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PREFACE

This book has been written for an advanced undergraduate course
in electricity and magnetism offered to students majoring in physics and
in related fields. It presupposes a year’s course in general physics and one
in calculus. It is based on the lectures in electricity and magnetism given
by the author for the past nine years and is designed to be readily understood
by even the student who will receive only a minimal guidance from the
instructor.

The book has three main objectives. The first objective is a presentation
of the fundamentals of electromagnetic theory reflecting recent developments
and applications of the subject. To achieve this objective, considerable
amount of modern material is included in the book; operational definitions
are introduced for all fundamental electric and magnetic quantities; cur-
rent and voltage are used as the basic measurables (mksva system of units)*;
vector analysis is uscd as a standard mathematical tool; and, which is most
important, the theory is presented in a logical rather than in a historical
sequence.

The second objective of the book is a rigorous but simple pressntation
of electromagnetic theory, with emphasis on the internal unity and har-
mony of the mathematical description of electric and magnetic phenomena.
To achieve this objective, the basic structure of the theory is first deter-
mined. With the aid of general physical considerations it 1s made plausible
that the theory must be based upon three types of experimental laws: the
field laws, the energy laws, and the constitutive laws. At the same time
it is deduced from Helmholtz’s theorem of vector analysis that a comnlete
set of electric or magnetic field laws need not contain more than two ex-
perimentally established correlations, whick may be either in a differential
form (curl and divergence laws) or in an integral form (circulation and flux
laws). On the basis of these considerations the theory is then presented
rigorously and simply in a systematic, coherent, and logical manner.

The third objective of the book is to develop in the student a creative
ability in the application of electromagnetic theory. For this purpose, detailed
solutions to a large number of illustrative examples demonstrating various
methods and applications of the theory have been incorporated in the book

*The formulation of the concepts of electric current, voltage, charge, and electric and
magnetic fields is based on ideas developed by R. W. Pohl in his famous lectures on gen-
eral physics. The electricity and magnetism section of the lectures is described in R. W.
Pohl, “Elektrizititslehre,” XIX Auflage, Springer, Berlin (1964).
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vi PREFACE

Furthermore, each chapter, except Chapter 3, has been supplemented by
a number of carefully selected problems which should help the student to
build up the skill and initiative in practical application of the presented
material.

In agreement with modern curricula, the book deals primarily with a
detailed exposition of the theory of macroscopic electric and magnetic fields.
The book is, however, sufficiently flexible to allow the instructor to add
supplementary topics to the course. With this in mind, much subordinate
material has been relegated to starred section, which may be omitted without
loss of continuity, and to illustrative examples. The instructor can easily
substitute additional material for these sections and examples.

In writing the book, the author has attempted a complete rethinking of
the subject matter. The book contains therefore an appreciable amount of
original material, most of which has evolved in the process of developing
the theory in accordance with the principles outlined ir conneciion with
the second objective of the book.

The author is grateful to many of his former students tor their encouraging
attitude and helpful suggestions. He owes a great de>t 1o his wife Valen-
tina, who patiently typed and proofread the numerous drafts of the
manuscript and assisted in the preparation of the lines-of-force photographs
appearing in this book.

PREFACE TO THE SECOXND EDITION

The numerous unusually favorable comments that the author has been
receiving about the first edition of the book from many students and teachers
have convinced him that the book does not require an extensive revision.
Therefore, in preparing the second edition for publication, the author has
limited the revision mainly to an improvement of the presentation.

As it was mentioned in the preface to the first edition. the book contains
a substantial number of original derivations, formulas, and problems. Even
more such original material appears in this edition. This kind of material
is always more difficult to present and to verify than that which has repeatedly
appeared in many textbooks and other publications over a period of many
decades. The author can only hope therefore that both the presentation
and the accuracy of this new material are as good as they can be. He also
hopes that the fact that new correlations and methods can be continually
found in even such well explored branches of physics as the classical elec-
tromagnetic theory will be an inspiration for readers and users of this book
to search for new relations and ideas in all branches of physics, no matter

how well established.
Oleg D. Jefimenko
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MATHEMATICAL
INTRODUCTION




PHYSICAL QUANTITIES AND
PROPERTIES OF PHYSICAL
EQUATIONS

In physics, extensive use 1s made of the possibility of
mathematical representation of physical phenomena: physical con-
cepts are designated by symbols, the relationships between concepts
are expressed by formulas, and the correlations between phenomena
are represented by equations. Physical formulas and equations are
characterized by special properties and form a special class of mathe-
matical expressions. The knowledge of these propertics is essential for
an accurate formulation and intelligent application of physical theories.
In the field of electricity and magnetism this knowledge is also needed
for the understanding of the relations between different systems of
electric and magnetic measurables used in scientific literature. We
shall start therefore with a brief discussion of the nature and properties
of physical formulas and equations,

1-1. Physical Quantities and Physical Equations

The properties of physical formulas and equations are closely
connected with four preliminary procedures which constitute the
starting point for a quantitative study of physical phenomena. These
procedures are:

(1) selection of basic, or primary, measurables (basic objects of
measurements) and specification of properties to be used for their
identification
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(2) selection of instruments for the measurement of basic measur-
ables

(3) selection of standards and units for the calibration of these
instruments and

(4) selection of derived, or secondary, measurables and specification of
rules for their measurement.

The first of these procedures defines the conceptual contents of the
basie, or primary, quantities, while the second and third procedures make
it possible to associate a definite magnitude with each of these quantities,
thus completing their definition. The fourth procedure consists in
selecting certain groups of primary measurements in combination with *
specified mathematical operations to be performed upon the results of
these measurements and defines the derived, or secondary, quantities.

With the aid of these four procedures it is possible to describe
various physical phenomena in terms of a few primary quantities
(results of single measurements) and a few secondary quantities (results
of certain groups of measurements). The experimentally observed corre-
lations between phenomena can then be expressed as correlations
between these quantities in the form of algebraic equations.

It is clear that such equations reflect two different things. On
one hand, they reflect correlations inherent in the physical phe-
nomena. On the other hand, they reflect our approach to the quanti-
tative description of these phenomena—in particular, our selection of
measurables, standards, and units. This selection involves a con-
siderable degree of arbitrariness. In principle, one can express the
same set of correlations by using one, two, or any other number of basic
measurables of any reasonable kind. The division of measurables into
primary and secondary is also arbitrary. The choice of standards and
units of measurements is, of course, arbitrary too. As we shall see, this
arbitrariness in the selection of measurables, standards, and units is
responsible for several remarkable properties of the physically meaning-
ful mathematical expressions.

1-2. Ratio Requirement. Dimensions of Physical

Quantities

Let us investigate how physical quantities, formulas, and equations
are affected by the possibility of choosing different standards and units
of measurements.
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Obviously, the correlations between physical phenomena are
determined by the very nature of these phenomena and do not depend
on our choice of standards or units. Since the correlations between
physical phenomena are independent of the choice of standards or
units, all equations which describe these correlations must be invariant
to a change of the size of the standards or the size of the corresponding
units. In particular, the ratio of any two physical quantities each of
which represents the same measurable must not depend on the units
in terms of which these quantities are expressed (for instance, the ratio
of two distances must not depend on whether these distances are
measured in feet or in meters). Only those quantities that satisfy this
ratio requirement are considered physically meaningful. The fact that
physical quantities must satisfy the ratio requirement is their character-
istic property.

Since the same quantity can be expressed by different numbers,
depending on the size of units used, a complete specification of a
quantity must contain a statement of the units in terms of which the
quantity is measured. If a quantity represents the result of a group of
measurements (secondary quantity), it is necessary to state how the
number representing the quantity is correlated to each individual unit
used for the evaluation of this number.

It has been found that if both the primary and secondary quantitics
satisfy the ratio requirement, then the value of any secondary quantity
represents a power product of the values of primary quantities. There-
fore physical quantities may be written as products of two factors.
The first factor is a number (or a symbol standing for a number) and
is called the numerical value of the quantity. The second factor is a
power product of symbols designating basic units or, in a general case,
a power product of symbols designating basic measurables; this power
product is called the dimensions of the quantity and constitutes a formula
which shows how the numerical value of the quantity is related to the
units of basic measurables. The dimensions of a basic quantity are, of
course, only one symbol designating the basic unit or the basic
measurable itself. Conceptually different quantities usually have
different dimensions, and therefore dimensions are frequently used
for identification of quantities. To indicate that only the dimensions
but not the numerical value of a quantity are being considered, the
symbol designating the quantity is placed between square brackets.
For example, [V] means dimensions of the quantity V. The dimensions
themselves are usually written in square brackets too; thus if L
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designates length and 7" designates time, the equation (V] = [LT7!]
means: the dimensions of V are length divided by time.!

1-3. Dimensional Homogeneity of Physical Equations.

Dimensional Analysis

As has been stated in the preceding section, all physical equations
must be invariant to a change in the size of units. A detailed investiga-
tion shows that the necessary and sufficient condition for this invariance
is the dimensional homogeneity (dimensional uniformity) of the equations,
which means that only quantities possessing the same dimensions may -
be added, subtracted, or equated, and that only pure numbers may
serve as exponents or as arguments of trigonometric, hyperbolic, and
other similar functions. If equations are dimensionally homogeneous,
any change of units cancels out and does not influence the equation.
Thus the arbitrariness in the choice of standards and units restricts
physical equations to equations homogeneous in dimensions.

This restriction gave rise to a branch of physics called dimensional
analysis. Dimensional analysis is an aggregate of methods for solving
various physical problems on the basis of dimensional considerations
by utilizing the property of dimensional homogeneity of physical
equations. Dimensional analysis can be used for a variety of purposes,
from finding errors in algebraic computations to solving partial differ-
ential equations, Two especially useful applications of dimensional
analysis are described below. Other applications are demonstrated in
Sections 1-4 and 1-5.

A very useful application of dimensional analysis is a method for
tracing errors in calculations involving physical quantities. Since
physical equations must be homogeneous in dimensions, the dimensions
of all the terms connected by equality signs must be the same. Further-
more, all terms connected by plus or minus signs must have the same
dimensions, and all exponents and arguments of transcendental
functions must be pure numbers. Consequently, if any term obtained
in the process of calculation has dimensions different from those of
the preceding term, or if it violates dimensional homogeneity in any
other manner, then an error has been made in the calculation of
this term. By checking the dimensional consistency of calculations one

1 The symbols L and T are used universally to indicate length and time. Another
universally used symbol is A, indicating mass.
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can find the term in which the error has occurred. Once it is known
where the error is, the error can easily be identified and eliminated.

Of course, even if a calculation is dimensionally consistent it still
may be wrong for a number of obvious reasons. A dimensional check,
however, allows one to detect a surprisingly large number of errors
encountered In most types of calculations.

;&ample 1-3.1 As a result of a certain calculation the following
formula has been obtained:
Rt hs
Ry - Ry

Determine whether or not this formula is physically meaningful, if R,, R,
and R are physical quantities having the same dimensions [R].

To check the formula, we compare the dimensions of the left side with
those of the right side. The dimensions of the left side are [R], the dimensions
of the right side are §R; + R,]/[R,] " [R,] = [R] - [R]™® = [R]7'. Thus
the formula in question is dimensionally wrong, which indicates that
an error has been made in the calculation. (Note that the dimensions of a
sum or a difference of two quantities are the same as the dimensions of
each quantity alone since only quantities of the same dimensions may be
added or subtracted.)

Example 1-3.2 Make a dimensional check of the following calculation:

2x x2 2
fxz cos ax dx = — cos ax + — sin ax — —;sin ax,

a a a

where [a] = [x]7L
Taking into account the fact that [dx] = [x], we see that the dimen-

sions of the last two terms on the right arc the same as those of the term
(integral) on the left, namely [x]3. The dimensions of the first term on the
right are, however, [x]2. Hence, there is an error in this term (a recalculation
would reveal that there should be 4? instead of @ in the denominator).

A

Another very important application of dimensional analysis is a
method for determining functional dependences between quantities
involved in physical phenomena. According to the fundamental
theorem of dimensional analysis—the Buckingham, or “#”’ theorem—a
functional dependence between any physical quantities can always be
expressed as

1 :f(ﬂ-Qa KLE: TR 7771))
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where the =’s are independent dimensionless power products built from
the quantities involved.! In particular, if these quantities are such that
only one independent dimensionless power product w; can be made
from them, then the above formula reduces to =; = constant. In this
case one can find the functional dependence between the quantities
by building a dimensionless power product from these quantities and
setting the product equal to an undetermined numerical constant,

v

Example 1.3.3 A beam of electrons of cross-sectional area S[m?] and
charge density plamp ' sec m~3] is ejected from an electron gun and
moves with velocity [m - sec™']. The beam is equivalent to a current
[amp]. Find how this current depends on S, p, and ».

We begin by constructing independent dimensionless power products
from S, p, v, and I. This we do by combining successively the quantity
having the most complex dimensions (p in the present case) with other
quantities, each time eliminating some of the units from the dimensions of
the quantity with which we start. To eliminate [amp] from p, we use I,
obtaining

§ [sec - m~3].
To eliminate [sec] from this expression, we use v, obtaining
pv .
7 [m 2].

To eliminate [m~2] from this expression, we use .S, obtaining

pvS
T

The last expression is a dimensionless power product, 7;. In building it,
we have used all quantities given in the problem, and there are no quantities
left from which we could build other independent 7’s. By Buckingham’s
theorem we then have

pvS _ .,

~7 _

1 3

where € is a numerical constant. The dependence which we seek is there-
fore (we replace C” by 1/C, for simplicity)

I = CpuS.
I'n power products are called independent if none of the products can be

expressed as a power product of any of the remaining n — I products. Each product
has the form Q7 - Qg Q% -+, where Q’s are the quantities under consideration.
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Example 1-3.4 Find the functional dependence between the period
and the length of a simple pendulum, taking into account that the period
¢t depends on the length of the pendulum / and on the acceleration of
gravity g.

Since the dimensions of ¢ are

(] = [LT77],

we see by inspection that the functional dependence must be

2 i
£ ¢, or z:c/-,
l g
where

C =+

Is a numerical constant,

1-4. Dimensional Constants

As we have learned in the preceding section, the basic property of
physical equations is their dimensional homogeneity. This property
originates from the possibility of choosing between different standards
of measurement. Another important property of physical equations is
the presence of dimensional constants in them. This property arises
from the fact that more than one basic measurable is used in the
investigation of physical phenomena.

Adding one more basic measurable to a given set of measurables
results in the appearance of at least one new dimensional constant in
the equations correlating this new measurable with those already
present. Thus in electricity and magnetism the introduction of current
and voltage as new basic measurables in addition to length, mass, and
time results in the appearance of three new universal dimensional
constants:

permittivity of space
[ current - time }
°Lvoltage - lengthd’
permeability of space
(: voltage - time }
®lcurrent - length |’
and constant of energy
O(: mass - (length)? :l
current - voltage - (time)3
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(these constants are not present if electromagnetic phenomena are
formulated only in terms of length, mass, and time as is the case when
the so-called “electrostatic,” “electromagnetic,” or “Gaussian’ systems
of measurables are used).!

Similarly, the reduction of basic measurables by one results in the
disappearance of at least one dimensional constant from the equations
that correlate the eliminated measurable with other measurables.
One could, for instance, eliminate mass as a basic measurable in
mechanics and consider it as a secondary measurable of dimensions
[(length)3/(time)2]. As a result, the gravitational constant G would
disappear from all equations where it is now present (Newton’s ex-
pression of the gravitational law would be F = mym,[r® rather than
F = Gmym,[r?, as it is usually written).

The significance of dimensional constants is frequently under-
estimated. Sometimes they are regarded as a nuisance introduced in
physics because of the necessity of “‘taking care of units.” Actually,
however, dinfensional constants originate from experimentally estab-
lished correlations between physical quantities and may well be regarded
as concise formulations of physical laws. Physical laws express certain
permanent corrclations between quantities, These permanent cor-
relations are usually implicitly represented by the corresponding di-
mensional constants. When a dimensional constant enters an equation,
it makes that equation subject to the corresponding law.

To illustrate this point, let us return to Example 1-3.4. In this
example we derived the equation for the period of a pendulum on the
basis of dimensional considerations. We know, however, that in order
to derive this equation by the usual analytical means, we should start
from the law of motion of a particle in the earth’s gravitational field.
The question arises: how could we obtain the correct formula by
merely using dimensional considerations without any reference to the
law of gravity? The answer is simple: we actually did use the infor-
mation contained in the law of gravity by including the constant of
gravity g in the set of quantities pertaining to the problem.?

Often the statement of a physical law is equivalent to the statement
of the existence of a certain dimensional constant. Consider, for

1 For a discussion of various systems of measurables see Section 1-5.

2 In fact, in Example 1-3.4 we have determined the correlation between time
and length for the general case of the motion of a particle in a constant gravitational
field specified by ¢. Thus the formula ¢ = C\/Z/_g describes not only the period of a
pendulum but also the time of fall as a function of distance for a freely falling body,
the time-distance dependence for a particle moving on an inclined plane, etc.
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instance, the well-known Ohm’s law for electric conductors. According
:o this law (in its circuital form), the ratio V/I of the voltage V applied
o a conductor and the current [ in this conductor has under certain
conditions a constant value independent of either V or I. The ratio
/I is called the resistance R of the conductor. Thus Ohm’s law states
that under certain conditions R is constant, or that there exists a
dimensional constant R.

An analysis of dimensional constants characterizing a given physical
problem may easily reveal “hidden’ correlations that otherwise would
not be known without a detailed mathematical investigation of the
problem. This is illustrated in the following example.

v

Example 1-4.1 Find the correlation between the radius of the orbit
and the period of revolution of a planet by analyzing the dimensions of the
gravitational constant.

Planetary motion is essentially determined by Newton’s gravitational
law, which is represenfed by the gravitational constant G. Since [G] =
[L3/MT?], it is obvious that the correlation between the radius of the orbit
r, the period of revolution ¢, and the mass of the system m must be such that
G = Cr3/mi?, where C is a numerical constant. Since m, the mass, is constant
for a sun—planet system, this correlation may be written as 73/t = constant,
which is known as Kepler’s third law. (See also Problem 1.11.)

A

1-5. Transformation of Units and Measurables

Since several systems of units and measurables are used in physics,
it frequently becomes necessary to convert physical quantities and
equations from one system to another. This can be done with the aid
of dimensional analysis.

Two kinds of systems of basic measurables are now used in
electricity and magnetism: the electro-mechanical systems and the
mechanical systems.

The most important representatives of the electro-mechanical
systems are the length-mass-time-voltage-current, or the LMTVI,
system; the length-mass-time-current, or the LMTI, system; and the
length-mass-time-charge, or the LMTQ, system. The fundamental
units in the first system are usually the meter, the kilogram, the second,
the volt, and the ampere—the mAsva units. In the second system they
are usually the meter, the kilogram, the second, and the ampere—the
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mksa units} In the third system they are usually the meter, the kilogram,
the second, and the coulomb-—the mksc units.

The most important representative of the mechanical systems is
the length-mass-time, or the LMT, system. The units in this system
are usually ¢gs—the centimeter, the gram, and the second, which, for
historical reasons, are frequently called the ‘““absolute” units. There
are three especially important subdivisions of the LM T system: the
electrostatic, the electromagnetic, and the Gaussian systems, They differ in
the definitions of certain electric and magnetic quantities. The respec-
tive units of these quantities are referred to as the cgs electrostatic, the cgs
electromagnetic, and the cgs Gaussian units.

To convert an equation to a new system of basic measurables, the
symbols designating physical quantities are replaced by the corre-
sponding symbols of the new system, the numerical and dimensional
constants are replaced by the corresponding constants of the new
system, and additional dimensional constants of the new system are
introduced into the equation to make it dimensionally homogeneous
in the new system.? This method of conversion follows from the fact
that all equations describing the same physical phenomenon must
exhibit the same functional dependence between the corresponding
quantities regardless of the system of basic measurables in which each
particular equation is written. Such equations may differ therefore
only in the designation of quantities and in the number and kind of
constants,

\

Example 1-5.1 The “Coulomb law]’ (once thought to be the most
fundamental law of electricity) can be expressed in the LM TVI system as

_ °9192
eyt

Convert this formula to the LM T electrostatic system.

Examining the tables of symbols and constants given in Appendix I,
(Tables A-1 and A-2), we see that no symbols need be replaced in the above
formula, that ® must be replaced by 1, and that ¢, must be replaced by 1 /4.
Coulomb’s law in the LM T electrostatic system is therefore

F="1

0192
2’
T Also known as the International System of Units (SI).
2 Tables of corresponding symbols and constants as well as a table of the dimen-

sions of electric and magnetic quantities in various systems are given in Appendix 1.
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Example 1-5.2 The capacitance of a sphere of radius 7 is in the LM T
Gaussian system (indicated by subscript “g”)

C,=r.

Express the capacitance of this sphere in the LM TQ system.
Since therelations between the constants of the two systems are 1 /47 — ¢,
47 — u,y (see Table A-2 in Appendix 1), we have in the LMTQ system

C = (4meg)*(uof4m)’,

wherezand 3 are exponents, to be determined, which are needed to make this
equation dimensionally homogeneous in the LM 7Q system. Consulting the
table of dimensions (Table A-3 of Appendix I), weseethate = land f =0
must be used. The capacitance of the sphere in the LM 7@ system is therefore

C = 4megr.

Example 1-5.3 The “Maxwell equations” (the most fundamental laws
of electromagnetic fields} can be written in the LM TV system as

oB

VXE:—'a—t, V'D:p,

D
VxH=J+%, V.B=0.

Convert these equations to the LM T Gaussian system (V is a differential
operator of dimensions [L™!], d/dt is a time derivative of dimensions [ 7-1]—
both remain the same in all systems; p is a charge density).

Using the tables of symbols and constants given in Appendix I (Tables
A-1 and A-2), we replace the symbols in the above equations and introduce
the additional constant ¢ characteristic of the Gaussian system (there are no
constants in these equations, so that none can be replaced). We then have,

(X

using subscript *‘g”’ to indicate the Gaussian system,

-

B
VxE,= —c“%, V. (D,/4m) = cPp,,
D
V x (Hg/‘l-rr) — C'/Jg R a_(aL{@, v. Bg =0,

where «, 5, 7, and § are exponents, to be determined, which are needed to
make the equations dimensionally homogeneous. Examining the dimensions
ofE,, B,,D,, p,, H,, and J,, given in the table of dimensions in Appendix I
(Table A-3), we recognize that &« = —1, § =0, y = —1, and 6 = —1.
Thus Maxwell’s equations in the Gaussian system are (we are dropping the
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[ 2)

subscripts “‘¢” now) '

(=3

10B
VXE:—ZW, V'D:47Tp,
l oD
VXH:;(47TJ—}—'E‘), V-BZO.

A

To convert a quantity to new units within the same system of
basic measurables, each unit in the dimensions of the quantity is replaced
with an equivalent number of new units. To convert a quantity to
units of a new system of basic measurables, the units are replaced in the
same manner, except that the sign = (“corresponds”) is used in place
of the equality sign whenever a quantity expressed in terms of old units
is “equated” with a quantity expressed in terms of new units (otherwise
dimensionally inhomogeneous equations would result).! These methods
of conversion are self-evident and require no justification.

k]

v

Example 1-5.4 The average atmospheric electric field near the earth’s
surface is E = 130 volt/m. What is the magnitude of this field in millivolt/
cm?

Since 1 volt = 103 millivolt and 1 m = 102 cm, we have

E— 130 volt — 130 [ volt 130 103 millivolt 1300 millivolt .
m I m 10% cm
Example 1-3.5 The average density of atmospheric electric charge
near the earth’s surface is p = +3-107"2amp-sec/m3. Convert this

quantity to ¢gs electrostatic -units by converting each basic unit.
According to Table A-4 of Appendix I, I amp = 3 - 10° cm! gt sec2.
Furthermore, 1 sec = 1 sec and | m = 10% cm. We have therefore

amp - sec 1 amp - 1 sec
_ L1o-12 S8 2 R Ty o b Rt vl
p=-+3-10 3 +3-10 Tk

3. 10° cm? gt sec2 - [ sec

-~ . 10-12
= +3-10 (102 cm)3

= 19-10"° cm~¥ gt sec?
(this result could be obtained directly from the relation between the units of

p given in Table A-4).
A

1 The correlations between units of various systems are given in Appendix L.
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PrOBLEMS

1.1. Which, if any, of the following expressions are deﬁnifcly wrong ?

- Ry + R, 1 —2¢
(a) R*R1+2R2’ (b) E_47reor3’ (c) V=V,e?,
dv d*E
- — — C p— i 4 2 .
(d) 7= 77 (e) V fE(sm ar)dr + V,

The dimensions are as follows: [E] = [volt/m]; [¢] = [amp - sec]; [g,] =
ramp - sec/volt - m]; [r] = [m]; [Vo] = [V] = [volt]; [{] = [sec].

1.2. The resonance frequency of an L-C circuit depends on the induct-
ance L[volt - sec/famp] and the capacitance Clamp - sec/volt]. By using
dimensional considerations, find how this frequency will change if the
capacitance is doubled.

1.3. The current in an R-C circuit is given by I = I~ TFind « if it
is known that « depends on R[volt/famp], C[amp - sec/volt], and {[sec], is
proportional to ¢, and does not contain any numerical constants.

1.4. The representation of correlations between quantities by means of
dimensionless products results in a reduction of the number of variables
(according to a ‘“‘rule of thumb,” the number of independent dimensionless
power products which can be formed from a given set of quantities is equal
to the number of quantities involved, minus the number of basic measurables
in terms of which these quantities are expressed). Taking this into con-
sideration, what is the advantage of using dimensionless products for the
experimental determination of correlations between quantities and for the
graphical representation of functional dependences?

1.5. Often the number of dimensionless products obtained from a
given set of quantities can be made smaller by increasing the number of
basic measurables (independent units) in terms of which the quantities are
expressed. Use this method to find the functional dependence between the
charge ¢[g] of a parallel-plate capacitor, separation 4[/] of the capacitor’s
plates, area of the plates A[S], and voltage V[V] applied to the capacitor,
assuming that the problem is subject to a certain law represented by the
constant g,[¢q//SV], where § is some independent unit of surface area not
equal to (2. Show that this dependence cannot be obtained by dimensional
means if 4 is measured in units of /2

1.6. Dimensional analysis can be used for solving certain partial
differential equations by reducing them to ordinary differential equations.
Apply this method to the following problem. The approximate “‘telegraph
equation” for an underwater cable is
ov oV

CR57 = %>
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where V' is voltage, ¢ is time, x is distance, and C and R are constants. Show
that if the voltage V is applied at t = O to the terminal x = 0 of an infinitely
long cable, then the voltage at any point x of the cable and at any later time

¢ is given by
V= VO<I - \/L_ fqe—*fzdg),
mJo
CR

where § = - (Hint: use Buckingham’s theorem to express the

CR \
voltage V as V0f<A/T x) = V,f(é) and determine the function f by

substituting this expression in the telegraph equation.)

1.7. Convert Coulomb’s law formula stated in Example 1-3.1 to the
LMTI, LMTQ, LMT electromagnetic, and LM T Gaussian systems of basic
measurables.

1.8. Convert the formula for the capacitance of a sphere stated in
Example 1-3.2 to the LMTVI, LMTI, LMT electrostatic, and LMT
electromagnetic systems of basic measurables.

1.9. Convert Maxwell’s equations stated in Example 1-5.3 to the
LMTI, LMTQ, LMT electrostatic, and LM T electromagnetic systems of
basic measurables. '

1.10. Taking into account that in the mksva system the charge of the
electron is 1.6 - 107 amp - sec, what energy in ergs corresponds to 1
electron - volt if the electron is considered as a new unit of charge?

1.11. According to Rutherford’s model, an atom may be regarded as a
positive nucleus around which electrons rotate like planets around the sun.
The force bhetween the nucleus and the electrons is determined by
Coulomb’s formula stated in Example 1-3.1. (a) By analyzing the dimen-
sions of the single constant ¢, contained in this formula in the LMTQ
system, show that the clectrons obey Kepler’s third law. (b) In the LMT
electrostatic and LM T Gaussian systems, Coulomb’s formula contains no
constants. Yet, even in these systems one can deduce by means of dimen-
sional analysis that the electrons obey Kepler’s third law. How? (Hint:
look at the dimensions of electric charge.) (c¢) Consider Coulomb’s formula
in the LMTVI, LMTI, and LMT electromagnetic systems and show that
in these systems, too, one can deduce by dimensional analysis that the
clectrons obey Kepler’s third law.

1.12. The electric field E produced by an ‘‘electric dipole’” depends on
the “‘dipole moment’’ p, g,, distance 7 from the dipole, and on the angle be-
tween the dipole and r. Show that the field is proportional to /7.

1.13. Suppose that an atom may be imagined as a nucleus of charge +g¢
surrounded by a thin spherical shell (electron shell) of radius r and charge -g¢.
° and the permittivity of space g,, show

Making use of the energy constant
that the lonization energy of such an atom (the energy needed to increase the
radius of the shell to infinity) may be expected to be proportional to ¢*/7.
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1.14. The thermal energy generated in a wire when a current / passes
through it depends only on °, I, R (resistance of the wire), and on time ¢, Show
thar the energy is proportional to %

1.15. The magnetic field H of a current-carrying loop has been found to
iepend on the area of the loop, the current in the loop, orientation (angle)
»f the loop, and the distance from the loop. The field also has been found to
be proportional to the area of the loop. Show that the fleld must then be pro-
portional to the current in the loop and inversely proportional to the cube of
the distance from the loop.

1.16. It has been found that electromagnetic energy is propagated in space
by means of ‘‘Poynting’s vector’ (representing energy flow per unit area per
unit time) whose dimensions are [MT-3]. It also has been found that Poyn-
ting’s vector depends on the energy constant °, the electric field £, and the
magnetic field H. Show that Poynting’s vector is proportional to £ and H.

1.17. In a “‘unipolar current generator’’ a cylindrical magnet of radius
a and induction (flux density) B is turned with angular velocity w about its
longitudinal axis. The current is generated in a fixed wire, one end of which
touches the center of ong end of the magnet, and the other end slides along
the surface of the magnet. Show that the current generated in the wire may
be expected to be proportional to wa?B/R, where R is the resistance of the
magnet and the wire.

1.18. A perfectly conducting submarine moves with velocity » in water
of conductivity ¢ in a region where the induction (flux density) of the earth
magnetic field is B. The motion of the submarine through the magnetic field
generates an electric current in the water and the density of the current, J,
at a given point of observation fixed relative to the submarine depends only
on v, 6, and B. Show that the current density is proportional to cvB.

1.19. A perfectly conducting space ship of linear dimensions / enters with
velocity v into a magnetic cloud of induction (flux density) B and conductivity
0. Show that the ship will experience a retarding force proportional to £.

1.20. A planet of radius 2 and conductivity ¢ has a magnetic induction
(flux density) field B. The planet rotates with angular velocity . Show that
if the space around the planet may be assumed a perfect conductor, the planet
may be expected to lose its rotational energy at the rate P = °Cow?a’B?,
where C is a numerical constant. '




VECTOR ANALYSIS

The mathematical deseription of electromagnetic phenomena
becomes especially simple and clear if it is based on the methods of
vector analysis, Vector analysis provides an efficient shorthand for
writing relations between physical quantities, and at the same time
makes it possible to visualize the physical meaning of these relations
distinctly and exactly. As a result, in contemporary physics, and in
electromagnetic theory in particular, vector analysis is both a standard
mathematical tool and a mode of thought. It is therefore well worth
while to develop a familiarity with vector analysis before proceeding
to formulate electromagnetic theory. The fundamentals of vector
analysis are presented in this chapter.

2-1. Scalars and Vectors

Physical quantities which are not associated with a direction or
orientation in space are called scalars. They can be adequately specified
by the statement of their numerical value and dimensions. Typical
examples of scalars are mass, temperature, and energy. Mathematical
operations with scalars obey the rules of ordinary algebra and ordinary
calculus (“‘analysis”). Many physical quantities, however, are associ-
ated with some direction or orientation and require for their adequate
specification the statement of this direction or orientation in addition
to the statement of the numerical value and dimensions. Examples of
such quantities are moment of inertia, rotation through an angle, force,

18
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velocity, and displacement. Some of these directional quantities obey
the well-known polygon law (parallelogram law) of addition. The quan-
tities which obey this law are called vectors. Typical examples of vectors
are displacement, velocity, force, and rotation through an infinitesimal
angle.

Vectors may be represented graphically by means of arrows. The
length of the arrow represents the numerical value, or the magnitude,
of the vector. The orientation of the arrow shows the direction of the
vector,

Algebraically, vectors are designated by bold-face letters in con-
trast to scalars, which are designated by ordinary letters. Thus, a
“vector A” is designated by A. The magnitude of A is denoted either
by the symbol |A|, or by the letter 4 in ordinary type. Mathematical
manipulations with vectors obey the rules of vector algebra and wvector
analysis.

2-2. Addition and Subtraction of Vectors

As already stated, vectors are added in accordance with the
polygon law of addition. A three-dimensional example of vector
addition is shown in Fig. 2.1.

A
D=A+B+C

Fic. 2.1 Addition of vectors.

Vectors are subtracted with the aid of the negative vectors. The
negative vector —A is defined as the vector whose magnitude is the
same as that of A, but whose direction is opposite to the direction of A,
The difference of two vectors B and A is defined as the sum B + ( —A).

Two vectors are equal if their difference is zero——that is, if they are
equal both in direction and in magnitude.
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The sum (and difference) of vectors is characterized by the same
properties as the sum of scalars: the commutative property

A+B=B+A
and the. associative property

A+ (B+C)=(A+B)4C.

These properties may be easily established by examining Fig. 2.2 and
Fig. 2.3.

Fic. 2.2 Commutative prop- Fic. 2.3 Associative property of vector
" erty of vector addition. addition.

2-3. Multiplication of a Vector by a Scalar

The product nA or An of a vector A and a scalar n is defined as a
vector whose magnitude is equal to n |A|, and whose direction is the
same as that of A, if n > 0, or opposite toit, if n << 0. Ifn = 0,7A = 0.

Graphically, a vector B = nA is represented by the arrow whose
length is n times the length of the arrow representing vector A and
whose direction is parallel to that of A. Figure 2.4 shows vectors A, B,
and C, where B = 2A and C = —1A.

As can be demonstrated by graphical construction, the product of
a vector by a scalar is diséributive over addition of the scalars

(n + m)A =nA + mA
as well as over addition of the vectors
n(A + B) = nA + nB.

It is clear, that if two vectors A and B are paralle] to each other,
then there exists a relation

B = 1A,




v

fxample 2-3.1

ne riangle BEC we have

Example of the multiplication

r by a scalar.
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= mayv be written more symmetrically as

ung n = a/b. Conversely, the existence of such a relation indicates

following example gives an illustration of the methods of
or z2lgebra based on the foregoing definitions.

Show that the medians of a triangle intersect each
=r =t a point of trisection.

vectors a and b represent the sides BC and AC of the triangle ABC,

~own in Tig. 2.5; let vectors d and e represent the medians of this

zle. so that points D and E arc the midpoints of a and b; and let F

h

er

pa

d+ib=a.

== point of intersection of the medians. In the triangle ADC we have

e + 4a =h.

Vector method of proving that the medians of a triangle trisect
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The vector FD is some fraction x of the vector e, or FD = xe. Similarly,
FE = yd. In the quadrangle FOCE we then have

xe + ja = yd 4 {b.

Eliminating e and d from this equation by means of the previous two, we
obtain
#(b — fa) + 1a = y(a — 1b) + ib,
or
(=x+i—ya=(—ly+i—xb
But since a and b are not parallel, the equation can hold only if

—3x 4+ 4+ —9»=0 and —iy4+ $—x=0.

Solving these two equations for x and y, we finally obtain x = y = 4, so that
F is a point of trisection of each median.

A

2-4. Representation of Vectors-by Means

of Scalar Components

It is often desirable to perform mathematical operations with
vectors by purely algebraic means, without supplementary geometrical
constructions. This can be accomplished by representing both the
magnitude and the direction of a vector analytically by certain numbers
or by symbols denoting these numbers. The vector itself is represented
in this case by a set of scalars.

The possibility of representing a vector by a set of scalars is based
upon the fact that any vector D can be expressed as a linear combination

D =4A 1+ /B + C

of any three vectors A, B, and C, provided that A, B, and C are not all
in one plane (Fig. 2.6). The vectors aA, 6B, and ¢C are called the
vector components of D in the direction of A, B, and G, respectively.
Geometrically, they constitute the sides of a parallelepiped with
vector D as a diagonal. The scalars a, b, and ¢ are called the scalar
components of D along the directions of A, B, and C. The vectors A, B,
and G which determine the directions of the vector components of D are
called the basic vectors. The determination of the components of a vector
1s called the resolution of the vector. For a given set of basic vectors the
resolution of a vector is unique—that is, different vectors have different
components, and vice versa. Therefore, once the three basic vectors
A, B, and C are given, any vector D can be uniquely specified by its
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Fi1c. 2.6 Representation of vector D
as the sum of three vectors 4A, bB,
3" and ¢C.

woonents zA. FB, and ¢C, or, which is most important, by its

emis 2, b, and ¢.
hree vectors may serve as basic vectors if they are

1 = o= o.zme, the most convenient sets of basic vectors consist of
o = .oy perpendicular vectors of magnitude (length) 1. Such

I unit vectors. The most common set of

= = +== Z.rection of the positive x-, y-, and z-axis, respectively, of
Iy > 3 (i b

§ secnamewlar system of coordinates,
z o A Fiz. 2.7 can be expressed in terms of the Cartesian
A=41—4dj— 4k,
e i7= the scalar components of A corresponding to

As can be seen from

T:= 1.7 Representation of vector A as the sum of’its Cartesian components.
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Fig. 2.7, 4,, A,, and A, represent the magnitudes of the projections of
A along the directions of the coordinate axes and may be obtained
therefore by multiplying the magnitude of A by the cosine of the angle
between A and the respective axis. Thus

A, =dcos (A jx), A, =dcos(A,y), A, = A4cos (4, z).

Conversely, since vector A and its components 4., 4,, and 4, form the
diagonal and the sides of a rectangular prism, the magnitude of A
may be obtained from 4,, 4,, and 4, by the formula

A =VA42 4+ AL

- With the aid of a simple geometrical construction it can be
demonstrated that the sum of two vectors

A=4i+4j5+4k and B=2Bi-+ B,j+ Bk
can be written as
A+B=(4, +B)i+ (4, +B)j+ (4, + Bk,

so that the addition of vectors reduces to the addition of the corre-
sponding scalar components of these vectors. Similarly, the multiplica-
tion of a vector by a scalar reduces to the multiplication of the scalar
components of this vector by the scalar:

nA = (nd)i + (nd,)j + (nd,)k.

Thus, the representation of vectors by means of scalar components
makes it possible to reduce mathematical operations with vectors to
purely algebraic operations with their scalar components, so eliminating
the necessity of geometrical constructions for the performance of the
calculations.

2-5. Scalar, or Dot, Product of Two Vectors

Two kinds of products of two vectors A and B are defined in
vector algebra. The first kind is called the scalar, or dot, product and is -
denoted as A - B (read “A dot B”). The second kind is called the vector,
or cross, product and is denoted as A x B (read “A cross B”’).

The dot product of two vectors is defined as a scalar equal to the
product of the magnitudes of these vectors multiplied by the cosine of
the angle between them:

A.B = |A| [B| cos (A, B).
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According to this definition, the dot product possesses the commutative
Droperty
A-B=B: A

and, as one can show with the aid of a geometrical construction, also
the distributive property
A-B+C)=A-B+A.C

If two vectors A and B are perpendicular, cos (A, B) =0, and

therefore
A-B=0 (A | B).

If A is parallel {or antiparallel) to B, cos (A, B) = 41, and therefore
A-B= 1 |A||B| = +4B (A[B),
where the minus sign holds if A and B are antiparallel. The dot
product of a vector A with itself is
A A = |A][A] = 42
The dot products of the Cartesian unit vectors are

i-j=j-k=k.i=0,
and

For any two vectors, N
A=4i-+4j+ A4k and B = Bji + B,j + Bk,
we can write (using the distributive property)
A-B=(d4i+4j+ k) (Bi+ Bj+ Bk
=ABi-i+ A4,Bi-j+A4ABi-k +ABj-i+ AB,j-j
+4,B,j-k+4Bk.-i - ABk-j+ A Bk -k

and, substituting the above-stated values of the dot products of the unit
vectors, we obtain

A.-B =AB, + A,B, + A,B..

Thus the dot product of two vectors is equal to the sum of the products
of the corresponding Cartesian components of these vectors.

The dot product has many applications. By means of the dot
product one can easily find angles between vectors; the dot product
of a vector and a unit vector gives the component of this vector in the
direction represented by the unit vector; the dot product can be used
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for the solution of many geometrical problems; and, of course, it is
extensively used in the description of physical phenomena. An example
of the application of the dot product is given below.

v

Example 2-5.1 Derive the law of cosines for a triangle.
Let vectors a, b, and ¢ represent the sides of the triangle ABC (Fig. 2.8).
In this triangle we have

a=>b + c

Frc. 2.8 Vector method of deriving the law of cosines for a triangle.

Calculating the dot product a - a, we obtain

ara=(b-Lc):-(b+c)=b:-b+b.ct+c-bic-c
or

a? = b2 + bc cos (b, €) -+ ¢b cos (¢, b) + ¢2
But / (b, ¢} = / (e, b) = 180° — 0, and therefore

a? = b% + ¢ — 2bc cos 6.

2-6. Vector, or Cross, Product of Two Vectors

The vector, or cross, product A x B of two vectors A and B is
defined as a vector C (Fig. 2.9) whose magnitude is equal to the
product of the magnitudes of vectors A and B multiplied by the sine
of the angle between them,

IC| = |A x BJ = |A| [B|sin (A, B),

and whose direction is normal to both A and B, and such that vectors
A, B, and C form a right-handed system (a system of three vectors A, B,
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and G is called right-handed if a screw with a right-handed thread will
advance in the direction of G when turned from A to B through the
smaller angle). The magnitude of the cross product of two vectors is
equal to the area of the parallelogram having these vectors as its sides.

Since the rotation which carries A to B is opposite to that which
carries B to A, the cross product is not commutative, but rather

AxB = —-BxA,

TN
‘

\Area=leBl
|

—C=BxA

F16. 2.9 Definition of the cross product of two vectors.

The cross product is, however, distributive,
AxB+C =AxB+AxC,

as can be shown by means of a geometrical construction.
If two vectors A and B are parallel to each other, sin (A, B) = 0,
and therefore .
AxB =0 (A | B).
In particular, for any A

Ax A=0.

The cross products of the Cartesian unit vectors forming a right-
handed system (the only system used in this book) are

ixi=jxj=kxk=0
and
ixj=k jxk =i kxi=j,
jxi=-k, kxj=—1 ixk= —j.
By using these values of the cross products of the unit vectors, it is
possible to express the cross product of two vectors in terms of the
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components of these vectors. The calculation is similar to that which
was done for the dot product, and only the result of it will be given
here. If

A=Aji+Aj+A4k and B =253+ Bj+ Bk,
then the product A x B is
AxB = i(Asz - AzB'y) +j(AzBa: - ArBz) + k<ArBy - Asz)a

which can also be written in the determinant notation as

i j k
AxB=|4, 4, 4,
B, B, B,

Like the dot product, the cross product has many applications in
both mathematics and physics. An illustration is given in the following
example.

v
Example 2-6.1 Show that sin (¢ + f) = sin « cos f + sin f cos «.

Consider two vectors A and B in the xp-plane as shown in Fig. 2.10,
They can be written as

A =idcosa —jdsine and B =iBcosf + jBsin f.
Their cross product is by definition

A x B = kdBsin (2 4 f).

Fic. 2.10 Vector method of de-
termining sin (o + ).
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In terms of components, their cross product is
AxB=Xk(4.B, — A4,B,)
= k(4 cos « Bsin f + Asin o Bcos f)
= kAB(cos e sin f -+ sin « cos f3).
Hence

kAB sin (o + ) = kdB(cos a sin § + sin « cos j)

and therefore
sin (% + f) = sin « cos § + sin {§ cos .

2-7. Multiple Products of Vectors

With the aid of the dot and cross products of two vectors one can
build multiple products involving several vectors. Among them, two
kinds of triple products are especially important.

One of these products is the box, or triple scalar, product A - (B x C),
whose magnitude represents the volume of a parallelepiped having A, B,
and G as the edges. This product is invariant to a cyclic permutation
of vectors,

A-BxC)=B.-(CxA) =C.(AxB),
and to an interchange of the dot with the cross,
A-BxC)=(AxB).C,
but changes sign if any two vectors are interchanged,
A-BxC) = —A.(CxB).

