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PREFACE

There are two important theories in classical physics,
which have not been properly developed to their logical and
mathematical conclusion. They are the Faraday-Maxwell theory
of electromagnetic induction and Newton’s theory of gravitation.
Electromagnetic induction is one of the most important physical
phenomena. Any misinterpretation or misrepresentation of this
phenomenon may weaken the entire electromagnetic theory and
may have undesirable practical consequences. Newton’s theory
of gravitation is the basic working theory of astronomers and
other scientists dealing with space exploration and celestial
mechanics. Therefore this theory must also be as accurate and
complete as possible. What is more, one cannot really judge the
significance and value of alternative theories of gravitation
without a thorough understanding of all the peculiarities and
consequences of Newton’s gravitational theory in its most
general form.

But why would one discuss electromagnetic induction and
gravitation in the same book? What is the connection between the
two theories? As far as I know, there is no direct connection.
But, as I have found, and as the readers will see, there is a very
strong indirect one. First, neither electromagnetic induction as it
is now understood, nor Newtonian gravitation is compatible with
the principle of causality. Second, Newtonian gravitation is also
incompatible with the law of conservation of momentum. When
Newton’s gravitational law is modified to satisfy the conservation
of momentum, two gravitational equations, similar to Maxwell’s
curl equations of electromagnetic theory (which are customarily

vii



viii PREFACE

interpreted as representing the phenomenon of electromagnetic
induction), are obtained. And when the electromagnetic and
gravitational curl equations are transformed into equations com-
patible with the principle of causality, the resulting
electromagnetic and gravitational equations turn out to be almost
identical. Thus, both electromagnetism and gravitation are sub-
ject to very similar basic laws, to the same mathematical for-
malism, and, unfortunately, to very similar misconceptions.

These findings have very important consequences for our
understanding of electromagnetic and gravitational phenomena.

For electromagnetism, one of the consequences is that, con-
trary to the presently accepted view, time-variable electric and
magnetic fields cannot cause each other. Another consequence is
that Lenz’s law of electromagnetic induction is a manifestation
of the previously ignored electric force produced by the time-
dependent electric current. It is this force, rather than changing
magnetic or electric fields, that is responsible for the
electromagnetic induction.

For gravitation, one of the consequences is that there must
exist a second ("cogravitational") field, similar to the magnetic
field of electromagnetism. Other consequences are that the
"gravitational drag" and "Coriolis-like" gravitational forces
(heretofore considered to be exclusive consequences of Einstein’s
general relativity theory) have a simple explanation in terms of
Newtonian gravitational theory generalized to time-dependent
systems.

I suppose that some readers will find it difficult at first to
accept the new ideas on electromagnetic induction and gravitation
presented in this book. Naturally, it is difficult to abandon the
familiar and very comfortable concept of electromagnetic
induction as a phenomenon where one of the two fields creates
the other. It is difficult to accept that this concept is illusory. It



PREFACE ix

is equally difficult to accept the existence of a second
gravitational field and to accept new nonrelativistic gravitational
equations, especially since the conventional Newton’s theory of
gravitation has worked so well. But the analysis and conclusions
presented in this book cannot be questioned without questioning
the very foundation of physics and its mathematical methods:
Maxwell’s electromagnetic equations, the principle of causality,
the law of conservation of momentum, and the general vector
field theory.

Now and then we find a new path for exploring the world
around us. Viewed from this path, familiar objects look dif-
ferent, and new, previously unknown objects, become visible.
This book is an account of such an exploration.

Although the book presents results of an original research (it
is based on several research articles that at first were intended
for publication in scientific journals), it is written in the style and
format of a textbook and can be considered a sequel to my
Electricity and Magnetism, 2nd ed., (Electret Scientific, Star
City, 1989). Its mathematical apparatus is the same as that
developed in Electricity and Magnetism, it uses the same
terminology, it provides derivations of all new equations, and it
contains a number of illustrative examples similar in style and
format to those included in Electricity and Magnetism. Therefore
it can be used not only for independent reading, but also as a
supplementary textbook in courses on electromagnetic theory.

I am pleased to express my gratitude to Dr. David K. Walker
of Marshall University for reading the manuscript of this book
and to my wife Valentina for helping me to make the manuscript
ready for publication.

Oleg D. Jefimenko
September 1, 1991



PREFACE TO
THE SECOND EDITION

The second edition of this book is intended to update the
subject matter and literature references presented in the first
edition. Most of the new material included in the second edition
deals with Newton’s gravitational theory generalized to time-
dependent gravitational systems. In the seven years since the
publication of the first edition of the book this theory has shown
itself to be a sound, functional, and viable theory of gravitation
deserving the utmost attention. New material pertaining to this
theory has been added in Chapters 5, 7, and 8 as well as in
Appendixes.

The number of Appendixes has been increased from four to
eight. A novel graphical representation of electric and
gravitational fields is discussed in Appendixes 5 and 6. Based on
"dynamic field maps," this graphical representation provides new
insights into the properties and effects of electric and
gravitational fields of fast moving charges and masses. An
analysis of gravitational forces according to Newton’s
gravitational theory generalized to time-dependent gravitational
systems is presented in Appendix 7. An important addition to the
book is the Heaviside’s 1893 article on the theory of gravitation.
It is reproduced in its entirety in Appendix 8. To facilitate the
understanding of the mathematical expressions appearing in the
Heaviside’s article, Heaviside’s original mathematical notation
has been converted to the conventional modern form. This
pioneering article is the foundation of the generalized Newton’s
theory of gravitation developed in this book.
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I am pleased to express my thanks to Dr. Yu. G. Kosarev of
the Novosibirsk Institute of Mathematics for sending to me his
comments and a list of misprints that he had noticed in the first
edition of the book. In his comments, Prof. Kosarev has pointed
out that, since all causal interdependencies involve a time delay
(retardation), a new science, which he proposes to call
"retardics," should be created. This science should investigate
cause and effect relationships (not necessarily restricted to the
domain of physical phenomena) specifically in terms of the
temporal characteristics of these relationships. I welcome his idea
and I hope that it will be implemented before long.

I am also pleased to express my gratitude to my wife
Valentina for her assistance in the preparation of this edition of
the book.

Oleg D. Jefimenko
November 30, 1999
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MAXWELL’S EQUATIONS
AND CAUSALITY

IN ELECTROMAGNETIC
PHENOMENA

In this chapter Maxwell’s electromagnetic equations are
analyzed on the basis of the principle of causality. It is shown
that Maxwell’s equations do not depict cause and effect relations
between electromagnetic phenomena and between time-variable
electric and magnetic fields in particular. It is concluded that
causal dependencies in electromagnetic phenomena are described
by solutions of Maxwell’s equations involving integrals over
retarded charges and currents. A discussion of these solutions
from the viewpoint of causality is presented.

1-1. Basic Physical Laws and Causal Relations Between
Physical Phenomena

One of the most important tasks of physics is to establish
causal relations between physical phenomena. No physical theory
can be complete unless it provides a clear statement and
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description of causal links involved in the phenomena
encompassed by that theory. In establishing and describing causal
relations it is important not to confuse equations which we call
"basic laws" with "causal equations." A "basic law" is an
equation (or a system of equations) from which we can derive
most (hopefully all) possible correlations between the various
quantities involved in a particular group of phenomena subject to
the "basic law." A "causal equation," on the other hand, is an
equation that unambiguously relates a quantity representing an
effect to one or more quantities representing the cause of this
effect. Clearly, a "basic law" need not constitute a causal
relation, and an equation depicting a causal relation may not
necessarily be among the "basic laws" in the above sense.

Causal relations between phenomena are governed by the
principle of causality. According to this principle, all present
phenomena are exclusively determined by past events. Therefore
equations depicting causal relations between physical phenomena
must, in general, be equations where a present-time quantity (the
effect) relates to one or more quantities (causes) that existed at
some previous time. An exception to this rule are equations
constituting causal relations by definition; for example, if force
is defined as the cause of acceleration, then the equation F =
ma, where F is the force and a is the acceleration, is a causal
equation by definition.

In general, then, according to the principle of causality, an
equation between two or more quantities simultaneous in time
but separated in space cannot represent a causal relation between
these quantities. In fact, even an equation between quantities
simultaneous in time and not separated in space cannot represent
a causal relation between these quantities because, according to
this principle, the cause must precede its effect. Therefore the
only kind of equations representing causal relations between
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physical quantities, other than equations representing cause and
effect by definition, must be equations involving "retarded"
(previous-time) quantities.

Let us apply these considerations to the basic electromagnetic
field laws. These laws are represented by the four Maxwell’s
equations, which, in their differential form, are

VD =p (1-1.1)
V-B =0 (1-1.2)
VxE = - 3B (1-1.3)
ar
and
VxH=J+%_?, (1-1.4)

where E is the electric field vector, D is the displacement vector,
H is the magnetic field vector, B is the magnetic flux density
vector, J is the current density vector, and p is the electric
charge density. For fields in a vacuum, Maxwell’s equations are
supplemented by the two constitutive equations

D

& E (1-1.5)
and

B

uH. (1-1.6)

(The names and designations of electromagnetic quantities used
in this book are the same as those used in the author’s textbook
Electricity and Magnetism.")

Since none of the four Maxwell’s equations is defined to be
a causal relation, and since each of these equations connects
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quantities simultaneous in time, none of these equations can rep-
resent a causal relation. That is, V-D cannot be a consequence of
p (and vice versa), VXE cannot be a consequence of dB/d¢ (and
vice versa), and VxH cannot be a consequence of J + dD/d¢
(and vice versa). But is it possible that D rather than VD is a
consequence of p, that E rather than VXE is a consequence of
0B/dt, and that H rather than VXH is a consequence of J +
dD/at? We shall provide detailed answers to these questions in
the following two sections.

1-2. The Third Maxwell’s Equation and the Principle of
Causality

Can the electric field E be caused by (be a consequence of)
the time-variable magnetic field dB/d¢? To answer this question
we shall make use of the following equation representing
Helmholtz’s theorem of vector analysis applicable to any vector
field V regular at infinity ?

1 VIVV) - VX (©'XV) 4

V=- _l 1-2.1)
47T All space r

where r is the distance between the field point x, y, z (point for
which V is evaluated) and the source point x’, y’, z' (volume
element dv'), and where the primed operator V' operates on the
source-point coordinates only (here and in most other integrals
appearing in this book the integration is over all space).

Let us apply Helmholtz’s theorem, Eq. (1-2.1), to the
electric field E. Since in a vacuum,® by Egs. (1-1.1) and (1-1.5),
V‘E = ple,, and since we are not interested in E due to p, we
can ignore the gradient term in Eq. (1-2.1). We then obtain from
Egs. (1-2.1) and (1-1.3)
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E-=-

1 J V% oB/dt (12.2)

4r r

The integrand in this equation can be transformed by using
vector identity (V-24) (see Appendix 1 for a list of vector
identities; letter "m" after the number means "modified")

! V X
V><V=V'><X+ i

. . — (V-24m)

b

where r, is a unit vector directed from the point x’, y’, z' to the
point x, y, z. We then have

oB/ot X
E--_L lV’x oB/3t 4 - 1 J_—r“dv'. (1-2.3)
47 r 4n r?

The first integral can now be transformed into a surface integral
by means of vector identity (V-21)

lV'xAdv - - ffodS', (V-21m)
which gives
o [ By - LB s 2.4)
4T r 4T r

Since dB/d¢ must be confined to a finite region of space, and
since the surface of integration in the surface integral is at
infinity, the surface integral is zero. Therefore we finally obtain

E =

! [mw. (1-2.5)

—ﬂ- .

r

In this equation, too, E and dB/d¢ are evaluated for the same
instant of time. Hence, according to the causality principle, there
is no causal relation between dB/d¢ and E either. Therefore
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Maxwell’s Eq. (1-1.3), although a basic law, is not a causal
equation.

But if there is no causal relation between E or VXE and
0B/dr, what is the meaning of the relation represented by
Maxwell’s Eq. (1-1.3)? A plausible interpretation of Eq. (1-1.3)
is that both dB/dr and VXE are coupled together because they
are always simultaneously caused by some third quantity, not
revealed by Eq. (1-1.3). Let us explore this interpretation.

To do so, we shall make use of the following two equations,
which constitute solutions of Maxwell’s equations for fields in a
vacuum *

vt
E=-_1 I ¢ 9 gy (1-2.6)
4me, r
and
H - LI[V"‘J] a’. 1-2.7)
4w r

The square brackets in these equations are the retardation symbol
indicating that the quantities between the brackets are to be
evaluated for the time ¢t' = ¢t — r/c, where ¢ is the time for
which E and H are evaluated, p is the electric charge density, J
is the current density, r is the distance between the field point
x, ¥, zZ (point for which E and H are evaluated) and the source
point x', y', z' (volume element dv’), and c is the velocity of
light. As usual, the integrals in both equations are extended over
all space.

Evaluating VXE by taking the curl of Eq. (1-2.6), we have

o1
rc Pav, a2
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where we have placed the operator V under the integral sign,
since V operates on unprimed coordinates, while the integration
is over the primed coordinates. Separating the integral of Eq. (1-
2.8) into two integrals, we have

VXE = - 1 le [V’p]dv'— 1 lel[ﬂ]dV'.(l-2.9)
4me, r 4me,c? rior

Since the first integral does not explicitly depend on time, we
may ignore it for this particular calculation (if we did not ignore
it, we would find that after transformations it vanishes anyway).
We then obtain

VXE=-__1 [Vx l[ﬂ]dv'. (1-2.10)
4mec? riot
Let us now multiply Eq. (1-2.7) by p, and differentiate it with
respect to time. Since in a vacuum, by Eq. (1-1.6), B = pH,
we have

B _ OH _ K [[V'XJ]d,

B -, 0Tt 1-2.11
a oo 47r6t r ( )

The integrand in Eq. (1-2.11) can be transformed by means of
the vector identity (V-32)°

VXV _ o Mo M (v32m)
r r r
We then have
B _ Ho 3 le[J]dv + ]v' [J]dv (1-2.12)
ot 4 ot r 47r ot

Using vector identity (V-21), we can transform the last integral
of Eq. (1-2.12) into a surface integral, just as we transformed
the first integral of Eq. (1-2.3). We obtain
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ﬁ_] x Wy P 0 E Uy s (12.13)
4T ot r 4 ot) r

But these integrals vanish, because J is confined to a finite
region of space, while the surface of integration is at infinity.
Thus only the first integral of Eq. (1-2.12) remains. Differen-
tiating this integral with respect to time, taking into account that
d[J1/0t = [8)/31] and that u, = 1/g,c?, we finally obtain

B _ [ ]dv (1-2.14)
ar 41r8 c?
the right side of which, except for the minus sign, is the same as
in Eq. (1-2.10).
It is now clear that the two terms of Maxwell’s Eq. (1-1.3),
VXE and 0B/dt, do indeed have the same common cause: the
changing electric current density J.

1-3. The Fourth Maxwell’s Equation and the Principle of
Causality

Let us now consider Maxwell’s Eq. (1-1.4). Let us see if
there is a causal relation between H and dD/d¢. Since at this time
we are not interested in the effect of J on H, we shall set in Eq.
(1-1.4) J = 0. Substituting Eq. (1-1.4) into Eq. (1-2.1), and
taking into account that V-H = 0, we have

_— I V' x 9D/ot
4 r
Transforming this integral in the same manner as the integral of

Eq. (1-2.2), and taking into account that dD/d¢ is confined to a
finite region of space, we obtain

av'. (1-3.1)
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oD/dt X
1 [#zdv'. (1-3.2)

4w

In this equation, too, H and dD/d¢ are evaluated for the same in-
stant of time. Hence, by the causality principle, dD/d¢ cannot be
a cause of H, and, consequently, Maxwell’s Eq. (1-1.4), just like
Eq. (1-1.3), is not a causal equation.

But if there is no causal relation between H and dD/d¢, what
is the meaning of the relation represented by Maxwell’s Eq. (1-
1.4)? A plausible interpretation of Eq. (1-1.4) is that both aD/o¢
and VXH are coupled together because they are always simul-
taneously caused by some third quantity, not revealed by Eq. (1-
1.4). Let us explore this interpretation.

Evaluating VX H by using Eq. (1-2.7) and vector identity (V-
32), we have

r2

VXH = 4l[Vx [V’x'ndv’
o7 , (1-3.3)
= _1_[[V x(V XJ)]dv: _ i[le [v XJ]dv,‘
4T r 4T r

Making use of vector identity (V-21), we can write

Vxn=i[w)_]dv'+_1_ VXA o gst (1-3.4)
4T r 4T r

and, since the surface integral vanishes (because J is confined to
a finite region of space), we obtain

vxn = L[TXTDgy a3)
41 r
Let us now find the time derivative of D by using Eq. (1-
2.6). Since the fields under consideration are in a vacuum, so
that D = ¢E, we have
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[V'p + i a_J
D _ aE__IJB c26td,
— == =" — | = av
ot ot 4 ) ot r
L 1 03 (1-3.6)
-1 J o cor av',
4T r
and, making use of the continuity equation V'+J = — dp/dt, we
obtain
- 12
WL Cav. (3.7
at 4m g
Next, let us subtract Eq. (1-3.7) from Eq. (1-3.5). We obtain
VXH - D
o

1 0% (1-3.8)

[V(V'J) VX (V' X]J) - =33
o2

4T r

But, according to vector identity (V-27) (see Appendixes 1 and
2),

[V(V’ V)-v'x (v'xV)- L FV

v=-L[ o av', (V-27)
4 r

the integral in Eq. (1-3.8) is simply the time-variable current
density J. Thus, VXH and 0D/d¢ are indeed simultaneously
created by the changing J (more accurately, by changing J and
changing p, since V'+J = — dp/ar). Consequently, Maxwell’s Eq.
(1-1.4) may be regarded as a causal equation, if it is written as
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aD
VxH - == = 1-3.9
- ¥ (1-3.9)

Of course, the causal relation depicted by Eq. (1-3.9) is between
the current density J and the entire left side of the equation,
rather than between H and D (observe that this equation is an
exception to the normal causal equations discussed on p. 4).

1-4. Causal Equations for Electric and Magnetic Fields

The analysis of Maxwell’s Eqs. (1-1.3) and (1-1.4) presented
in the two preceding sections shows that, according to the
causality principle, neither Eq. (1-1.3) nor Eq. (1-1.4) is a causal
equation. It also shows that electric and magnetic fields cannot
cause one another, and that Maxwell’s Egs. (1-1.3) and (1-1.4)
correlate quantities simultaneously created by time-variable
electric charges and currents. But then what are the fundamental
causal equations of electromagnetic theory? For fields in a
vacuum, Egs. (1-2.6) and (1-2.7) can be regarded as such
equations. However, the spatial derivatives contained in these
equations make them awkward and not particularly clear.

If we eliminate the spatial derivatives from Egs. (1-2.6) and
(1-2.7), we obtain two much more lucid alternative causal
equations in which the causative sources of time-dependent
electric and magnetic fields are clearly and explicitly revealed.*¢
These equations are

Be L ([l 1201}

dme, ) L r2 rc ot ) "

j [ ]dv (1-4.1)

41rs c?
and

H - 4W[{“2] rlc "’g]}xr @', (1-4.2)
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where r, is the unit vector directed from dv' to the field point.
We now see from these equations that the electric field has three
causative sources: the charge density p, the time derivative of p,
and the time derivative of J. And we see that the magnetic field
has two causative sources: the electric current density J and the
time derivative of J.

Equations (1-4.1) and (1-4.2) clearly show that, since both
equations contain the time derivative of J, an electric and a
magnetic field are always simultaneously created by the same
time-variable electric current.

Equation (1-4.1) also reveals the explicit causal relation
between the electric field and the electric charge, thus
reinforcing our previous conclusion that Maxwell’s Eq. (1-1.1)
does not represent a causal relation between the electric
displacement vector D (which, in a vacuum, is proportional to E)
and the charge density p.

For a single point charge ¢ moving in a vacuum with velocity
v and acceleration a, Eqgs. (1-4.1) and (1-4.2) become’

E-_41 {R[l —Z_z]+%[r]><(k><[a])}, (1-4.3)

4re, s>
and
-_4 _vio 1 )
" 47rs3{[v][1 p] m[’JX(Rxlal)}XIrl, (1-4.4)
with
_ [r]xXE
H-=——, 1-4.5
poclr] ( )

where [r] is the retarded position vector of the moving point
charge given by ¢’ = ¢ — [r]/c and directed from the charge to
the point of observation (Fig. 1.1), R = [r — rv/c] is the
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(a) (b)

Fig. 1.1 Geometrical relations between the point of observation for
the fields E and H and the retarded position [P], present position
P, and "projected"” present position PP of a moving point charge q.
(a) The charge moves with constant velocity v. (b) The charge
moves with variable velocity v. (The present projected position is
the position that q would have had, if [v] were constant.)

“projected" present position vector of the point charge (also
directed toward the point of observation), s = [ r — r*v/c], and
where the square brackets denote retarded values.

For a point charge moving without acceleration, Eq. (1-4.3)
can be expressed in terms of the present position vector r, as”®

—n2/,2
ad-vie) (1-4.6)
4mero[1 - (v¥c?)sin®0)*?

where 0 is the angle between v and r,, with

E =

H-Y*E (1-4.7)
PoC®
Note that for time-independent systems, Eq. (1-4.1) reduces
to the ordinary Coulomb field equation expressing E in terms of
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p, and Eq. (1-4.2) reduces to the Biot-Savart law expressing H
in terms of J. Therefore Eqs. (1-4.1) and (1-4.2) constitute the
most general equations for electric and magnetic fields in a
vacuum within the framework of Maxwellian electromagnetic
theory.

1-5. Can Time-Variable Electric and Magnetic Fields Create
Each Other?

There is a widespread belief that time-variable electric and
magnetic fields can cause each other. The analysis of Maxwell’s
equations presented above does not support this belief. It is true
that whenever there exists a time-variable electric field, there
also exists a time-variable magnetic field. This follows from
Maxwell’s Egs. (1-1.3) and (1-1.4) as well as from Eqgs. (1-4.1)
and (1-4.2). But, as we have seen, neither Maxwell’s equations
nor their solutions indicate an existence of causal links between
electric and magnetic fields. Therefore we must conclude that an
electromagnetic field is a dual entity always having an electric
and a magnetic component simultaneously created by their
common sources: time-variable electric charges and currents.’

This conclusion must hold for all electromagnetic fields,
including electric and magnetic fields in electromagnetic waves.

However, concerning electromagnetic waves, an interesting
connotation emerges from our analysis. According to vector
identity (V-28), a time-variable vector field can always be
represented as

2
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On the other hand, the equation
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vy - L3V _ (1-5.1)
c? or?

with V = E or V = H is the equation for electromagnetic waves
in free space. Hence there appears to be a contradiction between
Eq. (V-28) and Eq. (1-5.1): Eq. (V-28) states that if the
integrand is zero, then also V is zero; but Eq. (1-5.1) states that,
on the contrary, V in this case should be a wave field and not at
all zero. In other words, it appears that, according to Eq. (1-
5.1), there can exist "sourceless" electromagnetic fields
(sourceless electromagnetic waves), whereas, according to Eq.
(V-28), such fields are impossible. Since there is no doubt that
Eq. (1-5.1) does indeed represent a wave field, it appears that
Eq. (V-28) may yield wrong results. If this is true, then our
causal equations, Egs. (1-2.6), (1-2.7), (1-4.1), and (1-4.2), may
be wrong, because, as it is shown in Appendix 2, these equations
are merely special cases of Eq. (V-28) for electric and magnetic
fields.

Actually, however, there is no conflict between Egs. (V-28)
and (1-5.1). The seeming contradiction disappears as soon as we
realize that the integration in Eq. (V-28) is over all space, and
that V on the left of this equation will not be zero if Eq. (1-5.1)
applies only to a limited region of space. Thus, Eq. (V-28)
provides important information about wave fields, which is not
provided by Eq. (1-5.1): there can be no wave field unless Eq.
(1-5.1) holds, but Eq. (1-5.1) must apply to a limited region of
space only. If V # 0 somewhere in space, then there must be a
region of space where Eq. (1-5.1) does not hold. This region
contains (or did contain in the past) the sources of V, which are
the retarded quantities that appear in Egs. (V-28), (1-2.6), (1-
2.7), (1-4.1) and (1-4.2).
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THE NATURE OF
ELECTROMAGNETIC
INDUCTION

Electromagnetic induction is one of the most important
physical phenomenon. It is traditionally attributed to generation
of electric fields by changing magnetic fields and to generation
of magnetic fields by changing electric fields. But, as we found
in Chapter 1, there is no causal relation between electric and
magnetic fields. We must look therefore for a different
explanation of electromagnetic induction. In this chapter we shall
unveil its true nature and shall establish its correct theoretical
foundation.

2.1. What is Electromagnetic Induction?

Electromagnetic induction is frequently explained as a
phenomenon in which a changing magnetic field produces an
electric field ("Faraday induction") and a changing electric field
produces a magnetic field ("Maxwell induction"). The very
useful and successful method of calculating induced voltage
(emf) in terms of changing magnetic flux appears to support the
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reality of Faraday induction. And the existence of electromag-
netic waves appears to support the reality of both Faraday induc-
tion and Maxwell induction.

Maxwell’s equations do not provide a conclusive answer to
whether or not the two phenomena are real. In Maxwell’s
equations electric and magnetic fields are linked together in an
intricate manner, and neither field is explicitly represented in
terms of its sources. However, an examination of the causal
relations in time-dependent electric and magnetic fields presented
in Chapter 1 shows that Maxwell’s equations are not at all causal
equations, and that neither of the two fields can create the other.

As it was shown in Chapter 1, the causal equations for
electric and magnetic fields in a vacuum are

E - L|{M ! a[p]}r av' - __1_.[ a']]dv (1-4.1)
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According to these equations, in time-variable systems electric
and magnetic fields are always created simultaneously, because
they have a common causative source: the changing electric
current [the last term of Eq. (1-4.1) and the last term in the
integral of Eq. (1-4.2)]. Once created, the two fields coexist
from then on without any effect upon each other. Therefore
electromagnetic induction as a phenomenon in which one of the
fields creates the other is an illusion. The illusion of the "mutual
creation” arises from the facts that in time-dependent systems the
two fields always appear prominently together, while their causa-
tive sources (the time-variable current in particular) remain in the
background.
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But if the two fields are created simultaneously and coexist
from then on as a dual entity, then our concept of electromag-
netic induction requires a thorough reexamination. We shall start
such a reexamination by reviewing the history of this concept.

2-2. Faraday Induction in Historical Perspective

In 1820 Oersted discovered the fundamental electromagnetic
phenomenon, the fact that an electric current was accompanied
by a magnetic field encircling that current.'

In the same year Ampere discovered that current-carrying
conductors attracted each other if the currents were in the same
direction, and repelled each other if they were in opposite
directions; he named the forces between the current-carrying
conductors "electro-dynamic" forces. Later he identified these
forces as magnetic, and suggested that magnetism was really an
electrical phenomenon: magnetized bodies owed their magnetic
effects to circular electric cuirents within the bodies.

Also in 1820 Biot and Savart provided a mathematical
description of Oersted’s discovery, and Davy discovered that a
current-carrying wire attracted iron filings to itself.

These discoveries inspired Faraday to start his celebrated
researches in electricity and magnetism. At first he was mainly
interested in finding answers to two questions: can a current in-
duce a secondary current in neighboring bodies, and can mag-
netism be converted into electricity? By 1831 Faraday had the
answers to both questions. In a letter of November 29, 1831,
addressed to his friend Richard Phillips, Faraday wrote:?

§I. When an electric current is passed through one of two
parallel wires it causes at first a current in the same direction



22 CHAPTER 2 ELECTROMAGNETIC INDUCTION

through the other, but this induced current does not last a moment
notwithstanding the inducing current (from the Voltaic battery) is
continued . . . , but when the current is stopped then a return
current occurs in the wire under induction of about the same
intensity and momentary duration but in the opposite direction to
that first found. Electricity in currents therefore exerts an inductive
action like ordinary electricity but subject to peculiar laws: the
effects are a current in the same direction when the induction is
established, a reverse current when the induction ceases and a
peculiar state in the interim . . .

§II. Then I found that magnets would induce just like voltaic
currents and by bringing helices and wires and jackets up to the
poles of magnets, electrical currents were produced in them, these
currents being able to deflect the galvanometer, or to make, by
means of the helix, magnetic needles, or in one case even to give
a spark. Hence the evolution of electricity from magnetism. The
currents were not permanent, they ceased the moment the wires
ceased to approach the magnet because the new and apparently
quiescent state was assumed just as in the case of the induction of
currents. But when the magnet was removed, and its induction
therefore ceases, the return currents appeared as before. These two
kinds of induction I have distinguished by the terms Volta-electric
and Magneto-electric induction. Their identity of action and results
is, I think, a very powerful proof of the truth of M. Ampere’s
theory of magnetism.

$II1. The new electrical condition which intervenes by induction
between the beginning and end of the inducing current gives rise to
some very curious results. It explains why chemical action or other
results of electricity have never been as yet obtained in trials with
the magnet. In fact, the currents have no sensible duration . . . The
condition of matter I have dignified by the term Electrotonic, The
Electrotonic State.



SECTION 2-2 FARADAY INDUCTION 23

A detailed account of the various and numerous experiments
that had led Faraday to his discovery and to the study of
electromagnetic induction was communicated to the Royal
Society and was published in Philosophical Transactions and
later in his famous Experimental Researches in Electricity.* The
experiments that he conducted in 1831 comprised the first 75
pages of the first volume of Experimental Researches.

Just as Faraday wrote in his letter to Phillips, he discovered
two basic effects of electromagnetic induction: the induction of
electric current in a circuit due to a changing current of the
inducing circuit, and the induction of a current in a circuit due
to a relative motion of this circuit with respect to a current-
carrying circuit or magnet (he also discovered "self-induction”
of current in a single circuit). It is important to note that
although Faraday was the originator of the concept of the
magnetic field (which he described in terms of the "magnetic
curves" — our present day "magnetic lines of force"), he never
as much as suggested that the induced currents were a result of
changing magnetic fields. On the contrary, he clearly associated
the phenomenon of electromagnetic induction with changing
electric currents, even when the induction was caused by a
motion of a permanent magnet (reference to Ampere in the letter
to Phillips).

