1/2)w

solid
i,j,k+1/2

= 0,

(5.11)

where the F terms are the fluid face area fractions, in the range [0, 1] (1
meaning fully fluid, 0 meaning fully solid). Plugging our usual pressure
gradient into the new finite volume divergence condition results in a sym-
metric positive semi-definite linear system of exactly the same structure as



5.5. More Accurate Curved Boundaries 93

before (and solvable with exactly the same code) but with modified non-
zero entries near boundaries and modified right-hand side. Writing in two
dimensions for brevity, this is:

−Fi−1/2,j

∆x
pi−1,j

−Fi,j−1/2

∆x
pi,j−1

+
Fi−1/2,j + Fi,j−1/2 + Fi+1/2,j + Fi,j+1/2

∆x
pi,j

−Fi+1/2,j

∆x
pi+1,j

−Fi,j+1/2

∆x
pi,j+1

=Fi−1/2,jui−1/2,j

+ (1− Fi−1/2,j)u
solid
i−1/2,j

+ Fi,j−1/2vi,j−1/2

+ (1− Fi,j−1/2)v
solid
i,j−1/2

− Fi+1/2,jui+1/2,j

− (1− Fi+1/2,j)u
solid
i+1/2,j

− Fi,j+1/2vi,j+1/2

− (1− Fi,j+1/2)v
solid
i,j+1/2.

(5.12)

Technically, this discretization so far also assumes that the solid velocity
is divergence-free, i.e. that even if a solid is deforming, it won’t change its
volume. This is almost always true—or close enough to true that we can
get by under the assumption for the fluid simulation. In the rare case it
isn’t, you can change the right-hand-side of this equation to an estimate of
the integral of the divergence of solid velocity in the cell, but I have never
found this necessary.

It’s worth pointing out that in this discretization, unlike the voxelized
version from earlier on, pressures associated with cell centers which happen
to be inside the solid walls—precisely those that are involved in velocity
updates near the wall—can appear as actual unknowns in the equations
and cannot be simply eliminated as ghost values as before. Indeed, it’s
these extra unknowns that ultimately allow a more accurate solution.

However, it’s also important to note that this use of pressures inside the
walls means that this approach can’t perfectly handle thin solids, solids that
are thinner than a grid cell—including most models of cloth, for example.
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Ideally there should be no direct coupling of pressures or velocities on ei-
ther side of a fixed, thin solid. To accurately handle such solids, a more
complicated data structure than just a simple grid is needed—a voxel con-
taining a thin solid will need more than just one pressure, to handle each
separate region the solid cuts the cell into.8

5.5.2 Area Fractions

Returning to Equation (5.11), we have a new quantity to estimate: the
fluid face fractions, Fi−1/2,j,k and friends. If the solid geometry is given
in terms of polygonal meshes, this can in principle be computed exactly
by intersecting the mesh faces against the grid cell faces, but arriving at a
robust and efficient implementation is not for the faint-hearted! It’s much
simpler if the geometry is given as a level set instead, sampled at the corners
of the voxels.

First consider a triangle with corners labeled 0, 1, and 2, and function
values φ0, φ1, φ2 sampled there, where φ(x) is the level set function that
implicitly defines the solid geometry. Say that the solid is the region where
φ(x) < 0, the fluid is where φ(x) > 0, and the solid surface is the isocontour
defined by φ(x) = 0 as usual. Further assume, without loss of generality,
that we (re-)labeled the corners of the triangle in order so that φ0 ≤ φ1 ≤
φ2.

If we linearly interpolate φ across the triangle from those samples, it
should be clear that φ0 is the minimum value over the entire triangle, and
φ2 is the maximum value. Then if φ0 > 0, obviously the zero isocontour
doesn’t touch the triangle: the triangle is completely solid (so the fluid
fraction would be 0). If φ2 < 0, the zero isocontour also doesn’t touch the
triangle but the triangle is instead completely fluid (so the fluid fraction
would be 1).

In the case φ0 ≤ φ1 < 0 < φ2, only the “2” corner is in the fluid. Under
the linear interpolation model of φ(x), we must have a tinier subtriangle of
fluid, with the remaining quadrilateral in the solid. You can work out that
φ(x) linear interpolates to zero along the 0− 2 edge at fraction

θ02 =
φ2

φ2 − φ0
(5.13)

going from corner “2” toward corner “0”. That is, this is where we estimate
the zero isocontour cuts the 0 − 2 edge. Fraction θ02 is one side length of
the fluid subtriangle, expressed as a fraction of the side of the full triangle.

8Of course, one can return to just the inaccurate voxelized approach, with eliminated
ghost pressures, which makes the data structure considerably simpler: see Guendelman
et al. [GSLF05].
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Likewise,

θ12 =
φ2

φ2 − φ1
(5.14)

is the fraction of the 1 − 2 edge in the fluid. A bit of geometry readily
shows that the fraction of the area of the triangle in the fluid is just the
product:

Ftriangle = θ02θ12. (5.15)

In the case φ0 < 0 < φ1 ≤ φ2, only the “0” corner is in the solid, and
the remaining quadrilateral is in the fluid. We can then reverse the above
calculation, working out the solid fraction and subtracting it from 1 to get
the fluid fraction:

Ftriangle = 1−
(

φ0
φ0 − φ1

)(

φ0
φ0 − φ2

)

. (5.16)

Now that we have worked out what to do for triangles, we can estimate a
square face fraction by splitting it into subtriangles. To avoid any direction
bias, we cut the square along both diagonals into four triangles, with the
center of the square as their common vertex. If we only have φ given at
the corners of the square, we can take the average to estimate the value at
the center. The fluid face fraction of the square is just the average of the
fluid face fractions of the four subtriangles.

5.5.3 Tiny Fractions Considered Harmful

One fly in the ointment with this “cut-cell finite volume method” is that it
can be very sensitive to tiny fluid fractions. If a grid cell has all of its sur-
rounding face fractions close to zero, then a large perturbation in pressure
gets scaled down to just a tiny perturbation in the right-hand side. More
pessimistically put, a tiny error in the right-hand side (from our approxi-
mations to the solid velocity, or the solid geometry, or anything else) can
lead to a huge error in the pressure for that cell. This means the pressure
associated with a cell with only tiny face fractions is untrustworthy, no mat-
ter how accurately the linear solve has converged: using it in the pressure
gradient update for velocity can easily cause an unstable spike in velocity,
with the fluid suddenly blowing up from that point of the boundary.

The easiest fix for this is to check, when computing a fluid fraction,
if it is below some threshold like 0.1: if so, round it all the way down to
zero. That way, every nonzero row in the matrix has to have a diagonal
entry greater than 0.1/∆x, which roughly means that a small error in the
right-hand side can be blown up by at most a factor of ten in the pressure,
which is generally just fine.9

9Batty et al. [BBB07] first modified the pressure system in graphics to more accu-



96 5. Making Fluids Incompressible

5.5.4 Velocity Extrapolation

To finish off the section, here is a reminder that only the velocity samples
with non-zero fluid fractions will be updated. The other velocities are
untouched by the pressure and thus may be completely unreliable. As
mentioned in Chapter 3, advection may rely on interpolating velocity from
these untouched values: clearly we need to do something about them. Also,
as mentioned earlier, for inviscid flow it’s wrong to simply use the solid
velocity there: only the normal component of solid velocity has any bearing
on the fluid. Therefore it is usual to extrapolate velocity values from the
well-defined fluid samples to the rest of the grid. Typically the breath-first
search approach given at the end of Chapter 4 is adequate for this.

5.6 The Compatibility Condition

Naturally a fluid in a solid container cannot simultaneously be incompress-
ible and satisfy solid velocity conditions that are acting to change the vol-
ume, a simple result of the divergence theorem:

∫∫∫

Ω

∇ · ~u =

∫∫

∂Ω

~u · n̂.

This is the compatibility condition, without which the PDE for pressure
has no solution. (Note of course that if there is a free surface as well, no
condition is needed.)

More precisely, we want the discrete linear system to have a solution.
Even if the solid wall velocity does exactly integrate to zero, once discretized
on a grid there may be numerical errors that cause the linear solve to fail.
Thus we need a routine which can “correct” the right-hand side of the
linear system to make it consistent.

We can view this as a pure linear algebra problem, as outlined by Guen-
delman et al. [GSLF05]. That is, given a singular A and a vector b, we want
to remove from b any components which lie outside the range of A: the
modified linear system Ax = b̄ then has a solution. If A is symmetric,
which it is in our case, this is equivalent to removing components from
b that lie in the null-space of A. Luckily, for the pressure problem on a
MAC grid, this null-space is very simple: for every set of connected grid

rately account for solids, but did it with a quite different approach based on interpreting
pressure projection as kinetic energy minimization. This leads to volume fractions in-
stead of face fractions in the linear system, and while these don’t give quite as accurate
results, they tend to far more robust in the sense of avoiding cells with all surrounding
fluid fractions being close to zero. This can be considered another approach to avoiding
the instability.
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cells with no free surface conditions, there is a null-space basis vector con-
sisting of unit pressures in those voxels. By “connected,” we mean with
respect to the graph of the matrix A: two grid cells are connected if there
is a non-zero entry in A corresponding to the pair; finding these connected
sets is a simple graph traversal problem. Note that the sets are necessarily
disjoint, so each of the null-space vectors we find is orthogonal to the rest.
Therefore we can efficiently remove the incompatibilities in b by orthogo-
nal projection. Boiled down to basics, this simply means adding up the
entries of b in the set, dividing by the number of entries, and subtracting
this mean off of each entry. It is imperative here to use double precision
floating-point in calculating the sum, as otherwise the accumulated round-
ing errors can seriously undermine the method (necessitating repeating the
process and/or subtracting the sum off a single randomly chosen entry).
Also note that this process works for both the classic voxelized solve and
the more accurate finite volume method from the previous section. From a
physical standpoint, this causes us to find a solution that strikes a balance
between respecting the boundary conditions and staying divergence-free.





6

Smoke

6.1 Temperature and Smoke Concentration

The first visual fluid phenomena we will consider is smoke, loosely following
the standard reference papers by Foster and Metaxas [FM97] and by Fedkiw
et al. [FSJ01], with some additional capabilities added. Our fluid in this
case is the air in which the smoke particles are suspended. To model the
most important effects of smoke, we need two extra fluid variables: the
temperature T of the air and the concentration s of smoke particles—what
we actually can see. Similar phenomena, such as vapor, can be modeled
in much the same way. Generally we’ll try to keep to SI units of Kelvin
for temperature and keep s as a volume concentration, perhaps expressed
in parts-per-million (ppm): depending on how much physics the smoke
rendering is simulating, you even might need to track the concentration of
different ranges of soot particle sizes separately, but we will not go that far.

Also keep in mind that it’s crucial to simulate all the air in the sim-
ulation, not just the regions with s > 0: a lot of the characteristic swirly
behavior you see in smoke depends on enforcing the divergence-free con-
straint in nearby clear regions of air.

Before getting to how these variables will influence the velocity of the
air in the next few sections, let’s work out how T and s should evolve. It
should be immediately apparent that temperature and soot particles are
both advected with the fluid, i.e., we’ll be using the material derivatives
DT/Dt and Ds/Dt to describe them.1 This gives us the simplest possible
equations,

DT

Dt
= 0,

Ds

Dt
= 0

1The story for temperature, at least, can be rather more complicated when full ther-
modynamics are considered. However, the assumption of incompressible fluid flow ab-
stracts away most of the interaction between heat, pressure, density, etc. For large-scale
atmospheric disturbances, like clouds and volcanic plumes, it may be necessary to dive
deeper into thermodynamics than this book allows.

99
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and will be the first step of a numerical method: when we advect ~u, we
also advect T and s. Typically we would discretize both variables at cell
centers, where the pressure values lie.

The boundary conditions for advection can vary. As we saw earlier,
these arise in the semi-Lagrangian method in terms of which values should
be used when interpolating from non-fluid grid cells or when tracing outside
the bounds of the grid. For insulated solids it makes sense to extrapolate
T -values from the nearest point in the fluid; for solids that should conduct
their heat to the flow, the solid’s own temperature can be used. Unless a
solid is a source of smoke, like a fire, and can supply a sensible s-value, it
should be extrapolated from the fluid. At open boundaries, both T and
s should be taken to be “ambient” values—typically T on the order of
273 K and s = 0.

To make things interesting, we generally add volume sources to the
domain: regions where, at each time step, we add heat and smoke. In the
PDE form this could be represented as

DT

Dt
= rT (~x)(Ttarget(~x)− T ),

Ds

Dt
= rs(~x),

where rT and rs are functions that control the rate at which we add heat
and smoke—which should be zero outside of sources—and Ttarget gives the
target temperature at a source. This can be implemented at each grid point
inside a source as an update after advection:

T new
ijk = Tijk + (1− e−rT∆t)(Ttarget − Tijk),
snewijk = sijk + rs∆t.

For additional detail, all of these source values might be modulated by an
animated volume texture. To help avoid excesses due to poor choices of
parameters, the smoke concentration might also be capped at a maximum
concentration of 1.

Another useful animation control is to allow for decay of one or both
fields: multiplying all values in a field by e−d∆t for a decay rate d. This
isn’t particularly grounded in real physics, but it is a simple way to mimic
effects such as heat loss due to radiation.

Heat and smoke concentration both can diffuse as well, where very
small-scale phenomena such as conduction or Brownian motion, together
with slightly larger-scale processes such as turbulent mixing, serve to
smooth out steep gradients. This can be modeled with a Laplacian term
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in the PDE, much like viscosity:

DT

Dt
= kT∇ · ∇T,

Ds

Dt
= ks∇ · ∇s.

Here kT and ks are non-negative diffusion constants. These could be dis-
cretized with finite differences in the obvious way, for example for temper-
ature:

T new
i,j,k = Ti,j,k +∆tkT

× Ti+1,j,k + Ti,j+1,k + Ti,j,k+1 − 6Ti,j,k + Ti−1,j,k + Ti,j−1,k + Ti,j,k−1

∆x2
.

The same boundary conditions used in advection provide values of T (or s)
at non-fluid points. However, this update is only stable and free of spurious
oscillations if

∆t .
∆x2

6kT
.

If this condition cannot be met (or is so far from being met that breaking
up the time step into several smaller substeps that do satisfy the condition
is too slow), another simple option is to run a Gaussian blur on the variable.
In fact, apart from boundary conditions, the exact solution to the so-called
heat equation

∂T

∂t
= kT∇ · ∇T (6.1)

over a time ∆t is a convolution with the following Gaussian filter, which in
this context is called the heat kernel:

G(~x) =
1

(4πkT∆t)
3/2

e
− ‖~x‖2

4kT ∆t .

The convolution can be evaluated efficiently dimension by dimension ex-
ploiting the separability of the Gaussian filter; see any reference on image
processing for details.

If the Gaussian filter radius turns out to be excessively large, this ap-
proach too can have flaws: making the filter run fast is nontrivial, and
artifacts near boundaries can start to become noticeable. In this case, it
can be worth it instead to use implicit integration. One step of Backwards
Euler integration looks almost identical to the formula above, but uses the
new temperature to evaluate the diffusion term:

T new
i,j,k = Ti,j,k +∆tkT

·
T new
i+1,j,k + T new

i,j+1,k + T new
i,j,k+1 − 6T new

i,j,k + T new
i−1,j,k + T new

i,j−1,k + T new
i,j,k−1

∆x2
.
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At a conducting solid boundary, if a neighboring grid cell is inside the
solid (has φsolidi+1,j,k < 0 for example) then the solid’s temperature should
be used instead. At an insulating solid boundary or a free surface, that
term (say Ti+1,j,k) should be removed from the equation along with the
matching contribution of the central grid point (so instead of −6Ti,j,k we
would see −5Ti,j,k, for example). This is actually just a linear system of
almost exactly the same form as the one we solve for pressure to make
the fluid incompressible, just with slightly different coefficients, and can be
solved with exactly the same methods for the new temperature.

Finally, before moving on, it should be noted that although this ap-
proach can work well for fairly diffuse situations, the grid resolution limits
its ability to handle sharply defined smoke contours. In this case the par-
ticle methods discussed later, in Chapter 7, are preferable. Even if smoke
concentration is tracked on a grid for the simulation, it still may be prefer-
able to use particles for rendering—running millions of particles through
the grid velocity field can provide finer details than really are resolved in
the simulation itself!

6.2 Buoyancy

We now turn to the effect that T and s have on velocity. In this section we
introduce a simplified buoyancy model commonly used in graphics.

We all know that hot air rises and cool air sinks; similarly it seems
plausible that air laden with heavier soot particles will be pulled downwards
by gravity. We can model this by replacing the acceleration ~g due to gravity
in the momentum equation with a buoyant acceleration

~b = [αs− β(T − Tamb)]~g,

where α and β are non-negative coefficients, and Tamb is the ambient tem-
perature (say 273 K). Note that we take this proportional to the downward
gravity vector—indeed, buoyancy doesn’t exist in a zero-G environment.
Also note that the formula reduces to zero wherever s = 0 and T = Tamb,
as might be expected.

Since T and s are generally stored at grid cell centers, we need to do
some averaging to add the acceleration to the MAC grid velocities, e.g.,
Ti,j+1/2,k = 1

2 (Ti,j,k + Ti,j+1,k). Alternatively put, when we add buoyancy
to the velocity field prior to projection, the contribution of acceleration
evaluated at the grid cell center (i, j, k) is equally split between vi,j−1/2,k

and vi,j+1/2,k.
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6.3 Variable Density Solves

Underlying the buoyancy model is the fact that fluid density is a function
of temperature and—if we treat the soot as actually dissolved in the air—
smoke concentration. Let’s begin with just the effect of temperature, for
now taking s = 0. From the ideal gas law, thermodynamics derives that
the density of the air should be

ρair =
P

RT
, (6.2)

where P is the absolute pressure (say 1.01×105Pa in SI units), R is the spe-
cific gas constant for air (approximately 287 J/kg K in SI units), and T is
the temperature. It should be underscored here that the absolute pressure
P we propose using here is approximated as a constant—not coupled with
the pressure solve for incompressibility—as otherwise we end up in a sig-
nificantly more complicated compressible flow model; this has been worked
out by Bonner [Bon07] in a generalization of the MAC grid incompressible
simulation developed in this book, if you are interested.

Adding in some soot of density ρsoot and treating the concentration s
as a volume fraction, we can extend this to

ρ = ρair

(

1 + s
ρsoot − ρair

ρair

)

= ρair(1 + αs),

(6.3)

where we treat the relative density difference α = (ρsoot − ρair)/ρair as a
constant—i.e., the soot has the same thermal expansion as the air. This
is of course false, but we consider this error negligible relative to other
modeling errors.

At this stage, the buoyancy model from the previous section can be
recovered by linearizing Equation (6.3) around standard conditions

ρ ≈ ρ0
(

1 + αs− 1

Tamb
(T − Tamb)

)

= ρ0 [1 + αs− β(T − Tamb)] ,

where ρ0 is the smoke-free air density at ambient temperature and β =
1/Tamb. Plugging it into the momentum equation (where we have multi-
plied both sides by ρ) gives

ρ0(1 + αs− β∆T )D~u
Dt

+∇p = ρ0(1 + αs− β∆T )~g.

The hydrostatic pressure for constant density fluid at rest is p = ρ0~g · ~x;
write the actual pressure as the sum of this hydrostatic pressure plus a
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pressure variation p′ so that∇p = ρ0~g+∇p′. This simplifies the momentum
equation to

ρ0(1 + αs− β∆T )D~u
Dt

+∇p′ = ρ0(αs− β∆T )~g.

We nowmake theBoussinesq approximation that, assuming |αs−β∆T | ≪
1, we can drop the density variation in the first term, leading to

ρ0
D~u

Dt
+∇p′ = ρ0(αs− β∆T )~g.

Dividing through by ρ0 gives the buoyancy form of the momentum equation
from the previous section. It then becomes clear what α and β “should”
be chosen as, though of course these can be left as tunable parameters. (It
also makes it clear that the pressure we solve for in the buoyancy model is
not the full pressure but actually just the variation above the hydrostatic
pressure.)

This is a fine approximation for small density variations. However, for
more extreme scenarios that are common in graphics, extra fidelity can
be obtained by not taking the Boussinesq approximation, i.e., by treating
the density as a variable in the pressure solve. Whereas the buoyancy
model only generates forces in the vertical direction, the full model can
give interesting plumes along any strong pressure gradient, such as radially
inward in rotating regions of the flow.

As a first step before the variable-density solve, Equation (6.3) should
be used to determine the fluid density at each velocity sample in the MAC
grid. This entails averaging the temperatures and smoke concentrations
from the grid cell centers to the grid cell faces, in the usual manner. These
u-, v- and w-densities modify the pressure projection in two ways. The
pressure update is now

un+1
i+1/2,j,k = ui+1/2,j,k +∆t

pi+1,j,k − pi,j,k
ρi+1/2,j,k∆x

,

vn+1
i,j+1/2,k = vi,j+1/2,k +∆t

pi,j+1,k − pi,j,k
ρi,j+1/2,k∆x

,

wn+1
i,j,k+1/2 = wi,j,k+1/2 +∆t

pi,j,k+1 − pi,j,k
ρi,j,k+1/2∆x

,

and the coefficients of the matrix A similarly incorporate the densities, as
illustrated at the end of Chapter 5.

One possible problem that arises when using the variable-density solve is
that the matrix may be ill-conditioned when large density variations are
present. This means PCG will run for more iterations to return an accurate
answer. For reasons of practicality it may therefore be worthwhile to clamp
density to a lower bound of, say, 0.05 times the background density ρ0.
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6.4 Divergence Control

If you read the last section critically, you might have noticed we violated
conservation of mass. The incompressibility constraint implies that fluid
volumes remain constant, but if simultaneously the density is changed, it
must mean mass is also changed. Perhaps unsurprisingly, however, most
audiences aren’t troubled by the violation: fluid motion is adequately com-
plex and hard to predict so that this “problem” isn’t usually an issue.
That said, the solution to the problem can be generalized to one of the
most useful simulation controls in smoke: divergence control.

In the thermal expansion problem, fundamentally we do want the fluid
to expand as it heats up and contract as it cools off. In other words, where
the change in temperature DT/Dt is non-zero, we don’t want a divergence-
free velocity field. Let’s derive exactly what we want.

Consider a region of fluid Ω, currently with volume V =
∫∫∫

Ω 1. After
a time step of ∆t with velocities ~u, suppose it changes volume to V +∆V .
Meanwhile, suppose the average density in the region changes from ρ to
ρ + ∆ρ. Conservation of mass requires ρV = (ρ + ∆ρ)(V + ∆V ) which,
after neglecting the quadratic term, gives

∆V = −∆ρ

ρ
V. (6.4)

Using the divergence theorem, the change in volume is approximately

∆V =

∫∫

∂Ω

∆t~u · n̂

=

∫∫∫

Ω

∆t∇ · ~u.

Considering an infinitesimally small region, and dividing both sides of (6.4)
by V∆t, we get

∇ · ~u = − 1

∆t

∆ρ

ρ
.

This is the divergence we want to enforce in the pressure projection step,
where we evaluate the change in density at grid cell centers due to changes
in temperature and smoke concentration. For example, if the temperature
increases, leading to a decrease in density, we need positive divergence to
enact that thermal expansion.

This is still a little sloppy—in addition to the approximations made for
the change in mass, there is a lag between the change in density in one
time step and the resulting motion of fluid in the divergent velocity field
in the next time step—and we certainly can’t hope to exactly conserve
mass. However, it does expose a more general divergence control in the
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simulation. Define a control field d(~x) at the grid cell centers equal to the
desired rate of fractional volume change ∆V/V∆t throughout the volume
of the fluid: we then solve for pressure to enforce that divergence. For the
classic voxelized pressure solve, this is as simple as adding d to the fluid
cells in the right-hand side of the linear system.

Note that adding an arbitrary divergence control inside a closed
domain—one without free surfaces—may lead to an incompatible linear
system: if we constrain the fluid to maintain its total volume (the con-
tainer’s volume) but require it to expand or contract in the interior, we
end up with no solution. Therefore it is imperative to enforce the compat-
ibility condition, as discussed at the end of Chapter 5 for the right-hand
side.

Divergence control can be used much more liberally than just to ac-
count for mass balance in thermal expansion. For example, Feldman et
al. [FOA03] introduced the technique for modeling a large class of explo-
sions: look for more on this, and other techniques that control divergence,
in Chapter 9. A constant, or time-varying, positive divergence can be
added to the source volume of smoke to make it billow out more; negative
divergence inside a target region of space can cause the smoke to be sucked
up into the target.

Before leaving the subject of controlling smoke, it should be pointed
out that there are, of course, other methods than modifying the divergence.
Users may define force fields as additional body forces to coax the air to
blow a particular way; these are simply added to the momentum equation
much like the buoyancy terms we began with. Fattal and Lischinski [FL04]
provide an interesting class of force fields that automatically move smoke
to a desired target shape—a particularly useful idea for dealing with char-
acters made out of smoke.
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Particle Methods

Up until this point, we have discussed continuous fluid fields like velocity
represented and solved on Cartesian grids. Now we turn to a very different
representation, particles: a collection of points with stored positions and
attached values for fluid quantities of interest. Particles have long proven
their worth in computer graphics as a flexible way to represent phenomena,
including fluid-like effects. While numerically it is usually most favorable
to solve the fluid equations on grids, in particular the pressure and in-
compressibility parts, including particles in a grid-centric fluid solver can
still be extremely useful. (Later we will look at some schemes which solve
everything with particles, which makes some different trade-offs worth con-
sidering.) Many secondary fields that we want to be carried around by the
fluid, or that weakly effect the flow, can be very profitably represented with
particles: smoke (soot concentration), foam, mist, bubbles, temperature,
etc. We will begin by examining the big advantage particles have over grids
for advection.

7.1 Advection Troubles on Grids

Advection is one of the central themes of fluid simulation in this book.
We’ve already struggled with the excessive numerical dissipation produced
by semi-Lagrangian advection with linear interpolation, and improved it
significantly with a cubic polynomial interpolant. Even sharper grid-based
methods have been developed—however, all Eulerian schemes have a fun-
damental limit.

One way of looking at a time step of any Eulerian advection schemes is
as follows:

• Begin with the field sampled on a grid.

• Reconstruct the field as a continuous function from the grid samples.

• Advect the reconstructed field.

• Resample the advected field on the grid.

107
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Technically speaking, some Eulerian schemes might use more than just the
values sampled on the grid—e.g., multistep time integration will also use
several past values of the field on the grid—but these details don’t change
the gist: the key is the resampling at the end.

The problem is that a general incompressible velocity field, though it
preserves volumes, may introduce significant distortions: at any point in
space, the advected field may be stretched out along some axes and squished
together along others. From a rendering perspective, you might think of
this as a local magnification (stretching out) along some axes and a local
minification (squishing together) along the others. Just as in rendering,
while resampling a stretched out or magnified field doesn’t lose any infor-
mation, resampling a shrunken or minified field can lead to information
loss. If the advected field has details varying at the grid scale ∆x, as soon
as those get shrunk in advection, resampling will at best destroy them—or
worse, if care is not taken in the numerical method, cause them to alias as
spurious lower-frequency artifacts—again, just as in rendering.

It’s actually a little worse: the Nyquist limit essentially means that
even in a pure translation velocity field with no distortion, the maximum
spatial frequency that can be reliably advected has period 4∆x. Higher-
frequency signals, even though you might resolve them on the grid at
a particular instant in time, cannot be handled in general: e.g., just in
one dimension the highest-frequency component you can see on the grid,
cos(πx/∆x), exactly disappears from the grid once you advect it by a
distance of 1

2∆x.
A “perfect” Eulerian scheme would filter out the high-frequency compo-

nents that can’t be reliably resampled at each time step, even as a bad one
will allow them to alias as artifacts. The distortions inherent in non-rigid
velocity fields mean that as time progresses, some of the lower-frequency
components get transferred to higher frequencies—and thus must be de-
stroyed by a good scheme. But note that the fluid flow, after squeezing
the field along some axes at some point, may later stretch it back out—
transferring higher frequencies down to lower frequencies. However, it’s too
late if the Eulerian scheme has already filtered them out.

At small enough length scales, viscosity and other molecular diffusion
processes end up dominating advection: if ∆x is small enough, Eulerian
schemes can behave perfectly well since the physics itself is effectively band-
limiting everything, dissipating information at higher frequencies. This
brute-force approach leads to the area called direct numerical simulation
(DNS), which comes in handy in the scientific study of turbulence, for
example. However, since many scenarios of practical interest would require
∆x less than a millimeter, DNS is usually far too expensive for graphics
work.

A more efficient approach is to use adaptive grids, where the grid resolu-
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tion is increased wherever higher resampling density is required to avoid in-
formation loss, and decreased where the field is smooth enough that low res-
olution suffices. This can be done using octrees (see for example Losasso et
al. [LGF04]) or unstructured tetrahedral meshes (covered later). However,
these approaches can suffer from considerable implementation complexity,
increased overhead in execution, and typically lower accuracy compared
to regular grids of similar resolution—and still must enforce a maximum
resolution that, for practical purposes, tends to be much coarser than the
DNS ideal. Adaptive methods have some excellent properties, but they are
not really a solution to unwanted grid-caused diffusion.

However, if we store a field on particles that move with the flow, it
doesn’t matter how the flow distorts the distribution of particles: the advec-
tion equation Dq/Dt = 0 says the values stored on the particles shouldn’t
change, rather the particles just should move with fixed values. Therefore
there is no filtering and no information loss. In some sense particles are
perfect for advection.

It should also be pointed out, before we get into details, that these parti-
cle methods apply best to fields with essentially zero diffusion (or viscosity,
or conduction, or whatever other name is appropriate for the quantity in
question). If there is significant physical diffusion, strong enough to show
up on the grid length scale, then using an Eulerian advection scheme should
work perfectly well without the need for particles. We will take a look at
incorporating small amounts of diffusion into particle methods, but the
emphasis is on small: for large diffusion Eulerian methods may be equally
as good or better.

7.2 Particle Advection

The core operation for particles in a fluid solver is advection, where we
update particle positions based on the MAC grid velocity field. As we
discussed back in Chapter 3, the simplest time integration scheme, forward
Euler, really is insufficient. In fact, the requirements for particle advection
are probably a bit stricter than for tracing trajectories in semi-Lagrangian
advection, since errors in particle advection are accumulated over many
time steps instead of being reset each time step as in the semi-Lagrangian
method.

The simplest and cheapest method that makes sense to use is a second-
order Runge-Kutta integrator, an example of which we introduced before.
However, it’s actually slightly unstable in regions of rigid rotation: particles
will steadily migrate away from the center of rotation, perturbing the dis-
tribution. A much better choice, albeit sometimes a little more expensive
choice, is to use a “three-stage third-order Runge-Kutta scheme:” these are
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stable for rigid rotations as long as ∆t isn’t too large. There are infinitely
many such schemes, but Ralston [Ral62] showed the following scheme is
probably the best when it comes to minimizing error:

~k1 = ~u(~xn),

~k2 = ~u(~xn + 1
2∆t

~k1),

~k3 = ~u(~xn + 3
4∆t

~k2),

~xn+1 = ~xn + 2
9∆t

~k1 +
3
9∆t

~k2 +
4
9∆t

~k3.

Here I’ve ignored the time dependence of the velocity field, which techni-
cally reduces the accuracy back to first order in time, just like our overall
time-splitting algorithm; the error we care more about here has to do with
the variation of velocity in space.

Chapter 3 also mentions the possibility of using substeps in time inte-
gration to better control error, say constraining each particle to at most
move ∆x or some small multiple each substep. This can easily be incor-
porated into Runge-Kutta schemes by first evaluating ~u(~xn), which will be
used regardless of the time-step size and then setting the substep size ∆τ
to keep ‖∆τ~u(~xn)‖ below a threshold.1 Of course, substep sizes must be
adjusted so that when you add them up they exactly equal the global time
step ∆t. A fairly effective solution is given in Figure 7.1.

There’s finally also the question of boundaries: what should happen to
a particle when it leaves the fluid? For the usual solid wall boundaries,
this is presumably just due to small numerical errors, which in the limit
should go to zero. The obvious fix if a particle does end up on the other
side of a solid wall is to project it out to the closest point on the boundary,
perhaps plus a small fraction of ∆x back into the fluid—or just delete the
particle if it has traveled too far into a solid and projecting it back out is
geometrically troublesome. Luckily, with level set representations of solid
geometry, finding out if a particle is inside a solid, how deep inside it is, and
projecting it back to the closest point on the surface are all easy operations.

For open edges on the grid with a p = 0 “free surface” condition, or
inflow/outflow boundaries where we specify ~u · n̂ to be something different
than the solid’s normal velocity, it makes sense instead to simply delete
particles that stray outside the fluid. In these cases, however, it might also
be critical to add new particles at those boundaries when the velocity field
is pulling new fluid into the problem. We’ll address the seeding problem
below.

1For aggressively large time steps, it may even be necessary to check each velocity
sample in the course of RK3 and re-do the advection based on the largest velocity
magnitude seen, if it’s much too large.
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• Set substep time τ = 0.

• Set flag finished to false.

• While finished is false:

• Evaluate ~u(~x).

• Find the maximum substep size ∆τ = C∆x/(‖~u(~x)‖ + ǫ).
(ǫ is a small number like 10−37 used to guard against divide-by-
zero.)

• If τ +∆τ ≥ ∆t:

• Set ∆τ = ∆t− τ and finished to true.

• Else if τ + 2∆τ ≥ ∆t:

• Set ∆τ = 1
2 (∆t− τ)

• Update ~x with RK3 for substep size ∆τ , reusing the evaluated
~u(~x).

• Update τ ← τ +∆τ .

Figure 7.1. Pseudocode for substepping particle advection, loosely restricting a
particle ~x to travel no more than C∆x per substep. For very large time steps,
it may be necessary to check how far the particle actually did travel with RK3,
and re-do the step with a smaller ∆t if this is too large.