It is equal to zero if any two of the three vectors are parallel. In
particular,
A-(AxC)=0
for any A and G. These properties of the box product can be easily
verified with the aid of a geometrical construction.
Another important triple product is the (riple cross, or triple vector,
product,

Ax (B xQ),
which can also be written as the difference of two other triple products
Ax(BxC =BA-C) -C(A-B). (2-7.1)

This is one of the most frequently used expansion formulas in both
vector algebra and vector analysis (‘“‘bac cab’ expansion). The proof
of this formula is left to Problem 2.6.
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2-8. Differentiation and Integration of Vectors

A variable vector A is called a wector function A(s) of a scalar
variable s if to every value of s there corresponds a definite value of A.
The derivative of a vector function with respect to a scalar is defined as
the limit

d e Al As) —A(s)
ds A(s) _Al,l?}) As )
According to this definition and to the rules of subtraction (addition)
of vectors in terms of components, the derivative of A(s) can be ex-
pressed as
dA da,(s)y . d4,(s).  dA,
(9 _ A g A . Al

ds s ds ds k.

The differentiation of vectors is a limiting process of the operations
of subtraction (addition) of vectors and division (multiplication) of
vectors by a scalar. Both of these operations obey rules identical with
the rules of ordinary algebra. Therefore the rules of differentiation
known in ordinary calculus are applicable to expressions involving
vectors. For example, if ¢, A, and B are functions of a scalar 5, we have

‘arm =22
%(wA)=Z—ZQA+¢%,
%(A-B) :“;_‘?.B+A.‘§,
G%(AXB):%XB—}—AX%}—}.

Partial differentiation is similarly defined for vectors which are
functions of several scalar variables. For A(x, y, z) the three partial
derivatives are

aA_aAz_+aAy, aAZk
é?_ax‘ ax‘]+8x ’

oA o4, 84, 04,

7 o Tl
oA 04,,  024,, 04,
— = i+ + =k,

dz 0z dz J 0z
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and the total differential is
JA JA JA
dA »——de ng'} —}—Edz.

Three types of integrals are especially important in vector analysis:

the scalar line integral fCA - dl of a vector A, the scalar surface integral

fSA - dS of a vector A, and the volume integral (v U dv of a scalar U.

Fic. 2.11 Definition of the scalar o Al
line integral. a

The line integral fb A . dl extended from point 4 to point 4 along

/3

curve C (Fig. 2.11) is defined as the limit
b
A.dl=1lim Y A,- AL,
a Al—0 ¢

where Al is an element of the curve C taken at the point 7 in the
direction from a to b, and subject to the condition D Al, = length of

1
the curve C, while A, is the value of the vector A at this point.!

Taking into account that the line element 41 can be expressed in
terms of its Cartesian components as

dl = dxi + dyj + dzk

and using the rules of dot multiplication, we can write
b b 7 b
f A.dl =f (Agdx + Aydy + A,d2) :f Acos (A, dl)dl. (2-8.1)

1 The scalar line integral has a simple mechanical meaning: if F represents a
a
a particle from point a to point .

b
force, then the integral J F . dl represents the work done by this force in moving
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Often line integrals must be evaluated along a closed path. In
this case the integral sign is written as ff, and the integral is called the

circulation integral. Unless otherwise stated, the path of integration must
be right-handed relative to the enclosed area (see below).

\4
Example 2-8.1 Evaluate $A - dl along the path shown in Fig. 2.12,

if A = 2xi + %4,

<

(a,a)

a

R Fic. 2.12 Example of the evalua-
(0,0) (a,0) x stion of a scalar line integral.

The integral can be written as the sum of three integrals corresponding
to the three rectilinear portions of the path, Using Eq. (2-8.1), we then have

a,0 a,a 0,0
%A-d!: A-dl—}—f A-dl—}—f A.dl
0,0 a,0 a,a
a,0 a,a 0,0
= (2xy dx 4 x% dy) —{—f (2xy dx + x2dy) —{—f (2xy dx 4 2% dy).
0,0 a,0 a,a
Since the first of these three integrals is taken along the x-axis, where y = 0
and dy = 0, this integral is equal to zero. Since x = 2 and dx = 0 along

the second portion of the path, the second integral is
f atdy = a%
0

Finally, since » = » along the third part of the path, the third integral is

0 5310 243 43

0,0 2,8
f (222 dx 4 Y2 dy) = — | + %
a,a 3 a 3

a
= a3,
0

a

For the complete path we thus obtain
fj;A-dI:O+a3—a3=0.
A

The second type of integral frequently used in vector analysisis the
scalar surface integral.




VECTOR ANALYSIS 33

A,
AS,

AS;

Fic. 2.13 Definition of the scalar surface integral.

As a preliminary step to the definition of the scalar surface integral
we shall define the surface-element vector dS. The vector dS (or AS)
is defined as a vector whose magnitude at any point of a surface is
numerically equal to the infinitesimal element 4S of the surface area
at this point and whaose direction is normal to this element (the sense
of the direction of 48 is determined by certain conventions that will be
stated later). In terms of Cartesian coordinates, 48 is given by

dS = +(dvdzi -+ dzdvj + drdpk).

The scalar surface integral {S A - 48 is defined as the limit

fA-dS:limEAi-ASi,
S

AS—0 ¢

where AS, is an element of the surface area § taken at the point ¢
(Fig. 2.13), subject to the condition z AS, = §, while A, is the value of
the vector A at this point.

The product A - 8 is called the flux of the vector A through the

surface element 5. The surface integral Js A - 48 represents the total

flux of A through the surface of integration §, and therefore this
integral is often called the flux integral.
A flux integral can be written in scalar forms:

f A-dS = + f f (Ad,dydz + A,dzds + Advedy) = f A cos (A,dS) dS.
S S S
(2-8.2)

As in the case of line integrals, a surface integral which has to be

evaluated over a closed surface is designated by ff For a closed
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surface the positive direction of dS is, by convention, outward with
respect to the volume enclosed.

v

Example 2-8.2 Evaluate $xi.dS over the surface of a cube of side a
(Fig. 2.14).

The surface integral may be split into six integrals corresponding to
the six surfaces of the cube. The integrals over four of these surfaces vanish,

z
c g
b f /y
R it PPt e
dsS ) ds
d . h
’/‘/,
a 7 e e
a [ @ ¥
NP P

Tic. 2.14 Example of the evaluation of a scalar surface integral.

because cos (i, dS) is zero for all surfaces other than yz-surfaces. For the
first yz-surface, abcd, we have

fxi-dS: —-fde.

abed abed
(Minus sign is needed because the direction of the outward normal at this
surface is opposite to the direction of i.) Recognizing that x is constant and

is equal to —a/2 on the surface abcd and taking into account that (b ddS = a?,
Jaoe

we have
ds == —2 dxg — 2 B
X1 -

abed abed
Similarly, for the second remaining integral we obtain

3
fxi-dS:%.

efgh

%xi-dSZaa.

Therefore
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The third type of integral frequently used in vector analysis is
the volume integral of a scalar function U: J.v Udv. This integral is

identical to the triple integral {§ U dx dy dz used in ordinary calculus.
In addition to the scalar integrals described above, vector integrals

of the types fCAxdl, ‘:SUdS, J.SAde, etc. occur in vector

analysis. Their definitions are analogous to the definitions of the line
and surface integrals which we have just learned.

2.9. Scalar and Vector Fields

If a quantity @ has a definite value everywhere within a certain
region of space, then this region of space is called the field of . The
field of a scalar quantity is called a scalar field, and the field of a vector
quantity is called a vector field. The quantity @, which determines a
scalar or a vector field, is called, respectively, the scalar or vector
point _function.

An example of a scalar field is the temperature field—for instance,
a region of space occupied by a heated body. Every point of the tem-
perature field is associated with some definite temperature. An example
of a vector field is the velocity field—for instance, a region of space
occupied by a moving fluid. Every point of the velocity field is
associated with some definite velocity.

Both scalar and vector fields can be represented graphically by
means of field maps.

A three-dimensional field map of a scalar quantity U consists
of a set of level surfaces. Each level surface is a surface at every point of
which U has the same value, Different level surfaces correspond to
different values of U. A two-dimensional field map of U consists of a
set of level lines. Each level line is a line at every point of which U has
the same value and, again, different level lines correspond to different
values of U. .

Familiar examples of the two-dimensional maps of scalar fields
are weather maps. They show the temperature field of the air at the
earth’s surface by means of different “isotherms” (level lines joining
geographical points of the same temperature) and also show the field
of atmospheric pressure at the earth’s surface by means of different
“isobars” (level lines joining geographical points of the same barometric
pressure).,




r_

36 MATHEMATICAL INTRODUCTION

A map of a vector field consists of a set of field lines. On the field map
of a vector quantity V, each field line is a curve such that the tangent
at every point of this curve is in the direction of the vector V at this
point.

Familiar examples of crude vector field maps are the “lines of
force” patterns produced by grass seeds in electric fields or by iron
filings in magnetic fields (Plates 1-12). In these patterns the field
lines are represented by the filaments formed by the seeds or filings.

2-10. Gradient

In studying the field of some scalar function U it is often necessary
to know the rate of change of U corresponding to a transition from one
point of the field to some other, neighboring point. This information
can be obtained with the aid of a vector called the gradient of the field of
U or, simply, “gradient U” and defined by the formula

gradU:%?i%—%j—)]j +g—fk. (2-10.1)
For any point of the field this vector gives the rate of change of U/ in
the direction normal to the level surface drawn through this point and
is oriented in this direction towards the points of larger U.

To demonstrate these properties of grad U, we shall consider the
increment of U(x,y, z) corresponding to a transition from a point
x, ¥, z to a point x + dx,y + dy, z + dz. This increment is given by
the total differential

oU oU oU
dU:a—ﬂ’x—}—a—yﬂﬁ)-}—a—z'dZ»

The right side of this formula can be written as a dot product of two
vectors:

oU oU oU

Eri i m Pl
oU , U, oU ) . .
- — — O L \
(axx—,L 8yj+8zk (dxi 4 dyj + dzk).

The first of these vectors we recognize as grad U, while the second
vector is merely dl—vector joining the point x, y, z with the point x + dx,
v + dy, z + dz. We can write therefore

dU = grad U - dl. (2-10.2)




VECTOR ANALYSIS 37

Suppose now that both points x, y, zand x + dx, » -+ dy, z -+ dz belong
> the same level surface, so that 41 lies in this surface. Since U is
constant on a level surface, dU is then zero, and we have

0 = grad U.4dL

Since both grad U and 4l are assumed to be different from zero, this
equation shows that grad U is perpendicular to 41 in this case. By
supposition, however, dldies in the level surface, and, consequently,
grad U must be perpendicular to this surface. To determine the sense
of direction and the magnitude of grad U, we shall orient the coordinate
axes in such a manner that two of them, say y and z, are tangent to the
level surface, while the third one, x, is normal to it. Then we have

grad U = Z—fi,

which again shows that grad U is normal to the level surface, and also
shows that grad U is directed towards the points of larger U and that
the magnitude of grad U is equal to the rate of change of U in the
direction normal to the level surface.

Since U at any point of the field changes most rapidly in the
direction normal to the level surface drawn through this point, grad U
can be interpreted as a vector whose direction and magnitude at any
point represent the direction and magnitude of the fastest rate of change
of U at this point.

The rate of change of U in a direction s, dU/0s, is called the
directional derivative of U in the direction of s. This derivative is equal
to the component of grad U along s. .

A vector field that can be represented as the field of the gradient
of a scalar function U is called a potential, or conservative, field, and the
function U (or —U) is called the potential of this field. The level lines
and the level surfaces corresponding to a conservative field are called
the equipotential lines and the equipotential surfaces.

v
Example 2-10.1 Find the gradient of the field of the position function 7

representing the distance of the points of space from the origin of Cartesian
coordinates.
In terms of x, », and z, r is

r=Vx2 4 y% L 22
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so that

o 0 -
gradr = 5 VI 158 4 2 5 VR £ P R 2 2 VAT 1 Pk

N ?,QJ

X . J .
= l+ zk
Va2 4 22 \x2+y2+221+\/x2+y2+z2

B 1
—\/x2+y2+zz

=1 —

(¥l + yj + zk) = - (xd +yj + zk).

Since the expression in parenthesis represents the vector r, we have

r

grad r = or gradr=r,,

7
where r, is a unit vector in the direction of r away from the origin.!

A

2-11. Divergence and Curl

Just as the gradient yields impo}tant information about scalar
fields, two other vector-analytical expressions—divergence and curl—yield
important information about vector fields.

The divergence of the vector field of V or, simply, “divergence V>’
is a scalar quantity defined as
ov, .oV, aV

+ =+ ==, (2-11.1)

divV = ox oy 0z

The curl of the vector field of V or, simply, “curl V*’ is a vector
quantity defined as

Vi (aVz B aVU) L. (aVz B aV,) ok (aVv 3 aVz)
"\ T ez) T3\ T s % )
(2-11.2)

The origin of the terms “divergence’ and “curl” is connected with
the study of the motion of fluids. Their physical significance may be
illustrated with the aid of the following example. Suppose that water
flows in some reservoir from certain points where it is being “produced”
to certain points where it is being “consumed.” The field of the water
velocity V in this reservoir constitutes a vector field. If we calculated
div V for different points of this field, we would find that div V is

! Throughout this book we use the subscript “‘2’’ to identify unit vectors. Another

¢ 2
A

frequently used notation for unit vectors is above a letter.
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essentially a measure of the amount of water produced or consumed
at these points, and that div V is zero everywhere except at the points
where the water is produced or consumed. Similarly, we would find
that curl V is a measure of the magnitude and direction of the rotation
of the water in the reservoir. Experimentally, curl V can be manifested
with the aid of a small paddle wheel immersed in the water. The wheel

— N\

(a) (b)

(c) (d)

Fie. 2.15 Field lines of a vector field V near a point where
(a) div V =0, curl V.=0
(b) div V £ 0, curl V.=0

(c) divV =0, curl V.£ 0

(d) div V £ 0, curl V 2 0.

turns when placed at points where curl V is not zero. The maximum
angular velocity of the wheel is at all points proportional to curl V
at these points, and the axis of rotation of the wheel is parallel to curl
V when the wheel is so oriented that its angular velocity is a maximum.

On field maps, the divergence is usually different from zero only
at the points where the field lines originate or disappear, and the curl
is usually different from zero only at the points surrounded by closed
or spiralling field lines (Fig. 2.15).2

A vector field whose divergence is everywhere zero is called a
solenoidal field. A vector field whose curl is everywhere zero is called an
irrotational field.

1 Note, however, that on the map of the field V = yi all lines are straight, but
curl V is everywhere different from zero.



40 MATHEMATICAL INTRODUCTION

v
Example 2-11.1 Find the divergence and curl of the field of the position

vector r = xi + yj + zk.
From the definition of divergence we have

. ox dy Oz
dlvr:-a_x+§}_z+a_z::3'

Similarly, from the definition of curl we have

{0z Oy {0x 0z P Ox\
C“f“=’(a7 —5;.) +J(‘az—5;) “‘(a-é;) =0
A

2-12. Operator V (‘““del”)

Operator, or symbolic vector, de/ is denoted by the symbol V and

is defined by the expression
0 c 0
=i—+j= +k—.
V=i ox T3 dy + 0z
A “multiplication” of a scalar U or a vector V by this symbolic
vector produces, respectively, the gradient of U or the divergence and

curl of V:

VU=i%J+j%J+kg—f=gradU,
v.V :% -+ aaZ” + aazz = div V,
+k(%? — aazx) = curl V.

I't is often more convenient to express the gradient, the divergence,
and the curl by means of the operator V rather than by means of the
previously introduced symbols. We shall use this operator frequently,
writing

VU instead of grad U,
V . Vinstead of div V,

V x Vinstead of curl V.

With the aid of the operator V one can simplify many vector-
analytical calculations. Since V is both a symbolic vector and a
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differential operator, the rules for the calculations of expressions involv-
ing V are a combination of the rules of vector algebra and vector
differentiation. These rules can be summarized as follows:

(1) If V precedes a sum Y a,X,, where the a,’s are constants and
the X,’s are point functions representing scalar or vector fields,* then

V(> aX,) =2 a, VX,

(2) If V precedes a product of point functions X, Y, and Z, then
the calculation is done in two steps. First, the product is rewritten as
the sum

V(XYZ) = VXY,Z, + VX, YZ, + VX,Y,Z,

where the original order of all the symbols is preserved and V is applied
to only one function in each product, different for each product,
while the remaining functions are treated as constants, as indicated by
the subscript “c.” (This s called ““differentiation by parts.””) Second,
the calculation is completed bv transforming each product according
to the rules of vector algebra so that all functions with subscript “¢c”
precede V, and the subscripts are then dropped.

v
Example 2-12.1

dv({(UV) =V.{UV)=V.UV, +-V.UV=VU.V . +UV.V
=V. VUL UV.V=V.grad U+ UdivV.

Example 2-12.2

div(iVxW) =V.(VxW) =V.VxW, V.V, xW
=VUxV.-W, - V. WxV, =VxV.W, - VxW.V,
=W, - VUxV-V..VXxXW=W.VYxV_V.VxW
=W-curl V- V.curl W.

Here we have used the properties of the box product of three vectors.

A

Operator V can operate upon itself as (V-V), (V x V), and
V(X), where (X) is an expression already containing V. The first of
these operations results in a new operator called the Laplacian operator,
vz,

52 82 82
V . v == V2 = — 4 — -
( ) axt oy? T 0z*

1 X, incorporates « or X in the case of vector fields.
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The expression V2U is called the Laplacian of U. The second operation,
(V x V), according to Section 2-6, produces a zero. The third opera-
tion depends on the nature of (X). A typical example of this operation
is Vx (V xV); the application of the expansion formula (2-7.1) to
this expression results in an important vector identity

V x (VxV)=VV.V)— V2V, (2-12.1)

2-13. Fundamental Properties of Vector Fields

The fundamental properties of vector fields may be summarized
with the aid of the following vector-analytical theorems.!

Gauss’s Theorem. The flux integral of a vector point function A
extended over a closed surface § is equal to the volume integral of
div A extended over the volume bounded by the surface §

ff;A-dS ﬁfV-Aa’v. (2-13.1)

Stokes’s Theorem. The circulation integral of a vector point function
A extended along a closed curve Cis equal to the scalar surface integral
of curl A extended over any surface bounded by the curve €

fﬁA-dl :foA-a’S. (2-13.2)

Helmholtz’s Theorem. A vector field V is uniquely determined by
its divergence and curl, V- V and V x V| if they are given throughout
all space and if V approaches zero at infinity at least as 1/(distance)?,
or, as one says, V is “regular at infinity.”

Poisson’s Theorem. A vector field V, regular at infinity, can be
expressed in terms of its divergence and curl as

v | V(V-V) — Vx (VUxV)
o 4-77' r

Allspace

df.  (2-13.3)

Corollary: A vector field V, regular at infinity, whose curl and
divergence are zero outside a finite region of space, can be expressed as

V=_Vp+ VxA, (2-13.4)

! Special considerations may be needed when applying these theorems to
discontinuous fields. Proof of the theorems and a discussion of their limitations
can be found in most texts on vector analysis. For simplicity, we do not always state
these theorems and corollaries here in their most complete or most general forms,
but instead use the forms ordinarily employed in physics texts.



VECTOR ANALYSIS 43

dv’

< A r

" P (x,'y, 2)

P(x,¥,2)

Frc. 2.16 Explanation of symbols used in Poisson integrals. The distance
between the points P’ and Pisr = V(x — x)2 + (y — )2 L (z — 2')%

where ¢, called the scalar potential of V, is given by
1 V.V
"

T
Allspace

&'+ g, (2-13.5)

and A, called the vector potential of V, is given by
1 f VxV

AL~
in

—— &+ A, (2-13.6)
Allspace d

@, and A  being arbitrary constants.! We shall call the integrals in
Eqgs. (2-13.3), (2-13.5), and (2-13.6) the Poisson integrals; in them 7
represents the distance from the point P’(x’, ', z’) where the volume
element of integration, dv’, is located to the point P(x, y, z) where V, ¢,
or A is being determined (Fig. 2.16).

Mathematical manipulations with vector fields frequently require
applications of the operator V to expressions of the type

J02)
Vi =2+ (p =)+ (2 = 2)°

b

occurring in Poisson integrals. When applying V to such expressions
one should keep in mind that they can be differentiated with respect
to the primed coordinates as well as with respect to the unprimed
coordinates. Whenever an explicit statement of the variables of
differentiation is needed, one uses the primed operator V' to indicate
an operation with respect to the primed coordinates and the ordinary
operator V to indicate an operation with respect to the unprimed

' A, can be also a gradient of any scalar function. Since the curl of a gradient
is zero, the choice of this function has no effect on V calculated from Eq. (2-13.4). Selec-
tion of various possible expressions for A, is called ‘‘gauge transformation.”
A, = constant is called ‘‘Coulomb gauge.”’
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coordinates. Similarly, if an explicit statement of the direction of
radius vectors occurring in Poisson integrals is needed, one uses the
primed vectors r’ and r/ to indicate a direction towards the point
%', ¥, z', and the ordinary vectors r and r, to indicate a direction
towards the point ¥, », z.

Designating an unspecified scalar or vector function f(x', »', z’)
together with an appropriate multiplication sign by (X), and using
the above notations, we have the following two operational relations:

v’ & _V(X) +r, ———(}? ) (2-13.7)
r r r
, . . 1 r r,
where we have used the identity V' - = — —* = —  and
r r r
o _ 09 138
r r

Combining these two relations, we oltain another useful relation:

V(X X X
(X) :Vu + V'—(—). (2-13.9)
r r r
v
Example 2-13.1 Using Gauss's theorem, evaluate the integral $x - dS

over the surface of a cube of side ¢ and compare'the result with that of
Example 2-8.2,
Since V. (xi) = 1, we have by Gauss’s theorem

ffxi.dS=fv-(xi)du=fdu:a3.

The same result was obtained in Example 2-8.2 by direct integration.

Example 2-13.2 Using Stokes’s theorem, evaluate the integral $A - dI,.
where A = 2xyi + x%j, along the path shown in Fig. 2.12 and compare the
result with that of Example 2-8.1.

The curl of A is

V x 20i + «%f) = k(2x — 2x) = 0,
so that by Stokes’s theorem

§ (291 + %) - dl =fV X (2 + %) - dS = 0.

The same result was obtained in Example 2-8.1.
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Example 2-13.3  Show that f VUdy = §Uds.

Applying Gauss’s theorem to the product GU where C is an arbitrary
constant vector, we have

fV- (CU) dv = fﬁ CU . ds.
Since V - (CU) = C + VU, we have, factoring C out from under the integral

sign,

C-fVUdv:C-#S U ds.

Since C is arbitrary, this equation can hold only if (see Problem 2.12)

fVUdv :% Uds.

»

Example 2134  Show that [V x Vdv = —$V x dS.
Applying Gauss’s theorem to the product C x V where C is an arbi-

trary constant vector, we have

fV-(CxV)dz;:ﬂngV-dS.

Since V. (Cx V)= —C.(Vx V), and since G x V-4d8 =C.V x 4§,

we obtain, factoring C out from under the integral sign,
-C-fV X Va’v:C-ﬂgV x dS.
Since C is arbitrary, this equation can hold only if
fV dev:—fi;V x dS.

v v
Example 2-13.5 Simplify V'« — and V' x — .
r r

Substituting (X) = +V and (X) = xV in Eq. (2-13.7), we have

v V.V Vv vV VxV
V.—= +r,c5 and V' x—= +r, X 3.
7 r r 7 7 7
Example 2-13.6 Prove the corollary to Poisson’s theorem.

Rewriting Poisson’s theorem in terms of the primed operators (to
g . p P
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avoid ambiguity) and using Eq. (2-13.9), we have

V:__ v(V . >_v' (V' xV)

- fV(V’ et o(ZYe

V/ 7
4 x ( x V)d + fV’ (V x V)a’v,
477 r r

where all integrals are extended over all space. The second and the fourth
integrals in the last expression can be transformed into surface integrals by
the formulas of Examples 2-13.3 and 2-13.4. This gives

Jo(T5 Y s
o« (T2 (Y v

Now, V' .V and V' x V, by the statement of the corollary, are different
from zero only within a limited region of space. The surface of integration
in the above surface integrals encloses, however, all space and thus is outside
the region where V' .V and V' x V differ from zero. Hence V'« V and
V'’ x V are zero everywhere on this surface, and the integrals vanish, We
therefore obtain

I V. 1 V' xV
V:——f v( )d —i——fo( - )dv
4 r
All space All space
But the ordinary operator V in these integrals can be factored out because

the integration is done over the primed coordinates, upon which V does
not operate. Hence we have

vV .V 1 V' xV |
V=—-V(— ') + V x | — —d').
47r r 4 r
All space All space
Dropping the primes on V' and designating the expressions in parentheses

by ¢ — ¢, and A — A_, where ¢_ and A  are arbitrary constants, we then
obtain the corollary to Poisson’s theorem.

and

A

2-14. Vector Wave Fields and Retarded Quantities*

Until now we have made no distinction between time-dependent
and time-independent fields. Certain time-dependent fields have,

* This section is not essential for the understanding of the material presented
in the chapters preceding Chapter 15. The study of this section may therefore be
postponed until Chapter 15 is taken up.
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nowever, special characteristic properties the knowledge of which is
=ssential for an adequate mathematical treatment of these fields. An
=specially important time-dependent field is the vector wave field.

The vector wave field is the field of a vector V which satisfies the
general wave equation

2
VxVxV+lav

AaE = K(x, », z,¢), (2-14.1)
where K is some vector function of space and time which, for simplicity,
will be assumed here to be zero outside a finite region of space (this
differential equation constitutes a mathematical expression for a wave-
like disturbance that propagates in space with the speed ¢).

An important special property of a vector wave field is that this
field can be represented not only by the ordinary Poisson integral of
Eq. (2-13.3) and ordinary potentials defined in the preceding section,
but also by the retarded Poisson integral and retarded potentials, as stated
in the following theorem.

Wave Field Theorem.! A vector field V satisfying Eq. (2-14.1) and
vanishing at infinity can be represented by the retarded Poisson

integral as

V= — 4i [V(V":) — Kl (2-14.2)

v
All space

(Note: the brackets in this and in the following integrals are the
“retardation symbol” to be explained below.)

Corollary 1. A vector field V satisfying Eq. (2-14.1), vanishing at
infinity, and having zero divergence outside a finite region of space
can be represented by the retarded scalar potential ¢* and the retarded
vector potential A* as

V = —Vg* + VxA* (2-14.3)
with ¢* and A* given by
V. K
p* = % V-V + K] dv' + ¢* (2-14.4)
T r
All space
and
K
A* = —1— f [——21 " + A%, (2-14.5)
4 T
All space

where K, and K, are the ordinary potentials of the function K of

! This theorem is crucial for the author’s representation of time-dependent
electric and magnetic fields in terms of charges and currents (see Section 15-7).
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Eq. (2-14.1) (sothat K = — VK, + V x K,), both vanishing at infinity,
and ¢% and A% are arbitrary constants.

Corollary I1. A vector field V satisfying Eq. (2-14.1), vanishing at
infinity, and having zero divergence outside a finite region of space
can be represented by the retarded scalar potential ¢* and the retarded
vector W* as

V = —Vg* + W*, (2-14.6)
with
1 v.
g* = — f VoV g g (2-14.7)
s r
All space
and
K ,
W* —= L f -[—]dv’ 4+ WE, (2-14.8)
7TAH space

where ¢% and W% are arbitrary constants.

In order to clarify the meaning of the above expressions let us
compare Eq. (2-14.2) with Eq. (2-13.3). "As one can see, these equations
are similar, except that the integral of Eq. (2-14.2) contains the
retardation symbol [ ] that is not present in the integral of Eq.
(2-13.3). This symbol indicates a special space and time dependence
of the quantities to which it is applied and is defined by the identity

[f] Ef(x’:.y,: Z,: t — 7/6)'

Therefore, whereas Eq. (2-13.3), written for a time dependent field,

has the form
1 fix',y 4
Vix,p, 2,t) =+ f £, 200 4
4 p

All space

Eq. (2-14.2) has the form

1 £z . 2 .
V(6358 = - f (x,J,:,t 716) g

All space

The basic difference between these equations is in the time dependence
of the integrands appearing in the two integrals. In the first integral,
the value of the integrand is that which the integrand has at the instant
¢ for which V is being determined. In the second integral, on the other
hand, the value of the integrand is not that which the integrand has at
the instant ¢, but that which it 4ad at some earlier instant ¢ = ¢ — 7/c,
or, as one says, the integrand is retarded.

The integrals of retarded quantities are mathematical expressions
reflecting the phenomenon of “finite signal speed”’—that is, the fact that
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zt the point %', 3’, 2z’ can be felt at the point x, y, z separated from the
—oint x’, y’, 2’ by a distance 7. The fact that wave fields can be expressed
‘n terms of the retarded integrals is therefore plausible, since in wave
fields physical effects are carried by waves, and waves propagate with
finite speed.

Mathematical manipulations with wave fields frequently require
applications of the operator V to retarded point functions. When
applying V to such functions, one should take into account that they
depend on space coordinates not only explicitly, but also implicitly
through 7 = V/(x — )2 + (y — ¥')2 + (z — z')? appearing in the re-
tarded time ¢ =t — rfe. One also should take into account that V
may operate with respect to x, y, z coordinates as well as with respect
to x', 3", 2z’ coordinates. Fipally, one should take into account thata V
operation may be performed upon a retarded point function taken at
the instant ¢ = constant as well as at the instant ¢ = ¢ — 7/¢ = constant
(the latter operation is identical with the corresponding operation upon
‘the same unretarded function, combined with the subsequent “retardation”
of the resulting quantity by replacing in this quantity ¢ by ¢ — 7/¢).

In order to avoid ambiguities with V operations we shall employ
special notations, as follows. If an operation is to be performed with
respect to primed coordinates, we shall use the primed operator V' in
writing this operation. If an operation upon a retarded function is to
be performed considering ¢ — 7/c as being constant, we shall denote
the operation as [VX] or {V'X], placing both the operator and the
function upon which it operates between the retardation brackets.
As before, we shall use the ordinary operator V for operations with
respect to unprimed coordinates, and we shall use the ordinary
notations V[X] or V'[X] for operations upon retarded functions when
these operations are to be performed considering ¢, rather than ¢ — /e,
as being constant.

We shall now derive several useful operational equations for
retarded functions.

Let us consider the operation 9[X]/0x"| . .., where [X] is some
retarded scalar or vector point function.! Taking into account that
retarded functions depend on x’, 3, and 2z’ not only directly, but also
indirectly through 7, we can write

9[X] _9[X]
o0x’ T ox

: certain time, ¢ = 7/¢c, must elapse before the result of some occurance

0[X] a(t — r/c)
Tt —fe) e, 0x

v,z .2t —rle

1 The notation ’y: - ¢ means “p’, z’, t are held constant.”
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x, Y 2

z

Fic. 2.17 The direction cosine of r with respect to the x-axis is cos « =
(x — &Y.

We can simplify the last term of this expression by observing that

A[X]

_0[X]
ot — rfe) TR

2’y,2 ot

b
z'y.z

and that
ot —rje)y x—x cosa

ox’ cr c ’

where cos « Is the direction cosine of r with respect to the x-axis
(Fig. 2.17). We then obtain

J[X]
ox’

_ax]

’
vzt 0x

cos « 0[ X]
Y2 t—rle ¢ al

.2

Analogous expressions can be obtained also for 9[X]/9y),. , and
for 9[X]/02'|, ., If we now multiply these expressions by i, j,
and k, respectively, and then add them together, we obtain the
following operational equation

o[X
V[X] = [V'X] -+ %[Tz]’ (2-14.9)
where r, =1icos« - jcosf + k cos y is the unit vector directed along

r toward the point x, », z.

In a similar manner we can obtain the corresponding equation
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for the unprimed V (assuming that X does not explicitly depend on
%, %, 2)
r, 9[X]
¢ ot
Combining Eqs. (2-14.10) and (2-14.9), we obtain an equation

correlating one unprimed V operation with two primed V operations
(V'X] = V[X] + V[X]. (2-14.11)

V[X] = (2-14.10)

Using this equation, we obtain the correlation

VBrﬂ _ YMEZX] L VX nlX] VX)) VIX]

r 72 7 r

and, combining the first and the last term of the last expression, we
obtain a useful equation
[X] [X]

[V'X]
— =V sV (2-14.12)

v 2
Example 2-14.1 Transform V'.[F] into an expression with [V’ . F].
Using Eq. (2-14.9), we have
r, O(F]

V'-[F]%[V"F]f Pkl Tt

Example 2-14.2 Transform V x [F] into operations with respect to
the primed coordinates, if [F] is a function of x', ", 2/, and ¢.
Using Eq. (2-14.11), we have

V x[F]=([V x F] — V x [F].

Example 2-14.3 Prove Corollary I to the wave field theorem, assuming
that V.V, K}, and K, are zero outside a finite region of space.

The proof of this corollary is analogous to the proof of the corollary to
Poisson’s theorem (Example 2-13.6). Rewriting Eq. (2-14.2) in terms of
primed operators, expressing K as K = —VK; + V x K,, and using Eq.
(2-14.12 |, we have

I [[V(V-V)—K]

V=— dv’
4 r
1 [V(V'.V) + VK — V x K,] &
T 4x r ¢
.V - 1 v . K
:_i V[V V‘Kl]dyf—_[?: V'[___"ri_ﬂdy'

4 r
K 1 K
NI ENC PR S
41 r 4 r
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The second and the fourth integrals of the last expression can be transformed
into surface integrals by formulas of Examples 2-13.3 and 2-13.4. This gives

fv/ [V "Ir_%—Kl] dl)/:§[v ":_}—Kl] ds/

and

JV’ x@dv': —ﬁg{z—]de’.
r r

But since V.V, K, and K, are zero outside a finite region of space, while
the surface integrals are taken over all space, the integrals vanish. We thus

have

1 V.V4+K 1

ve L (v VAL L [y By
47 4 4o r

Factoring V out from under the integral signs and designating the resulting

integrals by p* — @% and A* — A%, we obtain Corollary I to the wave field
theorem.

Example 2-14.4 Prove Corollary IT*to the wave field theorem.
As in the preceding example, we have

1 ’ ‘., _ ',
Vo L[EEVoK L (oYY,
47 r 497 r
1 = 1
—— |V ——[V V] dv’ + — fgi] dv’.
47 7 4 r

The second integral of the last expression is, as before, zero. We thus have

1 ‘e
vV — VLV_]dv,+LJE1dv,
47 7

T 4n r

() [

Designating the first integral by ¢* — @& and the second integral by W* —
W%, we obtain Corollary II to the wave field theorem.

A

2-15. Vector Expressions in Curvilinear Orthogonal

Coordinates

Many physical problems require the use of curvilinear orthogonal
coordinates for their solution. The most frequently used curvilinear
orthogonal coordinates are the circular cylindrical coordinates (Fig.
2.18) and the spherical coordinates (Fig. 2.19). The three unit vectors
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:n the system of circular cylindrical coordinates are z,, r,, and 0,;
thev point in the direction of increasing z, 7, and 0, respectively.
Similarly, in the system of spherical coordinates the unit vectors are
r., 0,, and ¢,; they point in the direction of increasing 7, 6, and ¢.

l

/

<
/
/

N
e
7/
/
.
!
‘\“‘: N
. >+
"
/ \ ._
R ...
!

s
\

x x

Fic. 2.18 Cylindrical coordinates.  Fic. 2.19 Spherical coordinates.

The expressions of vector algebra developed for the system of
Cartesian coordinates can be extended to an arbitrary system of
orthogonal coordinates. So, for instance, in any system defined by a set
of three orthogonal unit vectors a,, a,, and a4 the dot product can be
written as

A-B = 4B, + 4,B, + 4,B,, (2-15.1)
and the cross product can be written as

a; a, a;
AxB =4, 4, 4, (2-15.2)
B, B, B,

which follows directly from the definition of these products.

Also, the expressions of vector analysis defined for the system of
Cartesian coordinates can be extended to an arbitrary system of
orthogonal coordinates. The expressions for the gradient, divergence,
curl, and Laplacian in the three most common coordinate systems are
given in Table 2-I. The method for obtaining vector analytical ex-
pressions in general orthogonal coordinate systems is described below.

—




54 MATHEMATICAL INTRODUCTION

Let us first consider the gradient. Since grad U is a vector whose
component in any direction represents the rate of change of U in that
direction, we can write

oU ou ol

VU:7§19.1 +55—2a24873a3,
where 0s;, 0s,, 0s; are the differential elements of distance in the directions
of the unit vectors a,, a,, and a,, respectively. Obviously, these differential
elements are not always equal to the increments of the corresponding
coordinates. For example, in the spherical system of coordinates the
element of distance in the direction of 8, is » d0, rather than df. In general,
if ¢;, g2, and ¢4 are the three coordinates of an orthogonal system, then the
corresponding differential elements of distance ds,, ds,, ds3 can be expressed
as

dsy = hydg,, dsy = hydqs, dsy = hadys,

where khy, ky, and ky are some multipliers (“‘metric coefficients’), functions
of g1, 45, and g5 The general expression for grad U in any orthogonal

system of coordinates is therefore
>

ol ouU oU

Vo -
Vb= hy 0g; o hy 045 az hy g, s

Before deriving general expressions for divergence and curl, we shall
prove that the divergence and curl of a vector field are independent of the
system of coordinates used for their representation (the gradient, of course,
is also independent of the system of coordinates, as follows from the fact that
the gradient represents the rate of change of a function in the direction
of the fastest change).

TasLE 2-1

Vector Operations in Cartesian, Cylindrical,
and Spherical Coordinates

Cartesian Coordinates Gylindrical Coordinates
Line elements:
de, dy, dz dr, rdb, dz
Components of gradient:
U .U
grad, U = P grad, U = =
U . lau
grady U = 3 gradf) U = —;—%
oU U
d. U = = ' ; 9y
grad, 2 grad, U .
Divergence:
04 04 24, 12 1940 24
divA = —F 4 — . 2 divA = -— (74) + > — + ==
Y 6x+ay oz ivA 787(7 f)TraoTaz




04,
E)

oz

ox

32U

02U
ax2

ayz

divA =
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TasLE 2-1 (Continued)

o4

Components of curl:

¥

2z

04, o4,

ox

a4, 94,

)

U

1ap2d,) 1

az2

S

curl, A =

curlg A =

curl, A

Laplacian:

VZU
r o

pherical coordinates

Line elements:

dr, v dB, rsin 0 dd

1 84
a0

7

04
0z

¥

_lLaf aUu
N rrar+

Components of gradient:

grad, U = —

oU
ar

grad, U = -

grad, U

r a6

1 U

:rsin0£

Divergence:

3(sin 6 4,)

N

a4,

0z

z

a4,
or

0
or

(rdg) —

1 92

1 ady

r2

ar

el

" rsinf

Components of curl:

d(sin 6 4;)

curl, A

a0

Trsinf ¢

24,
%

U

J

R

1
" rsin 6

04

curl, A

curl¢ A

(-

V2 — 1 2
T 2o

ol
2
ar) N

171
:7‘

sin@TqS B

d

d(rdg) _

ar

Laplaci

I d

Zsin 6 26

r

ar

24,
2
an:

(sin 0

aA(,]
B

a(rdy)

J

oU n
a6

1

U

72sin? 6 04t |

2U

322

35
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Let us apply Gauss’s theorem (2-13.1) to a very small volume element
Av. As Av goes to zero, the volume integral approaches (V . A) Av, and
we-obtain for V. A

A - dS
V. A_hm& d

Av—0 Av

, (2-15.3)

which is an expression obviously independent of any system of coordinates.
Similarly, applying the relation derived in Example 2-13.4 to a very small
volume element Az, we obtain for V x A

A x dS
VxA— _jm A XIS

) 2-15.4
Ay—+0 Av ( )

which shows that the curl of a vector field is also independent of the choice
of coordinates.

The above two formulas are considered to be the definitions of di-
vergence and curl in general orthogonal coordinate systems and are used
for obtaining differential formulas for divergence and curl in these systems,

The expression for divergence in terms of general orthogonal curvi-
linear coordinates is obtained fromt Eq. (2-15.3) by evaluating the integral
$A « dS over the surface of an infinitesimal volume element dv = h dg,-
hodqs - hadgs and by dividing this integral by dv. The result is

hihohs

The expression for curl in terms of general orthogonal curvilinear
coordinates is similarly obtained from Eq. (2-153.4) by evaluating the
integral $A x dS over the surface of an infinitesimal volume element dv
and by dividing this integral by dvo. The result is

1 0 0 0
V-A= [a (}’ h A ) + a (/’3/’1142) + a_qs (kl}’zAs):l .

a3 a

hyh hshy  hihy

VxA= 0 i 0
891 99s 893

hA;  hydy  hgdy

The Laplacian of a scalar is obtained by combining the above expressions
for the divergence and gradient. The result is

1 0 [hhs OU 0 h, oU
277 — U . — - | _Z(efsr= 31
VU=V hlhzhs[a%( hy 891) + a‘12( by a‘h)

2 0 (/zh aU)jI
9q3\ h a‘]a

From these general equations the explicit expressions for the gradient,
divergence, curl, and Laplacian may be readily determined for any system
of orthogonal coordinates.
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2-16. Vector Identities

We shall conclude this chapter by tabulating various especially
important vector-analytical identities. In these identities ¢ and U are
scalar point functions; A, B, and V are vector point functions; Xisa
scalar or vector point function of primed coordinates and incorporates
an appropriate multiplication sign.

Identities for the calculation of gradient

(V-1) V(gU) = ¢VU +~ UVg
(V-2) V(A-B) = (A-V)B + A x (V x B)
" L (B-V)A £Bx (VxA)
n a(p
(V-3) Vo (U, U, = i;a—Uz- VU,

Identities for the calculation of divergence

(V-4) V.(¢gA) =¢V-A+A.Vyp

(V-5) V.(AxB)=B.VxA _A.VxB

(V-6) VAW, U) = 328 vy,
i=10U,

Identities for the calculation of curl

V-7) Vx(gA) =¢VxA+VgxA
(V-8) Vx (AxB)=(B-V)A + A(V.B)
—(A.V)B —B(V.A)

z oA

(V-9 VxAU --U) =2 VU x =
i=1 oU,

Repeated application of V

(V-10) V.(UxA) =0
(V-11) Vx VU=0

(V-12) Vx(VxA) =V(V.A) — V2A
(V-13) V2V x A) = V x (V2A)
(V-14)

VE(Vg) = V (Vi)
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ldentities for the calculation of line and surface integrals
(V-15) fﬁA - dl :fV x A-dS (Stokes’s theorem)
(V-16) § U dl :fds x VU
(V-17) f};Axdl :J.V-AdsafV(A-dS)
Identities for the calculation of surface and volume integrals
(V-18) 3€A - dS :fv -Ads  (Gauss’s theorem)
(V-19) 5E UdS =fVUdv
(V-20) fﬁAxdsz—vaAdv
(V-21) § (A - B)dS - 3{; B(A - dS) - §A(B - dS) =
f{A x (VxB) +B x (VxA) - A(V-B) - B(V.A)ds
(V-22) %fﬁAWS — <£A(A . dS) :J.[A x (VxA) —A(V-A)]dv
(V-23) §> A(B.4S) =J'[(v -B)A + (B-V)A] dv

Green’s theorems

(V-24) fﬁ UV, dS = f (U,N2U, + VU, - VU,) dv

(V-25) fﬁ (U VU, — U,V0,) - dS = f (UN2U, — U,N2U,) do

(V-26) $vL.ds = fV'ZU do
Poisson’s theorem
v v _ 1 [ WYV -Vx(VxV)
- 41-7\“ r
B space

Operations with V in Poisson integrals

(X) o (X) (X)

X "3
(V-28) VI Q\_) — \Y \\() —l— r, - (V_Qg) V ¥~ — — ru.—z-
: r r re r r
(V-30) V'(X) _v (X) v (X)

r r r
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Vector wave field theorem

1 . . .
V31 Vo _ f [V(V-V) ~ K]t
' in

7

All space

Operations with N in retarded Poisson integrals

r_u a[X]ret

V-32) V' [X]ret = [V'X]ret +
¢ ot
X]re
V-33) V[Xrer = — T A re
ot
\.-34) [V/X]ret - V[X]ret -+ VI[X]ret
\ _35) [V i&]ret —v [Xjret _%_ V, [Xjret

Vector operations in the form independent of coordinate systems

$U as 1 SEA-dS
, — lim | i A T
V-36) VU A1vr_r’10 A (V-37) V.A _\:E}) A
§§A x dS

V-38) VxA=—lim " —
’ Av—0 Av

§VU-ds
{V-39) V2U = lim

Av—0 Av
ProsLEMS

2.1. Show by vector methods that the diagonals of a parallelogram
bisect each other.

2.2, Show by vector methods that the line which joins one vertex of a
parallelogram with the midpoint of an opposite side intersects a diagonal
in a point of trisection.

2.3. Show by vector methods that the diameter of a circle subtends a
right angle at any point of the circumference.

2.4. Using vector methods derive the formulas

sin (0 — fB) = sin « cos § — cos a sin §,
cos (# + f) = cos a cos § F sin « sin f.