The mathematical formulation of the phenomenon of
electromagnetic induction was due to Maxwell. In Chapter III
(entitled "On the Induction of Electric Currents") of Vol. 2 of
his famous Treatise on Electricity and Magnetism he wrote:*

It was perhaps for the advantage of science that Faraday, though
thoroughly conscious of the fundamental forms of space, time, and
force, was not a professed mathematician . . . He was thus left at
leisure to do his proper work, to coordinate his ideas with the facts,
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and to express them in natural, untechnical language. It is mainly
with the hope of making these ideas the basis of a mathematical
method that I have undertaken this treatise.

Maxwell then reviewed Faraday’s observations in four
sections entitled "Induction by Variation of the Primary
Current," "Induction by Motion of the Primary Circuit,"
"Induction by Motion of the Secondary Circuit," and "Induction
by the Relative Motion of a Magnet and the Secondary Circuit."
Next he analyzed Faraday’s concept of the electrotonic state.
Finally he formulated his law of electromagnetic induction:

The number of the lines of force which at any instant pass
through the circuit is mathematically equivalent to Faraday’s earlier
conception of the electrotonic state of that circuit . . .

It is only since the definitions of electromotive force . . . and its
measurement have been made more precise, that we can enunciate
completely the true law of magneto-electric induction in the
following terms:

The total electromotive force acting round a circuit at any instant
is measured by the rate of decrease of the number of lines of
magnetic force which pass through it . . . Instead of speaking of the
number of lines of magnetic force, we may speak of the magnetic
induction through the circuit, or the surface-integral of magnetic
induction extended over any surface bounded by the circuit.

As we see, Maxwell, t00, considered the electromagnetic
induction as a phenomenon in which a current (or electromotive
force) is induced in a circuit, but not as a phenomenon in which
a changing magnetic field causes an electric field. He clearly said
that the induced electromotive force is measured by, not caused
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by, the changing magnetic field. Just as Faraday, he made no
allusion to any causal link between magnetic and electric fields.

2-3. Maxwell Induction in Historical Perspective

The expression "Maxwell induction” is of a relatively recent
origin. The expression refers to an alleged phenomenon where
a magnetic field is created by a changing electric field. Its
theoretical basis is presumed to be in the fourth Maxwell’s Eq.
(1-1.4), specifically in the last term of this equation — the time-
variable displacement current density dD/dt. The reality of this
phenomenon has never been demonstrated experimentally.

There is just one, frequently used, "theoretical” illustration of
Maxwell induction: the computation of the magnetic field
between the plates of a thin parallel-plate capacitor with circular
plates in a circuit with a slowly varying current.” However, this
illustration actually demonstrates the utility of the displacement
current concept and does not really manifest an induction
phenomenon. What is more, it has been repeatedly shown that
the same result can be obtained from the Biot-Savart law applied
to the conduction current in the lead wires and in the capacitor
plates, without using the displacement current at all.*® Attempts
have been made by some investigators to observe displacement
current experimentally. However, according to an authoritative
article by one of these investigators, these attempts were futile.’

The concept of the displacement current was introduced in the
electromagnetic theory by Maxwell. Let us see how Maxwell
defined displacement current and what properties he attributed to
it. In Chapter I of Vol. 1 of his Treatise Maxwell wrote:!°

The electric polarization of an elementary portion of a dielectric
is a forced state into which the medium is thrown by the action of
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electromotive force, and which disappears when that force is
removed. We may conceive it to consist in what we may call an
electric displacement, produced by the electromotive intensity . . .
whatever electricity may be, and whatever we may understand by
the movement of electricity, the phenomenon which we have called
electric displacement is a movement of electricity in the same sense
as the transference of a definite quantity of electricity through a
wire is a movement of electricity.

In Chapter IX of Vol. 2 of his Treatise he wrote:"

One of the peculiarities of this treatise is the doctrine which it
asserts, that the true electric current, that on which the
electromagnetic phenomena depend, is not the same thing as K, the
current of conduction, but that the time-variation of D, the electric
displacement, must be taken into account in estimating the total
movement of electricity.

Thus, according to Maxwell, the displacement current was
not a changing electric field, as we interpret it today, but a dis-
placement of actual electric charges residing inside dielectric
media. In this respect we should remember that in Maxwell’s
times it was believed that all space was occupied by ether, a
dielectric medium. On the last page of his Treatise, speaking
about the propagation of light, Maxwell wrote:'

Hence all these theories lead to the conception of a medium in
which the propagation takes place, and if we admit this medium as
an hypothesis, I think it ought to occupy a prominent place in our
investigations, and that we ought to endeavor to construct a mental
representation of all the details of its action, and this has been my
constant aim in this treatise.
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It is therefore completely groundless to associate Maxwell’s
name with the idea that a changing electric field can cause a
magnetic field. What is more, since this idea is without any
experimental or theoretical support, it must be completely
discarded. Faraday induction, as a phenomenon where an electric
current is generated in a conductor by a changing electric current
in another (or in the same) conductor, is a true physical effect.
"Maxwell induction,” on the other hand, is an inappropriately
named illusion.

2-4. What is Electromagnetic Induction? (The Answer)

What is then the true nature and cause of "electromagnetic
induction?" Before answering this question let us emphasize the
fact that there is only one phenomenon that can be called
electromagnetic induction in systems at rest. Since, as we have
seen, electric and magnetic fields cannot cause one another, the
only electromagnetic induction in systems at rest is Faraday
induction of an electric current in a conductor due to a changing
electric current in some other (or in the same) conductor.

As far as the electromagnetic induction in conductors moving
with respect to other conductors (or magnets) is concerned, this
induction is reducible to the induction in systems at rest (see
Sections 2-5, 2-6, and Example 3-3.6), and, as an alternative,
can be considered in terms of Lorentz’s fields and forces "
without invoking any induction effect at all.

And now, once again, what is the true nature and cause of
electromagnetic induction? The answer is quite simple. Accord-
ing to Eq. (1-4.1),

E-_| j{@+ lﬁLel}r av' - | jl aJ]dv', (1-4.1)
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a time-variable electric current creates an electric field parallel
to that current [the last term of Eq. (1-4.1)]. This field exerts an
electric force on the charges in nearby conductors thereby
creating induced electric currents in them. Thus, the term
"electromagnetic induction" is actually a misnomer, since no
magnetic effect is involved in the phenomenon, and since the in-
duced current is caused solely by the time-variable electric cur-
rent and by the electric field produced by that current.

Observe that the electric field produced by a time-variable
current differs in two important respects from the ordinary
electric field produced by electric charges at rest: the field is
directed along the current rather than along a radius vector, and
it exists only as long as the current is changing in time.
Therefore the electric force caused by this field is also different
from the ordinary electric (electrostatic) force: it is directed
along the current and it lasts only as long as the current is
changing. Unlike the electrostatic force, which is always an
attraction or repulsion between electric charges, the electric force
due to a time-variable current is a dragging force: it causes
electric charges to move parallel (or antiparallel) relative to the
direction of the current. If the time-variable current is a
convection current, then the force that this current exerts on
neighboring charges causes them to move parallel to the
convection current, rather than toward or away from the charges
forming the convection current [the total electric force is, of
course, given by all three terms of Eq. (1-4.1)].

The electric field created by time-variable currents is very
different from all other fields encountered in electromagnetic
phenomena. Therefore a special name should be given to it.
Taking into account that the cause of this field is a motion of
electric charges (current), we may call it the electrokinetic field,
and we may call the force which this field exerts on an electric
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charge the electrokinetic force. Of course, we could simply call
this field the "induced field." However, such a designation would
not reflect the special nature and properties of this field.'*'* We
shall designate the electrokinetic field by the vector E,. From
Eq. (1-4.1) we thus have

E -~ —[1 ﬂ]dw. (2-4.1)
4mec?) rloe

The electrokinetic field provides a precise and clear ex-
planation of one of the most remarkable properties of
electromagnetic induction: the Lenz’s law. Consider a straight
current-carrying conductor parallel to another conductor.
According to Lenz’s law, the current induced in the second
conductor is opposite to the inducing current in the first
conductor when the inducing current is increasing, and is in the
same direction as the inducing current when the inducing current
is decreasing. In the past no convincing explanation of this effect
was known. But the electrokinetic field provides the definitive
explanation of Lenz’s law: by Eq. (2-4.1), the sign (direction) of
the electrokinetic field is opposite to the sign of the time
derivative of the inducing current. When the derivative is
positive, the electrokinetic field is opposite to the inducing
current, when the derivative is negative, the electrokinetic field
is in the same direction as the inducing current. Since the
induced current is caused by the electrokinetic field, the direction
of this field determines the direction of the induced current: op-
posite to the inducing current when that current increases
(positive derivative), the same as the inducing current when the

inducing current decreases (negative derivative).
Of course, since the direction of inducing current usually
varies from point to point in space, the ultimate direction of the
electrokinetic field and of the current that it produces is
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determined, in general, by the combined effect of all the current
elements of the inducing current in the integral of Eq. (2-4.1).

The electrokinetic field also gives a simple explanation of the
fact (first noted by Faraday) that the strongest induced current is
produced between parallel conductors, whereas no induction
takes place between conductors at right angles to each other.
This phenomenon is now easily understood from the fact that the
electrokinetic field due to a straight conductor carrying an
inducing current is always parallel to the conductor.

Although we have been discussing the electrokinetic field as
the cause of induced currents in conductors, its significance is
much more general. This field can exist anywhere in space and
can manifest itself as a pure force field by its action on free
electric charges. Of course, because of the ¢? in the denominator
in Eq. (2-4.1), the electrokinetic field cannot be particularly
strong except when the current changes very fast. This is
probably the main reason why this field was ignored in the past.
Another reason is the temporal (transient) nature of this field.

But even a weak electric field can produce strong currents in
conductors, and that is why the current-producing effect of the
electrokinetic field is much more prominent than its force effect
on electric charges in free space.

If we compare Eq. (2-4.1) with the expression for the
retarded magnetic vector potential A* produced by a current J,*

w2 P (1], 2-4.2
A 4_7rJTdv’ (2-4.2)

we recognize that the electrokinetic field is equal to the negative
time derivative of A* (observe that p,=1/g,¢?):

A"
- - oA 2-4.3
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It is interesting to note that Eq. (2-4.3) points out to a
possibility of a new definition and interpretation of the magnetic
vector potential. Let us integrate Eq. (2-4.3). We obtain

A* = - JEkdt + const. (2-4.4)

Let us call the time integral of E, the electrokinetic impulse. We
can say then that the magnetic vector potential created by a
current at a point in space is equal to the negative of the
electrokinetic impulse produced by this current at that point
when the current is switched on. Since the electrokinetic impulse
is, in principle, a measurable quantity, we thus have an
operational definition and a physical interpretation of the
magnetic vector potential."”

It may be useful to mention that although Egs. (2-4.3) and (2-
4.4) correlate the electrokinetic field with the magnetic vector
potential, there is no causal link between the two: the correlation
merely reflects the fact that both the electrokinetic field and the
magnetic vector potential are simultaneously caused by the same
electric current.'®

Important as it is, the electrokinetic field has not been studied
(or even recognized as a special force field) until now, although
the fact that the time derivative of the retarded vector potential
is associated with an electric field has been known for a long
time.

v

Example 2-4.1 Show that if E, is linear in time, E, = a + br,
then, for a vacuum, the retarded magnetic vector potential in Eq.
(2-4.3) can be replaced by the ordinary (unretarded) vector potential.

We shall solve this problem by using Helmholtz’s theorem of
vector analysis, vector identity (V-23):
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V- - iIV(V'V) - VX (@'XV)
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(V-23)

As it is known, ' the divergence of the retarded magnetic vector
potential satisfies the Lorentz’s condition

VA = - 100" (2-4.5)
c? ot
where ¢* is the retarded scalar potential of E. Therefore, by Egs.
(2-4.3) and (2-4.5), we have

2 %
19" (2-4.6)
c? o
For the curl of E, we have, by Eq. (2-4.3) and by the definition of
the magnetic vector potential,

V"E, =

_ 0B

T
For V'(V'-E,) we then have, by Eq. (2-4.6), by the definition of the
retarded scalar potential,'® and by Eq. (2-4.3),

V'XE, = (2-4.7)
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(E-E), (2-4.8)
where E is the total electric field given by Eq. (1-4.1). For
V'x(V'xXE,) we have, by Egs. (2-4.7), (1-1.4), (1-1.5), and (1-
1.6), noting that p.e, = 1/c?%,

' , aJ 1 0’E
V' X(V'XE,) = - p == - —_—. 2-4.9
V'XE) = - g T = (2-4.9)
Substituting Eqs. (2-4.8) and (2-4.9) into Eq. (V-23), canceling

(1/c*)(0*E/d7), noting that 0°E,/d* = O (because E, is linear in 1),
and comparing the result with Eq. (2-4.2), we finally obtain
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E --M Jl Ay - - A (2-4.10)
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2-5. Induction by Moving Currents

Let us now assume that an initially stationary current
J(x',y',z") moves as a whole with a constant velocity v relative
to a stationary observer. The current is then a function of
&' —vn), 0'—v,0, and (2'—v, 1), or

J = J(x’—vxt,y’—vyt,z’—vzt). 2-5.1)
The time derivative of the current is

aJ aJ aJ aJ
—=-_Yy -2y - "y =-(v'V)]. 2-5.2
or ox’ & ay’ g az’' " (v-v3. ( )

The electrokinetic field caused by the moving current is then, by
Egs. (2-4.1) and (2-5.2),

E, - 41; j_[(v'v')” v’ (2-5.3)

r

The spatial derivative appearing in Eq. (2-5.3) can be
eliminated as follows. Using vector identity (V-6),

VWD) =(v-V)J+vX (VX D) +J-V)v+Ix (V'xy), (V-6m)

and taking into account that v is a constant vector, we obtain

B, - [T D gy - S [XOX Dy @5
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If we compare Eq. (2-5.4) with the equation representing the
magnetic flux density field produced by a time-variable current
[which is given by Eq. (1-2.7) multiplied by u,],

B -t [ V'xJ1 4, 2-5.5)
47 r

we find that Eq. (2-5.4) can be written as

E -2 [MW - vXB, (2-5.6)
™ r

where B is the magnetic flux density field created by the moving

current J.

Like any electric field, the electrokinetic field of a moving
current exerts forces on electric charges located in this field.
However, a moving electric current can create not only an
electrokinetic field, but also an "ordinary" electric field given by
the first integral of Eq. (1-4.1).%?' This is because a current-
carrying conductor moving in the direction of the current or in
the direction opposite to the current appears to acquire additional
electric charges in consequence of its motion. In the literature
this is erroneously considered to be a relativistic effect.?
Actually, however, this effect is a consequence of retardation and
is explainable on the basis of Eq. (1-4.1) (see Appendix 3).

A neutral conductor carrying a current / and moving with
velocity v in the direction of the current (+) or opposite to it
(—) appears to acquire a line charge of density

x=+ D
cZ

2-5.7)

A magnetic dipole of dipole moment m = p, IS moving with
velocity v appears to acquire an electric dipole moment
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vxm _ I(vxS)’ (2-5.8)
uOCZ cZ
where S is the surface area of the current loop forming the
magnetic dipole, right-handed relative to the current of the loop.
Thus the "electromagnetic induction” by a moving current,
just as the induction by a stationary current, is a result of the
creation of an electrokinetic field (with a possible creation of an
additional "ordinary" electric field) by this current. However,
also in this case the induction has no causal link with any
magnetic field. Its cause is not a changing magnetic field, but the
electric field (or fields) produced by the moving electric current.?

p:

2-6. Induction by Moving Magnets

As far as it is presently known, all magnetic fields are created
by electric currents. Therefore we may represent a moving
magnet by moving microscopic electric currents forming
elementary magnetic dipoles.

Let us assume that Eq. (2-5.6) represents the electrokinetic
field of a single elementary microscopic current of a magnet
moving with a velocity v<c, and let us assume that at the point
of observation outside the magnet there is a stationary point
charge gq. Since v<c, the retardation in Eq. (2-5.6) can be
ignored. We then have

E, - ﬁ[V’W'J)dw - vxB. (2-6.1)
47 r

We can transform Eq. (2-6.1) by using vector identity (V-26),

Vi) _gvd L pevd (V-26m)
r r r’
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where the unprimed V operates upon field-point coordinates
only. We obtain

E, =%[Vv_°']dv’ +EJV’V_°Jdv’ -vxB. (2-6.2)
T r 4 r

Using vector identity (V-20), we can transform the second
volume integral in Eq. (2-6.2) into a surface integral. But,
because there are no currents at infinity, the surface integral
vanishes, and so does the volume integral. Since V in the first
integral does not operate on source-point coordinates, it can be

factored out from under the integral sign. This gives

E, - ?Vjﬂ.dv’ - vXB. (2-6.3)
™ r

The currents forming the microscopic dipoles can be
considered filamentary. Therefore we can write

E, - "_°’v1§ vl B, (2-6.4)
47 r

where dl' is a length element vector in the direction of the

microscopic current /. Factoring out v, using vector identity

(V-18), and taking into account that the linear dimensions of the

dipoles are much smaller than r, we then have

1
E, -- 2 (v-jﬂxds') - vxB
4“] rt 2-6.5)
= - B (V'EXS’)-VXB,
4 r?

where S’ is the surface area of the current loop forming the
microscopic dipole. Transposing v and r, in Eq. (2-6.5), we can
write

I
E, =V(_r_2°vxS’)-v><B. (2-6.6)
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As we know from Section 2-5, a moving current generates
not only an electrokinetic field, but also an "ordinary" electric
field. By Eq. (2-5.8), the "ordinary" field generated by a current
constituting a moving magnetic dipole is an electric dipole field.
The field of an electric dipole p is given by **

--y PN (2-6.7)
4re,r?

dipole

Substituting p from Eq. (2-5.8) into Eq. (2-6.7), we obtain
E, --v[* 5 xs). (2-6.8)

Adding Eqgs. (2-6.8) and (2-6.6), we finally obtain for the total
electric field induced by each elementary microscopic current of
the moving magnet

E=E, +E =-vxB. (2-6.9)

dipole k

The force exerted by this field on the point charge g outside
the magnet is

F = - gvxB. (2-6.10)

If g were within a conductor, then the force given by Eq. (2-
6.10) would create a conduction current in this conductor.

Thus each elementary current of a moving magnet exerts on
an external charge a force given by Eq. (2-6.10), and therefore
the total force exerted by a moving magnet on an external charge
is also given by Eq. (2-6.10) with B being the external magnetic
field of the magnet.

However, the expression "force exerted by a moving magnet"
is actually a misnomer, since, as we have seen, this force has no
causal link with the magnetic field of the magnet. The
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phenomenon of "induced electric force" or "induced current” by
a moving magnet is simply the effect of the electric field caused
by the collective translational motion of microscopic currents
participating in the motion of the magnet.
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ELECTROKINETIC
FIELDS AND FORCES

In this chapter we shall present illustrative examples on
the use of electrokinetic fields and forces. We shall compute
electrokinetic forces acting on charge distributions in the vicinity
of conductors carrying time-variable currents. We shall establish
a connection between the change of the mechanical momentum
of a charge distribution subjected to an electrokinetic field and
the magnetic vector potential associated with the time-variable
current that produces the electrokinetic field. And we shall
demonstrate how electrokinetic fields can be used for direct
calculation of induced voltages (emf’s) in conductors.

3-1. Electrokinetic Fields

We shall now present examples on calculation of
electrokinetic fields, on calculation of electrokinetic forces, and
on calculation of currents and voltages induced by electrokinetic
fields. We shall use examples requiring only very simple
calculations. It is not the complexity of the examples that is
important for our purpose. Our purpose is to provide an
unambiguous demonstration of the effects and actions of

41
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electrokinetic fields; this can be best achieved with uncompli-
cated examples. As far as the induced voltages are concerned,
the purpose of our calculations will be merely to demonstrate
that conventional results can be obtained solely by using
electrokinetic fields, without invoking any causal linkage between
electric and magnetic fields.

For simplicity, we shall limit our calculations to relatively
small systems and relatively slow variations of electric quantities.
In such systems retardation effects are negligible, so that Eq. (2-
4.1) can be written without brackets as

- H'O l 1 aJ '

E, =- 22 %, 3-1.1

* 4wl r ot Y ( )

where we have replaced 1/¢% by &y, and have cancelled &,. If the

current is confined to a filament (wire), Eq. (3-1.1) can be

written as

=_3I#ojd' 3_12

T mE) G-1.2)

where [ is the current in the filament and dl’ is a length element

of the filament in the direction of the current. Finally, if the

retardation is neglected, the electrokinetic field of a current J can
be found, according to Eq. (2-4.3), from

__ 0A
k W ’
where A is the ordinary (not retarded) magnetic vector potential
associated with J.
When the electrokinetic force acts on a charge distribution p,
it changes the mechanical momentum P of the charge distribution
in accordance with

(3-1.3)

AP = |th - JJpEkdv’dt. (3-1.4)
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If E, is a function of time only, the momentum change is
AP = q[Ekdt - - gAA, (3-1.5)

where q is the total charge of the distribution, and AA is the
change in the vector potential during the time interval under
consideration.

If a circular electrokinetic force acts on a charge distribution
restricted to a circular motion, the angular momentum of the
charge distribution changes. For a charge distribution and
electrokinetic field of circular symmetry, the change in the
angular momentum AL is

AL = ”erkdth - - erAdq. (3-1.6)

As already mentioned, we are using the ordinary vector potential
for simplicity; for exact calculations the retarded vector potential
must be used in Egs. (3-1.3), (3-1.4), (3-1.5), and (3-1.6).

It should be pointed out that an association between the
momentum change of a charged body and the change of the
magnetic vector potential at the location of the body has been
noted before.! However, heretofore this association was
erroneously interpreted as an electromagnetic effect rather than
as a consequence of the fact that both an electrokinetic force and
a time-variable magnetic field (and its time-variable vector
potential) are simultaneously created by a time-variable current.
And, which is even more important, it was not generally
recognized that the actual phenomenon involved the retarded
vector potential rather than the ordinary one.

As it is known, a magnetic vector potential may contain an
arbitrary additive function of zero curl (“gauge calibration").
However, only the vector potential given by Eq. (2-4.2) and by
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its unretarded version can be used for the calculation of the
electrokinetic field.

An explanatory note is required concerning calculations of
forces and torques exerted on charge distributions by
electrokinetic fields and concerning calculations of induced
currents and voltages. The force experienced by a charge
distribution is determined, in general, by the total electric field
given by Eq. (1-4.1), not just by the electrokinetic field, Eqs. (2-
4.1), (3-1.1), or (3-1.2). Therefore a force calculated from the
electrokinetic field alone may not be the true force experienced
by the charge distribution under consideration. In contrast, only
the electrokinetic force has an effect on the torque experienced
by rings of charge and by similar objects. This is because the
torque in such systems is determined by a closed line integral of
the electric field, and only the electrokinetic field gives a
nonvanishing contribution to such integrals [the first term of Eq.
(1-4.1), being a function of r in the direction of r, has zero curl
and therefore cannot contribute to closed line integrals]. Closed
line integrals of electric fields are also involved in the
calculations of induced voltages. Therefore induced voltages,
too, are determined by the electrokinetic fields alone.

3-2. Examples on Calculation of Electrokinetic Fields

In this section we shall present several illustrative examples
on calculation of electrokinetic fields. A direct calculation of
electrokinetic fields from Eq. (2-4.1) or from its unretarded
versions, Egs. (3-1.1) and (3-1.2), involves exactly the same
techniques that are used for calculating magnetic vector
potentials from Eq. (2-4.2) or from its unretarded versions.
Therefore we shall avoid presenting examples on direct
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calculation of electrokinetic fields here, since such examples
would basically duplicate examples on vector potential
calculations provided in most textbooks on electromagnetic
theory. Instead, with one exception, we shall make use of Eq.
(3-1.3) and of the readily available expressions for the vector
potential.

v

Example 3-2.1 A straight wire of length 2L carries a time-
variable current I (Fig. 3.1). Find the electrokinetic field of this
current at a distance R from the wire at a point equidistant from the
ends of the wire.

Eg
-
A
R
Y
( ) —
k
- 27 >|

Fig. 3.1 A changing electric current produces an electrokinetic field.

The magnetic vector potential for this system is 2
2 2\1/2
A = ﬁ.llnL_M

27 R

where Kk is a unit vector in the direction of 1. By Eq. (3-1.3), the
electrokinetic field of the wire is then

k, (3-2.1)

2 212
Lo L@ Ry,
dar 2w R

If the wire is long, so that L*> R?, we may neglect R’ in Egs. (3-
2.1) and (3-2.2). The electrokinetic field of the wire is then

(3-2.2)
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== Uk 2Ly (3-2.3)
27 R

Example 3-2.2 A long thin-walled cylinder of radius R, and
length 2L carries a time-variable current I along its length (Fig.
3.2). Find the electrokinetic field outside and inside the cylinder.

) —»

Fig. 3.2 A cylinder carries a time-variable current. There is an
electrokinetic field outside and inside the cylinder.

The magnetic vector potential outside the cylinder is the same as
if the current of the cylinder were confined to the axis of the
cylinder.® This vector potential is given by Eq. (3-2.1), and the
corresponding electrokinetic field is given by Eq. (3-2.3).

The vector potential inside the cylinder is constant and is equal
to the vector potential just outside the cylinder. (Since there is no
magnetic field inside the cylinder, this statement may appear
incredulous. However, the absence of B inside the cylinder merely
requires that A is the same at all points inside the cylinder. It does
not require that A = 0.) Substituting R, for R in Eq. (3-2.3), we
then have for the electrokinetic field inside the cylinder

= - gﬁln_zf.

k. 3-2.4
k a2 R, ( )
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Example 3-2.3 Neglecting end effects, find the electrokinetic field
inside a long solenoid of n turns and length L carrying a current /.

If the end effects are neglected, the magnetic field inside the
solenoid is homogeneous, and the vector potential is *

A= uo;’_zro“, (3-2.5)

where r is the distance from the axis of the solenoid and 0, is the
azimuthal unit vector whose direction is the same as that of the
circulating current in the solenoid. The electrokinetic field is then,
by Eq. (3-1.3),

ol nr
E, = #oﬁio"'

(3-2.6)

Fig. 3.3 Calculation of the electro-
kinetic field in the space between two
current-carrying plates.

Example 3-2.4 Two long, parallel, vertical conducting plates of
width w are separated by a small distance (Fig. 3.3). The plates are
shorted at the bottom end, and a time-variable voltage is applied to
them at the top end, so that the two plates carry equal currents [ in
opposite directions. Neglecting end effects, find the electrokinetic
field in the space between the plates.
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Let us assume that the current is downward in the left plate and
upward in the right plate. The magnetic flux density field in the
space between the plates is then® B = (u//w)k, where K is a unit
vector along the width of the plates out of the page. The magnetic
vector potential in the space between the plates is therefore®

I _.
A= u(,;x,], (3-2.7)

where j is a unit vector upward along the current in the right plate,
and x is a perpendicular distance from the midplane of the system
toward the right plate.
The electrokinetic field between the plates is therefore, by Eq.
(3-1.3),
E, - - u%j. (3-2.8)

“orw

Fig. 3.4 Calculation of the electro-
kinetic field near the center of a
rotating charged ring.

Example 3-2.5 A ring of radius b carries a uniformly distributed
charge g, and rotates with a variable angular velocity w, about its
symmetry axis (Fig. 3.4). Find the electrokinetic field in the plane
of the ring near the center of the ring.

The ring constitutes a circular current / = w,q, /27. The
magnetic flux density field at the center of the ring is’ B =
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(ul/2b)k, or B = (uow, q, /4wb)k. Within a small region near the
center of the ring this field is nearly homogeneous, so that the
magnetic vector potential in the plane of the ring is approximately*

W, r
DT (3-2.9)

A=k 87tbh

where r is the distance from the center, and 0, is the azimuthal unit
vector in the direction of the rotation of the ring. By Eq. (3-1.3),
the electrokinetic field near the center of the ring is then
approximately

dw, q,r

E, = -p——"-10,. -2.1
g Fo3r 8ab * (3-2.10)

Example 3-2.6 A ring of radius a carries a uniformly distributed
charge g, and rotates with a variable angular velocity w, about its
symmetry axis (Fig. 3.5). Find the electrokinetic field far from the
ring in the plane of the ring.

Fig. 3.5 Calculation of the electro-
kinetic field at a large distance from a
rotating charged ring.

We shall solve this problem by direct calculation, using Eq. (3-
1.2). Let us first convert the line integral of Eq. (3-1.2) into a
surface integral by means of vector identity (V-18). We then have

_ a] l‘o%dl' al #o[ X dS’ | )
E, 3 4w ot 4x (3-2.11)
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where dS’' is right-handed relative to dl’ (or I). For field points far
from the ring, r may be considered constant over the entire surface
area of the ring, and > may be factored out from under the integral
sign. Since we are calculating the field in the plane of the ring, r
is perpendicular to dS’, so that the cross product in the last integral
becomes —rdS’'6,, where the unit vector 8, is as shown in Fig. 3.5.
Canceling r, replacing the integral by the area of the ring, 7a’, and
replacing the current / by w,q,/27, we obtain

_ p,oazo . dw, q,a°

-2 6 . (3-2.12
, a 4r2 " °"0r 8xr? * )

A

3-3. Dynamic Effects of Electrokinetic Fields

We shall now present several examples demonstrating force
effects of the electrokinetic field. For simplicity we shall use
electrokinetic fields calculated in the preceding section.

v

Example 3-3.1 The cylinder of Example 3-2.2 initially carries no
current. A charged ring of charge ¢, radius R, and mass m is placed
around the cylinder coaxially with it. The current in the cylinder is
then switched on and attains a steady value I,. The electrokinetic
force causes the ring to move along the cylinder (Fig. 3.6).
Assuming that no other forces act on the ring, and assuming that
the ring stays near the middle of the cylinder during the time that
the current changes, find the final velocity v, of the ring.
According to our assumptions, the electrokinetic field through
which the ring moves is a function of time only. Therefore we can
use Eq. (3-1.5) for finding the final momentum and velocity of the
ring. From Eqgs. (3-1.5) and (3-2.3) (see Example 3-2.2), we have
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Fig. 3.6 When a current is established in the cylinder, the charged
ring flies off the cylinder.