7.3 Transferring Particles to the Grid

The most common use of particles is to track secondary fields, such as
smoke concentration, foam, bubbles, or other things that would show up in
rendering, but aren’t primary fluid variables like velocity. Let us use soot
or smoke concentration as a concrete example for this section. It is quite
possible to directly render smoke as particles, but some global illumination
effects are simpler if the soot concentration is sampled instead on a grid,
and likewise some dynamic effects (if it ties into a buoyancy acceleration)
require it on a grid: in this section we look at the general problem of going
from particle samples to a grid-based field.

Assume each particle, in addition to its position ~xp, has a smoke con-
centration sp. This value should represent the concentration of smoke in
the “volume” we will associate with the particle. At it simplest, sp could
be a constant for all particles, but if we have additional rules for reducing
it over time as an artistic control it might make more sense to track this
per particle. At the moment a particle is created, it will take a default
initial value S; if sp is reduced below some threshold, the particle could be
deleted. For extra variability, the initial S itself could be modulated by an
animated volume texture in the emission region.

We now need a way to determine the smoke concentration on the sim-
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ulation grid from the particle data. The simplest thing is to sum, at each
grid point, the particle values modulated by a kernel function k that only
gives weight to nearby particles, normalized by a weight value W which
we’ll discuss in a moment:

si,j,k =
∑

p

sp
k(~xp − ~xi,j,k)

W
. (7.1)

Note the convention in this chapter is to always use p for particle indices
and reserve i, j, and k for grid indices: thus si,j,k is unambiguously the
smoke concentration at grid point (i, j, k) which is at position ~xi,j,k. Also
note that in practice it can make sense to order the computation as a loop
over particles, each contributing to the nearby grid points:2

• Reset all grid si,j,k values to zero.

• Loop over particle index p:

• Loop over grid indices i, j, k where k(~xp−~xi,j,k) might be non-zero:

• Add spk(~xp − ~xi,j,k)/W to si,j,k

The kernel function k should be adapted to the grid spacing, just as in
rendering—if its support is less than ∆x then some particles between grid
points may momentarily vanish from the grid (i.e. not contribute to any grid
points), but if the support is too much larger than ∆x, the method becomes
inefficient and we’ll have blurred away a lot of the desirable sharpness
of particle methods. The simplest choice that makes sense is to use the
trilinear hat function:

k(x, y, z) = h
( x

∆x

)

h
( y

∆x

)

h
( z

∆x

)

with h(r) =







1− r : 0 ≤ r ≤ 1,
1 + r : −1 ≤ r ≤ 0,
0 : otherwise.

This may not be smooth enough for quality rendering, however. Something

2When implementing this in a multithreaded environment the actual code pattern
will probably be more complex: it is best to make sure only one thread is allowed to
write to a particular region in the grid, to avoid excessive overhead due to locking or
atomic operations.
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like a quadratic B-spline may be more useful in that case:

k2(x, y, z) = h2

( x

∆x

)

h2

( y

∆x

)

h2

( z

∆x

)

with h2(r) =



















1
2 (r +

3
2 )

2 : − 3
2 ≤ r < − 1

2 ,
3
4 − r2 : − 1

2 ≤ r < 1
2 ,

1
2 (

3
2 − r)2 : 1

2 ≤ r < 3
2 ,

0 : otherwise.

So what about the normalization weight W? This is intimately tied up
with the sampling density of the particles. Let V be the volume associated
with each particle: you can think of it as the limit of a volume of space
divided by the number of particles contained within, for uniform sampling.
For example, if you initialize with eight particles per grid cell in a smoky
region, then V = ∆x3/8. We can estimate the total amount of smoke in
the simulation, i.e., the integral of smoke concentration over the simulation
volume, either from the particles as

Stotal ≈
∑

p

spV

or from the grid as

Stotal ≈
∑

i,j,k

si,j,k∆x
3.

We now choose W so these two estimates are equal. For the trilinear hat
kernel function k (or indeed, any other B-spline, like k2 above), the sum of
k(~xp − ~xi,j,k) over all grid points is exactly one, which nicely simplifies the
calculation:

∑

i,j,k

si,j,k∆x
3 =

∑

i,j,k

∑

p

sp
k(~xp − ~xi,j,k)

W
∆x3

=
∑

p

sp





∑

i,j,k

k(~xp − ~xi,j,k)





∆x3

W

=
∑

p

sp
∆x3

W
.

Therefore, we take W = ∆x3/V , or more simply, the average number of
particles per grid cell.

We can of course get a little fancier and introduce a normalization
weight Wp per particle, tying into a non-uniform particle seeding. This
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brings up the question of how to seed particles in the first place. There are
a lot of possibilities, and not necessarily any single best choice, but we will
outline one strategy.

7.4 Particle Seeding

There are many possible schemes for seeding or emitting particles. What-
ever you choose, the most important guiding principle with this as just
about everything else in simulation is: make sure it’s consistent across dif-
ferent time steps and grid sizes. That is, make sure the main parameters
that a user will control are “physical,” in the sense of not referring to time
steps or grid cells, and that in turn your algorithm will give consistent
behavior as time steps and grid sizes are refined.

As an example of what not to do, imagine a rule which says to emit
8 particles in each grid cell of an emission region every time step, with
fixed value s. If the same simulation is run with a time step half the size,
instead of just giving more accurate behavior, the emitter will emit twice
as much smoke into the simulation! Things get even worse if the time
step varies adaptively during the simulation for a CFL condition, say—at
certain times the emitter will be emitting more smoke than at others, just
because somewhere else in the domain the fluid is moving faster. This can
be a disaster.

So what can we do? Let’s break the problem down into two common
cases: spatially smooth emission vs. sharply defined emission areas.

7.4.1 Smoothly Varying Emission

If we start the simulation with a region where the emission smoke density
smoothly varies, reducing to zero at the edges, it makes sense to begin
by seeding W particles at jittered random locations in any grid cell with
nonzero emission density, and in each particle set its value sp to the in-
terpolated (or otherwise evaluated) emission density. This should be very
close to an Eulerian scheme just starting with that continuous value of s.

If we have continuous emission from a region somewhere in the simula-
tion, we need the emitter to specify an emission rate, the value of ds/dt.
In an Eulerian scheme we would increment the smoke value at a grid cell
by ∆t ds/dt; we need to approximate the same with particles instead. For
this we need a target rate of particle creation dW/dt, expressed in particles
per voxel per second. Then in one time step, in one grid cell with nonzero
smoke emission rate ds/dt, we should emit n = ∆t dW/dt particles. If n
is an integer, this is clear enough; if not, we should emit ⌊n⌋ particles and
with probability n − ⌊n⌋ emit an extra one (check if a uniform random
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number from the range [0, 1] is below this fraction). Each particle should
again be at a random jittered location in the grid cell, and take a value
sp = ∆tds/dt interpolated from the emitter.

We take one further step with this scheme for continuous emission, tak-
ing into account the velocity field in which the smoke particles are supposed
to be moving. If we emit a puff of particles in the emission region at the
start of each frame, and then advect them through the velocity field for
the time step, if the velocity is fast we will see those discrete puffs moving
through space. To avoid this, each particle should also get a random cre-
ation time uniformly distributed through the time step, and be advected
for the remainder of the time step through the velocity field to get its actual
location. This is especially important for “in-flow” boundaries, where we
typically have a narrow region or even just a surface patch where we emit
particles, but they are coming in with a strong velocity.

7.4.2 Sharp Regional Emission

Another common scenario is where the emission density is even just con-
stant within some sharply defined region (given by a level set, most likely)
and drops sharply to zero outside the region. In this case we should test if
a particle’s random location (before advecting through part of the step) is
inside the level set of the emission region: if not, it shouldn’t be emitted.

In some cases, especially if we have relatively few particles per grid
cell and we want a really smoothly defined emission volume that matches
the emission geometry without any raggedness, we might play some addi-
tional tricks to get a sampling which places more particles on the emission
boundary surface. When we propose a candidate random particle location
~xp, we check the signed distance function of the emission region φ(~xp). If
φ(~xp) >

1
4∆x, i.e. the point is outside the emission region by a quarter of

a grid cell, we don’t emit. If φ(~xp) < − 1
4∆x, so the point is well inside

the emission region, we emit as usual. But in the remaining band near to
the surface, if φ(~xp) > 0, we move ~xp to the closest point on the surface,
and cut the emission value in half; if φ(~xp) ≤ 0, we leave ~xp where it is
but also cut the emission value in half. In this way we emit roughly the
same “amount” of smoke into a grid cell, even when its a fractional grid
cell, but we end up with more points than usual precisely on the surface of
the emitter, giving better definition to the output.

7.5 Diffusion

There is one further small tweak we can add to simulate the effect of a
small amount of diffusion. Some non-trivial stochastic calculus shows that
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diffusing a quantity, i.e., including a Laplacian term Dq/Dt = k∇ · ∇q, is
equivalent in the limit to adding a component of random Brownian motion
to particle trajectories (i.e., solving Dq/Dt = 0 with a randomly perturbed
velocity field). That is, we can add an independent random-walk contri-
bution to each particle’s position each time step, such as a random vector
chosen uniformly from the sphere of radius

√
2k∆t. Obviously this is only

an effective technique if the perturbations are reasonably small compared
to a grid cell. For stronger diffusion, we can use the techniques in the
next section (transferring values back and forth between particles and the
grid), or simply keep the field stored on a grid and use the semi-Lagrangian
approach to advection, possibly with additional grid-based diffusion.

Finally, there are several other quantities for which we can use this ma-
chinery. Temperature of course can go hand-in-hand with smoke concen-
tration, storing both quantities with each particle. Feldman et al. [FOA03]
also include unburnt fuel as a particle variable for their volumetric combus-
tion model (see Chapter 9), albeit with a slightly more advanced particle
system that gives particles mass and inertia (see Chapter 15).

7.6 Particle-in-Cell Methods

A major part of the numerical viscosity we have battled is due to the Eule-
rian advection. We already considered using a sharper cubic interpolation
scheme to significantly reduce diffusion, but as it turns out, we can do
even better. In this section, we will replace the velocity advection step
D~u/Dt = 0 itself with particle advection.

Simply storing velocity vectors on particles and advecting them around
isn’t enough, of course: pressure projection to keep the velocity field
divergence-free globally couples all the velocities together. Somehow we
need to account for particle-particle interactions on top of advection. We’ll
now take a look at a general class of methods that can efficiently treat
particle-particle interaction by way of a grid.

The particle-in-cell (PIC) approach was pioneered at Los Alamos Na-
tional Laboratory in the early 1950s, though Harlow’s 1963 paper [Har63]
is perhaps the first journal article describing it.3 The basic PIC method
begins with all quantities—velocities included—stored on particles that
sample the entire fluid region. For graphics work, eight particles per grid
cell, initialized as usual from a jittered grid, is a good place to start. For

3Harlow and other team members in the T-3 Division at Los Alamos also created
the MAC grid and marker particle method, and pioneered the use of the vorticity-
streamfunction formulation used in the previous section, to name just a few of their many
contributions to computational fluid dynamics; see the review article by Harlow [Har04]
for more on the history of this group.
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efficiency, where the flow is not as important to resolve, reducing this to as
low as one particle per grid cell makes a lot of sense (e.g. in the clear air
away from the smoky regions).

In each time step, we first transfer the quantities such as velocity from
the particles to the grid—perhaps just as we did with smoke concentration
earlier in this chapter. All the non-advection terms, such as acceleration
due to gravity, pressure projection and resolution of boundary conditions,
viscosity, etc., are integrated on the grid, just as in a fully Eulerian solver.
Finally we interpolate back from the grid to the particles, and then advect
the particles in the grid velocity field.

To more accurately do the particle-to-grid transfer, and be more robust
in the face of non-uniform particle distributions, it’s recommended that
at least for velocity the normalization weight W actually be calculated per
grid point, making the value at each grid point a weighted average of nearby
particle values. For example, the u-component of velocity on the grid ends
up as

ui+1/2,j,k =

∑

p upk(~xp − ~xi+1/2,j,k)
∑

p k(~xp − ~xi+1/2,j,k)
, (7.2)

though of course to actually calculate it we instead loop over the particles
accumulating both upk(~xp − ~xi+1/2,j,k) and the weight k(~xp − ~xi+1/2,j,k)
on the grid, and then do the divide in a second pass over the grid.

Also note that the particle-to-grid transfer only provides grid values
near particles; it may be imperative to extrapolate those grid values out
to the rest of the grid as discussed before. If an aggressively low particle
sampling (like one per grid cell), errors in advection, or a positive divergence
control result in “gaps” between particles opening up on the grid, it may
also be a good idea to include a reseeding stage where new particles are
added to grid cells with too few particles, taking particle values interpolated
from the grid. Similarly particles can be dynamically deleted from grid cells
with an excess of particles (say, more than twelve).

While plain PIC worked admirably—albeit only with first-order
accuracy—for the compressible flow problems to which it was originally
applied, it also suffered from severe numerical dissipation. The problem
is that fluid quantities are averaged from particles to the grid, introduc-
ing some smoothing, and then the smoothed grid values are interpolated
back to the particles, compounding the smoothing. Even if nothing is
happening—particles aren’t moving at all—a significant amount of smooth-
ing takes place at every time step.

To counteract this, Brackbill and Ruppel [BR86] developed the fluid
implicit particle (FLIP) method, a beautifully simple variation on PIC. In
FLIP, instead of interpolating a quantity back to the particles, the change

in the quantity (as computed on the grid) is interpolated and used to incre-
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ment the particle value, not replace it. Each increment to a particle’s value
undergoes one smoothing (from interpolation) but that’s all: smoothing is
not accumulated, and thus FLIP is virtually free of numerical diffusion. In
pseudocode, the method can be interpreted as

• Transfer particle values qp to the grid qi,j,k, through equations like (7.1)
or (7.2), and extrapolate on the grid as necessary.

• Save the grid values qi,j,k.

• Compute all other terms on the grid, such as pressure projection, to
get an updated qnewi,j,k.

• For each particle, interpolate the change ∆qi,j,k = qnewi,j,k − qi,j,k from
the grid to add it to the particle’s value.

• Advect the particles in the grid velocity field.

Zhu and Bridson [ZB05] introduced FLIP to incompressible flow and demon-
strated how effective it can be at producing highly detailed motion on fairly
coarse grids. It essentially eliminates all numerical diffusion from advec-
tion, though of course the loss of vorticity from our first-order time-splitting
remains. At the same time, it is almost trivial to implement, and especially
if you are using particles for other tasks (e.g., marker particles for liquid
tracking, as we will in Chapter 8) it is highly recommended.

One issue with FLIP is that it may develop noise. Typically we use
eight particles per grid cell, meaning there are more degrees of freedom in
the particles than in the grid: velocity fluctuations on the particles may,
on some time steps, average down to zero and vanish from the grid, and
on other time steps show up as unexpected perturbations. Of course ba-
sic PIC doesn’t have this problem, since the particle velocities are simply
interpolated from the grid there. Therefore it may be useful to actually
blend in a small amount of the PIC update with the FLIP update, causing
any noise to decay to zero while hopefully not introducing significant dissi-
pation. That is, for some small regularization parameter α in the range
[0, 1], set the new particle velocities to

~unewp = α interp(~unewgrid, ~xp) + (1 − α)
[

~uoldp + interp(∆~ugrid, ~xp)
]

.

When α = 0 this is the pure FLIP update; when α = 1 it is the basic PIC
update.

A little analysis of the numerical dissipation implied by PIC, similar
to our analysis of the first-order semi-Lagrangian method back in Chapter
3, shows that we can actually relate α to the kinematic viscosity of the
fluid ν:

α =
6∆tν

∆x2
.
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Of course, if this formula gives an α > 1, you should clamp it to one, use
the PIC update (or just a regular Eulerian advection scheme) and probably
even add in a viscous step as in Chapter 10.





Part II

More Types of Fluids





8

Water

We now have most of the machinery in place to simulate water as well.
Our starting point is treating water as a fluid with a free surface boundary
condition where it’s in contact with air. The main new ingredient is geo-
metric: the free surface condition allows the water to change shape, and
thus we need to track or capture1 that shape somehow.

Before jumping in, a note on terminology: the air-water surface or
boundary is also often called an interface. Most of this chapter is about
how to work with this interface.

8.1 Marker Particles and Voxels

We’ll begin with the simplest possible water simulator. Here we’ll use the
voxelized pressure solve covered first in Chapter 5, which only required us to
classify each grid cell as being fluid (i.e., water), empty (i.e., air), or solid.
While the solid cells should be straightforward to identify, determining
when to switch a cell to fluid or empty as water moves in or out of it due
to advection under the velocity field is the tricky part.

One possibility is to define an initial level set of the water, and advect
it using the sharp cubic interpolant. Even with the cubic, however, this
tends to have a lot of problems. Water splashing very naturally creates thin
structures, and as we noted before, fundamentally a level set on the grid
can’t reliable handle structures thinner than about two grid cells. Wherever
the water thins out, it will tend to soon simply vanish from the grid, as if
the water is rapidly evaporating. Droplets rarely can travel more than a
few grid cells before disappearing.

This is where we turn instead to marker particles, used all the way
back in Harlow and Welch’s seminal marker-and-cell paper, which also
introduced the MAC grid [HW65]. We begin the simulation by emitting

1In some numerical contexts, tracking and capturing are technical terms referring
to different approaches to solving this problem: tracking loosely corresponds to meth-
ods using explicit descriptions of surfaces, such as meshes, whereas capturing refers to
methods built on implicit descriptions of surfaces.

123
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water particles to fill the volume of water (presumably defined by a level
set) and viewing them as a sampling of the water geometry. If there are
sources adding water during the course of the simulation, we emit particles
from them as well. Within each advection step we move the particles
according to the grid velocity field, so that they naturally follow where
the water should be going—using RK2 or better, just like we did for semi-
Lagrangian trajectory tracing.2 Finally, we in turn use the marker particles
to mark which grid cells are fluid for the pressure solve: any non-solid cell
containing a marker particle is water, and the rest of the non-solid cells are
left empty by default.

This algorithm can be justified conceptually by imagining taking it
to the limit, where each individual molecule of water is identified with a
marker particle: then the set of grid cells containing marker particles is
exactly the set of grid cells containing water.

This raises the question of how densely to sample with marker particles
—clearly one per molecule isn’t practical! Obviously there should be at
least one particle per water grid cell, and to avoid gaps in the fluid ran-
domly opening up during advection we probably want at least double that
resolution: four particles per cell in 2D and eight per cell in 3D. However,
going above double won’t necessarily give much improvement: ultimately
these particles will be moved by velocities sampled at the grid resolution,
which places a limit on how much detail we can expect in the water geom-
etry. If higher-resolution geometry is required, the simulation grid must be
refined too.

As we discussed in Chapter 7, it’s a good idea to emit particles in a
random jittered pattern, not just a regular lattice. This is super important
for water marker particles: a shearing flow that compresses along one axis
and stretches along another can turn a regular lattice into weird anisotropic
stripe-like patterns, far from a good uniform sampling. Thus we require
at least jittering the initial grid, as one might do for sampling patterns in
rendering.

The first problem apparent with the marker particle approach is in
rendering: ultimately we want a smooth surface, describing the boundary
between water and air, but right now we only have a mass of points filling
the water volume. Clearly we don’t want to simply render the water-filled
voxels as blocks.

One option is to construct a smooth implicit surface wrapped around
the particles. For example, Blinn [Bli82] introduced blobbies: given the

2Just to remind you, for RK2 and many other integrators, we’ll need to look up fluid
velocity at locations that might not be inside the current water region, necessitating
extrapolation. We’ll get to that soon.
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positions of the particles {~xi} define

F (~x) =
∑

i

k

(‖~x− ~xi‖
h

)

,

where k is a suitable smooth kernel function and h is a user parameter in-
tended to be the extent of each particle. A Gaussian might be a reasonable
choice for k; a cheaper and simpler alternative would be a spline, such as

k(s) =

{

(1− s2)3 : s < 1,

0 : s ≥ 1.

This spline has the advantage that it depends only on s2, not s, allowing
one to avoid taking a square root when evaluating at s = ‖~x − ~xi‖/h.
The extent h should generally be several times the average inter-particle
spacing r, for example h = 3r, but it can be tweaked as needed. (For our
recommended sampling, r is half the grid spacing ∆x.) The blobby surface
is implicitly defined as the points ~x where F (~x) = τ for some threshold
τ , or in other words the τ -isocontour of F . A reasonable default for τ is
k(r/h), which produces a sphere of radius r for an isolated particle, but
this too can be a tweakable parameter.

Unfortunately, the blobby surface can have noticeable artifacts, chief
among them that it can look, well, blobby. Many water scenarios in-
clude expanses of smooth water; after sampling with particles and then
wrapping the blobby surface around the particles, generally bumps for
each particle become apparent. This is especially noticeable from spec-
ular reflections on the water surface, though it can be masked by foam or
spray. The bumps can be smoothed out to some extent by increasing the
h-parameter—however, this also smooths out or even eliminates small-scale
features we want to see in the render. Typically there is a hard trade-off
involved.

An improvement on blobbies is given by Zhu and Bridson [ZB05], where
instead the implicit surface function is given by

φ(~x) = ‖~x− X̄‖ − r̄,
where X̄ is a weighted average of nearby particle locations:

X̄ =

∑

i k
(

‖~x−~xi‖
h

)

~xi
∑

i k
(

‖~x− ~xi‖
h

)

and r̄ is a similar weighted average of nearby particle radii:

r̄ =

∑

i k
(

‖~x−~xi‖
h

)

ri
∑

i k
(

‖~x−~xi‖
h

) .
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For now we’ll take all the particle radii to be the same r, though better
results can be obtained if a particle’s radius is actually its distance to the
closest point on the desired water surface—see the paper by Adams et
al. [APKG07] for an example of how to compute this practically, using a
point-based fast marching algorithm similar to Corbett’s [Cor05]. Finally,
the surface is defined as the points ~x where φ(~x) = 0, the zero isocontour
or level set of φ. Once again, for an isolated particle this gives a perfect
sphere of radius r. The advantage of this formula over regular blobbies is
that it gives somewhat flatter, smoother results where the particles should
be sampling smooth geometry, and it is less sensitive to non-uniformities
in sampling; however, it does have the disadvantage of potentially intro-
ducing small-scale “chaff” in concavities (gaps) in the particle distribution.
Sampling this on a grid and doing a small amount of smoothing can be
helpful.

A faster and generally quite good option is to simply take a union-of-
balls, but sampled on a grid and turned into a level set. This can be done
efficiently by computing the distance to the particles on a grid, as in chapter
4, then subtracting the particle radius r (typically just a little less than the
grid cell size ∆x) from the distance to dilate those points by radius r. The
interior is typically far from signed distance at this point, even though the
exterior is fine: redistancing is needed where φ < 0. The resulting level set
can then be further processed, for example with a smoothing kernel, or a
hole-filling step where φi,j,k is replaced with the average of its neighbors if
and only if the average is less:

φavgi,j,k =
φoldi−1,j,k + φoldi+1,j,k + φoldi,j−1,k + φoldi,j−1,k + φoldi,j,k−1 + φoldi,j,k+1

6

φnewi,j,k =

{

φavgi,j,k : φavgi,j,k < φoldi,j,k

φoldi,j,k : otherwise.

This causes small holes to be filled as if shrink-wrapped, but never erodes
away the surface: its limit behavour if you iterate for a long time is to
reconstruct the convex hull of the original level set, so one or two iterations
could be considered a “local” convex hull operation.

While a level set of the water—created either by sampling a blobby func-
tion or using the union-of-balls construction—can be directly raytraced, it
is very common to then construct a mesh approximating the surface as
we discussed in Chapter 4, and potentially run further mesh fairing algo-
rithms to improve the quality of the result, or “shrink” it with averaging
to get closer to the underlying water particles. These meshes can then be
rendered very effectively.

One exciting direction taken in recent years is to skip the level set
construction and directly use a triangle mesh to track the surface of the
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water. While advecting a mesh through a velocity field is at first glance
no harder than advecting particles—just move the vertices like particles—
there are several problems that arise. First, the flow can deform the mesh
significantly, stretching some triangles to be too big or compressing oth-
ers to be too small, so remeshing operations are necessary, subdividing or
collapsing edges if they are too big or small respectively. Second, when
the water pinches off to separate a drop, or two parts of water are sup-
posed to merge, those topology change operations have to be carried out
in the mesh connectivity. Finally, numerical errors can cause the mesh
to collide with itself, self-intersecting when it is not supposed to. Re-
solving all these issues robustly and efficiently is hard! There are several
approaches to try [BB06,BB09,M0̈9,BBB10,WTGT10,WMFB11,DBG14].
Their promise is providing much higher quality tracking of small features,
like thin sheets and delicated ripples, but they haven’t yet been as “battle
tested” as marker particle methods, so I won’t go further here.

Getting back to marker particles: if we are using particles to track where
the water is, we may as well get the full benefit from them and use FLIP
instead of semi-Lagrangian methods for velocity advection. This leads to
a simulation step something like this:

1. From the particles, construct the level set for the liquid.

2. Transfer velocity (and any other additional state) from particles to the
grid, and extrapolate from known grid values to at least one grid cell
around the fluid, giving a preliminary velocity field ~u∗.

3. Add body forces such as gravity or artistic controls to the velocity field.

4. Construct solid level sets and solid velocity fields.

5. Solve for and apply pressure to get a divergence-free velocity ~un+1 that
respects the solid boundaries.

6. Update particle velocities by interpolating the grid update ~un+1−~u∗ to
add to the existing particle velocities (FLIP), or simply interpolating
the grid velocity (PIC), or a mix thereof.

7. Advect the particles through the divergence-free velocity field ~un+1.

8.2 More Accurate Pressure Solves

The methods we have developed so far still fall short when it comes to
visual plausibility. The culprit is the voxelized treatment of the free surface
boundary condition p = 0. Even if we can track and render an accurate
water surface, so far the core of the simulation—the pressure solve—only
sees a block voxelized surface, with some cells marked as water and some
as air. Thus the velocity field, and from there the motion and shape of the
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surface itself, cannot avoid significant voxel artifacts. For example, small
“ripples” less than a grid cell high do not show up at all in the pressure
solve, and thus they aren’t evolved correctly but rather persist statically in
the form of a strange displacement texture. Somehow we need to inform
the pressure solve about the location of the water-air interface within each
grid cell. More precisely, we are going to modify how we compute the
gradient of pressure near the water-air interface for updating velocities,
which naturally will also change the matrix in the pressure equations.3

The standard solution is to use the ghost fluid method, as laid out by
Gibou et al. [GFCK02]. We’ll illustrate this by looking at the update to
ui+1/2,j,k, which in the interior of the water would be

un+1
i+1/2,j,k = ui+1/2,j,k −

∆t

ρi+1/2,j,k

pi+1,j,k − pi,j,k
∆x

.

Suppose further that (i, j, k) is in the water, i.e., φi,j,k ≤ 0, and that
(i + 1, j, k) is in the air, i.e., φi+1,j,k > 0 (treating the case where it’s
the other way around will be obvious). The simple solver before then set
pi+1,j,k = 0. However, it would be more accurate to say that p = 0 at the
water-air interface, which is somewhere between (i, j, k) and (i + 1, j, k).
Linearly interpolating between φi,j,k and φi+1,j,k gives the location of the
interface at (i + θ∆x, j, k) where

θ =
φi,j,k

φi,j,k − φi+1,j,k
.

Linearly interpolating between the real pressure pi,j,k and a fictional “ghost”
pressure pGi+1,j,k, then setting it equal to zero at the interface, gives

(1− θ)pi,j,k + θpGi+1,j,k = 0

⇒ pGi+1,j,k = −1− θ
θ

pi,j,k

=
φi+1,j,k

φi,j,k
pi,j,k.

Now plug this into the velocity update:

un+1
i+1/2,j,k = ui+1/2,j,k −

∆t

ρ

φi+1,j,k

φi,j,k
pi,j,k − pi,j,k
∆x

= ui+1/2,j,k −
∆t

ρ

φi+1,j,k − φi,j,k
φi,j,k

pi,j,k
∆x

.

3Note that this is quite orthogonal to our previously covered accurate finite volume
approach to solid wall boundaries, where we use face area fractions to get better estimates
of fluid flow in and out of cells, independent of how the pressure updates velocity.
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The end effect in the matrix is to increase the diagonal. At this point you
should probably get worried about the case where φi,j,k = 0 or is very close
to zero—we are dividing by this quantity! This is a “safe” case, however,
in that boosting the diagonal of the matrix makes it simpler to solve and
(after Incomplete Cholesky preconditioning) better conditioned. Still, to
limit the possibility of numerical strangeness it is still wise to limit the
coefficient in the pressure update (φi+1,j,k − φi,j,k)/φi,j,k and matrix to
some maximum value, say 103.

A closely related solution, more in line with the volume fraction ap-
proach we’ve already used extensively, is to instead modify the fluid density
ρi+1/2,j,k to account for the fractions of the u-cell occupied by water versus
air. Compute ρi+1/2,j,k as the average fluid density in the u-cell, ignoring
solids. The ghost fluid method above is in fact equivalent to using ρair = 0
and estimating the volume fraction from just φi,j,k and φi+1,j,k. We can
in fact track the velocity field in the air, or use a smooth extrapolation of
the water velocity at each step, and solve for pressure in both water and
air using the true non-zero density of air. This leads to a full two-phase
flow simulator, though getting all the details right w.r.t. advection, level
set estimation, etc. requires a lot more work: see Boyd and Bridson’s arti-
cle [BB12], for example, for an approach to extending FLIP to water and air
mixes. Solving for pressure throughout water and air gives a much harder
linear system, but it does mean that the implied velocity field in the air
will be divergence-free so, in particular, air bubbles will be incompressible,
conserving their volume instead of collapsing as they do with the usual
p = 0 free surface condition. In fact, one can go even further and model
the thermodynamics governing air compressibility in bubbles, as Patkar et
al. showed [PAKF13].

8.3 Topology Change and Wall Separation

One of the trickiest parts of free surface flow, at least from a theoretical
perspective, is how separation occurs. Assuming the water starts off as
a path-connected component (meaning any two points in the water can
be connected by a continuous path going only in the water region), and
is advected only in a continuous velocity field, then it must remain path-
connected. In particular, a drop cannot separate from the rest of the water:
it will always remain connected by an ever-thinner tendril.

With level set and marker particle methods, it turns out this is not
a problem in practice: droplets separate quite naturally. However, the
theory indicates to us this is merely numerical error in fact, due to us
only sampling the liquid’s presence at a finite set of grid points and/or
particles. Unfortunately, there is no simple resolution to this problem,
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as the actual physics of topology change (separation, merging) is not yet
properly modeled at the continuum level. We will leave this, therefore, as
a problem to worry about in the middle of a sleepless night.

It is also worth pointing out, on the subject of topology change, that
water merging can cause some trouble too. At low speeds, more specifically
low velocities relative to the grid size divided by time step, two water
components merge the instant they come within one grid cell of each other,
due to our level set approach to describing the geometry to the pressure
solve. In splashing scenarios, this may even cause appreciable volume gain.
However, at high speeds (high velocities relative to grid cell divided by
time step) we can have the opposite problem: a water drop can penetrate
quite deeply into a solid wall or into another water region during advection,
effectively losing volume in the process.

Another related issue is how liquid can separate from solid walls. In
fact, exactly what happens at the moving contact line where air, water,
and solid meet is again not fully understood. Complicated physical chem-
istry, including the influence of past wetting (leaving a nearly invisible film
of water on a solid), is at play. What is clear is that our “no-stick” bound-
ary condition ~u · n̂ = ~usolid · n̂ both prevents water from penetrating into
a solid as well as separating from the surface of a solid. However, there is
no denying we can observe water separating from surfaces, albeit usually
leaving droplets or a wet film behind. Again, in practice using marker par-
ticles we find that numerical errors allow water to separate fairly naturally,
while also modeling cohesion of water to solids that looks quite reasonable
at small scales. However, the time of separation does depend critically and
unphysically on grid size and time step size, and at large scales the degree
of cohesion can look unnatural. Foster and Fedkiw [FF01] proposed a sim-
ple unsticking trick that only enforces ~u · n̂ ≥ ~usolid · n̂, which unfortunately
fails in several common scenarios; Batty et al. [BBB07] later demonstrated
a more robust, physically consistent, though expensive treatment inspired
by contact problems, extending the inequality constraint into a comple-
mentary condition with pressure (so pressure cannot exert more than a
critical suction at solid walls). Chentanez and Müller illustrate how this
condition can be efficiently solved with multigrid [CMF12].

8.4 Volume Control

Between iterative solves for pressure, truncation error in level set represen-
tations and errors in advection, as well as the topology change issues noted
above, it is not surprising that a typical water simulation doesn’t exactly
conserve the volume of water it begins with. Typically the errors are biased
to steadily lose volume, but noticeable volume gain can occur too. Kim et
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al. [KLL+07] demonstrate a simple correction to this drift by enforcing a
non-zero divergence control in the pressure projection step, similar to how
we can enforce expansion when heating up smoke.

8.5 Surface Tension

Another subject we’ll only briefly touch on is adding surface-tension forces
for small-scale water phenomena. This is, it should be warned, a subject
of ongoing research both within graphics and scientific computing. For ex-
ample, the test case of running a sphere of water at rest in zero-G with
surface tension (which should result in surface-tension forces exactly can-
celing pressure forces, so velocity remains zero) is surprisingly hard to get
right.

The physical chemistry of surface tension is conceptually simple. Water
molecules are more attracted to other water molecules than to air molecules,
and vice versa. Thus, water molecules near the surface tend to be pulled
in towards the rest of the water molecules and vice versa. In a way they
are seeking to minimize the area exposed to the other fluid, bunching up
around their own type. The simplest linear model of surface tension can
in fact be phrased in terms of a potential energy equal to a surface-tension
coefficient γ times the surface area between the two fluids (γ for water and
air at normal conditions is approximately 0.073J/m2). The force seeks to
minimize the surface area.