2.5. Using vector methods derive the law of sines for a triangle.




60 MATHEMATICAL INTRODUCTION

2.6. Prove the identity
Ax(BxC)=B(A.C) — C(A-B).

2.7. Show that the components of a vector B in the direction parallel
and perpendicular to a vector A are given by

(A.B)A

(A xB) x A

B, = T

B, =
2.8. Show that the solution of the two simultaneous vector equations
x+.a = b and x X a = ¢ can be written as

_ba+axc

X =
a2

2.9. Show that the solution of the vector equation

xa+3yb + ze=d
can be written as :

d:-bxec a-dxc a-bxd

X = = — Z =
7T a bxc’ a-bxc’

a-bxc’

and determine the geometrical significance of this solution.

2.10. Find the projection of the vector A = 3i + j — 8k upon the
vector B = 21 + 2j + k.

2.11. Find the angle between vectors A and B if

A=j+k and B=1i-+j.

2.12, Show that if G+ B = C . A for any C, then B = A,
2.13, Show that ¢ 41 is always zero.
2.14. Show that ¢ 48 is always zero.
dU
2.15. Show that grad U(r) = — T
r
2.16. Show that for any potential field F = —Vg¢

b
fF-dl:(,va — ¢, and fﬁF-dl:O,
a
where @, and ¢, are the values of the potential ¢ at the points ¢ and b,
respectively.

2.17. Find curl (xpi + yzj + zxk).

2.18. Find the curl and the divergence of rr.

2.19. Prove the identity (V-2).

2.20. Prove the identity (V-8).

2.21. Show that in spherical coordinates V.r, = -
;

2.22. Show that V x f(r)r, is always zero.
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2.23. Find the curl and the divergence of the vector

r ¢
=-In-.
ror

2.24. Find the curl and the divergence of the vector
V = A(x, 5, 2) sin [U(x, y, 2)].

2.25. Prove that in spherical coordinates (A - V)r = A,

2.26. Show that V2(Vg) = V(V3p).

2.27. Show that V3(V x A) = V x (V2A).

2.28. Show that V2(@U) = ¢V2U 4 2(Veg) - (VU) + UV3q.

2.29. Prove the identity (V-16).

2.30. Prove the identity (V-17) by applying Stokes’s theorem to the
vector A x G, where G is an arbitrary constant vector.

2.31. Prove the identity (V-23) by applying Gauss’s theorem to
A,B, 4B, and 4,B. o

2.32. Prove the identity (V-22) by using identities (V-23), (V-19),
and (V-2).

2.33. Derive the three Green’s theorems from Gauss’s theorem,

2.34. Show that §V x A .dS = ¢§VU x dS for any A and U.

2.35. Show that grad U can be expressed as

Uds
I — lim Y————
vE /_\l.i'r—r-lo Av -

2.36. Show that the distance r;, between any two points P; and P, may
be expressed as |r; — r,|, where r; and r, are the vectors connecting the
origin of coordinates with the points P; and Py, respectively. Then show that
the vector r,, directed from point P, to point P, may be expressed in terms
of the coordinates of the two points as

v = (v, —x)i+ O — )i + (2 — )k

2.37. Show that for ¢ — 0, the vector wave field theorem reduces to
Poisson’s theorem, and the corollaries to the vector wave field theorem
reduce to the corollary to Poisson’s theorem if V x V = 0 outside a finite
region of space.

2.38. Show that for ¢ — <o, the identity (V-35) reduces to the identity
(V-30).

2.39. Show that for ¢ — oo, the identities (V-32); (V-33), and (V-34)
reduce to correct expressions for the corresponding unretarded operations.

2.40. Using the correlation A = nB for two parallel vectors, derive the
differential equation for the field lines of a map of a vector field V
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2.41. A solid body rotates with angular velocity w about a symmetry
axis. Show that within the body
Vxv =2w,

where v is the linear velocity of a point in the body.
2.42. Show that in the vicinity of the point (%, yy, z,) the Taylor series

for the function F(x, ', z') can be expressed as
]

21 (h' V,>2F(x0>}}0) ZO) +

F(x', )", 2") = F(xg, 30, 29) + (h+ V)F(xg, 3y, 2g) -+

]
31 (h - V')%F (xg, 305 29) + - - -
where h is the vector from the point (x,, 3, zo) to the point (x',y’, 2').
2.43. Using the expression given in Problem 2.42, expand the function

F =e i+ ¢ 9]

in a Taylor series about the origin x; =y, =0.

2.44. Show that the directional derivative 4U/ds is equal to VU - s, where
1s a unit vector in the direction of s»

2.45. Show that the volume enclosed by a surface § can be found from

v=%§r-ds,

where r is the position vector directed from the origin of coordinates to the
surface element 4S.

2.46. Show that the equation r = acos 81 + &4 sin 8 j represents an
ellipse with semi-axes a and é.

2.47. Using Stokes’s theorem, show that the integral

SU

s ped -y

represents the area of the surface in the xy-plane enclosed by the path of
integration.

2.48. Using the integral given in Problem 2.47, find the area of the ellipse
given in Problem 2.46.

2.49. Show that the curl of a unidirectional vector field f(x,3,2)A, where
A is a constant vector, is not zero (unless Vf'is parallel to A) and is perpen-
dicular to both A and V. What implication does this result have on the electric
field at the edges of a parallel plate capacitor, if one assumes that the field is
finite and unidirectional inside the capacitor and zero just outside?

2.50. Show that the divergence of a unidirectional vector field f{x,3,2)A,
where A is a constant vector, is not zero if Vf has a component along A. What
implication does this result have on the magnetic field at the ends of a coil,
if one assumes that the field is finite and unidirectional inside the coil and zero
just outside?
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LINES-OF-FORCE
PHOTOGRAPHS

In order to help the reader to obtain a better understanding of the
structure of electric and magnetic fields, a number of electric and magnetic
lines-of-force photographs have been included in this book. Some of them ap-
pear as Plates on the next 12 pages, others appear as figures on pages 77, 78,
169, 187, 321, 322, 428, and 465.

The lines of force of the magnetic fields of permanent magnets were formed
by iron filings strewed on glass plates placed over the magnets. The lines of
force of the magnetic fields of current-carrying wires were formed by iron fil-
ings strewed on Plexiglas plates; the wires passed through holes drilled in the
plates.

The lines of force of the electrostatic fields were formed by grass seeds
(Kentucky Blue Grass) strewed on glass plates. To make the seeds more mobile,
the plates were waxed with a liquid wax. The conductor models were cut from
an aluminum-coated gift-wrapping paper and were glued to the plates with
rubber cement.

The lines of force of the electric fields of current-carrying conductors were
produced in the same manner, except that models of the conductors were
painted on the glass plates with a conducting ink (moderately good conduc-
tor), and the electrodes were painted with India ink (very good conductor).
[Details of making models of current-carrying conductors on glass plates are
given in Oleg D. Jefimenko ‘‘Demonstration of the Electric Fields of Current-
Carrying Conductors,’’ American_Journal of Physics 30, 19 (1962).] As in the case
of electrostatic fields, the plates with the models of current-carrying conduc-
tors were waxed before using. The waxing of the plates was crucial for obtain-
ing long and well-defined grass seed filaments.

The power source for the lines-of-force pictures of the electrostatic fields
and of the fields of current-carrying conductors was a low-current high-voltage
power supply (10-15 kV).




Plate 1 Electric field between a charged sphere and
a conducting plate.




Plate 2 Electric field of a parallel-plafe capacitor.
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Plate 4 Electric field of two spheres carrying charges
of opposite sign.
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Plate 6 Electric field of a straight current-carrying con-
ductor (above) and two shorted current-carrying conduc-
tors (below).




Plate 7 Electric field of a current-carrying “wedge.”
The two halves are connected in parallel (above) and in

series (below).
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Plate 8 Electric field of two current-carrying spherical
shells (above) and a current-carrying sphere (below) with

two-pole connections.
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Plate 9 Electric field of two current-carrying spherical
shells (above) and of a current-carrying sphere (below)
with four-pole connections.
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QUANTITATIVE
| INVESTIGATION OF

| ELECTRIC AND MAGNETIC
PHENOMENA

In spite of the enormous variety of presently known physical
phenomena, most of them can be interpreted as the necessary con-
sequence of only a few fundamental interdependences between physical
quantities. These fundamental interdependences are called fundamental
laws. The determination of these laws in the domain of electric and mag-
netic phenomena, the study of their immediate consequences, and the
study of methods of their application to the solution of concrete physical
problems is the main task of electromagnetic theory. There are
many ways in which electromagnetic theory can be developed and
presented. In this chapter we shall discuss the path chosen in this book.

3-1. Landmarks in the History of Macroscopic

Electromagnetic Theory

The systematic study of electric and magnetic phenomena began
about the year 1600 when William Gilbert published his book De
Magnete in which he described his experiments in electricity and mag-
netism and introduced the word ‘electricity.” The mathematical
analysis of electric and magnetic phenomena began, however, only late
in the eighteenth century when Charles Coulomb, on the basis of
careful measurements, postulated in 1785 his famous force law for

electric charges
F =il

65
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(F is the force, £ is a constant of proportionality, ¢; and ¢, are the
charges, and 7 is the separation between them). The striking similarity
of Coulomb’s law to Newton’s gravitational law gave rise to mechanical
theories of electricity and magnetism which adopted the mathematical
apparatus previously developed for gravitational systems. In these
“action at a distance” theories, Coulomb’s law for electric charges and
a similar law for magnetic poles were regarded as the principal laws,
and all electric and magnetic phenomena were thought to be deducible
from them. The action-at-a-distance theories were not fruitful, however,
and helped little towards a better understanding or utilization of
electricity and magnetism.

Drastic changes in the interpretation of electric and magnetic
phenomena were brought about by Michael Faraday, who founded
the concepts of electric and magnetic fields. During the years 1821-
1848, he performed and studied a number of electric and magnetic
experiments and came to the conclusion that the carriers of electric
and magnetic actions were the regions of space around electric charges
and magnets. These regions of space, or “fields,” could be represented
by field-line models.

In 1855, James Clerk Maxwell translated Faraday’s ideas about
electric and magnetic fields into a mathematical form. Later he
succeeded in generalizing the basic facts of macroscopic electromag-
netism into a set of fundamental laws for electromagnetic fields. A
direct mathematical consequence of these laws was the equations
indicating the existence of electromagnetic waves propagating with the
velocity of light. In 1886, such waves were discovered by Heinrich Hertz,
and this discovery was the first triumph of the “field theory” of electric
and magnetic phenomena,

Faraday-Maxwell’s field theory, clarified, perfected, and expanded
by many other physicists, constitutes the contemporary electromagnetic
theory of macroscopic systems. The presentation of the fundamentals
of this theory is the main purpose of this book.

3-2. Three Types of Basic Electric and Magnetic Laws

We shall develop the electromagnetic theory in three steps. First
of all, in agreement with the considerations presented in Chapter I,
we shall select basic measurables, instruments, and standards for the
quantitative investigation of electric and magnetic phenomena. Then
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we shall study elementary groups of these phenomena in the order of
increasing complexity and shall obtain the corresponding sets of elemen-
-ary fundamental laws capable of explaining all individual phenomena
within the limits of each group. Tinally we shall combine these sets of
elementary fundamental laws into one set of general fundamental laws
capable of explaining all presently known macroscopic electromagnetic
phenomena.

We shall need three tvpes of fundamental electric and magnetic
Jaws, as follows.

Field Laws. The two most important objects of study in the
domain of electric and magnetic phenomena are the electric and
magnetic vector fields. Therefore we shall need a set of fundamental
laws representing the properties of these fields. We shall call these laws
Sreld [aws,

Two questions now arise: {1} what kind of correlations should
these laws represent? {2} how many correlations are sufficient for a
unique specification of the fields under consideration?

An answer to both these questions is given by Helmholtz’s theorem
of vector analysis, According to this theorem, a vector field is uniquely
determined by its curl and its divergence (provided that the field is
regular at infinity, which is almost always the case}. A complete set
of field laws for a vector field will be obtained therefore once the
divergence equation, or the divergence law, and the curl equation, or the
curl law, are found for all points of the field under consideration.

This set of differential laws can be replaced, however, by an equiv-
alent set of integral laws. Indeed, by Gauss’s theorem, a divergence
equation V.V = U valid for all points of space can be expressed as a

flux integral equation %V - dS = |l dv valid for all regions of space,

and vice versa. Similarly, by Stokes’s theorem, a curl equation
V x V = W valid for all points of space can be expressed as a circula-
tion integral equation ¢V +dl = |W . dS valid for all regions of space,
and vice versa. Therefore the circulation integral equation, or the
cireulation law, and the flux integral equation, or the flux [aw, constitute
a complete alternative set of fleld laws uniquely specifving a vector
field.

Divergence, curl, circulation, and flux laws are the laws upon
which we shall base the theorv of electric and magnetic fields.

Interaction Laws. Field laws determine the properties of fields but
do not give any information about the electric and magnetic inter-
actions between particles or bodies. These interactions play, however,
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a very important role in electric and magnetic phenomena. Therefore
we shall also need magnetic and electric interaction laws.

The most general electric and magnetic interaction laws must be
applicable to all possible systems of particles or bodies and must be
independent of any specific system, structure, or configuration. As we
shall see, it is possible to obtain such general interaction laws in the
form of energy equations, or energy laws, expressed in terms of electric
and magnetic fields. The energy laws are the laws upon which we
shall base the theory of electric and magnetic interactions.

Constitutive, or Auxiliary, Laws. We shall study electric and
magnetic phenomena in various material media. The laws reflecting
electric and magnetic properties of the media are called constitutive, or
auxiliary, laws. They are the third type of basic laws that we shall need.?

3-3. Basic Measurables in Electricity and Magnetism
»

At the time when the first quantitative investigations of electric
and magnetic phenomena were conducted, no electric or magnetic
instruments were known. Almost all quantitative information had to
be obtained through measurements of mechanical quantities with the aid
of mechanical instruments.? For a long time the three mechanical
measurables—length, mass, and time—were used as the only basic
measurables and were even believed to constitute the ultimate system
of basic measurables.

Later it was found that electric and magnetic phenomena could
be investigated much more easily with the aid of special electric and
magnetic instruments. It was also found that the description of these
phenomena became much simpler and clearer if new electric or
magnetic basic measurables were used together with the old mechanical
ones. Finally, it was realized that there can be no ultimate system of
basic measurables and that one should therefore use the system which
serves its purpose best.?

1 The constitutive laws are not as fundamental as the field laws and the inter-
action laws. When the electromagnetic properties of matter are investigated on a
microscopic scale, the differences in many macroscopic electromagnetic phenomena
reflected by the constitutive laws appear as the differences in the atomic and molecular
structure of various physical bodies rather than as the differences in the nature of
electromagnetic phenomena occurring in these bodies.

2 Compare with footnote | on page 71.

3 The common systems of basic measurables are described in Section 1-5.
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Modern scientists obtain their knowledge about clectric and mag-
netic phenomena mainly through the measurements of two electric
guantities—current and voltage—and use current meters and voltage
meters as basic tools for experimental investigations of these phenomena.
In fact, measurements of current and voltage are the basic sources of
quantitative information in almost any branch of modern experimental
sciences. It is therefore natural to adopt formally current and voltage
as the new basic measurables and to use them alongside with other basic
measurables such as, for instance, length, mass (or force), and time,
This system of five basic measurables (the LM TVI system) is now
generally used in experimental physics and is also most appropriate for
the mathematical representation of physical phenomena. It is the
system which we shall use throughout this book.!

3

3-4. Current as a Basic Measurable

In order to use current and voltage as basic measurables, we must
first of all specify the properties that are attributed to them and that
are used for their identification and qualitative definition.

The characteristic properties of that which we call current, or,
more accurately, eleciric current, can be demonstrated with the aid of the
three following experiments.

Magnetic Property. 1f a wire is placed near a compass needle and is
then connected to the terminals of a battery, the needle deflects from its
initial position, just as it would if a magnet were placed near it. This
magnetic action is attributed to the electric current produced in the
wire by the battery and is regarded as the first characteristic property
of electric current,

Thermal Property. If several turns of wire are wound around a
thermometer, and the wire is connected to a battery, the thermometer
shows that the wire heats up. Also this thermal action is attributed to
the current in the wire and is regarded as the second characteristic
property of current.

1 It must be emphasized that the separation of measurables into basic and '
secondary is merely a matter of practical expedience and has nothing to do with
the establishment of ranks or priorities of some physical quantities or concepts
relative to others. Thus, for instance, the fact that we consider here current, rather
than charge, as a basic measurable does not mean that we regard current as a
quantity more (or less) important or fundamental than charge; it merely means

that we regard a direct measurement of current as more expedient or convenient
than that of charge.
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Chemical Property. If two wires are inserted in a glass containing
water, and if one end of each wire is then connected to a battery, small
bubbles of gas begin to rise from the submerged ends of the wires. As
the two previous effects, this chemical action too is attributed to electric
current and is regarded as its third characteristic property.

On the basis of these three experiments we shall define electric
current qualitatively as that which manifests itself by the magnetic,
thermal, and chemical action in the manner described above.!

A closer examination of the chemical action of electric current in
water shows that the current decomposes water into its components:
oxygen and hydrogen. In this process oxygen is liberated at the sur-
face of one wire while hydrogen is liberated at the surface of the
other wire. Thus the two wires and therefore the two terminals of the
battery to which the wires are connected cause different chemical
effects. This means that the two terminals of a battery are electrically
different. By international agreement, the hydrogen-delivering ter-
minal is called the negative terminal and is designated by the — sign;
the oxygen-delivering terminal is called the positive terminal and is
designated by the - sign.

The difference between the two terminals of a battery expresses
itself also in the magnetic action of electric current. Ifin the experiment
with the compass needle the battery connections of the wire were
reversed, so that the end previously connected to the - terminal is
now connected to the — terminal, and the end previously connected
to the — terminal is now connected to the - terminal, the compass
needle would change its deflection by 180 degrees. This effect is
interpreted by assigning a direction to the electric current (as the word
“current” indicates) and is attributed to the reversal of the current in
the wire that takes place when the connections of the wire are reversed.
By convention, the current outside the battery is considered as being
always directed from the positive to the negative terminal.

Current Meters. Ballistic Current Meters. Like any basic measurable,
electric current must be defined quantitatively by specifying the
instruments with which it can be measured.

All three characteristic properties of current can be used for its
measurement. One can construct current meters, or galvanometers,

1 A definition in physics is never an explanation. A qualitative definition is
merely the statement of a verbal convention; a quantitative definition is the statement
of the rules of measurements or calculations.
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Fic. 3.1 D’Arsonval galvanometer.
This galvanometer utilizes the magnetic
property of electric current.

LT )
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based on the magnetic, thermal, or chemical action of the electric
current.! The most widely used current meters are, however, based on
magnetic action.

A typical current meter based on the magnetic action of electric
current is the d’Arsonval meter shown in Fig. 3.1. In this meter the
current causes an angular deflection of the coil placed between the
poles of a magnet and is measured by this deflection. The deflection
of the coil is indicated on a scale either by a pointer or, in more
sensitive instruments, by a beam of light reflected from a mirror
attached to the colil.

An important property of the d’Arsonval meter is that it can also
be used as a ballistic current meter, that is, as an instrument that measures
directly the current x time integral, or the current-impulse integral, | I dt.

The international unit of electric current is the ampere. A current
of n amperes may be defined as the current that liberates nx1.1180
milligrams of silver from an aqueous solution of AgNOj in one second.?
A current meter calibrated in amperes is called an ammeter.

1 Strictly spcaking, to these three actions, or properties, of current one should
add the property of causing a characteristic physiological sensation which makes it
possible to “feel” the current. Strange as it may seem, this property of current can
also be used for electric measurements—for instance, for measurements in bridge
circuits employing the ‘“‘null method.” In fact, it is reported that two centuries ago
Henry Cavendish by “feeling” the current determined the relative conductivity
of different substances with accuracy unsurpassed for almost one hundred years.
This, incidentally, shows clearly that a quantitative study of physical phenomena is
possible without mechanical instruments or devices.

2 See the footnotc on page 73.
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F1c. 3.2 Braun electrometer. This elec-
trometer utilizes the force-producing
property of voltage.

3-5. Voltage as a Basic Measurable

The characteristic properties of that which we call voltage can be
demonstrated with the aid of the following two experiments.

Force-Producing Property. If two pieces of aluminum foil suspended
by threads one near the other are connected by two wires to the
terminals of a battery, these pieces attract each other (the battery
should have several hundred individual cells in order to make the
motion of the foil visible under class-room conditions). If the battery
is changed, the force of attraction changes. The ability of a battery to
produce force is attributed to the voltage generated by the battery, and
the force-producing property is regarded as the first characteristic
property of voltage.

Current-Producing Property. If a wire is connected to the terminals
of a battery, electric current is produced in the wire. If the battery is
changed, the current changes. Also the ability of a battery to produce
current is attributed to the voltage generated by the battery. The
current-producing property is therefore regarded as the second charac-
teristic property of voltage.

On the basis of these two experiments we shall define the voltage
qualitatively as that which manifests itself by the force and current
action in the manner described above.

Voltage Meters.  Ballistic Voltage Meters. TFor the quantitative
definition of voltage we must specify the instruments with which it
can be measured.
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Both characteristic properties of voltage can be used for its
—easurement. Voltage meters based on the force-producing property
af voltage are called electrostatic voltage meters, or electrometers. A typical
=lectrostatic voltage meter is the Braun electrometer shown in Fig. 3.2.
In this electrometer a light aluminum pointer is attached to a metal
-od which is inserted into a metal chamber. If a voltage is applied
between the rod and the chamber, the pointer is attracted to the
wall of the chamber that it faces and diverges from the rod. The
deflection of the pointer is read on a scale and is a measure of the
applied voltage.

With the voltage meters based on the current-producing property
of voltage, voltage is measured by the current that it produces. These
voltage meters are in principle ordinary current meters calibrated,
however, in units of voltage rather than in units of current. The most
widely used voltage meter of this type is the d’Arsonval meter already
described. The d’Arsonval meter can also be used as a ballistic voltage
meter to measure the voltage-impulse integral [V di.

The international unit of voltage is the wolt. A voltage of n volts
may be defined as 1/1.0186 of the voltage produced by n Cd-Hg
standard (Weston Normal) cells connected in series.! A voltage meter
calibrated in volts is called a voltmeter.

' For the legal definition of the ampere and the volt in the United States the
reader is referred to the publications of the National Bureau of Standards.

The international mks system of units (standards), which was first created in
1790-1799 and which initially recognized only three basic measurables, has since ex-
perienced many modifications and has evolved in what is now called the ‘‘International
System of Units’ (SI), recognizing seven basic measurables. As already mentioned in
Chapter 1, it is essentially a mksa system (the three additional fundamental units are
the kelvin, the mole and the candela).

Not all scientists are satisfied with definitions specified in SI. For example, the
ampere is defined in SI as ‘‘that constant current which, if maintained in two straight
parallel conductors of infinite length, of negligible circular section, and placed 1 meter
apart in a vacuum, will produce between these conductors a force equal to 2 x 10-7
newtons per meter of length.”” At least two serious objection can be raised against this
definition: (1) the physical system specified in the definition can not be constructed,
and (2) the definition ignores the fact that current-carrying conductors are subject to
both electric and magnetic forces, rather than to a magnetic force alone (see Example
13-6.2 on p. 442).

Modern current meters and voltage meters frequently have no pointers or other
mechanical parts at all. The so-called ‘‘digital meters’’ show the results of measurements
as numbers on a display panel. However, the complexity of these devices make them
unsuitable as a starting point in a presentation of the theory of electric and magnetic
phenomena. For the purpose of this book we shall consider therefore the moving-coil
current meter and the electrostatic voltage meter as the two basic electric instruments.



ELECTROSTATIC FIELD
IN VACUUM

We shall now begin the study of the elementary groups of
electric and magnetic phenomena. In this chapter we shall study
electric fields assoctated with stationary electric charges in vacuum and
shall familiarize ourselves with the basic properties of these fields as
well as with some typical problems involving these properties.

4-1, Electric Charges

Let us connect one terminal of a ballistic galvanometer to a ter-
minal of a battery (Iig. 4.1). If we now take a small metal plate
attached to a plastic handle (test plate), touch with this plate the open
terminal of the battery, and then move the plate over to the open
terminal of the galvanometer, we find that the galvanometer registers
a current impulse at the moment when the plate touches its terminal.t

Thus we can transport from the battery to the galvanometer
something which produces a current impulse in the galvanometer.
This transportable ‘“‘something” has been named electric charge. The
charge is called positive if it comes from the positive terminal of a battery
and is called negative if it comes from the negative terminal.

Let us now repecat the experiment on charge transportation, this
time using a double plate consisting of two equal test plates laid one

1 The battery should have several hundred individual cells to make the effect
visible under classroom conditions.

74
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Iic. 4.1 Electric charges can be transported ‘—{
on a test plate.

over the other. If after touching the battery we separate the two
plates, thus dividing the charge equally between them, we find that
the galvanometer, when touched by each plate separately, registers
only half as strong a current impulse as that which it registers when
touched by the two plates when they are not separated. This means
that electric charge can be measured by the current impulse produced
by it. ’

Using this result, we shall define electric charge quantitatively as
follows: an electric charge q is measured by and is equal to the current impulse
J1 dt that it produces. We thus have

qzﬁa (4-1.1)

According to this definition, the units of the electric charge are amp - sec
(these units are usually called “coulomb’).

If, continuing our experiments with charges, we completely dis-
connect the galvanometer from the battery and use two test plates for
the simultaneous transportation of a positive charge to one terminal
of the galvanometer and a negative charge to the other terminal, we
find that the galvanometer registers the same current impulse which it
registered when one of its terminals was connected to the battery. This
shows that the wire connecting the galvanometer to the battery per-
forms the same function as a test plate does: it transports charges from
the battery to the galvanometer, or “conducts” them.

Substances and bodies capable of conducting electric charges well
arc called conductors. Substances and bodies that do not conduct
electric charges well are called insulators, or dielectrics.

A fundamental property of the electric charge is the property of
conservation. Experiments show that no nct electric charge can be
created or destroyed. Electric charges can be only separated or
combined, positive and negative charges always appearing or dis-
appearing in equal quantities, "
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Many electric and magnetic phenomena depend on how electric
charges are distributed in the free space and in the interior or on the
surface of material bodies. The distribution of electric charges is described
with the aid of the volume charge density, the surface charge density, and the
line charge density. The volume charge density p is defined as

dg

p = dv’ (4'1'2)

where dg is the charge contained in the infinitesimal volume element
dv. The surface charge density o is defined as

_ 4
T ds’

o (4-1.3)
where dyg is the charge contained in the infinitesimal surface element of
area dS. The line charge density 2 is similarly defined as

dq
=, (4-1.4)

where dg is the charge contained in the infinitesimal length element di.

Electric phenomena associated with stationary charge distributions
are called electrostatic phenomena, and electric systems in which there
are no moving charges and no currents are called electrostatic systems.

4-2. Electric Field and Electric Field Vector E

Let us take two metal plates supported by insulating stands, place
them opposite each other, and charge them by connecting each plate
to a terminal of a battery. If we then charge a small pith ball suspended
on an insulating string and place this pith ball between the two plates,
we find that in the space between the plates the ball deflects from its
normal vertical position (Fig. 4.2). This deflection of the ball is
attributed to a special force acting on the electric charge carried by the
ball. It is called the electric force. A region of space where an electric
charge at rest experiences electric force (such as the region between the
two charged plates) is called the electric field.

Electric fields surround all electric charges and accompany all
charged bodies. Electric fields of various characteristics can be obtained
by using appropriately arranged charge distributions or by using
charged bodies of various shapes. Especially convenient for this purpose




ELECTROSTATIC FIELD IN VACUUM 77

Fic. 4.2 A charged pith ball pendulum deflects in an
electric field.

are pairs of oppositely charged conductors; such pairs are called
condensers, or capacitors.

An electric field can be made ‘‘visible” by sprinkling small,
elongated, poorly-conducting particles (grass seeds, for example) on a
glass plate placed in the field. In the electric field the particles arrange
themselves in regular chain-like filaments, thus making a picture of the
“electric lines of force” (Plates 1 —9; TIligs. 4.3, 4.4, 4.5, 6.13, 7.1).

Different electric fields can be quantitatively compared with each
other by means of an electric-field-indicator, or an electroscope. An
example of a simple electroscope is the charged pith ball suspended from
a string which we used for demonstrating electric force (Fig. 4.2). If
two electric fields produce the same deflection of an electroscope, the
fields are considered equal (the charge of the electroscope must be small,
otherwise it may distort the flelds that are being studied).

The study of various electric fields by means of electroscopes and
lines-of-force pictures shows that the simplest electric field is the field

(a) (b)

Frc. 4.3 (a) Electric lines of force in the field of a parallel plate capacitor.
(b) Electric field map for the same capacitor.
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Fic. 4.4 Electric lines of force
around an isolated uniformly
charged sphere.

inside a thin parallel-plate capacitor; that is, the field between two
parallel, oppositely charged conducting plates placed close to each
other (Fig. 4.3). Except near the edges of the capacitor, this field is
homogeneous : it causes the same deflection of an electroscope no matter
at what point of the field the electroscope is placed, and its lines of force
are straight, parallel lines.

If, using an electroscope, we compare the fields between the plates
of different thin parallel-plate capacitors, we find that the fields
between the plates of all those capacitors which have the same ratio

voltage between the plates

distance between the plates

cause equal deflections of the electroscope regardless of any other

Fic. 4.5 Electric lines of force
around an uncharged sphere in an
external electric field.
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Fic. 4.6 Electric fields can be measured by comparison with a standard
clectric field.

characteristics of the capacitors. This ratio can be used therefore as
the measure of the electric field inside a thin parallel-plate capacitor.

Since the field between the plates of a thin parallel-plate capacitor
has a well defined structure, is easily reproducible, and can be used
conveniently for establishing standard laboratory conditions for experi-
ments with electric fields, we shall adopt this field as the standard
electric field E, and, in agreement with the ratio stated above, shall
define its magnitude as

E —

K

vV
7 (4-2.1)
where Vis the voltage between the two plates and 4 1s their separation.

The magnitude of any electric field can be defined in terms of the
magnitude of the standard field. We shall define it as follows: the
magnilude of an arbitrary electric field E is measured by and is equal to the
magnitude of the standard electric field E, which exactly equalizes the field E.
The units of an electric field are, according to this definition, volt/m.

The principle of measurement of an arbitrary electric field is
illustrated in Fig. 4.6.' The standard ficld is on the left; it is adjusted
by means of a variable voltage source until the balance arm carrying
on its ends two equal test charges, one of which is in the standard field
while the other is in the unknown field, comes to equilibrium.

I The method of the direct field measurement shown in Fig. 4.6 is seldom used
in practice. Instead, elcctric fields are usually measured indirectly by first deter-
mining the effect of the standard field upon some charge carrier and then comparing
this effect with the effect produced upon the same charge carrier by the field that
is being measured. In this manner, for instance, atomic electric fields are measured
by first determining the behavior of elementary charged particles in a standard
electric field (Millikan’s oil-drop experiment, mass spectrographs} and then com-
paring this behavior with the behavior of identical particles in the atomic fields.
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Electric fields are vector fields. With each point of an electric
field one can associate the electric field vector E, whose magnitude is equal
to the magnitude of the electric field at this point and whose direction
is the same as the direction of the force experienced by a test charge
placed at this point (by convention, the test charge must be positive).
In a thin parallel-plate capacitor, for example, E is directed along a
normal drawn from the positive to the negative plate.

It has been found that maps of electric vector fields (see page 36)
are closely represented by pictures of the electric lines of force (filaments
of elongated particles on a glass plate) produced by the same fields
(Fig. 4.3). The easily obtainable pictures of the electric lines of force
are therefore often used as approximate maps of the electric fields.

4-3. Displacement Field and Displacement Vector D

K]

Let us again take two large metal plates on insulating stands, place
them near each other, and charge them by connecting each plate to
opposite terminals of a battery. Let us then take two small test plates
with insulating handles (such as we used for transporting electric
charges), press them one against the other, insert them in the space
between the large plates, and separate them there. If we now take out
these test plates and touch with them the terminals of a ballistic
galvanometer, the galvanometer registers a current impulse, indicating
in this way that the test plates became charged. Thus we can charge
two originally uncharged conducting plates, initially in contact with

+ - + -
— - +
i i

i
4 n 2
. 5 7]

e g,

Fic. 4.7 Test plates can be charged by induction.
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each other, by merely separating them in the space between two
charged plates (Fig. 4.7). This process of charging is called charging by
electric induction, or charging by displacement of charge. The region of space
where this process of charging can take place (such as the region
between the two charged plates) is called the field of electric induction, or
the displacement field. Experiments show that the displacement field is
intimately related to the electric field defined in the preceding section
and can be produced by the same means as the latter.

If we measure charges induced on small test plates of different
sizes we find that, as long as all plates are inserted at the same point
of the field and are oriented to acquire the greatest induced charge,
the induced surface charge density

charge induced on a test plate

~ surface area occupied by charge

i

is the same for all plates. Therefore the induced surface charge density
can be used as the measure of the displacement field and may be used
for the quantitative definition of this field. Utilizing this possibility
we shall define the displacement field quantitatively as follows: ¢the
magnitude of the displacement field at a given point is measured by and is equal
to the surface charge density induced on a test plate inserted at this point and oriented
to acquire the greatest induced charge. We shall designate the magnitude
of the displacement field by the symbol D and shall call it, for brevity,
the displacement. The units of D are, according to this definition,
amp - sec/m?2.

In practice, the test plates for the measurement of displacement
are usually built in the form of a parallel-plate capacitor permanently
connected to a ballistic galvanometer which is calibrated directly in
terms of the induced surface charge density. For the measurement, the
capacitor is either turned through 90° as in the case of the “flip
capacitor” shown in Iig. 4.8, or its plates are rotated with respect to
each other by 90° as in the case of the “field mill” shown in Fig. 4.9,
Test capacitors of these types are frequently used for studying the
earth’s electric field, both as ground and airborne instruments,

Displacement fields are vector fields also. With each point of a
displacement field one can associate the displacement vector D whose
magnitude is equal to the displacement at this point and whose
direction is along the normal drawn from the negative to the positive
test plate when the plates are oriented to acquire the greatest induced
charge (this sense of the direction of D is merely a convention).
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‘ T
/
Frc. 4.8 “Flip capacitor” for Fic. 4.9 “Field mill” for
measuring D. measuring D.

To determine the direction of D when using a flip capacitor, one
orients the axis of rotation so that the induced current impulse becomes
zero. The axis of rotation will there be parallel to D. The axis of
rotation of a field mill, however, will be parallel to D when the mill is
oriented so that the current impulse becomes a maximum:.

It is customary to use the expression “‘electric field” as a general
term for designating both the electric field proper, defined in the pre-
ceding section, and the displacement field. When using this expression
in such a general sense, we shall refer to both the displacement vector D
and the electric ficld vector E as the clectric field vectors.

As we shall see later, the electric field vectors E and D have their
magnetic counterparts: the magnetic field vectors H and B. The
definitions of these magnetic vectors are analogous to those of the elec-
tric vectors. In order to emphasize this important analogy, the defini-
tions of all four vectors E, D, H, and B are given in parallel form in
Table 4-1.

4-4. Fundamental Electrostatic Field Laws

The laws of physics are established by means of generalizations of
numerous and various experimental data, rather than by means of any
single measurement, experiment, or observation. The most that a
single measurement, experiment, or observation can accomplish is to
suggest the possibility of the existence of a law. One should not
therefore be surprised if the initial experiments from which the laws of
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physics are first deduced are sometimes crude and not entirely con-
vincing. Their function is merely to make a law appear plausible.
This is the only function of the experiments which we shall use for the
deduction of the fundamental electric and magnetic laws. The proof
of the correctness of these laws lies not in the initial experiments
themselves, but rather in the agreement of all the known consequences
of these laws with the experimental data within the limits of experi-
mental errors imposed upon these data by the available techniques of
measurements.

The fundamental laws of the electrostatic field in vacuum may be
deduced as follows.

The Circulation (Curl) Law. If we compare various electrostatic
lines-of-force pictures obtained by the method described in Section 4-2,
we shall find that all these pictures have one remarkable property in
common: there are no closed’lines of force in any of these pictures;
all lines of force begin and end on charged bodies. As we already
know, the absence of closed lines is also the characteristic property of
most vector field maps for fields whose curl is zero. Since the lines-of-
force pictures are the maps (however crude) of the corresponding
electrostatic vector fields, we must suspect that the curl of the electro-

static field is always zero:
V x E =0. (4-4.1a)

By Stokes’s theorem of vector analysis, it must then also be that
§>E dl =0, (4-4.1b)

The validity and generality of these two equations have been
confirmed by all presently known phenomena invelving electrostatic
fields. According to Section 3-2, these equations therefore represent a
fundamental electrostatic field law, in its differential and integral
form, respectively.

The Flux (Divergence) Law. Another fundamental law of the
electrostatic field may be deduced from the well-known Faraday’s
ice-pail experiment. This cxperiment shows that a charge placed
inside a conducting enclosure always induces an equally large charge of
opposite sign on the inner surface of the enclosure. Since the charge on
a surface is equal to the integral of the surface charge density extended
over this surface, and since the induced surface charge density on a
conducting surface is the measure of the displacement D at this surface,!

1 Because each surface element can be regarded as a test plate for measuring D.
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Faraday’s ice-pail experiment suggests the following correlation:

Tenclosed = — Tinduced — ~§ 0ds = § D dS.

Replacing ¢.,.q 1N this equation by the integral of the charge
density p extended over the enclosed volume, ¢ uoea = Jp dv, and
writing the surface integral as a flux integral, we obtain

fﬁ D.dS = f p do, (4-4.2a)

where 48 is directed along the outward normal to the surface of inte-
gration. Although we have deduced this equation from experiments with
closed conducting surfaces (enclosures), it has been found to hold for
any closed surface whatsoever, be it a real material surface or an
imaginary geometrical construction (an imaginary closed surface over
which §D.dS is evaluated is called a Gaussian surface). By Gauss’s
theorem of vector analysis it must then also be that

V.D=,’ (4-4.2b)

The validity and generality of these two equations have been
confirmed by all presently known phenomena involving displacement
fields. Therefore, according to Section 3-2, these equations, too, repre-
sent a fundamental electric field law, in its integral and differential
form, respectively. The integral form of this law, Eq. (4-4.2a), is called
Gauss’s law of electrostatics.

Additional experiments show that both the electrostatic E and
electrostatic D fields are always regular at infinity [approach zero at
infinity at least as 1/(distance)?].

The Displacement Law. The set of field laws that we have found
thus far is not as yet complete, since we do not have the circulation
{curl) law for D and the flux (divergence) law for E. These laws can
be obtained, however, from the ones that we already have, if the
correlation between the vectors E and D is known. This correlation
can be determined by making simultaneous measurements of E and D
in various electric fields. On the basis of such measurements it has been
found that in vacuum the vectors E and D are bound to each other by

the equation
D — oF, (4-4.3)

where g, is an experimentally determined universal constant, called
the permittivity of space; itsvalue is 8.854 x 10-12amp - sec/volt - m.
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The correlation expressed by this equation is called the displacement
law. The displacement law is a constitutive law and, in the above form,
is valid for electric fields in vacuum (and, practically, also in air) but
is not valid for electric fields inside material media, as we shall see later.

Our set of electrostatic laws is now completed. By using the
displacement law in combination with the field laws for E and D deter-
mined previously, we can obtain the curl {circulation) as well as the
divergence (flux) equations for both vectors E and D. Thus, according
to Helmholtz’s theorem of vector analysis, we have a complete set of
equations uniquely specifving the vector fields E and D.  This means
that if somehow we find an expression for E or D which for a given
electrostatic system in vacuum satisfies all three equations' (4-4.1),
(4-4.2), and (4-4.3) at all points of space and is regular at infinity, we
may be sure that this expression is correct and that the field represented
by this expression is the only possible field for the system under con-
sideration.

Several examples on the application of the fundamental electro-
static field laws for the solution of various problems are given below.

v

Example 4-4.1 A charge ¢ is uniformly distributed throughout a
spherical region of radius a (so that p = 0 for r > a and p = 3¢/4ma® for
r < a). Find E for all points of space.

In order to find the electric field in the space surrounding the charge-
filled region, we describe a concentric spherical Gaussian surface S of
radius 7 around this region, as shown in Fig. 4.10a. Applving Gauss’s law
to this surface, we have

fﬁ D.dS = [‘P 4% = Genciosed = 4+

By the symmetry of the system, the field must be spherically symmetric.?
The displacement vector D must therefore be radial and its magnitude
must be the samc at all points of the surface S. Since D and d$ are in this
case parallel, so that D -dS = D 4S5, and since D is constant on S, so that
D can be factored out from under the integral sign, we have

(j)D'dS:fﬁDdS:DfﬁdS:DA}m?:q,

1'We refer to cither of the two equations (4-4.1a) and (4-4.1b) as to Eq.
(4-4.1). The same holds for all other equations denoted as “a’” and “b.”
2 See Example 4-4.4.
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or
q
D= .
4y

Using now the displacement law D = ¢;E and taking into account that D
is in the radial direction, we obtain

r, [(r>a). (4-4.4)

(a) (b)

Fic. 4.10 (a) Gaussian surface outside a spherical charge distribution.
(b) Gaussian surface inside the same charge distribution.

In order to find the electric field inside the charge-filled region, we
construct a concentric spherical Gaussian surface § of radius r inside the
region, as shown in Fig. 4.10b. Applying Gauss’s law to this surface, we

have
fﬁD-dS =fpdv.

As before, D is parallel to 48 and constant on S, so that the surface integral’
is

fﬁD-dS:DfﬁdS:D%rr?.

Since p is constant throughout the volume enclosed by § and is equal to
3¢/4ma?, the volume integral is

4 4 4 . 3¢ 4 o - 73
pav =p U—péw7—4ﬂ_as 37Tr—qa3.

We thus have

73
D47772 =4q ﬁ s
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_ T
T 47ad’

Using now the displacement law and taking into account that D is radial,
we obtain
qr
- 4mreyad Tu

(r <a). (4-4.5)

Example 4-4.2 A uniformly distributed charge ¢ forms a long circular
rod of length {. Find E near the surface of the rod far from the rod’s ends.

Fi1c. 4.11 Gaussian surface around a charged rod.
Describing a cylindrical Gaussian surface of radius 7 and length /

coaxial with the rod, as shown in Fig. 4.11, we can write

-y

§ D.dS = Genclosed = 2 .

By the symmetry of the system the field is radial (except near the rod’s ends),
so that if the Gaussian surface is constructed sufficiently far from the ends
of the rod, D on this surface is everywhere radial. Thus on the cylindrical
portion of the Gaussian surface D is perpendicular to the surface, so that
D . dS = D dS, while on the two plane ends of the Gaussian surface the
field 1s parallel to the. surface, so that D . dS = 0. We obtain therefore

%/'zﬁgn.dsz fD-dS+ f D.dS = f Dds .

Cylindrical Plane Cylindrical
portion ends portion

Furthermore, by the symmetry of the system, the field must be constant on

the cylindrical portion of the Gaussian surface, so that D in the last integral
can be factored out, and therefore

%1’:0 dS = D - 2ml,
Cylindrical
portion

or

N
D_Qn-rl'



90 ELECTROMAGNETIC THEORY

Using the displacement law, designating ¢// as A (charge per unit length),
and taking into account the direction of E, we obtain then
D A

E = = =
&  2meyr

r,.

Example 4-4.3 A spherical region of radius R is filled with charge in
such a manner that the electric field inside this region is E = (E,/R?)rr,
where r is the radius vector drawn from the center of the region, and E, is a
constant. Find the charge density in the region.

According to the divergence and displacement laws, the charge
density is

p=V.D=V.(gE) =¢V.E.

Substituting E, we have

E, E,
p=¢V- (—égrr) = eO—R;gV-(rr).

Differentiating by parts (see vector identity V-4) and remembering that
V.r =3 and Vr = r, (see Examples 2-11.1-.and 2-10.1), we obtain

E E
pzsoﬁg(rv-r—}—r-Vr) :sOR—g(i%r—}—r-ru)

and, sincer-r, =7,
4E,
P=2% ™

Example 4-4.4 In solving the problem of Example 4-4.1 we used
intuitive considerations of symmetry. Therefore there is some doubt that
the solution is correct. Verify the solution.

According to Helmholtz’s theorem of vector analysis and to the basic
electrostatic laws, there is only one correct function for the electric field of
any charge distribution, and in order to be correct this function must satisfy
the following three conditions: (1) it must be regular at infinity, (2) it
must have everywhere zero curl, and (3) it must satisfy everywhere the
divergence equation

V.-D=p, or V.(¢E)=p,

where p is the density of the charge distribution. These three conditions
constitute a criterion for the correctness of an expression for E, so that if
they are satisfied by the solution under consideration, the solution is correct.

Examining the solution in question, we see that it satisfies the first
condition, since according to Eq. (4-4.4) E is proportional to 1/7% for r > a.