Ko, 2L
AP =mv, = - ql, —In_—_Kk, (3-3.1)
r7 T T MR
so that the final velocity is
al, 2L
= - In=—"k. 3-3.2
i HoZam "R ( )

The ring moves in the direction opposite to that of the current (see,
however, the explanatory note at the end of Section 3-1.).

Example 3-3.2 A thin parallel-plate capacitor of mass m and plate
separation d has charges + q on its plates. The capacitor is inserted
between the current-carrying plates described in Example 3-2.4, so
that the capacitor’s plates are parallel to the current-carrying plates,
and so that the midplane of the capacitor coincides with the
midplane of the current-carrying plates (Fig. 3.7a). The negative
plate of the capacitor is on the left, the positive plate is on the right.
The current is initially J,. When the current is switched off, the
capacitor moves (Fig. 3.7b). Assuming that the capacitor stays
between the current-carrying plates during the time when the
current changes, find the final velocity of the capacitor.
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)

(b)

Fig. 3.7 (a) A charged parallel-plate capacitor is inserted between
two current-carrying plates. (b) When the current is switched off,
the capacitor moves.

By the symmetry of the system, the two plates of the capacitor
experience the same force. Therefore, to solve the problem, we
only need to consider the effect of the electrokinetic force on one
of the plates. Since the electrokinetic field through which the
capacitor moves is a function of time only, Eq. (3-1.5) applies.
Considering the right plate and taking into account that the current
changes from /, to O, we have from Eqgs. (3-1.5) and (3-2.8) [or (3-
2.7]

d .

m
AP pae = 7"} = q“OIO_Z-WJ' (3-3.3)
The final velocity of the capacitor is therefore
dl,
v, = (3-3.4)

mw
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Example 3-3.3 A polarized particle of dipole moment p is placed
near the wire described in Example 3-2.1, so that p is directed
toward the wire at right angles to it (Fig. 3.8a). (a) Find the torque
exerted on the particle by the electrokinetic field of the wire. (b)
The particle is placed so that p is parallel to the wire (Fig. 3.8b).
Find the force exerted on the particle by the electrokinetic field of
the wire.

Py =P
(a) Iﬁ (b) ,
u
) Tu
-t 27 !

Fig. 3.8 The electrokinetic field of a current-carrying wire exerts a
torque and a force on a polarized particle placed near the wire.

(a) The torque exerted on a dipole by an electric field E is®
T = pxE. (3-3.5)

Since the particle is close to the wire, we can use Eq. (3-2.3) for
the electrokinetic field. We then have

p ln_z.li 810

T=-puPl =%,
u°27r R or *

(3-3.6)
where 0, is an azimuthal unit vector right-handed relative to the
direction of the current in the wire. (See the explanatory note at the
end of Section 3-1.)

(b) The force exerted on a dipole by an electric field is®

F = V(p-E). (3-3.7)
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Since p is in the direction of the current in the wire, we have

77 2L dI
F=V@pm-E =-V(_°_l_._)
(p-E) pZW n R
o, p A (3-3.8)
bogmRar' ™

where r, is a unit vector pointing away from the wire at right angles
to it. (See the explanatory note at the end of Section 3-1.)

Example 3-3.4 The solenoid of Example 3-2.3 initially carries no
current. A thin-walled dielectric cylinder of mass m and radius r
carrying a uniformly distributed total charge q is placed inside the
solenoid coaxially with it (Fig. 3.9). The current in the solenoid is
then turned on and attains a final magnitude of I,. The electrokinetic
force causes the cylinder to rotate. Find the final angular velocity
of the cylinder.

Fig. 3.9 A charged cylinder placed inside a solenoid rotates when
the current is switched on. If the charge of the cylinder is positive,
the rotation is against the direction of the current.

Since the electrokinetic field causing the cylinder to rotate is a
function of time only, we can use Eq. (3-1.5) for finding the angular



SECTION 3-3 DYNAMIC EFFECTS 55

velocity of the cylinder. From Egs. (3-1.5) and (3-2.6) we have

nl

AP = my, = meXr = - ("l()iorou, (3-3.9)

and since r is perpendicular to w,

qnl, K

3-3.10
T ( )

W, = T R ,
where k is a unit vector right-handed relative to the direction of the
current in the solenoid. The minus sign in Eq. (3-3.10) shows that

if q is positive, the rotation is against the current.

Example 3-3.5 The current in the solenoid of Example 3-2.3 is
Iy. A uniformly charged disk of total charge g, radius a, and mass
m is placed inside the solenoid coaxially with it (Fig. 3.10). When
the current is turned off, the disk rotates. Find the final angular
velocity of the disk.

Fig. 3.10 A charged disk is placed inside a solenoid. When the
current is switched off, the disk rotates. If the charge of the disk is
positive, the rotation is in the direction of the original current.

The disk acquires an angular momentum that can be found from
Eq. (3-1.6) and Eq. (3-2.6). Let us divide the disk into elementary
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rings. Consider an elementary ring of radius r and width dr. The
charge of the ring is dq = (q/ma*)2nrdr. Substituting dg and E,
from Eq. (3-2.6) in Eq. (3-1.6), integrating over dt, and taking into
account that r is perpendicular to E,, we have

AL=J (,LOIO ) _2rrdrk = "SIZ"% [0r3drk (3-3.11)

or
gna’l,
4L

AL = k, (3-3.12)

where Kk is a unit vector right-handed relative to the direction of the
current in the solenoid. Since the moment of inertia of the disk is
ma*/2, we obtain for the angular velocity

anly (3-3.13)

2mL

=K
For positive ¢, the rotation is in the direction of the current.

Example 3-3.6 The masses of the rings described in Examples 3-
2.5 and 3-2.6 are m, and m,, and their radii are such that b>a. The
rings are placed in the same plane, and their centers coincide (Fig.
3.11). (a) Ring b is given an angular acceleration «,. Find the
angular acceleration of ring a due to the electrokinetic field of ring
b. (b) Ring a is given an angular acceleration «,. Find the angular
acceleration of ring b due to the electrokinetic field of ring a.

(a) By the definition of the electrokinetic force and by Eq. (3-
2.10), the torque experienced by ring a due to the electrokinetic
field of ring b is

a
T, = rxqE, = - aqpc, ;’;’rb . (33.14)

where k is a unit vector along the axis of the rings right-handed
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o =
Fig. 3.11 When one of the two 2
charged rings is rotated, the other
ring starts to rotate in the opposite
direction.

b>>a

relative to the rotation of ring b. Since the moment of inertia of
ring a is m,a’, its angular acceleration is

(3-3.15)

The rings rotate in opposite directions.

(b) Using Eq. ((3-2.12), we find, as above in Part (a), that the
angular acceleration of ring b due to the electrokinetic field of ring
ais 5

1.4,4

a, = - l‘omaa' (3-3.16)
b

Once again the two rings rotate in opposite directions.’

Example 3-3.7 Consider a circular ring of radius a carrying a
current / (Fig. 3.12). Let the ring be in the x,y-plane of rectangular
coordinates, and let the current in the ring be left-handed relative
to the z-axis. Let the ring move with velocity v<c along the x-axis,
and let the center of the ring be momentarily at the origin of the
coordinates. (a) Assuming that the ring carries no net charge, what
is the force exerted by the ring on a point charge q located on the
z-axis at a distance d>a from the origin? (b) Assuming that the
ring is at rest with its center at the origin, and assuming that the
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Fig. 3.12 A current-carrying
ring moving past a point
charge exerts a force on the
point charge. The plus and
minus charges on the ring
are fictitious: the ring
appears to acquire them as a
result of its motion (see
Appendix 3).

charge moves in the minus x direction with velocity v<c, what is
the force experienced by the charge?

(a) Since the radius of the ring is much smaller than the
distance between the ring and the point charge, the current of the
ring, viewed from the location of the point charge, constitutes a
magnetic dipole. As it was shown in Section 2-6, a moving
magnetic dipole appears to acquire an electric dipole moment, so
that the total electric field produced by the moving ring is the sum,
given by Eq. (2-6.9), of the electrokinetic field and the electric
dipole field. For the present example, since v<c, B in Eq. (2-6.9)
is the flux density field produced by the ring as if it were at rest'

pola?

2d3
Hence the force exerted by the moving current-carrying ring on the
stationary charge q is, by Eqgs. (2-6.9) and (3-3.17),

B - - k. (3-3.17)

2
F-= - %J‘. (3-3.18)

(b) If the ring is at rest, but the charge is moving, the charge
experiences the Lorentz’s force
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via?
F=qvxB=- "% (3-3.19)
2d>
which, under the assumed conditions, is exactly the same as the
force experienced by the stationary charge due to the current in the
moving ring.

A

3-4. Induction of Currents and Voltages by Electrokinetic
Fields

In Chapter 1, by using the principle of causality, we found
that electric and magnetic fields could not cause each other. Then
we found in Chapter 2 that Faraday induction was not at all an
electromagnetic phenomenon. We found that induced currents in
conductors were caused not by changing magnetic fields, but by
the electrokinetic field created by changing electric currents.

Convincing as our analysis of the induction phenomenon may
be, it still lacks one important element: a direct demonstration
that one can account for the induced voltages and currents solely
by the electrokinetic field, without invoking any electromagnetic
effects, and without invoking changing magnetic fields in
particular. We shall now present several such demonstrations.

As before, we shall use very simple illustrative examples. It
is the clarity of the examples, not their complexity, that is
important. Accordingly, we shall make use of the simple
electrokinetic fields computed in Section 3-2.

v

Example 3-4.1 Consider two equal, square-shaped loops of
insulated wire. (a) The loops are placed one upon the other so that
their sides completely overlap (Fig. 3.13a). A current is switched
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on in the bottom loop. What is the direction of the induced current
in the top loop? (b) The top loop is positioned to the right of the
bottom loop, so that the loops are now side by side (Fig. 3.13b). A
current is switched on in the left loop. What is the direction of the
induced current in the right loop? (c) What is the ratio of the
induced current when the loops are in the first position to the
induced current when the loops are in the second position?

5 b2 St Sp S
.stl 3 ‘Sy// % 7 /
S /
(a) (®

Fig. 3.13 The direction of the induced current I' is easily determined
by considering the electrokinetic field of the inducing current I.

(a) Let us designate the sides of the top loop as s, , S, , S5 , and
s, , and let us designate the sides of the bottom loop as sy, , Sy, 5 Sps»
and s, . Consider the side s,, . Since, by Eq. (2-4.1), there can be
no induction between perpendicular sides, only the electrokinetic
field of sides s,, and s,; parallel to s, can cause a current in s, .
Since sy, is close to s, , while s, is relatively far from s, , the
electrokinetic field of sy, can be neglected. Since, when the current
is switched on, its electrokinetic field is opposite to the current, the
current induced in s,, is opposite to the current in s,, . And since the
same considerations apply to all four sides of the top loop, the
current induced in it circulates in a direction opposite to that of the
inducing current in the bottom loop.

(b) When the loops are side by side, only the sides s,; and s,, are
close together. Therefore the current is essentially induced only in
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s,. The induced current is again opposite to the current in s;.
However, since the loops are side by side, the direction of
circulation of the induced current in the right loop is the same as
that of the inducing current in the left loop.

(c) When the loops are one upon the other, each of the four
sides of the top loop is subjected to the electrokinetic field of the
side of the bottom loop directly below. When the loops are side by
side, only the left side of the right loop is subjected to the
electrokinetic field of only the right side of the left loop (we ignore
the interaction between the distant sides). Therefore, when the loops
are one upon the other, the induced current is very nearly four
times stronger than when the loops are side by side.

Example 3-4.2 Find the voltage (emf) induced in a rectangular
loop of wire of width b and height a by the current I of a long
straight wire of length 2L placed in the plane of the loop parallel to
its horizontal sides at a distance d from the nearest side (Fig. 3.14).
Assume that a, b, and d are much smaller than L.

| — &6 —>|
P
a
4
;
{ O .
- 21 N

Fig. 3.14 The voltage induced in a rectangular loop by a current-
carrying wire can be easily determined by using the electrokinetic
field of the wire.
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Let the loop and the wire be in the yz-plane of a rectangular
system of coordinates, and let the current in the wire be in the z-
direction. The electrokinetic field of the wire was found in Example
3-2.1 and is, for large L,

== e 2y (3-4.1)
at2r R
To find the induced voltage, we integrate the electrokinetic field
along the rectangular loop

v, - +Ek-dl. (3-4.2)

Since the field is everywhere parallel to the z-axis, the only
contributions to the voltage come from the horizontal sides of the
loop. The integration along the horizontal sides amounts to multi-
plication of E, by b (with a reversal of sign for one of the two
sides). The result is
b

v, =0 dradl (3-4.3)
27 d ot
and is the same as obtained in conventional manner by using the
coefficient of mutual inductance between the wire and the loop."

Example 3-4.3 A narrow slot is made in the cylinder described in
Example 3-2.2, and the rectangular loop described in Example 3-
4.2 is inserted in it so that the loop is partly inside the cylinder
(Fig. 3.15). The horizontal sides of the loop are parallel to the axis
of the cylinder, and the side which is inside the cylinder is at a
distance d from the axis. Find the voltage induced in the loop by
the current of the cylinder.

As in Example 3-2.2, we find the induced voltage by multiplying
E, at the horizontal sides of the loop by the width of the loop b, and
reversing the sign of the product for one of the sides. Using the
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| — & —>|
A
2

T -————————{s=zzzz=z=z=o=cd
d [t —»

L

Fig. 3.15 The voltage induced in the rectangular loop partially
inserted in a current-carrying cylinder is found by using the
electrokinetic field of the cylinder.

expressions found in Example 3-2.2 for E, inside and outside the
cylinder, we then have

b
uo( A 2L A Bbydradl g,y

In=Z=-In = _ |- = __In__—
27\ R, d+alot 27 R, ot

Fig. 3.16 The voltage induced in the ring placed over a solenoid is
found by using the electrokinetic field of the solenoid.

Example 3-4.4 A conducting circular ring is placed just outside the
long solenoid described in Example 3-2.3 (Fig. 3.16). The radius
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of the ring and of the solenoid is R. Find the voltage induced in the
ring by the current of the solenoid. The electrokinetic field of the
solenoid is, by Eq. (3-2.6),

dl nR

E, = -p,—=—10,. 3-4.5
k Foge 2L ™ -4.3)
The induced voltage is therefore
R? 0l
Ejdl = pal" 2, 3-4.6
§ T % (3-4.6)

which also agrees with the result obtained by conventional methods. '2

A
3-5. Summary of Chapter 3

In this chapter we have presented examples on calculation and
use of electrokinetic fields. In spite of their simplicity, these
examples give a remarkable new insight into a variety of electric
phenomena. Examples 3-3.1, 3-3.2, 3-3.3, and 3-3.7 unveil
some intriguing new electrodynamic effects. Examples 3-3.4, 3-
3.5, and 3-3.6, although not new in principle, give a much
clearer picture of the phenomenon of induced rotation of charged
bodies.” Example 3-4.1 shows how useful and effective is the
concept of the electrokinetic field for analyzing the induction of
current in electric circuits. Examples 3-4.2, 3-4.3, and 3-4.4
show that one can find voltages (emf’s) induced in conductors by
using the electrokinetic field alone, without invoking any
magnetic fields.

The fact that the calculations of induced voltages in Examples
3-4.2, 3-4.3, and 3-4.4 yield the same results as the conventional
calculations deserves special attention. As it was mentioned in
Section 3-1, the electrokinetic fields used in our illustrative
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examples are approximate ones, obtained by neglecting the
retardation effects. Since the induced voltages obtained in
Examples 3-4.2, 3-4.3, and 3-4.4 agreed exactly with the
voltages computed by conventional methods, it is clear that the
conventional methods do not yield exact solutions. This is an
important fact, usually overlooked in textbooks on electricity and
magnetism,

Are there some effects of electrokinetic fields and forces that
have not yet come to light? There probably are. They would be
most prominently associated with very strong and rapidly
changing electric currents. Electric spark discharges are good
examples of such currents. According to Examples 3-2.1 and 3-
3.3, spark discharges should have significant effects on nearby
charged particles, causing them to move along the spark, and
causing polar particles to move toward or away from the spark
and to rotate. As a consequence, the spark itself could spread
laterally and could give rise to secondary discharges. It will be
interesting to see to what extent such effects do actually
accompany bolts of lightning.

The examples presented in this chapter give an unequivocal
support to the basic conclusion reached in Chapter 2: Faraday
induction is not caused by changing magnetic fields, but by the
electrokinetic fields produced by changing electric currents. The
essence of the induction phenomenon is that the electrokinetic
fields, just like electrostatic fields, are force fields. Acting on
charges in conductors, they create conduction currents. Acting
on free charges or on charged bodies, they create convection
currents or cause the bodies to move. There is no causal linkage
between the induced currents or motions and magnetic fields.
The illusion of a linkage is a result of the fact that electrokinetic
fields and changing magnetic fields, having a common causative
source, always appear simultaneously together.
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Thus, Faraday’s original idea of electric induction was
absolutely correct: just as electrostatic fields induce charges on
nearby conductors, electric currents, through their electrokinetic
fields, induce currents in other conductors. It is therefore correct
to call this induction "Faraday induction," but it is incorrect to
call it "electromagnetic induction," because no magnetic fields or
effects are involved in this induction phenomenon.
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ACTION AND REACTION
IN ELECTRIC, MAGNETIC,
AND GRAVITATIONAL FIELDS

Newton’s third law, the law of action and reaction, is
one of the very first laws of physics that we learn. It is one of
the most unequivocal laws. We readily accept it and do not
usually doubt its universal validity. And yet, as we shall see in
this chapter, its range of applicability to electric and magnetic
systems is severely limited. Does it mean that there is something
exclusive about electric and magnetic forces? To answer this
question, we shall extend our analysis of the law of action and
reaction also to gravitational systems.

4-1. Is the Law of Action and Reaction Always Valid?

Newton’s law of action and reaction is usually considered to
be one of the most fundamental laws of physics. It is typically
stated as follows: "To every action there is always an equal and
opposite reaction; that is, whenever a body exerts a certain force
on a second body, the second body exerts an equal and opposite
force on the first." ' No exceptions to the law appear possible.

67
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However, there is at least one fairly well known example
showing that the law does not always hold: if one calculates the
forces between a charged particle moving along the z-axis and
another moving along the x-axis, one finds that the forces are not
equal.>® Another example is that of a charge moving past a
magnetic dipole; here, too, the forces are not equal.*

Even more eloquent is the following example. Suppose that
a stationary charge is located in the field of another, distant,
stationary charge. The two charges exert upon each other equal
and opposite forces, as required by the law of action and
reaction. Suppose now that the first charge is allowed to move
under the action of the field of the second charge and arrives at
a new position. But the second charge, being far away from the
first, does not yet "know" that the first charge has moved and
continues to experience the same force as before. The forces are
now unequal in magnitude and direction, and the action and
reaction law no longer holds!

And how can the law of action and reaction apply to
electrokinetic forces? These forces are caused by electric currents
(moving charges), yet they act on all charges, including charges
at rest, which cannot possibly generate electrokinetic reaction
forces.

But if the law of action and reaction does not hold in one
system or another, does it mean that the mechanical momentum
in these systems is not conserved? If so, where does the
momentum come from, and where does it disappear?

These are perplexing questions. We shall provide answers to
them in this chapter.

The law of action and reaction does not differentiate between
forces on the basis of their physical nature. Therefore an analysis
of the validity of this law cannot be truly conclusive if it is
restricted to some particular type of forces. The similarity
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between electrostatic and gravitational forces is well known.
Therefore it is only natural to include gravitational forces in our
analysis of the law of action and reaction. As we shall see, this
will result in very remarkable conclusions concerning gravitation
and its laws.

4-2. Action and Reaction in Electric Systems

What is the range of validity of the law of action and reaction
in electric systems?

To answer this question, let us first consider the interaction
between two constant, stationary charge distributions p, and p,.
Let the electric field produced by p, be E,, and that produced by
p, be E,. The force exerted by p, upon p, is { p,E, dv, and the
force exerted by p, upon p, is | p,E, dv. Let us now use vector
identity (V-22) (this is an extension of the Gauss’s theorem of
vector analysis to two vectors, A and B; the square brackets do
not signify retardation),

cf)(A-B)ds - nfB(A-dS) - cfA(B-dS) - -
J[Ax(V xB) +BX(V X A) - A(V+B) - B(V+A)]dv.

If we apply this vector identity to the fields E, and E, and
integrate over all space, we obtain

#(E,-Ez)ds - +E2(E,~d8) - 151«:1(1«:2-(15) .
@-2.1)

J[E, x (VXE,) +E,x(VXE,) -E,(V-E,) -E,(V-E,)ldv.

For constant charges, VXE = 0, so that the first two terms

in the volume integral vanish. Also, according to Eq. (1-4.1),
the fields E, and E, are regular at infinity, so that the surface
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integrals in Eq. (4-2.1) vanish. Replacing V- E, and V - E, by
p./¢, and p,/€,, respectively, and canceling &,, we then obtain

JplEzdv - - Iszldv, (4-2.2)

so that the forces on the two charge distributions are equal in
magnitude and opposite in direction, as required by the law of
action and reaction. Thus the law of action and reaction holds for
interactions between constant stationary charge distributions.

Let us now assume that p, is moving and/or is time
dependent. In this case VXE, = 0, but VXE, = — dB,/dt,
where B, is the magnetic field produced by p,. Substituting in
Eq. @-2.1)E, E,, V-E,, V*E,, VXE,, and VXE,, we find
that the second term in the volume integral vanishes. Because of
the finite speed of propagation, E, and E, are zero at infinity, so
that the surface integral vanishes also. Simplifying, we then
obtain

B
JplEZdv = - Iszldv - aojE,x_at_zdv. 4-2.3)

Hence, when one of the two interacting charge distributions is
time variable or is in motion, the law of action and reaction does
not hold: the two forces differ by the value of the integral
containing B,.

Let us now assume that both charge distributions are moving
and/or are time dependent. In this case VXE, = — dB,/dt and
VXE, = — 0B,/dt, where B, and B, are the magnetic fields
produced by the charges p, and p,, respectively. Substituting in
Eq. 4-2.1)E, E,, V-E,, V-E,, VXE,, and VXE,, we obtain

9B 9B
JplEzdv +e, lsz =" 'szldv -, JE,x v (42.9)

Thus, when both charge distributions are time variable or are in
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motion, the law of action and reaction, in general, does not hold:
the two forces differ by the value of the two integrals containing
B, and B,. However, if the two integrals happen to be equal in
magnitude but have opposite signs, they cancel each other, so
that in this case the law of action and reaction does hold even
when the two charges vary or move.’

It should be pointed out that although the law of action and
reaction does not hold for certain types of electric interactions,
the law of conservation of momentum is valid for all electric and
magnetic interactions, without exceptions. This will be shown
later in this chapter.

v

Example 4-2.1 Consider the two rings described in Example 3-3.6.
(a) Ring b is given an angular acceleration «,. Compare the torque
exerted by ring b on ring a with the reaction torque exerted by ring
a on ring b. (b) Ring a is given an angular acceleration «,.
Compare the torque exerted by ring a on ring b with the reaction
torque exerted by ring b on ring a.

(a) The torque exerted by ring b on ring a is, by Eq. (3-3.14),

q,a
T, = - aqauoab.g_:__l;k. (4-2.5)
This torque causes ring a to rotate with an angular acceleration
given by Eq. (3-3.15)

9.4,

o = - op 20
a Ho 8wm b

a,. (3-3.15)
The torque experienced by ring b due to the electrokinetic field E,,
of ring a is then, by Eq. (3-2.12),

q,a°
T, =rxqE, = - bqbp.oo'za8 bzk. (4-2.6)
™
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Substituting Eq. (3-3.15) into Eq. (4-2.6), we obtain for the
reaction torque exerted by ring a on ring b

2.2 2
_ 2 4a9pa )
abreaction %W%k' (4-2.7)

(b) The torque exerted by ring a on ring b is, by Eq. (4-2.6),

a2
T, = - 4 qg:b o k. (4-2.8)

This torque causes ring b to rotate with an angular acceleration
given by Eq. (3-3.16)
q,9,4°

= - o (3-3.16)

o .
b 0 a
8wm,b’

The torque experienced by ring a due to the electrokinetic field of
ring b is given by Eq. (3-3.14). Substituting Eq. (3-3.16) into Eq.
(3-3.14), we obtain for the reaction torque exerted by ring bonring a

2 2a4
K (4-2.9)

_ 2
bareaction Ho a " *
64r’m,b*

Example 4-2.2 Consider two equally large, charged disks carrying
equal uniformly distributed charges Q, and Q,. The disks are placed
close to each other on a common axle and are free to rotate about
it. When one of the disks is set in motion, the other starts rotating
in the opposite direction. Assuming that the angular velocities of the
two disks are always equal, does the law of action and reaction hold
for the electric forces between the disks?

For simplicity, let us assume that the disks are so close together
that the volume of the space between them is negligibly small. Since
the electric and magnetic fields in this space are finite, this space



SECTION 4-3 MAGNETIC SYSTEMS 73

does not contribute then to the second and fourth integral of Eq. (4-
2.4). Elsewhere in space the "electrostatic" fields [first integral of
Eq. (1-4.1)] of the two disks are equal in sign and magnitude, the
magnetic fields are equal in magnitude and opposite in sign, and the
electrokinetic fields are equal in magnitude and opposite in sign.
Hence, the contributions to the second and fourth integral of Eq. (4-
2.4) from the "electrostatic" fields of the disks cancel, while the
contributions from the electrokinetic fields do not. Consequently,
in the system under consideration, the law of action and reaction
holds only for "electrostatic" interactions, but not for the
electrokinetic interactions.

A

4-3. Action and Reaction in Magnetic Systems

We shall now examine what happens to the action and
reaction law in magnetic systems.

Let there be two constant, stationary current distributions J,
and J,. Let the magnetic flux density fields produced by these
current distributions be B, and B,, respectively. The force
exerted by J, on J, is then § J,XB,dv and the force exerted by
JoonJ,is [ J,xB,dv.

Applying vector identity (V-22) to B, and B, and integrating
over all space, we have

T(B,-Bz)ds - +B2(B,~dS) - +B,(B2-dS) -
“4-3.1)
[[B, x (VXB,)+B,x (VXB,) -B,(V-B,) -B,(V-B,)ldv.

By Eq. (1-4.2), B, and B, are regular at infinity. Therefore the
surface integrals vanish. By Maxwell’s Eq. (1-1.2), V-B = 0,
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so that the last two terms in the volume integral vanish also.
Taking into account that VXB = u,VXH = pyJ, we then obtain

jJ, x B,dv = - [JZXB,dv. (43.2)

Thus, for magnetic interactions between two constant stationary
currents, the two forces are equal in magnitude and opposite in
direction, and the law of action and reaction holds.

Let us now assume that J, is variable or is in a state of
motion. In this case, by Maxwell’s Eq. (1-1.4), VXB, = poJ, +
po0D,/0t, where D, is the displacement field produced by J,
[coming from the last term of Eq. (1-4.1)]. Noting that the
surface integrals of Eq. (4-3.1) still vanish, and simplifying the
volume integral as before, we obtain

aD.
[Jlezdv - - [szBldv . [lethdv. 4-3.3)

Hence, when one of the currents is changing or is in motion, the
two forces are not equal and differ by the amount of the integral
containing D,. The law of action and reaction does not hold.

Let us now assume that J, is also variable. In this case VX B,
= poJ; + podD,/0t and VXB, = pJ, + pdD,/dt, where D, is
the displacement field produced by J,, and D, is the displacement
field produced by J,. Using Eq. (4-3.1), we now obtain

[Jlezdv—[Bzx%dw—[szBldw—[B,x%dV. (4-3.4)
Thus, when both currents are changing or are moving, the law
of action and reaction, in general, does not hold: the forces
differ by the values of the integrals containing D, and D,.
However, if the two integrals are equal in magnitude but have
opposite signs, they cancel, and then the law of action and
reaction does hold.
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v

Example 4-3.1 Consider the two disks described in Example 4-2.2.
Each disk constitutes a convection current that produces a magnetic
field and exerts a magnetic force on the other disk. Does this
interaction satisfy the law of action and reaction?

The two disks create magnetic fields opposite in direction but
equal in magnitude. The "electrostatic" fields of the disks are equal
in sign and in magnitude. The electrokinetic fields are equal in
magnitude but opposite in sign. Therefore the contributions from
the "electrostatic" component of the electric fields to the second and
fourth integral of Eq. (4-3.4) cancel. But the contributions of the
electrokinetic components do not. However, if the accelerations of
the disks are uniform, dE,/d¢ = 0, and the two integrals cancel.
Thus, the law of action and reaction does not hold for magnetic
interactions (repulsion) between the two disks, except when their
acceleration is constant.

A

4-4. Action and Reaction in Gravitational Systems

The two equations that formulate Newton’s theory of
gravitation as a force-field theory are®

Vxg =0, 4-4.1)
and

Vg = - 47Gp, (4-4.2)

where g is the gravitational field vector, G is the universal
constant of gravitation, and p is the mass density.

Suppose now that a mass distribution p, interacts with a mass
distribution p,. The force on the first mass due to the field g, of



76 CHAPTER 4 ACTION AND REACTION

the second mass is | p,g, dv, and the force on the second mass
due to the field g, of the first mass is | p,g,; dv.

Let us apply vector identity (V-22) to the fields g, and g,, and
let us extend the integration over all space. By Newton’s
gravitational law, the two fields approach zero at infinity
as 1/r, so that the surface integrals vanish. By Eq. (4-4.1), the
curl terms in the volume integral are zero. Substituting Vg, =
— 4mp, and V- g, = — 4mp,, we then obtain after canceling
4G

Jplgzdv = - Jngldv, (4-4.3)

so that for gravitational forces the action and reaction law
appears to hold always. But does it really? We shall provide the
answer to this question in Chapter 5.