The surface area of the fluid is simply the integral of 1 on the boundary:

A =

∫∫

∂Ω

1.

Remembering our signed distance properties, this is the same as

A =

∫∫

∂Ω

∇φ · n̂.

Now we use the divergence theorem in reverse to turn this into a volume
integral:

A =

∫∫∫

Ω

∇ · ∇φ

Consider a virtual infinitesimal displacement of the surface, δx. This
changes the volume integral by adding or subtracting infinitesimal amounts
of the integrand along the boundary. The resulting infinitesimal change in
surface area is

δA =

∫∫

∂Ω

(∇ · ∇φ)δx · n̂.
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Thus, the variational derivative of surface area is (∇ · ∇φ)n̂. Our surface-
tension force is proportional to this, and since it is in the normal direction
we can think of it in terms of a pressure jump at the air-water interface (as
pressure only applies in the normal direction). Since air pressure is zero
in our free surface model, we have that the pressure at the surface of the
water is

p = γ∇ · ∇φ.
It turns out that κ = ∇·∇φ is termed the mean curvature of the surface,
a well-studied geometric quantity that measures how curved a surface is.

This property has been incorporated into the ghost fluid pressure dis-
cretization by Kang et al. [KFL00]. Here, we take the ghost pressures in
the air so that we linearly interpolate to γκ at the point where φ = 0,
rather than interpolating to zero. The mean curvature κ can easily be
estimated at that point by using the standard central difference for the
Laplacian, on trilinearly interpolated values of φ. Though not immediately
apparent, there is also a fairly severe stability restriction on the time step,
∆t ≤ O(∆x3/2

√

ρ/γ), since this is essentially an explicit treatment of the
surface-tension forces. Things are also rather more complicated at triple
junctions between water, solid, and air; we refer to Wang et al. [WMT05]
for more on this.

To ease the severe time step restriction, two interesting possibilities are
out there. One is to make the surface tension treatment more implicit in
time, solving for fluid motion which simultaneously will be incompressible
and act to minimize surface area (in balance with inertia). With a tetra-
hedral mesh discretizing the fluid, Misztal et al. have shown the power of
this approach [MEB+12], but it remains open how best to incorporate this
idea into a more conventional water solver. Alternatively, Sussman and
Ohta [SO09] have demonstrated a more stable evaluation of the surface
tension force compared to using a finite difference estimate of curvature:
essentially they run a smoothing PDE on the level set for a certain amount
of time, and measure the difference in level set values to arrive at a more
stable estimate of curvature.
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Fire

This is a short chapter: while the physics and chemistry of combustion can
be extraordinarily complicated, and to this day aren’t fully understood,
we will boil it down to a very simplified model. Our two main sources in
graphics are the papers by Nguyen et al. [NFJ02] for thin flames, and those
by Melek and Keyser [MK02] and Feldman et al. [FOA03] for volumetric
combustion. There are of course many other approaches that avoid fluid
simulation and directly model flames procedurally, but we will not cover
them in this book.

Combustion is simply a chemical reaction1 triggered by heat where an
oxidizer (like oxygen gas) and a fuel (like propane) combine to form a vari-
ety of products, giving out more heat in the process. Thus, at a minimum,
our fluid solver will need to be able to track fuel/oxidizer versus burnt prod-
ucts along with temperature—and if it’s not a clean flame, we also need
smoke concentration to track the resulting soot. In the following sections
we’ll take a look at two strategies for tracking the fuel/oxidizer appropriate
for different classes of combustion.

Just to clarify before proceeding: throughout this chapter we are assum-
ing that both fuel and oxidizer are either themselves gases, or suspended
in the air. If you analyze even a wood fire or a candle, you’ll find that
the flames are the result of gaseous fuel—pyrolyzed from the wood as it
heats up, or evaporated wax—not the solid itself directly. Thus when we
model a solid (or even liquid) object that is on fire, we treat it as a source
emitting gaseous fuel, which then burns. Part of the emission is enforcing
a velocity boundary condition ~u · n̂ = ~usolid · n̂ + uemission similar to the
usual moving solid wall boundary condition: gaseous fuel is injected into
the grid at this relative velocity uemission. In addition, fields describing the
presence of fuel (see the following sections) should have the appropriate
boundary condition for advection. Various authors have looked at further

1One of the complexities hidden here is that in most situations in reality, there are
actually hundreds of different chemical reactions in play, with a multitude of different
chemical species. For example, we all know that the gasoline burned in a car engine
doesn’t simply combine with the oxygen in the air to produce water and carbon dioxide:
a vast range of other chemicals from carbon monoxide to nitrous oxide to all sorts of
carbon structures in soot particles end up in the exhaust.
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eroding away the solid or liquid source as it emits gaseous fuel, which is
particularly important for thin objects like sheets of paper—see for exam-
ple the articles by Melek and Keyser [MK03] and Losasso et al. [LIGF06].
Whether or not (and where) a solid is emitting gaseous fuel is usually di-
rectly specified by the animator, often modulated by an animated texture
to produce more interesting effects, though procedural models simulating
the spread of fire according to burn rates or temperature thresholds can
also easily be concocted.

9.1 Thin Flames

Nguyen et al. [NFJ02] detail an approach to fire, in which the region where
combustion takes place is modeled as an infinitely thin flame front, i.e.,
a surface, not a volume. In addition, it’s assumed that fuel and oxidizer
are premixed before ignition, as in blow torches—while not really true for
other phenomena where the mixing of fuel and oxidizer is an integral part
of the fire (technically known as diffuse flames), the simplifying premixed
assumption can still serve just fine for a visually plausible result.

The flame front divides the fluid region into two parts: premixed
fuel/oxidizer on one side and burnt products (and/or background air) on
the other side. To track the flame surface we model it with a level set φ
sampled on the grid, as we did for water in Chapter 8.

The first problem to address is how to evolve the flame front: at what
speed does it move? If no combustion were taking place, the flame front
would be nothing more than the material interface between the two fluids—
just like the free surface in water simulation. Thus our first velocity term
is simply the fluid velocity: the flame front is advected along with the flow.
For definiteness (this will be important in a moment) we’ll use the velocity
of the unburnt fuel, ~ufuel. However, when combustion is taking place, the
flame front also is “moving:” fuel at the flame surface gets combusted into
burnt products, effectively shrinking the surface inwards. The simplest
model for this is to assume a constant burn speed S, the rate at which the
flame surface burns into the fuel region along the normal direction. Nguyen
et al. [NFJ02] suggest a default value of S = 0.5m/s. Assuming that φ is
negative in the fuel region by convention, this gives our level set equation

∂φ

∂t
+ ~ufuel · ∇φ = S. (9.1)

With S 6= 0, note that the volume of the fuel region is not conserved, and
thus a lot of the worries for tracking level sets for water don’t bother us
here—just the usual advection approaches can be used as if φ were any other
scalar, along with an addition of S∆t each time step, and perhaps periodic
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reinitialization to signed distance. Note also that if an object is supposed
to be on fire, a boundary condition forcing φ ≤ 0 on the burning sections
of its surface should be included; otherwise φ should be extrapolated into
solids to avoid artifacts near the surface, as with liquids.

As an aside, Hong et al. [HSF07] have more recently added additional
detail to this technique by using higher-order non-linear equations for the
speed and acceleration of the flame front (rather than keeping it as a con-
stant burn speed S). These promote the formation of “cellular patterns”
characteristic of some fires.

The next problem to address is how the fire affects the velocity field. If
the density of the burnt products is less than the density of the fuel mix
(as is often the case, either due to differences in a specific gas constant
or temperature), then conservation of mass demands that the fluid should
instantaneously expand when going through the flame front from the fuel
region to the burnt-products region. The rate of mass leaving the fuel
region per unit area is ρfuelS, which must match the rate of mass entering
the burnt region per unit area, ρburnt(S +∆V ), where ∆V is the jump in
the normal component of fluid velocity across the interface. Solving gives

∆V =

(

ρfuel
ρburnt

− 1

)

S.

Since the tangential component of velocity is continuous across the flame,
this means the full velocity satisfies the following jump at the flame front:

~uburnt = ~ufuel +∆V n̂

= ~ufuel +

(

ρfuel
ρburnt

− 1

)

Sn̂, (9.2)

where n̂ is the normal pointing outward from the fuel region into the burnt
region. This naturally defines a ghost velocity for use in advection: if you
trace through the flame front and want to interpolate velocity on the other
side, you need to add or subtract this change in normal velocity for the
advection to make sense (where normal, in this case, might be evaluated
from the normalized gradient of the level set φ wherever you happen to be
interpolating). This is one example of the ghost fluid method developed
by Fedkiw and coauthors.

This expansion also has to be modeled in the pressure projection step,
enforcing a non-zero divergence at the flame front—indeed, this is one of the
critical visual qualities of fire. The simplest discrete approach is to build
Equation (9.2) into the evaluation of divergence that defines the right-hand
side of the pressure equation. For example, when evaluating the divergence
at a cell where φ ≤ 0 (i.e., in the fuel region) then any of the surrounding
u-, v-, or w-velocity samples, where the averaged φ > 0 (i.e., in the burnt
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region) should be corrected by the x-, y- or z-component of −∆V n̂, respec-
tively. Similarly if φ > 0 at the cell center, then, at surrounding velocity
samples where the averaged φ ≤ 0, φ should be corrected by the appro-
priate components of +∆V n̂. This can be interpreted as yet another use
for divergence controls. When setting up the matrix in the pressure solve,
greater fidelity can be obtained by accounting for the different densities
of fuel and burnt products: this shows up as variable densities just as in
water or the advanced smoke model discussed earlier in the book. We can
estimate the density in, say, a u-cell (i+1/2, j, k) as a weighted average of
ρfuel and ρburnt:

ρi+1/2,j,k = αρfuel + (1− α)ρburnt,

where the weight α could be determined from the level set values φi,j,k and
φi+1,j,k:

α =







































1 : φi,j,k ≤ 0 and φi+1,j,k ≤ 0,

φi,j,k
φi,j,k − φi+1,j,k

: φi,j,k ≤ 0 and φi+ 1, j, k > 0,

1− φi,j,k
φi,j,k − φi+1,j,k

: φi,j,k > 0 and φi+ 1, j, k ≤ 0,

0 : φi,j,k > 0 and φi+1,j,k > 0.

This of course blends very elegantly with the variable density smoke solve,
where density is a function of temperature T and the specific gas constant
R; this constant R can be taken as different for the fuel region and the
burnt-products region.

Speaking of temperature, we don’t yet have a model for it. The simplest
approach is to keep a constant T = Tignition, the temperature at which
combustion starts, inside the fuel region and establish a discontinuous jump
to Tmax on the burnt products side of the flame front. The temperature
on the burnt side is advected and dissipated as before for smoke, but using
the trick that—just as was done for velocity above—when crossing over
the flame front and referring to a temperature on the fuel side, the “ghost”
value of Tmax is used. Let’s make that clear: the actual temperature T in
the fuel side is kept constant at Tignition, but when advecting and diffusing
T on the burnt side, if reference is made to a T value in the fuel (e.g., when
doing interpolation in semi-Lagrangian advection) Tmax is used instead.
For the extreme temperatures apparent in fires, hot enough to make an
incandescent glow, a black-body radiation formula for the decay of T might
be used instead of the simple exponential decay mentioned earlier, where
the rate of cooling is proportional to the fourth power of the temperature
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difference
DT

Dt
= −c

(

T − Tambient

Tmax − Tambient

)4

for some cooling constant c defined as a user parameter. After advecting
temperature around to get an intermediate T̃ for a time step ∆t, this
cooling equation can be solved analytically to give

T n+1 = Tambient +

[

1

(T̃ − Tambient)3
+

3c∆t

(Tmax − Tambient)4

]− 1
3

.

Similar to this treatment of temperature, we can also feed a smoke concen-
tration smax into the burnt region from the flame front, allowing it to be
advected and dissipated as usual. Temperature and smoke concentration
can feed into either a buoyancy force (if we make the Boussinesq approxi-
mation) or modify density, as discussed in Chapter 6.

The final issue is rendering, which mostly lies outside the scope of this
book. The actual flame front itself is sometimes referred to as the “blue
core,” referring to the spectral emissions made when burning typical hy-
drocarbons (other fuels give rise to different spectra, giving different col-
ors): the level set itself is a light emitter. For a dirty flame, where soot
is produced, the bulk of the visual effect though is the black-body incan-
descence of the soot particles. That is, light is emitted from the burnt
region as well, proportional to the smoke concentration s and following the
black-body spectrum for the temperature T . Simultaneously, the soot is
somewhat opaque, so light emitted elsewhere should be absorbed at a rate
proportional to s. Further scattering effects can be included of course.

9.2 Volumetric Combustion

We now turn to an alternate model where combustion may take place
throughout the volume, loosely following Feldman et al. [FOA03]. This is
appropriate particularly for modeling the fireballs due to deflagration of
fuel suspended in the air, whether flammable powder or liquid-fuel mist.
It’s also slightly simpler to implement than the preceding thin-flame model,
since level sets are not involved, yet it can still achieve some of the look of
regular flames and thus might be preferred in some instances.

To a standard smoke simulation, which includes temperature T , smoke
concentration s, and divergence controls, we add another field F , the con-
centration of unburnt fuel in each grid cell. The fuel gets advected along
with the flow as usual, may be additional diffused, and may be seeded at
fuel sources or emitted from boundaries. (In Feldman et al.’s work, fuel
is instead represented as the unburnt mass of discrete fuel particles; we’ll
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come back to using particle systems in grid-based fluid solvers in Chap-
ter 7.)

To this we add some simple rules. If the temperature T at a grid cell,
following advection and dissipation steps, is above some ignition threshold
Tignition and the fuel concentration F is above zero, we burn some of the
fuel. At the simplest we reduce F by z∆t, where z is the burn speed (vol-
ume fraction combusted per second), clamping it to zero to avoid negative
F . Let ∆F be the change in F ; we then increase the smoke concentration
s by some amount proportional to ∆F , increase the temperature T also
proportional to ∆F , and add an amount to the divergence control propor-
tional to ∆F/∆t (recall the divergence is percent expansion per unit of
time, thus we need to divide by ∆t). Note that this rule burns the fuel at
a constant rate z without regard to the availability of oxidizer; Feldman et
al. argue that for suspended particle explosions (coal dust, sawdust, flour,
etc.) oxygen availability in the air is never the limiting factor, and thus
this rule is justified. However, if need be you could limit the rate based on
1− s− F , the volume fraction left for plain air.

Rendering is based on black-body radiation as in the previous section,
though here we don’t have any representation of the “blue core” available
so the rendering possibilities are slightly more limited.
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Viscous Fluids

After briefly discussing viscosity in Chapter 1, we dispensed with it and un-
til now have only looked at inviscid simulations. In fact our major problem
has been that our numerical methods have too much numerical dissipation
which, in the velocity field, looks like viscosity. We now will turn our at-
tention to simulating highly viscous fluids, like molasses, and even variable
viscosity fluids where some parts are more viscous than others perhaps due
to heating or cooling, or desired animation effects.

10.1 Stress

To properly understand viscosity and avoid some potential mistakes when
handling variable viscosity situations, we need to first understand the con-
cept of stress.

In reality, at least as a first approximation, matter is composed of small
particles with mass that interact by applying forces on each other. However,
since we’re not interested in phenomena at that microscopic scale, in fluid
mechanics we make the continuum assumption, that matter is a continuous
field with no discrete particles. One way of thinking about this assumption
is that we’re taking the limit as the particles become infinitesimally small
and packed together with infinitesimal space between them. For dynamics
this poses the problem that the masses drop to zero, and for accelerations
to remain bounded the forces must drop to zero too. To get around this,
we measure things in bulk: how much mass there is in a volume of space,
or what the net force is on a volume.

While it makes no sense to ask what the mass of a continuum fluid is
at a point in space (it has to be zero), we can define the density at any
point, which is a useful quantity. By integrating density in a volume we get
the total mass of the volume. Similarly it makes no sense to ask what the
force on a continuum fluid is at a point in space (it has to be zero), but we
can define quantities analogous to density: force densities in a sense, that
when integrated over a region give a net force.

We’ve already seen two examples of force density, body forces (such as
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gravity) and pressure. These are fundamentally different however: to get
the net gravitational force on a region of fluid you integrate the gravita-
tional body force density ρ~g over the volume, but to get the net pressure
force on the volume you integrate the pressure times the normal pn̂ over
the surface of the region. The difference is that a body force acts over
a distance to influence everything inside the volume, whereas other forces
(like pressure) can only act locally on the surface of contact. It is these
local contact forces that we need to generalize from pressure to figure out
viscosity and more exotic fluid effects.

An accepted assumption (verified to be accurate in many experiments),
called Cauchy’s Hypothesis, is that we can represent the local contact forces
by a function of position and orientation only. That is, there is a vector
field called traction, ~t(~x, n̂), a function of where in space we are measuring
it and what the normal to the contact surface there is. It has units of force
per area: to get the net contact force on a volume of fluid Ω, we integrate
the traction over its surface:

~F =

∫∫

∂Ω

~t(~x, n̂).

I’d like to underscore here that this volume can be an arbitrary region
containing fluid (or in fact, any continuum substance); e.g., it could be a
tiny subregion in the interior of the fluid, or a grid cell, etc.

Once we accept this assumption, it can be proven that the traction
must depend linearly on the normal; that is, the traction must be the
result of multiplying some matrix by the normal. Technically speaking this
is actually a rank-two tensor, not just a matrix, but we’ll gloss over the
difference for now and just call it a tensor from now on.1 The tensor is
called the stress tensor, or more specifically the Cauchy stress tensor,2

which we label σ. Thus we can write

~t(~x, n̂) = σ(~x)n̂.

Note that the stress tensor only depends on position, not on the surface
normal. It can also be proven from conservation of angular momentum
that the stress tensor must be symmetric: σ = σT .

1Basically a matrix is a specific array of numbers; a rank-two tensor is a more ab-
stract linear operator that can be represented as a matrix when you pick a set of basis
vectors with which to measure it. For the purposes of this book, you can think of them
interchangeably, as we will always use a fixed Cartesian basis where y is in the vertical
direction.

2There are other stress tensors, which chiefly differ in the basis in which they are
represented. For elastic solids, where it makes sense to talk of a rest configuration to
which the object tries to return, it can be convenient to set up a stress tensor in terms of
rest-configuration coordinates, rather than the world-space coordinates in which Cauchy
stress operates.
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Since the unit normal has no units, the stress tensor is also measured as
force per area, just like traction. However, it’s a little harder to interpret;
it’s easier instead to think in terms of traction on a specific plane of contact.

As a concrete example using continuum materials that are a little easier
to experience, put your hand down on a flat desk. The flesh of your hand
and the wood of the desk are essentially each a continuum, and thus there
is conceptually a stress tensor in each. The net force you apply on the desk
with your hand is the integral of the traction over the area of contact. The
normal in this case is the vertical vector (0, 1, 0), so the traction at any
point is

~t = σn̂ =





σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33









0
1
0



 =





σ12
σ22
σ32



 .

Note that the normal force comes from the vertical component σ22 of
traction—how hard you are pushing down on the desk. The other com-
ponents of the traction, σ12 and σ32, are tangential—how hard you are
pushing the desk forwards, backwards, or to the side.

Those tangential forces are due to friction; without it there could only be
a normal force. Viscosity is in many ways similar to friction, in particular
that a fluid without viscosity only exerts forces in the normal direction.
That is, the traction ~t = σn̂ in an inviscid fluid is always in the normal
direction: it must be parallel to n̂. Since this is true for any normal vector,
it can be proven that the stress tensor of an inviscid fluid must be a scalar
times the identity. That scalar is, in fact, the negative of pressure. Thus,
for the inviscid case we have considered up until now, the stress tensor is
just

σ = −pδ, (10.1)

where we use δ to mean the identity tensor. When we model viscosity, we
will end up with a more complicated stress tensor that can give tangential
tractions.

10.2 Applying Stress

The net force due to stress on a volume Ω of fluid is the surface integral of
traction:

~F =

∫∫

∂Ω

σn̂.

We can use the divergence theorem to transform this into a volume integral:

~F =

∫∫∫

Ω

∇ · σ.
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Note that the notation ∇·σ is the accepted short-hand for the vector whose
elements are the divergences of the rows (or columns) of σ:

∇ · σ =







∂σ11

∂x + ∂σ12

∂y + ∂σ13

∂z
∂σ21

∂x + ∂σ22

∂y + ∂σ23

∂z
∂σ31

∂x + ∂σ32

∂y + ∂σ33

∂z






.

Ignoring body forces for simplicity, we set this net force equal to the mass
times center-of-mass acceleration:

~F =M ~A =

∫∫∫

Ω

ρ
D~u

Dt
,

i.e., we have an equality between the two volume integrals:

∫∫∫

Ω

ρ
D~u

Dt
=

∫∫∫

Ω

∇ · σ.

Since this holds for any arbitrary volume, the integrands must be equal:

ρ
D~u

Dt
= ∇ · σ.

Adding back in the body force term, we actually have the general momen-
tum equation for a continuum (elastic solids as well as fluids):

D~u

Dt
=

1

ρ
~g +

1

ρ
∇ · σ.

In the particular case of an inviscid fluid, as we discussed above, the
stress tensor is just the negative of pressure times the identity—see Equa-
tion (10.1). In this case, it’s not hard to see that ∇ · σ simplifies to −∇p,
giving the familiar momentum equation.

For general fluid flow, pressure is still a very important quantity, so we
will explicitly separate it out from the rest of the stress tensor:

σ = −pδ + τ,

where τ is also a symmetric tensor. We will let the pressure term handle
the incompressibility constraint and model other fluid behavior with τ .

10.3 Strain Rate and Newtonian Fluids

Our model of viscosity is physically based on the fact that when molecules
traveling at different speeds collide or closely interact, some energy may
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be transferred to vibrational or rotational modes in the molecule—i.e.,
heat —and thus the difference in center-of-mass velocity between the two
molecules is reduced. At the continuum level, the net effect of this is that
as a region of fluid slips past another, momentum is transferred between
them to reduce the difference in velocity, and the fluids get hotter. The
critical thing to note is that this occurs when fluid moves past other fluid:
in a rigid body rotation there are differences in velocity, but the fluid moves
together and there is no viscous effect. Thus we really only care about how
the fluid is deforming, that is how far from rigidly moving it is.

To measure differences in velocity locally, the natural quantity to con-
sider is the gradient of velocity: ∇~u. However, mixed up in the gradient
is also information about the rigid rotation3 as well as the deformation
induced by the flow. We will want to separate out just the deformation
part to define viscous stress.

One way to characterize rigid motion is that the dot-product of any
two vectors remains constant. (If the two vectors are the same, this is
just saying lengths remains constant; for different vectors we’re saying the
angle between them also stays the same.) How much the dot-product
between two vectors changes is thus a measure of how fast the fluid is
deforming. Let’s look at a point ~x: in a small time interval ∆t it moves
to approximately ~x+∆t~u(~x). Now look at two nearby points, ~x+∆~x and
~x+∆~y: linearizing appropriately, they approximately move to

~x+∆~x +∆t(~u(~x) +∇~u∆~x)
and ~x+∆~y +∆t(~u(~x) +∇~u∆~y),

respectively. The dot-product of the vectors from ~x to these points begins as

[(~x+∆~x)− ~x] · [(~x+∆~y)− ~x] = ∆~x ·∆~y

and after the time interval is approximately

[(~x+∆~x+∆t(~u(~x) +∇~u∆~x))− (~x+∆t~u(~x))]

· [(~x+∆~y +∆t(~u(~x) +∇~u∆~y))− (~x+∆t~u(~x))]

= [∆~x +∆t∇~u∆~x] · [∆~y +∆t∇~u∆~y] .

Then the change in the dot-product, ignoring O(∆t2) terms, is

∆t (∆~x · ∇~u∆~y +∆~y · ∇~u∆~x) = ∆t∆~xT
(

∇~u +∇~uT
)

∆~y.

That is, the rate of change of dot-products of vectors in the flow is de-
termined by the symmetric part of the velocity gradient, the matrix D =

3Later in the book, we will take a look at the curl of velocity which is called vorticity,
~ω = ∇× ~u; it measures precisely the rotational part of the velocity field.
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1
2 (∇~u+∇~uT ). This is called the strain rate tensor or rate of strain, since
it’s measuring how fast strain—the total deformation of the continuum—is
changing.

Incidentally, the rest of the velocity gradient, the skew-symmetric part
1
2 (∇~u − ∇~uT ) naturally has to represent the other source of velocity dif-
ferences in the flow: rotation. We’ll explore this further later in the
book.

We’ll also immediately point out that for incompressible fluids, which
is all we focus on in this book, the trace of D (the sum of the diagonal
entries, denoted tr(D)) is simply ∇ · ~u = 0.

We are looking for a symmetric tensor τ to model stress due to viscosity;
the rate of strain tensor D is symmetric and measures how fast the fluid is
deforming. The obvious thing to do is assume τ is proportional to D. Flu-
ids for which there is a simple linear relationship are called Newtonian.
Air and water are examples of fluids which are, to a very good approxima-
tion, Newtonian. However, there are many liquids (generally with a more
complex composition) where a non-linear relationship is essential; they go
under the catch-all category of non-Newtonian fluids.4 We won’t go into
any more detail, except to say that two classes of non-Newtonian fluids,
shear-thickening and shear-thinning fluids, can be easily modeled with
a viscosity coefficient µ that is a function of ‖D‖F , the Frobenius norm of
the strain rate:5

‖D‖F =

√

√

√

√

3
∑

i,j=1

D2
i,j .

Often a power-law is assumed:

µ = K‖D‖n−1
F , (10.2)

where n = 1 corresponds to a Newtonian fluid, n > 1 a shear-thickening
fluid where apparent viscosity increases as you try to deform the fluid faster
(e.g., cornstarch suspended in water), and 0 < n < 1 a shear-thinning

4Also sometimes included in the non-Newtonian class are viscoelastic fluids, which
blur the line between fluid and solid as they can include elastic forces that seek to return
the material to an “undeformed” state—in fact these are sometimes best thought of
instead as solids with permanent (plastic) deformations. You might refer to the article
by Goktekin et al. [GBO04] and Irving’s thesis [Irv07] for a fluid-centric treatment in
graphics.

5Technically this is assuming again that the fluid is incompressible, so the trace of
D is zero, which means it represents only shearing deformations, not expansions or
contractions.
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fluid where apparent viscosity increases as the fluid comes to rest (e.g.,
paint). Granular materials such as sand can even be modeled as the limit
n = 0 of shear-thinning where the magnitude of “viscous” stress depends
instead on pressure, not the magnitude of the strain rate, making it more
akin to dry Coulomb friction; see Zhu and Bridson [ZB05] for more on
this subject.

Getting back to simple Newtonian fluids, the relationship for incom-
pressible flow is

τ = 2µD + λtr(D)δ, (10.3)

where µ is the coefficient of dynamic viscosity. The second term, in-
volving tr(D) = ∇ · ~u, is of course zero for incompressible flow for any λ
(which is termed the second coefficient of viscosity, and is also associ-
ated with the term “bulk viscosity,” i.e. viscous resistance to changing bulk
a.k.a. volume). For compressible flow λ is often taken to be − 2

3µ, though
theoretically this is only an idealization of monatomic gases. However, for
an incompressible fluid we are free to choose λ as we please,6 and thus for
simplicity’s sake we’ll set λ = 0 for now.

Plugging this into the momentum equation, we get

D~u

Dt
+

1

ρ
∇p = 1

ρ
∇ ·
(

µ(∇~u+∇~uT )
)

. (10.4)

You may notice that this isn’t quite the same as our first statement of the
momentum equation, Equation (1.1). It turns out that for the common
case where µ is constant, the correct equation (10.4) does in fact simplify to
Equation (1.1): but be aware, for simulations with variable viscosity, only
Equation (10.4) is correct. For example, Equation (1.1) doesn’t conserve
angular momentum in the variable viscosity case. The simplification also
is unhelpful in applying the correct free surface boundary condition (see
below), which is critical for viscous liquid simulations, and since highly
viscous gases are rarely of interest for graphics, I actually recommend not
bothering with the simplification, since it’s hardly ever useful.

However, for completeness’ sake, let’s work through the simplification
so it at least doesn’t remain a mystery. If µ is constant, then we can take

6This isn’t quite true: for λ < −
2

3
µ, basic thermodynamics are violated, with viscos-

ity actually accelerating expansion or contraction, increasing the energy of the system.
In a numerical method, where divergence probably isn’t exactly zero even for incom-
pressible flow, problems are bound to arise.
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it out from under the divergence:

D~u

Dt
+

1

ρ
∇p = µ

ρ
∇ · (∇~u+∇~uT )

=
µ

ρ

[

∇ · ∇~u +∇ · (∇~uT )
]

=
µ

ρ









∇ · ∇~u+









∂
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∂z (

∂u
∂x + ∂v

∂y + ∂w
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.

In the last step we simply changed the order of partial derivatives in the
last term and regrouped. But now we see that the last term is simply the
gradient of ∇ · ~u:

D~u

Dt
+

1

ρ
∇p = µ

ρ
[∇ · ∇~u+∇(∇ · ~u)] .

If the flow is incompressible, i.e., ∇ · ~u = 0. Finally, substituting the
kinematic viscosity ν = µ/ρ in, we end up back at Equation (1.1).
I emphasize that this only happens when both the viscosity is constant
through the flow and the velocity field is incompressible. The second point
also becomes important numerically since at intermediate stages in our
time integration our velocity field may not be discretely incompressible—
and then this last term can’t be blithely ignored.

Getting back to variable viscosity, some formula needs to be decided
for µ. For a non-Newtonian fluid, it might be a function of the magnitude
of the strain rate, as we have seen. For regular Newtonian fluids it might
instead be a function of temperature—assuming we’re tracking tempera-
ture in the simulation as we saw how to do with smoke and fire—which is
most important for liquids. Carlson et al. [CMIT02] suggest that modeling
melting and solidifying (freezing) can be emulated by making the viscosity
a low constant for temperatures above a transition zone (centered on the
melting point) and a high constant for temperatures below the transition
zone (thus giving near-rigid behavior), and smoothly varying between the
two in the narrow transition zone itself.
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10.4 Boundary Conditions

The two types of boundaries considered in this book are free surfaces
and solid walls, and each has particular conditions associated with
viscosity.

In the case of a free surface, things are fairly straightforward. On the
other side of the boundary there is a vacuum, or another fluid of much
smaller density whose effect we assume is negligible. Thus there is nothing
with which to transfer momentum: there can be no traction at the free
surface. In other words, the boundary condition for the stress at the free
surface is

σn̂ = −pn̂+ τn̂ = 0.

Note that if the viscous stress τ is zero, this reduces to p = 0 as before;
however, this becomes significantly more complex when τ isn’t zero. In
terms of the velocity, and assuming no special treatment of bulk viscosity,
this condition is:

−pn̂+ (∇~u +∇~uT )n̂ = 0.

In particular, the true free surface condition is quite different from sep-
arately specifying p = 0 and ∇~u · n̂ = 0, an erroneous and physically
meaningless boundary condition which unfortunately crops up regularly in
research papers. Batty and Bridson [BB08] worked through the first cor-
rect treatment of a viscous free surface in graphics, illustrating how this
error destroys many of the critical visual features in highly viscous flow.

At solid walls, things are also a little different. Physically speaking
once we model viscosity, it turns out the velocity field must be continuous
everywhere: if it weren’t, viscous transfer of momentum would in the next
instant make it continuous again. This results in the so-called no-slip
boundary condition:

~u = ~usolid,

which of course simplifies to ~u = 0 at stationary solids. Recall that in the
inviscid case, only the normal component of velocities had to match: here
we are forcing the tangential components to match as well.

The no-slip condition has been experimentally verified to be more ac-
curate than the inviscid no-stick condition. However, the caveat is that in
many cases something called a boundary layer develops. Loosely speak-
ing, a boundary layer is a thin region next to a solid where the tangential
velocity rapidly changes from ~usolid at the solid wall to ~u⋆ at the other side
of the layer, where ~u⋆ is the velocity the inviscid no-stick boundary condi-
tion (~u · n̂ = ~usolid · n̂) would have given. That is, the effect of viscous drag
at the surface of the solid is restricted to a very small region next to the
solid, and can be ignored elsewhere. When we discretize the fluid flow on
a relatively coarse grid, that boundary layer may be much thinner than a
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grid cell, and thus it’s no longer a good idea to implement the no-slip con-
dition numerically—we would artificially be expanding the boundary layer
to at least a grid cell thick, which would be a much worse approximation
than going back to the inviscid no-stick boundary condition. In this case,
we have

~u · n̂ = ~usolid · n̂,
(τn̂)× n̂ = 0,

where the second boundary equation is indicating that the viscous stress
causes no tangential traction. There is even an intermediate case, the
Navier slip condition, which allows some tangential slip but also some tan-
gential “drag” at the solid surface. However, for simplicity’s sake, we will
stick with the simpler no-slip condition for the rest of the chapter.

10.5 Implementation

The first simplification we will make is to use time-splitting again, handling
viscosity in a separate step from advection and body forces. It can be
profitably combined with the pressure solve, enforcing incompressibility
while simultaneously integrating viscous effects, which sometimes is called
an “unsteady Stokes” solve.7 Batty and Bridson [BB10] show how, if you
solve for p and the components of τ you can still do this with an SPD
matrix, and use the same linear solver code as we used for pressure.

However, for this book, we’ll take one more common simplification,
time splitting viscosity from pressure projection. That is, we’ll project out
pressure to make the flow incompressible, and then solve for the effect of
viscosity on velocity. For one time step ∆t, this update is

∂~u

∂t
=

1

ρ
∇ ·
(

µ(∇~u +∇~uT )
)

,

with any or all of the boundary conditions given above. Although we will
use the full form of viscosity in equation (10.4), which can help damp away
any remaining divergence in the field, this step can also trade reduced a
shear rate for an increased divergence, so it’s generally necessary to perform
a second pressure projection afterwards, before continuing with advection
in the resulting velocity field.8

7Stokes flow, as opposed to Navier-Stokes, is used to model slow-moving and viscous
incompressible flow; it is what you get when you drop the nonlinear ~u ·∇~u term from the
momentum equation arguing it is a negligible high-order effect, reducing the equations
to much simpler linear equations.