Taking the curl of Egs. (4-4.4) and (4-4.5), we find that the solution
also satisfies the second condition, because it yields V x E =0 for all
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points of space. Indeed, from Eq. (4-4.4) we have for r > a (using vector
identity V-7 and remembering that V. x r =0 and r, x r = 0)

_ 7 _ 1 r
VxE=Vx (477-607'2 r“) o 4mre, Vx (73)

qlv Vl
BT R =Y

1 3
q(—er—%xr) 1 (0 —0) =0.

= 3 =
dmreg\r de,

Irom Eq. (4-4.5) we similarly have for 7 < a

Vxr=0.

VXE:Vx(—’”— )— 7

r —_
477-50a3 u dmrega

Finally, taking the divergence of Eqs. (4-4.4) and (4-4.5), we find that
the solution satisfies also the third condition. Indeed, from Eq. (4-4.4) we
have for r > a (using vector identity V-4 and remembering that V . r = 3)

_ €0 _ Ly (xy_2fL L
V- (&E) = .(47T607’2 Tu —4‘7TV.(7'3) _4W[73V.r+v(r3) {1
_q9(3 3r, g (3 3 —0
T 4r 73_7.1. _47r(;§_7’4 o

which is the correct value of p for 7 > a. From Eq. (4-4.5) we similarly
have forr < a

3
V-(eOE)zv-(eoqrr) ? V.r z

dmegad ") T 4dmwa® 47rad’

3

which is the correct value of p for r < a.

Thus the solution obtained in Example 4-4.]1 satisfies the conditions
which constitute a criterion for the correctness of an expression for E and
is therefore correct.

Example 4-4.5 A certain charge distribution has a region within which
the charge has everywhere the same density p. A spherical cavity is made
in this region by removing the charge originally present at the location of
the cavity without disturbing the rest of the charge. The cavity is centered
at the point where the electric field originally was E,. Find how the presence
of the cavity affects this field.

The effect of the cavity can be determined by regarding the zero charge
density in the cavity as being made up of two equally large charge densities
of opposite polarity, p and —p. The field at the center of the cavity is then
the sum of three fields: (a) the field due to the charge of density p located
within the cavity, (b) the field due to the charge of density —p located
within the cavity, and (c) the field due to the charge located outside the
cavity, Now, the sum of the first and the third fields is just E,, since if the
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cavity were filled with charge of density p, the original charge distribution
is restored. The second field is zero, since by symmetry or by Eq. (4-4.5),
the field at the center of a spherical charge distribution of uniform density
is zero. The sum of all three fields is thus E, so that a spherical cavity made
in a region of uniform charge density does not affect the field at the point
at which the cavity is centered. This, incidentally, allows one to make
the so-called cavity definition of the electric field inside a charge-filled region.
According to this definition the field in a charge-filled region is the field
measured at the center of a spherical cavity whose dimensions are small
compared to the distance over which the charge density changes appreciably.

Example 4-4.6 Show that a unidirectional electrostatic field E cannot
vary in a direction normal to the direction of the field.

Let us assume that the field is directed along the x-axis of the rectangular
system of coordinates, so that

E = FEi.
Since, by the fundamental law, the curl of an electrostatic field is always
zero, we have "
oE, 0E,

&
and since a vector may be equal to zero only if all its components are equal
to zero, we obtain

2

3E, 3E,
0z oy

These two equations show that £, and therefore E, which is equal to Ej,
cannot vary in the direction of either z or y, thus proving that a unidirec-
tional field E cannot vary in a direction normal to the direction of the field.

A

=0 and =0,

4-5. Calculation of Electrostatic Fields from Charge

Distributions

The method of calculating electrostatic fields by direct application
of Gauss’s law (as in examples 4-4.1 and 4-4.2) is limited to fields of
very simple structure, because only then the equation §D-.dS =
J p dv can be easily solved for D. There are other methods, however,
based on immediate consequences of the basic electrostatic laws, which
can be used for calculating fields of arbitrary structure. One of the
most important of these methods is the method of calculating electro-
static fields from the corresponding charge distributions by direct
integration. This method can be deduced from the basic electrostatic
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laws, Egs. (4-4.1), (4-4.2), and (4-4.3), combined with Poisson’s
theorem of vector analysis, Eq. (2-13.3), as follows.
Applying Poisson’s theorem to the ficld vector E, we have

1 f V/(V'.E) — V x (V' x E)

g

E = dv’,
r

All space

where we are using primed operators to avoid ambiguity in the trans-
formations that follow. By the curl law, Eq. (4-4.1a), V' x E for an
electrostatic field is always zero, while by the divergence law, Eq.
(4-4.2b), and by the displacement law, Eq. (4-4.3), V' . E is just p/e,.
We can write therefore

E_ — f —Pay. (4-5.1)
r

4ire

OAll space

Let us now apply to the integrand the vector identity (V-28). We have

Vo _we_ Py
r r r?
so that
1 1
E=— f vl f PP gy, (4-5.2)
4mre, 7 4mre, 72
All space All space

The first integral can be transformed into a surface integral by means
of the vector identity (V-19), which gives

vEea = SE Pas. (4-5.3)
All space 4 All spacer

In all cases of practical interest, however, p vanishes outside a finite
region of space, and since the surface of integration in the surface
integral on the right encloses all space and thus lies outside the region
where p differs from zero, the surface integral is zero, Therefore the
volume integral on the left is also zero, and we obtain

1 Pry .,
E = o = av'. (4-5.4)
All space
Thus the electrostatic field is determined by the distribution of electric
charge and can be calculated with the aid of Eq. (4-5.4) if this distri-
bution is known everywhere in space. In this equation ris the distance
between the charge element p dv” and the point where the field is being
determined (this point is called the point of observation; the points where
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the charge elements p dv” are located are called the source points).! The
unit vector r, is directed from the source points x’, 3’,z" towards the

observation point x, y, z
The integral of Eq. (4-5.4) can be simplified in certain cases of

special charge distributions. The most common of such charge distri-
butions are the following ones.

t<<r o e P

Fic. 4.12 Definition of the surface charge.

Surface Charge. Often charge is confined to a layer-shaped region
whose thickness ¢ is much smaller than the distances 7 from the points
of this region to the point of observation (Fig. 4.12). In this case the
charge distribution is called a surface charge. For this type of charge
distribution the variation of r with the depth of the source points inside
the layer may be neglected. Integrating over the depth of the layer,
we have then

f" “ dyf #ﬂp “4S'dy f (f a’t)dS’ :f";"ds',

where o = [ p dt’ = dq[dS" is the charge per unit surface area of the
layer, and 45" is the element of the surface area. This gives for the field

l
E = AN 4-5.5

47reof 72 ( )
Thus in the case of a charge layer whose thickness is much smaller than
7, the charge clement p v’ may be replaced by ¢ 4] and the volume

1 Note that 7 in this equation can never be equal to zero because, by the definition
of E, only a test charge (‘“‘field-experiencing charge”) but not a ‘“field-producing”
charge p dv’ can be located at r = 0 (that is, at the point of observation x, », z).
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integral may be replaced by the surface integral over the area of the
lzver.

Line Charge. Another frequently encountered case of special
charge distributions is the charge distribution confined to a cylindrical
reglon whose cross section d is much smaller than the distances » from
-he points of this region to the point of observation (Fig. 4.13). In this
case the charge distribution is called a line charge. For this type of charge

d<<r . P

Fic. 4.13 Definition of the line charge.

distribution the variation of 7 over the cross section of the charge-filled
region may be neglected. Taking the integral over the cross-sectional
area S of this region in much the same manner as in the case of the
surface charge, we obtain the expression

E__! f e (4-5.6)
dre, J 72

where 2 is the charge per unit length of the charge distribution,

A= [pdS" = dg/dl', and the integral is extended over the length of the

charge-filled region. Thus in this case the charge element p dv’ may be

replaced by 2 dl; and the volume integral may be replaced by the line

integral.

Point Charge. By far the most important casc of special charge
distributions 1s the charge restricted to a region in which all linear
dimensions are much smaller than the distances from the points of this
region to the point of observation (Fig. 4.14). In this case all points of
the charge-filled region may be considered as lying approximately at the
same distance from the point of observation, so that » and r, in the
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d<<r P

Fic. 4.14 Definition of the point charge.

integral of Eq. (4-5.4) may be considered constant and may be factored
out from under the integral sign. We then have

1 r,
| PR dy' = —+— Jp dv’,

dmeyJ r? dmreyr?

or

>

q

= — r s
dmregr?

(4-5.7)

where ¢ = {p dv’ is the total charge contained in the charge-filled
region. This type of charge distribution is called the point charge, and the
field associated with it is called the point charge field, or the Coulomb field.

It must be understood that “point charge” is merely a term used
for designating a localized charge distribution viewed from a distance
large compared with the linear dimensions of this distribution, similar
to the term “light point,” which is frequently used in reference to stars.
In neither case does the word “point” describe the structure or the
constitution of the object; instead, it reflects the attitude of the observer
towards this object. The same holds also for line and surface charges.

The relative nature of the concept of point charge (as well as that of
surface and line charges) may be illustrated as follows. Let us describe a
sphere of radius 7, > }d around the charge distribution shown in Fig. 4.15,
and let us call this sphere the sphere of approximation. We shall agree that for
all points outside this sphere the ratio d/r is negligible while for all points
inside this sphere this ratio is not negligible. Therefore in the region outside
the sphere of approximation the charge distribution may be regarded as a
point charge, and Eq. (4-5.7) may be used for the calculation of E; inside
the sphere of approximation the distribution may not be regarded as a
point charge, and Eq. (4-5.4) must be used for the calculation of E. The
radius of the sphere of approximation is determined by the requirement
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Fic. 4.15 A charge distribution is considered to be a point charge trom a
distance r > r, but not from a distance r << r,. Note that in physics a
ratio b/a may be considered infinite if 6 is much larger than a.

that the values for E obtdined from the point charge formula (4-5.7) for
points on this sphere may not deviate from the exact values obtained from
Eq. (4-5.4) by more than is considered acceptable in each particular
problem. The radius r, must be increased if greater accuracy is required,
and may be made smaller if lesser accuracy is acceptable. In any case,
however, the point charge formula (4-5.7) may be used only for r > r, > 4d.

The three equations (4-5.4), (4-5.5), and (4-5.6) are frequently
written as a single equation
1 r
_— | 24 4-5.8
4mey J 12 7 ( )
where the charge element dg is equal to p dv’, 0 dS’, or 4 dl’, depending on
the type of the charge distribution under consideration.

For actual calculations the vector equations above may be ex-
pressed as scalar equations for the components of E. Thus, for instance,
multiplying and dividing the integrand of Eq. (4-5.8) by » and obser-
ving that e, = r = (x — x")i + (y —3")j + (z — ')k, we have

I [(x —x")
-~/ 4-5.9
EI 4’7T€0 7’3 dq ( )
L (b =0)
= - 4-5,10
£, 4re, f r 4 ( )
1 ((z -2
= — | =" dq. 4-5.11
£ 4me, f re 4 ( )
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In the same manner we can obtain scalar forms of Eqs. (4-5.7), (4-5.6),
(4-5.5), and (4-5.4).

v

Example 4-5.1 Find the electric field vector E at a distance R {rom the
axis of a straight, thin rod carrying a uniformly distributed line charge of
density A4 and obtain the limiting value of the field for a very long rod.

vy

(O,R T
) Ve
N (x',0)

ol dy e x,x
! L, L, |

Fic. 4.16 Calculation of the electric ﬁeld,outside a thin charged rod.

Let the rod lie in the x-direction, and let the point of observation be on
the y-axis at a distance R from the origin. Let the ends of the rod be at the
distances L; and L, from the origin as shown in Fig. 4.16. Irom Egs.
(4-5.9), (4-5.10), and (4-5.11) we then have (using dg = 4 dx’)

A + Ly x' ,
B =g, w
E, =4 A J"LLZ_R__”de
v 4meg ) _p, (% 4 R®
E,—O0.

The first of these equations gives

yl 1
B = 4meg /'t - R?

The second equation gives
E A x’ L A ( L, n L, )
. pr— ——— == .
Voodmeg RN/ R, 4meR\VIZ L RE VIR
1 A “thin” rod is a rod whose radius is much smaller than the distance from the
rod to the point of observation. A “‘long” rod is a rod whose length is much greater
than this distance. Note that all expressions like long, thin, small, large, slender,
infinite, infinitesimal, etc., are statements of relative dimensions or magnitudes of

quantities involved in the physical system at hand and should therefore be understood
as relative, rather than absolute, characteristics of these quantities.

+ Ly

p ( 1 I
1, 4re\VIFE RE VI RZ)
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If the rod is very long (R <€ L,, and R <€ L,), then R can be neglected
in comparison with L, and L,. In this case the expression in parenthesis for
E, becomes zero, and so F, becomes zero. The expression in parenthesis for
E, becomes equal to 2, which gives E, = 2/2me,R. Thus at all points whose
distance R from the rod is such that R < L; and R < L,, the electric field
of the rod is practically radial. In vector form it may be expressed as

2
= TR

where R, is the unit vector in the direction of increasing R (observe that this
is the same result that we obtained in Example 4-4.2 by using Gauss’s law).

Example 4-5.2 Find the electric field on the axis of a thin circular ring
of radius a carrying a uniformly distributed charge ¢ and then estimate
the axial distance from the ring beyond which the ring may be regarded as
a point charge if the greatest admissible error for £ is 19%,.

Fie. 417 Calculation of the electric field on the axis of a charged ring.

Let the axis of the ring be the z-axis, with the origin at the center of the
ring (Fig. 4.17;. Using Eqgs. (4-5.9}, (4-5.10), and (4-3.11), we have

5 1 <£ X J
T ey I 3 7
1T 7y
EF —_—— &=
Y 4e, 73 7
E 1 4; z
: B dmey I o3 7

The first of these integrals 1s zero, since to every charge element dg located
at the distance x” from the y-axis, there corresponds an element dg located at
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the distance —x’ from the y-axis, and r is the same for both elements,
Therefore E, = 0. Similarly, the second integral is zero, so that £, = 0.
In the last integral z and r are constant, so that

1 =z do — 1 z
P dmeyr? 7= drre, (a® + 28)°" 7
We finally obtain therefore

_ 9z k
T dmey(a® + BT

In order to estimate the distance beyond which the ring may be regarded
as a point charge, we expand E in a power series of z,

q (1 ‘ az)_m q q 3a®

4mey2? 2 dmeyz?  dmegz? 222

+
z
The first term in this series is the point charge field, which we shall designate

as Ey; the remaining terms represent the deviation AE of E, from the exact
field E. The relative error resulting from using E, instead of E is in the first

approximation »
AE  32*
E, 2z%°

and since the greatest admissible error is 19, or 0.0l, we have for the
smallest z beyond which the ring may be regarded as a point charge

3a?

52 ~ 0.01, or zy, &~ 12a.
Example 4-5.3 Find the electric field on the axis of a thin, uniformly
charged disk of radius a and total charge ¢ and then estimate the axial
distance from the disk beyond which the disk may be regarded as a point
charge if the greatest admissible error for E is 1%,.

Let the axis of the disk be the z-axis with the origin at the center of the
disk (Fig. 4.18). Using the same symmetry considerations as in the preceding:
example, we conclude that £, = E, = 0. Dividing the disk in elementary
rings of radius R and width dR, we then obtain from Eg. (4-3.11) (using

dg = ¢ dS")
o z ., c ¢ z227R dR
Ez—:%%f,—gds :EZLWT

2¢, VRE L 22

I (1 z )
o 2e Va1 22)’

and, since gma? = ¢, we finally obtain

q z
E = ] — ——1k
27’1’6002( Va? 4 zz)
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Fic. 4.18 Calculation of the electric field on the axis of a charged disk.

‘valid only for z > 0 because after substituting the limits we have used
V 2z = +2z).

Expanding £ in a power series for z, we obtain as in the preceding
example 3

q 112 —1iz

B - (145
g | 1 a? 1-3a4J_
T Omaley| ToERT T A

dmeyz?  4meyz? 422

The smallest z beyond which the field of the disk may be calculated from the
point charge formula with an error smaller than 19 is therefore

3a2 .
—— =& 0.01, or zg, =~ 9a.

4-6. Calculation of Electrostatic Fields from Charge

Inhomogeneities

The determination of the electrostatic field E associated with a
given charge distribution p is one of the most fundamental problems
of electrostatics, In the last section we solved this problem in its general
form by deriving Eq. (4-5.4) which can be used to calculate E whenever
p is given. In this section we shall discuss an alternative solution of the
problem—a solution which reveals remarkable new correlations be-
tween electrostatic fields and electric charges.
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Fic. 4.19 Example of a charge distribution with abruptly changing
density. Electric field of such a charge distribution can be calculated from
a special formula.

Let us examine Eq. (4-5.1) which we obtained from Poisson’s
theorem in the preceding sectioh,

1 P
— Ly, (4-5.1)

r
OAH space

E:

The remarkable feature of this equation is that it correlates the electric
field with the gradient of the charge distribution rather than with the
charge distribution itself. Hence, the equation may be interpreted as
indicating that the electric field is associated not with the electric
charge as such, but rather with the inhomogeneities in the distribution
of the charge (a homogeneous, or uniform, charge distribution has zero
gradient). As we shall see presently, this point of view 1s useful
for analyzing and solving certain types of clectrostatic problems. -
For practical applications, Eq. (4-3.1) can be transformed into a
somewhat different form, which will be more convenient to use in the
case of a discontinuous charge distribution—that is, when the charge
density changes abruptly from a value p, to another value p, across a
thin boundary layer, as shown in ¥Fig. 4.19. For a charge distribution of
this type, the integral of Eq. (4-5.1) can be split into two integrals.
f y dv' = f Py + f YT_P dv'. (4-6.1)

7
v
All space Boundary layer Remaining space

Let the thickness of the boundary laver be At. Since the layer is thin,
V'p for the layer can be written as

AP P2 — P1
Vp=—n, =-———=
P=ar ™ At
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where m,, = n, is a unit vector normal to the layer and pointing from
o, to p, (V'p is normal to the layer because, by supposition, p ex-
periences its maximum change across the layer). The volume element dv’
of the layer can be written as dv’ = At dS’, where S’ is a surface element
of the boundary. The integral over the boundary layer is therefore

Vip o _ f P2 — P1 ,
—r"dv— anAldS

Boundary layer Boundary

Pe — PLys:, (4-6.2)
Boundary 4

where we have denoted n, dS’ as dS,.
Combining Eqs. (4-6.2), (4-6.1), and (4-5.1), we then obtain

1 — , l v’

E = f L= Prygr, P, (4-6.3)
47760 ro 47760 J r

Boundary Remaining space

This equation becomes espécially simple in the case of a constant
(uniform) charge distribution surrounded by charge-free space. In this
case we may set p; = p, p, = 0, and dS;, = d§’, where d§’ points from
the charge distribution into the surrounding space. Since p is constant,
V’p in the last integral is zero, and the integral vanishes. We therefore

obtain

) 3{; s’ - (4-6.4)
4, 7
Boundary

Thus in the case of a constant charge distribution confined to a limited
region of space, the electrostatic field is completely determined by the
density of the charge and shape of the surface bounding this distribu-
tion. The direction of the field is then determined solely by the orienta-

tion of the surface elements, each surface element contributing to the
field only in the direction of its normal.

v

Example 4-6.1 Show that if an eccentric or asymmetric cavity is made
around a field-free point within a uniform charge distribution, an electric
field will appear at this point and will be proportional to the size (linear
dimensions) of the cavity.

Since the point under consideration is initially ffeld-free, and the charge
distribution is uniform, the field, after the cavity is made, will be entirely
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due to the surface of the cavity, or, by Eq. (4-6.4),

dS’
E--2 ¢ 2=,
47 r
Cavity

Since the surface of the cavity is not symmetric about the point under consid-
eration, the contributions of different surface clements to the total field, in
general, will not cancel each other, and the field will be different from zero,
Finally, since for a given point of observation the surface integral in the above
equation depends only on the geomectry of the cavity, and since the dimen-
sions of this integral are [area/distance] = [distance], the integral must be
proportional to the size (length, width, or any other characteristic linear
dimension) of the cavity. Hence the electric field also must be proportional
to the size of the cavity. '

Example 4-6.2 Find E at an external axial point close to a base of a
very long, uniformly charged cylinder of radius @ and charge density p (Fig.
4.20).

Fic. 4.20 Calculation of the electric field on the axis of a charged cylinder.

By Eq. (4-6.4), the field is

dsS’

E——" 3€ —.
4ire, r
Boundary

The surface integral can be split into three integrals

a8’ ds’ ds’ ds’
¢ 5= =+ =4 | =
r r r r

Boundary Near base Curved surface Far hase

The integral over the far base may be neglected since the base is very far
from the point of observation, and its contribution to the total field at this,
point is therefore much smaller than the contribution of the near base.
The integral over, the curved surface produces no field .on the axis, since to
every surface element on one side of the axis there corresponds an equal and
opposite element on the opposite side. To evaluate the integral over the
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rear base, we subdivide this base in elementary rings of radius R and width
R. Then we have d8'= k27R dR and r = VR? + 22 (Fig. 4.20), so that

a8’ ¢ 27 R dR -
f —=k| o kR 2|

2
0 R2+Z2

= 27(Va® = 22 — 2)k,

Near base

The field is therefore
E- (Va2 ok (4-6.5)
0

Example 4-6.3 A spherical cavity is made about an internal axial
point at a distance 4 from the center of a uniformly charged disk of charge
density p, thickness 2¢, and radius a (Fig. 4.21). Find E at the center of the
cavity and obtain the limiting value of E for a very large disk (a> ¢).

Fic. 4.2]1 Calculation of the electric field in a spherical cavity located in a
charged disk.

The surface of the cavity makes no contribution to the field at its center,
since a spherical surface produces only a radial field, all components of
which meet in the center and cancel each other. Likewise, the curved
surface of the disk makes no contribution. Hence only the flat surfaces of
the disk are responsible for the field at the point under consideration,
The contribution of one such surface to the field at an axial point is given
by Eq. (4-6.3). Applying Eq. (4-6.3) to the two surfaces of the disk, we obtain

E — é”— (V& + (t —d)? — Va® ~ (1 +d)° + 2d]k.
2

For a very large disk, a > ¢, and we may neglect (¢ +— d) and (1 — d)
in the radicals. We obtain then

‘ — — - — N ——
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Example 4-6.4 A cylindrical cavity of length { and radius ¢ is made in
a uniformly charged sphere of charge density p, as shown in Fig. 4.22,
Find E at the center of the sphere and check whether the result agrees with
that of Example 4-6.1.

¥16. 4.22 Calculation of the electric
field in a cylindrical cavity located
in a charged sphere.

>

By symmetry, only the two bases of the cavity contribute to the field.
Using Eq. (4-6.5), we have

E= [V@— (V& £ -k,

0

_ P a_ a\?
E‘zeol[”z «/‘+(1”“>

which for a given “‘shape factor” a/l is proportional to the length of the
cavity, as it should be by Example 4-6.1.

or

A

PROBLEMS ﬁ

4.1. A test plate acquires a charge ¢ when touched to a terminal of a
battery. If the plate is then touched to an uncharged, insulated conductor,
a fraction f of this charge is transferred to it. Show that the maximum total
charge that can be transported from the battery to the conductor by
repeatedly bringing the plate in contact with the battery and the conductor
is

Jq
Qmax = T—7

4.2. The radius of the spherical electrode of a van de Graaff generator
is 1 m. Electric charge is delivered to it by a moving belt at the constant
rate of 107® amp. The field around the electrode may be considered
radially symmetric. Determine the frequency of sparks originating on this
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electrode, assuming that a spark occurs when the field reaches 3 - 108 volt/m,
that a spark completely discharges the electrode, and that no other discharge
processes are possible.

4.3. Taking into account that air becomes conducting when the electric
field in it reaches about 3 - 108 volt/m, determine the radius of the smallest
sphere that can carry a charge of | amp - sec in air.

4.4. Show that a unidirectional electrostatic field in a charge-free space
must be constant.

4.5. Find the charge distribution that produces the field

Ey
E:a—srr, O0<r<a

and
E =0, 7> a,

where Ej, and a are constants, and r is a radius vector in spherical coordinates.

4.6. Show that the electric field of an infinite plane-parallel slab of
charge of density p and thickness ¢ for points inside and outside the slab is,
respectively,

£z and £ = il ,
& 2¢,
where z Is the distance from the midplane of the slab.

4.7. The charges g and —g are uniformly distributed over two concentric
spherical shells of radius a and b, respectively (a < b). Find the electric field
vector E associated with these charges in the regions r < a,a < r < b,
and r > b. ) '

4.8. Charge ¢ is distributed throughout a spherical volume of radius
a with the density p = k7%, where £ and o are constants and 7 is the distance
from the center of the volume. Find E at all points of space and plot £
against the distance from the center for « = —1, « =0, and « = 41.

4.9. Show that the electric field of a spherically symmetric charge
distribution p{r) at any point r = r, depends only on the charge inside the
spherical region of radius 7, and is the same as if the total charge of the
region were concentrated at the center, r = 0.

4.10. Electric charge is uniformly distributed with density p throughout
the volume of an infinitely long circular cylinder of radius a. Show that the
electric field vector at a distance 7 from the axis of the charge-filled region is

:267,ru) 7209
0
pr
:2— W r<a
o

4.11. The average fair-weather electric field of the earth has been
found to vary with the altitude & above the earth’s surface according to the

. —  m——— —
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empirical formula
E = —E (ae™™ + beP")h,,,

where L, a, b, «, and § are constants (£, = 130 volt/m, a = 0.69, b = 0.31,
o =3.5 km™!, § =0.23 km™?). (a) Derive the equation for the charge
density p in the earth’s atmosphere. (b) Plot E and p against & and give
the values of £ and p at A = 0, # = 10 km, and £ = 20 km. (c) Assuming
that the earth’s charge is confined to the earth’s surface, find the surface
charge density and the total charge of the earth,.

4.12. Show that if the maximum admissible error in E is (100/n)9%,,
then the distance from an arbitrary charge distribution beyond which this
distribution may be regarded as a point charge is always less than 2na,
where a is the distance between the two extreme points of this distribution.

4.13. Show that if the maximum admissible error in £ is (100/n)%,
then the largest distance from a straight uniform line charge within which
this line charge may be regarded as infinitely long is approximately

a
—
Von
and show that the smallest distance beyond which this line-charge may be
regarded as a point charge is approximately

na,

where a is the length of the line charge.

4.14. In the quantum-mechanical model, a normal hydrogen atom
consists of a positive nucleus of charge ¢ located at the center of a negative
electron cloud of density

p = — ;Cq?g_ 3_27'/“0,

where a, is a constant, and 7 is the distance from the center. Using this
model, find the electric field E of a hydrogen atom, plot E against r, and
determine the numerical values of the field for r = 0.5a,, r = a4, and
r=2a,if ¢ = 1.6 - 107 amp - sec and a4 = 0.53 - 10710 m.

,4.15. A thin hemispherical shell carries a uniformly distributed charge of
surface density . Show that the electric field at the center of curvature of
the shell is

E_C
T dey
4,16, Show that if a small hole is punched through the wall of a thin,

uniformly charged spherical shell whose surface charge density is o, then
the field near the center of the hole will be

o
T 2¢ "
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4.17. A spherical cavity of radius 4 is made within a uniformly charged
sphere of radius 4, the center of the cavity being at a distance ¢ from the
center of the sphere. Find the electric field associated with this charge
distribution for all points of space.

- -,4.18. Show that the electric field at an external axial point of a thin,
uniformly charged cylinder of charge density p, radius a, and length 2/ is

pa®l

E= 26(2% — [3) k,

where z is the distance from the center of the cylinder (z 3 a). Then show
that the cylinder may be considered a point charge if 2> /.

4.19. A charge distribution has the form of a very large disk of thickness
3d consisting of three equally thick layers of uniform charge density p;, p,,
and p3. A cubical cavity is made at the center of the central layer (p,), two
surfaces of the cavity being parallel to the flat surfaces of the disk. Show
that the electric field at the center of the cavity is

(py — pa)d

E= 2¢,

k,

where k is a unit vector along the axis of the disk pointing from p; to ps.
4.20. A uniform charge distribution of density p forms a very long,

thin-walled, cylindrical tube of radius a and wall thickness ¢&. Show that

E at an axial point near an end of the tube is

pat

E——"——
26,V a® £ 22

where z iIs the axial distance measured outward from the same end of the
tube.

4.21. A uniform charge distribution of density p forms a very long
cylinder of radius 2. One end of the cylinder has a spherical depression of
radius & > a, the center of curvature of the depression lying at the point P of
the cylinder’s axis. Show that E at P is
pa’

= k
E degb 7

where k is along the axis, away from the charge.

4.22. Show by means of dimensional analysis, or otherwise, that if
an electrostatic system consisting of a charge distribution and a point of
observation expands slowly so that all linear dimensions of the system
increase 2 times, the field at the point of observation decreases n?
times.

4.23. An electrostatic system is studied by means of a small-scale model
whose total charge and linear dimensions are, respectively, m and = times
the charge and dimensions of the actual system. Show that the electric
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field at a point of the model is mn~2 times the field at the corresponding
point of the actual system.

4.24. Suppose that we are located at the center (field-free region) of a
very large, uniform, spherical cloud of positive charge. Show that what we
consider to be negative charges may then be interpreted merely as holes in
this cloud. What are then the positive charges as we know them?

4.25. Show that the equation E x dr = 0, where r is a position vector,
constitutes a differential equation for the field lines of the field E. (Hint: dr
is usually not in the direction of r).

4,26. Show that the differential equation for the field lines of a two-
dimensional electric field

E = E(r, O)r, + Egr, 6)6,

can be written as r d6/dr = E/Ey.
4.27. Let the equation F(x, y) = C, where Cis a constant, represent the
field lines of an electric field E. Show that F satisfies the relation

E dF oF

Xé? +E}W = 0.

4.28. Show that the equation y = x tan 6 represents the field lines of a
point charge field (8 is the angle between a field line and the x-axis).

4.29. Two point charges ¢, and ¢, are located on the x-axis at points
(a, 0) and ( —a, 0) of the xy-plane, respectively. Show that the field lines of
these charges are correctly given by the equation

gix = [(x - &) + ] V2 + g(x + a)[(x + a)® + y*]~'2 = constant,
and show that if one of the charges is zero, the field lines are radial.
4.30. The electric field of a dipole (see Section 5-4) is
p cos B p sinf

Edipole = 27780 3 r,

4mey 13 v

Show that the field lines of the dipole are given by 7/sin? 8 = constant.
4.31. The integral {D - 48 is called the “‘flux’’ of the electric field through
the surface S. A tubular region in an electric field such that the flux through
any cross section of the tube is the same is called a ‘‘flux tube.’”’ Show that
flux tubes of a point charge field are cones with the point charge at the apex.
4.32. Using basic laws, show that electrostatic fields satisfy the reciprocal

relation
f prEy dv = _f poEy dv,

All space All space
where E, is the electric field associated with the charge distribution p;, and

E, is the electric field associated with the charge distribution p,, both charge
distributions being confined to a finite space. [Hint: use vector identity (V-21)]




ELECTROSTATIC
POTENTIAL

An electrostatic field can be described not only by vector
guantities E and D but also by a scalar quantity: the electrostatic
potential ¢. The electrostatic potential ¢ is intimately related to the
electrostatic field vector E, and one can be derived from the other.
However, ¢ is frequently easier to measure and (as a scalar quantity)
easier to compute than E, so that it is frequently more convenient to
describe an electrostatic field by means of ¢ rather than by means
of E (or D). The basic properties and applications of the electrostatic
potential are discussed in this chapter.

5-1. Electrustatic Potential

According to the corollary to Poisson’s theorem of vector analysis,
any vector field whose curl is zero can be expressed as the gradient of a
scalar potential. Therefore, since the curl of the electrostatic field is
always zero, the electrostatic field can always be expressed as

E = —Vq. (5-1.1)

The potential ¢ defined by this formula is called the electrostatic potential.
The unit of the electrostatic potential is the volt.

The electrostatic potential is a scalar point function and deter-
mines a scalar field associated with the electrostatic vector field E. By
the basic property of the gradient, E is at every point of the field perpen-
dicular to the equipotential surface (surface of constant ¢) drawn

111
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F16. 5.1 Calculation of the potential difference between
the plates of a parallel-plate capacitor.

through this point and, being the negative gradient of ¢, points in the
direction of decreasing ¢.

If we take the scalar line integral of E along an arbitrary line
connecting any two points ¢ and b, we obtain, using Eqs. (5-1.1) and

(2-10.2),
b b b
fE-dl:wfV(podl:a—qu;:(pa—%. (5-1.2)

Thus the scalar line integral of the electrostatic field vector E evaluated
between any two points is independent of the path of integration and is
equal to the difference of the electrostatic potentials, or the potential
difference, between these points. This correlation can be used for
determining ¢ at any point « if a reference potential ¢, at some reference
point ¢ is known. We then have from the last equation

- =fCE-dl ¥ . (5-1.3)

The physical significance of ¢ can be deduced by calculating the
potential difference between the plates of a thin parallel-plate capacitor.
According to Section 4-2, E in such a capacitor is

E = ;nu,
where V' is the voltage between the plates, 4 is the separation of the
plates, and n, is a unit vector directed along a normal from the positive
to the negative plate. Integrating E along an arbitrary line from a
point @ on the positive plate to a point 4 on the negative plate and ob-
serving that mn, - 41, by the definition of the dot product, is equal to
dn—Tlength increment in the direction of mn, (Fig. 5.1)—we obtain

by

=| —m
ad

Ve |4
Ldl = — —_la=v
o d dJ;dn dd v

/]
Do — P :JE'dl
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Thus the potential difference between the two plates is equal to the
voltage between them. Since any electrostatic field may be subdivided
into small homogeneous regions in each of which the field may be
regarded as produced by a small, thin parallel-plate capacitor, we
conclude that the equality of the potential difference and voltage,

Po — Pp = Valn (5'1'4)
is a general correlation valid for any two points of an electrostatic field.

In order to measure the voltage between points where no conducting
boundaries are present, special devices known as probes are placed at these
points, and the voltage between the probes is then measured. Examples of
probes are a sharp point, a piece of radioactive substance, a burning candle,
and a “‘water dropper” (water-filled container with a small hole from which
water drips). Probes make ‘the space around them slightly conducting, so
that the voltage in this space can be measured in essentially the same manner
as in conducting bodies.

Irom Eq. (5-1.4) several important conclusions about conducting
bodies in the presence of electrostatic fields can be made.

First of all, since voltage and potential difference are equivalent
quantities, all conducting bodies under electrostatic conditions must be
equipotential bodies. Otherwise voltage would be present between
various points of the same conducting body, and due to the current-
producing property of voltage, current would be produced in the body,
thus violating the condition that no current may be presentin an electro-
static system.

From this and from the fact that the electrostatic field vector E
at any point of an equipotential surface is perpendicular to the surface,
it follows that under electrostatic conditions E at any point of a con-
ducting surface is perpendicular to it. And since E (in vacuum) has the
same direction as D, D is also perpendicular to a conducting surface
under these conditions.

Now, according to Section 4-3, the direction of D is at any point
perpendicular to the plane of the test plate which measures D at this
point. But since under electrostatic conditions D at the surface of a
conductor is perpendicular to the surface, any surface element of a
conductor under electrostatic conditions may be regarded as a test
plate for measuring D at the location of this surface element. There-
fore the surface charge density at any point of a conducting surface in an
electrostatic system is equal to the displacement D at this point, Taking
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into account the sense of the direction of D, we can write this correla-

tion as
D =on,, (5-1.5)

where n, is a unit vector normal to the conducting surface and point-
ing from the conductor into the surrounding space. Combining this
equation with the displacement law, we obtain the corresponding equa-

tion for E,
g -
E=—n, (5-1.6)
€o
A useful special case of this equation is the equation correlating
o and £ of a thin parallel-plate capacitor. Insuch a capacitor £ = V/d,
where V'is the voltage applied to the plates and 4 is the distance between
them. The surface charge density on the inner surfaces of the capacitor’s

plates is then by Eq. (5-1.6)
V s
=gy — . 5-1.7
G €o d ’ < )

v

Example 5-1.1 A voltage V' is applied to a thin pafallel-plate capacitor
of plate separation 4. Find the potential at an arbitrary point in the space
between the plates, taking a point on the positive plate as the reference point.

Let the reference point be the origin of a rectangular system of coordi-
nates, with the x-axis lying in the direction of the normal drawn from the
positive to the negative plate (Fig. 5.2). The electric field in the capacitor is
then E = (V/d)i. Integrating from a point x, y, z to the origin and desig-
nating the reference potential as ¢, we have by Eq. (5-1.3)

0 0 I/' V 0
gz(x,y,z):f E.-dl - ¢, = —i-dl+¢0:—f i-dl — g,
r z,y.sd d r

e W

Since i « d1 = dx, the integral is a function of x only, and we obtain

Fic. 5.2 Calculation of the potential in a
parallel-plate capacitor.
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znd finally
p7
glx) = — 2%+ o
Example 5-1.2 For all points of space find the potential associated

with the spherical charge of Example 4-4.1, taking as the reference potential
v, = 0.

For points in the space outside the charge-filled region (r > a) we have,
using Egs. (5-1.3) and (4-4.4),

¢ (r) :f”E-dl—;%:f“Lr 1+ 0.

2 T’
, dmeyr

But v, + dl = dr, so that

R * dr 1]=
TEY S, T dmegr |,
or
N9 _
glr)— (r > a). (5-1.8)
dreyr

The calculation of the potential inside the charge-filled region (r < a)
is a little more complicated because, according to Example 4-4.1, two
different expressions for E must be used in the line integral. The line integral
must be split therefore in two parts: one for the path inside the charge-
filled region, the other for the path outside this region. Using Egs. (5-1.3),
(4-4.5), and (4-4.4), we then have

V(’) = [‘ Ein\:ide -+ dl - {\ Euulside - dl
o7

va

a *
:f qr3r“-dl—‘—J 7 _e,-dl
, dmega o« dmegr

_ 4 f"d‘ q f‘”dr
dmreqad ,r rT‘hTEO . 72

- q rtla q 1=
dmegad 2 |, Amey vl
which finally reduces to
g(r) = —1— (3a% — 12) (r <a). (5-1.9)
8mega
Example 5-1.3 Find the external potential near the surface of the

charged rod of Example 4-4.2 taking as the reference potential ¢(r,) = 0,
where 7, 1s the distance to the reference point from the axis of the rod.
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By the symmetry of the problem, the potential is a function of r only,
and we have according to Eq. (5-1.3)

i) =" a

Substituting £ from Example 4-4.2, we obtain

.
(p(r):fﬂ * g = A Inr
r

To

3

2meyr 27eg, ;
or
A A
{r) = — 1 ——— Inr,.
#(r) 2me, T 27, o
Example 5-1.4 The potential associated with a certain spherically
symmetric charge distribution is
p = 7 —or
7 4regr c

Find the electric field of this distribution. .
According to Eq. (53-1.1) and vector identities (V-1) and (V-3), the
field is

1 1
E=—-V¢g=— i(— Ve + eV —)
dmeg\r r
_ 9 (  prg 4 g ﬁ)
ey \r r2 )’

or
g0 +o) .

2 ur
dreyr

5-2. Capacitance

An important problem of electrostatics is the calculation of the
potential or voltage associated with a given charge distribution. In
the next section we shall solve this problem in its general form. In this
section we shall consider a special case of the problem: the calculation
of potentials of charged conductors and voltages between charged
conductors with the aid of a special quantity called capacitance.

Capacitance is defined for single conductors and also for capacitors
(a capacitor is a system of two conductors carrying equally large
charges of opposite sign).

The capacitance of a conductor is defined as the ratio of the charge
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carried by the conductor to the potential of the conductor

c=1, (5-2.1)
@
where the potential is measured with respect to ¢, = 0.

The capacitance of a capacitor is defined as the ratio of the charge
residing on one of the two conductors forming the capacitor to the
voltage between these conductors

q
C= 7 (5-2.2)

As will be shown in the next chapter,! the capacitance of a single,
isolated conductor or capacitor (in a vacuum) depends only on the
shape and the size of the conductor or capacitor and so constitutes a
constant characterizing this conductor or capacitor. Therefore, once
the capacitance of a given conductor or capacitor has been determined,
the potential of the conductor or the voltage of the capacitor can be
found immediately from Eq. (5-2.1) or Eq. (5-2.2) if the corresponding
charge is known (conversely, the charge can be found if the potential
or voltage is known). The problem of calculating the potential of a
charged conductor or voltage of a charged capacitor reduces therefore
to that of determining the capacitance of the conductor or capacitor
under consideration.?

The units of capacitance are amp - sec/volt (these units are usually
called ““farad”).

v

Example 5-2.1 Find the capacitance of a single, isolated conducting
sphere of radius a.

Assuming that the sphere carries a charge ¢, we find by using Gauss’s
law (as in Example 4-4.1)

_ 4
D= o T
Using the displacement law, we find
E = 94 r.
dregrt

1 See Example 6-2.2 and Section 6-7.

2 The proportionality of charge and voltage in a capacitor allows one to measure
charges by means of electrostatic voltmeters. The charge is then ¢ = CV, where C
is the capacitance of the voltmeter and V is the voltage indicated by it. Since the
capacitance of these voltmeters is very small, even a small charge produces a large
voltage in them. Their sensitivity for charge measurement is therefore very high
and can exceed the sensitivity of ballistic galvanometers considerably.
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By Eq. (5-1.3), the potential of the sphere with respect to @ = 0 is then

” v 4 g | _4
=| E.dl= dr = — = 5-2.3
Pa J; J; 4reyr? ! dmregr |, dmega’ ( )
Using now the capacitance equation (5-2.1), we obtain
g _ q4mep
K2 g’
or
C = 4nepa.
Example 5-2.2 Find the capacitance of a spherical capacitor consisting

of an inner sphere of external radius a and an outer sphere, concentric with
the first, of internal radius 4 (Fig. 5.3).

Fic. 5.3 Spherical capacitor. A
section of the outer sphere is cut out
to make the inner sphere visible.

Assuming a charge ¢ on the inner sphere, we repeat the first three
steps of the preceding example (except that the line integral is taken now-
between the limits @ and ). This gives for the voltage between the spheres

b
g (1 l)
Vi =| E-dl = -
@ J; 47T€0((Z b

The capacitance is therefore, by Eq. (5-2.2),

1 1\
C = 7 = 4 o
Vab Treo(a b) ’
or
ab
C'=47rsob_a.

Example 5-2.3 Find the capacitance per unit length of a cylindrical
capacitor consisting of two very long concentric cylinders of radius @ and &
(Fig. 5.4).

Describing a cylindrical Gaussian surface of radius r and length
[ coaxial with the two cylinders and assuming that the inner cylinder
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- —

Fic. 5.4 Cylindrical capacitor. A Gaussian surface is shown between the
two cylinders which form the capacitor.

carries a charge A per unit length, we have (compare with Example 4-4.2)

_ }G
S 2 v
Using the displacement law, we find
" E= 4 r,.
2meyr

This gives for the voltage between the cylinders

The capacitance per unit length, Cz = )/Vab, 1s therefore

C, = 2mey —— o (b/a

Example 5-2.4 Find the capacitance of a parallel-plate capacitor of

- plate separation 4 and area A neglecting the “edge effects”—that is, assuming
that the field is homogeneous everywhere between the plates and suddenly
becomes zero at the edges of the capacitor (Fig. 5.5).

‘
L
| a

(a) (b}

Fic. 5.5 (a) Electric field of a parallel-plate capacitor. (b) Idealized
electric field of the same capacitor obtained by neglecting edge effects.
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If the edge effects are neglected, the density of surface charge on the
plates is constant. By Eqgs. (4-1.3) and (5-1.7) we then have for the charge
on the positive plate

14
q:aAzeuE—A,

and, substituting ¢ in Eq. (5-2.2), we obtain

C:’fo;-

5-3. Calculation of Electrostatic Potential
from Charge Distribution

We shall now obtain the fundamental formula which correlates
electrostatic potential with electric charge. According to the corollary
to Poisson’s theorem of vector analysis, the electrostatic potential, which
we have defined by the equation

E = Vg, (5-1.1)
can be expressed as
1 V.E ,,
=g | e
All space

Since by the displacement law and the divergence law

v.E zl_v.]) =_1_p,
€o €o
we obtain ,
1 P
= = dv . -3,
47e, r v %o (5-3.1)

All space

(2

Thus the electrostatic potential is determined by the distribution of
electric charge and can be calculated directly from this distribution by
means of Eq. (5-3.1).

The constant ¢, in Eq. (5-3.1) is an arbitrary reference potential.
The arbitrariness of ¢, follows from Eq. (5-1.1) which defines the
electrostatic potential; since the gradient of any constant is zero, the
presence of an additive constant in the expression for ¢ has no effect
upon E obtained from this expression. In the case of a finite charge
distribution, ¢, is usually set equal to zero, so that ¢ will be zero when
r — co—that is, at points very distant from the charge distribution.
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When ¢, is set equal to zero the potential is said to be evaluated with
respect to infinity. Quite often ¢, is given a value which makes the
potential of the ground (earth) equal to zero; the potential is then said
to be evaluated with respect to the ground. In general, ¢, is selected so that
the potential ¢ becomes zero at some convenient reference point, and
w 1s then said to be evaluated with respect to this point. Unless other-
wise stated, we shall always use ¢, = ¢, = O—that is, we shall always
evaluate the electrostatic potential with respect to infinity.