4-5. The Law of Action and Reaction and the Law of
Conservation of Momentum

As we have seen, Newton’s third law, the law of action and
reaction, has only a limited validity in the domain of electric and
magnetic interactions. In general, it holds only for interactions
between constant stationary charges and for interactions between
constant stationary currents. However, it is not necessary to state
Newton’s third law as the law of action and reaction. One can
state this law more accurately as the law of conservation of
momentum. If we examine the time dependent terms appearing
in Egs. (4-2.3), (4-2.4), (4-3.3), and (4-3.4), we recognize that
these terms represent rates of change of electromagnetic
momentum ’

G - eop.oJEdev. 4-5.1)
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Therefore these equations show that, although the forces are
different, the total momentum (mechanical plus electromagnetic)
of the system is always conserved. An exchange of momentum
between a charge or a current and the surrounding field is, of
course, necessary since electric and magnetic fields propagate
with finite speed, so that no direct interactions between field-
producing and field-experiencing charges or currents are
possible. Specific examples for momentum exchange have been
computed for several electromagnetic systems involving linear*
as well as angular momentum *°,

It is important to note that Eqgs. (4-2.3), (4-2.4), (4-3.3), and
(4-3.4) involve only the interaction, or mutual, momentum rather
than the total electromagnetic momentum of the systems under
consideration. Specifically, in the case of electric systems, the
rate of momentum change is expressed as the cross product of
the electric field and the time derivative of the magnetic flux
density field. And in the case of magnetic systems, this rate of
momentum change is expressed as the cross product of the
magnetic field and the time derivative of the electric
displacement field. A remarkable feature of these equations is
that they only involve partial fields: E, and B, or E, and B,.
This means that even in a region of space where the total field
E = E+E, or B = B,+B, is zero, there still can be an
exchange of electromagnetic and mechanical momentum.

The apparent simplicity of Eq. (4-4.3) for the gravitational
interactions is misleading. According to this equation, there is no
exchange of momentum between a mass and the gravitational
field. But what happens if one of two distant interacting masses
moves to a new position, and the second mass does not yet
"know" that the first mass has moved? The second mass
continues to experience the same force as before, in violation of
the action and reaction law and in violation of Eq. (4-4.3)! And
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since, according to Eq. (4-4.3), there is no momentum exchange
with the field, the law of conservation of momentum does not
hold either. Something is definitely wrong here. We shall discuss
this problem in detail in Chapter 5. As we shall see, in order to
reconcile Newton’s gravitational theory with the law of
conservation of momentum and with finite propagation speed of
gravitation, certain modifications of Newton’s gravitational
theory are needed. These modifications will result in some
remarkable new equations for gravitational fields and forces.

v

Example 4-5.1 Consider the system of the two current-carrying
parallel plates and the capacitor described in Example 3-3.2.
Assuming that the only upward force acting on the capacitor is the
electrokinetic force due to the electrokinetic field of the current-
carrying plates, and neglecting all edge effects, examine the
exchange of momentum in the system.

The magnetic field in the space between the current-carrying

plates is ;
H = k. 4-5.2)
w

The electric field in the capacitor is

E=--_4i, (4-5.3)
e
where A is the surface area of the capacitor plates. The initial
electromagnetic momentum in the space between the plates of the
capacitor is, by Eq. (4-5.1),

I qdl
G =ep, 1 daj = -5.
ot~ A §=m—=i 4-5.4)

The final electromagnetic momentum is zero (because, when there
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is no current, there is no magnetic field). Therefore the
electromagnetic momentum lost by the system is the momentum
given by Eq. (4-5.4), which, by Example 3-3.2, is the same as the
mechanical momentum gained by the capacitor [observe that Eq. (3-
3.3) is for only one plate of the capacitor, so that it represents 1/2
of the total momentum gained by the capacitor].

A
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EXTENDING NEWTON’S
THEORY OF GRAVITATION TO
TIME-DEPENDENT SYSTEMS

In this chapter we shall generalize Newton’s theory of
gravitation to time-dependent systems. As a result, we shall
obtain time-dependent gravitational equations that are very
similar to the basic electromagnetic equations. We shall find that
some of the consequences of these equations are very close to
certain consequences derived from the general relativity theory.

5-1. Generalization of Newton’s Gravitational Theory

Newton’s theory of gravitation is based on his gravitational
law

Fim = - 6My (5-1.1)
r2

where F is the force exerted on the point mass m by the point
mass M, G is the constant of gravitation, r is the distance
between the two masses, and r, is the unit vector directed from
M to m. This law is essentially limited to time-independent
systems. Two of its major shortcomings are its representation of

80
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gravitational interactions as an action-at-a-distance effect (which
is in violation of the principle of causality) and, as we saw in
Chapter 4, its inability to satisfy the conservation of momentum
law for time-dependent interactions. It is clear therefore that
Newton’s gravitational theory is not entirely correct even within
the framework of classical physics. In this chapter we shall
generalize Newton’s theory to time-dependent systems. We shall
start this generalization by reconciling Newton’s law of
gravitation with the law of conservation of momentum. And we
shall complete the generalization by making Newton’s
gravitational theory compatible with the principle of causality.

We shall base our derivations not on Eq. (5-1.1) directly, but
on the two equations that formulate Newton’s theory as a force-
field theory in terms of the gravitational field vector g. These
equations are

Vxg =0, (5-1.2)

and

Vg = - 47Gp. (5-1.3)
The gravitational field vector g is defined as
g =Fm, (5-1.4)

where F is the force exerted by the gravitational field on a test
mass m, which is at rest relative to an inertial reference frame
("laboratory"). In Eq. (5-1.3), p is the mass density defined as

p = dmldv, (5-1.5)

where dm is a mass element contained in the volume element dv.

Let us consider, as in Section 4-4, two mass distributions p,
and p, producing, respectively, gravitational fields g, and g,. The
force exerted by p, upon p, is then [ p, g,dv, and the force
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exerted by p, upon p, is | p,g, dv. If we apply to the fields g,
and g, vector identity (V-22),

f(A'B)dS - #B(A-dS) - {JA(B-dS) =

(V-22)
J[A X (VxB)+B x(VxA)-A(V:-B)-B(V-A)ldv,
we obtain, as in Section 4-4,
Jp,gzdv = - Jngldv. (5-1.6)

Thus, according to Newton’s theory of gravitation, the forces of
action and reaction are always equal. But, as we know from
Section 4-5, the law of action and reaction cannot possibly hold
for time-dependent gravitational interactions (unless gravitation
propagates instantaneously, which we cannot accept). Therefore
our derivation of Eq. (5-1.6) shows that at least one of the two
basic field laws of Newton’s theory of gravitation, Eqgs. (5-1.2)
and (5-1.3), is, in general, incompatible with the law of
conservation of momentum.

Clearly, there are only three possibilities for modifying the
Newtonian theory so that it does not conflict with the law of
conservation of momentum: (1) to make Vxg # 0, (2) to
modify V - g, or (3) to modify both Vxg and V - g. As we shall
see, we can make the theory compatible with the law of
conservation of momentum by making Vxg # 0.!

Taking into account that Vx g must reduce to Vxg = 0 for
time-independent systems, we shall assume that in general

_ 0K

o’
where K is some function of space and time (its physical
significance will be discussed in the next section). If we repeat

Vxg = (5-1.7)
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the derivation used for obtaining Eq. (5-1.6) and use Eq. (5-1.7)
instead of Eq. (5-1.2), we find that the derivation yields

K
Iplgzdv -1 [gzx Ldv
441G at (5-1.8)

1 oK
= - [ngldv + yPee ngx__2dv,

where K, is associated with the field g,, and K, with the field g,.

We can interpret the two integrals containing the time
derivatives as the rates of change of the field momentum, and we
can interpret Eq. (5-1.8) as the statement of the conservation of
momentum for gravitational interactions. According to this
interpretation, the gravitational field is a repository of
momentum given by

1
= ___ 5-1.9
G 41rGIKngV’ ( )

and the field can exchange momentum with the bodies located in
it [although we do not yet have enough information to determine
whether the sign in front of the integral of Eq. (5-1.9) should be
+ or —, we shall presently see that Eq. (5-1.9) is correct as
written]. Thus, if we amend Newton’s theory by accepting Eq.
(5-1.7) as a basic law, the theory becomes fully compatible with
the law of conservation of momentum.

5-2. Cogravitational Field K

The function K which we introduced in the preceding section
constitutes a vector field. What is the physical significance of K?
As one can see by comparing Eq. (5-1.7) with Eq. (1-1.3), K is
associated with the gravitational field g just like the magnetic
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field B is associated with the electric field E. Let us call K the
cogravitational, or Heaviside’s, field.? By analogy with electro-
magnetism, we could then assume that the cogravitational field
represents a force field acting on moving masses. In fact, if
Newton’s gravitational force, Eq. (5-1.1), obeys the force
transformation equations of special relativity, then the existence
of the cogravitational field is demanded by these equations.>*
The force exerted by K on a mass moving with velocity u is then

F = muxK). (5-2.1)

This equation can be considered to be the definition of K [the
order of vectors in the cross product reflects the fact that the
gravitational force given by Eq. (5-1.1) is always attractive].’

As it is known from Helmholtz’s theorem of vector analysis,®
a vector field requires for its complete specification a definition
of its divergence and its curl. We shall assume that

VK = 0. (5-2.2)

The curl of K will be defined in the next section.

5-3. Gravitational Wave Equation

The similarity of Eqs. (5-1.7) and (5-1.3) with Maxwell’s
Egs. (1-1.3) and (1-1.1) suggests that many electromagnetic
phenomena should have their gravitational counterparts. In
particular, it appears very probable that there should exist
gravitational waves similar to the electromagnetic waves. To see
if it is really so, let us take the curl of Eq. (5-1.7). We have

VxVXg=-a%VxK. (5-3.1)
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We can transform this equation into a wave equation by
assuming that

VxK = -

4G 1 ag
— J+ =5 (5-3.2)

where J is some function of space and time. We then obtain

vxVxg + L8 41G 0 (5-3.3)
2ot c? o’
which is an equation for a g wave propagating in space with
velocity c¢.’
As one can see from Egs. (5-3.2) and (5-1.7), the field vector
K satisfies a similar equation

VxVxK + iﬂ - 416 (5-3.4)

c? or? c?

which is an equation for a K wave propagating in space with
velocity c.

5-4. Mass Current J

What is the physical significance of J? If we determine the
divergence of Eq. (5-3.2), taking into account that the divergence
of a curl is zero, we obtain

0=-2Cy.y. 130 (5-4.1)
c? ¢t o
which, with Eq. (5-1.3), becomes
__0p
v.y=-29, (5-4.2)

at

Equation (5-4.2) is a "continuity" equation stating that J is a
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mass current (and therefore also an energy current) coming out
of a mass accumulation whenever this accumulation diminishes
with time; that is, Eq. (5-4.2) is a statement of the conservation
of mass for time-dependent gravitational systems.

By analogy with the electric convection current,® the mass
current created by a beam of mass particles of density p moving
with a velocity v is

J = pv. (5-4.3)

5-5. Causal Gravitational Field Equations

We are now ready to complete our basic generalization of
Newton’s theory of gravitation to time-dependent systems.
The solution of Eq. (5-3.3) is ®'*!

| [V’(V"g) _ 47"26%
g = - __j < M. (55.1)
4z

r

[As it was explained in Chapter 1, we use square brackets as the
retardation symbol to indicate that the quantities between the
brackets are to be evaluated for ' = ¢t — r/c, where t is the time
for which g is evaluated, r is the distance between the field
point (point for which g is evaluated) and the source point
(volume element dv'), c¢ is the propagation velocity of
gravitation, and V' is the operator del operating on the source-
point coordinates.] Substituting V - g from Eq. (5-1.3), we can
write Eq. (5-5.1) as

' 14])
o 53

r

g = GJ av'. (5-5.2)
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The solution of Eq. (5-3.4) is, similarly,*'*"

K- - E[[V"“”dv’, (55.3)

c? r
where we have taken into account that, according to Eq. (5-2.2),
VK = 0.
These two equations can be transformed into equations not
containing spatial derivatives.'> We then obtain

g--o (. LAl oo S L[, (554

rt rc ot
and J1 1 aJ
__G J] -
K FJ{7 —= 5 }Xr av'. (5-5.5)

Equations (5-5.4) and (5-5.5) are the fundamental causal
equations of the Newton’s gravitational theory generalized to
time-dependent systems. Although we have "derived" them with
the help of several assumptions and definitions, they should
preferably be considered as postulates, and their validity should
be judged not by the method by which they have been obtained,
but by the agreement (or disagreement) with experimental data
and with other laws and theories of proven validity. It is
important to emphasize that if Eqs. (5-5.4) and (5-5.5) are
regarded as postulates, then Eqgs. (5-1.2), (5-1.3), (5-1.7), (5-
2.2), (5-3.2)-(5-3.4), and (5-4.2) can be derived directly from
them. What is more, the reverse derivations involve nothing but
the standard vector analysis (see Chapter 1).

Equations (5-5.4) and (5-5.5) make it possible to calculate
gravitational and cogravitational fields produced by continuous
mass distributions. They can be transformed, however, into
equations for fields of moving point masses. For a point mass m
moving with velocity v and acceleration a, the resulting
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equations are

g - - 6nR[1-2]+ Linx®xmf, 656

and
_ m _vi 1 _
K - Gm{[v}l ;] m[r1><(R><[a])}><[r1, (5-5.7)
with
K - rlxg (5-5.8)
clr]

where [r] is the retarded position vector of the moving point
mass given by ' = ¢t — [r]/c and directed from the mass to the
point of observation (see Fig. 1.1); R = [r — rv/c] is the
"projected" present position vector of the point mass (also
directed toward the point of observation); s = [r - r * v/c]; and
where the square brackets denote retarded values.

For a point mass moving without acceleration, Eq. (5-5.6)
can be expressed in terms of the present position vector r, as '*'

g=-G m(1 -v?¥c? r,, (5-5.9)
re[1 - (v¥c?)sin?g]*2
where 6 is the angle between v and r,, and Eq. (5-5.8) can be
expressed as

K-YXE (5-5.10)

Cc

This essentially completes our basic generalization of
Newton’s theory of gravitation to time-dependent systems. In the
next chapter we shall add many more equations to the equations
obtained thus far. But first we shall take a look at our results
from a historical point of view and shall compare some of the
consequences of our time-dependent equations with certain
results of the general relativity theory.
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5-6. Historical Background

Our generalization of Newton’s gravitational theory is based
to a large extent on the assumption that there exists a second
gravitational field (which we have named the cogravitational, or
Heaviside’s, field). Let us note that there are several publications
in which it is suggested that a second field may be involved in
gravitational interactions. The first such publication was by
Oliver Heaviside.? Since Heaviside’s article contains all the basic
elements found in most of the later publications on the subject,
and since the article appears to have been generally ignored,®
the entire article is reproduced in Appendix 8. A short summary
of the article is presented below.

Heaviside begins his article by considering the energy of the
gravitational field and how this energy could propagate in space.
He concludes that there should be a gravitational energy flux
represented by a vector, similar to Poynting’s vector of
electromagnetism, equal to the cross product of the gravitational
field vector proper and a second field vector analogous to the
magnetic field vector. He finds that, in contrast to the
electromagnetic energy flux associated with a moving charge, the
direction of the gravitational energy flux associated with a
moving mass is opposite to the direction in which the mass is
moving. He then finds the curl of the second field [except for the
sign and notation, it is the same as our Eq. (5-3.2)], and he sets
the divergence of this field equal to zero. Next, he shows that if
gravitation is propagated with finite speed, then there should
exist gravitational waves similar to electromagnetic waves. He
then discusses the energy balance in gravitational systems
involving gravitational energy flux, modifies the curl equations
of the two fields for the case of a moving ether, and considers
Maxwellian stresses and tensions in the gravitational field. In the
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second part of the article he shows how the two fields are
modified when the field-producing particles are in the state of
uniform motion [except for notation, his equations are the same
as our Eqgs. (5-5.9) and (5-5.10)] and discusses how planetary
motion may be perturbed by the motion of the Sun.

Most of the recent publications that consider the second
gravitational field, while treating in greater detail certain aspects
of gravitation, do not present substantially new ideas on the
second field and do not develop the basic theory much beyond
Heaviside’s work.''#1%% An exception is the 786-page book by
Popescu,? where the author presents a new gravitational theory
as an alternative to the general relativity theory.

Why was Heaviside’s pioneering work on gravitation largely
ignored when it was first published, and why is it practically
unknown even today? One possible reason could be the very fact
that Heaviside’s gravitational theory was based on equations
practically identical to Maxwell’s curl equations for electric and
magnetic fields. These equations were universally believed to
represent the phenomenon of electromagnetic induction. But it is
almost impossible to imagine that there could be anything similar
in the domain of gravitation: there are no conductors of
gravitation, there is no gravitational analogue of "electromotive
force," there is nothing in gravitation even remotely similar to
electromagnetic induction as it is commonly understood by
scientists and engineers.?

However, as we know from Chapter 1, Maxwell’s equations
are not causal equations, and they do not really represent any
induction phenomena at all. We know from Chapter 1 that the
true cause of electromagnetic induction is not the time-variable
electric or magnetic fields, but the electrokinetic fields acting on
charges in conductors. And we know that the phenomenon of
"electromagnetic induction" is just another manifestation of
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electric forces. Once these simple facts are understood, all
initial distrust of Heaviside’s idea disappears.

Another reason why Heaviside’s work did not attract the
attention that it deserved was probably the fact that he did not
fully develop his theory of gravitation,” and his single article on
gravitation was eventually completely eclipsed by Einstein’s
brilliant and spectacularly successful general relativity theory.

It is noteworthy, however, that Newton’s gravitational theory
generalized to time-dependent systems (Heaviside’s theory was
essentially just that) yields several results which heretofore were
believed to be the exclusive consequence of the general relativity
theory. We shall discuss this very important circumstance in the
next section.

5-7. Time-Dependent Gravitation and General Relativity

The most important time-dependent gravitational equations are
Egs. (5-5.4) and (5-5.5). Because of the retarded values involved
in these equations, the equations are much more than mere
correlations between various physical quantities pertaining to
gravitational interactions: they reveal the causative sources of
gravitational and cogravitational fields and show the fundamental
causal relations governing gravitational interactions. Let us
examine some of the consequences of these equations.

First let us see what gravitational effects are disclosed by Eq.
(5-5.4). The first term in the first integral of this equation
represents the ordinary Newtonian gravitation of the mass
distribution p corrected for the final propagation speed of
gravitational fields. The second term in the first integral takes
into account the rate at which a time-dependent mass distribution
changes. The second integral represents two different things: (1)
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the gravitational effect of a mass current whose density changes
with time, and (2) the gravitational effect of a mass current
which propagates in space. For a point mass moving with
constant velocity, Eq. (5-5.4) reduces to Eq. (5-5.9) so that, in
spite of the finite propagation speed, the gravitational field is
directed to the field-producing point mass at its present position
and therefore in this case there is no gravitational aberration.

Consider now Eq. (5-5.5). The first integral of this equation
indicates that a mass current (or a moving mass particle) creates
a cogravitational field whose role in gravitational interactions is
analogous to that of the magnetic field in electromagnetic
interactions. The second integral represents the effect of the rate
of change of the mass current on the cogravitational field.

The most important consequence of Eqgs. (5-5.4) and (5-5.5)
is that these equations give us a new insight into the nature of
gravitational interactions between moving bodies. The presence
of the five different terms in the integrals of Eqs. (5-5.4) and (5-
5.5) means that gravitational interactions between two moving
bodies involve, in general, at least five forces. The dominant
force is the ordinary Newtonian attraction force corrected for
retardation. The remaining (usually very much weaker) forces
are: a force that basically depends on the time (convective)
derivative of the mass of the force-producing body (and hence on
the velocity of this body), a force that basically depends on the
acceleration of the force-producing body, a force that basically
depends on the translational and rotational velocities of the force-
experiencing and of the force-producing body, and a force that
basically depends on the translational and rotational velocities of
the force-experiencing body and on the translational and
rotational accelerations of the force-producing body. In general,
the five forces are in different directions. Thus, according to the
Newton’s gravitational theory generalized to time-dependent
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systems, gravitational interaction between two moving bodies is
an intricate juxtaposition of several very different forces.?
Taking into account that according to the original Newton’s
theory only one single force is responsible for gravitational
interactions, the significance of this result is enormous.

At this time there are no obvious experimental data with
which we could compare gravitational effects (except for the
ordinary Newtonian attraction) disclosed by Eqgs. (5-5.4) and (5-
5.5). Therefore, in order to judge the credibility of these
equations, we need to compare their consequences with those
obtained on the basis of other theories. Although several theories
of gravitation are presently in existence, the only generally
accepted gravitational theory, other than that of Newton, is now
the Einstein’s general relativity theory. It is imperative therefore
that we compare at least some gravitational effects revealed by
Eqgs. (5-5.4) and (5-5.5) with similar effects deduced from the
general relativity theory, if such similar effects can be identified.

Several such effects are indeed known. Two of them are
pictured in Einstein’s formulation of "Mach’s principle." On the
basis of the general relativity theory, Einstein gave a quantitative
formulation of Mach’s principle in the form of an equation
closely resembling the electromagnetic equation representing the
force acting on a moving charged particle in the presence of an
electric and a magnetic field.”?® Einstein’s equation is

Qi +ul = v + A D ux@xa), (G710
dt ot

where G
7= _[de', (5-7.2)
ctlr

and

A = iﬁ[ﬂdw, (5-7.3)

ctlr
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and where u and v are the velocities of the force-experiencing
and force-producing mass, respectively.

The right side of Eq. (5-7.1) is very similar to the well-
known "Lorentz’s force" equation of electromagnetic theory. In
the language of electromagnetic theory, the first term on the
right is the gradient of the electric scalar potential, the second
term is the rate of change of the magnetic vector potential (these
two terms together represent the time-dependent electric field),
and the third term is the force exerted by a magnetic field
(represented as the curl of the vector potential) on a moving
charge of magnitude "one." In the language of gravitational
theory, the first term represents the usual Newtonian
gravitational attraction, the second term represents the
gravitational "drag" due to a changing mass current or due to an
accelerating mass, the third term represents the magnetic-like
force acting on a moving mass of magnitude "one."

Clearly, all three of these effects are also represented by our
Egs. (5-5.4) and (5-5.5). The gravitational drag due to
accelerated bodies is represented by the last term of Eq. (5-5.4),
and the magnetic-like force is represented by Eq. (5-5.5) [with
Eq. (5-2.1)].7 Observe that the gravitational drag is the
gravitational counterpart of the electrokinetic force. Like the
electrokinetic force, it is always parallel to the current that
produces it, but in contrast to the electrokinetic force it is in the
direction of the current when the current increases, and opposite
to the direction of the current when the current decreases.
Therefore an accelerating mass drags the neighboring masses
with itself, and a decelerating mass pushes the neighboring
masses back. Of course, because of ¢? in the denominator of the
last term of Eq. (5-5.4), the gravitational drag is a very weak
effect except when there is a very rapid change of the velocity
of the drag-producing body. It is interesting to note that Einstein
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derived an expression for the gravitational drag four years before
he finally formulated his general relativity theory.?*?*

Before discussing Eq. (5-5.5), let us point out that this
equation represents interactions which are of the second order in
v/c. Therefore these interactions are much weaker than the
interactions represented by the first integral of Eq. (5-5.4). This
explains why Newton’s theory based only on Eq. (5-1.1) [the
time-independent form of Eq. (5-5.4)] has worked so well.

According to the general relativity theory, magnetic-like
gravitational forces definitely exist. Most prominent among them
are forces associated with rotating bodies. These forces are
sometimes referred to as "forces analogous to magnetic,"*"!
sometimes as "dragging of the inertial frame,"® sometimes as
"Coriolis forces,"**** and sometimes as "gravitomagnetic, or
gravimagnetic, forces."****7 The best known theoretical effect
due to these forces is the Thirring-Lense effect representing an
influence of the rotation of a central astronomical body on the
motion of planets and satellites.®* All these effects are clearly
indicated by our Eq. (5-5.5).

It would be desirable to determine to what extent Egs. (5-5.4)
and (5-5.5) are capable of reproducing some representative
quantitative results of the general relativity theory, or how these
equations may affect celestial mechanics. We shall consider this
question in the next chapter. However, a detailed comparison of
the time-dependent Newton’s gravitational theory with the
general relativity theory is outside the purpose of this book or of
this chapter. The purpose of this chapter is to extend Newton’s
gravitational theory to time-dependent systems. It would be
irrational not to endeavor to develop Newton’s theory to its
logical conclusion, regardless what this conclusion and the
corresponding quantitative results may be. As it so happens, the
theoretical results that we have obtained thus far are intriguing,
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thought-provoking and are based on a very firm ground. And as
it is shown in Chapter 6, our generalization of Newton’s theory
is fully capable of yielding very useful practical results as well.

Let us now summarize the main results of this chapter:
Newton’s gravitational law, Eq. (5-1.1), is a special case of the
more general gravitational laws for time-dependent systems given
by Egs. (5-5.4) and (5-5.5). Unlike Eq. (5-1.1), these laws are
fully compatible with the law of conservation of momentum,
satisfy the principle of relativity, satisfy the principle of
causality, and reveal the existence of gravitational effects whose
presence was previously assumed to be the exclusive results of
the general relativity theory. These laws give us an unexpected
new insight into the nature of gravitational interactions. The
validity of these laws cannot be questioned without questioning
the most fundamental principles of physics.
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GRAVITATIONAL
EQUATIONS

Basic gravitational equations are very similar to basic
electromagnetic equations. This similarity makes it possible to
convert many electromagnetic equations to gravitational
equations. In this chapter we shall use this possibility for
obtaining a variety of very useful gravitational equations, many
of which were either unknown or were ignored in the past.

6-1. Analogy Between Electromagnetism and Gravitation

Let us summarize basic gravitational equations which we
discussed in Chapter 5. We can arrange them in three categories:

(1) Basic definition equations for gravitational fields

Gravitational field g
g = Fim, (5-1.4)
Cogravitational field K
F = muxK), (5-2.1)

101
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Mass density p
o = dmldv,
Mass current density J

J = pv.
(2) Basic differential equations for gravitational fields
Vg = - 47Gp,

V:K =0,

JK
-5t_’
47rGJ + _l__t')_g_
c? c? ot

Vxg = -

VxK = -

(3) Basic causal equations for gravitational fields
- - o] , 1 3[p]} j aJ ]
& ¢ J {_r_f Tc ot ' orl

K - H[J] 1 '3[J]}xl. dv'

r2 rc or

(5-1.5)

(5-4.3)

(5-1.3)

(5-2.2)

(5-1.7)

(5-3.2)

(5-5.4)

(5-5.5)

Let us now list basic electromagnetic equations for fields in
a vacuum. Arranging them in categories similar to those used for

gravitational equations, we have:
(1) Basic definitions

Electric field E
E = F/q,

(6-1.1)
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Magnetic flux density field B
F = quxB), (6-1.2)
Electric charge density p

p = dqldv, (6-1.3)
Electric convection current density J

J = pv. 6-1.4)

(2) Maxwell’s equations for electromagnetic fields in a vacuum’

V-E - pl,, (1-1.1m)
VB =0, (1-1.2)
3B
VxE = - 9B 1-1.3
™ ( )
VXB = ) +i% (1-1.4m)
t

(3) Basic causal equations for electromagnetic fields

-

1 H[p] la[p]},dv ;[ BJ]

4me, J\r?2 rc or ) " 4me,c? ot (1-4.1)

B - 47r[{”] ”’[J]}xr av'. (1-4.2m)

2 rc ot
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If we compare the gravitational equations listed above with
the electromagnetic equations, we find that to each gravitational
equation there corresponds an electromagnetic equation. The
corresponding equations are identical except for the symbols and
constants occurring in them. The relations between the
corresponding symbols and constants are shown in Table 6-1.

Table 6-1

Corresponding Electromagnetic and Gravitational
Symbols and Constants

Electric Gravitational
q (charge) m (mass)
p (volume charge density) p (volume mass density)
o (surface charge density) o (surface mass density)
A (line charge density) A (line mass density)
J (convection current density) J (mass current density)
E (electric field) g (gravitational field)
B (magnetic field) K (cogravitational field)
&, (permittivity of space) -1/47G
Ko (permeability of space) —47nG/c?
—1/4me, or —p,clam G (gravitational constant)

It is clear that all equations derivable from the basic
electromagnetic equations listed above have their gravitational
counterparts, and that gravitational equations can be obtained
from the corresponding electromagnetic equations by simply
replacing the electromagnetic symbols and constants by the

corresponding gravitational symbols and constants in accordance
with Table 6-1.
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It is important to keep in mind, however, that only
electromagnetic equations for fields in a vacuum have their
gravitational counterparts, and only the electromagnetic symbols
listed in Table 6-1 can be directly replaced by the corresponding
gravitational symbols. In all other cases the following conversion
procedure should be used:

(1) If an electromagnetic equation is for fields in the presence
of material media, reduce the equation to fields in a vacuum.

(2) If the equations contain field vectors D or H, replace them
by E or B, using the relations D = ¢E and B = pH.

(3) Use Table 6-1 to replace electromagnetic symbols by the
corresponding gravitational symbols.

6-2. Gravitational Equations

Listed below are gravitational equations that have been
obtained by converting electromagnetic equations in accordance
with the procedure explained in Section 6-1. The electro-
magnetic equations used for conversion were taken from the
author’s book Electricity and Magnetism.*> Some readers may
want to examine these electromagnetic equations and their
derivations. For this purpose each gravitational equation
appearing below is provided with the number of the page where
the corresponding electromagnetic equation appears in Electricity
and Magnetism (hereafter abbreviated as EM). The equations are
arranged in three categories: equations for calculating fields and
potentials, equations for calculating energy and forces, and wave
equations. To avoid repetition, the list does not include several
equations discussed previously. Some of the equations are only
applicable to time-independent fields, others are completely
general; consult EM if in doubt.
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(1) Equations for calculating gravitational fields and potentials:

Basic gravitational laws in integral notation, EM502

$g-as - - 4xG [oav. 62.1)
fK-as = o. (62.2)

o - - 3 [eas. 623
foa- bl g 20

Gravitational field of a point mass, EM96

g =- Gﬂzru, (6-2.5)
r

Gravitational field of a mass distribution, EM93

g=-G[Lrav. (6-2.6)

2

Gravitational field in terms of mass inhomogeneities
(constant interior mass), EM103

g=-®§§L ©6-2.7)
Gravitational scalar potential (with respect to o), EM120

¢=-Gpmu 6-2.8)
r
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Gravitational potential of a point mass, EM121
o --G 6-2.9)
r
Gravitational field in terms of scalar potential, EM111
g = - Vo (62.10)
Gravitational potential in terms of the field, EM112
e, = [E*dl + .. 6-2.11)
Poisson’s equation for scalar potential, EM142
Vip = 47Gp. (6-2.12)
Gravitational field in terms of vector potential ®
g =-47GV X Ag. (6-2.13)
Cogravitational field of a moving point mass, EM390

K - -cgmvXr). (6-2.14)

C2r2

Cogravitational field of a current distribution, EM344

K--9 JJxr“dv’, (6-2.15)

c? r2

Cogravitational field in terms of current inhomogeneities
(constant mass-current density), EM352

K= - EV""S'. (6-2.16)
c2

r
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Cogravitational vector potential, EM364

A-=- E[ldv'. 6-2.17)
ctlr

Cogravitational field in terms of vector potential, EM363
K = VXA. (6-2.18)

Poisson’s equation for cogravitational
vector potential, EM364

via = 410y (6-2.19)
c

Cogravitational field in terms of scalar potential, EM373

4G
= :2 Ve,.