8Increasing the bulk viscosity coefficient λ to a substantial positive multiple of µ can
lessen the need for a second projection, but also causes convergence troubles for the
linear solver in an implicit step, so it’s probably cheaper nevertheless to stick with a
second projection.
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Likewise, we will time split the boundary conditions, enforcing p = 0
at free surfaces and ~u · n̂ = ~usolid · n̂ at solid boundaries in the pressure
solve, and then (∇~u +∇~uT )n̂ = 0 at free surfaces and ~u = ~usolid at solid
boundaries in the viscous solve.

Staggered grids make life easier for viscosity, as they did for pressure.
Let’s take a look at the contribution to the horizontal component of velocity,
given the viscous stress tensor τ :

un+1 = uP +
∆t

ρ

(

∂τ11

∂x
+
∂τ12

∂y
+
∂τ13

∂z

)

.

(Here I am using uP as the velocity field after pressure projection, and
un+1 is the finalized velocity field after viscosity is included.) Since u is
located in the grid at, say, (i+1/2, j, k), it’s natural to ask for τ11 to be at
grid cell centers (i, j, k), for τ12 to be at the edge-center (i+1/2, j+1/2, k),
and for τ13 at (i+ 1/2, j, k + 1/2). This gives an elegant discretization:

un+1
i+1/2,j,k = uPi+1/2,j,k +

∆t

ρ

(

τ11i+1,j,k − τ11i,j,k
∆x

+
τ12i+1/2,j+1/2,k − τ12i+1/2,j−1/2,k

∆x
+
τ13i+1/2,j,k+1/2 − τ13i+1/2,j,k−1/2

∆x

)

.

Similarly for the other components of velocity:

vn+1
i,j+1/2,k = vPi,j+1/2,k +

∆t

ρ

(

τ12i+1/2,j+1/2,k − τ12i−1/2,j+1/2,k

∆x

+
τ22i,j+1,k − τ22i,j,k

∆x
+
τ23i,j+1/2,k+1/2 − τ23i,j+1/2,k−1/2

∆x

)

,

wn+1
i,j,k+1/2 = wP

i,j,k+1/2 +
∆t

ρ

(

τ13i+1/2,j,k+1/2 − τ13i−1/2,j,k+1/2

∆x

+
τ23i,j+1/2,k+1/2 − τ23i,j−1/2,k+1/2

∆x
+
τ33i,j,k+1 − τ33i,j,k

∆x

)

.

Note that these formulas make use of the symmetry of τ , e.g., τ12 = τ21.
In 2D, they simplify the obvious way. But how do we determine the values
of τ on the staggered grid?
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10.5.1 Explicit Treatment

The simplest thing of all is to just use central differences on the given
velocity field. From the definition τ = µ(∇~u +∇~uT ) we get

τ11i,j,k = 2µi,j,k

uPi+1/2,j,k − uPi−1/2,j,k

∆x

τ12i+1/2,j+1/2,k =

µi+1/2,j+1/2,k

(

uPi+1/2,j+1,k − uPi+1/2,j,k

∆x
+
vPi+1,j+1/2,k − vPi,j+1/2,k

∆x

)

τ13i+1/2,j,k+1/2 =

µi+1/2,j,k+1/2

(

uPi+1/2,j,k+1 − uPi+1/2,j,k

∆x
+
wP

i+1,j,k+1/2 − wP
i,j,k+1/2

∆x

)

τ22i,j,k = 2µi,j,k

vPi,j+1/2,k − vPi,j−1/2,k

∆x

τ23i,j+1/2,k+1/2 =

µi,j+1/2,k+1/2

(

vPi,j+1/2,k+1 − vPi,j+1/2,k

∆x
+
wP

i,j+1,k+1/2 − wP
i,j,k+1/2

∆x

)

τ33i,j,k = 2µi,j,k

wP
i,j,k+1/2 − wP

i,j,k−1/2

∆x

This can be simplified in the obvious way for 2D.
Beyond boundaries, we need ghost velocity values to plug into these

formulas. For viscous solid walls with the no-slip condition, it’s natural to
simply use the solid velocity itself. For free surfaces we have to be a little
more careful. The obvious first approach to try is to just extrapolate the
velocity into the air, as we have done before, effectively setting ~u at a point
in the air to the velocity at the closest point on the surface.

However, this simple extrapolation induces a non-negligible error. As
a thought experiment, imagine a blob of fluid moving rigidly in free flight:
it has zero deformation since its internal velocity field is rigid, therefore it
should experience no viscous forces—i.e., τ should evaluate to zero, even
at the boundary. However, if a rigid rotation is present, τ only evaluates
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to zero if the ghost velocities keep that same rotation: extrapolating as
a constant doesn’t, and will induce erroneous viscous resistance at the
boundary. Ideally a more sophisticated extrapolation scheme such as linear
extrapolation should be used. That said, at present our first-order time-
splitting of advection from pressure also will induce a similar erroneous
drag on rotational motion, which we’ll discuss in Chapter 11. Reducing
one error but not the other is probably not worth the bother, and thus
we’ll leave this question open for further research.

The chief problem with the method as presented is stability. Unfortu-
nately this method is liable to blow up if ∆t is too large. Let’s examine a
simple 1D model diffusion problem to understand why,

∂q

∂t
= k

∂2q

∂x2
,

where q models a velocity component and k models µ/ρ, the kinematic
viscosity. Our explicit discretization would give

qn+1
i = qni +∆tk

qni+1 − 2qni + qni−1

∆x2
.

Consider the highest spatial-frequency component possible in the numerical
solution, say qni = Qn(−1)i. Here Qn is the time n scalar coefficient mul-
tiplying the ±1 underlying basis function, with grid index i the exponent
of (−1). Plug this in to see what Qn+1 is:

Qn+1(−1)i = Qn(−1)i +∆tk
Qn(−1)i+1 − 2Qn(−1)i +Qn(−1)i−1

∆x2

= Qn(−1)i
(

1 +
∆tk

∆x2
(−1− 2− 1)

)

= Qn(−1)i
(

1− 4∆tk

∆x2

)

,

Qn+1 =

(

1− 4∆tk

∆x2

)

Qn.

This can only exponentially and monotonically decay, as we would expect
viscosity to do, if

∆t <
∆x2

4k
.

Otherwise we end up with q oscillating in time—a physically incorrect
vibration—and possibly even exponential increase, which is thermodynam-
ically impossible and potentially disastrous numerically.

For the full 3D viscous problem, a similar time step restriction applies:

∆t <
∆x2ρ

12µmax
. (10.5)
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This is pretty severe: while we discussed the merit of restricting ∆t to be
O(∆x) to control errors in advection, this possibly reduces it a whole order
of magnitude further. More to the point, there is no accuracy requirement
to keep ∆t this small: the physics of viscous dissipation essentially boils
down to the exponential decay of deformation modes, which can be well
approximated even with large time steps. In numerical lingo, this means
that the problem is stiff : accuracy is saying it should be fine to take large
∆t, but stability is requiring punishingly small ∆t. The usual numerical
solution is to use implicit time integration.

10.5.2 Implicit Treatment

The simplest implicit time integration scheme is called backward Euler.
In this case it means rather than evaluating the stress tensor based on the
old velocities ~un, we’ll base it on the new velocities ~un+1, which of course,
we don’t know yet, until we get the stress tensor—which again depends on
knowing the new velocities. This isn’t a paradox: it’s merely an implicit

definition of the new velocities, giving us simultaneous equations we must
solve to find them.

Let’s first do it with the 1D model problem from the last section. The
backward Euler discretization is

qn+1
i = qni +∆tk

qn+1
i+1 − 2qn+1

i + qn+1
i−1

∆x2
.

This is the ith linear equation: we can complete the system by enforcing,
say, no-slip boundary conditions q0 = qm+1 = 0, leaving m equations in m
unknowns qn+1

1 , . . . qn+1
m . Rearranging gives

−∆tk

∆x2
qn+1
i+1 +

(

1 +
2∆tk

∆x2

)

qn+1
i − ∆tk

∆x2
qn+1
i−1 = qni .

This can now be thought of as a classic matrix-times-unknown-vector-
equals-known-vector problem,

(

I +
∆tk

∆x2
A

)

qn+1 = qn,

where I is the identity matrix, and A is a tridiagonal matrix with 2 down
the main diagonal and −1 along the sub- and super-diagonals:

A =











2 −1
−1 2 −1

. . .
. . .

. . .

−1 2











.
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This is almost the same, up to scaling, as a 1D version of the Poisson prob-
lem for pressure, except now we are increasing the positive diagonal entries
even further. The matrix is symmetric positive definite—in fact slightly
better conditioned than the pressure matrix thanks to the incremented
diagonal—and so solving it with PCG works very efficiently.

Does this solve the stability problem? Well, let’s rewrite the ith equa-
tion again:
(

1 +
2∆tk

∆x2

)

qn+1
i =

∆tk

∆x2
qn+1
i+1 +

∆tk

∆x2
qn+1
i−1 + qni

⇒ qn+1
i =

(

∆tk/∆x2

1 + 2∆tk/∆x2

)

qn+1
i+1 +

(

∆tk/∆x2

1 + 2∆tk/∆x2

)

qn+1
i−1

+

(

1

1 + 2∆tk/∆x2

)

qni .

That is, the new value at a grid point is a weighted average (with guar-
anteed positive weights, summing to 1) of its neighbors’ new values and
the old value at that grid point. Here we’re including ghost values of q in
the boundaries for some of those averages. Therefore, the maximum new
value of q has to be less than or equal to the maximum old value of q, and
similarly the minimum new value of q has to be greater than or equal to
the minimum old value. So unstable growth is impossible. A more detailed
analysis further can prove that spurious oscillations (the unphysical vibra-
tion we could hit before) are ruled out as well. This is all true no matter
how large ∆t is taken: it’s unconditionally stable and monotone!9

10.5.3 Variational Form of Implicit Integration

Before we get back to the full 3D problem of viscosity, we will take one
more step with this 1D model problem. The issue is that the free surface
boundary condition in 3D, (∇~u+∇~uT )n̂ = 0, is difficult to directly incor-
porate into finite differences. To make progress, we need another tool in
our belt: the calculus of variations. We hinted at this before in Chapter
8, discussing surface tension. Here we will use it to rephrase an implicit,
Backwards Euler step as the search for a velocity field which minimizes a
special quantity. Batty and Bridson [BB08] introduced this numerical ap-
proach to viscosity specifically because it naturally captures the free surface
boundary condition without any extra work.

This might just be the most intimidating bit of math in this book. I’m
including it because I think it is one of the most wonderful tools in applied

9This of course doesn’t mean we’re necessarily getting the correct answer if ∆t is very
large—there is still an approximation error. However, a Fourier analysis can show that
for large ∆t the only “problem” is that the diffusion, the exponential decay of all the
deformation modes, is effectively slower than it should be, though it still takes place.
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mathematics, and worth seeing, but if you have a tough time following this,
don’t worry: you can skip on to the next section and just trust that the
math there can be justified.

Instead of discretizing first in space and then in time, let’s discretize
the 1D problem ∂q/∂t = k∂2q/∂x2 first in time, with Backwards Euler:

qn+1 = qn +∆tk
∂2qn+1

∂x2
.

We will want the analog of free-surface boundaries, by setting ∂q/∂x = 0
at x = 0, 1. We already have an idea that the solution qn+1 will be like
a smoothed out version of qn: the smaller ∆tk is the closer qn+1 will be
to qn, and the bigger ∆tk is the more it will be smoothed out to a fully
diffused constant average value.

For any 1D function q, take a look at this special combination of inte-
grals on the interval [0, 1]:

E[q] =

∫ 1

0

1

2

(

q(x) − qn(x)
)2

dx+

∫ 1

0

∆tk

2

(

∂q(x)

∂x

)2

dx.

This “functional” E[q] takes a function q and returns a single real number
which is a sum of two terms. The first term measures how far q is from qn,
by integrating the squared difference; the second term measures how big
the first spatial derivative of q is, i.e. how far from being constant q is, and
is weighted by ∆tk. Assuming k > 0 and ∆t > 0, also note that E[q] is
always non-negative, since it’s integrating positive factors times squares.

We can then ask for what function q does E[q] take a minimal value?
If E were a regular function that took numbers instead of functions as its
argument, we could use the usual calculus trick of looking for where the
derivative of E is zero—but it’s a bit of a leap to take the derivative of a
functional with respect to another function!

There is a clever end-run around this though. Suppose that q(x) actu-
ally was the function for which E[q] is minimized.10 Now say that r(x) is
any nonzero smooth function on [0, 1], and define the regular function g(s)
as follows:

g(s) = E[q + sr]

=

∫ 1

0

1

2

(

q(x) + sr(x) − qn(x)
)2

dx +

∫ 1

0

∆tk

2

(

∂q(x)

∂x
+ s

∂r(x)

∂x

)2

dx.

10We actually are assuming a lot here, both that a minimum is achieved by any
function, and that it is unique: some higher-powered math is required to make this all
rigorous, but the derivation we’re following gives the right impression of what’s going
on nevertheless.
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The important thing to keep in mind is that g(s) just maps a single real
number s to another real number: the definition is a bit complicated, but
our usual calculus approach can be used on it. In fact, let’s rewrite g(s) a
bit to show that it’s nothing more complicated than a quadratic equation,
with some fancy but constant coefficients. We’ll multiply out the squared
terms in the integrals, and then move the factor s out of the integrals since
it is just a real number, not a function of x:

g(s) =

∫ 1

0

1

2

(

(q(x) − qn(x))2 + 2 (q(x)− qn(x)) r(x)s + r(x)2s2
)

dx

+

∫ 1

0

∆tk

2

(

(

∂q(x)

∂x

)2

+ 2
∂q(x)

∂x

∂r(x)

∂x
s+

(

∂r(x)

∂x

)2

s2

)

dx

=

[

∫ 1

0

1

2

(

q(x)− qn(x)
)2

dx+

∫ 1

0

∆tk

2

(

∂q(x)

∂x

)2

dx

]

+

[∫ 1

0

(

q(x) − qn(x)
)

r(x) dx +

∫ 1

0

∆tk

(

∂q(x)

∂x

∂r(x)

∂x

)

dx

]

s

+

[

∫ 1

0

1

2
r(x)2 dx+

∫ 1

0

∆tk

2

(

∂r(x)

∂x

)2

dx

]

s2

= C +Bs+As2.

Now, under the assumption that q(x) is the true minimum of E[q], it must
be the case that g(s) = E[q + sr] is minimized at s = 0. Otherwise, the
function q(x)+sr(x) would have an E value even lower than the minimum!
If s = 0 is the minimum of the quadratic function g(s) = C + Bs + As2,
then g′(0) = B has to be zero.

That is, we have argued that if q(x) minimizes the functional E[q], then
for any smooth function r(x), we must have that

[∫ 1

0

(

q(x)− qn(x)
)

r(x) dx +

∫ 1

0

∆tk

(

∂q(x)

∂x

∂r(x)

∂x

)

dx

]

= 0.

It’s nice to have an equation, but it doesn’t tell us much about the minimiz-
ing function q(x) yet. Let’s use another calculus trick, integration-by-parts,
on the second integral:

∫ 1

0

(

q(x)−qn(x)
)

r(x) dx−
∫ 1

0

∆tk

(

∂2q(x)

∂x2
r(x)

)

dx+

[

∂q(x)

∂x
r(x)

]1

0

= 0.

We can now unite the integrals, identifying a common factor of r(x):

∫ 1

0

(

q(x) − qn(x) −∆tk
∂2q(x)

∂x2

)

r(x) dx +

[

∂q(x)

∂x
r(x)

]1

0

= 0.
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This last equation has to hold no matter what we choose for the nonzero
function r(x). With each choice of r(x), of course the quadratic g(s) has
different coefficients, but the argument still holds giving us this equation.
The only way this integral, plus the boundary terms, can always evaluate
to zero regardless of the choice of r(x) is if

(

q(x) − qn(x) −∆tk
∂2q(x)

∂x2

)

= 0

for all x ∈ (0, 1), and at the boundary if

∂q(x)

∂x

∣

∣

∣

∣

x=0

= 0
∂q(x)

∂x

∣

∣

∣

∣

x=1

= 0.

That is, the function q which minimizes E[q] has to satisfy this differential
equation in (0, 1),

q(x) = qn(x) + ∆tk
∂2q(x)

∂x2
,

and also is subject to the “free” boundary condition ∂q/∂x = 0 at the ends
of the domain.

This gives us a new way to express Backwards Euler: instead of work-
ing straight from the PDE, we can instead say the next time step function
qn+1 is whatever minimizes E[q]. The marvellous bonus is that this auto-
matically implies the free boundary conditions without any extra work.

In fact, we can discretize E[q] in space, approximating the integrals
with sums over n discrete intervals:

E[q] ≈ E∆x[q] =

n
∑

i=0

ωi

2

(

qi − qni
)2

∆x+

n−1
∑

i=0

∆tk

2

(

qi+1 − qi
∆x

)2

∆x

The special weight ωi is 1 except at the ends of the interval i = 0, n where
ω0 = ωn = 1/2, in order to give a consistent estimate of the integral.

Once we have a discrete E∆x[q], our actual Backwards Euler step is
defined by minimizing it. With some effort (which we won’t go through
here), you can show that E∆x[q] is just a big quadratic in q, and setting its
gradient with respect to qi to zero gives the i’th linear equation we derived
for Backwards Euler already. However, the important point is that the
discrete solution will again automatically satisfy free boundary conditions
∂q/∂x = 0 without us having to explicitly handle them.

10.5.4 Implicit Viscosity with Free Surfaces

At last we have the tools we need to do an accurate viscous solve, with
free surfaces included. Following Batty and Bridson [BB08], we look for



10.5. Implementation 157

the new velocity field which minimizes the energy

E[~u] =

∫∫∫

Ω

ρ

2
‖~u− ~uP ‖2 +

∫∫∫

Ω

∆tµ

∥

∥

∥

∥

∇~u+∇~uT
2

∥

∥

∥

∥

2

F

The new velocity field (which will be ~un+1, the finalized velocity at the
end of the time step) is thus a balance between staying close to ~uP (the
velocity after pressure projection) and trying to eliminate all deformation
to get just rigid motion, with the exact balance decided by the density,
the time step, and the viscosity coefficient. At solid boundaries we enforce
~u = ~usolid, but at free surfaces we don’t have to do anything special, thanks
to the variational magic. This will give us a stable Backwards Euler step
of viscosity.

To discretize in space, we just approximate E[~u] with sums and finite
differences as above. For a basic first order accurate solution, which nev-
ertheless gives all the right visual behavior of viscous flow, it suffices to
simply include in the sums those staggered grid points which are inside the
fluid, without any special weights. The first integral then breaks up into
three sums:
∫∫∫

Ω

ρ

2
‖~u− ~uP ‖2

=

∫∫∫

Ω

ρ

2
(u − uP )2 +

∫∫∫

Ω

ρ

2
(v − vP )2 +

∫∫∫

Ω

ρ

2
(w − wP )2

≈
∑

(i+1/2,j,k)∈Ω

ρi+1/2,j,k

2
(ui+1/2,j,k − uPi+1/2,j,k)

2∆x3+

+
∑

(i,j+1/2,k)∈Ω

ρi,j+1/2,k

2
(vi,j+1/2,k − vPi,j+1/2,k)

2∆x3+

+
∑

(i,j,k+1/2)∈Ω

ρi,j,k+1/2

2
(wi,j,k+1/2 − wP

i,j,k+1/2)
2∆x3

Here the sums are over staggered grid points where the fluid velocity is go-
ing to be defined, say where the liquid-air level set interpolates to negative
but the solid level set interpolates to positive. Note that the fluid density
ρ can vary across the grid.

The second integral similarly breaks up into six sums, one for each of the
distinct components of the Frobenius norm, taking into account symmetry.
We switch to short-hand derivative notation again for brevity:

∥

∥

∥

∥

∇~u+∇~uT
2

∥

∥

∥

∥

2

F

=

u2x + 1
4 (uy + vx)

2 + 1
4 (uz + wx)

2 + v2y +
1
4 (vz + wy)

2 + w2
z
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Let’s look at the first two of these for example, u2x and 1
4 (uy+vx)

2, approx-
imating their integrals separately as a sum over the staggered grid points
(i, j, k) and (i+1/2, j+1/2, k) respectively, inside the fluid domain. By in-

side we mean that all the nearby velocity values used in the finite difference
are either real fluid velocities (appearing in the sums above) or are solid
velocities (which we use from the solid, respecting the no-slip boundary
condition). The first:

∫∫∫

Ω

∆tµu2x ≈
∑

i,j,k

∆tµi,j,k

(

ui+1/2,j,k − ui−1/2,j,k

∆x

)2

∆x3.

The second:

∫∫∫

Ω

∆tµ

4
(uy + vx)

2 ≈

∑

∆tµ
4

(

ui+1/2,j+1,k − ui+1/2,j,k + vi+1,j+1/2,k − vi,j+1/2,k

∆x

)2

∆x3.

I left the indices off the dynamic viscosity coefficient µi+1/2,j+1/2,k in the
second to save space, but as with ρ it can vary across the domain for
variable or non-Newtonian viscosity simulations. If the viscosity coefficient
is only specified at grid points, then the appropriate averages can be used
to estimate it at staggered locations.

Once we have these discrete sums in hand, we can differentiate with
respect to the unknown velocities and set the gradient to zero to find the
minimizer. This will be a system of linear equations (SPD as before, so
PCG works) to solve for the new velocity field. Here is the equation taken
from differentiating E∆x[~u] by ui+1/2,j,k, for example, and dropping the
∆x3 common factor:

ρi+1/2,j,k(ui+1/2,j,k − uPi+1/2,j,k)

+ 2∆tµi,j,k

(

ui+1/2,j,k − ui−1/2,j,k

∆x2

)

− 2∆tµi+1,j,k

(

ui+3/2,j,k − ui+1/2,j,k

∆x2

)

+
∆tµi+1/2,j−1/2,k

2

(

ui+1/2,j,k − ui+1/2,j−1,k + vi+1,j−1/2,k − vi,j−1/2,k

∆x2

)

− ∆tµi+1/2,j+1/2,k

2

(

ui+1/2,j+1,k − ui+1/2,j,k + vi+1,j+1/2,k − vi,j+1/2,k

∆x2

)
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+
∆tµi+1/2,j,k−1/2

2

(

ui+1/2,j,k − ui+1/2,j,k−1 + wi+1,j,k−1/2 − wi,j,k−1/2

∆x2

)

− ∆tµi+1/2,j,k+1/2

2

(

ui+1/2,j,k+1 − ui+1/2,j,k + wi+1,j,k+1/2 − wi,j,k+1/2

∆x2

)

= 0.

Here any velocity values that lie inside the solid should be replaced by the
known solid velocity. Entire terms that involve one or more velocity samples
“in the air”, neither in the solid nor the fluid, should be dropped entirely,
even if some of the velocities are fluid velocities. This is a consequence
of how the energy is defined (summing just over grid points where the
deformation rate is well-defined) and is what gives us the correct free-
surface boundary condition.

The equations corresponding to vi,j+1/2,k and wi,j,k+1/2 can similarly
be derived to complete the system of equations:

ρi,j+1/2,k(vi,j+1/2,k − vPi,j+1/2,k)

+ 2∆tµi,j,k

(

vi,j+1/2,k − vi,j−1/2,k

∆x2

)

− 2∆tµi,j+1,k

(

vi,j+3/2,k − vi,j+1/2,k

∆x2

)

+
∆tµi−1/2,j+1/2,k

2

(

ui−1/2,j+1,k − ui−1/2,j,k + vi,j+1/2,k − vi−1,j+1/2,k

∆x2

)

− ∆tµi+1/2,j+1/2,k

2

(

ui+1/2,j+1,k − ui+1/2,j,k + vi+1,j+1/2,k − vi,j+1/2,k

∆x2

)

+
∆tµi,j+1/2,k−1/2

2

(

vi,j+1/2,k − vi,j+1/2,k−1 + wi,j+1,k−1/2 − wi,j,k−1/2

∆x2

)

− ∆tµi,j+1/2,k+1/2

2

(

vi,j+1/2,k+1 − vi,j+1/2,k + wi,j+1,k+1/2 − wi,j,k+1/2

∆x2

)

= 0,
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ρi,j,k+1/2(wi,j,k+1/2 − wP
i,j,k+1/2)

+ 2∆tµi,j,k

(

wi,j,k+1/2 − wi,j,k−1/2

∆x2

)

− 2∆tµi,j,k+1

(

wi,j,k+3/2 − wi,j,k+1/2

∆x2

)

+
∆tµi−1/2,j,k+1/2

2

(

ui−1/2,j,k+1 − ui−1/2,j,k + wi,j,k+1/2 − wi−1,j,k+1/2

∆x2

)

− ∆tµi+1/2,j,k+1/2

2

(

ui+1/2,j,k+1 − ui+1/2,j,k + wi+1,j,k+1/2 − wi,j,k+1/2

∆x2

)

+
∆tµi,j−1/2,k+1/2

2

(

vi,j−1/2,k+1 − vi,j−1/2,k + wi,j,k+1/2 − wi,j−1,k+1/2

∆x2

)

− ∆tµi,j+1/2,k+1/2

2

(

vi,j+1/2,k+1 − vi,j+1/2,k + wi,j+1,k+1/2 − wi,j,k+1/2

∆x2

)

= 0.

Rearranging these into sparse matrix and vector form is left to you.
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11

Turbulence

This chapter takes a look at methods aimed to capture more of the fine-
scale swirly motion characteristic of turbulence. This is far from a scientific
examination of turbulence, and in fact scientific work on the subject tends
to concentrate on averaging or smoothing over the details of turbulent ve-
locity fields—whereas we want to get to those details as cheaply as possible,
even if they fall short of true accuracy.

11.1 Vorticity

Our first stop is getting at a precise measurement of the “swirliness” char-
acteristic of turbulent flow. That is, at any point in space, we would like to
measure how the fluid is rotating. In Chapter 10 on viscosity we saw how
the gradient of the velocity field gives a matrix whose symmetric part mea-
sures deformation—independent of rigid body motions. It’s not surprising
then that what’s left over, the skew-symmetric part, gives us information
about rotation. (And of course, ~u itself without any derivatives tells us the
translational component of the motion.)

Let’s take a look at a generic rigid motion velocity field in 3D:

~u(~x) = ~U + ~Ω× ~x.

Here ~U is the translation, and ~Ω is the angular velocity measured around
the origin. Let’s work out the gradient of this velocity field in three dimen-
sions to see how we can extract the angular velocity:

∂~u

∂~x
=

∂

∂~x





U1 +Ω2z − Ω3y
U2 +Ω3x− Ω1z
U3 + Ω1y − Ω2x





=





0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0



 .
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Thus for a rigid body rotation, the gradient has no symmetric part—there’s
no deformation after all—and the skew-symmetric part lets us read out the
components of angular velocity directly.

Take a look at the skew-symmetric part of the velocity gradient (in
general, not just for rigid body motions):

1

2

(

∂~u

∂~x
− ∂~u

∂~x

T
)

=
1

2







0 ∂u
∂y − ∂v

∂x
∂u
∂z − ∂w

∂x
∂v
∂x − ∂u

∂y 0 ∂v
∂z − ∂w

∂y
∂w
∂x − ∂u

∂z
∂w
∂y − ∂v

∂z 0






.

Reading off the local measure of angular velocity this represents, just as
we saw in the rigid case, we get

~Ω(~x) =
1

2

(

∂w

∂y
− ∂v

∂z
,

∂u

∂z
− ∂w

∂x
,

∂v

∂x
− ∂u

∂y

)

.

This is exactly half the curl of the velocity field.
In fact we define vorticity ~ω to be the curl of the velocity field, which

will then be twice the local angular velocity. Again, in three dimensions
this is a vector:

~ω = ∇× ~u

=

(

∂w

∂y
− ∂v

∂z
,

∂u

∂z
− ∂w

∂x
,

∂v

∂x
− ∂u

∂y

)

.

In two dimensions it reduces to a scalar:

ω = ∇× ~u =
∂v

∂x
− ∂u

∂y
.

This turns out to be one of the most useful “derived” quantities for a fluid
flow.

Take the curl of the momentum equation (1.1), assuming constant vis-
cosity:

∇× ∂~u

∂t
+∇× (~u · ∇~u) +∇×

(

1

ρ
∇p
)

= ∇× ~g +∇× ν∇ · ∇~u.

Switching the order of some derivatives, and assuming that density ρ is
constant so it can be brought outside the curl for the pressure term, gives

∂∇× ~u
∂t

+∇× (~u · ∇~u) + 1

ρ
∇×∇p = ∇× ~g + ν∇ · ∇(∇× ~u).

Recalling that the curl of a gradient is automatically zero (see Appendix A
for identities such as this) and assuming that ~g is constant or the gradient
of some potential, and substituting in vorticity, reduces this to

∂~ω

∂t
+∇× (~u · ∇~u) = ν∇ · ∇~ω.
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The advection term can be simplified with some work (and exploiting the
divergence-free condition ∇ · ~u = 0) to eventually get, in three dimensions:

∂~ω

∂t
+ ~u · ∇~ω = −ω · ∇~u+ ν∇ · ∇~ω. (11.1)

This is known as the vorticity equation, which you can see has the
material derivative D~ω/Dt on the left-hand side, a viscosity term on the
right-hand side, and a new term ~ω ·∇~u, which we can write in components
as

~ω · ∇~u =





ω1
∂u
∂x + ω2

∂v
∂x + ω3

∂w
∂x

ω1
∂u
∂v + ω2

∂v
∂v + ω3

∂w
∂v

ω1
∂u
∂z + ω2

∂v
∂z + ω3

∂w
∂z



 .

This term is sometimes called the vortex-stretching term from a geomet-
ric point of view which we won’t get into in this book. In two dimensions,
the vorticity equation actually simplifies further: the vortex-stretching term
is automatically zero. (This is easy to verify if you think of a 2D flow as
being a slice through a 3D flow with u and v constant along the z-direction
and w = 0.) Here it is in 2D, now written with the material derivative to
emphasize the simplicity:

Dω

Dt
= ν∇ · ∇ω. (11.2)

In fact, if we are talking about inviscid flow where viscosity is negligible (as
we have done throughout this book except in Chapter 10 on highly viscous
flow), the 2D vorticity equation reduces simply to Dω/Dt = 0. That is,
vorticity doesn’t change, but is just advected with the flow.

It turns out you can build an attractive fluid solver based on vortic-
ity, particularly in 2D where the equation is even simpler, though there
are decidedly non-trivial complications for boundary conditions and recon-
structing the velocity field for advection from vorticity (more on this in
Chapter 14). For example, Yaeger et al. [YUM86], Gamito et al. [Gam95],
Angelidis et al. [AN05, ANSN06], Park and Kim [PK05], and Elcott et
al. [ETK+07] have all taken this route. However, our chief concern now is
in what happens to vorticity in our regular fluid solver, based on velocity
and pressure.

We already know that we run the risk of numerical dissipation in our
Eulerian advection schemes: we saw that for first-order linear interpolation,
the error behaves like additional viscosity, and so it should be no surprise
that the vorticity of the velocity field similarly gets dissipated. So far
we’ve dealt with this by increasing the sharpness of the interpolation—
though even this doesn’t fully avoid dissipation—or switching to particles
with FLIP. However, this is not the only cause of vorticity dissipation.
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The other big source lies in the time-splitting algorithm itself. We
mentioned before that our algorithm for separately advecting and then
projecting velocity is only first-order accurate in time; it turns out this
can be a fairly problematic error when attempting to capture small-scale
vortices. As a motivating example, imagine starting with just a 2D rigid
rotation of constant-density fluid around the origin, say

~u0 = (−y, x).

Ignoring boundary conditions and body forces, the exact solution of the
Navier-Stokes equations, given this initial velocity field, is for ~u to stay
constant—the rotation should continue at exactly the same speed. How-
ever, if we advance it with our time-splitting algorithm, things go wrong.
Even with perfect error-free advection, for a time step of ∆t = 1

2π which
corresponds in this velocity field to a counterclockwise rotation of 90◦, we
get this intermediate velocity field:

~uA = (x, y).

It no longer has any vorticity (easy to check) and moreover is divergent:
our advection step transferred all the energy from rotation to expansion.
It’s not hard to verify that the pressure solution is

p =
x2 + y2

2πρ
.

After updating the intermediate velocity field with this pressure, we end
up with

~un+1 = 0.

Oops! The flow comes to a standstill, never to move again. If we had taken
a smaller time step it would have just been slowed down, but only in the
limit ∆t→ 0 does it approach the vorticity it should be preserving. (If we
had taken a larger time step, the fluid might even have reversed direction
and rotated the other way!)

In fact, at least when density is constant, since the curl of a gradient
is automatically zero the pressure projection stage can’t affect the fluid’s
vorticity: the damage is already done when we advect velocities. With a
little more effort, it’s not hard to verify that starting with a rigid rotation of
vorticity ω, one time step of perfect advection will change that to vorticity
ω cos(ω∆t/2). If ∆t is small enough, this is approximately

ωn+1 ≈
(

1− ω2
n∆t

2

8

)

ωn.

Thus our next step is to look at a way of adding back some of the missing
vorticity.
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11.2 Vorticity Confinement

The vorticity confinement technique developed by Steinhoff and Under-
hill [SU94] is a modification of the Navier-Stokes equations by a term that
tries to preserve vorticity. Fedkiw et al. [FSJ01] introduced it to graphics,
introducing a ∆x factor so that in the limit (as the grid is refined) the term
disappears and we get back the true fluid solution. The underlying idea
is to detect where vortices are located and add a body force to boost the
rotational motion around each vortex.