It follows from a comparison of Eq. (5-3.1) with Eq. (4-5.4) and an
examination of Egs. (4-5.5), (4-5.6), and (4-5.7), that Eq. (5-3.1)
reduces to

9 = f s’ + ¢, (5-3.2)

477'80

for a surface charge distribution,

9= f ' + @, (5-3.3)

4776‘0

for a line charge distribution, and

q
= + -3.4
4 dregr o (5-3.4)

for a point charge (the potential expressed by this formula is called
Coulomb’s potential).

The three equations (5-3.1), (5-3.2), and (5-3.3) are frequently
written as a single equation

1 (4
p=— | Z + g, (5-3.5)

dmeyJ 1

where the charge element dg is equal to p dv’, ¢ dS’, or 2 dl’, depending
on the type of the charge distribution under consideration?

v

Example 5-3.1 Find the electrostatic potential on the axis of a thin,
uniformly charged, circular ring of radius a carrying a charge ¢ (Fig. 5.6)
and then estimate the axial distance from the ring beyond which the ring
may be regarded as a point charge if the greatest admissible error for ¢ is
19, %

! See Problem 5.28 for alternative expressions for @.

? The relative error for ¢ is meaningful only when a fixed reference point is
used, If the reference point is changed, the value of ¢ changes, and hence the value
of the relative error changes. As already stated, we are using ¢, = @ = 0.
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/'Q\V\
(223
*62
a
l 9
P z
a Fic. 5.6 Calculation of the elec-

trostatic potential on the axis of a
charged ring.

From Eq. (5-3.3) we have

1 d 1
TEY ) T dmreyr
or 2
q q

dregr  AmeVa® - 22

In order to estimate the distance beyond which the ring may be regarded
as a point charge, we expand ¢ in the power series of z,

g @\ g g . @
— 1+2) = — C
? 4—77502( - z2) dmeyz 4meyz 222 T

The first term in this series is the point charge potential ¢’; the remaining
terms represent its deviation Ag from the exact potential ¢. The relative
error resulting from using the point charge potential instead of the exact
one is in the first approximation

Ap g
@ 92

Since the greatest admissible error is 19,, or 0.01, we have for the smallest
z beyond which the ring may be regarded as a point charge (as far as the
potential is concerned)

2

a
— ~ 0.0, or zyy,~7a
2Zmin
Example 5-3.2 Find the electrostatic potential on the axis of a thin,

uniformly charged, circular disk of radius a and surface charge density o
(Fig. 5.7) and then estimate the axial distance from the disk beyond which the
disk may be regarded as a point charge if the greatest admissible error for

@ is 1%,

m
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Fic. 5.7 Calculation of electrostatic potential on the axis of a charged
disk.

Dividing the disk in elementary rings of radius R and width 4R and
using Eq. (5-3.2), we have °
a a
J’o‘ s’ 1 o27R dR

= =l VET
r dmeg Jo VRE - 22 2¢ Tz O’

p —

e,
or
—-_G_ \/2 2
@ 280( a® + z% — 2.

Expanding the potential in the power series for z and noting that the
total charge of the disk is ¢ = oma?, we obtain as in the preceding example

_ q 1 ‘_Zf‘ 1/2_ l:|
U 2ma’e, Z[( + z2)

_ 4 e 1 & _Q
2male, z( 2z 2-42z¢% -
q g . a

dmegz Amegz 42

The smallest z beyond which the potential may be calculated from the point
charge formula with an error smaller than 19, is therefore

? 001 5
~ 0.01, or zy, = da.
4Zx2nir\ i ‘
Example 5-3.3 Two conducting spheres of radius 2 and b, each carrying

a charge ¢, are separated by a distance R > a,b. What, approximately,
will be the potential and the final charge on each sphere after they are
connected by a fine, conducting wire?

We shall find an approximate solution assuming the following idealized
conditions: (a) the charge distribution and the field of each sphere are
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radially symmetric; (b) each sphere can be regarded as a point charge
from the location of the other sphere; (c) no charge is residing on the wire.
With these assumptions an approximate solution of the problem may be
obtained as follows.

In the final state the potentials on the surfaces of both spheres must be
the same,

Pa = Pos

because only then will there be no voltage along the wire and therefore no
current in the wire (initially the potentials of the spheres are different;
after the spheres are connected, a certain amount of charge will move from
one sphere to the other until the whole system becomes an equipotential
system). The potential at the surface of each sphere may be regarded as the
sum of two partial potentials: the potential due to the charge residing on
the same sphere and the potential due to the charge residing on the other
sphere. According to assumption (a), the former is given by Eq. (5-2.3);
the latter, according to assumption (b), is given by the point charge potential,
Eq. (5-3.4). Using these formulas, we have (designating the charges of the
two spheres by ¢, and g¢,)

— qa qb
Pa dmeqa T 4re,R

ki

(P — qb qa
P dmegh | Ame,R

Furthermore, since the total charge is conserved, we have according to the
assumption (c),

Ga + 9» =2‘]

Combining these four equations and solving for ¢,, ¢,, @,, and ¢,, we obtain

2¢(R — b)a
%« =R —b)a+ (R —a)b°
2¢(R — a)b
=R —b)at+ (R—a)b’
2q(R? — ab)

¥e ™ % = 4reR[(R — b)a + (R — a)b]

Example 3-3.4 A certain charge distribution has a region within which
the charge has everywhere the same density p. A spherical cavity of radius
a is made in this region, the center of the cavity being at the point where the
potential originally was ¢,. Find the potential at this point after the cavity
is made.

The zero charge density in the cavity can be regarded as two equally
large charge densities of opposite polarity, p and —p. By Eq. (5-3.1), the
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potential at the center of the cavity is then

! Pe 1 P ! P
- Pe g o’ o r v - r ’
4 47, J‘ r + 4re, J‘ r d 4re, J‘ r @

External Cavity Cavity
region

where the first integral is taken over the region of space external to the
cavity (p, is the density of charge in this region). The first two terms of this
expression give just the potential @, associated with the initial charge distri-
bution. We can therefore write for the potential at the center of the cavity

L P,
Cavity

Since p is constant, it can be factored out from under the integral sign.

By symmetry, the volume element dv' can be written as dv’ = 4mr¥dr,
Therefore
@ 4grr?
=@, — —dr
p.‘ Pe 47750 0 r >
or
pa*
=% — o,
¢ 2¢

It is interesting to note that although the cavity affects the potential at the
centcr of the cavity, it does not affect the electric field there, as was shown
in Example 4-4.5.

A

5-4. Representation of Electrostatic Potential in Terms

of Multipole Potentials

Multipole is a collective term for certain point charge systems which,
in the order of increasing complexity, are called the monopole (one-
pole), the dipole (two-pole),.the quadrupole (four-pole), the octupole
(eight-pole), etc. These names are derived from the number of point
charges, or “poles,” comprising a given multipole. The number of
poles in a multipole is always 27, where n, called the order of the multipole,
can be 0, 1, 2, or any other positive integer.

The simplest multipole 1s that of the order 0, or the monopole. The
monopole is merely a point charge under a new name,

The multipole of the next higher complexity is the multipole of the
order 1, or the dipole (Fig. 5.8). The dipole is an arrangement of two
monopoles, or point charges, of opposite polarity and equal magnitude
separated from each other by a small distance A/, (in the theory of
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Azl/+ q r>>AlL
8
& q T~ r

ol(r, 0)

Fic. 5.8 Electric dipole.

multipoles a distance is considered small if it is negligible compared to
the distance from the location of the multipole to the point of observa-
tion).

A still more complex multipole is the multipole of the order 2, or
the quadrupole (Fig. 5.9). The quadrupole is an arrangement of two
parallel dipoles of opposite polarity,! but equal otherwise, separated
from each other by a small distance Al,.

In general, now, a multipole of the order n, or a 2"-pole, is an
arrangement of two multipoles of the order n — 1, or 2*~!-poles, having
opposite polarity, having the same orientation in space, and separated
from each other by a small distance A/,.

Al,
+q —-q —-q +q
+q -—Al—— ~Al——
- Al =

Fic. 5.9 Examples of electric quadrupoles.

1 Two similar and similarly oriented multipoles are said to be of opposite
polarity if the sign of each charge in one multipole is opposite to the sign of the
similarly located charge in the other multipole. For a given point of observation,
the sign of a multipole is determined by the sign of the potential produced by
the multipole.

’
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nl L B+ AT, y +AY, 7 +A2)

A(I’,y‘,z’) ‘\““\‘5§
® P(x,y,2)

Fic. 5.10 A 2"-pole is generated from two 2"~1-poles.

The potential of a 2"-pole can be expressed in terms of the potentials of
the two 2" ~l-poles from which the 2"-pole is made up. Let a negative 2*1-
pole be located at a point A(x", y’, z’), as shown in Fig. 5.10. Let a similar
positive 2"~1-pole be locatéd at a point B(x" + Ax',y + Ay, 2/ + AZ')
separated from the point 4 by a small distance Al,. Let the potentials
produced by these 2"-1-poles be —¢\t); and ¢'Z), respectively, where the
superscripts indicate the location,and the subscripts indicate the order of
the multipoles by which the potentials are produced. The two 2?~1-poles
together form a 2"-pole, whose potential ¢, is just the sum of the potentials
produced by the two 2% 1-poles. At a point of observation P(x, y, z) we then
have

Pa = 900 — ¢
The difference @5 — ¢{4) can be regarded as the increment of the
function @,_,(x', 5, z') associated with a shift of the source point x’, ¥', 2’
from A to B. Since the distance Al, between the points 4 and B is small,
this increment may be written as the differential
A(Pn—l == q’;li)l - ’77(nA—)1'

But according to Eq. (2-10.2), this differential can be expressed as

’
Aq)n—l = Aln ° Vl(}’n~1 = Aln % ’
n
where Al is the length element vector drawn from 4 to B, and where the
prime indicates that the differentiation is done with respect to the source
point coordinates x”, 3", z’.! Thus we obtain for the potential of a 2"-pole

a/
g, = AL -V, or g, = Al ;"‘1. (5-4.1a, b)

1 The derivative 2'q,_,/d/, is the derivative of the function ¢,_; with respect
to a length increment in the direction of AL,. It is called the “directional derivative”
of ¢,_; and, as one can verify by means of a geometrical construction, is equal to
the component of V'p, _, along the direction of Al . See Problem 2.44.
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Applying cither one of these formulas successively to multipoles of
different orders, starting with the dipole, we can express the potential of any
multipole in terms of the monopole (point charge) potential

q
ey’
Using Eq. (5-4.1b), we obtain for a dipole (n = 1)

o 9% __ A g
7= Ah =0 al, = Mg ol (477507)

Po =

or
_muz
= dmey 0l \7)" (5-4.2)

For a quadrupole (n = 2), we then have

B a/(pl a qul a/
@y = Al —— 7, = Al 512[47750 611(7)}

gALAL EL )
P2 = Tane, Ol01

By induction, the potential of a 2"-pole is therefore
_qALAL - AL o™ 1
#n = 4re, olol_, - ol\r)

The potential of a 2"-pole can be found from the formula

I A o (l)
Pn = dmegn! 01,00, ;- -+ dl\7)’ (5-4.4)

where the differentiation is with respect to the source point coordinates
and

or

(5-4.3)

P =nl gALAL_, - Al (5-4.5)

The quantity p™ is called the multipole moment. It is positive if Al is
directed from a 2"71-pole with a negative moment to a 2" !-pole
with a positive moment.

If a multipole consists of point charges lying on one single axis, the
multipole is called an axial multipole. For an axial multipole all A/l’s
are along the axis, so that if we take this axis as the z-zixis, we have

™ g (1
Pn(axial) = p — 3 7. (—) . (5-4‘.6)

dmegn! 02’7\ 1

This formula can be transformed into a more convenient one by
means of the following considerations. Observe that the dimensions of
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r are [length] and the dimensions of z' are [length]®. Hence the

1 o (1 '
dimensions of the quantity (—) are [length]=*1 which is the

nldzm\y
same as the dimensions of 1/7**1. Therefore we can write
1 o I) P,
n3el) = (o-47)

where P, is a dimensionless coefficient. This coefficient occurs in many
physical formulas and is called the Legendre polynomial of the first kind.

TABLE 5-1
Legendre Polynomials of the First (P,) and Second (Q,,) Kind.?
n L) Qnl )
14 u
1
0 1 3 In =g
1+ u
1 —
1 2 fuln =, 1
1
2 b3 — 1) Heut = it — g
- 1+ u
3 1540 3p) BP0 In 2t — 5Py0) — 3

¢ u stands for cos 0.

The values of P, for different n can be obtained from Eq. (5-4.7) by
differentiating 1/r and can be tabulated for future reference. The
values of Py, P, Py, and P, are given in Table 5-1.1 Forn > 1, all P,’s
can be expressed as functions of cos 0, where 0 is the angle between the
z -axis (or a polar axis in general) and the radius vector drawn from the
source point x’, ', z’ to the point of observation x, y, z.

Using Eq. (5-4.7), we can rewrite Eq. (5-4.6) as

(n
FA S (5-4.8)

Pn(axial) = 4'7T80 il .

~ With the aid of this formula and a table of P,’s, the potential of any
axial multipole having a known multipole moment p can be found
immediately.

1 Table 5-I contains also Legendre polynomials of the second kind used in the
“method of harmonics” (Section 6.3).
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Next to the point charge, the most frequently encountered multi-
pole is the dipole (n = 1). The dipole moment p'V is by Eq. (5-4.5) just
qAL. Tt is customary to designate the dipole moment simply as p,
without the superscript. The potential of a dipole, ¢, is then, by Eq.
(5-4.8) and Table 5-I,

p cosf

2
dmey 1

@dipole = 3 (5-4.9)
where 6 is the angle between 7 and the axis of the dipole as shown in
Fig. 5.8. The potential of a dipole oriented in an arbitrary manner
can be best found from Eq. (5-4.1a). Using this equation, we have

, A g gAly ,(1)
) = Al .V = Al .V ———):—.V_.
Faipole . ! ¥o 1 (47TEOT_ 4#50 T

The product ¢Al, is called the dipole mement vector p. It is directed from
the negative to the positive charge of a dipole. By means of p, the dipole
potential can be written in any of the following forms:

P A1 1 or, r
%ipole:_.v(_):__l’_,v(_) p'r,_ P

47re r 4ire r 4re,r? 4ge 8"
0 0 0 0

(5-4.10a, b, ¢, d)

Sincep = p,i + p,j + pkandr = (x —x)i+ (y —))J + (z — 2)k,
the last expression for ¢y, can be written in terms of rectangular
coordinates as

1
Pupote = 5 [p2lx = *) +h(y =) + pelz — 29]. (5-4.11)

By taking the gradient of a multipole potential, the electric field of

the multipole can be found:
E, = —Vp,. (5-4.12)

n

Thus, for instance, from Eq. (5-4.9) we have, using the expression for
the gradient in spherical coordinates (Table 2-I), '

p o (cos 6) 0 (cos 6) jl
E. . = —Vo, = _—-L |Z(27 7 0
dipole Pdipote 4—7TEO|:aT 2 r, + 726\ 72 u >

p cosb b sm@e' (5-4.13)

ol = ey B¢ dme, B
The magnitude of the dipole field is then

E=vVE T+ E=—t _vicseg T sm?0,
4mregrd

or

E
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E—-—2 T T3cos0. (5-4.14)

- 3
dmre,r

v :
Example 5-4.1 Find the potential produced at a point P(r, 8) by the

r>>q \~~ R
N

r>>b ~

~..

K3

Fic. 5.11 Calculation of the potential produced by a linear quadrupole.

For a quadrupole, n = 2. The moment of the quadrupole under
consideration is, by Eq. (5-4.5), 2¢ab. The potential is then, by Eq. (5-4.8)
and Table 5-1,
gab 3 cos® 6 — 1

P2(axial) — 3

dme, r
Example 5-4.2 Find the potential produced at the point P(x, y, 0) by
the square quadrupole shown in Fig. 5.12.

The moment of this quadrupole is, by Eq. (5-4.5), 2¢a% The potential,

Yy
r>>a
X,y
—q +q
_______ 4
I rg
a | :
| A
L | Yy I
I |
+q|<———a——|_q
x

Fic. 5.12 Calculation of the potential produced by a square quadrupole.
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by Eq. (5-4.4), is

_ 2¢qa®  * (1
Patsauare) = 4meg2! Oy 0x \r

o gqa® 0 (x — &\ 3¢a® (x —«)(»—)) 3ga® cosOsin b
T 4mey Oy’ r° T 4me, 7 T dme, 73 ’

where we have used r = \/(x — 2L (y—y)+ (z — 22

Example 5-4.3 Find the quadrupole moment of a system of two
positive charges ¢ separated by a distance 22 and a negative charge —2¢
placed midway between them (Fig. 5.13).

+q 2 +q

L a -

¥1c. 5.13 Example of the calculation of a quadrupole moment.

The system may be regarded as a linear quadrupole formed by two
dipoles of moment ga separated from each other by a distance a. Hence,
by Eq. (5-4.5), the quadrupole moment of the system is 2¢a2.

Example 5-4.4 Express the electric field of an arbitrarily oriented
dipole located at x" = 3" = z’ = 0.in terms of rectangular coordinates.
Since Egipore = — V@gipore, we obtain by differentiating Eq. (5-4.11):

‘ ey 4reyrd ’
N Ey J— 4 pu 3 + 3(pa:x,y + pg/,yz + Ibzz,y) ,
TEG dregrd
__ b 3(paxz + 2z + 9,2
£ = 4rrgyr® - 4mregrd ’

Example 5-4.5 Find the value of the Legendre polynomial P, (cos 0)
for § = Q.

If 0 = 0, the point of observation x, », z lies on the z-axis, so that r =
z — z'. In this case we have, by Eq. (5-4.7),

Pufcost) = P = E= I ),

n! 0z'"\z — 2’
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But 5 ol
57;‘(2 — z') - az'"—ll:(z — z')zj
or—2 2.1 n!
B o R e
Therefore '
P(l) = 1.

5-5. Expansion of Electrostatic Potential in a Series

of Multipole Potentials*

The introduction of the multipole concept into the theory of elec-
tric phenomena results in a new method for expressing the potential of a
charge distribution. This method can be stated in the form of the follow-
ing multipole theorem: the electrostatic potential of a charge distribution
in the space outside an imaginary sphere enclosing this distribution
can be expressed as a convergent series of multipole potentials.

R =-/x2+ y2+ 22

P(x,y,2)
r=~/(x=x)2+ (y—y)2+ (2 2)?

Frc. 5.14 The potential of a charge distribution can be expressed as a
series of multipole potentials if the point of observation is outside an imaginary
sphere enclosing the charge distribution.

To prove this theorem, let us place a system of rectangular coor-
dinates in or near some charge distribution, as shown in Fig. 5.14. Let
R be the distance between the point of observation P(x, y, z) and the

origin of the coordinates O, so that R = v/x2 + 32 + z2 Let r be the

* This section may be omitted without loss of continuity.
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distance between the point of observation and a source point x, y', 2/,

so that 7=V (x —x)2 + (y —y)2 + (z — 2)% If the point of
observation is outside an imaginary sphere enclosing the charge distri-
bution, the quantity

1
V= O T (- o)
can be expanded in a convergent power series of x’, »’, z’ about O.
By Taylor’s theorem of calculus, this series is

11 a(l) ,a(l) ,8(1)]
F TR [ =& T H\R TR
1 az() ,2a2(1) , & 1)
+§“[ 22k TV 3R T a—;z(fe
., 0% /1 L ., 0% (1
TEY 5 ay(ﬁ) T @7(73) Tz W(E)

T R (L R L B
P azor T R T s e \B

If we substitute this series into the Poisson integral for electrostatic
potential, factor out all derivatives from under the integral signs (the
derivatives are not functions of primed coordinates), and then replace
the derivatives by those with respect to x, ', z’, we obtain

1 P4 0 (1) f ,
v, 2) = dmey T a' 47reoR [4#30 o \rherd P do
cen 2
* } * [477302! Ox'? ( )T=R fx p v

-———1 82 1 .7 7
T Fre2l 3 ay’(?),=af"”_dv+ }+ . (5-5.1)

By Eq. (5-3.4), the first term of this expression is just the point charge
potential (monopole potential) that would be produced at P if the total
charge of the distribution, ¢ = | p dv’, were concentrated at the origin.
By Egs. (5-4.4) and (5-4.5), the terms in the first bracket are the poten-
tials that would be produced at P if three dipoles oriented along the
%, y, and z axes and having the moments

b fo’P dv’) by :f)"P dv’) b. =f2’p i (5'5'2)

were placed at the origin. Similarly, the terms in the second bracket
are the potentials that would be produced at P if nine appropriately

1
;
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oriented quadrupoles of moments
)2 :fxlzp v’ Y2y :fx'.)”P av’ 2 folzlp av'
Dus :f]lxlp av’ P :J\.})Qp &' Doz :f.y’z’p v’ (5'5'3>

Drw —_—fz'x'p dv’ Py :fz’))'p dv’ jm ;fz'zp dv’

were placed at the origin. As the same line of reasoning can be con-
tinued to include still higher multipoles, we see that the multipole
theorem stated above is true.

An important consequence of the multipole theorem is that as far
as the electrostatic potential qutside a charge distribution is concerned,
a charge distribution may be replaced by a system of multipoles whose
moments are given by Egs. (5-5.2) and (5-5.3), and by similar equations
for higher multipoles.t The number of multipoles in such a system
depends largely on the accuracy with which the potential must be
represented. I'or a charge distribution in which the charge density
has everywhere the same sign, the multipoles that must be included in
the system can be determined as follows. Examining the dimensions of
the quantities involved in Eq. (5-5.1), we recognize that the potential
contributed by a 2*-pole to the total potential of the system is approxi-
‘mately ga*/4me R**1, where ¢ is the total charge and a4 is the average
linear dimension of the charge distribution under consideration. The
ratio of the potential of a 2"-pole to the potential of the point charge ¢
(dominant potential of the system) is then approximately (a/R)".
Therefore no multipoles of an order higher than » need be included in
the system unless the accuracy of the total potential must exceed

(a/R) - 100%.

v

Example 5-5.1 Construct a system of multipoles reproducing the
potential of a uniformly charged cube of total charge ¢ and side 24 so that
the error in the potential does not exceed 19, at R > 10a, where R is the
distance between the center of the cube and the point of observation.

Since for (1/10)" < 19%,, n needs not be larger than 2, no multipoles
beyond the quadrupoles are needed. Let the cube be oriented as shown in

! Axially symmetric charge distributions may also be replaced by axial multi-
poles which are all confined to the axis of symmetry (see Section 6-4).
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y Yy

0

{

5q

L/ /

Fic. 5.15 The potential of a charged cube can be approximated by a
cluster of point charges. »

’

‘r“—.

Fig. 5.15a. By Eq. (5-5.2), the dipole moments are

b =J.x'p dv’ = 4,oazJ~ xde’ =0,

pyzos pz:()‘

By Eq. (5-5.3), the quadrupole moments are

and similarly

+a 8aa
bas :J.x’zp dv' = 4pa2J~ 2d =p 5 = Lqa?,
and similarly
2

buy = 394% ba = 3q0°.
All other quadrupole moments are zero, by symmetry (for example,
by = [y pdv' = px'y'dy’ = 0 because to every positive x'y’ there corre-
sponds an equally large negative x'y"). Hence the system of multipoles that
we are seeking consists merely of a point charge ¢ and three axial quadru-
poles placed at the origin. By Eq. (5-4.5), the moment of an axial quadru-
pole can be written as p'? = 2 ¢(Al)2, so that for Al of pogy by and p,
in the present case we can write

Jga = 20(Al)%,

Toor

a
V6

By Example 5-4.3, the quadrupole on the x-axis (p,,) can then be constructed
by placing a negative charge —2q at the origin and two positive charges ¢

Al =
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at the points x = i—a/\/g. The quadrupoles on the y and z axes are con-
structed in the same manner. The final multipole system is shown in Fig.
5.15b. The total charge at the origin is = ¢ — 6¢ = —5¢. Each charge

on the axes is ¢, cach is placed at the distance (z/\/6 from the origin.

A

PrOBLEMS

3.1, Taking into account that air becomes conducting when an electric
field in it reaches about 3 - 108 volt/m, determine the radius of the smallest
sphere that can be charged in air to a potential of 10% volts.

5.2. A spherical conductor of radius a carrying a charge g, is surrounded
by a thin, concentric spherical conductor of radius & carrying a charge ¢,.
Find the potential produced by these conductors at all points of space.

3.3. A certain electric field is given by E = E R?r[r® for r = R and
E = Eyr/R? for r < R, where E; and R are constants, and r is a radius
vector in spherical coordinates. Show that the potential in this field 1s

(f:EOT: r

v

R,

1 ’ 3
¢=§EOR(\4——1§), R.

IA

"5.4. Taking as the reference potential ¢.(r,) = 0, show that the potential
due to a charge of uniform density p forming an infinitely long cylinder of
radius a < 7, Is, in cylindrical coordinates,

pa® 2
= ——Inr -~ -—1Inr r>a
. 0 =
2¢, 2¢,
2
pzz 2 p(Z 70
P =-—(a* — ) - 5= ln—, r<a
¥ 4g, )‘250 a’ -0

and find the voltage between the axis and the surface of the charge-filled
region.

5.5. Using the data of Problem 4.11, derive the equation for the poten-
tial ¢ of the earth’s electric field with respect to the ground, plot ¢ against
the altitude A, and give the valuesof g at A = 1, 10, and 20 km.

3.6. An infinite slab of charge has a charge density p and thickness ¢.
Find the potential at all points of space, using the midplane of the slab as
the reference plane.

5.7. Using the data of Problem 4.14, find the potential of a normal
hydrogen atom at all points of space.

5.8. A voltage V is applied between two concentric conducting spheres
of radius ¢ and 4 (a < b). Show that if the outer sphere is grounded, the
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potential in the space between the spheres is

(b —r)a

pl) =" (b —a)r”
5.9. A voltage Vis applied between two coaxial conducting cylinders of
radius ¢ and b (a < b). Neglecting end effects, show that if the outer
cylinder is grounded, the potential in the space between the cylinders is

Inb —Inr
i) = Inb —-Ina’
5.10. The plates of a thin parallel-plate capacitor of area 4 are separated
by a distance d. Show that if a sheet of metal of thickness ¢ is inserted
between the plates, the capacitance is increased by the amount

gotA

A==

5.11. A capacitor is made of two metal spheres of radii ¢ and & which
are separated by a distance d > a4, 5. Show that the capacitance of this
capacitor is approximately

1 1 2\
C=47T602f—7)—3 .

5.12. Show that for a given voltage the electric ficld at the surface of
the inner sphere of a concentric spherical capacitor is least if the radius
of this sphere is one-half the internal radius of the outer sphere.

5.13. Show that for a given voltage the electric field at the surface of
the inner cylinder of a coaxial cylindrical capacitor is least if the radius of
this cylinder is 1/e of the internal radius of the outer cylinder (neglect end
effects).

5.14. A capacitor is made of three conducting thin-walled concentric
spheres of radii g, b, and ¢ (¢ << b < ¢). The inner and the outer spheres are
connected by a fine insulated wire passing through a small hole in the
intermediate sphere. Show that the capacitance of this capacitor is

ab ch
C = 4mggl —— +

b—a ' ¢c—b

and find how the electric charge placed on the sphere 4 distributes
itself between the two surfaces of the sphere.
5.15. Show that if the inner conductor in Problem 5.2 is connected by
a fine insulating conducting wire passing through a small hole in the outer
conductor to a distant uncharged conducting sphere of radius ¢, the sphere
will acquire a charge which in the first appfoximation is
_ 9ab + 0

e = 55—~ ¢.

ba + ¢
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3.16. A thin rod carrying a uniformly distributed charge ¢ is bent to
form the arc of a circle of radius . Show that the potential at the center
of the circle is

q

dmeyr

2

and that this potential is the same as the potential at the center of a thin,
uniformly charged, hemisphere of radius 7 carrying the charge g.

5.17. Show that the potential due to a straight uniform line charge of
length 2L and density 2 lying along the x-axis of a rectangular system of
coordinates, with the center at the origin, is

ho L) VDR 2
= n .
4, (x — L) + \/(r — L) 2 22

g(x, 9, z)

5.18. Show that the potential at a point on the circumference of a
uniform circular disk of surface charge density ¢ and radius a is

ga

e

5.19. Find the electric field produced by a thin, straight rod of length
2L carrying a charge ¢, by using the potential found in Problem 5.17.

5.20. The clectrodes of a certain discharge tube have the form of a
thin parallel-plate capacitor of plate separation 4. The potential in the
space between these electrodes has been found to have the form

¢ = Vixld)®,
where x is the distance from the negative plate, V' is the voltage between
the electrodes, and « is a constant. {a) Find the electric field vector in the
space between the electrodes. (b} Find the space charge density in this
space. (c) Find the surface charge density on the electrodes.

5.21. The potential ¢ in a certain discharge tube, as measured with
the aid of probes, is shown in Fig. 5.16, as a function of the distance
from the positive electrode. Using this curve for ¢, obtain the corresponding
curves for the electric field vector E and for the space charge density p in this
tube (assume that the field is a function of the distance along the tube only).

5.22, Show that the potential measured at a point of the model de-
scribed in Problem 4.23 is mn~! times the potential at the corresponding
point of the actual system,.

5.23. Derive Eq. (5-4.9) directly, by adding the potentials of the point
charges which make up the dipole.

5.24. Under certain idealized conditions the electric field outside a
spherical artificial satellite has the potential expressed in spherical coordi-
nates centered at the center of the satellite

cos 0 1
(p:AT— Bﬁ(3c0520~1),
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Fic. 5.16 Distribution of electric potential in a discharge tube. From a
curve like this, the electric field and charge distribution in the tube can be
determined by graphical analysis.

where 4 and B are constants. With the aid of Section 5-4, show that
this potential can be attributed to a system of multipoles and find the
multipole moments of this system.

5.25. Show that the electrostatic potential of any unconfined spheri-
cally symmetric charge distribution in the space outside the distribution is
the same as if the total charge ¢ of the distribution were concentrated at its
center, and show that the formula

= dmregr
is true for theexternal potential of all unconfined spherically symmetric
charge distributions. Then do the next problem.

5.26. A conducting sphere of radius a carrying a charge ¢ is confined
within a larger conducting sphere of inner radius b and outer radius &'
The centers of the spheres coincide. Show that the potential of the system is

@ = Treg for r>1¥,
(p_4770b' for bgr.gb,
and
T B
P = Tregy 00 T rb) for a <r <b.
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5.27. Using Eqs. (5-4.10d) and (3-4.12), show that the electric field of a
dipole can be expressed as

1
Ejipotle = 4——78075 [3(p-r)r — prf].
5.28. The counterparts of Eqs. (4-5.1) and (4-6.4) for the electrostatic
potential are the two equations

1
= V'od = -
@ Bne, fru pde and @

ETEO r, - dS’.
Show that these equations are correct.

5.29. Using the second integral of Problem 5.28, show that the potential
at the center of a spherical shell of outer radius 4, inner radius 4, and uniform
charge density p is @ = p(82 - a?)/2¢,.

5.30. Using the first integral of Problem 5.28, show that the potential at
the center of a spherical charge distribution of radius ¢ and density
p=pfl - rla)is ¢ = poa276£0.

5.31.* Find the surface charge of an artificial satellite using the poten-
tial given in Problem 5.24, then find the dipole and quadrupole moments
of this charge using formulas of Section 5-5, and finally show that these
moments agree with those found in Problem 5.24.

-. 5.32.* Show that for a charge distribution whose total charge is zero,
the dipole moment of the distribution is a characteristic constant and does
not depend on the location of a rectangular system of coordinates used for
the calculation of the dipole moment.

5.33.* Show that for a charge distribution whose total charge is not
zero, one can always find a point for the origin of a system of rectangular
coordinates such that the dipole moment of the distribution would be zero
{this point is called the center of charge of the distribution).

5.34.* Verify the results of Example 5-4.3 by using Eq. (5-5.3).

5.35.* A point charge 2g¢ is placed at the center of a ring charge —g¢ of
radius a. (a) Determine ¢ for R > a up to but not including terms in R4
using the expansion formula for ¢. (b) Show by direct calculation that this
@ is correct for any point on the symmetry axis. {(c) Find and sketch a
symmetrical arrangement of point charges (multipoles) that would produce
the same potential as the actual charge distribution does up to the terms in
R4,

5.36.% Construct a system of multipoles reproducing the potential of a
uniformly charged square plate of total charge ¢ and side 2a so that the
error in the potential does not exceed 0.19, at R > 10a, where R is the
distance from the center of the plate.

5.37. Under what conditions can the displacement field D be represented
in terms of an electric vector potential? (See Section 11.1 and Problem 11.23).

* This problem is based on the material presented in Section 5-5.



SPECIAL METHODS
FOR THE SOLUTION
OF ELECTROSTATIC
PROBLEMS

The general methods for solving electrostatic problems
which we used in the preceding chapters are not always practicable.
Therefore various special, more expedient methods have been developed
for solving certain types of frequently encountered electrostatic prob-
lems. In this chapter we shall study some of the most common methods
of this type.

6-1. Poisson’s and Laplace’s Equations

Combining the divergence law, Eq. (4-4.2b), with the displace-
ment law, Eq. (4-4.3), and replacing E with — V¢ by means of Eq.
(5-1.1), we obtain

p=V.:D=V.(¢E) =¢V-E= —¢V.Vp=—¢Vip,

or

Vig = — 2, (6-1.1)

€o

This differential equation is called Poisson’s equation. As far as the cal-
culation of ¢ is concerned, Poisson’s equation is of little use if p is
known everywhere in space, because in this case ¢ can be obtained
directly from the Poisson integral (5-3.1), which is the solution of Pois-
son’s equation for this particular case (see Problem 6.6). However, while
the Poisson integral can be used for calculating ¢ only if pis known every-
where in space, Poisson’s equation can be used for calculating ¢ even if

142
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p is known only in a limited region of space, provided that certain
additional data concerning ¢, called boundary conditions, are available for
the boundary of this region. And, of course, Poisson’s equation can be
used for determining p if ¢ is known.

A special case of Poisson’s equation is Laplace’s equation

Vg =0, (6-1.2)

to which Poisson’s equation reduces in charge-free regions. Laplace’s
equation is especially useful for determining the electrostatic potential
in charge-free space surrounding charged conductors, which is one of
the most frequently encountered electrostatic problems.

v

Example 6-1.1 A voltage I is applied to a thin parallel-plate capacitor
of plate separation 4 filled "with a cloud of charge of constant density
p (Fig. 6.1). Find the potential inside the capacitor with respect to the
positive plate, find the electric field vector E inside the capacitor, and find
the surface charge density o on the inner surfaces of the plates. Neglect edge

effects.
o

+++
+ o+
+++
+++
+
X

+++-
+++

Fic. 6.1 Electrostatic potential in a capacitor filled with
charge can be found from Poisson’s equation.

The geometry of the problem is such that ¢ can vary only in the
direction normal to the plates. Let this direction be the direction of the
x-axis, and let the positive plate lie in the yz-plane of a rectangular
system of coordinates. Since ¢ is then a function of x only, Poisson’s equation

for this problem reduces to
2

a,
-

|

2

_ _ P
%2 gy

A

The boundary conditions are:

(1) atx =0, @ = @q;
(2) atx = d, p=—V -+ g¢.
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Integrating the Poisson equation, we obtain

dy px
E__;(;-+Cl7

P
<P*‘—260+ 1.1‘+ 25

where C| and C, are constants of integration. Substituting the first boundary
condition in the last equation, we have

Ce = @0
Substituting the second boundary condition in the same equation, we have
pd* ,
—V+ @ = _2_+CldT%:
&
so that
c — V. pd
1 =77 2¢y "

>
The potential in the space between the plates is therefore

e (pd Y
26y (230 7)E T P

(observe that for p = 0 this expression becomes the same as the one
obtained in Example 5-1.1).

The electric field between the plates may be found by taking the negative
gradient of ¢, and after a rearrangement of terms we obtain

(p:

V. r .
E:[Z+2_6()(2x—d):ll'

The surface charge density on the inner surfaces of the plates is equal to
the magnitude of the displacement D, or ¢,E, at these surfaces. For the
positive plate, x = 0, we obtain from the last equation

V. pd
stoz—?.

For the negative plate, x = d, we obtain, reversing the sign,

V. pd
g = —¢& z — 7 .
Example 6-1.2 Show that the electrostatic potential of a point charge

(Coulomb’s potential) satisfies Laplace’s equation.
The point charge potential is, by Eq. (3-3.4),

9
#= dmregr T o
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Using the expression for the Laplacian in spherical coordinates (Table 2-I)
and observing that the point charge potential is a function of 7 only, we have

2y _ w24 9 ol __a 107,0/1
Vig =V % s

dmeyr  4dme, v 4dmey 2 Or r

1d 1
_ L__(,z_z):o
r

darey r* dr

(observe that, by the definition of a point charge, r is always larger than
zero, so that the effect of » =0 on the above expressions need not be
investigated). ’

A

6-2. Uniqueness of Solution of Electrosltatic Problems

The most important special methods for the solution of electro-
static problems are based on the fact that electrostatic potential in
charge-free space must satisfy Laplace’s equation and on the three
uniqueness theorems presented below.

Uniqueness Theorem I. There can be only one distribution of
electrostatic potential which in a limited region of space satisfies
Laplace’s equation and reduces to prescribed values at the boundaries
of the region.

To prove this theorem, let us assume that there can be two distri-
butions of the potential, ¢, and ¢,, both of which satisty Laplace’s
equation and reduce to the same prescribed values at the boundaries
of the region under consideration (Fig. 6.2). On the boundaries we
then have ¢, = ¢,, or

1 — @ =0 (boundaries). (6-2.1)

Since ¢, and ¢, satisfy Laplace’s equation, we have everywhere within
the region V2¢, = 0 and V3¢, = 0, so that

Vi@, — @) =0  (region). (6-2.2)

If we now substitute Egs. (6-2.1) and (6-2.2) into the first Green’s
theorem of vector analysis

f(Ulsz2 VU, VU, d :55 U, VU, - dS (V-24)
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2 ©1=0,

0=,

DL =@,

Fic. 6.2 To prove Uniqueness Theorem I, we assume that there can be
two potentials satisfying Laplace’s equation and identical boundary con-
ditions. The assumption leads to a contradiction. :

k]

we obtain (setting U; = U, = ¢, — ¢,)

f (1 — @) V(g — @o)dv + f [V(g, — @2)]%dv

Region Region

; = 2 [fﬁ (91 — #2) Vigr — @) -JS}, (6-2.3)

Boundaries

where the surface integral of (V-24) is expressed as the sum of the surface
integrals over individual boundaries of the region. But by Eq. (6-2.1)
each of these surface integrals vanishes, and by Eq. (6-2.2) the first
volume integral of Eq. (6-2.3) vanishes. We therefore obtain

| 1560 — w0 (624

Region

Since [V(¢, — @,)]? is the square of a real quantity and therefore
cannot be negative anywhere, Eq. (6-2.4) can hold only if V(¢, — ¢,)
is zero everywhere in the region under consideration. But then ¢; — ¢,
must be constant throughout this region, and since, by supposition,
®, — @, 1s zero at the boundaries, ¢, — ¢, must be zero everywhere
in the region, and hence

Y1 = @a (region).

Both ¢, and ¢, represent therefore the same distribution of the electro-
static potential, and no other distribution which satisfies Laplace’s equa-
tion and is compatible with the boundary conditions stated in the
theorem is possible. This proves the theorem.
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The boundary conditions referred to in the above theorem (the
v2quirement that ¢ has prescribed values on the boundary of the region
inder consideration) are frequently encountered in practice. We
shall call them boundary conditions of the first kind.

Uniqueness Theorem II. There can be only one distribution of elec-
rostatic potential which in an infinite region of space external to a
tnite system of conductors satisfies Laplace’s equation, is compatible
with total charge of each conductor, assumes constant values on all
conductors, and reduces to a prescribed value at some reference point.!

To prove this theorem, let us again assume that there can be two
distributions, ¢, and ¢,, compatible with the conditions stated in the
theorem. As before, ¢, and ¢, satisfy Eqs. (6-2.2) and (6-2.3), but the
surface integrals in Eq. (6-2.3) are now extended over the surfaces of all
conductors, and one surface integral is extended over an imaginary
surface enclosing all space (all these surfaces form the boundaries of the
region under consideration):

[ff (91 — ¢2) V(g — @2) 'dSJ = f£ (o1 — ¢2) Vigy — )+ dS

All space

t 3 [$ip g Vo — g 8],

Conductors

Boundaries

As we shall now show, these surface integrals vanish.

Consider first the integral over the surface enclosing all space.
Suppose that the average distance from the conductors to this surface
Is R. Since R is much larger than the dimensions of the region occupied
by the conductors, all the conductors may be regarded as a single point
charge when viewed from this surface. The potentials ¢, and ¢, on this
surface may be regarded then as point charge potentials, and the
gradients —Vg, and — Vg, may be regarded as point charge fields.
But since ¢, and ¢, are both compatible with the charges of the conduc-
tors, it follows that — Vg, = (Q/47¢,R*) R, and — Ve, = (Q[4me,RY)R,,
where @ is the total charge of all conductors. The quantity V(g, — ¢,),
which is equal to Vg, — Vg,, is therefore zero, and hence the integral
is zero.

Consider now the integrals over the surfaces of conductors. Since
¢; and @, are constant on the surface of each conductor, ¢; — @, may
be factored out from under the integral sign. For each conductor we

I One usually makes ¢, = 0 in all distributions. Therefore the last condition
is usually fulfilled automatically and is ignored.
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then have

b (r = 7 Vs~ 4 - 48 = (3 — ) $ V(o — 7 dS.

If we now multiply and divide the last integral by ¢, and observe that
Ve, = —D; and ¢ Vg, = —D,, where D, and D, are the displace-
ment vectors corresponding to the potentials ¢, and @,, we obtain

3€ (o1 — @2)V(py — @g) < dS = i_ (1 — ®2) 3€ (D, — Dy) - dS

(1]

:1—(¢1—¢2)(3€D2-d8—3€D1-d5).

€o

But by Gauss’s law and by the requirement that ¢, and ¢, are both
compatible with the charges of the conductors, each of the last two
integrals represents the same total charge of the conductor under
consideration, and hence the difference of these integrals is zero.
Therefore the surface integral on the léft is also zero. Since this reason-
ing applies to any conductor of the system, the surface integrals over the
surfaces of all the conductors are zero.

Finally, by Eq. (6-2.2), the first volume integral of Eq. (6-2.3) is
also zero. Thus, as before, we obtain Eq. (6-2.4) and conclude that
@, — @, s constant throughout the region under consideration. But
then, since ¢, = ¢, at the reference point so that ¢, — ¢, = 0 there,
¢, — @, must be zero throughout the region, and hence ¢, = ¢,
everywhere in the region. Therefore ¢, and ¢, represent the same
distribution of electrostatic potential, and as before, no other distribu-
tion satisfying Laplace’s equation and compatible with the boundary
conditions stated in the theorem is possible. The theorem is thus proved.

The boundary conditions referred to in this theorem (the require-
ment that ¢ is compatible with prescribed charges on conductors and
assumes constant values on them) are frequently encountered in practice.
We shall call them boundary conditions of the second kind.

Uniqueness Theorem III. There can be only one distribution of
clectrostatic potential which in a region of space external to a system of
charged conductors satisfies Laplace’s equation, reduces to prescribed
values on the outer boundary of the region and on some of the conduc-
tors, is compatible with the charges carried by the remaining conductors,
and assumes constant values on them.

Since this theorem follows directly from the first two, its formal
proof will be left to the reader. The boundary conditions stated in this
theorem constitute what we shall call boundary conditions of the third kind.
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The property of electrostatic potential to satisfy Laplace’s equation
in charge-free regions of space and to have only one possible distribution
compatible with the boundary conditions of the types stated above
constitutes a powerful criterion for establishing the correctness of
zxpressions representing the electrostatic potential in a charge-free
region of space. Indeed, as it follows from these properties, all that is
needed for establishing that a particular expression correctly represents
the electrostatic potential in such a region is to verify that this expression
satisfies Laplace’s equation throughout the region and satisfies the
boundary conditions on the periphery of the region. Hence, if by any
sort of mathematical procedure, artifice, or intuition we find an
expression for electrostatic potential that in a charge-free region of
space satisfies Laplace’s equation and fits all required boundary
conditions, we may be sure that this expression is correct and that
the potential represented by it is, under these boundary conditions, the
only possible potential fos the region. Therefore a problem on the
determination of clectrostatic potential in a charge-free region is
considered solved if an expression is obtained that satisfies this correct-
ness criterion, no matter by what means or manipulations the expression
has been obtained.