K (6-2.20)

Cogravitational dipole moment of filamentary mass current [
(S’ is right-handed relative to 1), EM381

m=- 4G (6-2.21)

c?

Cogravitational dipole field, EM381

K = Lcos@r“ » M sinf 0. (6-2.22)
27r? 4xr?

(2) Equations for calculating gravitational energy and forces:
Gravitational force on a mass distribution, EM208

F - [pg'dv. (6-2.23)
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Gravitational force in terms of scalar potential *
(single mass of constant density), EM211

F - - pj{;(,,fds. (6-2.24)

Gravitational force in terms of vector potential *
(single mass of constant density)

F = 47Go§ A, xdS. (6-2.25)

Maxwell’s stress integral for the gravitational
field, EM215

F - %j;gms - %+g(g*d8). (6-2.26)
Cogravitational force on a mass current, EM440
F - JJ xK'dy. (6-2.27)
Cogravitational force on a mass-current dipole, EM446

- - cz

e (m-V)K'. (6-2.28)

Cogravitational torque on a mass-current dipole, EM446

T - - 402Gme’. (6-2.29)
¥4

Cogravitational force in terms of vector potential *
(constant mass-current density), EM453

F - (f)A“JdS. (6-2.30)
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Cogravitational force in terms of scalar potential *
(constant mass-current density), EM453

F =230 xds. (6-2.31)
(4

Maxwell's stress integral for the cogravitational field, EM447

2 2
F=_°_¢KudS - _°_¢KEK-dS). 6-2.32
81r61) as 47rG(# ( ) ( )

Gravitational field energy, EM186

Uu=--_1 j gdv. (6-2.33)
871G

Gravitational energy in terms of potential, EM190

1
= - dv. 6-2.34
U 5 Igop 1% ( )

Energy of a system of point masses, EM192

G '
U=—7EE
ik

Energy of a mass distribution in an external field, EM195

Ly (6-2.35)
k

T,

U - j,w'dv. (6-2.36)
Energy of a point mass in an external field, EM195
U =my'. (6-2.37)

Cogravitational field energy, EM427

U= - _iIszv. (6-2.38)
887G
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Cogravitational energy in terms of vector potential, EM430
U - %[Addv. (6-2.39)

Cogravitational energy of a mass current in an
external field, EM432

U - jJ°A’dv. (6-2.40)
Gravitational Poynting’s vector, EM509

P-_° Kxg. (6-2.41)

Gravitational field momentum, EM513

1
=~ |Kxgdv. 6-2.42
G 41rGl X gdv ( )

Gravitational field angular momentum
5|
L=_"_|rx(Kxg)dv. 6-2.43
4G P X Kxgdv ( )

(3) Equations for gravitational waves (see also Chapter 5):

Direction of field vectors in a plane wave
propagating in the z-direction, EM531

K - lkxg. (6-2.44)
C
Energy density in a gravitational wave, EM533

1 c?
U =-_"_9?=-_" K2, 6-2.45
v 47I'Gg 4nG ( )
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The analogy between electromagnetic and gravitational
equations is, of course, not limited to the equations listed above.
Not only basic electromagnetic equations, but also any equation
representing a solution of an electromagnetic problem for fields
or forces not involving conducting, dielectric, or magnetic bodies
has its gravitational counterpart. However, if the propagation
velocity of gravitation is not equal to the velocity of light (see
Section 7-3), then ¢ appearing in the gravitational equations
should be, in general, the velocity of the propagation of
gravitation rather than the velocity of light.

Until recently it was believed that the analogy between
electromagnetic and gravitational equations did not apply to fast
moving systems, because the electric charge is not affected by
velocity, but the mass of a moving body was thought to vary
with velocity. It is now generally accepted that mass does not
depend on velocity.

Observe, however, that gravitational equations depicting
"nonlinear” gravitational effects (see Chapter 8) do not have their
electromagnetic counterparts.
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GRAVITATIONAL
FIELDS AND FORCES

We shall now present illustrative examples demonstrating
the use of various gravitational equations introduced in Chapters
5 and 6. We shall mostly use equations that cannot be found in
conventional presentations of the theory of gravitation. As is the
case with all other illustrative examples in this book, the purpose
of the examples is a clear demonstration of the theory rather than
a deliberate derivation of new results. Therefore our examples
are simple both physically and mathematically.

7-1. Illustrative Examples on Static Gravitational Fields

As we already know, many solutions of electrostatic problems
can be converted to solutions of the corresponding gravitational
problems. The examples presented in this section make use of
such conversion or analogy (consult Table 6-1 as needed).

v

Example 7-1.1 The electric field on the axis of a thin, uniformly
charged disk of radius a and charge ¢ at a distance z from the
center of the disk is

113
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z
m
Fig. 7.1 Calculation of the gravita-
tional field on the axis of a disk.
E=_—9 1 -__* I, (7-1.1)
PN (a®+ zH'"?

where k is a unit vector along the axis of the disk pointing away
from the disk (EM100). Using the analogy between electric and
gravitational equations, find the gravitational field on the axis of a
similar disk of mass m (Fig. 7.1).

Replacing E by g and ¢ by —1/47G, we obtain for the
gravitational field of a disk of radius a and mass m

_ _ pn2m| Z
g = G?I Wk. (7-1.2)

Example 7-1.2 The electric force between a uniformly charged ring
of charge ¢' and radius a and a thin, uniformly charged rod of
charge g and length 2d lying along the axis of the ring, is

- 499 1 _ 1 ]
) 8"80"{la“(zo-d)21“2 [a2+(zo+d>2]”2}"’ (7-1.3)
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Fig. 7.2 Calculation of the gravitational force on a rod inside a
ring.

where z, is the distance from the center of the ring to the center of
the rod, and k is a unit vector along the axis of the ring pointing
away from the ring (EM210, EM212). Find the gravitational force
between a similar ring of mass m’ and a rod of mass m (Fig. 7.2).

Substituting m for g, m' for q', and —1/47%G for ¢,, we obtain
for the gravitational force between the ring and the rod

F=—G”"”'{ 1 - 1 }k. (7-1.4)
2d [a2 + (ZO - d)Z]I/Z [a2 + (zo + d)2]|/2

Example 7-1.3 The electrostatic potential of a spherical charge
distribution of uniform density p and radius a is, inside and outside
the distribution, (EM115)

= 1 _(@a> - ),
8me,a (7-1.5)

= q
Poutside Irer
0

Pinside
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Find the gravitational potential inside and outside a similar spherical
mass.

Replacing ¢ by —1/47G and g by m, we obtain for the
potentials of a spherical mass of radius a

Cosite = = Go(3a® = 1?)
(7-1.6)
m
Pouside ~ G7

Example 7-1.4 The electrostatic energy of a uniformly charged
spherical shell of charge q and radius a is (EM190)

q2
U= . (7-1.7)
8we,a

Find the gravitational energy of a similar shell of mass m.
Replacing ¢ by m and g by —1/47G, we obtain for the
gravitational energy of a spherical shell of radius a and mass m

U-=- Giz. (7-1.8)
2a

Example 7-1.5 Consider a cylinder of uniform mass density p,
length 2¢, and radius a. The axis of the cylinder is also the z-axis
of cylindrical coordinates whose origin is at the center of the
cylinder. A spherical cavity is made around an internal axial point
of the cylinder at a distance z = d from the center of the cylinder.
A particle of mass m is placed at the center of the cavity. Find the
gravitational force exerted by the cylinder on the particle (see
EM105).
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Fig. 7.3 Calculation of the gravitational force on a point mass
placed in a spherical cavity inside a cylinder.

This problem is best solved by using Eq. (6-2.7), which makes
it possible to find the gravitational field of a mass by integrating
over the boundary surfaces of the mass. We see by inspection (Fig.
7.3) that the surface of the cavity makes no contribution to the field
at its center, since a spherical surface produces only a radial field,
all components of which meet at the center and cancel each other.
Likewise, the curved surface of the cylinder makes no contribution
to the field. Only the two flat surfaces of the cylinder make a
contribution.

The contribution of the closest flat surface (z >0) of the cylinder
to the field at the center of the cavity is, by Eq. (6-2.7),

4

) Gdes' Gok ] 27RdR
r

7-1.9
- 2nGp{la’ + (t - d)']'* - (¢ -d)}k. N

The contribution of the other flat surface (z<O0) is, similarly,

as’ _ i 27RdR
'G"l— =G k[ﬁ
r o [R* + (¢ +d)’]

27Gp{la® + (t +d)’]'"? - (t +d)}k.

8
(7-1.10)
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The field at the center of the cavity is then g, + g,, or

g =21Gp{la+(+d)A"? - [a® +(t-d)*]'" -2d} k.  (7-1.11)

The force on the particle of mass m at the center of the cavity
is therefore, by Eq. (5-1.4),

F =21nGmp{[a2+(t+dP]" - [a*+ (e -d)]"2 -2d }k.  (7-1.12)

Fig.7.4 Calculation of the buoyant force on a cavity formed in a
liquid. (a) Surface element vectors of the cavity. (b) Surface element
vectors of the liquid initially contained in the cavity.

Example 7-1.6 An irregular cavity has formed inside a liquid of
density p in the region where the gravitational potential is ¢'. Find
the buoyant force on the cavity (Fig. 7.4).

This problem on Archimedes’s principle is usually solved by
means of a plausibility argument based on the consideration of the
pressure inside the liquid. Here we shall provide a rigorous solution
of the problem by means of Eq. (6-2.24). This equation allows one
to find the gravitational force on a volume bounded by a given
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surface. The surface element vector dS in this equation is directed
from the mass under consideration into the empty space, regardless
whether the mass is inside or outside the bounding surface.'
Therefore the force on the cavity and the force on the liquid
initially contained in the cavity are exactly the same in magnitude,
but opposite in direction. Hence, the buoyant force is equal to the
weight of the liquid initially contained in the cavity.

rh »>|7|-

Fig. 7.5 Calculation of
the gravitational attrac-
tion between two circular
plates.

| —»| d<<a

Example 7-1.7 A gravitational "parallel-plate capacitor” consists of
two large circular plates of radius a having a uniformly distributed
mass m (Fig. 7.5). One of the plates is in the y,z-plane of
rectangular coordinates with its center at the origin. The second
plate is at a small distance x=d from the first. Using five different
methods, and neglecting edge effects, find the gravitational force
between the plates. ?

(a) Direct calculation. By Gauss’s law, Eq. (6-2.1), and by the
symmetry of the system, the gravitational field produced at x>0 by
the first plate is

g = - 2621, (7-1.13)
a
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By Eq. (6-2.23), the force on the second plate is then

m?,
F =mg' = -2G—_i. (7-1.14)
a2
(b) Force in terms of scalar potential. The potential produced by
the first plate at a distance x from the origin is, by Eqs. (6-2.11)
and (7-1.13)
0
¢’=jg,.dl+¢°=j(20 )dx+¢
x (7-1.15)
m
= ZG?x + 9,

where ¢, is a reference potential at x=0. Let us assume that the
thickness of the second plate is ¢. The potential at the front surface
and at the back surface of the plate is then

’ _ m ’ _ m
¢ front 26?‘1 + "”o’ 14 back 2G?(d +t) + ¢0' (7'116)
By Eq. (6-2.24), the force on the second plate is therefore [note

that, by symmetry, the rim of the plate adds nothing to Eq. (6-
2.24)]

F = - > (ZG d+¢o)( wa’i)
wast (7-1.17)
- ZG_(d +7) + ¢0]7ra i,
Ta t (l
or 5
F=-2621. (7-1.18)

a

(c) Force in terms of vector potential. For x>0, the vector
potential of the gravitational field of the first plate is?

A=y (7-1.19)

’
& 47a’
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where r is a perpendicular distance from the x-axis, and 6, is a
right-handed circular unit vector around the x-axis. By Eq. (6-2.25),
the force on the second plate is then

F = 47Go$ ™ 0§ xdS. (7-1.20)
4ra® “

The surface of integration in Eq. (7-1.20) consists of the two flat
surfaces and the circular rim of the second plate. By symmetry, the
contributions of the two flat surfaces to the integral of Eq. (7-1.20)
cancel. The only nonvanishing contribution to the integral comes
from the rim of the plate. If the thickness of the plate is ¢, the
surface element vector of the rim is dS=1dl_,, where dl_,, is a vector

representing a length element of the rim and directed radially
outward from the rim. The force on the second plate is therefore

F=4rG " ¢ ™ ¢ xial . (7-1.21)
ma’t ) 4ma?

Simplifying, we obtain

F = - 2Gizi. (7-1.22)
a2

(d) Force in terms of Maxwell’s stress integral. The total
gravitational field in the space between the two plates is zero,
because there the fields of the plates have opposite directions. The
total gravitational field outside the plates, to the right of the second
plate, is double the field of each single plate, Eq. (7-1.13), because

there the two fields are in the same direction. We thus have

=0, = - 4GLn2.i. (7-1.23)

g between g outside a

Applying Eq. (6-2.26) to a Maxwellian surface enclosing the second
plate, we then obtain
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2
F = SLG 0-ma®(-i) + (-4Gi2) cma’i
™ Ta
- L[o-(o-mz)(-i) + (-4(;_’"_).(- 4G_m_)-7ra2i
471G wal mwa’®
2
= - 2GT7i. (7-1.24)
a

(e) Force in terms of energy. The total field in the space between
the plates and in the space outside the plates is given by Eq. (7-
1.23). According to Eq. (6-2.33), the gravitational energy density
is then

Uv between = 0’
(7-1.25)
1 ( )2 m?
I -4G—_| = - 26—.
v outside 87rG a 7ra4

Suppose now that the second plate moves through a distance dx.
The relation between the force on the plate and the energy change
associated with the displacement of the plate is

aUu. _ _ dU,
i=- i

F=-_-22 i, (7-1.26)
dax dx

The energy change associated with the displacement dx is
2
du = ( ZG_)7ra dx. (7-1.27)

Ta

(The minus sign in front of parenthesis reflects the fact that the
energy in the space between the plates is zero.) Thus the force on
the second plate is

- 26, (7-1.28)
A

F
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7-2. Illustrative Examples on Dynamic Gravitational Fields

We shall now present illustrative examples involving nonstatic
gravitational fields. These examples will depict several
remarkable gravitational phenomena not revealed by the
conventional Newtonian gravitational theory. As in the preceding
section, we shall start with simple conversion of electromagnetic
equations to gravitational equations.

Fig. 7.6 Calculation
of the cogravita-
tional field of a
rotating  spherical
shell.

v

Example 7-2.1 A spherical shell of radius R and uniform surface
charge density o rotates with angular velocity w about a diameter
which is also the polar axis of spherical coordinates whose origin
is at the center of the shell. The shell creates a magnetic field in the
space inside and outside the shell given by (EM378)

H,, = 3ouRk,
(7-2.1)
4 4
H .= 200R" osor + TR singo .
outsi 3r3 u 3r3 u

Find the cogravitational field of a similar shell of uniformly
distributed mass m (Fig. 7.6).
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Since the two equations are for the magnetic field H rather than
for the flux density field B, we must first convert them to B, by
using B = p,H. Replacing then B by K, p, by —47G/c?, and o by
m/4wR?, we obtain for the cogravitational field of the shell of radius
R and mass m rotating with angular velocity w

Ko = _G22 k,
R 3c’R - (1-2.2)
K  =-G cosbr - G sinfd
outside 3027'3 u 3027' u

Example 7-2.2 A long beam of charged particles moves with
velocity v along its length. The charge density in the beam is p, the
radius of the beam is a. The beam creates a magnetic field which,
inside and outside the beam, is (EM332)

Hoo =0 VTXI‘ )
(7-2.3)
outside 2_"2 ’

where r is a radius vector directed from the axis of the beam to the
point of observation. Find the cogravitational field of a similar
beam of mass particles moving with velocity v along its length.
Since the above expressions are for H rather than for B, we
must convert them to B by using B = yH. Replacing then B by K
and p, by —4wG/c?, we obtain for the cogravitational field of a
beam of mass particles of density p, radius a, and velocity v

K . =~ G2_7r2pv><r,
20 , (7-2.4)
_ wpa
outside G 2.2 vXr
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Example 7-2.3 A long, thin, vertical plate of length L, width w,
thickness d, and mass m falls to the ground (Fig. 7.7). The plate
remains vertical during the fall. Neglecting end and edge effects,
show that the rate at which the kinetic energy of the plate increases
is completely accounted for by the influx of the gravitational field
energy into the plate.

N
N

a» 45

--—

Fig. 7.7 The kinetic energy of the falling s m
plate is completely accounted for by the Z
influx of the gravitational energy into the
plate.

|
———
]
< |

Let us use rectangular coordinates for describing the motion of
the plate and the corresponding energy relations. Let the x- and the
z-axis be in the horizontal plane, and let the y-axis be directed
vertically upward. Let us assume that the midplane of the plate is
in the y,z-plane.

The gravitational field g around the plate is equal to the
acceleration of gravity g and is directed downward:

g=-gj. (7-2.5)

Let the velocity of the plate be v. The plate constitutes a mass
current whose density is, by Eq. (5-4.3),
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m my .
= = _——v=-_—j. 7-2.6
I=pv Lwd Y LwdJ ( )
Taking into account that the plate is thin (d<w) and that dg/dr =
O (constant g), the cogravitational field produced by this current is,
by Eqgs. (6-2.4) and (7-2.6) (compare EM332, EM333 but observe
that a cogravitational field, in contrast to a magnetic field, is always
left-handed relative to the current by which it is produced),
_4nGJwd, _ _ 227G mv

K = k — (7-2.7)
c? 2w c? Lw

at the front surface of the plate (x=d/2) and

K = 27Gmy (7-2.8)
c? Lw

at the back surface of the plate (x=—d/2). The gravitational
Poynting’s vector at the two surfaces is, by Egs. (6-2.41), (7-2.8),
(7-2.7), and (7-2.5),

p - c? Kxg - c? 27G mvg . _ mvg
47G 47G ¢* Lw " 2Lw ™

(7-2.9)

where n,, is a unit vector normal to the plate and directed into the
plate.

Multiplying P by the area of the two surfaces, we obtain for the
rate of gravitational energy influx into the plate

U _ Mol = mvg. (7-2.10)
dt 2Lw

The rate at which the kinetic energy of the plate increases is

dUu _ d(mvz) dv
2

_— = = _ = . -2.11
dt dt e dt mve a )

Thus the rate at which the kinetic energy of the plate increases is
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completely accounted for by the influx of the gravitational field
energy into the plate via the gravitational Poynting’s vector.* This
means that if the plate started to fall from rest, its entire kinetic
energy is due to the influx of the gravitational energy into the plate.

Example 7-2.4 Consider two point masses m and m'. The mass m
is in free fall toward the ground, the mass m' is at rest below m. At
the moment when m passes m’, m' is released so that it, too, falls
to the ground. (a) What is the acceleration of m'? (b) What is the
acceleration of m before and after m' is released? (c) Does the
acceleration of a falling body depend on its mass? (Neglect
gravitational attraction between the two masses, neglect retardation,
and neglect terms of the order v/c or smaller).

(a) Let us designate the acceleration of gravity vector as a.
Normally, m' would then fall with the acceleration a. However, m'
is subject not only to the force of gravity, but also to the
gravitational force from the accelerating mass m. According to Eq.
(5-5.6), this force is (within the limits of accuracy specified in the
statement of the problem)

F--gmmTt _ grmirxxa)
r r’c
! 1 ' (7'2.12)
- Gmmr _ Gmmr(r-a) + Gmma.
r’ ric? re?

The first two terms in the last expression represent gravitational
attraction between the two masses. Disregarding these terms, we are
left with the "gravikinetic" force (gravitational drag) exerted by m
upon m'

a, (7-2.13)

where r is the distance between the two masses. This force is in the
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direction of the acceleration of gravity, and it provides an additional
acceleration to the mass m'. The total initial acceleration of m’ is
therefore
a.. = (1 . G-”-la)a' (7-2.14)
rc

(b) As soon as m' begins to fall, it exerts an additional
acceleration on m. Both masses now fall with an acceleration
greater than a. The additional acceleration of m enhances even
further the initial acceleration of m', and so on. The process
converges, however, very rapidly.

(c) According to the results of Parts (a) and (b), falling masses
amplify the gravitational acceleration of the neighboring masses.
Therefore a large mass should fall with a greater acceleration than
a small mass (see Section 7-3).

Example 7-2.5 Consider a single particle of mass m on the surface
of the beam of mass particles described in Example 7-2.2. Find the
expression for the total force (gravitational and cogravitational)
acting on the particle.

Constructing a cylindrical Gaussian surface around the beam and
applying Eq. (6-2.1) to this surface, we obtain for the gravitational
field at the surface of the beam (compare EM89-90, EM420)

g = - 2nGpar,, (7-2.15)
where r, is a unit vector pointing away from the axis of the beam
at right angles to it. The cogravitational field at the surface of the

beam is, by Eq. (7-2.4),

K = - G2®%yxr,. (7-2.16)
C

The force on the mass particle (mass m) on the surface of the beam
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is then, by Eqgs. (5-1.4) and (5-2.1),
F = m(@g + vxK), 7-2.17)

or, after substituting K, expanding the cross product, and
simplifying, 5
F=- 27erma(1 - XE)r (7-2.18)
c

Thus the particle is always attracted to the beam, although the
force of attraction is smaller than for a stationary cylinder of the
same mass density and radius. The gravitational attraction always
dominates over the cogravitational repulsion, so that the beam
compresses as it moves. When the speed of the beam approaches ¢
(the speed of the propagation of gravitation), the force on the

particle approaches zero.

Example 7-2.6 A rotating sphere of mass m and radius a moves
with velocity v<c along the x-axis of rectangular coordinates. The
angular velocity of the sphere is w and is directed along the y-axis.
A point mass m' is at rest on the z-axis at a distance r> a from the
origin. Find the force exerted by the sphere on the point mass at the
moment when the sphere passes the origin (Fig 7.8).

The force exerted by the sphere on the point mass can be found
from Eqgs. (5-5.4) and (5-1.4), which yield (omitting the retardation
brackets, since v<c)

F=-m'G Hﬁ +i@)r av' +m’£ Jl(g)dv'. (7-2.19)
rt rcaoel " ctlrioe

Since the radius of the sphere is much smaller than the distance
between the sphere and the point mass, the sphere, from the
location of the point mass, can be considered to be a cogravitational
dipole. As it is shown in Appendix 4, a moving cogravitational
dipole appears to acquire an additional mass and acquires a
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Y T w
—— C" Fig. 7.8 A rotating sphere
m moving past a stationary
—— point mass exerts on the
—P—> point mass not only the
ordinary Newtonian gravi-

——VY
Vs / tational force but also a

m’l F velocity-dependent and a

z r>>3  rotation-dependent force.

gravitational dipole field. By Eq. (A-4.11), a cogravitational dipole
of mass 4m moving with velocity v<c appears to have an additional
mass 2mv*/c* [we can ignore the apparent mass given by Eq. (A-
4.6), since it is insignificant unless the rotation is extremely fast].
For our sphere, whose mass is m, the additional mass is mv?/2c%.
Designating the apparent gravitational dipole field of the sphere as
& aipole» WE can then express the first integral of Eq. (7-2.19) as

[ ! 2
F,=-G ’"r 2r,-G ”2‘0'2‘:2 r,tmg . (7-2.20)

The force on the point mass is therefore

F--G™y-GM™ g, +G™ [ L3 gy, 1:2.21)
rr Y 2y " we el

The last two terms in this equation are the gravitational
counterpart of the electric force discussed in Chapter 2, Section 2-6,
and in Chapter 3, Example 3-3.7. Therefore, instead of evaluating
these terms, we shall determine them by converting the
corresponding electric equations. The electric field corresponding
to the last two terms of Eq. (7-2.21) is given by Eq. (2-6.9), and
the electric force is given by Eq. (2-6.10). Replacing in Eqgs. (2-
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6.9) and (2-6.10) B by K and g by m’, we obtain for the
gravitational force due to the last two terms of Eq. (7-2.21)

Fdipole +F, = -mvxK, (7-2.22)
where K is the cogravitational field produced by the rotating sphere
at the location of the point mass, when the sphere has no
translational motion. This field can be found by integrating the
expression for the external field of the spherical shell given in Eq.
(7-2.2). The result is

_ . mwa?, }
K- G222 (1-2.23)

The total force on the point mass is therefore, by Eqgs. (7-2.21), (7-
2.22), and (7-2.23),

' ' 2 ' 2
F=-GMMg g™ g . ghtmwa y  (7-2.24)
r? 2c?r? S5r3c?

Thus the force exerted by a slowly moving, rotating sphere on
a distant stationary point mass differs from the Newtonian
gravitational force by the presence of two additional terms that
depend on the linear and angular velocity of the sphere.

Although we have derived Eq. (7-2.24) for the moving sphere
and stationary point mass, it is clear that within the accuracy of our
derivations Eq. (7-2.24) also applies for a point mass moving
relative to the sphere (this is required by the ordinary Galilean
relativity). Thus Eq. (7-2.24) represents a time-dependent
generalization of Newton’s gravitational law that should be used for
computing planetary orbits and for similar problems of celestial
mechanics. A remarkable feature of this equation is that it results
in elliptical planetary orbits whose major axis experiences a secular
advance, or "perihelion precession" (see Section 7-3).
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Example 7-2.7 A ring-shaped magnetic dipole antenna of radius a
carrying an oscillating current

I = I ;sinwt (7-2.25)

produces an electric radiation field

a’w’sinw(t - r/c)

sinf¢,, (7-2.26)
4rc

E = pil,

and a magnetic radiation flux density field

B = - p, LSO 10 Grgg  (72.27)
4rc?
where r is the distance from the ring (r> a), 6 is the angle between
the axis of the ring and r, ¢, is an azimuthal unit vector, and 8, is
a polar unit vector in spherical coordinates whose polar axis is the
axis of the ring (EM562-EM565). The time-average power radiated
by the antenna is

W, o= pls T (7-2.28)

The gravitational counterpart of this antenna is a ring of mass m
and radius a oscillating with angular frequency w about its axis.
Find the gravitational radiation field, the cogravitational radiation
field, and the time-average power radiated by this ring.

Let the angular amplitude of the oscillating ring be ¢. The
angular deflection of the ring from its equilibrium position is then

a = q,coswt, (7-2.29)

and the angular velocity of the ring is

da

= = - Qwsinw?. (7-2.30)
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The mass current of the ring is then (note that I = A\v),

m
I = ia@ = - 0lowsinmt = I;sinwt, (7-2.31)
27wa dt 27
where
mao,w
I, = - 2. 7-2.32
o 7 ( )

Replacing in Eqs. (7-2.26), (7-2.27), and (7-2.28) E by g, B by K,
uo by —47G/c?, and I, by the right side of Eq. (7-2.32), we obtain
moga’e’sinw(t - ric) |

g=G 5 sinfo,, (7-2.33)
re

“Wsinw( - r/
K = - gl ol " 19 Gp . (1239)
2rct

2,2 4, 6
W o= -glhNte (7-2.35)
o 12¢3

The minus sign in Eq. (7-2.35) indicates that the ring absorbs
energy from space instead of emitting it into space.

A

7-3. Discussion

In this chapter we have explored the analogy between
gravitation and electromagnetism in free space. We have seen
that it is possible to convert various equations representing
electromagnetic phenomena to corresponding equations
representing gravitational phenomena. And we have found that
numerous techniques that have been developed for solving
problems involving electric and magnetic fields and interactions
can be applied to solving gravitational problems.
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It is now clear that the classical theory of gravitation is much
more complex than commonly believed, and that it has at its
disposal many more concepts, tools, and methods than are
unveiled in conventional presentations of the theory based
exclusively on Newton’s gravitational law.

The illustrative examples presented in this chapter have
demonstrated several intriguing aspects of classical gravitation
that were either ignored or unknown in the past.

The first series of examples (Section 7-1) has demonstrated
some effective new techniques for calculating gravitational fields
and interactions in time-independent systems. The versatility and
usefulness of these techniques has been made particularly clear
in Example 7-1.7, where gravitational attraction between two
bodies was calculated by five different methods, none of which
involved a direct application of Newton’s law.

The second series of examples (Section 7-2) has demon-
strated a number of time-dependent gravitational effects. Two of
these examples are especially important:

Example 7-2.4 shows that the acceleration of a body in a
gravitational field depends on the mass of the body. This is in
conflict with the original postulate of the general relativity
theory: the postulate of the equivalence of the gravitational field
and an accelerated reference frame. However, since this
postulate is no longer considered an indispensable building block
of general relativity,® we shall not discuss the significance of this
conflict. Of course, Example 7-2.4 also presents the question of
the equivalence of gravitational and inertial mass. This particular
equivalence appears to hold, because the additional acceleration
does not depend on the cause of the primary acceleration.

Example 7-2.6 is even more significant. It shows that in time-
dependent systems gravitational interactions involve not only the
usual Newtonian attraction but also additional forces associated
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with the motion of the interacting bodies. This phenomenon is
particularly significant because of its relevance for explaining
certain discrepancies between observed and calculated properties
of planetary motion.

The best known such discrepancy is in the precession of the
perihelion of Mercury. According to Newton’s gravitational law,
this precession is a result of perturbations from the outer planets
and should amount to 532 seconds of arc per century.® However,
the observed value is approximately 575 seconds of arc per
century. It was the greatest triumph of Einstein’s general
relativity theory, when his theory provided an explanation for the
residual 43 seconds. To this day Einstein’s relativistic correction
of Mercury’s precession remains the most important
observational evidence apparently supporting the theory of
general relativity.’