In this context, a vortex is loosely speaking a peak in the vorticity field,
a place that’s spinning faster than all the fluid nearby. We can construct
unit vectors ~N that point to these maximum points simply by normalizing
the gradient of ‖~ω‖:

~N =
∇‖~ω‖
‖∇‖~ω‖‖ .

Now ~N points toward the center of rotation of a vortex, and ~ω itself points
along the axis of rotation, so to get a force vector that increases the rotation,
we just take a cross-product:

fconf = ǫ∆x( ~N × ~ω).

The ǫ here is a parameter that can be adjusted to control the effect of
vorticity confinement. The ∆x factor, as mentioned above, makes this
physically consistent: as we refine the grid and ∆x tends to zero, the
erroneous numerical dissipation of vorticity also tends to zero, so our fix
should too.

Let’s step through numerically implementing this. We begin by av-
eraging velocities from the MAC grid to the cell centers (as discussed in
Chapter 2) and then use central derivatives to approximate the vorticity:1

~ωi,j,k =

(

wi,j+1,k − wi,j−1,k

2∆x
− vi,j,k+1 − vi,j,k−1

2∆x
,

ui,j,k+1 − ui,j,k−1

2∆x
− wi+1,j,k − wi−1,j,k

2∆x
,

vi+1,j,k − vi−1,j,k

2∆x
− ui,j+1,k − ui,j−1,k

2∆x

)

.

The gradient of ‖~ω‖ is similarly estimated with central differences at the

1Note that the null-space problem we discussed earlier isn’t particularly alarming
here: we just will lack the ability to “see” and boost the very smallest vortices. We still
get the benefit of boosting slightly larger ones.
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grid cell centers, for use in defining ~N :

∇‖~ω‖i,j,k =
(‖~ω|i+1,j,k − ‖~ω|i−1,j,k

2∆x
,
‖~ω|i,j+1,k − ‖~ω|i,j−1,k

2∆x
,
‖~ω|i,j,k+1 − ‖~ω|i,j,k−1

2∆x

)

.

When we normalize this to get ~N , we should of course guard against a
divide-by-zero by using, for example,

~Ni,j,k =
∇‖~ω‖i,j,k

‖∇‖~ω‖i,j,k‖+ 10−20M
,

where M is a characteristic value of units m−1s−1 for the simulation—
nothing to be too concerned about; M = 1/(∆x∆t) is fine just to make
sure this scales properly. Finally, we take the cross-product to get fconf at
the grid cell centers; we can take the appropriate averages to apply this to
the different components of velocity on the MAC grid.

Ideally we would connect the confinement parameter ǫ with the expected
numerical dissipation of vorticity. However, this has yet to be done, but
in the meantime serves as another tweakable parameter for the simulation.
If set too high, the simulation can go quasi-unstable, reducing the velocity
field to essentially just random chaos; more moderate values encourage
fine-scale vortices and keep the flow more lively.

Finding a single number which restores some of the lost vorticity where
we feel the flow is too boring, but which doesn’t break up coherent features
like smoke rings which we like, is tricky. Often we want a more localized way
of injecting apparent turbulence into only some regions. Selle et al. [SRF05]
provide just such a tool. The core of their idea is to seed extra “spin
particles”2 in regions where we want turbulence, which are advected with
the flow, and whose strength is added into a local per-grid-cell vorticity
confinement parameter.

11.3 Procedural Turbulence

Ultimately, there is a practical limit to the resolution a fluid simulator can
run at. For an n×n×n grid, we obviously require O(n3) memory—and the
hidden constant is a bit hefty, as you can see when you add up all the addi-
tional arrays needed for time integration, pressure solves, etc. Furthermore,
if we keep ∆t proportional to ∆x as recommended, and use the MICCG(0)

2Selle et al. call these vortex particles, but this is a bit confusing compared to the
usual meaning of vortex particles, coming up in Chapter 14, so I prefer to call them spin
particles.
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linear solver developed in Chapter 5 which requires O(
√
n) iterations to

converge, we end up with the total cost of a simulation scaling like O(n4.5).
That puts a pretty severe bottleneck on going to higher resolution.

However, real turbulence can show features—vortices—on a huge range
of length scales. As a point of reference, for example, turbulence in the
atmosphere can span from kilometers down to millimeters. There simply is
no practical way to directly simulate with a grid capable of capturing that
range (n ∼ 105). However, the turbulent features below a certain length
scale tend to lose structure and become isotropic and easily described sta-
tistically: if you filter out the large-scale motion of the fluid and zoom in
on just the small-scale turbulence, any region looks pretty much like any
other region. This is our saving grace. Below the scale of the actual simu-
lation, we can add in procedural models of turbulent velocity fields to fake
additional detail. For turbulent smoke, instead of tracking the grid-level
smoke concentration field, we instead trace and render millions of marker
particles running through this enhanced velocity field (see Rasmussen et
al. [RNGF03], for example).

We now take a look at two approaches to generating the required pro-
cedural velocity fields. The critical requirements are allowing control over
the spectrum of the velocity (i.e., looking at the velocity variation over
different length-scales) and making sure the velocity is still divergence-free.

11.3.1 Fourier Synthesis

One of the simpler methods for generating plausible turbulent velocity fields
is to do it in Fourier space. If we take the Fourier transform of a velocity
field ~u(~x), which we’ll assume is periodic over a cube of side length L, we
can write it as

~u(~x) =

∞
∑

i,j,k=−∞
ûijke

√
−12π(ix+jy+kz)/L.

Here we’re using
√
−1 as a symbol to denote an imaginary number, instead

of the more common i or j since this book uses i and j as indices. This
Fourier series is also obviously using complex exponentials instead of sines
and cosines, which implies the Fourier coefficients ûijk may be complex even
though ~u is real-valued: this helps to simplify some of the other notation,
and more to the point, matches the API of most Fast Fourier Transform
packages. Note also that the Fourier coefficients ûijk are 3D vectors of
complex numbers, not just scalars: you can think of this really being the
Fourier transform of u, the separate Fourier transform of v, and the further
separate Fourier transform of w all wrapped up into one equation.

In practice, of course, we’ll use just a discrete Fourier transform, over
an m×m×m array of Fourier coefficients. The length L should be chosen
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large enough that the periodic tiling isn’t too conspicuous, but not too large
relative to the simulation grid spacing ∆x—after all, we won’t be able to
afford to take m too large, and we want the Fourier grid spacing L/m (the
smallest details we’ll procedurally add) to be a lot smaller than ∆x.

Shinya and Fournier [SF92] and Stam and Fiume [SF93] introduced to
graphics perhaps the simplest physically reasonable turbulence model, the
Kolmogorov “5/3-law.” This states that for fully developed steady-state
turbulence, the kinetic energy contained in all the Fourier modes of spatial
frequency around ω should scale like ω−5/3. This means that the (i, j, k)

Fourier coefficient (with spatial frequency ω =
√

i2 + j2 + k2) should have
magnitude on the order of

‖ûijk‖ ∼ (i2 + j2 + k2)−11/12

for i, j, k large enough (the low spatial frequencies are assumed to not
belong to the isotropic turbulence regime.) We can take it, in fact, to be a
random vector uniformly sampled from a ball of radius C(i2+j2+k2)−11/12,
for some user-tunable constant C. The cut-off frequency, below which we
keep ûijk zero, should be on the order of L/∆x or more, so that we don’t
add procedural details at scales that were captured in the simulation.

The divergence of velocity becomes a simple algebraic operation on the
Fourier series:

∇~u(~x) =
∞
∑

i,j,k=−∞

√
−12π
L

[(i, j, k) · ûijk] e
√
−12π(ix+jy+kz)/L.

Therefore, ∇ · ~u = 0 is equivalent to requiring that each Fourier coeffi-
cient ûijk is perpendicular to its wave vector (i, j, k). Making a velocity
field divergence-free then simplifies to just fixing each coefficient individu-
ally, subtracting off their component in the radial direction—a simple 3D
projection.

Finally, once the Fourier coefficients have been determined, an inverse
FFT can be applied on each of the u-, v−, and w-components to get a
grid of plausible velocities. Note that the velocity vectors are sampled at
the grid points, all components together—this is not a staggered MAC
grid. Trilinear interpolation can be used between grid points for particle
advection.

To animate this velocity field in time, the simplest technique (proposed
by Rasmussen et al. [RNGF03]) is just to construct two such velocity fields
and then cross-fade back and forth between them. The key observation is
that while on its own this method of animation falls short of plausibility
(and for that matter, the periodicity of the field is objectionable too), this
only is added on top of an already detailed simulation. The extra detail is
just needed to break up the smooth interpolation between simulation grid
points, not to behave perfectly.
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11.3.2 Noise

While Fourier synthesis has many advantages—it’s fairly efficient and has a
nice theoretical background—it has a few problems too, chief among them
being the problem of how to control it in space. If you want the turbulence
to be stronger in one region than another, or to properly handle a solid
wall somewhere in the flow, simultaneously meeting the divergence-free
constraint becomes difficult.

An alternative is to forget about Fourier transforms and instead directly
construct divergence-free velocity fields from building blocks such as Perlin
noise. We get the divergence-free condition by exploiting vector calculus
identities. For example, the divergence of the curl of a vector field is always
zero:

∇ · (∇× ~ψ) = 0 for all vector fields ~ψ

and the cross-product of two gradients is always divergence free as well:

∇ · (∇φ×∇ψ) = 0 for all scalar fields φ and ψ.

Kniss and Hart [KH04] and Bridson et al. [BHN07] used the first of these

formulas, with ~ψ a vector-valued noise function, and DeWolf [DeW05] used
the second with φ and possibly ψ scalar noise functions (see also von Funck
et al. [vFTS06] for an application of this identity in geometric modeling).

To get full turbulence, several octaves of noise can be added in either
formula, with an appropriate power-law scaling of magnitudes. For ex-
ample, using the first formula, curl-noise, we might take for the vector
potential

~ψ(~x) =

m
∑

p=1

Ap
~N

(

C2p~x

∆x

)

and then get the velocity field as

~u = ∇× ~ψ.

The curl here can be approximated with finite differences for convenience,
rather than evaluated exactly. The simulation grid ∆x appears here to
emphasize that this should be done only for length scales below the simu-
lation.

In addition, the amplitude Ap of each octave of noise can be modulated
in space, allowing full control over where turbulence should appear. Bridson
et al. [BHN07] in addition show that ramping Ap down to zero at the
boundary of a solid causes the velocity field to meet the solid wall boundary
condition.

All of these noise formulations can be animated in time, either using
4D noise functions or, more intriguingly, the FlowNoise method of Perlin
and Neyret [PN01].
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11.4 Simulating Sub-Grid Turbulence

The previous section gives us some tools to add extra turbulent detail
beyond the resolution of the core simulation. However, it relies on artistic
intervention to decide how much to add. With Fourier synthesis, it is added
globally which only really helps if all of the domain should have uniform
extra turbulent noise and solid boundaries aren’t important. With curl-
noise the artist has very detailed control, allowing them to modulate the
amplitude of noise, include different scales in varying amounts, and respect
solid boundaries with control over the bandwidth of the their effect—but all
this control can be overwhelming! Ideally we want a way to automatically
modulate the curl-noise, simulating the turbulence we expect should be
present in a flow beneath the grid resolution.

This is by no means a solved problem, and in fact touches on a very
hard topic in computational fluid dynamics, Large Eddy Simulation (LES),
which attempts to model the effect of unresolved small turbulent scales on
the fluid simulated on a grid. At this point in time, we just don’t know
how to do this, and for the most part rely on heuristic formulas backed up
by experimental validation, both measured in real fluids and also tested
with extremely high resolution, fully resolved computer simulations which
go by the name “Direct Numerical Simulation” (DNS).

The two main ideas in sub-grid turbulence modeling are:

• nonlinear effects in the Navier-Stokes equations, like vortex-stretching,
cause small grid-scale vortices to evolve at least partly into even
smaller vortices below the scale of the grid;

• turbulence below the scale of the grid mostly effects grid-scale features
by mixing them up in space, like viscosity would, but at a rate derived
from the amplitude of turbulence which is much larger than the fluid’s
true viscosity.

The last point is sometimes called turbulent mixing, and modeling its
effect on the grid by a viscosity-like term leads to something called effec-
tive viscosity. Unfortunately the truth is that while these two effects are
important, turbulence can also work the other way: sub-grid vortices can
evolve into grid-scale features, and turbulent mixing doesn’t always diffuse
grid-scale features like viscosity would. However, engineers and scientists
regularly get good-enough results with these sorts of subgrid models.

In graphics, there have been a few attempts at simulating turbulence
with this. At the simplest end of the spectrum, Kim et al. [KTJG08]
modulate several octaves of wavelet-noise-based curl-noise with amplitudes
scaled through the octaves like the Kolmogorov fully-developed turbulence
spectrum (used above for Fourier synthesis). The amplitudes are chosen
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automatically by estimating the rate of transfer of energy from the grid-
scale simulation into sub-grid modes. Other researchers have looked at
tracking and evolving the sub-grid energy as extra fields in the simulation
(e.g. [SB08,NSCL08,PTC+10]), drawing inspiration from k − ǫ models in
computational fluid dynamics [JL72, LS74]. A good book (albeit not for
the faint of engineering heart) to get up to speed on turbulence is Pope’s
Turbulent Flows [Pop00]. This is an ongoing area of research, both in CFD
and graphics; there’s a lot to read, a lot still to do, and this is where we
will leave it.





12

Shallow Water

In this chapter and the next we will turn to special cases of water simulation
that allow much faster and simpler algorithms. In both cases, we will use
the simplifying assumption that the water surface can be represented as
a height field y = h(x, z): the water region is all of the points where
y < h(x, z), excluding solids. The most important solid is of course the
bottom, which we also represent as a height field y = b(x, z), giving a water
region defined by

b(x, z) < y < h(x, z),

and thus the water depth is d(x, z) = h(x, z)− b(x, z). We will actually use
depth d as a primary simulation variable, reconstructing the height h = b+d
as needed. This geometric simplification rules out many interesting effects
such as convincing splashes, breaking waves, droplets or sprays, but still
allows many interesting wave motions.1 For the purposes of the book,
we’ll also restrict the bottom to be stationary—b(x, z) remains constant—
though allowing it to move is a fairly easy generalization if you follow the
modeling steps in this chapter.

For the height field assumption to remain a good approximation for the
water throughout the simulation, we also need to restrict our attention to
height fields that aren’t too steep and velocities which aren’t too extreme:
mainly we will be looking at fairly calm waves. For example, a tall column
of water can be represented with a height field in the first frame, but when
it starts to collapse it is almost bound to start splashing around in more
general ways that will rule it out.

While you can of course use the height field representation to track
the water surface in conjunction with a full three-dimensional solver as
detailed earlier in the book—see Foster and Metaxas [FM96]—we’ll make
some further approximations to reduce the complexity of the equations. In
this chapter we’ll look at the case where the water is shallow, i.e., the depth
d = h − b is very small compared to the horizontal length scale of waves

1Many authors have worked out ways to bring back some of these features, usually
by way of adding a particle system for the extra effects. For example, see the articles
by O’Brien and Hodgins [OH95] and Thürey et al. [TMSG07].
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or other flow features, and in the next chapter we’ll instead consider the
water very deep relative to this scale.

12.1 Deriving the Shallow Water Equations

12.1.1 Assumptions

The shallowness assumption means essentially that we can ignore vertical
variations in the velocity field: the fluid doesn’t have “room” for vertical
features like vortices stacked on top of each other. We’ll then just track
the depth-averaged horizontal velocities, u(x, z) and w(x, z), which are
the average of u and w for y varying along the depth of the water. For the
inviscid flow we’re modeling in this chapter, you can think of u and w as
constant along y; for viscous flow a better model would be that u and w
vary linearly from zero at the bottom to some maximum velocity at the
free surface.

Just as an interjection: the process of depth averaging is used in many
more contexts than the one here. For example, avalanches have been mod-
eled this way (the snow layer is thin compared to the extent of the moun-
tainside it flows along) as well as large-scale weather patterns (the atmo-
sphere and oceans are extremely thin compared to the circumference of
the Earth). The resulting systems of equations are still commonly called
“shallow water equations,” even if referring to fluids other than water.

The other fundamental simplification we’ll make is assuming hydrostatic
pressure. That is, if we look at the vertical component of the momentum
equation

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+

1

ρ

∂p

∂y
= −g,

(where g ≈ 9.81m/s is the magnitude of acceleration due to gravity) we
will assume that the dominant terms are the pressure gradient and gravity,
with the rest much smaller. This is consistent with the requirement that
the water is shallow and relatively calm, with accelerations in the fluid
much smaller than g. Dropping the small terms gives the equation for
hydrostatic pressure:

1

ρ

∂p

∂y
= −g.
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Combining that with the free surface boundary condition p = 0 at y = h
gives

p(x, y, z, t) = ρg (h(x, z, t)− y) . (12.1)

Again, this isn’t strictly true if the water is moving, but it’s a good ap-
proximation. The fact that we can directly write down the pressure in the
shallow water case, as opposed to solving a big linear system for pressure
as we had to in fully three-dimensional flow, is one of the key speed-ups.

12.1.2 Velocity

Assuming that u and w are constant along y means ∂u/∂y = ∂w/∂y = 0,
which means the horizontal parts of the momentum equation are reduced
to

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂p

∂x
= 0,

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ

∂p

∂z
= 0.

This is just two-dimensional advection along with the horizontal parts of
the pressure gradient. Note that although pressure varies linearly in y, the
horizontal components of its gradient are in fact constant in y; substituting
in Equation (12.1) gives

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+ g

∂h

∂x
= 0,

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+ g

∂h

∂z
= 0.

(12.2)

That is, the horizontal velocity components are advected in the plane as
usual, with an additional acceleration proportional to gravity that pulls
water down from higher regions to lower regions.

What about vertical velocity v? It turns out this is fully determined
from the “primary” shallow water variables (u, w and d) that we will be
simulating. We won’t actually need v in the simulation, unless for some
reason you need to evaluate it for, say, particle advection in the flow, but
it will come in handy to figure out how the surface height evolves in a
moment.

First take a look at the incompressibility condition:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (12.3)

⇔ ∂v

∂y
= −∂u

∂x
− ∂w

∂z
. (12.4)
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The right-hand side of this equation doesn’t depend on y, so ∂v/∂y must
be a constant along the y-direction too—which implies v has to be a linear
function of y. It’s fully determined from its value at the bottom y = b(x, z)
and the gradient we just derived.

The bottom velocity comes from the boundary condition ~u · n̂ = 0,
remembering again that we’re assuming the bottom is stationary. Re-
calling some basic calculus, the normal at the bottom is proportional to
(−∂b/∂x, 1,−∂b/∂z), so at the bottom y = b(x, z):

−u ∂b
∂x

+ v − w ∂b
∂z

= 0

⇔ v = u
∂b

∂x
+ w

∂b

∂z
.

Note that if the bottom is flat, so the partial derivatives of b are zero, this
reduces to v = 0 as expected. Combined with Equation (12.3) we get the
following vertical velocity at any point in the fluid:

v(x, y, z, t) = u
∂b

∂x
+ w

∂b

∂z
−
(

∂u

∂x
+
∂w

∂z

)

(y − b). (12.5)

In other words, for shallow water we take v to be whatever it requires for
the flow to be incompressible and to satisfy the bottom solid boundary
condition, given the horizontal velocity.

12.1.3 Height

We can also describe the vertical velocity at the free surface, in a different
way. Note that the function φ(x, y, z) = y−h(x, z) implicit defines the free
surface as its zero isocontour—similar to how we tracked general liquid
surfaces back in Chapter 8. We know that the free surface, i.e., the zero
isocontour, moves with the velocity of the fluid, and so φ should satisfy an
advection equation

Dφ

Dt
= 0

⇔ ∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
= 0

⇔ −∂h
∂t

+ u

(

−∂h
∂x

)

+ v(1) + w

(

−∂h
∂z

)

= 0

at least at the surface y = h itself. Plugging in what we derived for the
velocity in Equation (12.5) at y = h gives us an equation for the rate of
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change of height:

−∂h
∂t
− u∂h

∂x
+

[

u
∂b

∂x
+ w

∂b

∂z
−
(

∂u

∂x
+
∂w

∂z

)

(h− b)
]

− w∂h
∂z

= 0,

∂h

∂t
+ u

∂(h− b)
∂x

+ w
∂(h− b)
∂z

= −(h− b)
(

∂u

∂x
+
∂w

∂z

)

.

(12.6)

Using the depth d = h− b, and remembering that b is stationary, this can
be simplified to

∂d

∂t
+ u

∂d

∂x
+ w

∂d

∂z
= −d

(

∂u

∂x
+
∂w

∂z

)

. (12.7)

That is, the water depth is advected by the horizontal velocity and, in
addition, increased or decreased proportional to the depth and the two-
dimensional divergence.

We can simplify Equation (12.7) even further, putting it into what’s
called conservation law form:

∂d

∂t
+

∂

∂x
(ud) +

∂

∂z
(wd) = 0. (12.8)

This can in fact be directly derived from conservation of mass, similar to the
approach in Appendix B. It’s significant here because it leads to numerical
methods that exactly conserve the total volume of water in the system—
avoiding the mass-loss problems we saw earlier with three-dimensional free
surface flow.2 However, discretizing this accurately enough (to avoid nu-
merical dissipation) is a topic that lies outside the scope of this book.

12.1.4 Boundary Conditions

Equations (12.2) and (12.7) or (12.8) also need boundary conditions, where
the water ends (in the x–z horizontal plane) or the simulation domain ends.
The case of a solid wall is simplest: if n̂ is the two-dimensional normal to
the wall in the x–z plane, then we require

(u,w) · n̂ = 0.

2This conservation law form can also be applied in three dimensions, leading to a
volume-of-fluid or VOF simulation that exactly conserves volume as well. However,
in three dimensions, VOF techniques have their own share of problems in terms of
accurately localizing the surface of the fluid and requiring small time steps.
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Of course, for a moving solid wall, this should instead be (usolid, wsolid) · n̂.
To maintain that velocity in the normal direction, following the velocity
equations (12.2), we also need

(

∂h

∂x
,
∂h

∂z

)

· n̂ = 0.

This also applies at an inflow/outflow boundary, where we pump water
in or out of the simulation. The utility of such a boundary may be en-
hanced by adding a source term to the height equation, directly adding
(or subtracting) water in some regions; such source terms are also perfect
for modeling vertical sinks or sources of water (such as a drop falling from
above, perhaps in a particle system, or a drainage hole).

It’s much more difficult dealing with the edge of the simulation domain,
if it’s assumed that the water continues on past the edge. If you expect
all the waves in the system to travel parallel to the edge, it’s perfectly
reasonable to put an invisible solid wall boundary there. If you determine
waves should be entering along one edge, perhaps from a simple sinusoid
model (see the next section for how to choose such a wave), you can further
specify normal velocity and height. However, if you also expect waves
to leave through the edge, things are much, much trickier: solid walls,
even if invisible or specifying fancy normal velocities and heights, reflect
incoming waves. Determining a non-reflecting (or absorbing) boundary
condition is not at all simple and continues as a subject of research in
numerical methods. The usual approach taken is to gradually blend away
the simulated velocities and heights with a background field (such as a basic
sinusoid wave, or flat water at rest), over the course of many grid cells: if
the blend is smooth and gradual enough, reflections should be minimal.

Finally one boundary condition of prime importance for many shallow
water simulations is at the moving contact line: where the depth of
the water drops to zero, such as where the water ends on a beach. In
fact, no boundary conditions need to be applied in this case: if desired for
a numerical method, the velocity can be extrapolated to the dry land as
usual, and the depth is zero (h = b).

12.2 The Wave Equation

Before jumping to numerical methods for solving the shallow water equa-
tions, it’s worth taking a quick look at a further simplification. For very
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calm water we can completely neglect the advection terms, leaving us with

∂u

∂t
+ g

∂h

∂x
= 0,

∂w

∂t
+ g

∂h

∂z
= 0,

∂h

∂t
= −d

(

∂u

∂x
+
∂w

∂z

)

.

Divide the height equation through by the depth d and differentiate in
time:

∂

∂t

(

1

d

∂h

∂t

)

= − ∂

∂x

∂u

∂t
− ∂

∂z

∂w

∂t
.

Then substitute in the simplified velocity equations to get

∂

∂t

(

1

d

∂h

∂t

)

=
∂

∂x

(

g
∂h

∂x

)

+
∂

∂z

(

g
∂h

∂z

)

.

Expanding the left-hand side, but further neglecting the quadratic term as
being much smaller, gives

∂2h

∂t
= gd∇ · ∇h,

where the Laplacian ∇·∇ here is just in two dimensions (x and z). Finally,
with the assumption that the depth d in the right-hand side remains near
enough constant, this is known as the wave equation.

The wave equation also pops up naturally in many other phenomena—
elastic waves in solid materials, electromagnetic waves, acoustics (sound
waves), and more—and has been well studied. Fourier analysis can provide
a full solution, but to keep things simple let’s just try a single sinusoid
wave.3 Take a unit-length vector k̂ (in two dimensions) which will represent
the direction of wave motion; the peaks and troughs of the waves will lie
on lines perpendicular to k̂. Let λ be the wavelength, A the amplitude,
and c the speed of the wave. Putting this all together gives

A sin

(

2π(k̂ · (x, z)− ct)
λ

)

.

3In fact, any wave shape will do—we pick sinusoids simply out of convention and to
match up with the ocean wave modeling in the next chapter where sinusoids are critical.
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If you plug this in as a possible h(x, z, t) in the wave equation, we get the
following equation:

−A4π2c2

λ2
sin

(

2π(k̂ · (x, z)− ct)
λ

)

= −gdA4π2

λ2
sin

(

2π(k̂ · (x, z)− ct)
λ

)

.

This reduces to
c2 = gd.

In other words, the wave equation has solutions corresponding to waves
moving at speed

√
gd. Yuksel et al. [YHK07] directly made a very fast

wave solver from this observation, using “wave particles” traveling at this
speed which locally change the height of the water.

The key insight to glean from all these simplifications and models is
that shallow water waves move at a speed related to the depth: the deeper
the water, the faster the waves move. For example as a wave approaches
the shore, the depth decreases and the wave slows down. In particular,
the front of the wave slows down earlier, and so water from the back of
the wave starts to pile up as the wave front slows down. Waves near
the shore naturally get bigger and steeper, and if conditions are right,
they will eventually crest and overturn. The shallow water equations
we’ve developed in this chapter do contain this feature, though of course
the height field assumption breaks down at the point of waves breaking:
we won’t be able to quite capture that look, but we’ll be able to come
close.

12.3 Discretization

There are many possibilities for discretizing the shallow water equations,
each with its own strengths and weaknesses. You might in particular
take a look at Kass and Miller’s introduction of the equations to ani-
mation [KM90], and Layton and van de Panne’s unconditionally stable
method [LvdP02]. Here we’ll provide a small variation on the Layton and
van de Panne method that avoids the need for a linear solver at the expense
of having a stability restriction on the time step.

We begin with the two-dimensional staggered MAC grid as usual, stor-
ing the velocity components u and w at the appropriate edge midpoints and
the depth d at the cell centers. Where needed, the height h is reconstructed
from the depth as h = b+d. We also use the usual time-splitting approach
of handling advection in an initial stage, perhaps with the semi-Lagrangian
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method we’ve been using so far:

uA = advect(~un,∆t, un),

wA = advect(~un,∆t, wn),

dA = advect(~un,∆t, dn).

We then compute the intermediate height field hA = b+dA and extrapolate
it to non-fluid cells, i.e., setting h equal to the value in the nearest fluid
cell. Note that it is important to extrapolate height h, not depth d, as we
want to make sure water sitting still on a sloped beach, for example, will
remain still. We then update the velocities with the pressure acceleration:

un+1
i+1/2,k = uAi+1/2,k −∆t g

hAi+1,k − hAi,k
∆x

,

wn+1
i,k+1/2 = wA

i,k+1/2 −∆t g
hAi,k+1 − hAi,k

∆x
.

We extrapolate these velocities to non-fluid cells as usual and finally update
the depth with the divergence term:

dn+1
i,k = dAi,k −∆tdAi,k

(

un+1
i+1/2,k − u

n+1
i−1/2,k

∆x
+
wn+1

i,k+1/2 − w
n+1
i,k−1/2

∆x

)

.

That’s all there is to it!
There is a stability time-step restriction here, however. A simple anal-

ysis in the same vein as the approximations made in Section 12.2 to get to
the wave equation can be made, showing that for stability we require

∆t .
∆x√
gD

,

where D is the maximum depth value in the simulation. For safety a
fraction of this quantity, such as 0.2, should be used.
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Ocean Modeling

Simulating the ocean is an ongoing challenge in computer animation. This
chapter will demonstrate a series of simplifications that allow relatively
calm ocean surfaces to be efficiently simulated; efficiently handling rough
oceans, or large-scale interactions between the ocean and solid objects im-
mersed or floating in it, is still an open research problem. The chief resource
in graphics for relatively calm ocean waves is by Tessendorf [Tes04].

The main difficulty in the ocean setting is scale. Essential to the look
of waves are both large-scale swells and small ripples, and as we’ll see
in a moment, to get the relative speeds of these different sizes of waves
correct, a simulation needs to take into account the true depth of the
water. (In particular, the shallow water model of the previous chapter is
completely wrong.) A näıve brute-force approach of just running a 3D fluid
simulator like the ones we’ve looked at so far would result in an excessively
and impractically large grid. Therefore we’ll take a look at changing the
equations themselves.

13.1 Potential Flow

Recall the vorticity equation (11.1) from Chapter 11, and since we’re deal-
ing with large-scale water, drop the small viscosity term:

∂~ω

∂t
+ ~u · ∇~ω = −ω · ∇~u.

It’s not hard to see that if vorticity starts at exactly zero in a region,
it has to stay zero unless modified by boundary conditions. Since the
ocean at rest (with zero velocity) has zero vorticity, it’s not too much of a
stretch to guess that vorticity should stay nearly zero once calm waves have
developed, as long as boundaries don’t become too important—i.e., away
from the shoreline or large objects, and assuming the free surface waves
don’t get too violent. That is, we will model the ocean as irrotational,
meaning the vorticity is zero: ∇× ~u = ~ω = 0.

185
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A basic theorem of vector calculus tells us that if a smooth vector field
has zero curl in a simply-connected region, it must be the gradient of some
scalar potential:

~u = ∇φ.
Note that the φ used here has nothing to do with the signed distance func-
tion or any other implicit surface function we looked at earlier. Combining
this with the incompressibility condition, ∇ · ~u = 0, indicates that the
potential φ must satisfy Laplace’s equation:

∇ · ∇φ = 0.

This is the basis of potential flow: instead of solving the full non-linear
Navier-Stokes equations, once we know the fluid is irrotational and the
region is simply-connected, we only need solve a single linear PDE.

The boundary conditions for potential flow are where it gets interesting.
For solid walls the usual ~u · n̂ = ~usolid · n̂ condition becomes a constraint on
∇φ · n̂. Free surfaces, where before we just said p = 0, are a bit trickier:
pressure doesn’t enter into the potential flow equation directly. However,
there is a striking resemblance between the PDE for the potential and the
PDE for pressure in the projection step: both involve the Laplacian ∇ ·∇.
We’ll use this as a clue in a moment.

The equation that pressure does appear in is momentum: let’s substi-
tute ~u = ∇φ into the inviscid momentum equation and see what happens:

∂∇φ
∂t

+ (∇φ) · (∇∇φ) + 1

ρ
∇φ = ~g.

Exchanging the order of the space and time derivatives in the first term,
and assuming ρ is constant so it can be moved inside the gradient in the
pressure term, takes us to

∇∂φ
∂t

+ (∇φ) · (∇∇φ) +∇p
ρ
= ~g.

Seeing a pattern start to form, we can also write the gravitational accelera-
tion as the gradient of the gravity potential, ~g·~x = −gy where g = 9.81 m/s

2

and y is height (for concreteness, let’s take y = 0 at the average sea level).

∇∂φ
∂t

+ (∇φ) · (∇∇φ) +∇p
ρ
+∇(gy) = 0.

Only the advection term is left. Writing it out in component form

(∇φ) · (∇∇φ) =







∂φ
∂x

∂2φ
∂x2 + ∂φ

∂y
∂2φ
∂x∂y + ∂φ

∂z
∂2φ
∂x∂z

∂φ
∂x

∂2φ
∂x∂y + ∂φ

∂y
∂2φ
∂y2 + ∂φ

∂z
∂2φ
∂y∂z

∂φ
∂x

∂2φ
∂x∂z + ∂φ

∂y
∂2φ
∂y∂z + ∂φ

∂z
∂2φ
∂z2






,
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and it becomes clear that this is actually the same as

(∇φ) · (∇∇φ) =













∂
∂x

1
2

(

∂φ
∂x

)2

+ ∂
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1
2

(
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1
2

(
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∂
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1
2
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∂φ
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)2

+ ∂
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1
2

(

∂φ
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+ ∂
∂y

1
2

(

∂φ
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∂
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1
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∂φ
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+ ∂
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= ∇
(

1
2‖∇φ‖

2
)

.

Using this now brings the momentum equation to

∇∂φ
∂t

+∇
(

1
2‖∇φ‖

2
)

+∇p
ρ
+∇(gy) = 0

⇒ ∇
[

∂φ

∂t
+
(

1
2‖∇φ‖

2
)

+
p

ρ
+ gy

]

= 0.

The only function whose gradient is everywhere zero is a constant, and
since constants added to φ (a theoretical abstraction) have no effect on the
velocity field (the real physical thing), we can assume that the constant is
just zero for simplicity. This gives Bernoulli’s equation:

∂φ

∂t
+
(

1
2‖∇φ‖

2
)

+
p

ρ
+ gy = 0.