The methods of obtaining expressions for an electrostatic potential
which are capable of satisfying the above correctness criterion have two
major variations, The first variation is the construction of expressions
capable of satisfying the given boundary conditions from the expressions
known to satisfy Laplace’s equation. Examples of this variation are the
method of harmonics and the method of images. The second variation is the
construction of expressions capable of satisfying Laplace’s equation from
the expressions known to satisfy the boundary conditions. Examples of
this variation are the method of axial expansion and the method of curvilinear
squares. 'These four methods will be discussed in the four following
sections.

The uniqueness theorems which we have just presented are a
special case of more general uniqueness theorems for the electrostatic
potential in charged-filled regions of space. In such regions the poten-
tial satisfies Poisson’s, rather than Laplace’s, equation. These more
general theorems are therefore stated with reference to Poisson’s
equation, but otherwise are almost identical with the theorems presented
above. The proof of these theorems is also almost identical with the
proof presented above.

The uniqueness theorems for electrostatic potential in charge-
filled regions of space are, in turn, a special case of the general uniqueness
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theorems for an electrostatic field. These theorems can be stated as
follows.

Uniqueness Theorem A. There can be only one electrostatic field E
which at all points of space satisfies the basic field laws, (4-4.1a),
(4-4.2b), (4-4.3), and is regular at infinity (this is merely the Helm-
holtz theorem applied to an electrostatic field).

Uniqueness Theorem B. There can be only one electrostatic field E
which in a limited region of space satisfies the basic field laws, (4-4.1a),
(4-4.2b), (4-4.3), and whose normal component reduces to prescribed
values at the boundaries of the region.

Uniqueness Theorem C. There can be only one electrostatic field E
which in a space external to a finite system of conductors satisfies the
basic field laws, (4-4.1a), (4-4.2b), (4-4.3), is compatible with total
charge of each conductor, is everywhere perpendicular to the surfaces
of the conductors, and is regular at infinity.

Uniqueness Theorem D. There can be only one electrostatic field E
which satisfies the basic field laws, (4-+4.1a), (4-4.2b), (4-4.3), and whose
potential satisfies the boundary conditions of the first, second, or third
kind. ‘

Uniqueness Theorem E. The theorems A, B, and C hold also for a
limited region of space if the tangential component of E assumes pre-
scribed values on the outer boundary of the region, regardless of any
other conditions for E on or outside the boundary.

The proof of these theorems is the same as that of the uniqueness
theorems for electrostatic potential, except that it begins with a supposi-
tion that there can be two fields, E; and E,, which satisfy the basic laws:
VxE =0, VxE, =0, D, =¢E;,, D, =¢E, V-D, = p, and
V - D, = p. Since both E; and E, have zero curl, they can be expressed
asE, = — V¢, and E, = — Vg,. From the divergence and displace-
ment laws we then have V3p, = —pfe, and V2p, = —p[e,. Therefore
V3(¢; — @) = 0. From here on, the proof continues just as for the
electrostatic potential.

Each uniqueness theorem for E constitutes a criterion for the
correctness of an expression for E, and if an expression has been

I This requirement is identical with the requirement that ¢ assumes prescribed
values on the boundary, because

Phoundary = f E-dl +¢, = f Etangential‘” + @

Boundary Boundary

where @, is a reference potential at a point of the boundary.
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obtained which satisfies the requirements stated in one of these theorems,
the expression is definitely correct.

v

Example 6-2.1 Prove that the electrostatic potential in a charge-free
space bounded by a conducting enclosure is constant and equal to the
potential of the enclosure.

Any constant potential satisfies Laplace’s equation. The constant
potential equal to the potential of the enclosure satisfies Laplace’s equation
and also the boundary conditions of the first kind. Hence, by the first
uniqueness theorem, this potential is correct and is the only possible potential
for the system under consideration.

Example 6-2.2 Prove that if in an electrostatic system of charged
conductors the charge of each conductor is increased »n times, the potential
(with respect to infinity) at any point of space will also be increased = times.!

Suppose that the potential due to the original charges of the conductors
is @. Being the true potential compatible with the charges of the conductors,
@ must satisfy Laplace’s equation

Vig =0
and also the boundary conditions of the second kind, which for each
conductor are
¢ = constant, — § g,V » dS = ¢,
where the integral is extended over the surface of the conductor and ¢ is the

charge of the conductor. Suppose now that all charges are increased n
times. The new potential ¢’ must satisfy Laplace’s equation

Vig' =0
and the new boundary conditions
¢’ = constant, — § g, V'« dS = ng.
But since ¢ satisfies the first three equations above, ¢’ = ngp satisfies the
last three. Hence, by the second uniqueness theorem, ¢’ = ng is the correct
and the only possible potential associated with the new charges of the system.
Example 6-2.3 Prove that the expression

g

= r
4reg®

1 This means, incidentally, that the capacitance of an isolated conductor or
capacitor does not depend on its charge or potential (voltage) and constitutes a
constant characterizing each particular conductor or capacitor.
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represents correctly the electric field in a concentric spherical capacitor
whose inner sphere carries a charge g.

By inspection, we see that the expression in question satisfies the basic
laws, (4-4.1a), (4-4.2b), (4-4.3), is compatible with total charge of the
inner conductor (fe,E « dS = ¢), is perpendicular to its surface, and has no
tangential component on the outer boundary (which is formed by the outer
sphere of the capacitor). Therefore, by Uniqueness Theorems C and E,
the field is correct. Note that the prescribed tangential component of E
on the outer boundary is zero, as must be for any conducting surface under
electrostatic conditions.

A

6-3. Method of Harmonics

Functions that satisfy Laplace’s equation are - called. harmonic

 functions or, simply, harmonics. Different harmonics are usually classified

according to the system of coordinates in terms of which these harmonics
are expressed. Thus one diflerentiates between rectangular harmonics,
cylindrical harmonics, spherical harmonics, etc.

The method of harmonics consists in selecting a function compatible
with the geometry of the system under consideration from the tables of

TaBLE 6-1

Frequently Used Harmonic Functions®

Rectangular Harmonics

@ = Cyxpz 4 Cpxy 4 Cypz - Cyzx 4 Cyx - Cgy + Crz + €70 (H-1)

@ =2 (A4, sin a,x + B, cos a,x)(Cpe¥ + D, e™*¥) + (. (H-2)

n=1
Cylindrical Harmonics
(A, 4 Byr™)(C, cos nf 4 D, sin nb)
+ (Flnr+ G)(HO +C"). (H-3)

¢:

i

==

Spherical Harmonics

P = i (4,7 + B, " H[C,P,(cos §) 4 D,Q,(cos )] + C’'. (H-4)
n =0

a For derivation of these functions the reader is referred to text books on differential
equations. A, B,, C,, D,, F, G, H, C’ are arbitrary constants. Harmonics (H-1) and (H-4)
are in three dimensions; (H-2) and (H-3) are in two dimensions. 2,(cos §) are Legendre
polynomials of the first kind. Legendre polynomials of the second kind, Q,(cos 8), arc

\infinite for cos # = -+ 1, and thus are not allowed when the region under consideration

includes the symmetry axis.
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harmonic functions, and then adjusting the arbitrary constants
appearing in the selected function to satisfy the boundary conditions
of the first, second, or third kind. Once the selected harmonic function
is made-to satisfy the boundary conditions, it becomes, by the unique-
ness theorems, the only possible and therefore the correct electrostatic
potential for the charge-free regions of the system under consideration.

~ Several representative harmonic functions are given in Table 6-1.
The fact that these functions are indeed solutions of Laplace’s equation
can be verified by direct substitution (see Problems 6.10 and 6.11).

v

Example 6-3.1 A very thin conducting plate is placed in an initially
uniform electric field E in such a manner that-the plane of the plate is
perpendicular to E (Fig. 6.3). Find how the presence of the plate alters the
field.

E E
]
T
;l Y
i
2

_ i o -

I x x
i
!
v

- B!
W]
(a) (b)

Fic. 6.3 (a) A thin condueting plate is placed normally in a uniform
electric field. (b) The field remains the same.

Let the initial field E be in the direction of the x-axis. The initial
potential is then ¢ = —FEx + ¢,, where ¢, is a constant. Let the altered
potential be ¢'. It must satisfy the following boundary conditions:

(1) ¢" = constant on the surface of the plate
) fﬁadsz — fﬁ eV’ - dS =0
Plate Plate

(3) ¢" = ¢ = —FEx + ¢, at largc distances {rom the plate

(these are the conditions of the second kind; the first condition reflects the
fact that the plate is a conductor in an eclectrostatic system, the second
condition reflects the fact that the plate has no net charge, the third condition
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reflects the fact that the effect of the plate can be felt only in the vicinity of
the plate and thus establishes a reference potential for ¢’). The geometry
of the problem suggests that ¢" may be represented by rectangular harmonics.
We see by inspection that the first two boundary conditions are satisfled
by the harmonic function (H-1) of Table 6-1 with all constants except
C5 and €’ set equal to zero,

¢ =Cy + C'.
The third boundary condition requires that for large x
Cox + C' = —Ex 4+ @,

The values of the two constants must then be C; = —E and ¢’ = ¢,. The
potential ¢’ is therefore
¢ = —Ex + g,

But this expression is identical with the expression for the initial potential
@. Thus the presence of the plate does pot alter the initial potential {or
field) at all. This, incidentally, justifies the use of small, thin test plates
for measuring the displacement D; the plates measure the same D that
would exist if the plates were not inserted in the field.

Example 6-3.2 A conducting sphere of radius a is placed in an initially
uniform {ield E (Fig. 6.4). Find how the presence of the sphere alters the
field.

E

S ———

e il
~/r
v —
J

- 7

(a)

Fic. 6.4 (a) A conducting sphere is placed in a uniform electric field. (b)
Resultant field.

The problem is essentially the same as the preceding one, except that
now we have a conducting sphere instead of a conducting plate. The
initial potential is again ¢ = —Ex + @, and can be written as

@ = —Ercos 0 4 g,
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where 0 is the polar angle of a spherical system of coordinates with the origin
at the center of the sphere, as shown in Fig. 6.4. The boundary conditions
for the final potential ¢ are:

(1) ¢" = constant at r = a (surface of the sphere)

(2) — f}) gV’ +dS =0
Sphere

(3) ¢ =¢ = —Ercosl) + gy forr—

(these are basically the same conditions as in the preceding example).
The geometry of the problem indicates that ¢" may be expressed in terms of
spherical harmonics (H-4). Considering now the third boundary condition
and consulting the table of Legendre polynomials (Table 3-1), we recognize
that this condition will be satisfied by just a part of (H-4),

¢ = (dyr - Bpr=2)C\ P, {cos 0) - C" = (A7 + Bpr=2)Cpcos O + ¢,

if we set 4,C; = —FE and €" = ¢,. We then have

’ Bl
g = —FE{l — = r3)rcos 0 + @,
4,

N\

Turning now to the first boundary condition, we see that it will be satisficd
if we set By/d; = —a3. We then obtain

, a3

g = —E(l — ﬁ)rcosﬁ + @

This expression does not contain any arbitrary constants that could be
adjusted to satisfy the sccond boundary condition. Therefore, if correct,
it must satisfy this condition automatically. To check this, we nced to
evaluate the integral —¢e,Vg' - dS over the surfacc of the sphere. Since
dS for this surface is radial, the integral can be written as —fe,(Vg'), @S,
where (Vg'), is the radial component of V¢'. This component is (Table 2-1)

, ¢’ 0 al
(V(p)r:Tq; = ——a—rE(l —ﬁ)rcosﬁ

2a® 24a°
= —Ecosf —E—TE cos ) = —E(l +- 7) cos 0.

On the surface of the sphere, r = a, and therefore (Vg'), = —3I cos 0.
But on this surface, to every positive value of cos 0 (0 << 0 - }m) there
corresponds a negative value of equal magnitude (47 < § < 77}, so that the
above surface integral vanishes.

Thus ¢  that we have obtained satisfies all required boundary con-
ditions and hence is the correct potential for the system under consideration.
The corresponding field E’ is obtained by taking the negative gradient
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of ¢'. The result is
9,3 3
E’ =E(l 4 —%) cos Or, —E(l —%) sin 00,
\ r r

\

Example 6-3.3 A long conducting cylinder of radius a is placed in an
initially uniform field E in such a manner that the axis of the cylinder is
normal to E (Fig. 6.3). Neglecting end effects, find the field around the
cylinder.!

(a) (b)

Fies 6.5 (a) A conducting cylinder is placed in a uniform electric field.
(b) Resultant field.

The problem is analogous to the preceding one. However, although
we could solve it in exactly the same manner as the latter, we shall demon-
strate now a slightly different method of solution.? Let the initial potential
again be ¢ = —FEx - ¢,, which can be written as ¢ = —Ercos 0 -+ ¢,
where 0 is the azimuthal angle of the cvlindrical system of coordinates
shown in Fig. 6.5a, Let the altered potential be ¢’. The symmetry of the
system under consideration indicates that the potential of the cylinder is
¥y because, as can be seen from Figs. 6.5a and 6.5b, the cylinder forms a -
part of the initial equipotential surface ¢ = @, the position and the potential
of which are not affected by the presence of the cylinder. We can write
then for the boundary conditions of ¢’

(1) ¢" == @q at r = a (surface of the cylinder)
(2) ¢ =@ = —Ercos 0 + g, for r— oo

(these are boundary conditions of the first kind). Thesgeometry of the
system suggests that ¢" may be expressed in terms of cylindrical harmonics

1 To neglect end (edge) effects when using the method of harmonics means to
neglect the boundary conditions at the corresponding surfaces.

2 This method can lead to a disaster if incorrectly applied to problems of the
type 6.16 and 6.17.
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(H-3). Considering the second boundary condition, we see that it can be
satisfied by just a part of (H-3),

¢ =4y + Byr1C cos 0 4 €,
if we set 4,C;, = —E and C' = ¢,. We then have

B
¢ = —E(l + —l-r_z)rcos 0 + @,
4

Considering now the first boundary condition, we see that it will be satisfied
if we set By/4, = —a? The final expression for ¢’ is therefore
a2
¢ = —E(l — ﬁ)rcos 0 + @,
The corresponding field E’ is
2

, , a? a®\ |
E =—-V¢ =E l—{—;g cos Or, — E 1—~T—2 sin 00,.

Example 6-3.4 A vdltage V is applied between two large rectangular
conducting plates which form an angle §, one with the other (Fig. 6.6).
Neglecting edge effect, find the electric field in the space between the plates,
and find the charge density on the plates.

v -{/’r”gﬂ 6o

(a) ' (b)

Fic. 6.6 (a) Geometrical relations for calculating electric field between
two nonparallel conducting plates. (b) The map of the field.

If the edge effects are neglected, the boundary conditions are

(1) @ = @ at  0=0
2) o=V + g, at b = 0,

where the potential of the negative plate is assumed to be ¢, Consulting
Table 6-1, we see that these boundary conditions can be satisfied by a part
of the harmonics (H-3),

¢ =HO + ¢,
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if we set H = V/f, and C’ = ¢, The potential in the space between the
plates is therefore

14

=770+

0

The corresponding field is
¢

E=-Vp=—-—-0

¢ raf

or
14

E=——80,

70,

The charge density on the plates, 0 = 4-¢,E, is

0= & e
Example 6-3.5 A grounded conduc;ing block has a very deep narrow

slot covered by an insulated plate, as shown in Fig. 6.7, and a potential

@ = V,sin 7 x is established in the plate. Find the potential in the slot.
a

/Q&:VOSingx

ﬁ
u|1|—4»

Fic. 6.7 Method of harmonics
| can be used for finding electro-
L—I—L static potential in a slot made in a

L—a ———l conducting block.
g

The geometry of the problem suggests the use of rectangular coordinates.
With the notations of Fig. 6.7, the boundary conditions are:

(1) =0 at x =0
(2) =0 at x = a
(3) =0 at y = b
(4) @ = Vysin—x at y = 0.

The first condition will be satisfied if we express @ in terms of rectangular
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harmonics (H-2) with B, = €’ = 0, so that

@ = D A, sin a,x (Ce®? 4 D e=*nv),
n=1

.. . . . . . nw
The second condition will be satisfied by this expression if we set «, = —

so that

3

ny

@ =ZA"sinn7ﬂx(C'ne“y + D,e
n=1

nw
v
“)

nr

Since, by supposition, the slot is deep (6> a), so thate ¢ =0, the third
condition will be satisfied if we set €, = 0. We then obtain

w© U 14
p=2 A4, sin—x-¢e *
n=1 a

where A is used as an abbreviation for the product 4,D,. Finally, the
fourth condition will be satisfied if we set A} equal to ¥V and all other 4,
coefficients equal to zero. We then obtain

LT -—%u
¢ = Vysin—x-¢
a

Since this expression is a solution of Laplace’s equation and satisfies the
required boundary conditions, it is the correct solution of the problem.

An interesting result of this example is that the potential in a narrow
grounded slot falls off exponentially with the distance from the top of the
slot, so that the electrostatic field originating at the top of the slot is rapidly
attenuated in the slot and does not penetrate the slot to any appreciable
depth.

A

6-4. Method of Axial Expansion

The method of axial expansion is used for determining the external
electrostatic potential of axially symmetric charge distributions for
points not on the symmetry axis when the potential on the axis is
known,

If a charge distribution has no variation of charge density about an
axis of symmetry, the external potential of the distribution can be
represented by spherical harmonics (H-4) with C, = land D, = C/ = 0,

o

B
=2 (A,,r" + 7"—+"1)P,,(cos 6), (6-4.1)

n=0

where 6 is measured with respect to the symmetry axis. Since on the
axis 6 = 0, so that P, = 1 for all n (see Example 5-4.5), the potential
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reduces on the axis to

il B

Paxis = z (Anrn + n-tl) = z (A 2" + n+1)’ (6-4‘.2)
n=0 r n=0

where z is the distance from the origin along the axis. Suppose now that

the potential on the axis is already known and is expressed as a power

series in z (‘“‘axial expansion”)

o

Paxis (known) — Z (a "+ n+1) (6-43)

n=0

The coefficients g, and &, of this series must then be equal to the coeffi-
cients 4, and B, of Eq. (6-4.2) and therefore to those of Eq. (6-4.1).
Hence, a, and &, can be substituted in Eq. (6-4.1) and so, from the
potential on the axis, the external potential of the charge distribution
can be obtained for other points of space.

A\
Example 6-4.1 Find the potential of a thin, uniformly charged,
circular ring of radius ¢ and total charge ¢ at all points for which r > a,
where 7 is the distance from the center of the ring,
In Example 5-3.1 we have found that for z > a the potential on the

axis of the ring is

q —_.qaz e
dregz 8meyz® | '

(p:

This gives for 4, and B, of Eq. (6-4.1)

The complete potential is therefore
= L[ 2 pcosd
= dmeg| S 22 z(cos 0) + )
: A
Representation of an axially symmetric charge distribution in terms of axial

multipoles. 1f in Eq. (6-4.1) all 4,’s turn out to be zero, the potential
becomes

= Z 7n+1 (cos 6), (6-4.4)
which can be written as

@

@ = ZO m n(COS 0), (6'4‘.5)
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where @, are new coefficients defined by
Qn = 8778()Bn' (6-46)

As one can see by comparing Eq. (6-4.5) with Eq. (5-4.8), Eq. (6-4.5)
may be regarded as a series of multipole potentials associated with axial
multipoles of moments 1Q,. This equation therefore constitutes an
expansion formula for the potential of an axially symmetric charge
distribution and shows that from the points for which Eq. (6-4.4) holds,
the charge distribution may be regarded as a system of axial multipoles
located on the symmetry axis. To differentiate between the multipole
systems defined by Eq. (6-4.5) and those defined by the general expan-
sion formula (5-5.1), one {requently refers to a @, coefficient given by
Eq. (6-4.6) as the multipole strength and reserves the term multipole
moment for the p coefficients given by Egs. (5-5.2), (5-5.3), etc.

v

Example 6-4.2 Construct the first two axial multipoles approximating
the potential of a ring of radius a carrying a charge ¢ for r > a and compare
this system with the corresponding system of general multipoles defined in
Section 5-5.
- Using the B, coefficients found in Example 6-4.1, we have from Eq.
(6-4.6)
3@ =g, 3@ =0, 3Qy = —igd®

so that the axial multipoles that we are seeking are a monopole ¢ and a
quadrupole of moment —3$ga® on the symmetry axis (z-axis).

The general multipoles, on the other hand, are, by Egs. (5-5.1), (5-53.2),
and (5-5.3), a monopole ¢ and two quadrupoles of moments

— 142 —
pxx - '}qa > pm/ - "lz'qaz
on the x- and y-axis. As one can see, the axial multipole expansion and the

general multipole expansion result here in entirely different multipole
systems.

A

6-5. Method of Images

As we already know, the potential of an arbitrary charge distribu-
tion satisfies Laplace’s equation in a given region of space, provided
that the charge distribution is outside this region. Hence, if one finds
an arrangement of external charge distributions whose combined
potential satisfies the boundary conditions of the first, second, or third
kind on the boundaries of a charge-free region of space, then, by the
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TaBLE 6-11

Images in Conductors®

Actual System | Equivalent Image System

Charge distribution in front of an infinite
conducting plane:

Charge distribution in front of two infinite
intersecting conducting planes:

(qu {A'a-; i —A
a q——f=—— @ 3
Y [b 2

Charge distribution in front of a conducting sphere
carrying a charge @:

Q - N

%
a ?‘!‘- y‘IAq’ q”’ \\
, » ) @ - |
VIl /
\"“ /
| 1
} d -

Ag = —(a/d)Aq; " =Q~q);
! = a%/d (q” = 0 if the sphere is
grounded)

Uniform line charge parallel to an equally long conducting
cylinder carrying a charge & (end eflects neglected):

Q

a"=Q +q; l=a%d

¢ The relationships are given for a differential element Aq of each charge distribution.
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aniqueness theorems, this combined potential will be the correct poten-
ual for this region, even if in reality the potential in the region is pro-
duced not by these charge distributions, but by an entirely different
electrostatic system. For the purpose of calculating an electrostatic
potential, one may therefore replace a real electrostatic system, or a
part of it, by a set of fictitious charge distributions whose combined

I
— NN
A7 NN
-7/ [ RN N
-, V2NN
P2 NN
A AN R U \
v
~ / I‘ \ A\

- /

Fic. 6.8 Electric field between a
charge ¢ and a conducting plate is
the same as the field betwgen ¢ and
its “‘image’” —gq.

s

,7
\
AN
~
~
-

potential satisfies the boundary conditions of the real system. These
fictitious charge distributions are called image distributions, or electric
images, and the method of finding the potential of an electrostatic
system by means of such fictitious charge distributions is called the
method of images.

The images for several frequently encountered electrostatic systems
are shown in Table 6-II. The correctness of these images can be
easily verified by showing that they satisfy the required boundary
conditions (to do so one needs to consider only a differential element
of the original charge distribution and the corresponding differential
element of the image distribution).

The simplest example of the method of images is given by a
special case of the first system shown in Table 6-II: a point charge ¢
placed at a distance a from a very large conducting plate. As one can
sce from Fig. 6.8, the field between ¢ and the plate is exactly the same
as the field that would exist in this region if the plate were replaced by
the image charge —g¢ at a distance 24 from the charge ¢. The term
“electric image” is derived from this particular example by analogy of
the fictitious charge —g¢ with the optical mirror image of the real
charge g.

There are no universal methods for obtaining images for arbitrary
electrostatic systems. Electric images are therefore found mostly by
inspection and trial and are verified by checking whether or not they



-

satisfy the required boundary conditions (see Problems 6.23 and 6.24).

One can easily see that there is a reciprocal relation between real
. charges and their images: a real charge is the image of its own image.
Therefore any part of an image system can be regarded as real; the
rest of the systemn is then regarded as the image of the part assumed to
be real.
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v

Example 6-5.1 A point charge ¢ is placed at a distance « from a very
large conducting plate. Find the electric field between the plate and the
charge, and find the density of the surface charge induced on the plate.

4

7
T .\ T
q / K—q *

—_-— | —— !

Ay

Fic. 6.9 Geometrical relations for
calculating electric field between a
point charge and a conducting plate
by the method of images.

Using the first image system shown in Table 6-1I, we replace the
plate by the image charge ¢’ = —g¢ as shown in Fig. 6.9. The potential at
a point P(x,y, z) is then (we abbreviate % + z? as R?)

_ 4 g _ 4 L _ l }
¢ = dmeyry  4meyr, 4‘1750[sz T xr—af VR (x4 a2
The field is E = — Vg, and its components are
B - dp g | x—a x+a ___}
T T O Ang\[RE A (x — 0)f2 T [REA (x + )%
P b _ J }
o [y i UV R L e
op q z z

Bm e 4weo{[R2 =R R a>2]"‘”2} '

At the surface of the plate, x = 0, so that £, and E, vanish and only £,
remains (as it should, since the field must be normal at the surface of the
plate). The field at the surface is then

q —a a .
E.uface = dreg| (K% 1 @) TR+ &) 1,
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E 1 i
' = -_— —1.
surface QWEO(RZ _|_ a2)3/2

The induced surface charge density is 0 = D, irice = €0Luurtace> OF

S L
T T 0n (Rt 2R
Example 6-5.2 A point charge ¢ is placed at the distance ¢ from the

center of a grounded conducting sphere of radius a < 4. Find the density
of the induced surface charge on the sphere.

Frc. 6.10 Geometrical relations for calculating induced charges on a
conducting sphere by the method of images.

Using the third image system shown in Table 6-11, we replace the
sphere by the image charge ¢’ = —ga/d, as shown in Fig. 6.10. The potential
at any point P(ry, r,) is then
_ ¢ . ¢ 4 g
T dmegry, | dmeyr, dmegry  dmegred

¥

Using the law of cosines, we now express r; and 7, in terms of 7 and 6.
This gives
g [ 1 a J
4meg V72 - d% — 2rdcos O - dVrE - 2 — Qlrcos 0

'

The surface charge density is ¢ = D,
surface £ must be radial,

surface = €olsurfaces and since on the

0y
0= —¢& ==

0 or

_ 99

= —¢& A
surface or

r=a
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2
. .o s a
Differentiating and substituting | = 7 we then have

- q 7 —dcos @ alr — lcos 0)
7T T Gne, | T (o & — Ordcos 09 T d(E T — 27 cos 07 |,
I a a* 0
. q dcost —a N A\ "7
T 4n| (a® £ d* — 2ad cos 0)*2 , @ 24 3/2
i a® -+ T o8 0
I a\}/d?
q dcosO —a ' (3) (a——dcosﬁ)
Y I R T 2 T :
et d 2ad cos 6) (5)3@2 4+ d% — 2ad cos )32
or
B q 42— g2
9T T 4 (a® ™ d? — 2ad cos §)¥2°
Example 6-5.3 An uncharged, insulated, conducting sphere of radius

a is surrounded by a concentric, uniformly charged ring of radius 4 and
total charge ¢ (Fig. 6.11a), Find the potential at an external point P on the
symmetry axis,

(a)

Frc. 6.11 (a) Conducting sphere surrounded by a charged ring ¢q. (b)
To find the electrostatic potential of the system, the sphere is replaced by
an image ring ¢’ and an image charge ¢".

Using the third image sysiem of Table 6-I1, we replace the sphere by an
image ring of charge ¢’ == —ga/b and radius 5" = 4%/b and an image point
charge ¢" = ga/b, as shown in Fig. 6.11b. The potential at P is then the
sum of the potentials due to the original ring, image ring, and image point
charge. Using the formula for the potential of a charged ring obtained in
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Zxzmpie 5-3.1, we have for the potential at P

’ "

= L 7 + L
4-7r80\/b2 + 22 47;—50\/[;’2 + 22 47z

g qa ' ga

h 47r£0\/b2 + 22 N al + 4rregbz
4regh 7 + z2

g 1 a a
N 47"%(\/[)2 T2 Va1 bz * bz)'

Example 6-5.4 A line charge of uniform density A is placed radially
inside a hollow conducting sphere of radius g, the two ends of the line charge
being at the distance r; and r,, respectively, from the center of the sphere
(Fig. 6.12a). Find the image charge by which the sphere may be replaced
for calculating the potential jnside the sphere.

\
/ AN
/ dr/ | A dr
[ —— = - —
\ ke /
\ . /
N /
AN 72
~ |-~
T3 1
X
"

(a) (b)

Fic. 6.12 (a) Line charge 4 in a conducting sphere. (b) The sphere is
replaced by an image line charge 4. ’

According to the third image system of Table 6-1I, the sphere may be
replaced by a radial line charge whose ends are at the distance

rg = a?[r, and 1, = a¥lr

from the center of the sphere (Fig. 6.12b). The density of the image charge
can be found as follows. Consider a differential length element dr of the
original line charge. If this element is at a distance 7 from the center of the
sphere, the corresponding element dr’ of the image charge is at the distance
r" = a®|r from the center. Differentiating, we obtain for the length of 4r’
a® 2

dr = — dr.

a2
[dr]z’—r—zdr

T2 a?
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Now, according to Table 6-11, if the charge contained in dr is dg, the charge
contained in dr’ is

’

__ %, _ T
dg’ = rdq_ adq.

The charge density of the image charge at the point 7’ is therefore

V- g " & dg a dg
T a2 A T A’
d
and since—q = A,
dr
V=22
r

6-6. Method of Curvilinear Squares

The method of curvilinear squares is a graphical method for the
analysis of two-dimensional fields (fields that vary in two linear dimen-
sions only). It is based on representing these fields by so-called
curvilinear square maps.

In this method, a drawing of the system under consideration in a
cross-sectional plane normal to the direction along which the field of
the system does not vary is first made. Then, field lines and equi-
potential lines are sketched by guess throughout the drawing to make
a field map that forms a net of possibly accurate curvilinear squares (that
is, curvilinear cells with 90° angles and length-to-width ratio equal to
one). Next, a series of new maps is made where the curvilinear squares
are gradually improved until the angles in all squares are sufficiently
close to 90° and the length-to-width ratio of each square is sufficiently
close to one. Special attention is paid to field lines and equipotential
lines at conducting surfaces: the field lines must be normal to these
surfaces, and the equipotential lines must be parallel to them. If a
field model (lines-of-force picture) for the system under consideration
is available, the model serves as the guide for making the maps (Fig.
6.13).

A finished field map prepared in the above manner has a number
of special properties, of which the following ones are of special interest .
here.

(1) The potential difference Ag between adjacent equipotential
lines is constant throughout the map.

(2) The voltage V between any two electrodes in the map is




SOLUTION OF ELECTROSTATIC PROBLEMS 169

(a) (b)
Fic. 6.13 (a) Lines-of-force picture for a two-plate transmission line with a
-entral chamber. (b) Curvilinear square map of the same system.

divided by the equipotential lines into equal increments, each represent-
ing a potential difference *

|4

N,’
where N, is the number of intervals made by the equipotential lines
in the space between the electrodes.

(3) The electric field at the center of any curvilinear square in

the map is

Ag (6-6.1)

Ay
TA
where Ag is the potential difference and Al is the distance between the
equipotential lines forming two sides of the square.

(4) The surface charge density at the surface of any conductor in
he map is

E (6-6.2)

0

VR (6-6.3)
where Ag is the potential difference and A/ is the distance from the
point where ¢ is determined to the equipotential line adjacent to the
conductor [Egs. (6-6.2) and (6-6.3) become exact if the curvilinear
squares in the map are sufficiently small].

(5) The electric flux Ad between adjacent field lines in a map
representing a field of depth ¢ is constant throughout the map and is

AD = e,Agt, (6-6.4)

where Ag is the potential difference between adjacent equipotential
lines.
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(6) If the map represents the field of a two-dimensional capacitor,
the capacitance of the capacitor is
C =g % t, (6-6.5)
where N, is the number of intervals made by the field lines in the map
(number of “flux tubes”), &, is the number of intervals made by the
equipotential linesin the map, and ¢ is the length (depth) of the capacitor,
The most important property of a finished curvilinear square map
is, however, that the map yields a potential that automatically satisfies
Laplace’s equation and the boundary conditions of the first and the
second kind. By the Uniqueness Theorems I and II, this means then
that regardless of how the map was arrived at, the map represents
correctly the field of the system undey consideration.

Derivation of Curvilinear Square Map Properties. Let us consider a region
of a two-dimensional electrostatic ficld between two cross-sectional planes
separated by a distance At and oriented so that the field does not vary in the
direction normal to them. On the front plane, let us draw a map of this
field showing both the field lines and the equipotential lines, as in Fig. 6.14a.
Using the vector identity

V2p = lim tVg - dS

_—, V-39
Ap—0 Av ( )

we shall now evaluate V2p for the region represented by the map. Let the
surface of integration in this formula be the surface of the curvilinear prism
with the front surface abb’a’ shown in Figs. 6.14a and 6.14b. Since all
“vertical’” surfaces of this prism are parallel to the field lines, the integrand

(a) (b)

Fic. 6.14 Derivation of curvilinear map properties.
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Vg -dS = —E - dS is zero there, and the only contribution to the integral
$Vq - dS comes from the two “horizontal” surfaces. If the prism is suffi-
ciently small, and the map is sufficiently fine, V¢ on the upper surface is
(o — @1){ AL (see the enlargement of the region abb’a’ shown in Fig. 6.14b),
and Vg on the lower surface is (¢; — ¢o)/Al;. The area of the upper surface
is Aw, + At, and the area of the lower surface is Aw; + At. The integral is
therefore

qqup-dS:JVrP-dS—:- fV(p-dS

abed a'v’e’d

F2 — ¥1 5 1~ %o
== Aw, Al — T Aw, At
Al 2 Al 1=

where the minus sign shows that V¢ is opposite to dS on the lower surface.
According to the above formula for V3¢, this quantity must be zero if V2p
is to be zero. But VZp must be zero in the region under consideration since
the region is free from charge. Hence, the equation must hold

T — ¢

P2 ¥1 sz —

¥1.— %o 4.
AL Awy.

AL

This equation will obviously be satisfied if ¢, — ¢; = ¢; —¢, and
Awy[Al, = Aw;/Al;. The first of these conditions is always fulfilled if the
difference of potentials between adjacent equipotential lines, A¢g = ¢,.; —
@, is constant throughout the map. The second condition is always
fulfilled if the map is constructed so that the curvilinear rectangles formed
by adjacent equipotential lines and by adjacent field lines have the same
width-to-length ratio Aw,/Al, throughout the map. In particular, this
condition is fulfilled if the ratio is 1:1—that is, if the entire map forms a net
of curvilinear squares.

Thus, a curvilinear square map with equipotential lines marked in
equal increments Ag¢ yields a potential ¢ satisfying Laplace’s equation. If
Ag is made so that the conductors in the map obtain prescribed potentials,
@ also satisfies the boundary conditions of the first kind. But the adjusting
of Ag and the marking of the equipotential lines does not affect the structure
of the map. Therefore a properly drawn curvilinear square map is auto-
matically compatible with Laplace’s equation and with the boundary
conditions and hence is always a correct field map. The map properties
| to 4 are then an obvious consequence of the above considerations.

Property 5 can be deduced as follows. The flux between two adjacent
field lines in a square where the field lines are separated by a distance
Aw, and the equipotential lines are separated by a distance A/, is

A
A® = DAw,t = egEAw,t = ¢, A—l"'i Aw, t,

where Ag is the potential difference between the equipotential lines and ¢



172 ELECTROMAGNETIC THEORY

is the depth of the field. But Aw,/Al, is the width-to-length ratio of the
square and is onc. Therefore A® = gyAgt, which is property 5.

Property 6 follows from properties 5 and 2. Since the charge on a con-
ductor is equal to the total flux through a surface surrounding the conductor,
the charge is given by

g = ADN, = g AgN,

where N, is the number of flux tubes ending on the conductor and ¢ is the
length of the conductor. Using property 2, we then obtain for the capaci-
tance of a two-dimensional capacitor of length ¢

ApN, N,

_ Ll SPRE ) &
C= & Atprt & le,

g
vV

where N, is the number of intervals made by the equipotential lines between
the two plates of the capacitor. This'is property 6.

A
Example 6-6.1 A long, charged conducting bar of over-all width 8a

and thickness 24 has rounded edges of radius a. Find the ratio of the smallest
and the largest surface charge density on any portion of the bar, neglecting
end effects.

.__Dj:—ga Fic. 6.15 The ratio of charge den-
sities on a conducting bar can be found

Szt by the method of curvilinear squares.

Except near the ends, the electric field at the surface of the bar may be
considered two-dimensional. The problem may be solved therefore by the
method of curvilinear squares. The corresponding map is shown in Fig.
6.15 (the map needs to be determined for only one quadrant, since, by the
symmetry of the bar, the field pattern is the same for all four quadrants).

A useful guide for constructing this particular map is the fact that from
large distances the bar may be considered a line charge, and the field may be
considered radial. In making this map, therefore, radial field lines were
drawn first {dotted lines in Fig. 6.15). They were then appropriately curved
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near the surface of the bar to meet the surface at a right angle. The equi-
potential lines were drawn next to produce curvilinear squares. The
doubtful squares were then checked by inscribing in each of them a circle
(two such circles are shown in Fig. 6.15). If a circle touched all four sides
of a square, the square was good. If a circle touched only three sides, the
“square’ was dctually an elongated rectangle and the map was corrected
by altering the paths and spacings of field lines and equipotential lines until
good squares were obtained everywhere on the map.

From this map and from Eq. {6-6.3) we see that the smallest surface
charge density is on the flat portions of the bar, while the largest surface
charge density is on the rounded portions. By Eq. (6-6.3), we can write
Ormin/ Omax = (EoA@/AL) + (Al"[eqAg) = Al"[Al', where Al” and Al’ rep-
resent the spacing between the surface of the bar and the first equipotential
line at the points under consideration. Measuring Al” and Al’ we obtain
Al' = 6 mm, Al” = 3 mm, so that

> Onin 1

Omax 2

Example 6-6.2 A long, triangular conducting bar of length [ is placed
above a large conducting plate so that, neglecting end effects, the bar and
the plate form a two-dimensional capacitor whose curvilinear square map
is shown in Fig. 6.16. Find the capacitance.

Fic. 6.16 The capacitance of a tri-
angular bar placed above a conducting
plate can be found by the method of
curvilinear squares. 3 3

There are 6 flux tubes and 2 potential difference intervals in the map.
By Eq. (6-6.5), the capacitance is therefore

C = 3¢gyl.
A

6-7. Method of Configuration Coefficients*

The method of configuration coefficients is a method of expressing
correlations between charges and potentials in systems of conducting

* This section may be omitted without loss of continuity.
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bodies by means of certain quantities (configuration coeflicients) which
depend only on geometrical relations within the system.

The method is based on the fact that the potential produced by a
system of 7 charged conductors can be expressed in terms of charges g,
residing on the conductors as

v =240 (6-7.1)

where p, are quantities that depend only on the geometry of the system
and on the location of the point of observation.

To prove Eq. (6-7.1), we shall first prove the following Superpos:-
tron Theorem.

If, in a system of conductors, the charges ¢; placed on the conduc-
tors produce the potentials ¢, on the conductors and the potential ¢ in
the surrounding space, and if the charges ¢'; placed on the same con-
ductors produce the potentials ¢ '; of the conductors and the potential
@' in the surrounding space, then the charges g; + ¢'; placed on the
conductors will produce the potentials ¢; + ¢ ’; on the conductors and
the potential ¢ + ¢ in the surrounding space. (In simpler words, when
two sets of charges are superimposed, the resulting potentials are the
sums of the potentials of the superimposed sets.)

This theorem can be easily proved by means of the Uniqueness
Theorem II. Indeed: (1) since both ¢ and ¢ ' satisfy Laplace’s equa-
tion, then also @ + ¢ satisfies Laplace’s equation; (2) since ¢; and
@ ', are constant on the conductors, then also ¢, + ¢ '; is constant on
the conductors; and (3) since ¢ and ¢ ' are compatible with ¢, and ¢,
respectively, then ¢ + ¢’ is compatible with ¢; + ¢’;. Hence the
theorem is definitely true.

Suppose now that a charge ¢, is placed on the first conductor, and
that all other conductors are neutral (the neutral conductors have in-
duced charges on them, but the net charge on each neutral conductor
1s zero). Let the potential at some point in space (‘‘point of observa-
tion’’) due to the charge placed on the first conductor be ¢,. If we
define the coefficient p, as p, = ,/q,, we can express the potential ¢,
as p,q,- By Example 6-2.2, the coefficient p, depends only on the
geometry of the system and on the location of the point of observation.
Suppose next that only the second conductor carries a charge and that
all other conductors are neutral. The potential ¢, at the point of obser-
vation can be expressed then as p,g,, where p, 1s defined as
p. = ®,/q,. By Example 6-2.2, also p, depends only on the geometry
of the system. We can continue in the same way with the remaining
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conductors, assuming that each of them, in turn, carries a charge and
defining the p coefficients for them. The potential produced at the point
of observation due to the charge placed on the :-th conductor, when on-
ly it carries a charge, will then be ¢; = pyg;, where p, is @/q,.

Let us now superimpose the charges and the potentials just described.
The result is Eq. (6-7.1), where, by the Superposition Theorem, the
potential ¢ 1s the sum of the potentials produced at the point under con-
sideration by the simultaneous charges of the individual conductors; the
contribution of each conductor to the total potential is expressed in terms
of the p coefficient for this conductor.

From Eq. (6-7.1) it follows that the potential of any conductor in
a system of charged conductors can be expressed as

¢; = 2 bl (6-7.2)
i=1

where ¢, is the potential of the j-th conductor, ¢, is the charge of the
i-th conductor and p,; are configuration coefficients, which depend
only on the geometrical relations within the system. These coefficients
are usually called coefficients of potential.

If Eq. (6-7.2) is written for each conductor explicitly, it becomes a
system of equations

1 = puds — brds = "t P1aga

Fo = pardy T P22fe T ' T Daafa

Fn = Py + pn2q2 =t Pande (6-73)
These equations can be solved for the charges ¢y, ¢, . . . ¢,, and give

for the charge of the j-th conductor
g = 2 ¢ (6-7.4)
i=1

where ¢;; depend only on various p,; and hence themselves are configura-
tion coefficients. They are called coefficients of mutual capacitance, or
induction coefficients (if the system consists of one conductor only, there is
only one coeflicient of capacitance, which then is identical with the
capacitance of the conductor).

The configuration coefficients p,;, and ¢, can be either calculated
or measured, and once they are determined the potential of any
conductor can be found from Eq. (6-7.2) if the charges of the conductors
are known, and the charges can be found from Eq. (6-7.4) if the poten-
tials are known.
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To measure a coefficient ,;, one usually measures the potential
@;; of the j-th conductor when only the i-th conductor is charged,
measures the charge g, of the latter, and then determines p;; from

b =2% (g, =0 for j#i). (6-7.5)

q:

Similarly, to measure a coefficient ¢,;, one measures the charge
g;; of the j-th conductor when all conductors except the i-th are
at zero potential, measures the potential ¢, of the latter, and determines
then ¢;; from

oy = ZT (g, =0 for j+1). (6-7.6)
If Eq. (6-7.4) is written for each conductor explicitly, it becomes
a system of equations
¢ = 5l11‘P1 + s F o R 6,9,

G = C1®y + CoaPsy - * T 6Py (6-7.7)

9n = 1 + Cn2Pe + o + Can®Pne

Adding these equations, we obtain

20 = (2511)% + (2%‘2)‘7’2 +o ok (2%)%-

j=1 i=1 =1 j=1
The left side of this equation represents the total charge @ of the
system. The right side can be simplified by means of new coefficients,

n
k;, defined as k; = Y ¢;;. We can write therefore
j=1

Q =kioy + kype + 0 + K (6-7.8)
Solving this equation for the potential of the j-th conductor, we obtain
¥; = _k;l(kl% + k@ + ki@ F K@i
ot g, — Q).

Finally, introducing new coefficients, £,;, defined as k;; = —&;'k,, we
obtain
p; = E' ks -+ k,-—lQ; (6-7.9)
i=1

where the prime on the summation sign is the ‘}‘exclusion symbol”
indicating that the term £,;¢, (for which j = 7) must be excluded from
the sum. As one can see, the coefficients £;; depend only on the con-
figuration coefficients ¢;;, and hence are themselves configuration
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-ocflicients. Therefore, once all the £’s for a given system of conductors
zre known, the potential of any conductor can be calculated from
Eg. (6-7.9) if the potentials of the remaining conductors and the total
-harge of the system are given.