According to the general relativity theory, the gravitational
force on a mass m," moving with velocity v<c in an orbit
around a mass m is®

[ 1,2
m”:" po- g (7-3.1)

r: cr?r

F=-G

The precession is caused by the last term of this equation and is
essentially proportional to the numerical coefficient appearing in
this term. Let us compare this equation with Eq. (7-2.24). If we
omit the last term in Eq. (7-2.24) (because of the slow rotation
of the Sun, this term can hardly have a significant effect on
planetary motion), we have

] 14,2
F=~-¢"r, - G‘Z””’ZV2 r,. (7-3.2)
r cr

Except for the numerical coefficient in the last term, Eq. (7-3.2)
is the same as Eq. (7-3.1). However, the mass m," in Eq. (7-
3.1) is the relativistic rest mass, while the mass m' in Eq. (7-
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3.2) is the ordinary (prerelativistic) mass. When we substitute in
Eq. (7-3.2) the so-called "transverse" relativistic mass’
m'=m'(1—-v*¢*)~"2, we obtain for the case of v<c

mm,’'
°r, -G

2 u

1y2
mm,'v

F=~-G r (7-3.3)

u’
CZrZ

r
which yields for the precession 7 seconds of arc per century.

If the residual precession of Mercury’s perihelion is indeed 43
seconds of arc per century, then Eq. (7-3.3) gives too small a
value for the precession. Therefore, if our generalized theory of
Newtonian gravitation is correct (and there is no objective reason
to doubt its correctness, since it has been built on physical laws
and principles of unquestionable validity), then we should be
able to explain the precession in spite of the value obtained from
Eq. (7-3.3). There are several possibilities to do so.

Let us note that up to now we have assumed that the velocity
of the propagation of gravitation is the same as the velocity of
light ¢. But there is no experimental or compelling theoretical
evidence that gravitation propagates as fast as light. Therefore,
within the generalized time-dependent theory of Newtonian
gravitation, it would be at least as natural to use Eq. (7-3.2) for
determining the unknown velocity of the propagation of
gravitation from the known residual precession as to assume
(actually postulate) that gravitation propagates as fast as light.'
Designating the propagation velocity of gravitation as ¢, and
using the transverse mass, we can write Eq. (7-3.2) as

mm,’ mm,'v?
Fr-6llop -0 (L, L (39
r r 2‘}2 2¢?
There is one additional possible correction of Eq. (7-3.2). This
correction is associated with the distribution of gravitational
energy within and around gravitating bodies. We shall discuss
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this important effect in the next chapter (Example 8-2.2). At this
time we shall only state that with this additional correction Eq.
(7-3.2) becomes
' 1,2
F~-GlM, —Gmm"v(i +i)r. (7-3.5)
rr " r 2082 ct

Simple calculations show that to obtain the 43 seconds of
perihelion precession for Mercury, ¢, should be 0.30c according
to Eq. (7-3.4) and 0.32¢ according to Eq. (7-3.5). With these
values for c,, Eqs. (7-3.4) and (7-3.5) give for the perihelion
precession of all planets exactly the same values as the values
provided by the general relativity theory.

There is yet another important consideration concerning our
Egs. (7-3.2)-(7-3.5). The velocity v in these equations is the
velocity of the planet relative to the stationary Sun. But the Sun
is not really at rest — it moves relative to the Milky Way and
the Milky Way (our galaxy) moves with respect to the rest of the
Universe. Should we not, then, include the velocity of the Sun
in our Eqs. (7-3.2)-(7-3.5)? There is no clear answer to this
question at this time. One thing is clear, however: the problem
with the Mercury’s perihelion precession is much more
complicated than generally believed.

This brings us once again to the relativistic explanation of the
precession. Let us point out that the relativistic explanation is
based on the assumption that the main Mercury’s perihelion
precession of 532 seconds of arc per century is correctly
explained on the basis of the ordinary Newton’s theory of
gravitation involving only the ordinary Newtonian gravitational
attraction between interacting bodies. But according to the
generalized Newton’s theory, gravitational interactions involve,
in general, at least five different forces (see pp. 91-93 and
Appendix 7). Therefore it is highly improbable that the ordinary
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Newton’s theory can correctly account for any part of Mercury’s
precession. And, consequently, there are very strong reasons to
doubt that a "residual" precession really exists, to say nothing of
the residual precession of exactly 43 seconds of arc per century
explained by general relativity. The fact is that we really do not
know what the correct relativistic value for the Mercury’s
precession is, since nobody has computed the entire Mercury’s
precession on the basis of the general relativity theory.

Before leaving this chapter, we should mention Example 7-
2.7. In this example we found that, in contrast to the
electromagnetic radiation, gravitational "radiation" absorbs
energy rather than emits it. This result also conflicts with the
general relativity theory. According to general relativity, a
gravitational "antenna" should release energy in the course of
gravitational radiation.' It is not likely that the conflict can be
resolved experimentally any time soon. The magnitudes of the
gravitational radiation fields are much too small to be measured
in a laboratory. For example, according to Egs. (7-2.33)-(7-
2.35), a ring of mass 1 kg and radius 1 m oscillating with an
amplitude of 1 rad and circular frequency 1 sec™' would produce
at a distance of 10 m from itself a gravitational and
cogravitational wave of amplitude g=1.2+107* m/sec?
K=4+10"% sec™’, and average power flow of W, = —2.3+107%
watts.
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GRAVITATION AND
ANTIGRAVITATION

According to Einstein’s mass-energy relation, any energy
has a certain mass. But mass is the source of gravitation.
Therefore any energy, including gravitational energy, should be
a source of gravitation. In this chapter we shall complete our
development and generalization of the Newtonian gravitational
theory by investigating how gravitational fields are affected by
the gravitational energy contained in them. For simplicity, we
shall discuss time-independent fields only.!

8-1. Gravitational Energy as a Source of Gravitation

The basic equations of Newton’s theory of gravitation are the
two field laws

Vxg =0, (5-1.2)
Vg = - 47Gp, (5-1.3)
and the energy law
- 1 [ 2
U=-_—|glv. 6-2.33
871G g ( )
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The energy law can also be expressed in terms of the energy
density U,=dU/dv as

v --_8&_ 8-1.1)

U = mc2’ (8-12)

any energy has a mass given by m=U/c?, where c is the velocity
of light. Hence we must conclude that the gravitational energy
density given by Eq. (8-1.1) has a mass density

g (8-1.3)

SR oy '
But then the source of gravitation should be not just the ordinary
mass density p but the sum of p and p,, in which case Eq. (5-
1.3) should be replaced by **

Vg = - 47Gp + iz (8-1.4)
2c?
From now on, we shall assume that the divergence law of
gravitation is given not by Eq. (5-1.3) but by Eq. (8-1.4)
instead. Observe that the last term in this equation contains the
total gravitational field g. This means that the equation takes into
account the effect of the gravitational energy upon itself.

Note that the mass density of the gravitational field, Py, 18
negative. Thus Eq. (8-1.4) indicates that there may exist not only
ordinary attractive gravitational fields but also repulsive, or
antigravitational, fields. It also indicates that the field outside a
uniform spherical mass distribution depends not only on the
magnitude of this distribution but also on its internal field, so
that such a mass distribution cannot be replaced by an equal
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point mass at its center, as it can be done in the conventional
Newtonian theory. Finally, Eq. (8-1.4) gives us at least a partial
explanation for the behavior of gravitational field lines in the
gravitational fields. It is well known that the electric field lines
in electrostatic fields always have a beginning (on positive
charges) and an end (on negative charges). But, according to Eq.
(5-1.3), the gravitational field lines have no beginning, they just
end on mass elements. A clue to the mystery of their beginning
is now given by Eq. (8-1.4): at least some gravitational field
lines begin on p, in the space around and within mass
distributions.

The basic field equations of the Newtonian gravitational
theory, Egs. (5-1.2) and (5-1.3), are usually solved by means of
the gravitational potential ¢, defined by

g = - Vo. (6-2.10)
By combining Egs. (6-2.10) and (5-1.3), one obtains
Vip = 47Gp, (6-2.12)

which, subject to appropriate boundary conditions, can be solved
for a variety of mass distributions. The field g can then be found
from ¢ by means of Eq. (6-2.10). In the Newtonian theory one
can also use integral methods for finding g. Any of the following
expressions can be used for finding g given by Egs. (5-1.2) and
(5-1.3)¢

g = - G[ p r av', 6-2.6)

r?

g = G[ﬂdv', (8-1.5)
or r

- - G[ﬁdv'. (6-2.8)

r

<
|
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Unfortunately, none of the above techniques or equations can
be employed for finding gravitational fields given by Egs. (5-
1.2) and (8-1.4), since Eq. (8-1.4) is nonlinear in g. Thus, when
the effect of the gravitational energy on the gravitational field is
taken into account, one cannot in general find the gravitational
field g from a given mass distribution p. There is, however, a
way out of this difficulty: one can postulate a certain field g
satisfying Eq. (5-1.2) and then from Eq. (8-1.4) one can find the
mass distribution

--Ve, _gz 8-1.6
P 417G 87Gc? (8-1.6)

producing this field. Examples of such calculations are given in
the next section. One can also obtain approximate solutions for
nonlinear gravitational fields by assuming that gravitational
energy is entirely due to the true mass, thus ignoring the effect
of the gravitational energy upon itself (the true mass is the mass
as such, excluding the associated gravitational energy mass).

8-2. Examples of Nonlinear Gravitational Fields

We shall now present illustrative examples demonstrating
basic properties of nonlinear gravitational fields. All fields in
these examples are spherically symmetric and are in a radial
direction. Hence they automatically have a zero curl and thus
satisfy Eq. (5-1.2).° Of course, even if a field satisfies Eqs. (5-
1.2) and (8-1.4), it still may be physically meaningless.
Therefore we shall restrict our choice of fields to those that
satisfy the following validity conditions:

(a) the energy of the field must be finite,

(b) the field must be finite at r=0,
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(c) the true mass density p must be either positive or zero,
(d) the field must be everywhere continuous.

v
Example 8-2.1 Find the mass distribution producing the field
g = - G%r for r < a, (8-2.1)
a
and
g=- Gﬂzru for r > a. (8-2.2)
r

Note that in the conventional Newtonian theory this field is
produced by a sphere of radius a, mass m, and uniform density
p=3ml4rna’.

Substituting Eqs. (8-2.1) and (8-2.2) into Eq. (8-1.6) and
differentiating, we obtain

2
p =" (3 + M ) for r <a, (823)
47ma’ 2c%a’
and
=G m’ for r > a (8-2.4)
P 8wert

An important consequence of this solution is that a 1/7* field is
produced not by a sphere, but by a mass distribution extending all
the way to infinity (although the greatest mass density is within the
sphere; see Fig. 8.1). Another important consequence is that m in
Egs. (8-2.1) and (8-2.2) is not the true mass of the sphere. The true
mass of the sphere, obtained by integrating Eq. (8-2.3), is

m=m1+Gm), 8-2.5
0 ( 10c?a ( )

so that
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Fig. 8.1 (a) According to Newton’s theory, the gravitational field
shown in this figure is produced by a mass of uniform density
confined to a sphere. (b) According to the nonlinear theory of
gravitation, the same field is produced by a mass of variable density
occupying all space. (The scale for the field is twice as large as the
scale for the mass density.)

2 2 12
m =€ “[(1+G m") —1]. (8-2.6)
G L S5ca

If 2Gmq/5c’a < 1, which is usually the case, Eq. (8-2.6) can be
written as

o ) (8-2.7)
10c2a! '

mzmo(l-G

The true mass external to the sphere, obtained by integrating Eq.
(8-2.4), is

m2

m, =G .
2c2a

(8-2.8)

And the total true mass as seen from r=o, m=my+m,, is

m = m(l . Gm ) (8-2.9)

5c%a
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Example 8-2.2 Find the mass distribution that produces the field
given by Eq. (8-2.1) for r<a and produces the field

2
2c7p r for r > a, (8-2.10)

= -G
& 2cr? - Gur “
where
2¢2ma
- _scma (8-2.11)
# 2c%a +Gm

Note that this expression for u makes g continuous at r=a.

Since the field for r<a is the same as in Example 8-2.1, the
mass density p for r<a is the same as that given by Eq. (8-2.3).
Substituting Eq. (8-2.10) into Eq. (8-1.6) and differentiating, we
obtain for the mass density in the remaining space

p =0, r>a. (8-2.12)

Thus the field under consideration is produced by a mass confined
to a sphere of radius a.

Let us investigate this field in some detail. If in Eq. (8-2.10)
Gu/2¢*r<1, then the equation can be written as

g=-G B v o~ -ghU+Gu2c’)
(1-Gu/2c¢ryr? * r? ‘
or
2
g~ - G%r“ - G 2:2r3r“' (8-2.13)

The first term in this equation is the simple Newtonian gravitational
field of a sphere. However, the mass u in this equation is not the
true, or "naked," mass of the sphere. To find the true mass, we
need to solve Eq. (8-2.11) for m and then substitute the result into
Eq. (8-2.5). This gives for the true mass of the sphere
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- | 1+G H . (8-2.14)
1 -Gu/2c?a 10c?a(1 - Gu/2ca)

0

The true mass my is larger than p, which was to be expected, since
p is the sum of the true mass and the negative mass of the
gravitational energy. Of course, the mass responsible for the
observable gravitational field outside the sphere is not m, but p.

Let us now assume that the sphere producing the field under
consideration is the Sun, and let us change the designation of the
mass in Eq. (8-2.13) from p to the more familiar m. We then have
for the gravitational field of the Sun

2

~ -Gy - g2 M -
g = Gﬁr“ G 5o r,. (8-2.15)
Consider now a planet in an orbit around the Sun. Let us designate
the mass of the planet as m'. The gravitational force acting on the
planet is then m' multiplied by the right side of Eq. (8-2.15). For
a nearly circular orbit, the gravitational force acting on the planet
is equal to the centripetal force applied to the planet: Gmm'/r’=
m'v¥/r, where v is the velocity of the planet. Introducing v into Eq.
(8-2.15), we therefore can write for the force exerted by the Sun on
the planet

F~-GM™My - gV, (8-2.16)

rt " 2cr? *

But this is the same equation as Eq. (7-3.2), except that the last
term in it is caused not by the motion of the planet around the Sun,
but by the mass of the gravitational energy of the Sun. The effect
of this term is the same as in Eq. (7-3.2): it causes a perihelion
advance of the planet’s orbit. Therefore this term must be added to
Eq. (7-3.2), if one wants to determine the total perihelion advance.
This is how Eq. (7-3.5) was obtained [Eq. (7-3.5) also takes into
account the dependence of planet’s mass on the orbital velocity].
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Example 8-2.3 Find the mass distribution producing the field
g=-GI Qe -Dr, for a<r<2a. (82.17)
a

Note that this field becomes antigravitational for r> (In 2+1)a.
Substituting Eq. (8-2.17) into Eq. (8-1.6) and differentiating, we
obtain

2a

2(rla-1)e! e+ (2e ra-1).

(8-2.18)
A

p=

1-rla -1 +G
47ra ( ) 2c?

8-3. Properties of Gravitational Fields in Free Space

The most interesting aspect of the effect of the gravitational
energy on gravitational fields is the possibility of the existence
of mass distributions creating antigravitational fields in free
space. Naturally, if such mass distributions are to be stable under
gravitational forces alone, the internal gravitational field of the
mass distributions must be attractive everywhere within the
distributions. The question arises therefore: can there exist a
mass distribution producing an attractive field at all points within
itself, but a repulsive field outside?

To answer this question, we shall consider the most general
expression for a spherically symmetric field,

g = Afinr,, (8-3.1)

where A is a constant and f{r) is any function of r, and shall
determine f{r) for p=0.

Substituting Eq. (8-3.1) into Eq. (8-1.6) and setting p=0, we
have
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-ve, B Ly AL0) @32
471G 81Gc? 4nG “ 2c?

which upon differentiation and simplification gives
dan + 2 - Ape - o. (83.3)
dar r 2c?

The general solution of this equation is

2c?

e @39

fin) =
where B is an arbitrary constant.

Thus, by Egs. (8-3.1) and (8-3.4), the most general
expression for a spherically symmetric gravitational field in the
region where p=0 is
_ 2Ac? r

Ar +2Bcr? ¥’

g (8-3.5)
where A and B are to be determined from the boundary
conditions [Condition (d) of Section 8-2].

For this field to be repulsive (g>0) outside some "critical"
radius r,, and attractive (g <0) within r.,, we must have g=0 at
r=r,, or

A + 2Bc’r, = >, (8-3.6)

which is impossible for a finite r.. Hence there can be no
spherically symmetric antigravitational field outside a mass
distribution if the field within the distribution is everywhere
attractive. Consequently, a spherical antigravitational body must
be held together by some nongravitational forces in addition to
the gravitational ones.

Several other important conclusions concerning gravitational
fields in mass-free space can be made from Eq. (8-3.5).
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First, let us note that for r-o0, Eq. (8-3.5) reduces to

A M
8= =" + G;.ir“, (8-3.7)
where we have set A/B= 4 GM. Therefore in the limit r—o0, the
field of a spherical mass m, is just a point-mass field of an
“effective” positive or negative mass M (M must be determined
from boundary conditions at the surface of m).

Next, let us consider the possible values of the arbitrary
constants in Eq. (8-3.5). To do so, we shall rewrite Eq. (8-3.5)
as -

C
g Wru, (8-3.8)
where we have set B'=B/A. Let us now assume that the
gravitational field represented by Eq. (8-3.8) is created by a
spherical mass of radius r,, and that the field at the surface of
the mass is g,. Substituting r, and g, into Eq. (8-3.8) and solving
it for B', we obtain

) 2c? - g1,

B (8-3.9)

2g,c%rg

Assuming that B in Eq. (8-3.8) is arbitrary, we can have B'=0,
B' <0, or B'>0. Let us consider these cases in some detail.

B'=0. Substituting Eq. (8-3.8) with B'=0 into Eq. (6-2.33)
(the energy equation) and integrating over all space external to
r,, we obtain U= — oo, in violation of Condition (a) of Section
8-2. Thus B’ =0 is impossible, unless the range of validity of Eq.
(8-3.8) is limited to a finite region of space, such as a spherical
cavity within a spherical mass distribution.

B'<0. This is the condition for the normal (attractive)
Newtonian gravitational field. However, there may exist a
“critical" distance r,=—1/2B'c* for which Eq. (8-3.8) gives
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g=1 (g>0 for r<r, and g<O0 for r>r,). In this case, the
field violates Condition (a) as well as Condition (d). Therefore
B' <0 with ry<r, is also impossible, except, of course, when the
region under consideration is a spherical cavity whose radius is
smaller than r_ (the field in the cavity is then antigravitational).
If ry=r., we have the case of a sphere representing a "black
hole"® of the general relativity theory. However, the resulting
field violates Condition (a) and, which is even more important,
if g,=—oor, is substituted in Eq. (8-1.6), and Eq. (8-1.6) is
integrated over the volume of the sphere (radius r,), one obtains
for the true mass of the sphere m,> oo, which cannot be. Thus,
according to our theory, black holes (and therefore “gravitational
collapse"”) are impossible (at least for spherically symmetric
mass distributions).

B’'>0. This is the condition for a purely antigravitational
field. For this field, Eq. (8-3.9) imposes an important condition
on g, and ry:

87 < 2c*. (8-3.10)

The significance of this condition will be apparent from the
example that follows.

v

Example 8-3.1 Construct an antigravitational mass distribution by
combining mass distributions given by Eqs. (8-2.3) and (8-2.18).

According to Examples 8-2.1 and 8-2.3, the fields associated
with the two mass distributions are

g=-G6"r for r<a (8-2.1)
a3
and

g=-Gl@e-Dr, for as<r<2a. (8-2.17)
a
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The combined field is continuous at r=a and becomes anti-
gravitational when r> (In2+1)a.

For the field to be antigravitational everywhere outside r=2a,
the condition given by Eq. (8-3.10) must be satisfied. This can be
achieved by imposing an appropriate restriction on m. If we
substitute g given by Eq. (8-2.17) for g, in Eq. (8-3.10) and set
r=ro=2a, we find that the restriction is

2

< __ ‘e (8-3.11)
G -2/e)
Let us make
2
m=__Xa (8-3.12)
4G(1 - 2/e)

The field outside of the mass distribution is given by Eq. (8-
3.8). To determine the value for B’ appearing in this equation, we
use Eqgs. (8-3.9) and (8-2.17) with r=r,=2a. After elementary
calculation we find that

1

B = .
12c%a

(8-3.13)
Substituting this B’ into Eq. (8-3.8) and eliminating ¢’ by means of
Eq. (8-3.12), we finally obtain for our antigravitational field

cm 16(1 -2/e) r

?W" for r = 2a. (8-3.14)

g =

A graphical representation of this field and of the corresponding
mass distribution (true mass) is given in Fig. 8.2. Starting at
infinity and proceeding toward the origin, we find that from r= oo
to r=1.69a the field is antigravitational (repulsive) with a maximum
at r=2a. At r=1.69a the field becomes zero. From there on the
field is an ordinary gravitational (attractive) field with a minimum
at r=a and diminishing to zero at r=0.
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Fig. 8.2 An example of an antigravitational field and of the
corresponding mass distribution. (The scale for the field is twice as
large as the scale for the mass density.)

Of course, the mass distribution shown in Fig. 8.2 cannot be
maintained by gravitational forces alone because, unless the
distribution is kept together by some other forces, all the mass
located at r>1.69a would be ejected by antigravitational repulsion,
until the radius of the distribution decreases to r=1.69a. The
external gravitational (or antigravitational) field of the remaining
distribution would then completely disappear, and the distribution
would become a "hidden mass" that neither exerts nor experiences
any gravitational forces on or from the surrounding bodies.

Observe that m appearing in Eqs. (8-2.1), (8-2.17), and (8-3.14)
is not the true mass of the spherical distribution under
consideration; it is a quantity associated with the true mass of the
central part (r<a) of the distribution through Eqs. (8-2.5) and (8-
2.6). By Eqgs. (8-2.5) and (8-3.14), the true mass of the central part
is my=1.3m.
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As can be seen from Fig. 8.2, the maximum density of the true
mass occurs at r=a. Since, by Eq. (8-3.12), m=2.48¢%a/G, the
radius of the central part of the mass distribution is a=Gm/2.48¢”.
By Eq. (8-2.3), we then have for the maximum mass density of the

distribution
5¢6

S (8-3.15)

pmax =

Equation (8-3.15) shows that for a very large mass, the density of
an antigravitational mass distribution can be very small. This may
be an important factor for the stability of the galaxies in the
universe.

A

8-4. Discussion

There is a widespread belief that the general relativity theory
is the definitive theory of gravitation. However, the generalized
Newton’s theory of gravitation outlined in the three preceding
chapters points out a path for an unquestionably viable new
inquiry into the nature and properties of gravitational fields and
interactions.® The generalized Newton’s theory is based to a
large extent on the idea that the gravitational-cogravitational field
is a seat of momentum and energy. One of the consequences of
this idea is the supposition, discussed in this chapter, that
gravitation is caused not only by a true mass but also by the
equivalent mass of the gravitational field energy. Plausible as it
is, this supposition is contrary to the general relativity theory.
Moreover, even the existence of gravitational field energy is
contrary to the general relativity theory. It is important therefore
to clarify the reasons why general relativity theory denies the
existence of gravitational field energy and it is important to
examine the validity of these reasons.
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The basic gravitational equation of the general relativity
theory is the Einstein’s gravitational field equation
1 8w

Ry - iRgik = - GFT;'I:'

(8-4.1)

The sources of gravitation appear in this equation in the form of
the energy-momentum tensor T;. This tensor includes all types
of mass densities and all types of energy densities (electric,
magnetic, thermal, etc.) except for the energy density of the
gravitational field itself. The determining reason for this is quite
simple: in spite of many efforts, no energy-momentum tensor has
been found for the gravitational energy (only a "pseudotensor”
has been obtained). Various plausibility arguments have therefore
been suggested to justify the absence of the gravitational energy
as a source of gravitation in Einstein’s field equation.® Since it
would be difficult (if not impossible) to accept the existence of
gravitational field energy without accepting this energy as a
source of gravitation, these arguments are also the arguments
against the presence of gravitational energy in the gravitational
field.

The two strongest plausibility arguments for excluding
gravitational energy as a source of gravitation are:

(1) Predictions of the general relativity theory obtained with
the aid of Einstein’s field equation without gravitational energy
as a source of gravitation have been found to agree with
observations.

(2) Einstein’s “equivalence principle" forbids gravitational
energy to be a source of gravitation.

However, a careful examination of these arguments shows
that neither of them is truly convincing or compelling.

The first argument is easily refuted by the fact that all
presently verifiable predictions of the general relativity theory
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are in the domain of weak fields, where, as it follows from the
material presented in this chapter, the effects of the gravitational
energy are hardly noticeable.

The second argument appears to be much stronger than the
first. What it means is that since, according to Einstein, a
gravitational field is equivalent to a certain accelerated frame of
reference, and since there apparently is no special energy in the
space defined by the accelerated frame of reference, no energy
should be present in the space containing the gravitational field
(this is known as the "nonlocalizability" of gravitational
energy).>'® An analysis of this argument shows, however, that
it is based on an unprovable premiss and that it can be refuted by
reversing it. Indeed, let us suppose that a gravitational field is a
seat of gravitational energy. The equivalence principle demands
then that a certain energy density would appear in the space
defined by the equivalent reference frame. But how will this
energy manifest itself? The only presently known way in which
it could be detected is by its gravitational effects. However, since
the equivalent reference frame is flat and boundless, the
"equivalent” energy density, as seen in this frame, must be
uniform and must occupy all space. But, as it is well known, a
uniformly distributed mass (energy) occupying all space produces
no gravitational effects [see Eq. (8-1.5); if Vp=0 or Vp,=0
everywhere, g=0, too]. Hence the "equivalent" energy is not
detectable, or, as an observer in the equivalent reference frame
would say, is "absent."

Thus the absence of space energy in an accelerated reference
frame does not prove the nonexistence or nonlocalizability of
gravitational field energy, and hence the equivalence principle
does not forbid its appearance as a source term in Einstein’s
gravitational field equation. Therefore the exclusion of the
gravitational energy as a source of gravitation in the general
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relativity theory is merely a matter of practical necessity (since
no tensor has been found for it). Hence all presently known
results of the general relativity theory based on Einstein’s field
equation cannot be considered as reliable when these results
involve gravitational fields whose gravitational-energy mass is
comparable with the true mass of the system. And therefore the
fact that the results obtained in this chapter are in conflict with
the general relativity theory does in no way indicate that these
results are wrong. The conflict cannot be resolved by plausibility
arguments. Only reliable observational data can truly resolve it.

Let us now summarize what our theory of nonlinear
gravitational fields has indicated:

1. The gravitational force acting on a body in a gravitational
field is determined not only by the mass of the field-producing
body, but also by the gravitational field energy of the field-
producing body.

2. Antigravitational bodies can exist in the universe.

3. The mass of the universe, of a galaxy, or of a stellar
object can be much larger than the present astrophysical
measurements indicate, since there can exist objects of negative
or of zero apparent mass. The latter objects would constitute
"hidden" masses insofar as they do not produce or experience
gravitational effects.

4. "Black holes" cannot exist, and "gravitational collapse" is
impossible. Indeed, according to the general relativity theory, a
sphere creates an "unescapable" gravitational field and becomes
a "black hole" after its radius becomes smaller than the
"gravitational radius" "'

r,= G2 (8-4.2)

But the radius of the central mass of the mass distribution shown
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in Fig. 8.2 is smaller than the gravitational radius, yet the field
at this radius is zero rather than immensely strong, as is required
for black holes.

5. Since "gravitational collapse" is impossible, and since
antigravitational mass formations are possible, the normal state
of the universe appears to be an alternating expansion and
contraction.

6. Since a "hidden" mass is an object whose overall rest mass
is zero, such a mass could conceivably move with a velocity
equal to (or even larger than) the velocity of light.

These are fascinating and intriguing conclusions. Are they
true or are they false? Only time will tell.
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APPENDIX 1
Vector Identities

In the vector identities listed below ¢ and U are scalar point
functions; A, B, and C are vector point functions; X is a scalar
or vector point function of primed coordinates and incorporates
an appropriate multiplication sign (dot or cross for vectors).

Box product
(V-1) A-BxC) =B-(CxA) = C-(AxB)
(V-2) A-BxC) = (AxB)-C
(V-3) A-BxC) = - A-(CxB)

"BAC CAB" expansion

(V-4) AxBxC) = BA-C) - C(A-B)

Identities for the calculation of gradient

(V-5) V(pU) = ¢VU + UVp
(V-6) V(AB)=(A-V)B+A x (VxB)+(B-V)A +B x (VX A)
V-7) Ve(U, - U) = t :_5VUi

Identities for the calculation of divergence

(V-8) V-(pA) = ¢V-A + A-Vg
V-9) V-(AxB) =B-V XA - A-VxB
(V-10) V-AU,--U) = Y vu,. A

i=1 ' aU,
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Identities for the calculation of curl

V-11) VX (pA) = ¢VXA + Vo X A
(V-12) VX (AxB)=(B-V)A+A(V-B)-(A-V)B-B(V-A)
(V-13) VXA, --U) = t VU,xg_z

i

Repeated application of V

(V-14) V-(VXA) =0
(V-15) VXVU =0
(V-16) VX (VXA) = V(V-A) - V?A

Identities for the calculation of line and surface integrals
(V-17) 1;A-d| - [v x A+dS  (Stokes's theorem)
(V-18) fua - JdeVU
Identities for the calculation of surface and volume integrals
(V-19) 1§A-ds - jv-Adv (Gauss’s theorem)
(V-20) fuas - [ vuay
v-21) 1;Axds - - JVxAdv

t};(A-B)dS - *B(A-dS) - th(B-dS) -
(V-22)
J[Ax(VxB)*er(VxA)-A(V-B)-B(V-A)]dv
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Helmholtz’s (Poisson’s) theorem

v23)  v=-L] VIV) - VXX V)
47 ) an space r

Operations with V in Helmholtz’s (Poisson’s) integrals

(V-24) v .V, X
r r o2
(V-25) v® X
r r?
(V-26) VR v X L e ®
r r r

Retarded (causal) integrals

2
[V’(V’-V) VX (@ xvy - LoV
va2n v=-_1L cr oty
47 ) Al space r
[V'zv - _1_'32_"]
2 2
(V28) V= - LJ ct 0ty
47 J Al space r

Operations with V in retarded (causal) integrals

(V-29) viX] = (v'x) + [ 93X
c ot
(V-30) vix] = - 29X
c o
(V-31) [V'X] = VIX] + V'[X]

VXl gIX] , g [X]

(V-32) r r r
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APPENDIX 2
Derivations of Some Retarded Integrals

Consider a time-variable vector field V. It clearly satisfies the
identity

vx@xV)+ L&Y gy wxv+ LY a0
c? or? c? or?