You may have already heard of this. For example, in the steady-state case,
where ∂φ/∂t = 0, and after subtracting out the hydrostatic component of
pressure, we end up with the pressure variation ∆p = − 1

2ρ‖~u‖2. Many
simple experiments, such as blowing over the top of a sheet of paper held
along one edge, verify how fast-moving air can induce a pressure drop which
sucks things toward it.1

Bernoulli’s equation gives us a relationship, admittedly non-linear, be-
tween pressure and the potential φ. In the interior of the fluid this can be
used to get pressure from our solution for φ. At a free surface where p = 0
is known, we can instead use it as a boundary condition for φ:

∂φ

∂t
+
(

1
2‖∇φ‖

2
)

+ gy = 0.

1It also unfortunately figures in a bogus explanation of the lift on an airplane wing,
namely that due to the curved shape of the airfoil the air has to go faster over the top
than over the bottom to meet at the other side; hence there is lower pressure on the
top surface, which gives lift. It’s not hard to see this is almost completely wrong: angle
of attack is the biggest factor in determining lift, allowing airplanes to fly even when
upside-down, and allowing flat fan blades with no fancy curvature to effectively push air
around.



188 13. Ocean Modeling

Well, almost—this is more of a boundary condition on ∂φ/∂t, not φ itself.
But it’s not hard to see that as soon as we discretize in time, this will end
up as a boundary condition on the new value of φ that happens to also
depend on old values of φ.

13.2 Simplifying Potential Flow for the Ocean

Unfortunately as it stands we still have to solve a three-dimensional PDE
for the potential φ, and though it’s a much simpler linear problem in the
interior of the water, it now has a fairly nasty non-linear boundary condition
at the free surface. In this section we’ll go through a series of simplifications
to make it solvable in an efficient way. The critical assumption underlying
all the simplifications is that we’re only going to look at fairly calm oceans.

The first step is to rule out breaking waves so the geometry of the free
surface can be described by a height field, just like the previous chapter:

y = h(x, z).

Of course h is also a function of time, h(x, z, t), but we’ll omit the t to em-
phasize the dependence on just two of the spatial variables. For a perfectly
calm flat ocean we’ll take h(x, z) = 0; our chief problem will be to solve
for h as a function of time. In fact, given the velocity field ~u we know that
the free surface should follow it—and in fact viewing the surface as implicit
defined as the zero level set of h(x, z)− y, we already know the advection
equation it should satisfy:

D

Dt
(h(x, z)− y) = 0

⇒ ∂h

∂t
+ u

∂h

∂x
− v + w

∂h

∂z
= 0

⇔ ∂h

∂t
+ (u,w) ·

(

∂h

∂x
,

∂h

∂z

)

= v.

Just as with shallow water, this looks like a two-dimensional material
derivative of height, with vertical velocity v as an additional term.

We’ll also make the assumption that the ocean floor is flat, at depth
y = −H for some suitably large H . While this is almost certainly false,
the effect of variations in the depth will not be apparent for the depths and
the wavelengths we’re considering.2 The solid “wall” boundary condition
at the bottom, where the normal is now (0, 1, 0), becomes ∂φ/∂y = 0.

2Once you get to truly big waves, tsunamis, variation in ocean depth becomes im-
portant: for a tsunami the ocean looks shallow, and so the previous chapter actually
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We can now write down the exact set of differential equations we want
to solve:

∇ · ∇φ = 0 for −H ≤ y ≤ h(x, z),
∂φ

∂y
= 0 at y = −H,

∂φ

∂t
+
(

1
2‖∇φ‖

2
)

+ gh(x, z) = 0 at y = h(x, z),

∂h

∂t
+ (u,w) ·

(

∂h

∂x
,

∂h

∂z

)

= v.

This is still hard to deal with, thanks to the non-linear terms at the free
surface. We will thus use the clever mathematical trick of ignoring them—
in effect, assuming that ~u is small enough and h is smooth enough that all
the quadratic terms are negligible compared to the others. This cuts them
down to

∂φ

∂t
= −gh(x, z) at y = h(x, z),

∂h

∂t
= v.

However, it’s still difficult to solve since the location at which we are ap-
plying the free surface boundary condition moves according to the solution
of h. Assuming that the waves aren’t too large, i.e., h is small, we can
cheat and instead put the boundary condition at y = 0, leading to a new
simplified problem:

∇ · ∇φ = 0 for −H ≤ y ≤ 0,

∂φ

∂y
= 0 at y = −H,

∂φ

∂t
= −gh(x, z) at y = 0,

∂h

∂t
=
∂φ

∂y
at y = 0.

This now is a perfectly linear PDE on a simple slab −H ≤ y ≤ 0. (We also
swapped in ∂φ/∂y for v, to make it clear how h and φ are coupled.) One
of the great properties we now have is that we can add (superimpose) two
solutions to get another solution, which we’ll exploit to write the general
exact solution as a linear combination of simpler solutions.

provides a better model. However, in the deep ocean these waves are practically invisi-
ble, since they tend to have wavelengths of tens or hundreds of kilometers but very small
heights on the order of a meter.
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We haven’t yet touched on boundary conditions along x and z: we’ve
implicitly assumed so far that the ocean is infinite, stretching out forever
horizontally. We can actually solve this analytically, using Fourier integrals,
but clearly this raises some problems when it comes to implementation on
a finite computer. Instead we will assume the ocean is periodic in x and z,
with some suitably large length L being the period. From a graphics stand-
point, L should be large enough that the periodicity is inconspicuous—an
L× L ocean “tile” should probably fill a reasonable fraction of the screen.
(We’ll later discuss a few other tricks to further obscure periodicity.) Any
reasonable periodic function can be represented as a Fourier series, which
for computer implementation we’ll simply truncate to a finite number of
terms.

Before jumping to the full Fourier series, let’s take a look at a single
Fourier mode. Though it may be a little mind-bending to try and visualize
it, we’ll actually use a complex exponential for this: ultimately this is more
convenient mathematically and corresponds best to what a typical Fast
Fourier transform library offers in its API, even though the PDE as we
have written it only involves real numbers.

Let’s start with a generic Fourier component of the height field:

h(x, z, t) = ĥij(t)e
√
−12π(ix+jz)/L.

The Fourier coefficient is ĥij(t); the t is included to emphasize that it

depends on time, but not on spatial variables. In general ĥij(t) will be
a complex number, even though in the end we’ll construct a real-valued
height field—more on this in a minute. I use the notation

√
−1 instead

of the usual i (for mathematicians) or j (for engineers) since i and j are
reserved for integer indices. Speaking of which, the integers i and j are the
indices of this Fourier component—they may be negative or zero as well
as positive. The vector (i, j)/L gives the spatial frequency, and the vector
~k = 2π(i, j)/L is called the wave vector. Define the wave number k as

k = ‖~k‖ = 2π
√

i2 + j2

L
.

The wavelength is λ = 2π/k = L/
√

i2 + j2. As you can probably guess,
this corresponds precisely to what we would physically measure as the
length of a set of waves that this Fourier mode represents.

We’ll now make the guess, which will prove to be correct, that when we
plug this in for the height field, the corresponding solution for φ(x, y, z, t)
will be in the following form:

φ(x, y, z, t) = φ̂ij(t)e
√
−12π(ix+jz)/Ldij(y).
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We don’t yet know what the depth function dij(y) should be. Let’s first
try this guess in the interior of the domain, where ∇ ·∇φ = 0 should hold:

∇ · ∇φ = 0

⇔ ∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0

⇔ −4π2i2

L2
φ+

d′′ij
dij

φ+
−4π2j2

L2
φ = 0

⇔
d′′ij
dij

φ = k2φ

⇔ d′′ij = k2dij .

We now have an ordinary differential equation for dij , with the general
solution being a linear combination of eky and e−ky. Note that the bottom
boundary condition, ∂φ/∂y = 0 at y = −H , reduces to d′ij(−H) = 0. Since

our guess at φ already has a yet-to-be-determined factor φ̂ij(t) built in, we
take

dij(y) = eky + e−2kHe−ky.

With this choice, φ now satisfies the Laplace equation in the interior of the
fluid and the bottom boundary condition. Let’s write out what we have
for this Fourier mode so far:

φ(x, y, z, t) = φ̂ij(t)e
√
−12π(ix+jz)/L

(

eky + e−2kHe−ky
)

(13.1)

All that’s left to determine is the time dependence of the potential φ̂ij(t)

and the height field ĥij(t), and the only equations we have left are the
boundary conditions at y = 0: ∂φ/∂t = −gh and ∂h/∂t = ∂φ/∂y. These
two boundary equations at the free surface become (after cancelling out

the common e
√
−12π(ix+jz)/L factor):

∂φ̂ij
∂t

(1 + e−2kH) = −gĥij

∂ĥij
∂t

= φ̂ij(k − ke−2kH)

(13.2)

Now, differentiate the second equation with respect to time, and replace
the ∂φ̂ij/∂t term with the first equation, to get:

∂2ĥij
∂t2

= −kg 1− e
−2kH

1 + e−2kH
ĥij (13.3)

This is another simple ordinary differential equation, with general solution
consisting of yet more Fourier sinusoids, e

√
−1ωkt and e−

√
−1ωkt where the
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wave frequency ωk (how fast the wave is going up and down, no relation
at all to vorticity) is given by:

ωk =

√

kg
1− e−2kH

1 + e−2kH
(13.4)

Before going on to the full solution, and accompanying numerical method,
it’s instructive to pause a moment and reinterpret this height field solution.

Writing out the one of the components of the height field gives:

h(x, z, t) = e−
√
−1ωkte

√
−12π(ix+jz)/L

= e
√
−1(~k·(x,z)−ωkt)

= e
√
−1~k·[(x,z)−cktk̂]

(13.5)

where k̂ = ~k/k is the unit-length direction of the wave (normal to the crests
and troughs) and ck is the wave speed, defined as:

ck =
ωk

k

=

√

g(1− e−2kH )

k(1 + e−2kH)

(13.6)

Equation (13.5) tells us that the value at a horizontal position (x, z) and
time t is the same as the initial wave form at time t and position (x, z)−
cktk̂. It’s a lot like the advection equations we have seen over and over
again, only this time it’s just the wave moving at that speed, not the
individual molecules of water. Equation (13.6) is called the dispersion
relation, giving the speed of a wave as a function of its wave number k.
Remembering that wavelength is inversely proportional to k, the dispersion
relation shows that waves of different sizes will travel at different speeds—in
particular if they all start off in the same patch of ocean, as time progresses
they will disperse apart, hence the name. This fact is probably the most
crucial visual element in a convincing ocean: it’s what communicates to
the audience that there is significant depth below the water, whether or
not they know the physics underlying it.

In fact, what we have derived so far is just as valid for shallow water
(H small) as deep water (H big). If the waves are shallow, i.e. H is small
compared to the wavelength so that kH is small, then asymptotically c ∼√
gH . That is, the speed depends on gravity and depth but not wavelength,

which is exactly what we saw for shallow water in chapter 12. On the other
hand, for deep water and moderate sized waves, i.e. where kH is very large,
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to a very good approximation we have

ck ≈
√

g

k
, ωk ≈

√

gk (13.7)

which is in fact the simplified formula normally used in the ocean—beyond
a certain depth the dependence on H doesn’t really matter. This form
makes it clear that longer waves (k small) move faster than short waves
(k large) in the ocean, which again is a very characteristic look: big swells
rushing past underneath slow moving ripples.3

13.3 Evaluating the Height Field Solution

We derived the wave speed using only one component of the general solution
in time for the height field. You can double check that the other component
gives a wave moving at the same speed, but in the opposite direction −k̂.
This leads to some redundancy with the Fourier mode associated with wave
vector −~k, which has the same wave number k, the same wave speed, and
the same directions. We’ll sort this out now, and also clean up the issue of
how to make sure the height field is only real-valued despite all the complex
numbers flying around. We now build the general real-valued solution from
a collection of real cosine waves:

h(x, z, t) =
∑

i,j

Aij cos(~k · (x, z)− ωkt+ θij) (13.8)

Here Aij is the real-valued constant amplitude of the wave, ~k = 2π(i, j)/L
is the wave vector as before and now points in the direction of the wave’s
motion, ωk is the time frequency of the wave from equation (13.7), and θij
is a constant phase shift. We’ll get to picking Aij and θij later on in the
chapter.

Equation (13.8) can be used directly to evaluate the height field at any
point in space and time, but if a lot of waves are involved the summation
becomes expensive. However, a cheaper alternative exists by way of the
Fast Fourier Transform (FFT). Let n = 2m be a power of two—this isn’t
essential as FFT algorithms exist for any n, but typically the transform is
fastest for powers of two—and restrict the wave indices to

−n/2 + 1 ≤ i, j ≤ n/2 (13.9)

3Incidentally, the full spectrum of dispersion is also very easily seen in boat wakes:
if you look far enough away from the boat, the wake will have separated into big wave-
lengths at the leading edge and smaller scale stuff behind.



194 13. Ocean Modeling

We thus have an n× n grid of wave parameters. We’ll additionally specify
that the constant term is zero, A00 = 0, as this is not a wave but the average
sea level, and to simplify life also zero out the highest positive frequency
(which doesn’t have a matching negative frequency): An/2,j = Ai,n/2 = 0.
The sum will then actually only be up to i = n/2− 1 and j = n/2− 1.

We’ll now show how to evaluate h(x, z, t) for any fixed time t on the
n × n regular grid of locations 0 ≤ x, z < L, i.e. where xp = pL/n and
zq = qL/n for integer indices p and q. This grid of h values can then be
fed directly into a renderer. Note that this in fact gives an L×L tile which
can be periodically continued in any direction: we’ll talk more about that
at the end of the chapter.

The problem is to determine, for a fixed time t and all integer indices
0 ≤ p, q < n, the height values as specified by:

hpq =

n/2−1
∑

i=−n/2+1

n/2−1
∑

j=−n/2+1

Aij cos(~k · (xp, zq)− ωkt+ θij) (13.10)

This is not quite in the form that an FFT code can handle, so we will need to
manipulate it a little, first by substituting in the wave vector ~k = 2π(i, j)/L
and the coordinates of the grid xp = pL/n, zq = qL/n:

hpq =

n/2−1
∑

i=−n/2+1

n/2−1
∑

j=−n/2+1

Aij cos(2π(ip+ jq)/n− ωkt+ θij) (13.11)

Next we write the cosine in terms of complex exponentials:

hpq =

n/2−1
∑

i=−n/2+1

n/2−1
∑

j=−n/2+1

1
2Aije

√
−1(2π(ip+jq)/n−ωkt+θij)

+ 1
2Aije

−
√
−1(2π(ip+jq)/n−ωkt+θij)

=

n/2−1
∑

i=−n/2+1

n/2−1
∑

j=−n/2+1

1
2e

√
−1(θij−ωkt)Aije

√
−1(2π(ip+jq)/n)

+ 1
2e

−
√
−1(θij−ωkt)Aije

√
−1(2π(−ip−jq)/n)

(13.12)
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Finally we shuffle terms around in the sum to get

hpq =

n/2−1
∑

i=−n/2+1

n/2−1
∑

j=−n/2+1

[

1
2e

√
−1(θij−ωkt)Aij

+ 1
2e

−
√
−1(θ−i,−j−ωkt)A−i,−j

]

e
√
−1(2π(ip+jq)/n)

=

n/2−1
∑

i=−n/2+1

n/2−1
∑

j=−n/2+1

Yij(t)e
√
−1(2π(ip+jq)/n)

(13.13)

where the complex Fourier coefficients Yij(t) are defined as:

Yij(t) =
1
2e

√
−1(θij−ωkt)Aij +

1
2e

−
√
−1(θ−i,−j−ωkt)A−i,−j

= 1
2

[

cos(θij − ωkt) +
√
−1 sin(θij − ωkt)

]

Aij

+ 1
2

[

cos(θ−i,−j − ωkt)−
√
−1 sin(θij − ωkt)

]

A−i,−j

=
[

1
2 cos(θij − ωkt)Aij +

1
2 cos(θ−i,−j − ωkt)A−i,−j

]

+
√
−1
[

1
2 sin(θij − ωkt)Aij − 1

2 sin(θ−i,−j − ωkt)A−i,−j

]

(13.14)
In the last line it’s spelled out in real and imaginary parts. Evaluating
Equation (13.13) is exactly what FFT software is designed to do: all you
need to do is evaluate Yij(t) for each i and j and pass in that 2D array
of Y values, getting back the heights. The results should be real, up to
round-off errors—you can safely ignore the imaginary parts, though a good
bug check is to make sure they all are zero or very close to zero. Some
FFT libraries allow you to specify that the result should be real-valued,
and then allow you to define and pass in only half the Y coefficients: this
can certainly be a worthwhile optimization, but the specifics of how to do
it vary from library to library.

13.4 Unsimplifying the Model

We made a lot of simplifying assumptions to get to an easily solved fully
linear PDE. Unfortunately, the resulting height field solution isn’t terribly
convincing beyond very small amplitudes. In this section we’ll try to boost
our solution to look better even at larger amplitudes, by compensating for
some of the terms we dropped earlier.

The first order of business is looking at the solution for the potential
φ that accompanies our height field solution in Equation (13.8). We left
this hanging before, rushing on to the height field instead, but φ offers
some extremely useful information: in particular, ∇φ gives us the implied
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velocity field. As we’ll see in a moment, the plain height field solution is
what you get when you ignore horizontal motion, letting the water bob
up and down but not side to side; the characteristic look of larger waves,
with wide flat troughs and sharper peaks, is largely due to this horizontal
motion so we will bring it back.

It’s not hard to verify that the potential φ which matches the height
field in Equation (13.8) is as follows, building on our earlier incomplete
form and taking the limit as H →∞ as we did for the wave speed ck and
time frequency ωk:

φ(x, y, z, t) =
∑

i,j

Aijωk

k
sin(~k · (x, z)− ωkt+ θij)e

ky (13.15)

Taking the gradient gives us the complete velocity field, both at the surface
(y ≈ 0) and even far below:

u(x, y, z, t) =
∂φ

∂x
=
∑

i,j

Aijωk2πi

kL
cos(~k · (x, z)− ωkt+ θij)e

ky

v(x, y, z, t) =
∂φ

∂y
=
∑

i,j

Aijωk sin(~k · (x, z)− ωkt+ θij)e
ky

w(x, y, z, t) =
∂φ

∂z
=
∑

i,j

Aijωk2πj

kL
cos(~k · (x, z)− ωkt+ θij)e

ky

(13.16)

These formulas are themselves fairly useful if you want velocity vectors at
arbitrary points, say to aid in simulating the motion of a small solid in the
water.

However we’ll go one step further. Imagine tracking a blob of water
starting at some initial position. The velocity field implied by a single
wave, evaluated at that fixed point in space, is just a periodic sinusoid in
time. As long as these velocities are small enough, the particle can’t stray
too far, so to a good approximation the velocity of the particle itself will
be that periodic sinusoid. This means its position, the integral of velocity,
will also be a periodic sinusoid: the particle will follow an elliptic orbit
round and round as waves pass by. Experimental observation confirms this
is a fairly accurate description of the motion; it’s not perfect—there is a
very small net movement in the direction of the wave propagation, termed
Stokes drift—but it’s pretty good.

Solving for the motion of a blob of water starting at position ~x0, from
the simplified equation d~x/dt = ~u(~x0, t), gives this general solution for the
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displacement from ~x0:

∆x =
∑

i,j

−2πAiji

kL
sin(~k · (x0, z0)− ωkt+ θij)e

ky0

∆y =
∑

i,j

Aij cos(~k · (x0, z0)− ωkt+ θij)e
ky0

∆z =
∑

i,j

−2πAijj

kL
sin(~k · (x0, z0)− ωkt+ θij)e

ky0

(13.17)

This displacement field can be evaluated anywhere for y0 ≤ 0 to give a
particle that’s moving with the water should be displaced to at any given
time. For example, for a solid floating on the surface of the water you can
get its position at any time by plugging in y0 = 0 and its “resting” horizon-
tal x0 and z0 coordinates. Objects suspended underneath the surface are
the same, just with an exponential reduction of the motion by eky0 for each
component. (Note that the components with large k will be nearly zero
deep enough down, so they can be dropped for more efficient evaluation—
as you go deeper, only the large wavelength, small wave number k, waves
have an effect.)

In fact this displacement field also tells us how to get a more accurate
free surface: we use it to deform the y = 0 plane. The technical term for
this, when applied to enrich a single Fourier component, is a Gerstner
wave, first introduced to graphics by Fournier and Reeves [FR86]. Our
earlier height field solution only included the vertical displacement (notice
h(x, z, t) and ∆y at y = 0 are identical), and now we will add in the
matching horizontal displacement. Just as with the height field vertical
displacement, we can evaluate this horizontal displacement on a regular
grid efficiently with the FFT. Using the same process as we did before with
the height field to reduce it the desired complex exponential form, we get

∆xpq =

n/2−1
∑

i=−n/2+1

n/2−1
∑

j=−n/2+1

Xij(t)e
√
−1(2π(ip+jq)/n)

∆zpq =

n/2−1
∑

i=−n/2+1

n/2−1
∑

j=−n/2+1

Zij(t)e
√
−1(2π(ip+jq)/n)

(13.18)
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where the Fourier coefficients are defined from

Xij(t) =

[

−πAiji

kL
sin(θij − ωkt) +

πA−i,−ji

kL
sin(θ−i,−j − ωkt)

]

+
√
−1
[

πAiji

kL
cos(θij − ωkt) +

πA−i,−j i

kL
cos(θ−i,−j − ωkt)

]

Zij(t) =

[

−πAijj

kL
sin(θij − ωkt) +

πA−i,−jj

kL
sin(θ−i,−j − ωkt)

]

+
√
−1
[

πAijj

kL
cos(θij − ωkt) +

πA−i,−jj

kL
cos(θ−i,−j − ωkt)

]

(13.19)
or more simply:

(Xij(t), Zij(t)) =
√
−1

~k

k
Yij(t). (13.20)

These can be evaluated just like the vertical component Fourier coefficients
Yij(t), and for each component a call to the FFT library will then return
that component of the displacement evaluated on a regular grid. Adding
this fully 3D displacement to the coordinates of a regular grid at y = 0 gives
a much more convincing ocean surface. Tessendorf recommends including
a tunable choppiness parameter λ ∈ [0, 1] to scale down the horizontal
displacement, allowing more range in the look: λ = 0 gives the soft look
of the pure height field solution, and λ = 1 the choppy full displacement
solution. We can go even further, in fact, getting a bit of a wind-blown look
by displacing in the horizontal direction of the wind, by a small amount
proportional to the height—more tunable parameters.

However, all the approximations we’ve taken to get to this point aren’t
entirely self-consistent. If the amplitudes Aij are too large the full dis-
placement field might actually cause self-intersections, giving strange loopy
inside-out artifacts. This is fairly easy to detect—if a surface normal is
pointing downwards (has a negative y component) anywhere, it’s a self-
intersection. These spots could be interpreted as points where the waves
got so steep and pointed that this solution breaks down, i.e. the wave is
breaking; the problem can then be plausible covered up with a procedural
foam shader, or used as an emitter for a spray and mist particle system.

13.5 Wave Parameters

We turn now to the selection of the wave parameters, the amplitudes Aij

and phase shifts θij , which so far have been left as unspecified constants.
The phase shifts are straightforward: they have no special significance, and
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so each θij may be chosen as an independent uniform random number from
[0, 2π]. The amplitudes, however, are a little more interesting.

The first point to make follows from the nature of the solution method
itself: if the ratio of amplitude to wavelength is too large, the approxi-
mations we made are unjustifiable and the result looks unconvincing—real
waves simply don’t get that steep, and simulating very rough violent oceans
is a continuing research problem beyond this method. Therefore it makes
sense to put a limit of, say, Aij . O(1/k). However, beyond this our
physical model doesn’t give us much guidance for automatically picking a
convincing set of amplitudes; ultimately waves are driven by the wind or by
ocean currents which we are not even considering. Tessendorf recommends
instead turning to phenomological models garnered from observations, such
as the Phillips spectrum, which biases waves to align with some chosen
wind direction, but there is a lot of freedom to experiment. The FFTs
can run fast enough to give interactive feedback even on half-decent grids
(say 1282), allowing you to tune the amplitudes effectively. Horvath re-
cently gave an excellent review of existing models and further synthesized
a highly usable model to easily get good looking waves [Hor15].

13.6 Eliminating Periodicity

The ocean model we’ve defined so far often works just fine for ocean shots.
However, it is periodic: if the perspective of a shot allows the audience
to see many of these tiles, there is a chance the periodicity will be visible
and distracting. One way of overcoming this, which in fact is a simple
trick to turn any unstructured periodic texture into a nonperiodic pattern,
is to superimpose two repeating tiles of different sizes. That is, add to
our L × L repeating ocean tile another one of dimension αL × αL. (In
practice, this means evaluating both tiles, then interpolating values from
both onto one master grid.) If α is an irrational number, the sum of the
two is nonperiodic. You can see if α is rational, it’s not hard to prove the
sum is periodic, in fact if α = r/s for integers r and s then the period
is L times the least common multiple of r and s, divided by s. If α is
irrational but very close to a rational number r/s with small integers r and
s, the sum will not be exactly periodic but look very close to it, which still
might appear objectionable. One of the best choices then is the golden
ratio (

√
5 + 1)/2 = 1.61803 . . . which (in a sense we will not cover in this

book) is as far as possible from small integer fractions.
Other possible techniques involve layering in further effects based on

nonperiodic noise. For example, combinations of upwelling currents in the
sea and wind gusts above often give the ocean a patchy look, where in
some regions there are lots of small ripples to reflect light but in others the
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surface is much smoother. This can be modeled procedurally, but here we
stop as it lies outside the realm of simulation.



14

Vortex Methods

Chapter 11 began with a discussion of vorticity, and highlighted its impor-
tance for turbulent, lively detail, especially in smoke and fire simulations.
We will focus just on these scenarios in this chapter, looking at alterna-
tive simulation methods which directly work with vorticity. While some of
this work is equally applicable to water simulation, experience shows most
water simulations don’t involve a lot of vorticity, or at least vorticity varia-
tion, in the fluid (e.g. the last chapter on ocean waves used the assumption
of zero vorticity in the water), and the free surface boundary condition
is considerably trickier when working with vorticity. Compared to other
topics in this book, this chapter is also a bit less “finished”: I’m including
some basics on vortex methods because they show incredible promise for
smoke, but there are still tricky issues left to work out for practical fluid
simulation in graphics.

Readers interested in going further with vortex methods may want to
follow up with Chorin’s paper which started it all [Cho73], some of the
graphics papers on this topic (e.g. [YUM86,GLG95,AN05,PK05,ANSN06,
ETK+07,WP10,BKB12,PTG12,ZB14]), the somewhat-harder-to-crack but
authoritative book by Cottet and Koumoutsakos [CK08], the SIGGRAPH
course notes by Koumoutsakos et al. [KCR08], or Mark Stock’s summary
[Sto07].

Recall again that vorticity is defined as the curl of velocity,

~ω = ∇× ~u,

and measures locally how much the flow is rotating. For a rigid body
motion, it is exactly twice the angular velocity. It also can be directly
extracted from the skew-symmetric part of the velocity gradient ∇~u.

Slightly differently from Chapter 11, we take the vorticity equation with
a body force ~b included:

∂~ω

∂t
+ ~u · ∇~ω = −~ω · ∇~u+ ν∇ · ∇~ω +∇×~b.

If we are going to work primarily with vorticity for smoke, then ~g won’t
represent gravity but instead buoyancy, which is mostly zero but shows

201
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up at hot sources. Assuming negligible viscosity, the vorticity equation
simplifies further,

∂~ω

∂t
+ ~u · ∇~ω = −~ω · ∇~u+∇×~b,

and in two-dimensions (where vorticity is just a scalar) even further:

D~ω

Dt
= ∇×~b.

Particularly given just how simple this last form is—tracking it almost
perfectly with particles is nearly trivial—and knowing that vorticity is es-
sential to the look of detailed smoke, it is only natural to ask if we can
directly track vorticity as a primary fluid variable.

The major problem to overcome with this, however, is that we still
need to know the fluid velocity ~u to move vorticity, not to mention smoke
concentration, temperature, etc. Luckily, if we know vorticity (the curl of
velocity), it is possible to solve for the velocity whose curl matches that as
closely as possible. Let’s see how.

14.1 Velocity from Vorticity

As a first attempt, we could consider the definition of vorticity ~ω = ∇× ~u
as an equation to solve for velocity given vorticity. However, life is not so
simple. First of all, even if we directly discretized this on a grid to form a
system of linear equations, the matrix we would be solving with is pretty
horrible: PCG definitely can’t work. However, more importantly, given an
arbitrary velocity field ~ω, which might have resulted from approximately
solving the vorticity equation forward in time, there is no guarantee that
it is exactly the curl of any velocity field. For example, the divergence
of the curl of a vector field is always zero (a fact we used in Chapter 11
for curl-noise) so if ∇ · ~ω 6= 0, it cannot be exactly the curl of any velocity
field. Unfortunately, most of our methods for solving the vorticity equation
forward in time will not exactly keep a zero divergence vorticity field, due
to numerical errors.

Instead, we can ask for the velocity field ~u whose curl is as close as pos-
sible to the given vorticity ω. Ignoring boundaries for now, and assuming
the fields all decay to zero far enough from the origin, we can express this
by integrating the squared magnitude of the difference between ∇× ~u and
~ω over all space:

~u = argmin
~u

∫∫∫

‖∇× ~u− ~ω‖2
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If you followed the calculus of variations derivation in Chapter 10, you can
guess what’s coming next. We’ll use the same approach to get a handle on
what equation ~u actually solves.

Suppose ~u is the optimal velocity field to match up against the given
vorticity ~ω, and let ~p be any other smooth function which decays to zero far
enough from the origin. Then define the regular function of one variable,
g(s), as

g(s) =

∫∫∫

‖∇× (~u+ s~p)− ~ω‖2.

Since ~u is optimal, g(s) must have a minimum at s = 0. Therefore g′(0) = 0.
In fact, g(s) is actually just a quadratic! We can expand it out to see:

g(s) =

∫∫∫

(

∇× (~u + s~p)− ~ω
)

·
(

∇× (~u+ s~p)− ~ω
)

=

∫∫∫

‖∇× ~u− ~ω‖2 + 2
(

∇× ~u− ~ω
)

·
(

∇× ~p
)

s+ ‖∇× ~p‖2s2

The condition g′(0) = 0 is equivalent to the middle term, the linear coeffi-
cient, being zero:

∫∫∫

2
(

∇× ~u− ~ω
)

·
(

∇× ~p
)

= 0

Dividing by two and using a generalized integration-by-parts, this is equiv-
alent to

−
∫∫∫

∇×
(

∇× ~u− ~ω
)

· ~p = 0

This integral should be exactly zero no matter which smooth vector field ~p
(that decays to zero) we use. Therefore, it must be the case that

∇×
(

∇× ~u− ~ω
)

= 0

everywhere in space. We have an equation for ~u again:

∇×∇× ~u = ∇× ~ω.

This one should always have a solution.
However, it turns out we still have a problem: there are many different

solutions! In fact, if you take any solution ~u, and add the gradient of
any scalar function ∇f to it, the curl is unchanged, since ∇ × ∇f = 0.
(As a reminder, this and other vector calculus identities are reviewing in
Appendix A.) This is actually a fundamental point about reconstructing
velocity from vorticity: the answer is not unique. In fact, we will exploit
this a little bit later.
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For now we really would like to pin down one particular solution among
the infinitely many. We can start by rewriting the ∇×∇× operator, which
a little bit of differentiation reveals is the same as:

−∇ · ∇~u+∇(∇ · ~u) = ∇× ~ω.

That is, curl-curl is the same thing as the negative Laplacian (applied to
each component of ~u separately) plus the gradient of the divergence of ~u.
Well, we know the velocity field we want at the end should be incompress-
ible, i.e. divergence-free, so the second term should just be zero. (We had
better check this later, of course!) Throwing it away, we are left with a
much nicer problem:

−∇ · ∇~u = ∇× ~ω.
This is our dear old Poisson problem yet again! It’s actually three inde-
pendent Poisson problems, one for each component of velocity.

In this case, since we don’t have boundaries, we can actually write down
the solution by way of the fundamental solution. The fundamental so-
lution of the Laplacian is a radially symmetric function Φ whose Laplacian
is zero everywhere except at the origin, where it is singular—in fact, so
singular it is the Dirac delta δ. Without going through the pain of deriving
it, the fundamental solution in 2D is

Φ2(~x) =
1

2π
log ‖~x‖,

and in 3D it is

Φ3(~x) = −
1

4π‖~x‖ .

You can easily check, albeit with some heavy-duty differentiation, that
the Laplacian of each, in their respective dimension, is indeed zero when
~x 6= 0. Obviously they are not differentiable in the usual sense at ~x = 0:
in a fuzzy sense their Laplacian at the origin is so infinitely huge that if
you integrated around it you would get the value 1 instead of 0. You can
check this relatively easily too, say in 3D, by integrating the fundamental
solution over the sphere S of radius one centered at the origin:

∫∫∫

S

∇ · ∇Φ3(~x).

First use the divergence theorem (fundamental theorem of calculus) to
convert this into an integral over the surface of the sphere:

∫∫∫

S

∇ · ∇Φ3(~x) =

∫∫

∂S

∇Φ3(~x) · n̂.
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A little bit of calculation shows the gradient of Φ3(~x) is just

∇Φ3(~x) = ∇
(

− 1

4π‖~x‖

)

=
~x

4π‖~x‖3 .

On the surface of the unit sphere, ‖vecx‖ = 1, so this simplifies, and in
fact the normal n̂ is the same as the position ~x. Our integral becomes:

∫∫∫

S

∇ · ∇Φ3(~x) =

∫∫

∂S

~x

4π
· ~x.

But ~x · ~x is just ‖~x‖ on the surface of the unit sphere, which again is 1. So
we have

∫∫∫

S

∇ · ∇Φ3(~x) =

∫∫

∂S

1

4π
.