The coeflicients £;; can be either calculated or measured. To
—easure a coefficient £;;, when @ = 0, all conductors except the j-th
zad the ¢-th are grounded, the potentials ¢, and ¢, are measured, and

-ne value of the coefficient is then determined from

ke =2 (All ¢’s except g, and ¢, are zero).  (6-7.10)

i

v

Example 6-7.1 Express the ¢ coefficients in terms of the p coefficients
“or a system of two conductors.
For two conductors we have by Eq. (6-7.3)

W1 = pu1q1 + P129»

(6-7.3a)
Qo = parq1 T Paxge

Solving these equations simultaneously for ¢’s, we obtain

b b1z
9 = A ¥ — A P2

b
‘12=—1)A_21‘P1+'A1_1‘P2’

where

A= b11b20 — P21b10-

By Eq. (6-7.4), the expressions in front of ¢’s are the ¢ coefficients. We thus
have

B PR "
11 A’ 12 A’ 21 A’ 22 A
Example 6-7.2 Express the capacitance of a capacitor in terms of the
¢ coefficients.
Let the charges of the capacitor plates be ¢, = ¢ and ¢, = —g. By

Eq. (6-7.7), we then have
g = @1 + C1oPe
—¢ = @1 T C22Po-

Solving these equations simultaneously for ¢; and ¢,, we obtain

Gy Tt Py = fy T+ ta
22 | 12 g = — B

L=
C11f22 — C12f: €113 — C12001
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The voltage between the plates, I, = ¢; — ¢, is then

L L
€11 = Cyp T Loy F Cap

V12 =

C11622 — C12001

The capacitance, € = Ii , 15 therefore
1

€11€90 — Cpaf
11622 12621
C

L €L . *
€11 7~ €12 T Ca1 T fap

Example 6-7.3 Calculate the configuration coefficients p,;, ¢, and
k;; for two concentric spheres shown in Fig. 6.17.

Fic. 6.17 Calculation of configuration coeffi-
cients for two concentric spheres.

By Eq. (6-7.3), the potentials of the spheres are

¢1 = p1d1 + 124
©2 = pa1q1 + Pa2qo

Let the charge of the smaller sphere (sphere 1) be zero, and let the charge

* of the larger sphere (sphere 2) be ¢,. By Examples 5-2.1 and 6-2.1, the
potentials of the spheres are then ¢; = ¢, = LE: - . Hence
4mend
1
p12 - 4'7T€0b’ ) p22 - 47T€0b’ .

Now, let ¢, be zero, and let the charge of the smaller sphere be ¢;. By
Problem 5.26, the potentials are then

N Y. 4
P1= Fregabyy (00 T F b =
Hence,
1
P = dmeqabd’ (b8" — ab’ + ab), P = drregh’”

The ¢ coefficients can be obtained from the p coefficients with the aid of
equations derived in Example 6-7.1, Substituting the above values of p’s
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5 these equations, we obtain

ab ab
(‘11:4'7760m, 19 = _477606——_(;’

ab ab
Ca1 :*47780 [)———(; s Cap = 47‘1’80 m - b .

The k coefficients can now be obtained from the ¢ coefficients. We have

ky = ¢11 — €5 =0, ky = ¢15 + Cp0 = dmmegh,
Cy 5 Co ¢11 + ¢
klzz_ill_ﬂz_oc: Fyy = — 11 2n__ g
‘11 T Cor C1p T Cap
Example 6-7.4 The potential at a point P in the vicinity of two

conductors located near the surface of the earth is being measured by means
of a collector (probe) whose effect on the measured potential is negligible,
When conductor 2 is grounded and voltage 'y = V] is applied to conductor
I, the voltmeter connected to the collector registers a voltage V. When
conductor 1 is grounded and voltage V, = V, is applied to conductor 2,
the voltmeter registers a voltage V.. What will be the potential at P for
arbitrary values of V; and V,?

Fic. 6.18 Once the potential at
a point near conductors | and 2
has been measured for two volt-
ages applied to the conductors, i
the potential at this point for all

other voltages applied to the -
conductors can be calculated from
configuration coefhicients.

e
-

In order to take into account the effect of the ground, we replace the
ground by two image conductors as shown in Fig. 6.18. The potential
@p at P, which is equal to the potential of the collector ¢,, can be then
expressed, according to Eq. (6-7.9), as

Tp = G = kaV1 + keoVo + koaVy + £V,

where Vy and V), are the potentials of the images. By the symmetry of the
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problem, we see that Vg = —V; and V; = —V,. We have therefore
gp = (ko — k) Vi + (kg — Ko4) Vs
and replacing the expressions in parenthesis by K; and K,, we obtain
gp = KiV; + K, TV,

Substituting in this equation the values of ¢p, Vy, and V, given in the
problem, we have /

V=KV, V=K
so that
&
_VTi »

”
VC

K, = =75
2

K,

For any values of V] and V,, the potential at P is therefore

_VC'V V°”V
(pP—Vl/ 1+V2// 20

ProBLEMS

6.1, One plate of a thin parallel-plate capacitor of plate separation 4
is kept at the potential ¢ = 0, the other at ¢ = V. The capacitor contains
a space charge of density p = kx, where £ is a constant and x is the distance
from the plate with ¢ = 0. Find the potential distribution in the capacitor,
the electric field in the capacitor, and the surface charge density on the
inner surfaces of the plates.

6.2, A spherical capacitor consists of two concentric spherical shells
of radii @ and & (@ << b). The inner shell is kept at the potential ¢ = ¥, the
other at ¢ = 0. The space between the shells is filled with space charge of
density p = kr where £ is a constant, and r is the distance from the center.
Find the potential due to this system at all points of space and find the
surface charge density on the spheres.

6.3. Consider two very long thin-walled coaxial cylinders of radii a
and b (a < b). The inner cylinder is kept at the potential ¢ = V,, the outer
at ¢ = V,. The space between the cylinders contains a space charge of
density p = kr, where k£ is a constant and 7 is the distance from the axis.
Find the potential distribution between the cylinders and find the surface
charge density on the cylinders.

6.4, Two long coaxial cylindrical shells of radii ¢ and 6 are kept at the
potentials V, and V,, respectively. Show that the potential at any point
between the shells is
In (7/a)
(p:Va_f_(Vb_Va)l_n_(_bﬁ_)s

where r is the distance {rom the axis.
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6.5. Prove that the electrostatic potential cannot be a maximum or a
minimum in a charge-free region of space.
6.6. Prove that the Poisson integral

1 p(x” .y” z’)
_ — _— d !
700 2) = o f " v
All space
’s a solution of Poisson’s equation
Vep — —plep:

‘Hint: In the vector identity (V-25) substitute ¢ for Uy, —p[e, for V2U,
and 1/r for U,. Integrate (V-25) over all space excluding a small sphere of
radius ¢ centered at the point x,,z. Express the surface integral of ¢ over
the surface of the sphere as @yyerage * 47a2. Let a approach zero.]

6.7. Show that the average value of the electrostatic potential ¢ on
any spherical surface is greater, equal to, or smaller than the value of ¢ at
the center of the surface, depending on whether this surface encloses a
charge distribution which & everywhere negative, zero, or positive. [Hint:
The average value of ¢ on a surface S is (§ ¢ dS)[S. Use the same pro-
cedure as in the preceding example, but integrate (V-23) over a sphere of
radius R excluding a small sphere of radius z at its center.]

6.8. (a) Prove Uniqueness Theorem A. (b) Prove Uniqueness
Theorem B. (c) Prove Uniqueness Theorem C.

6.9. Prove Uniqueness Theorem E.

6.10. Show that Rectangular Harmonics (H-1) and (H-2) given in
Table 6-1 are solutions of Laplace’s equation.

6.11. Show that Cylindrical Harmonics (H-3) and Spherical Harmonics
(H-4) given in Table 6-1 are solutions of Laplace’s equation.

6.12, A potential distribution on a spherical shell of radius a is given
by

k—1
@(0) = (m)an cos 0.

Prove that if all charge resides on this shell, the potential inside and outside

the shell is, respectively,
k—1
(p(r, 6) = (%T) Eor cos 0

and

EF—1 a3 cos f
w0 0) = (3) B o -

In these formulas 4 and E; are constants, and r and 8 are spherical coordinates
with the origin at the center of the shell.

6.13. A conducting cone of half-angle « is placed in a truncated,
hollow, conducting cone of inside half-angle f. The cones are coaxial and
their apexes are at the same point of the axis. Neglecting end effects,
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show that if a voltage V is established between the cones, the electric field in
the space between them is (using the apex as the origin of coordinates)

! nfon) < (o]
E = 1 - 1 - 0,.
rsin@[n(tan 2) —+ n(cot2 u

6.14. A conducting sphere carries a charge. A thin hemispherical
conducting shell concentric with the sphere is placed near the sphere. Find
how the presence of the shell alters the electric field of the sphere.

6.15. A small hemispherical bump of radius @ is raised on the inner
surface of one plate of a thin parallel-plate capacitor of plate separation d.
(a) Find the potential distribution in the capacitor, if a voltage I is main-
tained between the plates. (b) Show that the total charge residing on the
bump is

q = 3meya® 7

6.16, A conducting sphere of radius a carrying a charge ¢ is placed in
an initially uniform field E. Find how the presence of the sphere alters the
field.

6.17. A long conducting cylinder of radius a carrying a charge of line
density 4 is placed in an initially uniform field E in such a manner that the
axis of the cylinder is normal to E. Neglecting end effects, find how the
presence of the cylinder alters the field.

~ 6.18. Rectangular plates of a capacitor have separation d + a at one
edge and d — 4 at the other. The width of the plates (along parallel edges)
is b, the length is /. Neglecting edge effects, show that the capacitance is

b d-+a

€9 sin 1 al’ Ind —a

C:

and show that for a < d it approaches the capacitance of a parallel plate
capacitor,

6.19. A spherical charge distribution of constant density p and radius a
has a spherical cavity of radius 3a. The center of the cavity is at a distance
}a from the center of the sphere. Using axial expansion, find the potential
produced by this charge distribution at all points outside the sphere and
compare the result with that obtained from a direct calculation of the
potential.

6.20. Show that the potential of a thin, uniformly charged, circular
disk of radius ¢ and total charge ¢ can be expressed for r > a as

q
4rreyr

2
$00) = g 1 = 33 Py oosO) =+

where r and 0 are spherical coordinates with the origin at the center of the
disk.
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6.21. Show that the quadrupole strength of the disk described in the
areceding problem is )
g &P Q = —iga®.

6.22. Show that the potential of a line charge of density A and length

2a can be expressed for 7 > a as

S Aa

TEY

2

a 4
3r2

&@mm+€3a@mm+~~}

97(71 0) =

where 7 and 0 arer spherical coordinates with origin in the middle of the
line charge and having the line charge for the polar axis.
6.23. Prove that the images given in Table 6-1I for the first two

PMwW)+

systems are correct.

6.24, Prove that the images given in Table 6-II for the last two
systems are correct.

6.25. A point charge ¢ is placed in front of a very large conducting
plane. Show that the charge of any portion of the plane is proportional to
the solid angle subtended by the area of this portion at the point where ¢
is located. )

6.26. A point charge ¢ is placed at a distance 4 from the center of a i
grounded conducting sphere of radius a. Show that the ratio of the charge
induced on the part of the sphere visible from ¢ to that on the rest of the

sphere is pp
Nd—a’

6.27. A region of uniform field £ is produced midway between two
equal and opposite charges a great distance apart. Show by the method of
images that when a conducting sphere of radius a is placed in this region,

the potential around the sphere is
3

p = —E(l — %)rcos 0,

where 7 and 0 are spherical coordinates about the center of the sphere.

6.28. A point charge —+¢ is placed at a distance 4 from the center of
an uncharged conducting sphere of radius 4. Show that the least positive
charge which must be given to the sphere so that the surface charge of the
sphere is everywhere positive is (3d — a)

N RS
fmin = 94" 4(d — a)t"
6.29. A point charge ¢ is placed inside a spherical conducting shell

of radius a at a distance & from the center of the shell. Show that this charge
induces on the inner surface of the shell a surface charge of density

p a® — d?
" 4ma (a® — 2ad cos O + d%)3°

where 0 is measured with respect to the symmetry axis of the system.

g ==
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6.30. A quarter of a hollow conducting sphere is bounded by two
semi-infinite perpendicular diametral planes. Find the images of a charge
placed inside it.

6.31. A line charge of density 1 is placed inside a hollow conducting
circular tube of radius « at a distance { from the tube’s axis. Find the voltage
between the axis and the surface of the tube.

6.32. Neglecting end effects, show that the capacitance of a capacitor
formed by two parallel cylinders of length [ and radius @ whose axes are
separated by a distance d(d > a) is

eyl

C=m.

6.33. Consider a two-dimensional system of conductors where the
charge per unit length of each conductor is known, but the potentials of the
conductors are not known. How should one mark the equipotential lines
on a curvilinear square map of this system ?

6.34. (a) Using the method of curvilinear squares, determine the
capacitance per unit length of a transmission line formed by two equal
parallel ribbons (“parallel ribbon capacitor’) whose width is 10 times larger
than the separation between them. (b) Compare the result with that
obtained from an analytical calculation. )

6.35. (a) Using the method of curvilinear squares, determine the
capacitance per unit length of a cylindrical capacitor in which the radius of
the inner cylinder is 4 that of the outer one. (b) Check the result by means
of the formula obtained in Example 5-2.3.

6.36. Using the method of curvilinear squares, determine the capaci-
tance of the capacitor described in Problem 6.32 if d/a = 8; then check the
result by using the formula given in Problem 6.32,

6.37. Using the method of curvilinear squares, find the capacitance of
the capacitor described in Problem 6.18 if a/d = } and {/a = 2; then check
the result by using the formula given in Problem 6.18.

6.38. Consider a system of n conductors whose initial charges and poten-

tials are, respectively, ¢, q,, - - -, g, and @, ,, - * -, ¢,. Let these charges
be replaced with new ones, so that charges and potentials of the conductors
are now qy, q,, * -+, grand @, @,, - -, @,. Show that the charges and the

potentials satisfy the relation

2q¢r =299
(this relation is called ‘‘Green’s reciprocation theorem’’). [Hint: let the initial
potential at some point in space be ¢, let the new potential at the same point
be ¢, apply Green’s second theorem (V-25) to these potentials. ]

6.39. A point charge g is placed at a distance ¢ from the center of a ground-
ed conducting sphere of radius a. Using Green’s reciprocation theorem (Prob-
lem 6.38), show that this charge induces a charge g° = - g¢a/d on the sphere.
[Hint: (1) assume that the sphere carries a charge ¢ and that the point charge
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iz zero, (2) find the potential that the sphere produces on its surface and at
tne location of the point charge, (3) ground the sphere and restore the point
charge, (4) use Green’s reciprocation theorem.]

6.40. A point charge ¢ is placed between the plates of a parallel-plate
capacitor at a distance a from one plate and 4 from the other. Both plates are
grounded. Show that the charges induced on the two plates are
g, = = gal(a + b)and g, = - ¢gb/(a + b). (Hint: use the method outlined

in Problem 6.39.)
6.41.* Show that the configuration coefficients for a thin parallel-plate

capacitor of plate separation d and area S are

d
b1 = — m = pay» pa2 =0 = P>
Y
512:—702521 ¢y = 0 = cgy,

3

and
kip = —1 = ky. '
6.42.* Using the ¢ coefficients given in the preceding problem, show
that the capacitance of the capacitor described in that problem is

h)
02603.

6.43> Two charged conductors whose capacitances are C; and C,,
respectively, are separated by a distance 4 which is so large that each
conductor may be regarded as a point charge from the location of the other.
Show that the ¢ coeflicients are

(4meyd)2Cy
(4megd)? — CLC,

| (dmed)®Cy
22 = ined)? — C1C,

_ 47T60d0102 o
T T Uged)? — C,C, 2

1

6.44.* When the two conductors of the preceding problem carry the
charges ¢ and —g, respectively, the potential of conductor ] is found to be
@1 = V,. Show that the potential of the second conductor is

(4megd — C,)C,

V2= = e d — C)C, "

* This problem is based on the material presented in Section 6-7.
1 We are using here ¢, = 0, as usual.



ENERGY AND FORCE
RELATIONS IN THE
ELECTROSTATIC FIELD
IN VACUUM

An electrostatic field is a carrier of electrostatic energy. Like
any other form of energy, electrostatic encrgy satisfies the principle of
conservation, according to which energy can be transformed from one
form to another but can never be destroved or created. In this chapter
we shall study various energy relations in electrostatic fields, after
which, using the principle of conservation of energy, we shall study force
relations in electrostatic systems.

7-1. The Energy of an Electrostatic Field

Look at the lines-of-force picture of the electric field between a
charged electric pendulum and a conducting plate (Fig. 7.1a). The
picture is similar to that of a pendulum pulled to a plate by a set of
elastic strings or springs (Iig. 7.1b). This analogy led Faraday and
later Maxwell to the idea that an electric field could be regarded as an
elastic medium in a state of stress.! But then an electric field should be
a carrier of a definite amount of energy, just asa compressed or astretched
spring is. According to Maxwell’s views, the energy stored in an
electrostatic field should bhe

U=-2" f Exdy. (7-1.1a)
All space

L Tension along the lines of force combined with pressure in perpendicular
directions.

186
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This equation has been found to be in complete agreement with
all presently known phenomena involving energy and force relations
‘n electrostatic fields. What is more, all such relations have been found
0 be derivable from this equation, and no equation for the energy of
an electrostatic field (in vacuum) more general than this one has been
discovered. Therefore Eq. (7-1.1a) is considered to represent the
fundamental electrostatic energy law.

(a) (b)

Fic. 7.1 {a) Lines-of-force picture for a charged electric pendulum near a
conducting plate. The picture suggests that there is tension along the lines
of force combined with pressure in perpendicular directions. (b) The effect
of the electric field is similar to that of elastic springs.

Since in vacuum g E = D, this law is frequently written in the

symmetrical form
U = % f E-Dd. (7-1.1)

All space

This law 1s sometimes written also in the differential form

U, = %E-D, (7-1.2)
where U, is the energy density of the electrostatic field, defined as the
ratio of the energy which may be associated with a differential element
of the field to the volume of this element.

The symbol ° in Eqs. (7-1.1a), (7-1.1), and (7-1.2) stands for a
constant of proportionality, which we shall call the energy constant.
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The value of this constant is

o _ 1[kg -m? - sec“’jl B 1|: newton - m 'l
volt - amp volt - amp - sec.]’

The size of the units of current and voltage in the mksva system has
been defined by international agreement so that the magnitude of the
energy constant is one.’ Therefore this constant is usually omitted from
the equations where it should normally occur. Since the energy constant
is not dimensionless, however, the equations from which it is omitted
become dimensionally inhomogeneous. To remedy the situation, the
dimensions [force - length] are then regarded as being equivalent to
the dimensions [voltage + current - time].

v

Example 7-1.1 Find the electrostatic energy associated with a uniform
spherical charge distribution of total charge ¢ and radius a.
The electric field of this distribution is (sce Example 4-4.1)

qr

o == <
E =E, Tregg® forr <a
q
E:EZZW fOI’fZ(Z.

Since the field is radially symmetric, the volume element in Eq. (7-1.1a)
may be expressed as dv = 47r2%dr, so that the energy is

060

E— 2 _Oﬁ a'?.. 2 iﬂ) 004‘2, 2
U= 5| B = Epdmrdr + 5  Egtemrar,

ol a 2.2 Cl eel 2
= —f __qr_s dorridr - —f T daridr

2) o 16m2e4a 2) 4 16m2gyrt
Qq‘z Oqz
 40mega | Bmega’
or
°g42
U= 1
20meya
Example 7-1.2 Find the electrostatic energy of a uniformly charged

spherical shell of total charge ¢ and radius a.

1 According to this agreement these relations must hold exactly:
° =1 [kg-m? sec3fvolt-amp] and p, = 47 - 1077 [volt - sec/famp - m],

where u, is a constant defined in Section 10.4.
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The electric field of the shell is
E=0 for r < q,

E:_q—_ f > q.
ey orr=2a

The energy is therefore
08 O [ q2
U= Y E2dp = ~ —_ 2
2 f "7 f  Tomeys Hridr

or
o

2
U=_1

8mreya

7-2. Energy in Terms of Charge Distribution

The fundamental ernfergy law (7-1.1) can be transformed into
various special forms which frequently are more convenient to use than
the original expression itself. One of the most important special forms
of the energy law is the equation representing the energy of the electro-
static field in terms of the charge distribution producing this field. It
may be obtained as follows.

Substituting E = — Vg into Eq. (7-1.1) and. omitting for brevity
the subscripts ““all space” on the integrals, we have,

(o 01
U=§fE-de= — §fV<p-de.

Using the vector identity (V-4), which may be written as
V.(¢D) = ¢V:-D + V¢ -D,

or
V(p.D = V-<¢D) — ¢V°D,
we obtain
U= — %fv  (¢D) dv + -é—fcpv - D dv.

Changing the first integral in this expression into a surface integral by
means of Gauss’s theorem and substituting V-D = p in the second

integral, we obtain
=]

U= L ¢D - dS + éftppdv,

where the surface integral is extended over the surface enclosing all
space. However, since the charge distributions with which we deal in




4

190 ELECTROMAGNETIC THEORY

physics are confined to a finite region of space, this surface integral is
zero, as can be seen from the following consideration. Suppose that the
average distance from the charge-filled region to the surface of inte-
gration is K. The area of the surface is then proportional to R2,
Since R is much larger than the dimensions of the charge-filled region,
this reglon may be regarded as a single point charge when viewed from
this surface, so that ¢ and D may be regarded as point charge potential
and point charge field. The integrand is then proportional to 1/R? and
the integral is proportional to (1/R3) - R? = I/R. Since R may be
assumed as large as one pleases, the integral can be made as small as
one pleases and in the limit may be set equal to zero. Therefore we
finally obtain

U::%prﬁh (7-2.1)

This equation can be written in an alternative form by expressing
the potential ¢ in terms of the charge distribution p. Replacing ¢ in
Eq. (7-2.1) by the Poisson integral (5-3.1) (with ¢, = 0), we obtain

_ P ° P2
f = = = = dv.
v pr(f%rsor d )dv prl (f%—eorm vz) don,

U= 1ﬂ“”mm, (7-2.2)

8re, T10

or

where 7,, 1s the distance between any two charge elements dg, = p,dy,
and dg, = p,dv, of the charge distribution under consideration, and
both integrals are extended over all space.

v

Example 7-2,1 Find the electrostatic energy of a uniformly charged
spherical shell of total charge ¢ and radius ¢ by using Eq. (7-2.1) and
compare the result with that of Example 7-1.2.

The charge density in this distribution is o = ¢/4ma? (surface charge).
The potential at r = a is ¢ = g/4meqa. Substituting these values into Eq.
(7-2.1) and replacing dv by dS, we have

Ol Ol q q Oq2
J == o dS = — ds = ~® ds
¢ 2 § o 2 f 47a? 4reya 327igya®

_ ¢

8rega

or

The same result was obtained in Example 7-1.2.
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7-3. Energy of a System of Charge Distributions

Several special forms of the energy equation (7-1.1) can be
obtained for the electrostatic energy associated with a system of discrete
charge distributions.

Let us consider a system of charge distributions consisting of »
. separate charge-filled regions. Taking into account that the charge
density outside the charge-filled regions is zero, we can write Eq. (7-2.1)
for this system as

°l
U= §ZJ%IDZ¢Z’Z)5, (7-3.1)

where ¢, and p, are the potential and the charge density within the
i-th charge-filled region, and ', is the volume of this region.

Each potential ¢, in Eq. (7-3.1) may be regarded as the sum of
two potentials 5 woy
Fi — ¢y T Po
where ¢ Is the “internal” potential due to the charge contained in the
i-th charge-filled region itself, while ¢/ is the “external” potential due
to the charges contained in all other charge-filled regions of the system.
Substituting these potentials into Eq. (7-3.1), we have

, o . )
U= 3 Zﬁp’{mdvi 5 Zﬁp;pidvi. (7-3.2)

Since all ¢7 and p, depend only on the internal distribution of
charge in the charge-filled regions, the first term on the right in Eq.
(7-3.2) represents the internal energy, or the self energy, of the individual
charge distributions comprising the system under consideration. This
term is different from zero even if the system consists of only one single
charge distribution, in which case it simply reduces to Eq. (7-2.1). On
the other hand, since ¢, depends on the mutual configuration of all
charge distributions, the last term in Eq. (7-3.2) represents the mutual
energy, or the interaction energy, of these distributions. This term is
different from zero only if there are two or more discrete charge
distributions in the system, since ¢, by definition is zero otherwise.

Thus the energy of a system of discrete charge distributions can
be expressed as the sum of the self energy, U,, and the interaction
energy, U’, of these distributions.

Using the symbol U, for the self energy, we can write Eq. (7-3.2)
in the simpler form

°1
U =33 [pipdes + . (7-3.3)

i\
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The self energy of a charge distribution may change as a result of a
rearrangement of charges within the distribution when the positions of
neighboring charge distributions change. This must be taken into
account when determining the assembly work—that is, the work required
to set up a given system of charge distributions. If the self energy is
independent of the configuration of the system, the assembly work is
-equal to the increment of interaction energy, but in general it is equal to
the increment of the total electrostatic energy brought about in setting
up the system.

Energy of a System of Poini Charges. The last equation can be further
simplified if the system of charge distributions under consideration can
be regarded as a system of point charges—that is, if the linear dimensions
of the charge-filled regions are much smaller than the distances between
them. In this case the variation of the external potential inside the
charge-filled regions is negligible. The external potential may then be
considered constant throughout each of these regions, and ¢; may be
factored out from under the integral sign giving

f@épidvi = %’fpidvi = ¢4

where ¢, is the total charge of the i-th region, or the i-th point charge.
Therefore for a system of point charges the energy equation (7-3.3)
reduces to

°]
U=352¢4 + Us (7-3.4)

This equation can be written in an alternative form by also
expressing ¢; in terms of the charges. Since ¢ represents the sum of
Coulomb’s potentials produced at the position of the charge ¢, by all
other charges of the system, we have

;o ’ 9k
& ; dmegry’
where the prime on the summation sign indicates that the term in
which the summation index £ is equal to 7 is excluded from the sum.
Substituting this expression into Eq. (7-3.4), we obtain

°1 99k r -
U=- " L U. -3.
522 Ty T U (7-3.5)

In the majority of problems in electrostatics, the self energy of a
system of point charges may be considered unaffected by the phenomena
taking place in or outside the system. For this reason U, is usually left
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out of Eq. (7-3.5), and the interaction energy of a system of point
charges is referred to as “the energy” of the system,

v

Example 7-3.1 Show that the self energy of discrete charge distribu-
tions is always larger than their interaction energy.

Let us consider a system of only two charge distributions. The total
electrostatic energy of this system is, by the energy law (7-1.1a),

U = ? f E2dy,

The field vector E in this equation can be expressed as the sum of two vectors
E =E, + E,,

where E, represents the ficld due to the first charge distribution, and E,
represents the field due to the second charge distribution. Since

E2=(E1+E2j-(E1+E2) :Ef+E§+2E1'E2>

we haVe
U == E av + - E d - 2E E av, ; 3.6
:! 1 :! 2 v + :! 1° 2 ( - )

The first term on the right in this equation depends only on the field pro-
duced by the first charge distribution, and the second term depends only on
the field produced by the second charge distribution; these two terms
represent therefore the self energy U, and U, of the two distributions. The
last term, however, depends on both fields and, consequently, represents
the mutual, or the interaction, energy U’ of these charge distributions.
Now, since the square of a real quantity cannot be smaller than zero, we
have

(El - Ez) ° <E1 - Ez) = 0>

so that for any E, and E,
E} + E > 2E, - E,.

Substituting this correlation into the integrals of Eq. (7-3.6), we obtain

Usl + Us2 = U,)

where the equality sign applies only if E, and E, are everywhere equal to
each other. This, however, is possible only if the two charge distributions
overlap, and therefore the self energy of two discrete charge distributions is
always larger than their interaction energy. By induction, the self energy
of any number of discrete charge distributions is then always larger than
their interaction energy.

Example 7-3.2 Find the interaction energy of two point charges ¢,
and ¢, separated by a distance 4.
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Using the encrgy equation (7-3.5), we have

U :olz o 99k :l 9192 ol 9291
24K ATy 2 4meyry, 2 dmegry
or

Example 7-3.3 Find the total electrostatic energy of a point charge ¢
and an infinitely large, conducting plane at a distance a from g, if the self
energy of g is U,

The total energy of this system may be expressed, according to Eq.
(7-3.2), as

o

°] °1 I
U=U, + §j¢;6 as + 5.[?9;6 ds + §<p;q,

where ¢ i1s the potential produced by the induced surface charge ¢ at the
points of the surface of the conducting plane, @ is the potential produced
by the charge ¢ at these points, and ¢}, is the potential produced by o at the
location of ¢g. Since the plane is infinitely large and conducting, the total
potential at any point of it must be zero, so that

@i+ 1 =0

The sum of the two integrals in the above energy expression is therefore

zero, and we obtain
o

1
U=Uw+§%¢

The potential ¢; can be found by replacing the conducting plane by the
image charge —g at the distance a behind the position of the plane (see
Section 6-3). The final expression for the energy is then

©,2

q
16mega s

U= —

Note that this energy is not equal to the energy of the point charge and its
image.

A

7-4. Energy of a Charge Distribution in an External Field

It is often necessary to know the energy associated with a single
charge distribution due to the presence of an external electrostatic
field at the location of this charge distribution. This energy can be
found in the following manner.
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Let p be some charge distribution and let p’ be the charge dis-
:ribution which produces the external field at the location of p. Let the
field produced by p be E, and that produced by p’ be E'.

The interaction energy of these charge distributions is, by Eq.
(7-3.6),

U= °50JE-E'a’v.

Substituting in this equation B’ = — V¢’ and ¢,E = D, and repeating
the transformations emploved in Section 7-2, we obtain for U’

vo=" f pg’do. (7-4.1)

Since the integral in this equation depends only on the charge
distribution p and the external potential ¢, the equation may be
interpreted as representing the energy associated with the charge
distribution due to the presence of the external field, or, as one usually
says, the energy of the charge distribution in the external field. Note
that, as it follows from the derivation, this energy is the same as the
mutual, or interaction, energy of the charge distribution p and the
charge distribution p” which produces the external field at the location
of p.

If the charge distribution in Eq. (7-4.1) can be regarded as a point
charge, ¢ can be factored out from under the integral sign, and since
fp dv = ¢, the energy of a point charge in an external field is

U = °qq'. (7-4.2)

In conclusion, it may be added that if the charge distribution p
and the potential ¢" in Eq. (7-4.1) can be subdivided into partial
charge distributions and partial potentials, then the energy U’ can be
expressed as the sum of partial energies, each corresponding to the
product of one partial potential and one partial charge distribution
(see Example 7-4.2).

v

Example 7-4.1 Find the electrostatic interaction energy of two thin,
interpenetrating spherical shells of radii 2 and 4 formed by the uniformly
distributed charges ¢, and ¢, respectively (Fig. 7.2).

The interaction energy of any two charge distributions is equal to the
encrgy of onc distribution in the field of the other and can be found therefore
from Eq. (7-4.1). Furthermore, since the two shells are thin, we can replace
in this equation the volume charge density p and the volume integral by the
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Fre. 7.2 CQalculation of interaction energy for interpenctrating charged
spherical shells.

surface charge density ¢ and the corresponding surface integral. Applying
Eqg. (7-4.1) to the shell b and using tharelation p,dv, = 6,4S,, we then have

U = ofpbrp;dvb =° §; 04443,

and, substituting o, = g,/47b?%;

’ qu ’
U = 47Tb2§ (pdeb,

where ¢, is the potential produced by the charge of the shell 2 at the points
of the shell 5, and S, is the surface area of the shell 5. The potential ¢;, is

! qa
= r <a
%o dmega’ ’
4a
'
= r>a
%o drreqyr ’

Taking an infinitesimal ring as the surface element 45,, we have, according

to Ig. 7.2,
dS, = 27b2sin 0 40,
so that

N

v — (fo 95 92 sin 6 d6 Lfﬂiwzsinow
T Anb?\ ) dmegn C o, dEyT ’

and, since by the law of cosines

r = Vb2 4 d® — 2bd cos 0,
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= obtain
] l 00 P . )
U'zﬁ’(—f sin 0 d6 + sin 049 )
TE\ A Jo 0,V b2 + d® — 2bd cos O
_ (L Pl e "
—8Treo(—acos@0—}—bd\/b +d —217dcost900 .

Using the law of cosines once more, we have

d2 + b2 — a2
2bd ’

cos §y, =

and, substituting this expression into the last equation, we finally obtain
after elementary simplifications {fora +- b > d = a — b)

. 4 _ e
U _——IGﬂsoabdmab (a + b — d)2].

Example 7-4.2 An idealized electrostatic model of an atom may be
imagined as a point charge ¢ (nucleus) located at the center of a thin
spherical shell (electronic shell) formed by a uniformly distributed charge
—¢g. Using this model, find the interaction energy of two identical atoms
at different internuclear separations and estimate the upper limit of the
dissociation energy for a diatomic molecule formed by these atoms.?

(a) (b)

Frc. 7.3 Interaction between two atoms according to electrostatic model:
(a) attraction, (b) repulsion.

Since outside the shell the field of each ‘“atom’ is zero, we have by
Eq. (7-4.1) for d > 2a, with d and a as shown in Fig. 7.3, U’ = 0.

When the shells penetrate each other so that ¢ < d < 24, as shown in
Fig. 7.3a, the interaction energy may be calculated by adding the following
partial energies:

(1) The interaction energy of the two shells, which by the preceding
example 1s

Oqz
Ul = 77—, [4a® — (2a — d)?].

"~ 16meyatd

1 QOleg D. Jefimenko ‘‘Semiclassical Model of Atomic Interactions,”’ Journal of
Chemical Physics 37, 2125 (1962).
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{(2) The interaction energy of the two nuclei, which by Example 7-3.2 is

T
U, = drrggd

{3) and (4) The interaction energies of the nucleus of one atom and
the shell of the other atom; since the potential produced by a uniformly
charged spherical shell outside itself is the same as if the charge of the shell

were concentrated at its center, these energies are

. ¢ . °g°
Us = dregd”’ Ui = dreyd

The negative sign is here because of the negative charge on the shell.
The total interaction energy is therefore

U=U + U+ U;+ U]
0‘12
— . 2 L 2 2 __ 2
=1z eoagd [4a® — (2a — d)® -+ 4a 4aq 4a%],

or
Oq2
U'= = Tomegara (3¢ —

When the penetration is such that ¢ < a, as shown in Fig. 7.3b, the
energy again may be calculated by adding partial energies. In this case the
energies U] and Uj are the same as for a <2 d << 24, but the encrgies U; and
U are dlﬁercnt, since the potential produced by ecach shell inside itself is

= — , these energies, by Eq. (7-4.2), are
drega
S o, 2
7 7
U = — L= — .
3 dmrega’ Ui dmrega

The total interaction energy is then

U =U+U, = U+ U,

o 2
- 1—6#02([ [4a2 — (2a — d)? + 4a? — 4ad — 4ad),
0
or
/:}qiz
U = o [8at — (2a + 4)7].

167eqa®

The dissociation energy is the energy that must be delivered to a
molecule in order to completely separate the atoms comprising the molecule.
The lowest interaction energy for the molecular model under consideration
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U’ ll
\
\

Fic. 7.4 Potential curve of a diatomic
molecule according to electrostatic
model (dashed curve represents an
interaction between two atoms in a

repulsive state, as explained in Problem
7.9).

is seen, by inspection, to occur when d = a and, according to the last
equation, 1s >

Umin =

Oqz
"~ 16mega”

Since the interaction energy of the two separated atoms is zero (U’ = 0 for
d > 2a), the upper limit of the dissociation energy is

'
16mega

UdZO_Umiu:

The potential curve (the plot of U’ against the internuclear separation)
for this molecular model is shown in Fig. 7.4.

A

7-5. Energy of a Dipole in an External Field

Consider a dipole consisting of two point charges +¢ and —¢q
separated by a small distance represented by the vector Al directed
from —g to +¢. Let this dipole be located in an external field E'.
The energies of the two charges in the field E’ are, by Eq. (7-4.2),

U, =°q¢, and U’ = —°¢¢’,

where ¢’ and ¢’ represent the potential of the external field at the
location of the positive and negative charge, respectively. The energy
of the dipole in the external field is the sum of the energies of the- two
charges in this field, or

U =°q¢, —°q9_ = °q(¢", — ¢.).
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Now, the quantity in parentheses can be written as
¢, — ¢ =A¢' =Al. Vg = —Al.E,
so that
U = —-ogAl CE.

But ¢Al is the dipole moment of the dipole, p. Therefore we obtain
for the energy of a dipole in an external field

U =—°p.E. (7-5.1)
v

Example 7-5.1 Show that the interaction energy of two dipoles p; and
P, separated by a distance 7 can be expressed as

U — Tpx Py — 3(r, - p)(ry - Pz)} _

3
4y

According to Eq. (5-1.1), Eq. (5-4.10d), and vector identity (V-1), the
field produced by the dipole p, at the location of the dipole p; is
EI — _V(p2 *r ) — 3ru(p2 ° r) V<p2 ° r)

4meyrd 4meyrt 4rregrd

o 3ru(p2 : ru) — V(p2 : l‘)
B dmeyrd

3

which, if vector identity (V-2) is applied to the last product,! and (p, » V)r
is replaced by p, (see Problem 2.25), becomes

E — 3ru(p2 * ru) — P2
= 3 .
dreyr

The substitution of this expression into Eq. (7-5.1) yields the above ex-
pression for the energy of the two dipoles after p is replaced by p;.

A

7-6. Energy of a System of Charged Conductors

Special forms of the energy law (7-1.1) are also often used for the
calculation of the electrostatic energy of a system of charged conductors.

Let us consider a system of 2 mutually external conductors in a
charge-free space, and let us use the symbols S,, ¢,, and ¢, to designate
the surface, the potential, and the total charge of the i-th conductor.
Taking into account that under electrostatic conditions each conductor
represents a region of constant potential, so that there is no electric

1 Observe that p, X VX r =0 because Vxr =0; (r-V)p, =0 and
r X V x p, = 0 because P, is a constant vector rather than a variable vector point
function.
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aeld inside conductors, we can write for the electrostatic energy of this
svstem
) o

U = —2' J\ E.-D dl),

External space

where the integration is extended only over the space surrounding the
conductors. Substituting E = — Vg and using the vector identity
V-4), we have, as in Section 7-2,

o

U= — %JV - (¢D) dv + %Jq)v - D dv.

Since there is no charge in the space surrounding the conductors,
V.D =0, and the last integral in this expression vanishes. The
remaining integral can be transformed with the aid of Gauss’s theorem
into n + 1 surface integrals: one integral over the surface enclosing
all space, and one integral over the surface of each conductor (all these
surfaces form the boundaries of the volume of integration). As in
Section 7-2, the surface integral over the surface enclosing all space
vanishes, and we obtain

°l ¢ °]
= e— - D . ,. = - . . .
U=—53¢¢D-dS;=535¢pD-ds,

where dS; is the surface element. vector directed out of the volume of
integration and therefore into the conductors, while 48, is the surface
element vector in the opposite direction—that is, out of the conductors.
Since the potential is constant on the surface of each conductor, ¢, can
be factored out from under the integral sign, so that

°]
(]:-2—2¢i§D'dsi'

The surface integral in this expression is, according to Gauss’s law
(4-4.2a}, equal to the total charge ¢, of the i-th conductor. We obtain
therefore for the energy of a system of charged conductors

°] _
U= §Z¢i9i- (/'6-1)

This formula represents the total energy of a system of charged conductors
and should not be confused with the similar expression in Eq. (7-3.4)
representing the interaction energy of a system of point charges.

An important special case of systems of charged conductors is the
system of two oppositely charged conductors, or a capacitor. Let us
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apply Eq. (7-6.1) to a capacitor formed by two arbitrarily shaped,
mutually external conductors carrying charges ¢ and —g¢ (Fig. 7.5).
We obtain

I °1 ¢°I _"I °1
= 5‘?191 ‘ 5%92 = §‘P1(] - '2‘%97
or
°1
U=gzalp — Pa)-

o |

@

F1e. 7.5 Calculation of the energy of a capacitor.

Since the potential difference ¢, — ¢, is equal to the voltage J between
the two conductors, the energy of the capacitor is simply

U= ; e (7-6.2)

This formula can he expressed in two alternative forms by using the
capacitance ¢ of the capacitor: since ¢ = ¢/V, we have

°1

U= §CV2 (7-6.3)
and
Ol g2
U= %, (7-6.4
2C )
v
Example 7-6.1 Two capacitors of capacitances C; and C, carrying

charges ¢, and ¢,, respectively, are connected in parallel. A spark appears
when the connection is made. Find the energy dissipated by this spark if
no other energy dissipation is taking place.
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The total electrostatic energy of the two capacitors before connection is,
by Eq. (7-6.4),

Ubefore: §(Tl+ ECTZ

Since the total capacitance of the two capacitors connected in parallel is
equal to the sum of the individual capacitances and since the total charge
after connection is equal to the sum of the original charges, the electrostatic
energy after connection is

° l (91 -+ 92)°

2 C,+GC,

By the principle of conservation of energy, the energy lost in the spark is then

Lgg lg °le + e
2¢, T 2C, 2°C rG,°

Uafter -

Uspark = Ub - Ua =

which after simplification hecomes

U o °(Cigy — Cogy)®
201Gy o+ Gy)

7-7. Correlation between Electrostatic Energy and

Electrostatic Force

With the aid of Eq. (7-4.1) and the principle of conservation of
energy we shall now determine the electric force which a charge dis-
tribution experiences in an electrostatic field.

Let us consider an arbitrary charge distribution p placed in an
external electrostatic field produced by a charge distribution p’. The
total energy of this system consists of the following components:

(1) The electrostatic energy U of the charge distributions.

(2) The energy W of the mechanical devices keeping the
charge distributions in place (a charge distribution cannot be in a
state of stable equilibrium under the action of electrostatic forces
alonet).

The principle of conservation of energy requires that the total
energy of this system always remains the same, so that

d

U+ W) =0,

or

dU + dW =0,

1 This statement is known as the “Earpshaw theorem.”
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Suppose now that under the action of the electrostatic force F,
the whole charge distribution p undergoes a small virtual displacement
(translation) 41 and that the density of p and of p’ is not allowed to
change during the displacement. In this case the self energies of the
charge distributions will not change, so that dU = dU’, where U’ is
the mutual energy of the two charge distributions. We then have from
the last equation for the increment in the mechanical energy

7
dW = _dUlp:constaut = —dU 'p:constcmb

(for simplicity, we are writing p = constant instead of p = constant
and p’ = constant). The increment in the mechanical energy Iis,
however, equal to the work F - 41 done by the electric force F in dis-
placing the charge distribution along 41, so that we obtain

F.dl — —4U'|

p=constant”

Now, for constant p and p’, constant orientation of p and p’, and
constant position of p’, there corresponds a definite value of U’ to every
position of p. Therefore the energy increment dU” associated with the

displacement 41 can be expressed in terms of the gradient of the energy
field determined by U”:

dU’ = VLV ¢ dl ’p=constant'

We thus have
F.d = —VU’odl|

p=constant?

and since this correlation does not depend on the direction of 41 (it
holds for any 41 whatsoever), we obtain

F=_VvU| (7-7.1)

p=constant®

From this formula the electrostatic force experienced by a charge
distribution in an external field can be determined if the energy of this
distribution at different points of the external field is known.

In the same manner the torque experienced by a charge dis-
tribution can be obtained by considering the work 4 associated with
an angular displacement df of a charge distribution. Since dW =

Tyd0 = —dU = —(0U/[00)dl, we have

U’
6 ’

p=constant

Tg = - (7'7.2)
where 77, is the torque with respect to an axis normal to the plane in
which 9 is measured.

Since dU" = dU if p and p’ are kept constant, Egs. (7-7.1) and
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(7-7.2) remain valid if instead of the interaction energy U’ the total
electrostatic energy Uis used in them. We have therefore the alternatlve
equations

F=-VU ‘P=conslant (7'71;1)
and -
olU
Te = — % (7-7.2&)

p=constant

Tor conductors, Egs. (7-7.1) and (7-7.2) can be written in a some-
what different form. Suppose, for simplicity, that we have only two
conductors carrying equal charges of opposite sign. Let one of the
conductors undergo a small displacement (translation) 41 under the
action of the electrostatic force, and let the charges of the conductors
remain constant. By Eq. (7-6.4), the energy ofthLystemm U ="} ¢¥C.
Since C is a function of ggometrical relations only (see Sections 5-2 and
6-7), there corresponds a definite value of U to every position of the
. displaced conductor. Therefore, repeating the transformations which
led to Eq. (7-7.1), we obtain for the force acting on the conductor

F=-VU ,q=constant' (7'73>
By Eq.'(7-6.3), however, U can be expressed also as U = °} CV?, where

V 1s the voltage between the two conductors. Now,

2 2
_ L= T

1
- — — — Al — 2
g=constant 202 2 dC d(2 CV )

V=constant

Therefore Eq. (7-7.3) is equivalent to

= +VU |V=constant‘ (7-74>

As can be shown with the aid of Section 6-7, Egs. (7-7.3) and
(7-7.4) remain valid even if there are more than two conductors in the
system.