Let us designate the right side of this identity as K. We then
have ,
Vx(VxV)+iﬂ=K. (A-2.2)
c? or?
But the solution of this equation is [see O. D. Jefimenko,
Electricity and Magnetism, 2nd ed., (Electret Scientific, Star
City, 1989) p. 47 and O. D. Jefimenko, Electromagnetic
Retardation and Theory of Relativity (Electret Scientific, Star
City, 1997) pp. 3-14]

- - LJ MY -Klg (a23)
47 ) an space r

Replacing K and omitting the subscript "All space" for
simplicity, we obtain

2
[V’(V’-V) -vix @ xv) - L2V
v--L Ay (A-2.4)
T r
This equation can also be written as
[V'zv - iziz_vz_]
ve- o R (A-2.5)
T

Using now vector identity (V-32), we can transform Eq. (A-
2.4) into
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[T e e,
47 r r CZ r atz
, , (A-2.6)
. i[{Vx V'XV] g [V xV]}dV,'
4 r r

By vector identities (V-20) and (V-21), the second term in the
first integral and the second term in the second integral vanish
upon integration, if V=0 at infinity (because of the finite speed
of propagation, all meaningful time-dependent fields are zero at
infinity). Differentiating the first terms in the two integrals and
using vector identity (V-30), we then obtain

v-1 J{([V'oV] +13[V"V])r“+ll azv}}dv,

- 4 r? rc at 027 W
) ) (A-2.7)
. _1_[{[V xV], 134V xV]}erv,'
4 r? rc at *

For electric fields, Eqs. (A-2.3) and (A-2.4) reduce to

: [V’p + 12 Z‘:]
E-- " av. -
47('60[ r Y (A-2.8)

For magnetic fields, they reduce to

H-_! [[V"‘J]dv'. (A-2.9)

T

Transforming Eqs. (A-2.8) and (A-2.9) in the same way as we
transformed Egs. (A-2.4) and (A-2.6), we obtain Egs. (1-4.1)
and (1-4.2). Similar transformations yield Eqs. (5-5.4) and (5-
5.5).
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APPENDIX 3
Apparent Electric Charge of Moving Neutral
Current-Carrying Conductors

As we know from Ref. 21 of Chapter 2, the "ordinary" time-
dependent electric field can be expressed in terms of the retarded
scalar potential ¢*. The retarded scalar potential of a point
charge moving with velocity v relative to a stationary observer
located at a distance r from the charge is [see O. D. Jefimenko,
Electromagnetic Retardation and Theory of Relativity (Electret
Scientific, Star City, 1997) pp. 95-96]

= 9 ) (A-3.1
¢ 4meyr([1 -(v¥c?)sin’6]"? )

where 6 is the angle between the direction of v and the direction
of r. For v<c, the potential can be written as

ot = 11+ Y sims). (A-3.2)
dmer'  2c?

Consider now a short segment of length L of a neutral
current-carrying wire initially at rest on the x-axis of rectangular
coordinates. Let the midpoint of the segment be at the origin.
Let the line density of the positive and the negative charges in
the wire be A=¢/L and \' = —q/L, respectively. Let the current
in the wire be due to the motion of positive and negative
charges; the positive charges moving with velocity u<c in the
positive x-direction, the negative charges moving with the same
velocity in the negative x-direction. The current in the wire is
then

I = 2w - 22“ (A-3.3)

and is in the positive x-direction.
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An observer located at a point of the z-axis at a distance r>L
from the wire measures the electric potential produced by the
wire. By Eq. (A-3.2), taking into account that sin § = 1, the
positive charges of the wire produce at the location of the
observer the potential

c-_4 (1+"_2) A3.4
= Tmer 3k ( )

and the negative charges produce the potential

-_._ q uz) )
¢ mOr(l ) (A-3.5)
The resulting potential is therefore zero.

Let us now assume that the wire moves with velocity v<c
along the x-axis. When the wire moves, the velocity of the
positive charges in the wire becomes v+u, and that of the
negative charges becomes v—u. Therefore, by Eq. (A-3.2), the
potentials produced by the positive and the negative charges of
the wire at the point of observation are now, respectively,

g I PR G A-3.6
* = Trer M ( )
and (v-uy
-=-_49 { v u } A-3.7
¢ Trcr 1+ o ( )

The total potential produced by the charges of the moving wire
is therefore
@ = ¢’ + @ = LE (A-38)
4me,r c?
Thus a neutral current-carrying wire creates an electric potential
(and field) when the wire is moving. The stationary observer
attributes this potential to a charge residing on the wire.
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By Eqgs. (A-3.8) and (A-3.3), the apparent charge on a wire
moving in the direction of the current is

- 2w _ v (A-3.9)

.
qapparent
c? c?

A similar calculation shows that the apparent charge on a wire
moving against the direction of the current is

- - 2qw Ezv (A-3.10)

Qapparent 2
c c

Let us now assume that the wire under consideration is the
top side of a square-shaped loop of length and width L, whose
plane is in the xy-plane of the rectangular coordinates. To the
observer at r> L the stationary loop constitutes a magnetic dipole
of moment

m = - pJL’k. (A3.11)

But when the loop is moving along the x-axis, the top side of the
loop appears to acquire a charge given by Eq. (A-3.9), while the
bottom side appears to acquire a charge given by Eq. (A-3.10).
The moving loop appears therefore to constitute an electric
dipole of moment

_ 2quvLj _ lev‘i - vx:zn. (A-3.12)

P.
pparent 2 2 2
HoC BoC

c c

[The vertical sides of the loop make no contribution to the
electric dipole, because v 1 u along the vertical sides.]
Although we have derived Eq. (A-3.12) for a square loop, the
result is valid for a flat loop of any shape. This is because any
flat loop can be approximated by an array of sufficiently small
squares.
See Appendix 4 for a closely related derivation.



APPARENT GRAVITATIONAL DIPOLE 171

APPENDIX 4
Apparent Gravitational Dipole Field
of a Moving Cogravitational Dipole

Consider a square frame of zero mass and length L on a side.
The frame supports a string of uniformly distributed particles of
total mass 4m sliding with velocity u<c along the sides of the
frame (Fig. A4.1). Let the frame be located in the xy-plane of
rectangular coordinates with its center at the origin. Let the
motion of the particles be as shown in Fig. A4.1.

Just like the "ordinary" time-dependent electric field (see
Section 2.5 and Appendix 3), the "ordinary" gravitational field
given by the first integral of Eq. (5-5.4) can be expressed in
terms of the retarded gravitational scalar potential as

g - - Gl{[_"l +_1.a_[pl}r“dv’ = Vo', (A-4.1)
r2 rc dp

By analogy with Eq. (A-3.2), the retarded gravitational scalar

potential for a point mass moving with velocity v<c is

ot = - G2 {1+ 2 simo). (A-4.2)
r 2c?
Let us find the potential that the sliding particles produce at
a point of the y-axis at a distance > L from the frame. Applying
Eq. (A-4.2) to the particles on the horizontal sides of the frame
(6=m/2), we have

- - 202(1 . _“_22) (A-4.3)

‘phorizontal r 20

Applying Eq. (A-4.2) to the particles on the vertical sides of the
frame (=0 or ), we similarly have

soveﬂ.ical

= -2:6". (A-4.4)
r
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Fig. A4.1 When a closed mass-current drifts as whole, it appears
to generate a positive as well as a negative mass. The positive
(ordinary) mass appears to be generated by the particles whose
resulting velocity is greater than the drift velocity v. The negative
mass appears to be generated by the particles whose resulting
velocity is smaller than v.

The total potential is therefore

2
¢ = - 4G -gM (A-4.5)
r rc?

Thus the particles appear to have acquired a mass

mu?

M paren = — (A-4.6)
as a result of their motion along the frame.

Let us now assume that the frame is moving with velocity v
in the positive x-direction. The potential due to the particles on
the upper horizontal side of the frame (y>0) is now
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- Gﬂ{l R (V*“)z}
r 2c? (A-4.7)

2 2
- Gﬂ{l +v_+u_v+u_},
r 2c? ¢? 2c?

P upper

and the potential due to the particles on the lower horizontal

side (y<0) is
- Gﬂ{l + ("'”)2}
r 2c? (A-4.8)

- G'_n{l +_‘iz_-_'f_‘i+u_z}.
r 2c? ¢? 2c?

¥ lower

To find the potential due to the particles on the vertical sides
of the frame, we must take into account that the velocity of the
particles on these sides is (V+u®'"?, and that sinf for these
particles is now v/(*+u?)"2. The potential due to these particles
is therefore

2 2
- ZGﬁ(l + V;;‘ sinzo)

¢ven.ical =
r ¢ (A-4.9)
- - 262(1 . Lz)
r 2c?

Thus the total potential of the particles is now, by Egs. (A-
4.7), (A-4.8), and (A-4.9),

2 2

¢ = - 4G 2™ M (A-4.10)
r rc? rc?

so that, as a result of the motion of the frame, the particles

appear to have acquired an additional mass

, _ 2mv?
M arent = — (A-4.11)
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Observe, however, that Eqs. (A-4.7) and (A-4.8) contain
inside the parentheses the terms uv/c* and —uv/c*. These terms
may be interpreted as representing an additional positive mass on
the upper horizontal side of the frame and an additional negative
mass on the lower horizontal side of the frame created by the
motion of the frame. The two masses give rise to an apparent
gravitational dipole

pappnmm = C_LJ = lL—v.l, (A'4.12)
where I is the mass current of the particles sliding along the

frame,
I=Nu-= %u. (A-4.13)

Equation (A-4.12) is the gravitational counterpart of Eq. (A-
3.12) and can be expressed in term of the cogravitational dipole
moment m [see Eq. (6-2.21)] of the particles

4"G1L2k - 347Gy 2k (A-4.14)
c? c?
as
paPPanm = - %n' * (A-4‘15)

One may think that in our derivation we should have used the
relativistic mass of the particles, in which case our equations
would have additional 4*/¢* and v*/c* terms. This is not so. The
phenomenon that we have considered here is a consequence of
gravitational retardation and has nothing to do with the
relativistic equations. What is more, it is now generally accepted
that mass does not change with velocity [see O. D. Jefimenko,
Electromagnetic Retardation and Theory of Relativity (Electret
Scientific, Star City, 1997) pp. 193-196 and 205].
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Dynamic Electric Field Maps of a Point Charge Moving
with Constant Velocity

In 1888, Oliver Heaviside derived the equation for the
electric field of a uniformly moving point charge. In modern
notation this equation is (see Chapter 1, p. 15)

q(1-v?c?
4re,r’[1 - (v¥c?)sin’g]¥? '

Heaviside noted that, according to this equation, with
increasing velocity of the charge the electric field of the charge
concentrates itself more and more about the equatorial plane, 6
= w/2, and decreases along the line of motion, § = 0. This
effect is shown in Fig. AS.1a by the density of the field lines. It
should be noted, however, that field maps such as the map
shown in Fig. AS.la are somewhat misleading. First, it is
impossible to represent the intensity of the electric field of a
point charge (moving or stationary) on a two-dimensional map
by the density of the field lines if continuous field lines are used.
This is because on a two-dimensional map the radial lines
diverge as 1/r rather than as 1/7* as they really do in three
dimensions. Second, the field shown in Fig. AS.la is an
imaginary "snapshot” that cannot be actually observed
(measured) by a single observer, moving or stationary. An
observer co-moving with the charge would only see the ordinary
electrostatic field of the charge at rest; and a stationary observer
would detect a time-dependent electric field rather than the time-
independent field shown in Fig. AS5.1a. The field shown in Fig.
AS5.1a could only be observed if many stationary observers (or
field-detecting instruments) located around the moving point

(A-5.1)
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Fig. A5.1 (a) On conventional maps of the electric field of a
uniformly moving point charge the magnitude of the electric field is
indicated by the density of the field lines. (b) A more accurate way
to show the magnitude of the electric field is to use uniformly
spaced field vectors of different lengths.

A

charge would measure simultaneously the field of this charge at
the respective points of their location.

An alternative way to represent graphically the electric field
of a uniformly moving point charge is to use a map where the
intensity of the field at the various points around the charge is
represented by the length of the field vectors rather than by the
density of the field lines. Such a map is shown in Fig. AS5.1b.
However, this map, just as the map in Fig. AS.1a, represents the
time-independent field that moves with the charge rather than the
really important field that a single stationary observer would
detect as the charge moves past the observer. To show the latter
field, one has to construct a dynamic electric field map which
depicts the electric field of a moving charge observed at a
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stationary point as a function of time. Such a map is constructed
by using different r’s and 6’s in Eq. (A-5.1) corresponding to the
various positions of the moving charge and by plotting the
corresponding electric field vectors, placing their common origin
at the point of observation.

A dynamic electric field map is shown in Fig. AS5.2. The
point of observation is at P. Thirteen different angles 6
corresponding to thirteen instantaneous sequential positions

A

++++++++++++§

Fig. A5.2 This dynamic map of the electric field of the point charge
q moving with velocity v shows electric field vectors at the
stationary point of observation P as the charge moves past P. The
field vectors correspond to the thirteen sequential positions of the
charge indicated on the map. The map is drawn for v = 0. 5c.
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occupied by the moving charge at the ends of equal time
intervals At were used for constructing this map. The first twelve
sequential positions of the charge are indicated by crosses; the
charge is at the last position.

Since the charge moves with constant speed, the
instantaneous positions of the charge are separated by equal
distances along the trajectory of the charge.

Whereas the two maps shown in Fig. A5.1 are "snapshots"
of the electric field co-moving with the charge producing this
field, the map shown in Fig. A5.2 is a "multiple exposure" map
where the individual field vectors as they would be measured by
the stationary observer at time intervals Ar are shown all
together. Of course, the entire map represents a very short event.
For example, if the point P is located 1 meter above the
trajectory of the moving charge, the entire map represents an
event that lasts only 10 seconds.

Closely related to the dynamic electric field map is the
"electric field contour curve" representing the locus of the end
points of the electric field vectors of a moving point charge as
these vectors would be measured by the stationary observer at
the point P. The electric field contour curve is strongly affected
by the velocity of the charge under consideration. Three electric
field contour curves for the same point charge moving with
velocities v = 0.01c, v = 0.70c, and v = 0.96¢, respectively,
are shown in Fig. A5.3.

Dynamic electric field maps and the corresponding contour
curves provide a new way of depicting and analyzing the electric
field of uniformly moving point charges and reveal several
important properties of this field.

It is generally accepted that the field of a point charge
moving with a velocity close to the velocity of light becomes a
plane wave. However, the dynamic map shown in Fig. AS5.2
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P

Fig A5.3 The heights of the electric field contour curves are
strongly affected by the velocity of the charge, but the widths of the
curves do not noticeable depend on v. The three contour curves
shown here are for the same point charge moving at velocities v =
0.0lc, v = 0.70c, and v = 0.96¢, as indicated.

indicates that this is not so. According to Fig. AS5.2, the electric
field of a fast moving point charge, as seen by a stationary
observer, is a momentary pulse, or burst, a sort of electric field
explosion, but not a wave in the conventional sense.

It is also generally assumed that for a moving point charge
the electric field component in the direction of the motion of the
charge rapidly diminishes with increasing velocity of the charge
and the component perpendicular to this direction rapidly
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increases. This assumption is based on Eq. (A-5.1) with v —» ¢
and 6 = 0 or § = w/2. However, the contour curves shown in
Fig. AS.3 indicate that this assumption is only partially correct.
Note that whereas the heights of the curves in Fig. AS5.3 are
strongly affected by v, the widths of the curves do not noticeable
depend on v. Since the half-width of a contour curve represents
the maximum value of the field component parallel to the
trajectory of the moving charge, it is clear that this value is
hardly affected by the speed of the charge. Of course, if P is
located on the trajectory of the charge (the x-axis), the only field
component observed at P is the x component, and the value of
this component diminishes with the distance of the charge from
P and with the velocity of the charge, becoming zero for v — c.

Another important effect revealed by the dynamic electric
field map shown in Fig. AS5.2 and by the contour curves shown
in Fig. AS5.3 concerns the force exerted by a moving point
charge on a stationary charge when the moving charge passes the
stationary charge. As is clear from Figs. A5.2 and AS5.3, this
force lasts only a very short time and is essentially normal to the
trajectory of the moving charge. Therefore its main effect on the
stationary charge is to give a sudden thrust to the stationary
charge in the direction normal to the trajectory of the moving
charge. This effect has not yet been discussed in the literature.
An interesting possible consequence of this effect is that a
rapidly moving electric charge passing through a charged ring
can cause a violent, explosion-like, destruction of the ring.

Clearly, of the three graphical representations of the electric
field of a uniformly moving point charge discussed above, the
dynamic field map is by far the most important and the most
informative representation.
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Dynamic Gravitational Field Maps of a Point Mass
Moving with Constant Velocity

In 1893, Oliver Heaviside obtained the equation for the
gravitational field of a uniformly moving point mass (see Chapter
5, p- 88 and Appendix 8, p. 199). In modern notation this
equation is

m(1 -v?c?

r[1 - (v¥Ycd)sin®d)?

Heaviside noted that, according to this equation, with
increasing velocity of the mass the gravitational field of the
mass, just like the electric field of a uniformly moving point
charge (see Appendix 5, p. 175), becomes stronger in the
direction normal to the line of motion and becomes weaker along
the line of motion. This effect is shown in Fig. A6.1a by the
density of the gravitational field lines.

The same effect is shown in Fig. A6.1b by the length of the
gravitational field vectors rather than by the density of the field
lines. However, the two gravitational field maps shown in Fig.
A6.1, just like the electric field maps shown in Fig. AS.1,
represent the time-independent gravitational field that moves with
the mass rather than the really important field that a single
stationary observer would detect as the mass moves past the
observer. To show the latter field, one has to construct a
dynamic gravitational field map (the gravitational analogue of the
dynamic electric field map described in Appendix 5). Such a
map depicts the gravitational field of the moving mass at a
stationary point as a function of time, or, which is the same, as
the function of the distance r and the angle 6 in Eq. (A-6.1)
corresponding to the various positions of the moving mass.

g=-G (A-6.1)
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Fig. A6.1 (a) On this map the magnitude of the gravitational field
of a uniformly moving point mass m is indicated by the density of
the field lines; the points of observation are at the ends of the
arrowheuds. (b) A more accurate way to show the gravitational
field is to use uniformly spaced field vectors of different lengths.

A dynamic gravitational field map is shown in Fig. A6.2.
The point of observation is at P. Thirteen different values for
rand 6 corresponding to thirteen instantaneous sequential
position occupied by the moving mass at the ends of equal time
intervals Ar were used for constructing this map. The first
position of the mass is indicated by the hollow circle, the mass
is at the last (thirteenth) position.

The map shown in Fig. A6.2 is a "multiple exposure" map
where the individual field vectors as they would be measured by
the stationary observer at equal time intervals At are shown all
together. Of course, the entire map represents a very short event.

Closely related to the dynamic gravitational field map is the
"gravitational field contour curve" representing the locus of the
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p

V

Fig. A6.2 This dynamic map of the gravitational field of the point
mass m moving with velocity v shows gravitational field vectors at
the stationary point of observation P as the mass moves past P. The
field vectors correspond to thirteen sequential positions of the mass.
The first position is indicated by the light circle. The mass (dark
circle) is at the last position. The map is drawn for v = 0.5c.

end points of the gravitational field vectors of a moving point
mass as these vectors would be measured by the stationary
observer at the point P. The gravitational field contour curve is
strongly affected by the velocity of the mass under consideration.
Three gravitational field contour curves for the same point mass
moving with velocities v = 0.01¢, v = 0.70c, and v = 0.96¢,
respectively, are shown in Fig. A6.3.

Dynamic gravitational field maps and the corresponding
contour curves provide a new way of depicting and analyzing the
gravitational field of uniformly moving point masses and reveal
several important properties of this field. In particular, it is
generally accepted that a moving point mass exerts a gradually
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Fig. A6.3 The lengths of the gravitational field contour curves are
strongly affected by the velocity of the mass, but the widths of the
curves do not noticeable depend on v. The three contour curves
shown here are for the same point mass moving at velocities v =
0.0lc, v = 0.70c, and v = 0.96¢, as indicated.

changing force on a stationary mass. However, according to
Figs. A6.2 and A6.3, the gravitational field of a fast moving
point mass, as seen by a stationary observer, is a momentary
pulse, or burst, a sort of gravitational field explosion. Hence the
force exerted by a fast moving mass passing close to a stationary
mass may have a distractive effect on the stationary mass,
breaking up the stationary mass by the very strong tidal forces.
This effect has not yet been discussed in the literature.
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Gravitational Forces According to the
Generalized Newton’s Theory

As was explained in Chapter 5 (pp. 87 and 92), when
Newton’s gravitational theory is generalized to time-dependent
system, gravitational interaction between two bodies is described
not by one single force, as in the original Newton’s theory, but
by an intricate juxtaposition of several different forces.
Mathematically, these forces result from Egs. (5-5.4), (5-5.5),
(6-2.23) and (6-2.27). When Eqgs. (5-5.4) and (5-5.5) are written
as five separate integrals, they become

g=- ][:]rdv Glrlcag;]rudv+ l [a‘]]dv (A-7.1)

and
K-- ][J] srdv -9 ] ! a[J]}Xr av. (A12)
) 2 )re ot

Each of these integrals represents a force field. Therefore,
according to the generalized Newton’s theory, gravitational
interactions between two bodies involve at least five different
forces. Let us consider the physical nature of these forces.

First let us consider Eq. (A-7.1). The field represented by
the first integral of this equation is the ordinary Newton’s
gravitational field created by the mass distribution p corrected
for the finite speed of the propagation of the field (this is
indicated by the square brackets — the retardation symbol —
the numerator). The field represented by the second integral is
created by a mass whose density varies with time. Like the
ordinary Newton’s gravitational field, these two fields are
directed toward the masses which create them. The field
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represented by the last integral in Eq. (A-7.1) is created by a
mass current whose magnitude and/or direction varies with time.
The direction of this field is parallel to the direction along which
the mass current increases. All three fields in Eq. (A-7.1) act on
stationary as well as on moving masses.

Consider now Eq. (A-7.2). The first integral in this equation
represents the cogravitational field created by the mass current.
The direction of this field is normal to the mass current vector.
The second integral represents the field created by a time-
variable mass current. The direction of this field is normal to the
direction along which the mass current increases. Both fields in
Eq. (A-7.2) act on moving masses only.

If the mass under consideration does not move and does not
change with time, then there is no retardation and no mass
current. In this case both integrals in Eq. (A-7.2) vanish and
only the first integral remains in Eq. (A-7.1). As a result, one
simply obtains the integral representing the ordinary Newton’s
gravitational field. Thus, the ordinary Newton’s gravitational
theory is a special case of the generalized theory, as it should be.

As far as the gravitational interaction between two masses is
concerned, the meaning of the five integrals discussed above can
be explained with the help of Fig. A7.1. The upper part of Fig.
A7.1 shows the force which the mass m, experiences under the
action of the mass m, according to the ordinary Newton’s theory.
The lower part of Fig. A7.1 shows five forces which the same
mass m, experiences under the action of the mass m, according
to the generalized Newton’s theory. The time for which the
positions of the two masses and the force experienced by m, are
observed is indicated by the letter ¢. Let us note first of all that,
according to the ordinary Newton’s theory, the mass m, is
subjected to one single force directed to the mass m, at its
present location, that is, to its location at the time ¢. However,
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Fig. A7.1 The upper part of this figure shows the force that the
mass m, experiences under the action of the mass m, according to
the ordinary Newton’s theory. The lower part shows five forces
which the same mass m, experiences under the action of the mass
m, according to the generalized Newton’s theory. See text for
complete explanation.

according to the generalized Newton’s theory, all forces acting
on the mass m, are associated not with the position of the mass
m, at the time of observation, but with the position of m, at an
earlier time ¢’ < ¢. Therefore, the magnitude of the mass m,, its
position and its state of motion at the present time ¢ have no
effect at all on the mass m,.

The subscripts identifying the five forces shown in the lower
part of Fig. A7.1 correspond to the five integrals in the Eqs. (A-
7.1) and (A-7.2). The force F, is associated simply with the
mass m, and differs from the ordinary Newton’s gravitational
force only insofar as it is directed not to the mass m, at its
present position, but to the place where m, was located at the
past time ¢'. The force F, is associated with the variation of the
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density of the mass m, with time; the direction of this force is
the same as that of F,. The force F, is associated with the time
variation of the mass current produced by m,; this force is
directed along the acceleration vector a (or along the velocity
vector v,) which the mass m, had at the time ¢'. The three forces
are produced by the gravitational field g (if m, is a point mass
moving at constant velocity, g and the resultant of the three
forces are directed toward the present position of m,; see p. 92).

The forces F, and F; are due to the cogravitational field K.
The force F, is associated with the mass current created by the
mass m, and with the velocity of the mass m,. Its direction is
normal to the velocity vector v, which the mass m, had at the
time ¢’ and normal to the velocity vector v, which the mass m,
has at the present time ¢. The force F; is associated with the
velocity of the mass m, and with the variation of the mass
current of the mass m, with time; the direction of this force is
normal to the acceleration vector (or to the velocity vector) that
the mass m, had at the time ¢’ and normal to the velocity vector
that the mass m, has at the present time z. Although not shown
in Fig. A7.1, additional forces associated with the rotation of m,
and m, (angular velocities w, and w,) are generally involved in
the interaction between the two masses due to the field K.

The forces F,, F,, F,, and Fy are usually much weaker than
the force F, because of the presence of the speed of gravitation
¢ (generally assumed to be the same as the speed of light) in the
denominators of the integrals representing the fields responsible
for these four forces. This means that only when the translational
or rotational velocity of m, or m, is close to c, the forces F,, F;,
F,, and F; are significant. Of course, the cumulative effect of
these forces in long-lasting gravitational systems (such as the
Solar system, for example) may be significant regardless of the
velocities of the interacting masses.
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This reproduction of Heaviside’s article is an unedited copy
of the original, except that some formulas and all vector
equations have been converted to modern notation.

A GRAVITATIONAL AND ELECTROMAGNETIC
ANALOGY.

BY OLIVER HEAVISIDE.
[Part I, The Electrician, 31, 281-282 (1893)]

To form any notion at all of the flux of gravitational energy, we
must first localise the energy. In this respect it resembles the
legendary hare in the cookery book. Whether the notion will turn
out to be a useful one is a matter for subsequent discovery. For
this, also, there is a well-known gastronomical analogy.

Now, bearing in mind the successful manner in which
Maxwell’s localisation of electric and magnetic energy in his ether
lends itself to theoretical reasoning, the suggestion is very natural
that we should attempt to localise gravitational energy in a similar
manner, its density to depend upon the square of the intensity of the
force, especially because the law of the inverse squares is involved
throughout.

Certain portions of space are supposed to be occupied by
matter, and its amount is supposed to be invariable. Furthermore,
it is assumed to have personal identity, so that the position and
motion of a definite particle of matter are definite, at any rate
relative to an assumed fixed space. Matter is recognised by the
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property of inertia, whereby it tends to persist in the state of motion
it possesses; and any change in the motion is ascribed to the action
of force, of which the proper measure is, therefore, the rate of
change of quantity of motion, or momentum.

Let p be the density of matter, and e the intensity of force, or
the force per unit matter, then

F =ep (D

expresses the moving force on p, which has its equivalent in
increase of the momentum. There are so many forces nowadays of
a generalised nature, that perhaps the expression "moving force"
may be permitted for distinctness, although it may have been
formerly abused and afterwards tabooed.

Now the force F, or the intensity e, may have many origins,
but the only one we are concerned with here is the gravitational
force. This appears to depend solely upon the distribution of the
matter, independently of other circumstances, and its operation is
concisely expressed by Newton’s law, that there is a mutual
attraction between any two particles of matter, which varies as the
product of their masses and inversely as the square of their
distance. Let e now be the intensity of gravitational force, and F the
resultant moving force, due to all the matter. Then e is the space-

variation of a potential, say,

e=VP @
and the potential is found from the distribution of matter by

P=Pot?2 =Y _°* | 3)
c 4rcr

where c is a constant. This implies that the speed of propagation of
the gravitative influence is infinitely great.
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Now when matter is allowed to fall together from any
configuration to a closer one, the work done by the gravitational
forcive is expressed by the increase made in the quantity X(pP/2).
This is identically the same as the quantity (ce’/2) summed through
all space. If, for example, the matter be given initially in a state of
infinitely fine division, infinitely widely separated, then the work
done by the gravitational forcive in passing to any other
configuration is L(oP/2) or E(ce’/2), which therefore expresses the
"exhaustion of potential energy." We may therefore assume that
ce*/2 expresses the exhaustion of potential energy per unit volume
of the medium. The equivalent of the exhaustion of potential
energy is, of course, the gain of kinetic energy, if no other forces
have been in action.

We can now express the flux of energy. We may compare the
present problem with that of the motion of electrification. If moved
about slowly in a dielectric, the electric force is appreciably the
static distribution. Nevertheless, the flux of energy depends upon
the magnetic force as well. It may, indeed, be represented in
another way, without introducing the magnetic force, but then the
formula would not be sufficiently comprehensive to suit other cases.
Now what is there analogous to magnetic force in the gravitational
case? And if it have its analogue, what is there to correspond with
electric current? At first glance it might seem that the whole of the
magnetic side of electromagnetism was absent in the gravitational
analogy. But this is not true.