The surface area of the unit sphere is 4π, so integrating the constant 1/4π
over it gives us the answer 1:

∫∫∫

S

∇ · ∇Φ3(~x) = 1.

This is exactly what defines the Dirac delta, which technically is a “distri-
bution” rather than a normal function:

∇ · ∇Φ(~x) = δ(~x)

It is zero everywhere except at 0, but it’s so singular at the origin that its
integral over a region containing the origin is 1.

The fundamental solution is called fundamental because it gives us an
easy way to write down the solution for any Poisson problem, modulo
boundary conditions. For our problem, that solution is

~u(~x) =

∫∫∫

Φ(~x − ~p)∇× ~ω(~p) d~p.

That is, the velocity at a point ~x is a weighted integral of ∇×ω(~p) over all
of space, where the weight comes from the fundamental solution applied to
the vector between them ~x− ~p.

Let’s check this actually is a solution, by taking the Laplacian with
respect to ~x:

∇x · ∇x~u(~x) = ∇x · ∇x

∫∫∫

Φ(~x− ~p)∇× ~ω(~p) d~p.

Differentiating with ~x can be brought inside the integral with ~p:

∇x · ∇x~u(~x) =

∫∫∫

∇x · ∇xΦ(~x− ~p)∇× ~ω(~p) d~p

=

∫∫∫

δ(~x− ~p)∇× ~ω(~p) d~p.
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This integral with the Dirac delta is special. Since δ(~x − ~p) is zero except
at ~x − ~p = 0, i.e. except when ~x = ~p, only ∇× ~ω(~x) can contribute to the
answer. Since the integral of the Dirac delta over the origin is one, the
contribution is direct:

∇ · ∇~u(~x) = ∇× ~ω(~x).

So we know this is the solution we want.
Let’s massage the expression just a little bit, using integration-by-parts:

~u(~x) =

∫∫∫

Φ(~x− ~p)∇× ~ω(~p) d~p

= −
∫∫∫

∇pΦ(~x− ~p)× ~ω(~p) d~p

Now, since Φ(~x− ~p) = Φ(~p− ~x), the gradient with resepct to ~p is the same
as the gradient with respect to ~x:

~u(~x) = −
∫∫∫

∇xΦ(~x− ~p)× ~ω(~p) d~p

= −
∫∫∫

∇x ×
(

Φ(~x− ~p)~ω(~p)
)

d~p

= −∇x ×
∫∫∫

Φ(~x− ~p)~ω(~p) d~p

= ∇x × ~ψ(~x)

In the last line we introduce a new function ~ψ defined by the integral of
the fundamental solution with ~ω. Our velocity is the curl of ~ψ so it has
to divergence-free, justifying our step way back at the beginning of this
odyssey.

14.2 Biot-Savart and Streamfunctions

Our last little derivation actually breezed through two very important equa-
tions. The first is called the Biot-Savart law:

~u(~x) =

∫∫∫

−∇Φ(~x− ~p)× ~ω d~p.

This gives the velocity at any point in space given the vorticity, or at least
(as we saw from our derivation in the last section) the velocity whose curl
is as close as possible to the given ~ω in a least-squares sense.
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The other equation expresses the velocity as the curl of a function ~ψ.
The definition of this function is

~ψ(~x) = −
∫∫∫

Φ(~x− ~p)~ω(~p) d~p,

which you can recognize, since it’s an integral with the fundamental solu-
tion, as really saying that ~ψ is the solution to this Poisson problem:

∇ · ∇~ψ = −~ω.

This gives an alternative interpretation of the velocity we reconstructed
from ~ω: we first solve a Poisson problem for ~ψ, then take its curl to get
the velocity. In fact, if ~ω happened to be divergence-free itself (so it could

possibly be the curl of some velocity), a little effort can show that∇×∇~ψ =
~ω exactly, and likewise ∇× ~u = ~ω.

In 2D, this function like the vorticity is actually just a scalar, ψ, and
has a special name: the streamfunction. The name derives from the
fact that its level set isocontours are in fact the streamlines of the velocity
field. This isn’t hard to see: the curl in 2D is just the gradient rotated by
90◦ (see Appendix A), and the gradient points 90◦ out from the level set
isocontours, therefore the velocity is parallel to the level sets.

In 3D, there isn’t such a nice geometric property for ~ψ, but some people
still call it the streamfunction. Others prefer to describe it as a vector-
valued potential, but streamfunction is easier to say, so I will go with that.

14.3 Vortex Particles

At last, we can arrive at an interesting numerical method. Let’s begin in
2D. We know there that the inviscid vorticity equation is especially simple,
even more so if we drop buoyancy for now:

Dω

Dt
= 0.

Solving this with particles is as easy as it gets! Suppose we approximate
the vorticity of the flow as being zero everywhere except at a set of points
(our particles), where it’s concentrated. Each particle at position ~xi will
have vorticity ωi, and the above equation says the particles should just flow
through the velocity field while never changing their vorticity values.

How do we get the velocity? More precisely we will model the vorticity
field as a sum of weighted Dirac delta spikes:

ω(~x) =
n
∑

i=1

ωiδ(~x − ~xi).



208 14. Vortex Methods

Such singularities can’t exist in reality, of course, so think of each particle
as a simplifying approximation to a vortex where the total integral of its
vorticity is ωi, concentrated in a small region of space around ~xi.

The Biot-Savart law then allows us to compute the velocity at any point
in space (written here in 2D with ∇Φ⊥ meaning the 90◦ rotation of the
gradient, in lieu of a 3D cross-product):

~u(~x) =

∫∫∫

−∇Φ(~x− ~p)⊥
(

n
∑

i=1

ωiδ(~p− ~xi)
)

d~p.

Integrals with Dirac deltas simplify:

~u(~x) =

n
∑

i=1

−∇Φ(~x− ~xi)⊥ωi.

We can evaluate this at each particle itself to find the velocity there, with
the proviso that ∇Φ(~x − ~xi) isn’t yet defined at ~x = ~xi: we set the value
to be zero, so a particle’s own vorticity does not influence its velocity.

With this simple formula, we have a 2D smoke simulator of surprising
power. It has zero dissipation, zero numerical viscosity: the only numerical
error arises from the choice of time integrator to update positions, and
rounding error in the calculations. There is also modeling error, of course:
real fluids don’t have vorticity concentrated in Dirac deltas, and real fluids
generally have some nonzero viscosity. It still gives amazingly good results
with surprisingly few vortex particles—for a simple 2D smoke simulation,
this is a far more effective approach than what we took earlier in the book.

But wait, if it’s so good, why did we even bother with solving pressure
on grids and all that earlier in the book? Well, there are a few flies in
the ointment. For one, we’re still in 2D and we also haven’t seen how to
incorporate solid boundaries, or even buoyancy. The Biot-Savart formula
above is also a bit scary: to find the velocity of one particle, we have to
sum over all n particles, and therefore the cost of evaluating all velocities is
O(n2), which doesn’t scale well. Unlike our solvers up to this point, it turns
out the inviscid assumption together with the Dirac deltas takes us into
dangerous ill-posed territory: if two particles get close to each other, their
velocities can blow up. And finally, tracking vorticity on a few scattered
particles doesn’t give us detailed smoke concentration, temperature, etc.

14.3.1 Tracking Smoke

Let’s start with the easiest issue, the last. Part of the power of vortex
particle methods is that relatively few particles are needed to generate
very rich motion for a large region of space—in fact, unlike grid methods
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with velocity and pressure, by default our simulation is running in all of
space without any artificial domain boundaries! However, this does mean
the few vortex particles we have are not going to cut it for tracking smoke,
temperature, and other related fields. The vortex particles and the Biot-
Savart formula can provide us velocity anywhere, however, so we can track
other fields with that however we want—on grids with semi-Lagrangian
advection, on particles, or with particle-grid hybrids where we splat values
down on to the grid for further processing.

14.3.2 Buoyancy

Buoyancy is also simple. Recall the 2D vorticity equation with body force
~b included is

D~ω

Dt
= ∇×~b.

We need to estimate the curl of the buoyancy vector field at the particles
to see how to update their vorticity. This could be as simple as specifying
a buoyancy field and taking its curl. For example, you could specify an
upward buoyancy in a region around where smoke is being emitted, possibly
with an animated volumetric texture to make it more interesting, modeling
the idea that the air will cool off to ambient temperature by the time it
leaves that region, more or less. If we are tracking temperature on a grid
(or splatting it from particles to a grid), we can also compute buoyancy on
the grid and then use finite differences to estimate the curl, interpolating
that curl at our vortex particles.

14.3.3 Mollification

Dealing with the blow-up when particles get close is a little more involved.
Instead of insisting ω is concentrated in unrealistic Dirac delta spikes, we
can instead assume it is spread out more smoothly. Coming up with a
smoothed kernel function, like a Gaussian, and then computing the integral
with the fundamental solution is usually intractable, but instead we can just
directly “mollify” the fundamental solution itself, avoiding the singularity.
There’s no single correct way to do this. The guiding principle is to keep the
asymptotic behavior the same, i.e. the mollified version should converge to
the true fundamental solution as you go far away from the origin. This will
keep the implied vorticity distribution concentrated around the particle,
and it also makes sure that the Laplacian of the mollified version still
integrates to 1. For example, one might use

Φ̃2(~x) =
1

2π
log
(

‖~x‖+ he−‖~x‖/h
)

,
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where h is a small length which you can think of as the characteristic radius
of the particles.

14.3.4 Undoing the inviscid assumption

Accurately simulating viscous diffusion of vorticity is hard with just the
particle representation. However, we can at least hack in a very simple
dissipation of vorticity. Assume that the sum of all the vorticities stored
on the particles is zero, so there isn’t a net rotation for the entire gas—
indeed it could be useful to check this in the simulation, and if the sum is
nonzero, subtract the mean vorticity from each particle to bring it back to
zero. A very simple model of viscously transferring vorticity to the rest of
the fluid averaged out over all of space is then to use a simple exponential
decay. In each time step, reduce the vorticity of each particle by the factor
e−k∆t, where k controls the speed of dissipation.

14.3.5 Jumping to 3D

Switching all of this to three dimensions is straightforward: just swap in
the 3D fundamental solution, or a mollified version like

Φ̃3(~x) = −
1

4π(‖~x‖+ he−‖~x‖/h .

However, the vortex-stretching term in the 3D vorticity equation needs
careful treatment:

D~ω

Dt
= −~ω · ∇~u.

Trying to directly evaluate the gradient of velocity and plugging it in is not
a good idea—most schemes that start out that way tend to be vulnerable
to instability.

It’s better to begin by understanding the physical meaning of this term.
In 3D, rotations don’t just exist around a point, but instead are always
around an axis. Likewise, it turns out that vorticity in 3D can never actu-
ally be isolated to separate points, but always is arranged in at least “fil-
aments” (curves), if not vortex sheets (surfaces) or spread across volumes.
Even if we take isolated vortex particles as our approximate representation,
the velocity field produced by Biot-Savart must have a true vorticity which
is nonzero along curves though the space. Perhaps a better model to have
in mind for a vortex particle in 3D is that it (approximately) represents
a little portion of a longer vortex filament, like a segment, aligned in the
direction of ~ω. In a sense, it is almost a rotating cylinder of fluid of very
small radius, spinning around its axis with angular velocity proportional
to ~ω.
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The vortex filaments, made up of these tiny rotating cylinders, are ad-
vected by the velocity field. The velocity field can deform them, if the
velocity field varies along the tangential direction of the filament, as mea-
sured by the directional derivative of ~u in the direction of ~ω, namely ~ω ·∇~u.
In particular, the tangential direction along the filament has to change ac-
cordingly, i.e. ~ω has to change direction.

Thinking again of just one spinning cylinder of fluid, if the velocity field
moves its endpoints at different speeds, the cylinder can change direction
and/or change its length. If it gets stretched longer, it has to get thinner
(since the flow is incompressible, conserving volume). If it gets thinner,
it has to spin faster, by conservation of angular momentum—just like ice
skaters will spin faster if they bring their limbs in close to their body.

The vortex stretching term exactly accounts for both of these effects:
the axis of vorticity changing direction as the velocity field deforms the vor-
tex filaments, and the magnitude of vorticity changing to preserve angular
momentum if the filament is stretched or compressed in length.

This suggests that perhaps instead of vortex particles, for 3D we should
instead use vortex filaments or vortex sheets, whose deformation under the
flow can be tracked exactly, and using conservation of angular momentum
and their geometry to avoid needing to directly approximate the vortex-
stretching term—and indeed, many graphics papers do just this. However,
there are then heavier geometric problems.

If we stick to plain vortex particles it’s still not clear what the best
way to handle vortex-stretching is. Geometric approaches which take into
account exactly how the time integrator would deform a cylinder lined up
with ~ω, then appealing to conservation of angular momentum, are probably
the best bet.

14.3.6 Speeding up Biot-Savart

For a very detailed simulation with tens of thousands of vortex particles, or
more, and perhaps also orders of magnitude more smoke particles to track
as well for rendering, the cost of the Biot-Savart summation over particles
is huge. The main saving grace is that it at least is embarrassingly parallel:
evaluating the velocity at one point in space can be computed completely
independently of any other point. However, it’s still worrisome.

There are several algorithms available to speed this up. Two of the most
famous, in the “tree code” family, are the Barnes-Hut algorithm [BH86] and
the Fast Multipole Method [GR87]. These are complicated algorithms,
particularly the latter, and I won’t dive into a full explanation here. But
let’s look at an outline of these methods.

Suppose k of the particles, ~x1, . . . , ~xk, are in a cluster. For example,
they all lie inside a sphere of radius R with center ~xC . Look at evaluting the
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velocity at some point ~x far away from the cluster, i.e. with ‖~x−~xC‖ ≫ R.
The regular Biot-Savart formula would include their contribution with this
sum:

k
∑

i=1

−∇Φ(~x− ~xi)× ~ωi.

However,∇Φ decays rapidly and smoothly to zero at distances like this, and
is basically almost the same for all of the particles in this sum. Therefore
we would not commit very much error if we changed the sum to just use
the center point of the cluster:

k
∑

i=1

−∇Φ(~x− ~xC)× ~ωi.

In fact, a little math with a Taylor series can give us a good bound of the
worst-case error involved, but I will spare you that detour. The main thing
is that we can now factor out the fundamental solution from the sum like
this:

−∇Φ(~x− ~xC)×
(

k
∑

i=1

~ωi

)

.

If we compute and store the sum of vorticity in the cluster just once, then
finding the cluster’s contribution to velocity far away drops to O(1) time
from O(k) time.

This idea can be taken several steps further, for example approximating
the contribution of one cluster on another well-separated cluster all in one
go, by considering just the separation of the cluster centers, or using a more
accurate approximation (akin to taking more terms in a Taylor series).

The next big idea is to construct a bounding-volume hierarchy around
the particles, for example using octrees or kd-trees to divide up the space
and cluster nearby particles together in the tree. Each node in the tree then
becomes a candidate cluster. We can efficiently compute the vorticity sums
and so forth in each tree node (for the particles contained in that branch
of the tree) bottom-up from the leaves. Then when we need to evaluate
velocity, we can traverse the tree starting at the root, and stop traversal as
soon as we find a cluster that is tight enough and far enough away from the
evaluation point that we can get a good approximation without descending
further.

14.3.7 Solid Boundaries

Finally we turn to solid boundaries. There are actually two solid boundary
conditions we have seen so far:
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• no-stick ~u · n̂ = ~usolid · n̂, and

• no-slip ~u = ~usolid.

The first is natural for inviscid flow, the second for viscous flow.
Let’s look at no-stick first, because it is a bit simpler. The key thing to

remember is that when we reconstructed velocity from vorticity, you may
recall we computed only one of infinitely many possible velocities whose
curls are as close as possible to a given ~ω. Call that choice, from the
Biot-Savart law, ~u0. For any scalar field φ, the velocity field

~u = ~u0 +∇φ

will have exactly the same curl, so is just as good a solution. We can use
this freedom to enforce no-stick boundaries with the right choice of φ.1

As we saw, the Biot-Savart velocity ~u0 is automatically divergence-free,
because it is the curl of the streamfunction. Even if we use a mollified fun-
damental solution, this will still be true—it will be the curl of a somewhat
blurred streamfunction instead. However, ∇φ isn’t necessarily divergence-
free. We can actually use this freedom to inject nonzero divergence into
the flow (e.g. an expansion in a combustion region), but for now we will
want to impose zero divergence as a constraint:

∇ · ∇φ = 0.

Surprise! Here’s yet another Laplacian popping up. This equation is an-
other way of saying φ has to be a harmonic function.

At any point on a solid boundary with normal n̂, we want to impose
the no-stick condition,

(~u0 +∇φ) · n̂ = ~usolid · n̂,

which we can rearrange as a boundary condition on φ:

∇φ · n̂ = (~usolid − ~u0) · n̂.

At each solid boundary, we can evaluate the Biot-Savart velocity, subtract
it from the solid velocity, and the dot-product with the normal gives us the
boundary condition for φ.

This may seem a little familiar: it’s actually just like the potential flow
we saw in Chapter 13. There we imposed a similar Neumann boundary
condition on the bottom of the ocean, while using Bernoulli’s theorem to
get the boundary condition at the free surface.

1Incidentally, this also closely relates to the famous Helmholtz decomposition; many
people prefer to start from Helmholtz to get into vortex methods.
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Writing down the PDE for φ is a far cry from solving for it, and then
evaluating ∇φ wherever we need it, of course. There are at least two inter-
esting possibilities for general solid geometry. The first is to actually use
the fundamental solution and summation again, but with “particles” em-
bedded on the solid boundary: this leads to Boundary Integral Equations
a.k.a. the Boundary Element Method. Brochu et al. [BKB12] used this
approach together with vortex sheets for the flow, if you want to read more
on that. The other approach to consider is to discretize the problem onto a
grid. We already know how to solve the Poisson problem for pressure, with
Neumann solid boundary conditions, on a grid quite well: this is hardly
any different.

Let’s now turn to no-slip viscous boundaries. Given that we are osten-
sibly looking at inviscid flow, it may be mysterious why we even consider
them. However, remember that air really does have a small amount of
viscosity, so no-slip is correct at some level. Moreover, inviscid no-stick
boundaries have some strange, even paradoxical features. It can be shown
that, with truly inviscid flow and boundaries, it is impossible for a solid
object to experience lift or drag or any interesting net force in the air if
it starts at rest—and yet we are all familiar with lift and drag, not the
least in airplanes which can in fact fly. With our earlier velocity-pressure
solvers, we always had enough numerical dissipation in the system that
this theoretical problem doesn’t bother us, but vortex particles eliminate
numerical dissipation to the extent that we have to worry about it here.

In reality, the flow near a solid tends to exhibit “boundary layers,” where
the velocity changes from matching the solid at its surface to slipping past
tangentially a very short distance away. That kind of layer with rapidly
changing tangential velocity naturally has very strong vorticity. This guides
us to the idea that to enforce no-slip boundaries, we should add vortex
particles (or similar vortex sources) on the surface of the solid. Where it
gets particularly interesting is in deciding when and where the vorticity
computed at the solid can detach from the solid and flow into the air as
more vortex particles. This is critical to the right look for flow past solids,
but is still very much an active area of research: I refer you to the papers
and books mentioned above to learn more.

14.3.8 Vortex-in-Cell

Continuing with the idea of solving for φ on a grid to enforce no-stick solid
boundaries, also remember the Biot-Savart velocity itself is derived from
solving a Poisson problem (either directly from the curl of vorticity, or
through a streamfunction): why not solve it on a grid too? This leads to
the Vortex-in-Cell (VIC) method (begun by Christiansen [Chr73]).

The essence of VIC, much like PIC and FLIP, is to transfer vorticity
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stored on particles to a background grid of the whole domain, solve for
the velocity field on the grid, and then interpolate back to the particles.
This immediately avoids the cost of Biot-Savart summation—instead we
just need to solve a few Poisson problems on a grid, which we can do very
efficiently already, plus some cheap finite differences and interpolation. No
complicated tree codes are needed.

The main downside to VIC, compared to Biot-Savart-based methods,
is that we lose some of the extraordinary detail which vortex particles can
provide. To match the same detail requires a very fine grid, which may end
up being more expensive again.





15

Coupling Fluids and Solids

We have covered in some detail earlier (Chapter 5) how to incorporate
moving solid-wall boundary conditions in a simulation. The assumption
there was that the solids followed an immutable scripted path: the fluid
can’t push back on them to change their motion. This chapter is focused
on providing this two-way coupling.

15.1 One-Way Coupling

However, before going into two-way coupling, let’s take a quick look at the
other one-way coupling: solids that take their motion from the fluid, but
don’t affect it. This is particularly useful for solids that are much lighter
than the fluid or much smaller than the features of the flow. In fact we have
already seen this, tracing marker particles in the velocity field of the fluid
for smoke animation. Here the position ~xi of each particle simply followed
the fluid velocity field:

d~xi
dt

= ~u(~xi, t). (15.1)

This is also useful for small objects, or even particle systems representing
foam, drifting in water, perhaps with a step projecting them to stay on the
water surface.

One step up from marker particles are rigid bodies that take their mo-
tion from the fluid. In addition to moving their centers of mass with Equa-
tion (15.1), we need to update their orientations. Recalling that the vor-
ticity of the flow ~ω = ∇ × ~u is twice the angular velocity of the fluid at
any given point, we simply integrate the rigid body position using 1

2~ω. For
example, using a unit-length quaternion q̂i to represent the orientation, we
could update it over a time step ∆t with

q̃i =
(

1, 14∆t~ω
)

q̂ni ,

q̂n+1
i =

q̃i
‖q̃i‖

.
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Take note of the factor of 1
4 : this is 1

2 from the quaternion integration
formula and another 1

2 to get angular velocity from vorticity. Advancing
orientations in this manner is useful not just for actual rigid bodies but
also for oriented particles that carry a local coordinate system—see Ras-
mussen et al. [RNGF03] for an example in constructing highly detailed
smoke plumes from explosions, where each particle carries a volumetric
texture.

More generally, we might want solids to have some inertia, with the
effect of the fluid felt in terms of force, not velocity. As we know, there are
two forces in effect in a fluid: pressure and viscous stress. The second is
perhaps more important for very small objects.

The net force due to viscosity is the surface integral of viscous traction,
the viscous stress tensor times the surface normal:

~F = −
∫∫

∂S

τn̂.

Here I take S to be the volume of the solid and ∂S to be its boundary—this
is a slight change of notation from earlier chapters where S represented the
solid surface. The normal here points out of the solid and into the fluid,
leading to the negative sign. In one-way coupling, the viscous boundary
condition ~u = ~usolid isn’t present in the simulation and thus the fluid’s vis-
cous stress tensor isn’t directly usable. Indeed, the assumption underlying
one-way coupling is that the solid objects don’t have an appreciable effect
on the fluid at the resolution of the simulation. However, we can imagine
that if the solid were in the flow, there would be a small boundary layer
around it in which the velocity of the fluid rapidly alters to match the solid
velocity: the gradient of velocity in this region gives us the viscous stress
tensor. The actual determination of this boundary layer and exactly what
average force results is in general unsolved. We instead boil it down to
simple formulas, with tunable constants. For small particles in the flow,
we posit a simple drag force of the form:

~Fi = D(~u − ~ui).

Here D is proportional to the fluid’s dynamic viscosity coefficient, and
might be a per-particle constant, or involve the radius or cross-sectional
area of the object, or might even introduce a non-linearity such as being
proportional to ‖~u− ~ui‖—in various engineering contexts all of these have
been found to be useful. For flatter objects, such as leaves or paper, we
might constrain the normal component of the velocity to match the fluid
and only apply a weak (if not zero) viscous force in the tangential direction.

If we are further interested in solids with orientation, the net torque on
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an object due to viscosity is likewise

~T = −
∫∫

S

(~x− ~xi)× (τn̂),

where ~xi is the center of mass of the object, and similarly we can’t hope
to derive a perfect physical formula for it. Instead we can posit simple
formulas now based on the difference between the angular velocity of the
solid and half the vorticity of the fluid:

~T = E
(

1
2~ω − ~Ω

)

.

The proportionality E can be tuned similar to D and may even be gener-
alized to a matrix incorporating the current rotation matrix of the object
if the solids are far from round.

The effect of pressure is a little simpler. The net force in this case is

~F = −
∫∫

∂S

pn̂ = −
∫∫∫

S

∇p,

where we have used the divergence theorem to convert it into an integral
of the pressure gradient over the volume occupied by the solid. For small
objects, we can evaluate ∇p from the simulation at the center of mass and
multiply by the object’s volume to get the force. Note that for water sitting
still (and assuming a free surface pressure of zero), the hydrostatic pressure
is equal to ρwater|g|d where d is depth below the surface, giving a gradient
of −ρwater~g. Multiplying this by the volume that the object displaces, we
get the mass of displaced water, leading to the usual buoyancy law.

The torque due to pressure is

T = −
∫∫

∂S

(~x− ~xi)× (pn̂).

If p is smooth enough throughout the volume occupied by the solid—say it
is closely approximated as a constant or even linear function—this integral
vanishes, and there is no torque on the object; we needn’t model it. Do
note that in the case of water sitting still, the pressure is not smooth across
the surface—it can be well approximated as a constant zero above the
surface, compared to the steep linear gradient below—and thus a partially
submerged object can experience considerable torque from pressure. In the
partially submerged case, the integral should be taken (or approximated)
over the part of the solid below the water surface.

15.2 Weak Coupling

For objects large or heavy enough to significantly affect the fluid flow,
but light enough to be affected in turn by the fluid, we need methods for
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simulating both in tandem. One common approach to implementing this
two-way coupling is sometimes termed weak coupling. In this scheme,
we interleave the solid- and fluid-simulation steps. At its simplest, we get
the following algorithm for each time step:

• Advect the fluid, and update the solid positions (and orientations if
relevant).

• Integrate non-coupled forces into all velocities (e.g., gravity, internal
elasticity forces).

• Solve for the pressure to make the fluid incompressible, enforcing the
solid-wall boundary condition with the current solid velocities held
fixed.

• Update the solid velocities from forces due to the new fluid pressure
and from contact/collision.

More complicated schemes are of course possible, e.g., with repeated alter-
nations between fluid and solid or with substeps to get higher accuracy for
the internal elastic forces, but the essence of weak coupling remains: one
pressure solve for fluid treats the solid velocities as fixed, and one update
to solid velocities treats the fluid pressure as fixed.

In terms of implementation, we have already covered the fluid aspect
of this problem since, from the point of view of the fluid solver, the solid
is always treated as fixed as before.1 All that needs to be added is the
fluid-to-solid stage, where fluid forces are applied to the solid.

For a rigid object, the fluid-to-solid coupling amounts to finding the net
force and torque due to the fluid, which we have seen in surface integral form
in the previous section. If the geometry of the solid objects is tesselated
finely enough (i.e., on a scale comparable to the grid spacing ∆x) these
surface integrals can be directly approximated with numerical quadrature.
For example, if the object surface is represented by a triangle mesh, the
force could be as simple as summing over the triangles the product of
triangle area with pressure interpolated at the centroid of the triangle,
and if relevant, the viscous stress tensor times the triangle normal. The
torque can similarly be approximated. However, in other circumstances
(e.g., objects tesselated at a very different scale) directly approximating
these surface integrals can be inconvenient. Luckily the face area fractions
we compute for the pressure solve can directly be used here too with a little
effort.

1Though as Guendelman et al. [GSLF05] point out, if the solids are thin, care must be
taken in advection—in the semi-Lagrangian approach, if a particle trajectory is traced
back through a solid, the fluid velocity at the interfering solid wall should be used,
interpolated in a one-sided way only from the correct side of the solid; for particle
methods, collision detection should be used to ensure particles don’t pass through solid
walls.
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For example, the net pressure force is

~F = −
∫∫

∂S

pn̂.

Breaking this up into a sum over grid cells intersected by the surface of the
solid, and assuming pressure is constant in each such cell, gives

~F = −
∑

i,j,k

pi,j,k

∫∫

∂Si,j,k

n̂.

Consider one such grid cell, and suppose the fluid volume in the cell is Fi,j,k,
while the parts of the cell faces in the fluid are ∂Fi,j,k. The Fundamental
Theorem of Calculus applied to the constant 1 shows that

0 =

∫∫∫

Fi,j,k

∇1 =

∫∫

∂Fi,j,k

1n̂+

∫∫

∂Si,j,k1n̂,

or rearranged,

−
∫∫

∂Si,j,k

n̂ =

∫∫

∂Si,j,k

n̂.

The latter is just an easy sum over the face fractions we compute for our
accurate pressure solve anyhow, scaled by ∆x2.

Likewise the net torque is

~T = −
∫∫

∂S

(~x− ~xC)pn̂,

where ~xC is the center of mass. The same approach can be taken to com-
pute this in terms of face area fractions of grid cells..

This general approach has met with success in many graphics papers
(e.g., [THK02,GSLF05]) and is quite attractive from a software architecture
point of view—the internal dynamics of fluids and solids remain cleanly
separated, with new code only for integrating fluid forces applied to solids—
but does suffer from a few problems that may necessitate smaller than
desirable time steps. For example, if we start with a floating solid initially
resting at equilibrium: after adding acceleration due to gravity all velocities
are ∆t~g, the fluid pressure solve treats this downward velocity at the solid
surface as a constraint and thus leads to non-zero fluid velocities, and finally
the pressure field (perturbed from hydrostatic equilibrium) doesn’t quite
cancel the velocity of the solid; the solid sinks to some extent, and the
water starts moving. These errors are proportional to the time-step size
and thus of course can be reduced, but at greater expense.
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15.3 The Immersed Boundary Method

A somewhat stronger coupling scheme is epitomized by the immersed
boundary method (the classic reference is the review article by Peskin
[Pes02]). Here we give the fluid pressure solve leeway to change the solid
velocity by, in effect, momentarily pretending the solid is also fluid (just of
a different density). In particular, rather than impose the solid velocity as
boundary conditions for the fluid pressure solve, we add the mass and veloc-
ity of the solid to the fluid grid and then solve for pressure throughout the
whole domain. The usual fluid fractions are used as weights in determining
the average density and average velocity in each u-, v-, and w-cell, and then
the fractions actually used in determining the pressure equations are full.
(Incidentally, this approach was in fact combined with the approach of the
previous section in the paper of Guendelman et al. [GSLF05], where this
pressure is used instead of the less accurate pressure of the classic voxelized
pressure solve to update the solid’s velocity.)

A related method, the rigid fluid approach of Carlson et al. [CMT04],
simplifies the solve somewhat by moreover assuming the density of the solid
to be the same as the fluid and adding a corrective buoyancy force as a
separate step, recovering a rigid body’s velocity directly from averaging
the velocity on the grid after the pressure solve (i.e., finding the average
translational and angular velocity of the grid cells the solid occupies) rather
than integrating pressure forces over the surface of the body. This can work
extremely well if the ratio of densities isn’t too large.

For inviscid flow, simply averaging the solid and fluid velocities in mixed
cells as is typically done in the immersed boundary method may lead to
excessive numerical dissipation. Recall that the tangential velocity of the
solid is not coupled to the tangential velocity of the fluid: only the nor-
mal components are connected for inviscid flows. When averaging the full
velocities together we are, in essence, constraining the fluid to the viscous
boundary condition ~u = ~usolid. Therefore it is recommended if possible
to extrapolate the tangential component of fluid velocity into the cells oc-
cupied by the solid and only average the normal component of the solid’s
velocity onto the grid. For very thin solids, such as cloth, this is partic-
ularly simple since extrapolation isn’t required—just a separation of the
solid velocities into normal and tangential components.

This approach helps reduce some of the artifacts of the previous weak-
coupling method, but it doesn’t succeed in all cases. For example, starting
a simulation with a floating object resting at equilibrium still ends up
creating false motion, since in the pressure solve the solid object appears
to be an odd-shaped wave on the fluid surface.
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15.4 General Sparse Matrices

Before getting into strong coupling, where we compute fluid and solid forces
simultaneously, we need to take a brief diversion to generalize our sparse
matrix capabilities: the regular structure of the matrices used up until now
will not accommodate the addition of solids.

There are several possible data structures for storing and manipulating
general sparse matrices. The one we will focus on is sometimes called the
compressed sparse row (or CSR) format. Here each row of the matrix is
stored as an array of non-zero values and their associated column indices.
We’ll actually use two variations of CSR, a simple dynamic version (that
makes adding new non-zeros when dynamically constructing a matrix fairly
efficient) and a static version that gives better performance in PCG.

In dynamic CSR, the array for each sparse row is stored independently
with an associated length. To support adding new non-zeros relatively
efficiently, we may allocate extra storage for these arrays and keep track of
the total available; when the extra space runs out, we can reallocate the
array with double the size (or some other multiplier). This is the strategy
taken in the C++ STL vector container for example. Often people will
further maintain the arrays in order sorted by column index, making it
more efficient to find entries or add two sparse rows together.

However, the core of PCG, multiplying the sparse matrix and a dense
vector, loses some efficiency with this approach: each sparse row might be
scattered in memory leading to poor cache usage. Therefore, after con-
structing a matrix using the dynamic CSR structure, we convert it to a
static CSR structure. Here just three arrays are defined, ensuring that all
matrix non-zeros are contiguous in memory:

• a floating-point array value containing all non-zero values ordered
row by row,

• an integer array colindex of the same length containing the corre-
sponding column indices, and

• an integer array rowstart of length n+1 (for an n×nmatrix) indicat-
ing where each sparse row begins in value and colindex—an extra
entry at the end points just past the end of the value and colindex

arrays (i.e., contains the number of non-zeros in the matrix).

The small overhead of converting a dynamic CSR matrix to the static
format is generally well worth it for PCG, bringing the cost back in line
with our earlier grid-based method.

You may recall that with our grid version of the matrix we optimized
the storage by exploiting symmetry, in some sense just storing the upper
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for i = 0 to n-1

y(i) = 0

for j = rowstart(i) to rowstart(i+1)-1

y(i) += value(j)*x(colindex(j))

Figure 15.1. Pseudocode for multiplying an n×n static CSR matrix with a dense
vector, y = Ax.

(or lower) triangle of the matrix. This is generally not worthwhile with
CSR: it considerably complicates matrix operations.

It is fairly straightforward to multiply a static CSR sparse matrix with
a dense vector; see Figure 15.1 for pseudocode. It’s another matter to
generalize the incomplete Cholesky preconditioner and associated triangu-
lar solves. It turns out, for general sparsity patterns, that the previous
simplification of only having to compute diagonal entries (and reusing the
off-diagonal entries of A) doesn’t hold, and furthermore the modified in-
complete Cholesky factorization cannot be computed with the same loop-
ordering presented earlier. It is more natural, in fact, to compute R = LT

in CSR format (or equivalently, L in a compressed sparse column format).
All that said, we can still define the regular incomplete factor from the
previous properties:

• R is upper triangular, and Ri,j = 0 wherever Ai,j = 0,

• Set tuning constant τ = 0.97 and safety constant σ = 0.25.

• Copy the upper triangle of A into R (including the diagonal).

• For k = 0 to n− 1 where Rk,k 6= 0:

• If Rk,k < σAk,k then set Rk,k ←
√

Ak,k, otherwise set Rk,k ←
√

Rk,k.

• Rescale the rest of the k’th row of R: Rk,j ← Rk,j

Rk,k
for stored

entries with j > k.

• Loop over j > k where Rk,j is stored:

• Set δ = 0 (where we keep a sum of the elements we drop).
• Loop over i > k where Rk,i is stored:
• If Rj,i is stored, set Rj,i ← Rj,i − Rk,iRk,j , otherwise
δ ← δ +Rk,iRk,j .

• Set Rj,j ← Rj,j − τδ.

Figure 15.2. The calculation of the MIC(0) preconditioner R for general matrices
A, using CSR format.
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• (First solve RT z = r).

• Copy z ← r.

• For i = 0 to n− 1 where Ri,i 6= 0:

• Set zi ← zi
Ri,i

.

• Loop over j > i where Ri,j is stored:

• Set zj ← zj −Ri,jzi.

• (Next solve Rznew = z in place).

• For i = n− 1 down to 0, where Ri,i 6= 0:

• Loop over j > i where Ri,j is stored:

• Set zi ← zi −Ri,jzj .

• Set zi ← zi
Ri,i

.

Figure 15.3. Applying the MIC(0) preconditioner in CSR format to get z =
(RTR)−1r.

• (RTR)i,j = Ai,j wherever Ai,j 6= 0,

and the modified factor from:

• R is upper triangular, and Ri,j = 0 wherever Ai,j = 0,

• (RTR)i,j = Ai,j wherever Ai,j 6= 0 with i < j (i.e. off the diagonal),

• each row sum
∑

j(R
TR)i,j matches the row sum

∑

j Ai,j of A.

Without going into the picky but obvious details of using the format, Figure
15.2 presents pseudocode to construct R, with the same parameters as
before, and Figure 15.3 demonstrates how to apply the preconditioner by
solving with R and RT .

15.5 Strong Coupling

Strong coupling has been most thoroughly worked out for the rigid body
case, with an inviscid fluid (just pressure); this is where we will end the
chapter. Let’s work out the equations for the continuous case before pro-
ceeding to discretization.

First we’ll define some notation for a rigid body:

• ~X the center of mass of the rigid body,

• ~V its translation velocity,
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• ~Ω its angular velocity,

• ~L its angular momentum,

• m its mass, and

• I its inertia tensor.

(Extending this to multiple rigid bodies is straightforward.) We saw the
net force and torque on the body due to pressure above, which gives us the
following updates:

~V n+1 = ~V − ∆t

m

∫∫

∂S

pn̂, (15.2)

~Ωn+1 = ~Ω−∆tI−1

∫∫

∂S

(

~x− ~X
)

× pn̂. (15.3)

The velocity of the solid at a point ~x on the surface is

~usolid(~x) = ~V +Ω×
(

~x− ~X
)

,

which then appears in the boundary conditions for the usual pressure
problem:

∇ · ∆t
ρ
∇p = ∇ · ~u in the fluid,

(

~u− ∆t

ρ
∇p
)

· n̂ = ~un+1
solid · n̂ on ∂S.

A free surface boundary condition p = 0 may also be included.
As an aside, though not immediately apparent in this form, the linear

operator that maps (~V , ~Ω) to the normal velocity field on the boundary
can be shown to be the adjoint2 of the operator that maps pressures on
the boundary to net force and torque on the solid. It’s this property that
will end up, after discretization, giving us a symmetric matrix to solve for
pressure.

A simpler form of the equations are given by Batty et al. [BBB07].
We keep the rigid body update Equations (15.2) and (15.3), but avoid
the boundary conditions by instead seeking a pressure that minimizes the
kinetic energy of the entire system. This is quite compatible with the more
accurate FVM pressure solve in this book, only where Batty et al. use

2Adjoint simply means transpose when talking about matrices but is also used for
operators involving infinite-dimensional spaces such as the space of normal velocity fields
here.
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volume fractions as coefficients in the matrix, we use face fractions. Recall
that the kinetic energy of the rigid body is just 1

2m‖~V ‖2 + 1
2
~ΩT I~Ω.

It is this variational form of the equations that we choose to discretize.
We already have discussed how to approximate the pressure update to
the rigid body (i.e., the net force and torque) in the earlier weak-coupling
section; we need only make this concrete with a sparse matrix J which,
when multiplied with a vector containing the grid pressure values yields the
force and torque. Examine the first three rows of J that correspond to the
net force. For example, the x-component F1 (the first row) is determined,
with a little rearrangement of the summation, from

F1 =
∑

i,j,k

∆x2(Vi+1/2,j,k − Vi−1/2,j,k)pi,j,k,

where Vi+1/2,j,k is the face area fraction of the solid in u-cell (i+1/2, j, k)—
note that this is the complement of the face area fractions for the fluid! This
gives us

J1,(i,j,k) = ∆x2(Vi+1/2,j,k − Vi−1/2,j,k),

Similarly, the next two rows of J , corresponding to the y- and z-components
of net force, are

J2,(i,j,k) = ∆x2(Vi,j+1/2,k − Vi,j−1/2,k),

J3,(i,j,k) = ∆x2(Vi,j,k+1/2 − Vi,j,k−1/2).

Similarly we can get the other three rows of J that correspond to the net
torque. The first component T1 is approximated by

T1 =
∑

i,j,k

∆x2Vi,j+1/2,k(zk − Z)(pi,j+1,k − pi,j,k)

−
∑

i,j,k

∆x2Vi,j,k+1/2(yj − Y )(pi,j,k+1 − pi,j,k),

where xi, yj and zk give the coordinates of the center of grid cell (i, j, k).
From this we see that the fourth row of J is given by

J4,(i,j,k) =−∆x2(zk − Z)(Vi,j+1/2,k − Vi,j−1/2,k)

+∆x2(yj − Y )(Vi,j,k+1/2 − Vi,j,k−1/2).

Similarly, the last two rows of J , corresponding to the second and third
components of net torque, are

J5,(i,j,k) = −∆x2(xi −X)(Vi,j,k+1/2 − Vi,j,k−1/2)

+ ∆x2(zk − Z)(Vi+1/2,j,k − Vi−1/2,j,k),

J6,(i,j,k) = −∆x2(yj − Y )(Vi+1/2,j,k − Vi−1/2,j,k)

+ ∆x2(xi −X)(Vi,j+1/2,k − Vi,j−1/2,k).
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Note that away from the boundary of the solid, all of these differences are
just zero, so J is quite sparse: it has non-zero columns only for cells near
the boundary of the solid.

To be perfectly consistent, and thus be able to get exact hydrostatic
rest for neutrally buoyant bodies fully immersed in fluid, we can also use
the same fractions to approximate the rigid body’s inertia tensor—however,
outside of this particular scenario this is probably unnecessary work, and
thus we leave it to the reader to derive it if interested.

For notational convenience, we’ll put the rigid body’s translational ve-
locity ~V and angular velocity Ω together into one six-dimensional vector
~U . Similarly we can construct a 6 × 6 mass matrix M from the mass and
inertia tensor:

M =









m 0 0 ~0

0 m 0 ~0

0 0 m ~0
~0 ~0 ~0 I









.

Then the kinetic energy of the body is 1
2
~UTM~U and the pressure update

is ~Un+1 = ~U +∆tM−1Jp.
Finally, we are ready for the discrete minimization. Taking the gradient

of the new kinetic energy with respect to pressure gives

∂

∂p

[

1
2

(

~U +∆tM−1Jp
)T

M
(

~U +∆tM−1Jp
)

]

=

∆t2JTM−1Jp+∆tJT ~U.

Batty et al. show how to rephrase the pressure solve as a kinetic energy
minimization; without going into those details, the upshot is we just add
∆tJTM−1J to the appropriately scaled pressure matrix and −JT ~U to the
right-hand side.

This is precisely where we need more general sparse matrices:
∆tJTM−1J doesn’t correspond to a simple grid structure. In fact, it forms
a dense submatrix, connecting up all the cells near the boundary of the ob-
ject. If you’re interested in the linear algebra, it’s also simple to see that
it is (at most) rank six and must be symmetric positive semi-definite—so
PCG still works! The density may, however, cause memory and perfor-
mance problems: these can mostly be overcome by keeping the extra terms
separate in factored form. The matrix-vector multiplies in PCG can be
significantly accelerated then by multiplying JTM−1Js as JT (M−1(JT s))
and, since they are only rank six, can be ignored in constructing the pre-
conditioner without too big a penalty.

For large objects, which overlap many grid cells, this is actually a con-
siderable problem: a large amount of memory will be required to store it,
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and PCG will run slowly due to all the work multiplying with this dense
submatrix. One possibility for improvement is to add the new rigid body
velocity ~Un+1 as an auxiliary variable in the pressure solve, giving the
following slightly larger but much sparser system:

(

A JT

J − 1
∆tM

)(

p
~Un+1

)

=

( −d
− 1

∆tM
~U

)

.

While this still leads to a symmetric matrix, it is unfortunately now in-
definite, which means PCG no longer can work. Nevertheless, this is in a
well-studied class of matrices, sometimes termed “saddle-point” matrices
(in fact, apart from the constant pressure null-space, it would be a “sym-
metric quasi-definite” matrix), and it seems promising to solve it as such.
For example, it would be worthwhile trying an iterative method such as
MINRES in conjunction with an incomplete Cholesky preconditioner in
LDLT form (where L has unit diagonal, and D is a diagonal matrix with
positive entries for the pressure unknowns and negative entries for the rigid
body unknowns). For more on solving this class of matrix problems, see
the review article by Benzi et al. [BGL05] for example.

Another interesting direction to consider is to generalize this approach
to include strong coupling of articulated rigid bodies: for example, the
Lagrange multiplier approach to constraints can also be phrased as a min-
imization of kinetic energy. Frictional contact forces fall in the same cat-
egory, albeit with inequality constraints that complicate the minimization
considerably.

Turning to deformable objects, the energy minimization framework
falters. Strong coupling in this context means combining an implicit time
step of the internal dynamics of the deformable object with the pressure
solve; however, implicitly advancing elastic forces (involving potential en-
ergy) apparently cannot be interpreted as a minimization of energy with
respect to forces. At the time of writing, within graphics only the work of
Chentanez et al. [CGFO06] has tackled this problem, discretizing the fluid
on an unstructured tetrahedral mesh that conforms to the boundary mesh
of the deformable object; so far the generalization to regular grids with
volume fractions hasn’t been made. We thus end the chapter here.
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Background

A.1 Vector Calculus

The following three differential operators are fundamental to vector calcu-
lus: the gradient ∇, the divergence∇·, and the curl ∇×. They occasionally
are written in equations as grad, div, and curl instead.

A.1.1 Gradient

The gradient simply takes all the spatial partial derivatives of the function,
returning a vector. In two dimensions,

∇f(x, y) =
(

∂f

∂x
,

∂f

∂y

)

,

and in three dimensions,

∇f(x, y, z) =
(

∂f

∂x
,

∂f

∂y
,

∂f

∂z

)

.

It can sometimes be helpful to think of the gradient operator as a symbolic
vector, e.g., in three dimensions:

∇ =

(

∂

∂x
,

∂

∂y
,

∂

∂z

)

.

The gradient is often used to approximate a function locally:

f(~x+∆~x) ≈ f(~x) +∇f(~x) ·∆~x.

In a related vein we can evaluate the directional derivative of the func-
tion; that is, how fast the function is changing when looking along a par-
ticular vector direction, using the gradient. For example, if the direction is
n̂,

∂f

∂n
= ∇f · n̂.

231
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Occasionally we will take the gradient of a vector-valued function, which
results in a matrix (sometimes called the Jacobian). For example, in three
dimensions,

∇~f = ∇(f, g, h) =







∂f
∂x

∂f
∂y

∂f
∂z

∂g
∂x

∂g
∂y

∂g
∂z

∂h
∂x

∂h
∂y

∂h
∂z






.

Note that each row is the gradient of one component of the function. One
way to remember that it’s the rows and not the columns is that it should
work with the approximation

~f(~x+∆~x) ≈ ~f(~x) +∇~f(~x)∆~x.
The matrix-vector product is just computing the dot-product of each row
of the matrix with the vector, and so each row should be a gradient of the
function:

∇(f, g, h) =





∇f
∇g
∇h



 .

An alternative notation for the gradient that is sometimes used is

∇f =
∂f

∂~x
.

Using a vector in the denominator of the partial derivative indicates we’re
taking derivatives with respect to each component of ~x.

A.1.2 Divergence

The divergence operator only is applied to vector fields and measures how
much the vectors are converging or diverging at any point. In two dimen-
sions it is

∇ · ~u = ∇ · (u, v) = ∂u

∂x
+
∂v

∂y
,

and in three dimensions,

∇ · ~u = ∇ · (u, v, w) = ∂u

∂x
+
∂v

∂y
+
∂w

∂z
.

Note that the input is a vector and the output is a scalar.
The notation ∇· is explained by thinking of it as symbolically taking

a dot-product between the gradient operator and the vector field, e.g., in
three dimensions,

∇ · ~u =

(

∂

∂x
,

∂

∂y
,

∂

∂z

)

· (u, v, w)

=
∂

∂x
u+

∂

∂y
v +

∂

∂z
w.
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A.1.3 Curl

The curl operator measures how much a vector field is rotating around any
point. In three dimensions this is a vector:

∇× ~u = ∇× (u, v, w) =

(

∂w

∂y
− ∂v

∂z
,

∂u

∂z
− ∂w

∂x
,

∂v

∂x
− ∂u

∂y

)

.

We can reduce this formula to two dimensions in two ways. The curl of
a two-dimensional vector field results in a scalar, the third component of
the expression above, as if we were looking at the three-dimensional vector
field (u, v, 0):

∇× ~u = ∇× (u, v) =
∂v

∂x
− ∂u

∂y
.

The curl of a two-dimensional scalar field results in a vector field, as if we
were looking at the three-dimensional field (0, 0, w):

∇× w =

(

∂w

∂y
, −∂w

∂x

)

.

The simple way to remember these formulas is that the curl is taking a
symbolic cross-product between the gradient operator and the function.
For example, in three dimensions,

∇× ~u =

(

∂

∂x
,

∂

∂y
,

∂

∂z

)

× (u, v, w)

=

(

∂

∂y
w − ∂

∂z
v,

∂

∂z
u− ∂

∂x
w,

∂

∂x
v − ∂

∂y
u

)

.

The curl is a way of measuring how fast (and in three dimensions along
what axis) a vector field is rotating locally. If you imagine putting a little
paddle wheel in the flow and letting it be spun, then the curl is twice the
angular velocity of the wheel. You can check this by taking the curl of the
velocity field representing a rigid rotation.

A vector field whose curl is zero is called curl-free, or irrotational for
obvious reasons.

A.1.4 Laplacian

The Laplacian is usually formed as the divergence of the gradient (as it
repeatedly appears in fluid dynamics). Sometimes it is written as ∇2 or
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∆, but since these symbols are occasionally used for other purposes, I will
stick to writing it as ∇ · ∇. In two dimensions,

∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2

and in three dimensions,

∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

The Laplacian can also be applied to vector or even matrix fields, and the
result is simply the Laplacian of each component.

Incidentally, the partial differential equation ∇ · ∇f = 0 is called
Laplace’s equation, and if the right-hand side is replaced by something
non-zero, ∇ · ∇f = q we call it the Poisson equation. More generally, you
can multiply the gradient by a scalar field a (such as 1/ρ), like∇·(a∇f) = q
and still call it a Poisson problem.

A.1.5 Differential Identities

There are several identities based on the fact that changing the order of
mixed partial derivatives doesn’t change the result (assuming reasonable
smoothness), e.g.,

∂

∂x

∂

∂y
f =

∂

∂y

∂

∂x
f.

Armed with this, it’s simple to show that for any smooth function,

∇ · (∇× ~u) ≡ 0,

∇× (∇f) ≡ 0.

Another identity that shows up in vorticity calculations is

∇× (∇× ~u) ≡ ∇ (∇ · ~u)−∇ · ∇~u.

The Helmholtz or Hodge decomposition is the result that any smooth vector
field ~u can be written as the sum of a divergence-free part and a curl-free
part. In fact, referring back to the first two identities above, the divergence-
free part can be written as the curl of something and the curl-free part can
be written as the gradient of something else. In three dimensions,

~u = ∇× ~ψ −∇φ,

where ~ψ is a vector-valued potential function and φ is a scalar potential
function. In two dimensions this reduces to ψ being a scalar potential
function as well:

~u = ∇× ψ −∇φ.
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This decomposition is highly relevant to incompressible fluid flow, since
we can interpret the pressure projection step as decomposing the inter-
mediate velocity field ~un+1 into a divergence-free part and something else
which we throw away, just keeping the divergence-free part. When we ex-
press a divergence-free velocity field as the curl of a potential ψ, we call ψ
the streamfunction.

Some more useful identities are generalizations of the product rule:

∇(fg) = (∇f)g + f∇g,
∇ · (f~u) = (∇f) · ~u+ f∇ · ~u.

A.1.6 Integral Identities

The Fundamental Theorem of Calculus (that the integral of a derivative is
the original function evaluated at the limits) can be generalized to multiple
dimensions in a variety of ways.

The most common generalization is the divergence theorem discovered
by Gauss:

∫∫∫

Ω

∇ · ~u =

∫∫

∂Ω

~u · n̂.

That is, the volume integral of the divergence of a vector field ~u is the
boundary integral of ~u dotted with the unit outward normal n̂. This ac-
tually is true in any dimension (replacing volume with area or length or
hypervolume as appropriate). This provides our intuition of the divergence
measuring how fast a velocity field is expanding or compressing: the bound-
ary integral above measures the net speed of fluid entering or exiting the
volume.

Stokes’ Theorem applies to the integral of a curl. Suppose we have
a bounded surface S with normal n̂ and with boundary curve Γ whose
tangent vector is τ . Then,

∫∫

S

(∇× ~u) · n̂ =

∫

Γ

~u · τ.

This can obviously be restricted to two dimensions with n̂ = (0, 0, 1). The
curve integral is called the circulation in the context of a fluid velocity
field.

We can also integrate a gradient:

∫∫∫

Ω

∇f =

∫∫

∂Ω

fn̂.

Some of the most useful identities of all are ones called integration by
parts, which is what we get when we combine integration identities based
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on the Fundamental Theorem of Calculus with the product rule for deriva-
tives. They essentially let us move a differential operator from one factor
in a product to the other. Here are some of the most useful:

∫∫∫

Ω

(∇f)g =

∫∫

∂Ω

fgn̂−
∫∫∫

Ω

f(∇g),
∫∫∫

Ω

f∇ · ~u =

∫∫

∂Ω

f~u · n̂−
∫∫∫

Ω

(∇f) · ~u,
∫∫∫

Ω

(∇f) · ~u =

∫∫

∂Ω

f~u · n̂−
∫∫∫

Ω

f∇ · ~u.

Replacing ~u by ∇g in the last equation gives us one of Green’s identities:

∫∫∫

Ω

(∇f) · (∇g) =
∫∫

∂Ω

f∇g · n̂−
∫∫∫

Ω

f∇ · ∇g

=

∫∫

∂Ω

g∇f · n̂−
∫∫∫

Ω

g∇ · ∇f.

A.1.7 Basic Tensor Notation

When you get into two or three derivatives in multiple dimensions, it can get
very confusing if you stick to using the ∇ symbols. An alternative is to use
tensor notation, which looks a little less friendly but makes it trivial to keep
everything straight. Advanced differential geometry is almost impossible to
do without this notation. We’ll present a simplified version that is adequate
for most of fluid dynamics.

The basic idea is to label the separate components of a vector with
subscript indices 1, 2, and in three dimensions, 3. Usually we’ll use variables
i, j, k, etc., for these indices. Note that this can get very confusing if
you also are thinking of discretizing on a grid—if you want to avoid that
confusion, it’s often a good idea to only use Greek letters for your tensor
indices, e.g., α, β, γ instead.

The gradient of a function is (∂f/∂x1, ∂f/∂x2, ∂f/∂x3). This is still a
bit longwinded, so we instead use the generic ∂f/∂xi without specifying
what i is: it’s a “free” index.

We could then write the divergence, for example, as

∑

i

∂ui
∂xi

.

This brings us to the Einstein summation convention. It’s tedious to
have to write the sum symbol Σ again and again. Thus we just won’t bother
writing it: instead, we will assume that in any expression that contains the
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index i twice, there is an implicit sum over i in front of it. If we don’t want
a sum, we use different indices, like i and j. For example, the dot-product
of two vectors ~u and n̂ can be written very succinctly as

uini.

Note that by expression I mean a single term or a product—it does not
include addition. So this

ui + ri

is a vector, ~u+ ~r, not a scalar sum.
Einstein notation makes it very simple to write a matrix-vector product,

such as A~x:
Aijxj .

Note that the free index in this expression is j: this is telling us the jth
component of the result. This is also an introduction to second-order ten-
sors, which really are a fancy name for matrices: they have two indices
instead of the one for a vector (which can be called a first-order tensor).
We can write matrix multiplication just as easily: the product AB is

AijBjk

with free indices i and k: this is the i, k entry of the result. Similarly, the
outer-product matrix of vectors ~u and n̂ is

uinj.

Other useful symbols for tensor expressions are the Kronecker delta δij
and the Levi-Civita symbol ǫijk. The Kronecker delta is δij , which is
actually just the identity matrix in disguise: δijxj = xi. The Levi-Civita
symbol has three indices, making it a third-order tensor (kind of like a
three-dimensional version of a matrix!). It is zero if any of the indices
are repeated, +1 if (i, j, k) is just a rotation of (1, 2, 3), and −1 if (i, j, k)
is a rotation of (3, 2, 1). What this boils down to is that we can write a
cross-product using it: ~r × ~u is just

ǫijkrjuk,

which is a vector with free index i.
Putting all this together, we can translate the definitions, identities

and theorems from before into very compact notation. Furthermore, just
by keeping our indices straight, we won’t have to puzzle over what an
expression like ∇∇~u · n̂ ×∇f might actually mean. Here are some of the
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translations that you can check:

(∇f)i =
∂f

∂xi
,

∇ =
∂

∂xi
,

f(xi +∆xi) ≈ f(xi) +
∂f

∂xi
∆xi,

∂f

∂n
=

∂f

∂xi
ni,

(∇~f)ij =
∂fi
∂xj

,

∇ · ~u =
∂ui
∂xi

,

(∇× ~u)i = ǫijk
∂uk
∂xj

,

∇ · ∇f =
∂2f

∂xi∂xi
,

∂

∂xi
ǫijk

∂uk
∂xj

= 0,

ǫijk
∂

∂xj

∂f

∂xk
= 0.
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The different versions of the product rule for differentiation, in tensor
notation, all just fall out of the regular single-variable calculus rule. For
example,

∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
,

∂

∂xi
(fui) =

∂f

∂xi
ui + f

∂ui
∂xi

.

The integral identities also simplify. For example,
∫∫∫

Ω

∂ui
∂xi

=

∫∫

∂Ω

uini,

∫∫∫

Ω

∂f

∂xi
=

∫∫

∂Ω

fni,

∫∫∫

Ω

∂f

∂xi
g =

∫∫

∂Ω

fgni −
∫∫∫

Ω

f
∂g

∂xi
.

A.2 Numerical Methods

This book concentrate on methods based on finite differences, which them-
selves boil down simply to applications of the Taylor series.

Assuming a function f has at least k smooth derivatives, then

f(x+∆x) = f(x) +
∂f

∂x
(x)∆x +

1

2

∂2f

∂x2
(x)∆x2 +

1

6

∂3f

∂x3
(x)∆x3 + · · ·

+
1

(k − 1)!

∂k−1f

∂xk−1
(x)∆xk−1 +Rk.

The remainder term Rk can be expressed in several ways, for example,

Rk =

∫ x+∆x

x

1

k!

∂kf

∂xk
(s)sk−1ds,

Rk =
1

k!

∂kf

∂xk
(s)∆xk for some s ∈ [x, x +∆x],

Rk = O(∆xk).

Note that ∆x could be negative, in which case the second form of the
remainder uses the interval [x+∆x, x]. We’ll generally stick with the last
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form, using the simple O() notation, but do remember that the hidden
constant is related to the kth derivative of f—and if f isn’t particularly
smooth, that could be huge and the Taylor series (taken up to that term)
isn’t particularly useful.

A.2.1 Finite Differences in Space

Partial derivatives of smooth functions sampled on a grid can be estimated
using Taylor’s theorem. For example, for a function q(x) sampled at grid
points spaced ∆x apart, i.e., qi = q(xi) = q(i∆x), Taylor’s theorem gives

qi+1 = qi +∆x
∂q

∂x
(xi) +O(∆x2).

We can rearrange this to get an estimate of ∂q/∂x at xi:

∂q

∂x
(xi) =

qi+1 − qi
∆x

+O(∆x).

Note that after dividing through by ∆x, the error term was reduced to
first order, i.e., the exponent of ∆x in the O() notation is one.

Of course, you can also estimate the same derivative from qi−1, using
Taylor’s theorem for qi−1 = q(xi−1):

∂q

∂x
(xi) =

qi − qi−1

∆x
+O(∆x).

This is also only first-order accurate. Both this and the previous finite
difference are one-sided, since values of q only to one side of the approxi-
mation point are used.

We can get second-order accuracy by using both qi+1 and qi−1, for a
centered or central finite difference: the value we’re approximating lies
in the center of the points we use. Write down the Taylor series for both
these points:

qi+1 = qi +∆x
∂q

∂x
(xi) +

∆x2

2

∂2q

∂x2
(xi) +O(∆x3),

qi−1 = qi −∆x
∂q

∂x
(xi) +

∆x2

2

∂2q

∂x2
(xi) +O(∆x3).

Now subtract them to get, after cancellation,

qi+1 − qi−1 = 2∆x
∂q

∂x
(xi) +O(∆x3).

Dividing through gives the second-order accurate central finite difference:

∂q

∂x
(xi) =

qi+1 − qi−1

2∆x
+O(∆x2).
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Similar reasoning also shows that the first formula we saw is a second-order
accurate central finite difference for the point xi+1/2 = (i + 1/2)∆x:

∂q

∂x
(xi+1/2) =

qi+1 − qi
∆x

+O(∆x2).

Throughout this book we also deal with functions sampled at midpoints,
qi+1/2 = q(xi+1/2), for which we can similarly write down

∂q

∂x
(xi) =

qi+1/2 − qi−1/2

∆x
+O(∆x2).

Higher derivatives can also be estimated. In particular, we can get
a second-order accurate central finite difference for the second derivative
∂2q/∂x2 by writing down the Taylor series yet again:

qi+1 = qi +∆x
∂q

∂x
(xi) +

∆x2

2

∂2q

∂x2
(xi) +

∆x3

6

∂3q

∂x3
(xi) +O(∆x4),

qi−1 = qi −∆x
∂q

∂x
(xi) +

∆x2

2

∂2q

∂x2
(xi) +

∆x3

6

∂3q

∂x3
(xi) +O(∆x4).

The following combination cancels out most of the terms:

qi+1 − 2qi + qi−1 = ∆x2
∂2q

∂x2
(xi) +O(∆x4).

Dividing through by ∆x2 gives the finite difference formula,

∂2q

∂x2
(xi) =

qi+1 − 2qi + qi−1

∆x2
+O(∆x2).

A.2.2 Time Integration

Solving differential equations in time generally revolves around the same
finite difference approach. For example, to solve the differential equation

∂q

∂t
= f(q)

with initial conditions q(0) = q0, we can approximate q at discrete times tn,
with qn = q(tn). The time step ∆t is simply the length of time between
these discrete times: ∆t = tn+1 − tn. This time-step size may or may not
stay fixed from one step to the next. The process of time integration
is determining the approximate values q1, q2, . . . in sequence; it’s called
integration since we are approximating the solution

q(t) =

∫ t

0

f(q(τ)) dτ,
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which has an integral in it.
The simplest time integration method is forward Euler, based on the

first one-sided finite difference formula we saw:

qn+1 − qn
∆t

=
∂q

∂t
(tn) +O(∆t).

Plugging in the differential equation and rearranging gives the formula for
the new value qn+1 based on the previous value qn:

qn+1 = qn +∆tf(qn)

This is only first-order accurate, however.
This book makes use of a few more advanced time integration schemes,

such as Runge-Kutta methods. The Runge-Kutta family gets higher-order
accuracy and other numerical advantages by evaluating f at several points
during a time step. For example, one of the classic second-order accurate
Runge-Kutta methods can be written as

qn+1/2 = qn + 1
2∆tf(q

n),

qn+1 = qn +∆tf(qn+1/2).

Probably the best third-order accurate Runge-Kutta formula is due to Ral-
ston [Ral62]:

k1 = f(qn),

k2 = f(qn + 1
2∆tk1),

k3 = f(qn + 3
4∆tk2),

qn+1 = qn + 2
9∆tk1 +

3
9∆tk2 +

4
9∆tk3.

These schemes are not easy to derive in general!
Many time integration schemes come with a caveat that unless ∆t is

chosen small enough, the computed solution exponentially blows up despite
the exact solution staying bounded. This is termed a stability time-step
restriction. For some problems, a time integration scheme may even be
unstable no matter how small ∆t is: both forward Euler and the second-
order accurate Runge-Kutta scheme above suffer from this flaw in some
cases. The third-order accurate Runge-Kutta scheme may be considered
the simplest general-purpose method as a result.



B

Derivations

B.1 The Incompressible Euler Equations

The classic derivation of the incompressible Euler equations is based on
conservation of mass and momentum. Consider an arbitrary but fixed
region of space Ω, in the fluid. The mass of the fluid in Ω is

M =

∫∫∫

Ω

ρ,

and the total momentum of the fluid in Ω is

~P =

∫∫∫

Ω

ρ~u.

The rate of change of M , as fluid flows in or out of Ω, is given by the
integral around the boundary of the speed at which mass is entering or
exiting, since mass cannot be created or destroyed inside Ω:

∂M

∂t
= −

∫∫

∂Ω

ρ~u · n̂.

Here n̂ is the outward-pointing normal. We can transform this into a
volume integral with the divergence theorem:

∂M

∂t
= −

∫∫∫

Ω

∇ · (ρ~u).

Expanding M and differentiating with respect to time (recalling that Ω is
fixed) gives

∫∫∫

Ω

∂ρ

∂t
= −

∫∫∫

Ω

∇ · (ρ~u).

Since this is true for any region Ω, the integrands must match:

∂ρ

∂t
+∇ · (ρ~u) = 0.

243
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This is called the continuity equation. For an incompressible fluid the
material derivative of density Dρ/Dt is zero, i.e.,

∂ρ

∂t
+ ~u · ∇ρ = 0.

Subtracting this from the continuity equation gives ρ∇ · ~u = 0, or more
simply

∇ · ~u = 0,

which is termed the incompressibility condition. Note that this is in-
dependent of density, even for problems where fluids of different densities
mix together.

We can apply the same process to the rate of change of momentum:

∂ ~P

∂t
=

∫∫∫

Ω

∂(ρ~u)

∂t
.

Momentum can change in two ways: the transport of fluid across the bound-
ary and a net force ~F applied to region. The transport of momentum with
the fluid is the boundary integral of momentum ρ~u times the speed of the
fluid through the boundary:

−
∫∫

∂Ω

(ρ~u)~u · n̂.

(The negative sign comes from the fact that the normal is outward-
pointing.) There are two forces in play for an inviscid fluid: pressure p
on the boundary and gravity ρg throughout the region:

~F = −
∫∫

∂Ω

pn̂+

∫∫∫

Ω

ρg.

(Again, we get a negative sign in front of the pressure integral since the
normal is outward-pointing.) Combining all these terms we get

∫∫∫

Ω

∂(ρ~u)

∂t
= −

∫∫

∂Ω

(ρ~u)~u · n̂−
∫∫

∂Ω

pn̂+

∫∫∫

Ω

ρg.

Transforming the boundary integrals into volume integrals with the Fun-
damental Theorem of Calculus and rearranging gives

∫∫∫

Ω

∂(ρ~u)

∂t
+

∫∫∫

Ω

∇ · (ρ~u ⊗ ~u) +
∫∫∫

Ω

∇p =
∫∫∫

Ω

ρg.

Here ~u⊗ ~u is the 3 × 3 outer-product matrix. Again, since this is true for
any arbitrary region Ω, the integrands must be equal:

∂(ρ~u)

∂t
+∇ · (ρ~u × ~u) +∇p = ρg.
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This is the conservation law form of the momentum equation. Using
the product rule of differentiation, exploiting Dρ/Dt = 0 for an incom-
pressible fluid, and dividing through by ρ, this can readily be reduced to
the form of the momentum equation used in the rest of this book.
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