Thus, if u is the velocity of p, then pu is the density of a
current (or flux) of matter. It is analogous to a convective current
of electrification. Also, when the matter p enters any region through
its boundary, there is a simultaneous convergence of gravitational
force into that region proportional to p. This is expressed by saying
that if

C =pu -c=, C))
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then C is a circuital flux. It is the analogue of Maxwell’s true
current; for although Maxwell did not include the convective term
pu, yet it would be against his principles to ignore it. Being a
circuital flux, it is the curl of a vector, say

de
VXh =pu - c—_. 5
T &)
This defines h except as regards its divergence, which is arbitrary,
and may be made zero. Then h is the analogue of magnetic force,
for it bears the same relation to flux of matter as magnetic force

does to convective current. We have
h = VX (PotC) = VXA, (6)

if A = Pot C. But, since instantaneous action is here involved, we
may equally well take

A = Pot(pu), @)

and its curl will be h. Thus, whilst the ordinary potential P is the
potential of the matter, the new potential A is that of its flux.
Now if we multiply (5) by e, we obtain

e'(Vxh)=e-(pu)—e-c%, 8)
or, which is the same,
V-(exh)=F'u—%—(l:’, ©))

if U = ce¥/2. But 9U/0t represents the rate of exhaustion of
potential energy, so — dU/0¢ represents its rate of increase, whilst
F - u represents the activity of the force on p, increasing its kinetic
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energy. Consequently, the vector e X h expresses the flux of’
gravitational energy. More strictly, any circuital flux whatever may
be added. This e X h is analogous to the electromagnetic E X H
found by Poynting and myself. But there is a reversal of direction.
Thus, comparing a single moving particle of matter with a
similarly-moving electric charge, describe a sphere round each. Let
the direction of motion be the axis, the positive pole being at the
forward end. Then in the electrical case the magnetic force follows
the lines of latitude with positive rotation about the axis, and the
flux of energy coincides with the lines of longitude from the
negative pole to the positive. But in the gravitational case, although
h still follows the lines of latitude positively, yet since the radial e
is directed to instead of from the centre, the flux of energy is along
the lines of longitude from the positive pole to the negative. This
reversal arises from all matter being alike and attractive, whereas
like electrifications repel one another.

The electromagnetic analogy may be pushed further. It is as
incredible now as it was in Newton’s time that gravitative influence
can be exerted without a medium; and, granting a medium, we may
as well consider that it propagates in time, although immensely fast.
Suppose, then, instead of instantaneous action, which involves

Vxe =0, 10)
we assert that the gravitational force e in ether is propagated at a

single finite speed v. This requires that

e
or?

Vv2Vle = s an

for this is the general characteristic of undissipated propagation at
finite speed. Now,

Vi=V(V:) - VX(VX),
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so in space free from matter we have

2
-2V x (Vxe) = I€ (12)
ar?
But we also have, by (5),
~Vxh =c% (13)
ot

away from matter. This gives a second value to %e/d, when we
differentiate (13) to the time, say

e . lgyoh 14)

e c at

So, by (12) and (14), and remembering that we have already chosen
h circuital, we derive

cvVxe = M (15)
ot
Or, if p is a new constant, such that
pcv? =1, (16)

then (15) may be written in the form
VXxe = p—. 17
N 17)

To sum up, the first circuital law (5), or

de
VXh =pu - c—. 18
p o (18)
leads to a second one, namely (17), if we introduce the hypothesis
of propagation at finite speed. This, of course, might be inferred

from the electromagnetic case.
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In order that the speed v should be not less than any value that
may be settled upon as the least possible, we have merely to make
u be of the necessary smallness. The equation of activity becomes,
instead of (9),

U _ oT

Ve(exh) =Feu - —— - |, 3
(exh) “T o T w ©)

if T = uh%2. The negative sign before the time-increase of this
quantity points to exhaustion of energy, as before. If so, we should
still represent the flux of energy by e X h. But, of course, T is an
almost vanishing quantity when u is small enough, or v big enough.
Note that h is not a negligible quantity, though the product ph is.
Thus results will be sensibly as in the common theory of
instantaneous action, although expressed in terms of wave-
propagation. Results showing signs of wave-propagation would
require an inordinately large velocity of matter through the ether.
It may be worth while to point out that the lines of gravitational
force connected with a particle of matter will no longer converge to
it uniformly from all directions when the velocity v is finite, but
will show a tendency to lateral concentration, though only to a
sensible extent when the velocity of the matter is not an insensible
fraction of v.

The gravitational-electromagnetic analogy may be further
extended if we allow that the ether which supports and propagates
the gravitational influence can have a translational motion of its
own, thus carrying about and distorting the lines of force. Making
allowance for this convection of e by the medium, with the
concomitant convection of h, requires us to turn the circuital laws
17, (18) to

oh

a 19
TR (19)

Vx(e +pqgxh) =p
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Vx(h + cexq) = pu —c%, (20)
where q is the velocity of the medium itself.

It is needless to go into detail, because the matter may be
regarded as a special and simplified case of my investigation of the
forces in the electromagnetic field, with changed meanings of the
symbols. It is sufficient to point out that the stress in the field now
becomes prominent as a working agent. It is of two sorts, one
depending upon e and the other upon h, analogous to the electric
and magnetic stresses. The one depending upon h is, of course,
insignificant. The other consists of a pressure parallel to e combined
with a lateral tension all round it, both of magnitude ce?/2. This
was equivalently suggested by Maxwell. Thus two bodies which
appear to attract are pushed together. The case of two large parallel
material planes exhibits this in a marked manner, for e is very small
between them, and relatively large on their further sides.

But the above analogy, though interesting in its way, and
serving to emphasise the non-necessity of the assumption of
instantaneous or direct action of matter upon matter, does not
enlighten us in the least about the ultimate nature of gravitational
energy. It serves, in fact, to further illustrate the mystery. For it
must be confessed that the exhaustion of potential energy from a
universal medium is a very unintelligible and mysterious matter.
When matter is infinitely widely separated, and the forces are least,
the potential energy is at its greatest, and when the potential energy
is most exhausted, the forces are most energetic!

Now there is a magnetic problem in which we have a kind of
similarity of behaviour, viz., when currents in material circuits are
allowed to attract one another. Let, for completeness, the initial
state be one of infinitely wide separation of infinitely small
filamentary currents in closed circuits. Then, on concentration to
any other state, the work done by the attractive forces is
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represented by LuH?2, where u is the inductivity and H the
magnetic force. This has its equivalent in the energy of motion of
the circuits, or may be imagined to be so converted, or else wasted
by friction, if we like. But, over and above this energy, the same
amount, EuH?2, represents the energy of the magnetic field, which
can be got out of it in work. It was zero at the beginning. Now, as
Lord Kelvin showed, this double work is accounted for by extra
work in the batteries or other sources required to maintain the
currents constant. (I have omitted reference to the waste of energy
due to electrical resistance, to avoid complications.) In the
gravitational case there is a partial analogy, but the matter is all
along assumed to be incapable of variation, and not to require any
supply of energy to keep it constant. If we asserted that ce?/2 was
stored energy, then its double would be the work done per unit
volume by letting bodies attract from infinity, without any apparent
source. But it is merely the exhaustion of potential energy of
unknown amount and distribution.

Potential energy, when regarded merely as expressive of the
work that can be done by forces depending upon configuration,
does not admit of much argument. It is little more than a
mathematical idea, for there is scarcely any physics in it. It explains
nothing. But in the consideration of physics in general, it is scarcely
possible to avoid the idea that potential energy should be capable of
localisation equally as well as kinetic. That the potential energy may
be itself ultimately kinetic is a separate question. Perhaps the best
definition of the former is contained in these words :—Potential
energy is energy that is not known to be kinetic. But, however this
be, there is a practical distinction between them which it is found
useful to carry out. Now, when energy can be distinctly localised,
its flux can also be traced (subject to circuital indeterminateness,
however). Also, this flux of energy forms a useful working idea
when action at a distance is denied (even though the speed of
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transmission be infinitely great, or be assumed to be so). Any
distinct and practical localisation of energy is therefore a useful
step, wholly apart from the debatable question of the identity of
energy advocated by Prof. Lodge.

From this point of view, then, we ought to localise gravitational
energy as a preliminary to a better understanding of that mysterious
agency. It cannot be said that the theory of the potential energy of
gravitation exhausts the subject. The flux of gravitational energy in
the form above given is, perhaps, somewhat more distinct, since it
considers the flux only and the changes in the amount localised,
without any statement of the gross amount. Perhaps the above
analogy may be useful, and suggest something better.

[Part II, The Electrician, 31, 359 (1893)]

In my first article on this subject (The Electrician, July 14,
1893, p.281), I partly assumed a knowledge on the part of the
reader of my theory of convective currents of electrification
("Electrical Papers," Vol. II., p. 495 and after), and only very
briefly mentioned the modified law of the inverse squares which is
involved, viz., with a lateral concentration of the lines of force. The
remarks of the Editor' and of Prof. Lodge’ on gravitational
aberration, lead me to point out now some of the consequences of
the modified law which arises when we assume that the ether is the
working agent in gravitational effects, and that it propagates
disturbances at speed v in the manner supposed in my former
article. There is, so far as I can see at present, no aberrational

! The Electrician, July 14, p. 277, and July 23, p. 340.
2 The Electrician, July 28, p. 347.
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effect, but only a slight alteration in the intensity of force in
different directions round a moving body considered as an attractor.

Thus, take the case of a big Sun and small Earth, of masses S
and E, at distance r apart. Let fbe the unmodified force of S on E,
thus

SE
using rational units in order to harmonise with the electromagnetic
laws when rationally expressed. Also, let F be the modified force
when the Sun is in motion at speed u through the ether. Then’
Fefx_ 1785 @
(1 -5 sin%9)*?

where s is the small quantity #?/V*, and 6 is the angle between r and
the line of motion. ("Electrical Papers," Vol. IL., pp. 495, 499).

Therefore, if the Sun is at rest, there is no disturbance of the
Newtonian law, because its " field of force" is stationary. But if it
has a motion through space, there is a slight weakening of the force
in the line of motion, and a slight strengthening equatorially. The
direction is still radial.

To show the size of the effect, let

u = 3 X 107 centim. per sec.
P 3)

v = 3 X 10" centim. per sec.

This value of u is not very different from the speed attributed
to fast stars, and the value of v is the speed of light itself.

3 This is the case of steady motion. There is no simple formula
when the motion is unsteady.
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So we have

s = = __, 4)

i.e., one millionth. All perturbing forces of the first order are,
therefore, of the order of magnitude of only one-millionth of the
full force, even when the speed of propagation is as small as that of
light.

The simplest case is when the common motion of the Sun and
Earth is perpendicular to the plane of the orbit. Then § = 7/2, all
round the orbit, and

F = f(1+s/2), (&)

showing increase in the force of attraction of S on E of one two-
millionth part, without alteration of direction or variation in the
orbit.*

But when the common motion of the Sun and Earth is in their
plane, @ varies from O to 27 in a revolution, so that the attraction
on E, whilst towards the Sun’s centre, always undergoes a periodic
variation from

F = f(1-5) (6)

when § = 0, to

F = f(1+s/2), ™)

* But Prof. Lodge tells me that our own particular Sun is
considered to move only 10-9 miles per second. This is
stupendously slow. The size of s is reduced to about 1/360 part of
that in the text, and the same applies to the corrections depending
upon it.
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when 6 = 7/2. The extreme variation is, therefore, 3sf/2, according
to the data used. The result is a slight change in the shape of the
orbit.

But, to be consistent, having made v finite by certain
suppositions, we should carry out the consequences more fully, and
allow not merely for the change in the Newtonian law, as above,
but for the force brought in by the finiteness of v which is
analogous to the "electromagnetic force." This is very small truly,
but so is the above change in the Newtonian law, and since they are
of the same order of magnitude, we should also count the auxiliary
force. Call it G. Then

xqu
G = F%qlx(rIXUl), (8)

where F is as before, in (2) above, q is the actual speed of the
Earth (not the same as u), and in the third vectorial factor q,, u,,
and r, are unit vectors drawn parallel to the direction of the Earth’s
motion, of the Sun’s motion, and from the Sun to the Earth. We see
at once that the order of magnitude cannot be greater than that of
the departure of F from f before considered, because u and g will
be of the same order, at least when u is big. As for x, it is simply
a numerical factor, which cannot exceed 1, and is probably 2/3

The simplest case is when the motion of the Sun is
perpendicular to the orbit of the Earth. Then

G = Fxs )

gives the tensor’ or size of the auxiliary force. It is radial, but

5 Heaviside uses the word "tensor" for the magnitude of the
force vector (O. D. J.).
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outwards, so that the result is merely to reduce the size of” the
previous correction, viz., the difference of F from f in the same
motional circumstances.

But when the line of motion of Sun is in the plane of the orbit,
the case is much more complicated. The force G is neither constant
(for the same distance) nor radial, except in four positions, viz.,
two in the line of motion of the Sun, when the auxiliary force
vanishes, and two when § = + w/2, when it is greatest. But this
force is still in the plane of the orbit, which is an important thing,
and is, moreover, periodic, so that the tangential component is as
much one way as the other in a period.

All we need expect, then, so far as I can see from the above
considerations, are small perturbations due to the variation of the
force of gravity in different directions, and to the auxiliary force.
Of course, there will be numerous minor perturbations

If variations of the force of the size considered above are too
small to lead to observable perturbations of motion, then the
striking conclusion is that the speed of gravity may even be the
same as that of light. If they are observable, then, if existent, they
should turn up, but if non-existent then the speed of gravity should
be greater. Furthermore, it is to be observed that there may be
other ways of expressing the propagation of gravity.

But I am mindful of the good old adage about the shoemaker
and his last, and am, therefore, reluctant to make any more remarks
about perturbations. The question of the ether in its gravitational
aspect must be faced, however, and solved sooner or later, if it be
possible. Perhaps, therefore, my suggestions may not be wholly
useless.
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Aberration, gravitational, 92, 198

Accelerated motion, 92, 94

Accelerated reference frame, 134, 155,156

Accelerating mass, 14, 92, 127, 128, 134

Acceleration, 4

Action and reaction, 67-77, 81, 82

Action at a distance, 81

Ampere, A. M., 21, 22, 23

Analogy,electromagnetic and gravitational,

101, 133, 189

Angular momentum, electromagnetic, 77
gravitational, 111
mechanical 42, 54, 55

Antenna, gravitational, 132, 138

Antigravitation, 140, 156

Antigravitational, field, 141, 148-153
mass, 151, 154

Apparent, charge, 168

Apparent dipole, electric, 168
gravitational, 172

Archimedes’s principle, 118

Arya, A. P., 79

Bahder, T., 66

Bartlett, D. F., 39

Basic laws, 3, 4, 8
electromagnetic, S
gravitational, 102, 106

Beam of mass particles, 128, 129

Beckmann, P. 39

Bedford, D., 97, 139

Biot, 21

Biot-Savart law, 16, 18, 25

Black holes, 150, 157

Breitenberg, E., 79

Brillouin, L., 97, 139, 158

Buoyant force, 118

Campbell, W. B., 98

Carstoiu, J., 97

Causal equations, electromagnetic, 4, 8,
11-13, 17, 19, 91, 103

Causal equations, gravitational, 86, 87,102
Causal relations, 3, 4, 6-8, 10, 11, 13, 14,
18, 19
Causality, 3, 4, 6-8, 11, 13, 81, 96
Causative sources, 13, 14, 20, 92
Charge, S, 14, 16, 28, 30, 35, 38, 42, 43,
68-70, 76, 102-104
apparent, 168
moving, 14, 15, 58, 89, 94
Charge density, 5, 14, 103, 104
Cogravitational energy, 110, 111
Cogravitational dipole, 108, 130
moving, 169, 172
Cogravitational field, 83, 84, 87, 89, 92,
101, 104, 107, 108, 131
of falling plate, 126
of particle beam, 124
of rotating shell, 123
Cogravitational force, 109
Cogravitational scalar potential, 108, 110
Cogravitational torque, 109
Cogravitational vector potential, 108
Conductor, 21, 27, 28, 30, 34, 38
current-carrying, 29, 34, 41, 166
moving, 35, 166
Conservation, of mass, 86
of momentum, 71, 76, 77, 81-83, 96
Constant of gravitation, 75, 80, 104
Constitutive equations, S
Contour curves, 178-180, 182-184
Continuity equation, electric, 12
gravitational, 85
Contraction and expansion, 150
Convection current, electric, 28,
75, 103, 104
gravitational, 86, 104
Conversion procedure, 105
Coriolis force, 95
Corresponding symbols, 104
Corson, D. R., 97
Coulomb’s field, 15
Coulomb’s law, 18
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Current, see Electric current, Mass current
Current-carrying conductor, 29, 34, 166
Current density, electric, 8, 12-14

Dahm, A.J., 38
Davy, 21
de Castro, A. S., 79
Dielectric, 25, 26
Dipole, cogravitational, 108, 109, 130,
169, 172
moving, 169-172
electric, 25, 34, 37, 58, 168
apparent, 168
gravitational, 130, 172
apparent, 172
magnetic, 34-37, 58, 68, 130, 168
moving, 168
microscopic, 37
Displacement current, 18, 25
Displacement field, 74, 77
Displacement vector, S, 13, 14
Divergence law, gravitational, 141
Drag, gravitational, 94, 127
Dragging of inertial frame, 95
Dynamic gravitational fields, 123
Dynamic maps, 175-184

Einstein, A. 91-94, 98, 99, 135, 140, 141,
155
Einstein’s gravitational field equation,
139, 154-156
Electric charge, S, 14, 16, 28, 30, 34, 37,
42, 43, 68-70, 76, 102-104
Electric current, 8, 12-14, 16, 20-23, 25,
27, 28, 34, 35, 42, 45-48, 65, 66,
73. 74, 76
filamentary, 37, 42
induced, 21-23, 28-30, 59, 60, 65, 66
induced in rectangular loop, 60
inducing, 29, 30
microscopic, 36-38
moving, 33, 34-37, 166-168
time-variable, 34, 42, 45-47, 59, 65
Electric current density, 8, 12-14
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Electric dipole, 25, 37, 58
Electric displacement, 5, 13, 14, 26, 77
Electric field, 13, 14, 16-19, 25, 27, 28,
30, 34-37, 42, 59, 69, 72, 77, 78,
83, 88, 90, 91, 93, 104, 165
Electric scalar potential, 32, 93, 166
Electric spark, 65
Electrokinetic field, 28-30, 32, 34,
25-27, 40-42, 44, 50, 64-66, 71, 73,
75, 78, 91, 102
dynamic effects of, 50
maps of, 175-178
of charged ring, 48, 49
of cylinder, 46
of parallel plates, 47, 78
of solenoid, 47
of straight wire, 45
Electrokinetic force, 29, 41, 44, 65, 68,94
on charged ring, 50
on parallel-plate capacitor, 51, 78
Electrokinetic impulse, 31
Electrokinetic torque, 44
on charged cylinder, 54
on charged disk, 55
on charged ring, 56, 71, 72
on polarized particle, 53
Electromagnetic field, 3, 16, 18
sourceless, 17
Electromagnetic induction, 19-23, 25, 27,
28, 35, 66, 90, 91
Electromagnetic momentum, 41, 76-79
angular, 77
Electromagnetic waves, 16, 17, 19
Electromotive force, 19, 26, 41, 91
Electrostatic field, 65, 66, 73, 75
Electrostatic force, 28, 69
Electrotonic state, 22
Energy, cogravitational, 110, 111
gravitational, 89, 90, 108, 110, 136,
137, 140, 141, 143, 148, 154-156
potential, 90
Energy current, 86
Energy density, gravitational, 111, 141
Energy flux, gravitational, 126
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Energy-momentum tensor, 154
Equivalence principle, 134, 155, 156
Ether, 26

Falling plate, 125
Faraday induction, 19-21, 27, 59, 66
Faraday, M., 21-24, 30, 38, 66
Field, see Antigravitational field,
Cogravitational filed, Displacement
field, Electric field, Electrokinetic field,
Electromagnetic field, Gravitational
field, Magnetic field
Flux, magnetic, 19
Force, cogravitational, 109
dragging, 28, 94, 127
electric, 28, 35, 91, 93
due to moving ring, 57
electrokinetic, 29, 41, 44, 65, 68, 78,
94
on charged ring, 50, 51, 58
on parallel-plate capacitor, 51, 52
on polarized particle, 53, 54
electrostatic, 28, 69
field of, 30
gravikinetic, 127
gravitational, 69, 76, 81, 84, 92,108-
110, 113, 135, 137, 147-149, 153
at surface of particle beam, 128, 129
between parallel plates, 119-122
due to rotating sphere, 129-131
Lorentz’s, 27, 58, 59
magnetic, 21
magnetic-like, 94, 95
Force-field, gravitational, 80
theory, 81
Forward, R. L., 99
French, A. P., 38

Galilean relativity, 131

Gauge, 42

General relativity, 80, 89-92, 94-96, 134-
137, 139, 154, 156, 157

Generalized Newton’s theory, 86-96, 185-
187
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Gravikinetic force, 127
Gravitation, Newton’s theory of, 75, 76,
80, 81
time-dependent, 80, 81, 86, 87, 89, 91,
92, 95, 134, 136
velocity of propagation, 86, 90, 112,
136, 137
Gravitational antenna, 132, 138
Gravitational collapse, 150, 157
Gravitational constant, 104
Gravitational dipole, 130
Gravitational drag, 94, 127
Gravitational energy, 89, 90, 108,
110,122, 137, 140, 141, 143, 148,
154-156
density, 111,141
flux, 126
law, 140
nonlocalizability of, 155, 156
of a spherical shell, 116
Gravitational equations, time-dependent,
80, 81
Gravitational field, 75, 77, 78, 81, 83,
87,92, 101, 104, 106, 107, 113,
128, 134, 140-143, 146, 150
dynamic, 123
in a cavity, 116-118
in free space, 148, 149
lines of, 142
maps of, 181-184
nonlinear, 143, 145
of a disk, 114
of sphere, 130, 144-146, 150, 151
retarded, 86-88
static, 113
Gravitational field vector, 75, 81, 89
Gravitational force, 69, 76, 81, 84, 92,
108, 109, 135, 137, 147-149, 153
at surface of particle beam, 128, 129
between parallel plates, 119-122
due to rotating sphere, 129-131
onarod, 115
Gravitational momentum, 82, 111
angular, 111
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Gravitational
119-122

Gravitational Poynting’s vector, 89, 111,
126, 127

Gravitational radiation, 137, 138

Gravitational radius, 157

Gravitational scalar potential, 106, 120,
142

of a sphere, 116

Gravitational vector potential, 107, 109,
120

Gravitational wave equation, 84

Gravitational waves, 90, 111, 138

Griffiths, D. J., 18, 39, 40

"parallel-plate capacitor,”

Harris, F. G., 100

Heald, M. A, 18, 40

Heaviside, Oliver, 89-91, 96, 97, 98, 139,
181, 189

Heaviside’s field, 84

Helmholtz’s theorem, 6, 31, 84

Hidden mass, 153, 157

Impulse, electrokinetic, 31

Induced current, 21-23, 28, 35, 59, 65
in rectangular loop, 60

Induced field, 29

Induced rotation, 64

Induced voltage, 19, 41, 42, 44, 59, 64
in rectangular loop, 61, 62, 65
in a ring, 63, 64

Inducing current, 29, 30

Induction, 22, 25, 66
electromagnetic, 19-23, 25, 27, 28, 35,

59, 65, 66, 90, 91

Jefimenko, O. D., 18, 38, 39, 66, 79, 96,
97, 112, 138, 139, 158

Jackson, J. D., 18

Josephs, H. J., 98

Kinetic energy, 125
Konopinski, E. J., 39, 66
Krumm, P., 97, 139
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Laithwaite, E., 98

Landau, L. D., 100

Lense, J., 100

Lenz’s law, 29

Lifschitz, E., 100

Lightning bolt, 65

Larentz’s condition, 32
Larentz’s force, 27, 58, 59, 94
Larrain, P., 97

Lucas, R., 158

Mach’s principle, 93, 94
Magnet, 22, 23, 27, 35
Magnetic dipole, 34-37, 58, 68, 130
moving, 34-37, 168
Magnetic field, 5, 6, 13, 14, 16-19, 21,
23, 25, 27, 28, 35, 38, 42, 43, 46,
47, 59, ,65, 70, 72, 73, 75, 77, 78,
83, 8791, 93, 96, 104, 165
Magnetic flux, 19
density, 34, 48, 77, 102
Magnetic force, 21
Magnetic lines of force, 23
Magnetic vector potential, 30-32, 41,42,
93
Magnetic-like force, 94, 95
Magnetized bodies, 21
Mannheimer, M., 158
Marion, J. B., 139
Mass, 104
accelerating, 92, 94, 127, 128, 134, 188
antigravitational, 151, 154
conservation of, 86
hidden, 153, 157
moving, 88, 90,
135,169-172
naked, 146
negative, apparent, 170, 172
transverse, 136
true, 144, 146, 147, 152-154
relativistic, 135, 136, 172
Mass current, 85, 92, 99, 102, 104, 125
moving, 169-172
Mass density, 75, 81, 102, 104, 141, 144

107, 112, 124,
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Mass density (continued) 146, 154
Mass particles beam, 124, 128, 129
true, 146, 147, 152-154
Mass-energy relation, 140, 141
Material media, 18
Maxwell induction, 19, 20, 25, 27
Maxwell, J. C., 23-27, 38
Maxwell’s equations, 3, §, 8, 10, 11, 13,
14, 16, 20, 90, 91, 103
solutions of, 8
Maxwell’s stress integral,
cogravitational, 110
gravitational, 109, 121
Maxwellian stresses and tensions, 90
Mercury, 135-137, 139
Meyer, Kirstine, 38
Microscopic current, 35-37
Milky Way, 137
Milton, K. A., 100
Misner, C. W., 100, 158
Moller, C., 100
Momentum conservation, 70, 82, 83, 96
Momentum, electromagnetic, 41, 76-79
angular, 77
gravitational, 83, 111
angular, 111
mechanical, 41-43, 68, 77, 78
angular, 42, 54, 55
mutual, 77
Morgan, T. A., 98
Moving charge, 14, 15, 58, 89, 94
Moving cogravitational dipole, 169-172
Moving conductor, 34
Moving electric current, 33, 35-37
Moving magnet, 35, 38
Moving magnetic dipole, 35, 168
Moving mass, 88, 90, 107, 112, 135, 169-
172
Moving mass current, 169-172
Mutual momentum, 77

Naked mass, 146
Negative mass, apparent, 170, 172
Newton’s gravitational law, 75, 80-82, 95
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Newton’s gravitational law
(continued),131, 134, 135

Newton’s gravitational theory, 75, 78, 80-
83, 86, 87, 89, 91, 92, 64, 95, 123,
140, 142-145

Newton’s third law, 67, 76

Nightingale, J. D., 99

Nonlinear gravitational field, 143, 145

Nonlocalizability of energy, 155, 156

Nordtvedt, K., 100

QOersted, H. C., 21, 38
Ohanian, H. C., 100, 139, 158
Opat, C. 1., 100

Oscillating ring, 131

Panofsky, W. K. H., 40
Parallel-plate capacitor, 25, 51, 78
"Parallel-plate capacitor,” gravitational,
119-122
Perihelion precession, 131, 135-139, 147
Peters, P. C., 158
Phillips, M., 40
Phillips, Richard 21, 23
Planetary motion, 90, 95, 135, 147
Point charge, 14, 15
moving, 14
Poisson equation, 5, 107-108, 139
Polarization, 25
Polarized particle, force on, 53
torque on, 53
Popescu, 1. N., 90, 98, 139
Portis, A. M., 79
Position vector, present, 14, 15, 88
projected present, 15, 88
retarded, 14, 15, 88
Potential, retarded electric, 32, 39, 166
retarded gravitational, 169
scalar, cogravitational, 108, 110
electric, 32, 93
gravitational, 106, 107, 120, 142
vector, cogravitational, 108, 109
vector, gravitational, 109, 120
magnetic, 41-49
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Potential energy, 90, 191, 196-198 Sources of gravitation, 140, 154-156
Poynting’s vector, gravitational, 89, 111, Spark, electric, 65
126, 127, 193 Special relativity, 84, 96
Price, M. P., 139 Stability of galaxies, 154
Principle of causality, 3, 4, 6-8, 11, 13, Static gravitational field, 113
81, 96 Stump, D.R., 139
Principle of equivalence, 134 Sun, 90, 135, 147

Symbols, corresponding, 104
Radiation, gravitational, 137, 138

Relativistic mass, 135, 136, 172 Tessman, J. R., 38
Relativity, Galilean, 131 Thirring, H., 100
general, 80, 84, 87, 89, 90-92, 94-96, Thirring-Lense effect, 95
134-137, 139, 154, 156, 157 Thompson, S. P., 38
special, 84, 96 Thorne, K. S., 100, 158
Retardation, 42 Time-dependent gravitational
Rest mass, 135 equations, 80, 81, 134, 136
Retarded electric potential, 32, 39, 166 Ton Tran-Cong, 18, 97
Retarded field, gravitational, 86 Torque, cogravitational, 109
Retarded integrals, 164-165 electrokinetic,
Retarded magnetic vector potential, 3032, on charged cylinder, 54
43 on charged disk, 55
Retarded position vector, 14, 15, 88 on charged ring, 56, 71, 72
Retarded quantities, 5, 18 on polarized particle, 53
Ring, oscillating, 131 Transverse mass, 136
Rosser, W. E. V., 18, 38, 96 True mass, 144, 146, 147, 153-154
Rotating bodies, 95
Rotating shell, 123 Vector identities, 161-163
Rotation, induced, 64 Vector potential, cogravitational, 99, 108,
Ruffini, R., 100, 139 109
Rush, W. F., 139 gravitational, 107, 109, 112, 120
magnetic, 30-32, 41-49, 93
Sak, J., 66 Velocity of gravitation, 86, 90, 112, 136,
Savart, 21 137, 172
Scalar electric potential, 32, 39 Velocity of light, 8, 112, 137, 141, 157,
Scalar potential, cogravitational, 108, 110 172
gravitational, 106, 107, 120, 142 Voltage, induced, 19, 41, 42, 44, 59, 64,
Scanio, J. J. G., 79 in rectangular loop, 61, 62
Schmieg, G. M., 100 in ring, 63-65
Semon, M. D., 100
Singh, A., 98 Wave field, 17
Solenoid, 47, 54, 55 Waves, electromagnetic, 16, 17, 19, 84
Solutions of Maxwell’s equations, 8 gravitational, 84, 90, 111, 138
Sourceless electromagnetic field, 17 Weber, J., 99

Sourceless electromagnetic waves, 17 Wheeler, J. A., 100, 158