\
Example 7-7.1 A voltage V7 is applied to a parallel-plate capacitor of

area 4 and plate separation x, Find the force between the plates by using
Eq. (7-7.4) and Eq. (7-7.3).
Let us express the energy of the capacitor as a function of the voltage
V. We have
o O 2
U= le-de szd — EO(K)xAz%OVzi
2 2 2 2x

X
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By Eq. (7-7.4) the force is then
%g, V%4
= — i

F=1VU| >

An alternative expression for the energy is
°] o] o] ol q P o] qz
U=-|E:Ddv=— | D% = — 2A:—(—) A:—(— .
QJ ’ 2¢, Y 2800 * 2¢4 \4 ¥ 2eq \A4 *

where ¢ is the charge of the capacitor. By Eq. (7-7.3) the force is then

o)

VP
a 26,4 B
But ¢%/eqd = (¢%eqdN A = (0?/eg) A = [(eoE)?[eg]d = €o(V/x)24, and the

two expressions for F are equal.

F=-VU

Example 7-7.2 Find the force between the two model atoms of Example
. 7-4.2 for different internuclear separations 7.

For r > 2a we have from Example 7-4.2 U’ = 0, so that, by Eq. (7-7.1),
F=0.

For a < r < 24 we obtain, using the expression for U’ found in
Example 7-4.2 and substituting r for d,
0,2

F = VI: (2a — 7)2}

16meqar

0 °¢?
_9 Y
o 87[1677«80&27 (2a =7) :\r’“

which upon differentiation becomes
o

__¢_

167reqa®r?

F =

(46> — rAr,,.
A
Since 7 in this case is always smaller than 24, this force is always directed
toward the origin and thus represents an attraction.
For r < a we similarly have

F = —V{i— [8a2 — (2a + 7)2]J

167eqa®r
a °q?
— 1T g2 2
or {1677601127 [8a (28 +7) }} Tus
which upon differentiation becomes
P g
F=—}—W(4a —}—r)ru.

This force is always directed from the origin and therefore represents a
repulsion.
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Example 7-7.3 Tind the force between the two charged shells of
Example 7-4.1.

Using Eq. (7-7.1) and the energy U’ found in Example 7-4.1, we obtain,
after substituting r for d,

R 2 TS e
F = V{16776011br [4ab — (a + b — 1) ]}
9 [ °9.9s
— .l __1a15 ! 2
or {1677800b7 [4ab = {a 6 =71) ]}ru’

which after differentiation and simplification becomes

_ G, gy
F = Tomegatre [ — (7 O)Iree

If both shells are of the same radius a, this expression reduces to

[s]
5 Yy
F= 167 ¢pa® Tur

Thus two equal, uniformly charged, interpenetrating shells repel each other
with a force which is independent of the amount of interpenectration.

A

7-8. Force Experienced by a Charge Distribution in an

Electrostatic Field

Combining Eqs. (7-7.1) and (7-4.1), we can obtain an explicit
equation for the force experienced by a charge distribution in an
electrostatic field.

Let us express the energy U’ of an arbitrary charge distribution
in an external electrostatic field E’ as a function of points in space.
We can do this by using two systems of coordinates: &, 7, { and
x, %, z, shown in Fig. 7.6. The first system is “frozen” in the charge

&

Fic. 7.6 Calculation of the force x
acting on a charge distribution in '
an external field. z
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distribution, and the origin of this system is located at the point x, y, z of
the second system. We can then write Eq. (7-4.1) as

U0, 2) = [ plésm, Dole + & 4 m, 2 + d,

where dr is a volume element in the system &, #, {. Applying Eq.
(7-7.1) to this expression and taking into account that V in Eq. (7-7.1)
operates upon the variables x, 3, z only, we have

F = _VU( |p:consmnt = - JP(‘S) 777 C) V[(p/(X' + E,_{‘V + 7]7 2 + C)]dT'
But
—V[(T’I(x + 57_)’ + 7, Z + C)] = E,(x+ 57/”+ﬁ3 z+ C)

and we obtain therefore s

F = JP(E, n, OB (x + &3 + 9,z + {)dr.

Changing this expression back to a single system. of coordinates, we
finally obtain

F = pr' do. (7-8.1)

From this equation the force experienced by a charge distribution in
an external electrostatic field can be found by direct integration.
Since the self energy U, = °4[p@”dr does not change if p is
kept constant, ¢’ in the above expression for VU’ can be replaced by
¢ = ¢ + ¢". Then one obtains E rather than E’ after taking the
gradient. An alternative equation for the force acting on a charge

distribution p is therefore

F — opr do, (7-8.2)

where E is the total field at the location of p.

In the case of a surface charge distribution or a line charge
distribution, the charge element pdv may be replaced by ¢dS or Ad,
respectively, and the volume integration may be changed to a surface
or line integration, accordingly.

If the charge distribution in Eq. (7-8.1) can be regarded as a point
charge, E' may be factored out from under the integral sign, so that
the force experienced by a point charge in an electrostatic field is

F = °gFE. (7-8.3)
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If the field E’ is itself produced by a point charge ¢’, so that

’

, q
E =~
4rregr? T
then
qul
F — 8.
47reyr® Tus (7-8.4)

where 7 is the distance between the two charges. This equation is
commonly known as Coulomb’s law, and the force represented by this
equation is known as Coulomb’s force.

In ecarlier presentations of clectromagnetic theory, based on
mechanical basic measurables, Coulomb’s law in the form

was used for the definition of electric charge; Eq. (7-8.3) was then used
for the definition of electrostatic field; and Eq. (7-4.2) was used for
the definition of electrostatic potential.

v

Example 7-8.1 Find the force experienced by a thin, uniformly
charged rod of total charge ¢ and length 24 lying along the axis of a thin,

Fic. 7.7 Calculation of the electric force acting on a charged rod placed
along the axis of a charged ring.

uniformly charged ring of radius « and total charge ¢’ (Fig. 7.7) and then
show that this force reduces to Coulomb’s force if the rod is sufficiently far
from the ring.
The field on the axis of the ring at a distance z from its center is,
according to Example 4-5.2,
, qz
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so that, by Eq. (7-8.1), the force is
q'z
F="° 35 v,
kfp 4mey(a® + 2%)3* @,
where p is the charge density of the rod. Since the rod is thin, we can
replace pdv by Adl = (q/2d)dz. Denoting the distance between the center of
the rod and the center of the ring by z,, we then obtain

’ zg-+d ’ 1
F o 1 f z 4o — o 1

8megd J,,_q (@ + 22)3° 8megd v/ 1 2

zo—d

>
zot+d

or

F_ 1 [ : - : ]k
8megd Vo + (zy — d)2 Va2 + (z, - d)?

If z, — d > a, we can neglect a in the radicals, so that in this case

_ °qq’ 1 B 1 ) _ °yq’ 1 B 1
F= 87750(l(zo —d ozt k= 8775020d( d N d)k’

/

and if z, > d, we have

or

which 1s Coulomb’s force.

7-9. Calculation of Electrostatic Force from

Charge Inhomogeneities

The force equation (7-8.1) can be written as
o o
F = f pE'dv + f pE'do,
Boundary layer Interior

where the first integral is extended over the boundary layer of the
region occupied by p, and the second integral is extended over the
interior part of the region. The volume of the boundary layer may be
assumed as small as one pleases, so that, unless there is a surface charge
at the boundary, the contribution of the first integral may be assumed
equal to zero. We then have for the force

F = f pE dv. (7-9.1)

Interior
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Let us now replace in Eq. (7-9.1) E" by —V¢’, and let us then
transform the integrand by means of the vector identity (V-1). We
have

oM o [ o ©
F - J pEdy — J pVg'dy — f Vo ds — f V(pq)do.
Interior Interior Interior Interior
If we now transform the last integral by means of the vector identity
(V-19), we obtain
c o
F — f ¢'Vodo — f# pg'dS. (7-9.2)
Interior Boundary
The remarkable feature of this equation 1s that it correlates the force
with the potential ¢ rather than with the field vector E', and correlates
the force with the inhomogeneities of the charge distribution.!
In the case of a charge distribution of constant density, Eq. (7-9.2)
becomes especially simple. If p = constant, Vp = 0, and we obtain,
factoring out p from under the integral sign,

F=—-% fﬁ ¢'dS. (7-9.3)
Boundary

Thus the electrostatic force acting on a constant charge distribution
confined to a finite region of space is completely determined by the
density of charge and the shape of the surface bounding this distribution.
The direction of the force is then determined solely by the orientation
of the surface elements, cach surface element contributing to the force
only in the direction of its normal (/nward normal because of the minus
in front of the integral).

v
Example 7-9.1 Using Eq. (7-9.3), find the force on the charged rod

described 1in Example 7-8.1.
Let the cross section area of the rod be S. By symmetry, only the end
surfaces of the rod contribute to the force, and since the rod is thin, Eq.

7-9.3) reduces to o . o«
( F=— P((r’zo'HZS - (fzo_db)k’

where the subscripts indicate the location of the end surfaces, By Example
5-3.1, the potentials are

o q
dmegV @ — (zy + d)?

’ ’

. g
Tt T e VE (2 A

’
qzo——d

! In this respect Eq. (7.-9.2) is similar to Eq. (4-6.3). Note that Eq. (4-6.3) can
be derived by the method used for deriving Eq. (7-9.2). Note also that ¢ 'in Egs. (7-9.2)
and (7-9.3) can be replaced by ¢ (see Problem 7.30).
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The charge density of the rod is p = ¢/25d. Substituting these values in the
above equation for F, we obtain

qul 1 1
_— _— k-
8mepd|Vat L (zp — d)® Va® + (z, + d)?

The same expression was obtained in Example 7-8.1.

Example 7-9.2 A point charge ¢ is located at the center of a uniformly
charged hemispherical shell of inner radius @, outer radius b, and charge
density p (Fig. 7.8). Find the force exerted by the point charge on the shell.

Fic. 7.8 Calculation of the electric force
exerted by a point charge on a uniformly
charged hemispherical shell.

Using Eq. (7-9.3) and the notations shown in Fig. 7.8, we have for the
force acting on the shell

F = —°p§(p'ds
Boundary
=—°p f ¢'dS —°p f @'dS — °p f ¢'dS
Flat surface Hemisphere a Hemisphere b
b ’ ’ 7
q q q
=° —° o as.
kp J; dmeyr 2mrdy P drega f a8 P 4regb f

Hemisphere a Hemisphere b

The last two integrals are —ma?k and 7b%k, respectively (because §48 = 0
and [dS over the plane bases of the hemispheres is wa’k and —wbZk).
Integrating the first integral and simplifying, we therefore obtain

’

—o, T
F=‘py (b — ok
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7-10. Force and Toryue Experienced by a Dipole in an
Electrostatic Field

Combining Egs. (7-7.1) and (7-5.1)', we obtain for the force acting
upon a dipole of dipole moment p in an electrostatic field

F=-VU l -V lp:constam

p=constant
or

F=°V(p-E) (7-10.1)

p=constant®

This equation can be expressed in an alternative form by using
vector identity (V-2). Since V x E" = 0 in an electrostatic field, and
since p = constant, we then obtain

F="°p-VE. (7-10.2)

Observe that the force acting on a dipole depends on the derivative
(rate of change) of the external field rather than on the field itself.
Therefore in a homogeneous field a dipole does not experience an
electric force. Note also that the differential operations indicated
in Eqgs. (7-10.1) and (7-10.2) must be performed in a rectangular
system of coordinates, because only then will the differentiation
correspond to a pure translation of the charge distribution forming
the dipole (see Section 7-7).

The torque acting on a dipole is, by Egs. (7-7.2) and (7-5.1),

T, = 8_80 (p-E) = a—Z(/)E’ cos §) = —°pE’sin 6, (7-10.3)
where 6 is the angle between p and E. This equation can be written
simply as

p = constant

T="°pxE. (7-10.4)

v
Example 7-10.1 Express Egs. (7-10.1) and (7-10.2) in scalar form.

Expanding Eq. (7-10.1), we obtain

o

o o, OEL . O, ., OE
== P37 + P77+ P:W
OF, OF OF!

F‘M:opz ayz+apy ayﬂ +opz ay

o e, OEL . OE ., 0L
s T b Tl T gy
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Expanding Eq. (7-10.2), we obtain

F c z , o a:|anaI:
S S M O IR GO P

o, 9B, ., OE, . 0F,
=", apryTy+pz oz
o ., OB . 0B . OE
z p:c 8r ! py a_}) i pz az ¢
Example 7-10.2 A dipole of moment p is placed at a distance x from

a point charge ¢, so that p points directly toward ¢ (Fig. 7.9). Find the
force and the torque acting upon the dipole. .

LY

Yi *

iy

AL

F1c. 7.9 Calculation of the electric force acting on a dipole placed near a
point charge.

The electric field produced by the point charge is

q g(xi 1 yj + zk)

E = r, = —5 .
dmegr M T Aqey(a® L % - 2B

Differentiating, we have

oF, 3q xy
B dmey (1 AR
0E, 3q xz
0z darey (x2 4= p% £ 22)8/2°

0E, ¢ l: 1 32 :l
M dmegl(x® + 32 + 22)32 (% + 3% + 2]’

For the point where the dipole is located, y = z = 0, so that

0E. OE]
o o0z =0,
and
oE; q
0x  2mesd

N
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Since p = —p,d, so that p, = p, = 0, the force acting upon the dipole is,
by the preceding example,

F— _

2meyx3 P
Since p || E’, the torque is zero.

A

7-11. Maxwell’s Stress Equation and Electrostatic Pressure

According to Section 7-8, the electric force experienced by a charge
distribution depends only on this charge distribution and the external
electrostatic field. But so does the total electrostatic field around a
charge distribution. It also depends only on this charge distribution
and the external field. It may be anticipated therefore that there
should be a correlation between the force acting on a charge distribution
and the total electric field in the surrounding space. Such a correlation
indeed exists and may be derived as follows.

Using vector identity (V-22) and taking into account that the
curl of an electrostatic field is always zero, we can write

°50J(V ‘EEd = — g"éﬁEzfzs . 050§ E(E-dS). (7-11.1)
Since ¢,V - E = V.D = p, we can rewrite this expression as
prdv_: _§’3§E2}1s + °503§E<E.(1S). (7-11.2)

According to Eq. (7-8.2), however, the integral on the left represents the
electric force acting upon p. Thus we obtain for the electric force
acting upon a charge distribution in an electrostatic field

F=— % E2dS + °, fﬁ E(E - dS), (7-11.3)

where the integrals are extended over a surface enclosing the region
occupied by the charge.
From Eq. (7-11.3) the force experienced by a charge distribution
can be determined if the total electrostatic field at the points of an
“arbitrary surface enclosing the charge distribution is known. We shall
call this equation Maxwell’s stress equation for electric fields, and we shall call
the surface to which this equation is applied Maxwellian surface.
A remarkable aspect of Maxwell’s stress equation is that it shows
that the electric force acting on an electric charge may be attributed to
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the conditions (manifested as E) in the space around the charge, rather
than to the charge as such.

Although we obtained Maxwell’s stress equation by considering
a space charge distribution, the equation is also valid for a surface
charge distribution, a line charge distribution, and a point charge
distribution, which are merely the limiting cases of space charge dis-
tributions. This equation is valid also for a charge distribution carried
by a conducting body, because, as it follows from Section 7-8, the
electric force acting on a charge distribution does not depend on how
this distribution is supported.

Equation (7-11.3) is often written in a symmetric form

F:-éfﬁE.DdSJr EﬁE(D.dS). (7-11.3a)

For the case of the electric force acting on a charged conductor,
Maxwell’s stress equation can be considerably simplified. Applying
Eq. (7-11.3) to the surface of the conductor and taking into account
that E on this surface is normal to it, so that E(E . dS) = E-EdS =
FE24S, we have

F=— O—;—O fﬁ E24S + ¢, 36 E24S,
which gives .
F = % Eﬁ E2S, (7-11.4)
or
F =0%36E-Dds. (7-11.4a)

This equation suggests that the surface of a conductor in an electrostatic
field is subjected to the electrostatic pressure
°1
p=§E-D (7-11.5)
producing a force on every element of the surface in the direction of
the outward normal.

v

Example 7-11.1 A conducting sphere of radius a consists of two
separate hemispheres in contact with each other. Find the force with which
one hemisphere is repelled from the other when the sphere is given a
charge ¢ (Fig. 7.10).
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Applying Eq. (7-11.4) to the upper hemisphere, we have
Y o
F = 5 %E ds,

where the integral needs to be extended only over the spherical surface of
the hemisphere, because no electric field is present on the plane base of the
hemisphere. Since on the spherical surface the field is constant and is

Frc. 7.10  Electric force between two
charged hemispheres can be found from
Maxwell’s stress integral. For the purpose
of calculation a small gap between the
hemispheres is assumed and the integral is
extended over the surface of the upper
hemisphere.

equal to E = g[4mesa?, we obtain after factoring E2 out from under the

integral sign
(o]

qZ
T 32n2ggat f as.

But {dS over the spherical surface of the hemisphere is equal to ma? (because
$dS = 0 and §dS over the plane base is —ma?i). Therefore the force with
which this hemisphere is repelled from the other is

F

.
¥ = e

Example 7-11.2 A large conducting plate of thickness ¢ is partially
inserted between the plates of a thin parallel-plate capacitor, as shown in
Fig. 7.11. The capacitor’s plates are of length a on a side and are separated
by a distance d; a voltage V is applied between them. Find the electrostatic
force acting on the conducting plate.

Let us construct a Maxwellian surface § as shown in Fig. 7.11; the
front part and the rear part of S are outside the capacitor, and the vertical
parts of Sare in the regions where the electric field is homogeneous. Applying
Maxwell’s stress equation to this surface, we have

e —2893€E2ds + 0503§E<E . d$),

where the integrals need to be extended only over the parts de, fg, and bc of
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S, because no appreciable field is present outside the capacitor, and the
contribution of the parts ab, hg, cd, and fe is zero, by symmetry.

Since E | dS on de, fg, and b, the last integral in the above expression
vanishes. On the surface de the electric field is £ = V/d; on the surfaces fg

Fre. 7.11 Example of electric force calculation by means of Maxwell’s
stress integral.

and bc the electric field is £ = V/(d — t). We therefore have
o] 72 °] 72 °] 72
F=— 5‘[‘80 22 8, — §f30 d — 1) 8, — §f30 d — 1)? ds,,

L s, o h 2 oilas, e V2 ifus
=Tt BSe gt by gt

°rorz . °l & .
= — 560;2(101 —+ 560((1—_2—)2 (d— t)al
_01 V2( a i a )
—g% a7 ="
Simplifying, we obtain
F — egatV? i
2d(d —t)
A
ProBLEMS

7.1. Assuming that the electrostatic energy of an electron is equal to
its mass-energy, mc2, where m = 9.11 - 1031 kg is the electron mass and
¢ = 3+ 108 m/sec is the velocity of light, find the radius of an electron if the
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electron constitutes (a) a uniformly charged sphere of total charge 1.60 - 10-19
amp - sec, (b) a uniformly charged spherical shell of the same charge,

7.2. An electrostatic system consists of two concentric spherical shells
of radii 2 and 4 formed by uniformly distributed charges ¢ and —g,
respectively. Is the energy of the system equal to the sum of the energies
of the two shells taken separately? Explain.

7.3. Find the electrostatic energy associated with a uniform spherical
charge distribution of total charge ¢ and radius a by using Eq. (7-2.1).

7.4. Show that a system of point charges cannot be in a state of stable
equilibrium under the action of electrostatic forces alone (Earnshaw’s
theorem).

7.5. Show that the total electrostatic energy of two concentric spherical
shells of radii @ and b (b > a) formed by the uniformly distributed charges
q, and ¢,, respectively, is

U T 0 9
Brega  8megh  dmegh

7.6. Assuming that an atom may be regarded as a positive point
charge nucleus in the center of a negative uniformly charged spherical shell,
show that when the atom is excited so that the absolute value of its energy
decreases n times, the radius of the shell increases » times (disregard the

energy of the nucleus;).

7.7. The ionization energy of a hydrogen atom (the work required to
excite the atom to zero energy) is 13.6 ¢V. Using the atomic model described
in the preceding problem, find the radius of the electron shell of a hydrogen
atorn.

7.8. Find the interaction energy of two different neutral atoms using
the atomic model described in Problem 7.6 (see also Example 7-4.2), plot
the potential curve for a diatomic molecule consisting of the two atoms, and
show that the minimum of the interaction energy is

_ Oqaqba
167e b2’

U=

where ¢ and b are the radii of the electron shells (6 = 4), and ¢, and
g, are the respective charges of the shells.

7.9. Suppose that the two atoms described in Example 7-4.2 have
impenetrable shells (are in a “repulsive state”), so that after the atoms
come in contact with each other, the shells must shift with respect to théir
nuclei to make a closer approach of the nuclei possible. Show that the
interaction energy of the atoms is then

U =0 for r > 2a,
and
2
" 8mweqar(2a + 1)

7
7

for r < 2a,
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where ¢ is the charge of an electron shell, a is the radius of the shell, and r

is the distance between the two nuclei. Plot the potential curve for U’.
7.10. Using the fundamental clectrostatic energy law, find the energy

of a thin parallel-plate capacitor and hence show that its capacitance is

4
C:'SOZ’

where 4 is the area of a plate and 4 is the separation between the plates.

7.11. Rectangular plates of a capacitor are separated by a distance
a + d at one edge and 4 — a at the other. The width of the plates (along
parallel edges) is b, the length is {. Neglecting edge effects and using the
fundamental electrostatic energy law, find the energy of the capacitor and
hence find its capacitance (see Problem 6.18).

7.12. Conductor 4 is enclosed by conductor B. The two conductors
carry electric charges ¢, and g5, and are kept at potentials ¢, and ¢j. Find
the electrostatic energy of the system,

7.13. Starting from the fundamental energy law, show that the energy
of a charged conductor in an external electrostatic field is

U= 55 o' dS,

where S is the surface of the conductor, ¢ is the surface charge density on
the conductor, and ¢’ is the external potential at the points of S.

7.14. Using the result of the preceding problem and the principle of
conservation of energy, show that the electrostatic force experienced by a
charged conductor in an external field E' is given by

F = 3§ oE'dS

and then show that this force can also be expressed in terms of the total
field E on the surface of the conductor as

o) >

1
F = - ¢ cEdS.

7.15. An electrostatic voltmeter has two equal semicircular conducting
plates, one stationary and one movable. The movable plate is suspended by
an insulating fiber above the stationary plate and parallel to it so that the
midpoints of the straight edges of the two plates are always on the same
vertical line. The straight edges of the plates are initially at a right angle to
cach other. Neglecting edge effects, show that if a small voltage V is applied
between the plates, the plates will be in equilibrium after the upper plate
turns through the angle
g2 V2

=

4ad ’
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where 7 is the radius of curvature of the plates, d is their vertical separation
and « is the torsion coefficient of the fiber (restoring torque per unit angular
displacement).

7.16. By what factor does the electrostatic force between an electron
and a proton exceed the gravitational force between them (the mass of a
proton is 1836 times larger than the mass of an electron; the gravitational
constant is G = 6.67-10-!" m%kg !sec "% see also Problem 7.1)?

7.17. What charge should be carried by a rain drop of 0.1 mm radius
in order to counteract the force of gravity in a region where the earth’s
electric field 1s 130 volt/m? If the break-down field in air is 3 + 108 volt/m,
can the drop support this charge? (See also Problem 7.45).

7.18. Eight equal negative charges are placed at the corners of a cube.
What positive charge should be placed at the center of the cube to keep the
negative charges in equilibrium?

7.19. A point charge ¢ is located at a distance d from an insulated con-
ducting sphere carrying a charge Q. Find the work required to remove ¢
to infinity.

7.20. Show that the force between two straight, parallel, uniformly
charged fibers of length / and charge density A, and A, separated by a
distance d(d <[} is

RN /
= W .

7.21. Using three methods other than those used in Example 7-7.1,
show that the plates of a thin parallel-plate capacitor attract each other
with the force

V24

o
1= &y 5%
02(2,2’

where V7 is the voltage applied to the capacitor, A4 is the area of the plates,
and 4 is the separation of the plates.

7.22. A point charge ¢ is placed at a distance 4 from an infinite con-
ducting plane. Find the force acting upon g.

7.23. Show that if a charge is placed within a spherical cavity made in
a conducting material, the charge will be attracted to the inner surface of
the cavity with a force

°qPar
- 4mey(at — r2)?”°

where ¢ is the charge, a is the radius of the cavity, and 7 is the distance to the
charge from the center of the cavity.

7.24. Show that the force experienced by a charge ¢ placed at a distance
r from the center of an uncharged, insulated, conducting sphere of radius 4
is
°q?a®(2r® — a*)r,

Fo_ 10V 7@/
dmregr3(r? — a%)?
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7.25. Show that a point charge ¢ placed at a distance 7 from the surface
of a conducting sphere of radius @ carrying a charge @ > ¢ (@ and ¢ have
the same signs) will be in equilibrium if

I g
7':7‘0%5[1 6,

will be repelled from the sphere if 7 > rj, and will be attracted to it if 7 < Tor
7.26. Two long, straight fibers, carrying uniformly distributed, equal
and opposite charges, are placed in a median plane inside a long circular
conducting tube of inner radius «, symmetrically with respect to the axis
of the tube. Show that no net electrostatic force will act on the fibers if
their separation is '
d=2(V5— 2)12,

7.27. A point charge ¢ is placed at a distance 4 from an infinite con-
ducting plane having a hemispherical bump of radius « directly in front of ¢.
Show that the point charge ¢ is attracted toward the plane with the force

7 - 16a3d° :l
= 167780(1'2{:1 Tt — a2

7.28. According to Thomson’s model, a hydrogen atom may be
imagined as a sphere made of uniformly distributed positive charge g at the
center of which a negative point charge —g¢ (the electron) is embedded.
Show that if the electron is displaced from its equilibrium position, it will
execute simple harmonic vibrations through the center of the ““atom’ with

the frequency f given by
2

; g
2 —
f 1673¢gadm’
where a is the radius of the atom (positive sphere) and m is the mass of the
electron.

7.29. (a) Show that the contribution of the rim of a thin layer of charge

to the total force, as calculated from Eq. (7-9.3), is

F = “ Cﬁcpldlim

where o is the surface charge density of the layer, and dl;, is a vector whose
magnitude represents length elements of the rim and whose direction is nor-
mal to the rim and into the charged layer. (b) Show that if a long sheet of
uniformly charged dielectric of width w and surface charge density o is partial-
ly inserted into a metal box kept at potential ¢, the sheet will be attracted into
(or repelled from) the box with a force F' = °oouw.

7.30. (a) Starting with Eq. (7-8.2) show that Egs. (7-9.2) and (7-9.3) are
also valid if the total, rather than the external, potential is used in them. (b)
A spherical space charge ¢ of uniform density and radius a is cut in two
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hemispheres. Using the total potential found in Example 5-1.2, show that the
hemispheres will repel each other with a force
F = °3¢%/64nca®.

7.31. Show that the arbitrariness of ¢ has no effect on the force calcu-
lated from Eqgs. (7-9.2) or (7-9.3).

7.32, Show that the electrostatic interaction energy of two multipoles
of orders n; and n, is proportional to r=(*#2%1) while the force is propor-
tional to r—{mtmzt2),

7.33. Two dipoles of moments p; and p, are placed at a distance r from
each other. Show that if the moments of the dipoles are directed along the
line joining them, the force exerted by one dipole upon the other is

3ppe
F==x 2megrt

7.34. Two dipoles of moments p; and p, are placed at a distance 7 from
each other. The moment of the first dipole is directed along the line joining
the dipoles, the moment of the second dipole is perpendicular to that line,
Show that the forces experienced by the dipoles are

°3p1py "3prpy

Fi== degrt’ Fo=7 4mreyrt

and are not colinear, while the torques are

°pite “pite

T —
> .
4megr® 2 2megr®

T, =+

Is Newton’s law of action and reaction satisfied in this case?
7.35. A small hemispherical cup of radius a is placed on the lower plate
of a horizontal, thin, parallel-plate capacitor of plate separation d(d > a),
the spherical surface of the cup facing the upper plate. Show that ifa voltage
V is applied to the capacitor, the cup will rise if its weight is
. 3alV\?
W < °me, (—Q-d—) .
7.36. An uncharged conducting sphere of radius « consisting of two
separate hemispheres is placed in a homogeneous external field E so that E
is perpendicular to the plane dividing the two hemispheres. Show that each
hemisphere will be subjected to a force

C
9
F — amegaE 2

tending to separate it from the other hemisphere.
7.37. A soap bubble of radius « has a surface tension 7. Show that if
the bubble is given a charge g, the radius of the bubble will increase to r
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given by
o2
P(r® —a%) +RT(2 —a®) — —2 _ _ 0
32m2eyr ’
where P 15 the atmospheric pressure.

7.38. A long cylinder of radius 4 is partially inserted into another long
cylinder of radius 6 coaxial with the first. Show that if a voltage V' is applied
between the cylinders, the smaller cylinder will be pulled into the larger one
with a forcé

P el
In (b/a) "

7.39. Show that the interaction energy of a system of spherically sym-
metric charge distributions is the same as if the total charge of each distribu-
tion were concentrated at its center.

7.40. Show that the force experienced by a spherically symmetric
charge distribution in an arbitrary electrostatic field is the same as if the
total charge of this distribution were concentrated at its center.

7.41. Consider a Maxwellian surface in the shape of a rectangular
prism partially inserted between the plates of a parallel-plate capacitor. If
the edge effects of the capacitor are neglected, and if Maxwell’s stress integral
is calculated for this surface, a force is found to be acting on the space en-
closed by the surface. Explain this “capacitor paradox” and calculate the
correction term that must be added to the stress integral in this particular
case. (Hint: by neglecting edge effects in a parallel-plate capacitor, one
creates V x E-at the edges; see Appendix 3 for details).

7.42, Derive Maxwell’s stress equation for the gravitational field.

7.43. Do electrostatic forces always satisfy Newton’s law of action and reac-
tion? (Hint: see Problem 4.26).

7.44. The “‘slot-effect’” electrostatic motors [see Oleg D. Jefimenko Elec-
trostatic Motors, Electret Scientific, Star City (1973)] operate on the principal
that when a surface charge distribution is located in an electric field having
a component parallel to the surface charge, the charge experiences a tangen-
tial force. Show that if a surface charge o is located close and parallel to a slot-
ted plate electrode, the tangential force which the slot exerts on the surface
charge when a voltage V is applied across the slot is /' = °oVL, where L is
the length of the slot.

7.45. It has been suggested that the atmospheric electric field could be
used for levitating charged balloons. (a) Taking into account that a charged
balloon experiences a downward force not only due to gravity but also due
to its electrostatic image, show that regardless of its charge the electrostatic
balloon will fall unless its altitude is 2 = (1/E)(mg/4mney)?, where m is the mass
of the balloon, g is the acceleration of gravity, and £ is the atmospheric electric
field at the altitude 4. (b) What is the largest possible mass for a balloon floating
ath = 100 mif £ = 120 V/m? (c) Show that the charge of the balloon describ-
ed in (b) must be approximately 10-* As.



ELECTROSTATIC FIELD
| IN MATERIAL MEDIA

3

Thus far we have dealt with electrostatic fields in cmpty
space, or vacuum. Electrostatic fields can also exist, however, in
non-conducting material media, or dielectrics. The properties of
clectrostatic fields in these media will be discussed in the present
chapter.

8-1. Cavity Definition of Electric Field Vectors

The measurement procedures by means of which we have defined
the field vectors E and D in Sections 4-2 and 4-3 can be used directly
for measurements in vacuum, gases, and liquids, but not in solids, since
neither a test charge nor a test plate can move freely inside solid bodies,
A more precise definition of E and D must therefore be made in order to
make clear what we mean when we speak about. electric fields inside
material media and, in particular, inside solid bodies.

The only way to perform a field measurement in a solid body is to
insert a measuring device (test charge or test plates) into a hole, or a
cavity, made in the body. It has been found, however, that such a
measurement is affected by the shape and orientation of the cavity.
Therefore the shape and orientation of cavities to be used for field
measurements must be specified in the definitions of E and D for
material media. We shall define E and D for all media as follows.

The electric field vector E at a point inside a material medium is defined as
the vector E measured (by the method of Section 4-2) in a small, needle-shaped

225
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cavity made in this medium at that point and oriented so that the electric field i»
the cavity is in the direction of the axis of the cavity. The essence of this
definition is llustrated in Ilig. 8.1. The requirement that the cavity be
needle-shaped and oriented along the direction of the field is a resuls
of investigations showing that the electric field measurements in liquids
and gases by the direct method of Section 4-2 yield the same fields as
the measurements inside small cavities of this type. The requiremen:
that the cavity be small is needed in order to associate the electric fielc
vector with a particular point of the medium (a “small” cavity is

==>m

Fic. 8.1 To measure electric field Fic. 8.2 To measure displacement
in a material medium, a needle- field in a material medium, a coin-
shaped cavity or a long cylindrical shaped cavity or a short cylindrical
cavity is used. cavity is used.

cavity whose length is much smaller than the distance over which the
field changes appreciably).

The displacerment vector D at a point inside a material medium is defined
as the vector D measured (by the method of Section 4-3) in a small, coin-shaped
cavity made tn this medium at that point and oriented so that the displacement
Sreld in the cavity is in the direction of the axis of the cavity. The essence of this
definition is illustrated in Fig. 8.2. The requirement that the cavity be
coin-shaped and oriented with its axis along the direction of the field
is a result of investigations showing that the displacement field measure-
ments in liquids and gases by the direct method of Section 4-3 yield
the same fields as the measurements inside small cavities of this type.
The requirement that the cavity be small is needed in order to
associate the displacement field vector with a particular point of the
medium.

The two definitions which we have just introduced are frequently
expressed symbolically as

E —E. and D —~ Dy (8-1.1a, b)

medium medium
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8-2. Fundamental Laws of the Electrostatic Fields
in Material Media

If we comparc various lines-of-force patterns formed by small
particles suspended in a dielectric liquid,* we find that these patterns
have the same basic property as the lines-of-force pictures obtained
in vacuum: there are no closed lines of force in any of them. We must
suspect therefore that the curl and the circulation integral of the
electrostatic fields in dielectrics, just as in vacuum, are zero:

VxE =0, 3EE-d1=o. (8-2.1a, b)

If we perform Faraday’s ice-pail experiment using a container
(enclosure) filled with a dielectric liquid, we find that the result of the
experiment is exactly the. same as when the container is empty. We
must suspect therefore that the divergence and flux density equations
for displacement fields in dielectrics, just as in vacuum, are

V.-D =p, SED - dS =Jp dv. (8-2.2a, b)

The validity and generality of these four equations have been
confirmed by all presently known phenomena involving static electric
fields in dielectric media. Therefore, according to Section 3-2, these
equations represent fundamental electrostatic field laws.

If we perform simultaneous D and E measurements in various
dielectrics, we find that, in contrast to electrostatic fields in vacuum,
there is no general law which correlates D and E in an arbitrary
medium, although in the majority of common materials D and E are
connected by the equation

D = ¢,E. (8-2.3)

In this equation ¢ is a dimensionless factor of proportionality, different
for different media, and frequently different for different points of the
same medium. It is called the permittivity. If the permittivity is the
same for all points of a medium, it is called the dielectric constant. The
media for which Eq. (8-2.3) holds are called electrically linear isotropic

! See, for example, F. J. Rutherford, G. Holton and F. G. Watson The Project
Physics Course, Text, Holt, Rinehart and Winston, New York (1972), Unit 4 pp. 48,
49,
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media. They are the media with which we shall be concerned in this
book.
Frequently onc expresses ¢ as

g =y, + L. (8-2.4,

1

The quantity y, defined by this equation is called electric Susceptibility.

The displacement law D = g,¢E reduces to the displacement law
for vacuum, D = ¢/E, it' ¢ = 1. Since the other two fundamental field
laws for material media are identical with the corresponding laws
for vacuum, a vacuum, as far as the electrostatic field is concerned, is
merely a special case of a material medium—a medium of dielectric
constant ¢ = 1.

In a general case, a medium is neither linear nor isotropic—that is,
in general, D is not a linear function of E, and the correlation between
D and E depends on the direction of E relative to certain characteristic
directions in the medium. An example of anisotropic media is a
crystal. In a crystal, D and E arc usually not even parallel to each
other, each vector having a direction of its own.

Equations (8-2.1), (8-2.2), and (8-2.3) determine the circulation
law and the divergence law for both the electric field E and the dis-
placement field D and thus, by Helmholtz’s theorem of vector analysis,
constitute a complete set of equations uniquely specifying these fields.!

The similarity between Eqgs. (8-2.1), (8-2.2), and (8-2.3) and the
corresponding equations for the electrostatic fields in vacuum suggests
that many of the formulas which we have learned from the preceding
chapters remain valid for electrostatic fields in material media also. In
particular, all formulas remain obviously valid for fields in infinite
media of constant permittivity, provided that g, in these formulas is
replaced by the product 4.

8-3. Electrostatic Potential and Capacitance of Conductors

and Capacitors in the Presence of Dielectric Media

Using the same argument as in Section 5-1 (V x E = 0), we can
again express E in terms of the electrostatic potential #:

E = — Vo (8-3.1)

1 See footnote 1 on page 87.
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Taking the line integral of this equation, we obtain

b
Yo — Pp :f E.dl =1V, (8-3.2)

where V,, is the voltage between the points a and 4. Thus the electro-
static potential ¢ can be used for describing electrostatic fields also in
material media, and its correlation with the field vector E and with the
voltage V,, is the same as in vacuum.

The existence of the electrostatic potential in dielectric media
allows one to definc the capacitance of capacitors and isolated conductors
in the presence of dielectric media. This definition is the same as for
the conductors and capacitors in vacuum—that is,

C= g and € =2 (8-3.3a, b)

for an isolated conductor and for a capacitor, respectively.

Asit follows from Gauyss’s law (8-2.2b) and displacement law (8-2.3),
the capacitance of a capacitor filled with a material of dielectric
constant ¢ 1s ¢ times larger than the capacitance of the empty capacitor
(¢ = 1). This property is used for measuring ¢ of various dielectrics:
one measures Gy, and C and then calculates & from

empty

Cﬁlled
= —_— 8-3.4
e=7 (8-3.4)

empty

v

Example 8-3.1 A parallel-plate capacitor of plate scparation d and
area A is filled with a material of dielectric constant e. Neglecting edge
effects, find the capacitance.

By symmetry, the field in the capacitor is homogeneous (except near
the edges). The charge on the positive plate is then

g =04 = DA = gpeEA = ¢gp¢ L—/A,
so that the capacitance is, by Eq. (8-3.3b),
A
C = gy T
Example 8-3.2 A thin parallel-plate capacitor contains two dielecirics

of dielectric constant g and ¢, as shown in Fig. 8.3. Neglecting edge
effects, find the capacitance.

Let the charge of the capacitor be g. By symmetry, the field in the
capacitor is homogeneous (except near the edges). Constructing a Gaussian
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Fic. 8.3 First example of a capacitor
with two dielectrics. The thickness of the
b capacitor Is exaggerated.

|
.,
17
|
|
|
|
-

surface § in the shape of a box enclosing the positive plate, and observing
that if the edge effects are neglected the only contribution to the integral
$D .« dS comes from the portion of the Gaussian surface lying directly between
the plates, we have from Gauss’s law (8-2.2b)

ffn.dsszdszDA:q,

where 4 is the areca of the enclosed plate. Hence, between the plates,

in dielectrics 1 and 2, respectively. The voltage between the plates is

V=JE-dl= f E,-dl+ f E,.dl

Dielectric 1 Dielectric 2

_ q a q a+b
T geed fo dl + £g€ J; dl

or

The capacitance is therefore
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€

€2

F16. 8.4 Second example of a capacitor with
two dielectrics. The thickness of the capacitor v
Is exaggerated. !

As a check, we note that this formula reduces to the expression for the
capacitance of an empty capacitor (Example 5-2.4) if &y = ¢, = 1.

Example 8-3.3 A thin parallel-plate capacitor of plate separation d
contains two dielectrics of dielectric constant ¢; and ¢,, as shown in Fig.
8.4. Neglecting edge effects, find the capacitance,

Let the voltage between the plates be V. By symmetry, the electric
field between the plates is then £ = V/d. The displacement is

V
D, = €0ty 7 and D, = gy&, 7

in dielectrics I and 2, respectively. The charge on that part of the positive
plate which is in contact with dielectric 1 (area 4,) is then

v
g = Dd; = g4, 7 A1.

The charge on that part of the positive plate which is in contact with dielectric

2 (area 4,) is
|14
gs = Dydy = &48, 7 .

The total charge is ¢ == ¢; + ¢,, or

14
g = Eoz (6,4, + e34,).
The capacitance is therefore
g ggle1d; + £34,)

7 d
Again, if ¢, = &, = |, the capacitance reduces to that of the empty capaci-
tor (Example 5-2.4),

A
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8-4. Calculation of Electrostatic Field and Electrostatic
Potential within Dielectric Media from Charge

Distribution

One of the most important methods for calculating electrostatic
fields in vacuum is the calculation of fields from the corresponding charge
distributions by direct integration. As we shall now see, this method is
also important for calculating fields in dielectric media, although the
range of its applicability for fields in dielectric media is very limited,

By Poisson’s theorem, the field vector E can be expressed as
E 1 VI (V' -E) —V x (V' x E)

47 r
All space

N
dv’,

where primed operators are usedl in order to avoid ambiguity in the
subsequent transformations. By the curl law (8-2.1a), V' x E is zcro.
By the divergence law (8-2.2a) and displacement law (8-2.3) (we are
considering here only linear isotropic dielectrics),
D D 1 1 D I
V.E=V.— = —I—V’-D -V e=—p Lt—V-.

80 o £ & & & &

The above Poisson integral for the electric field therefore reduces to

E_ _ -1 f V'(f/‘9>dv' : f VID - V(o] 4 (geay

47, 47e, r
All space All space

This equation, in general, is not very useful for calculating E, since in
order to evaluate the last integral one needs to know D, and if D is
known then E is also known from Eq. (8-2.3). In the particular case
of a dielectric of constant permittivity occupyving all space, however,
V'(lje) = 0, and Eq. (8-4.1) becomes

1 v’
E = — ~ L, (8-4.2)
drreqe r
Allspace

which Is the same equation as Eq. (4-5.1) for E in vacuum except that

the product e, replaces now the single ¢, standing in Eq. (4-3.1).
Transforming Eq. (8-4.2) in the same manner that we trans-

formed Eq. (4-5.1) in Section 4-5, we obtain for the electric field
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associated with a charge distribution in a medium of constant permit-
tivity & occupying all space

l r
E = — dg. -
Allspace
Similarly, using the corollary to Poisson’s theorem and the trans-
formations employed in Section 5-3, we obtain the corresponding

equations for the electrostatic potential

p— fﬂ’fdywrl fD'Vrl“/g)du' (8-4.4)

dre, T 4me,
All space All space

and in a medium of constant & occupying all space

-1 dq
(p~4ﬂ806 JT (8-4.5)

Allspace

It is useful to note that Egs. (8-4.3), (8-4.5) can be used even if
the dielectric is limited in space, provided that the boundaries of the
dielectric are so far from the regions where the charges are located and
from the point of observation that the field at the boundaries may be -
neglected. This follows from Eq. (8-4.1), where in the case of constant
¢, V'(1/e) is different from zero only on the boundaries, so thatif D = 0
on the boundaries, the last integral in Eq. (8-4.1) vanishes,

8-5. Boundary Conditions at a Dielectric Interface

If two different dielectric media are in contact with each other,
there exists a thin transitional zone between them over which the values
of the characteristic parameters of the media gradually change from
the values which these parameters have in one medium to the values
which they have in the other medium. It is frequently convenient to
disregard the existence of this transitional zone and to assume that the
characteristic parameters change abruptly over the “interface” between
the media. I'rom the basic laws (8-2.1), (8-2.2), and (8-2.3) one can
derive then the correlations between the field vectors measured on the
opposite sides of the interface. These correlations are called boundary
conditions al a dielectric interface. They are useful for the solution of
problems involving compound dielectrics,
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ey (a) ] (b)

Fic. 8.5 {a) Boundary condition for’E at a dielectric interface. The
tangential component of E is the same on each side of the interface. (b)
Boundary condition for D at a dielectric interface. The difference of the
normal components of D on the two sides of the interface is equal to the
density of the macroscopic surface charge residing on the interface.

To obtain the boundary condition for E, let us construct a small,
very narrow rectangular loop crossing the interface between two
dielectrics, I and 2, asshown in Fig. 8.5a, the long sides of the loop being
tangent to the interface. Applying the circulation iaw (8-2.1b) to this
loop, we have

f#E-dl:(]Ez-dle

Since the loop iIs very narrow, we can neglect the integrals over the
segments b¢ and da. Therefore

f"E.(ﬂ:o.

vd

¢ )
fE.41+JE1.41+

vb

fy d
JEg-d1+fEl.dl=0.

Since the segments ab and ¢d can be made as short as we please, we may
regard the entire length of each segment as 4/, in which case the last
equation may be written as

E,-dl -E;.(—dl) =E,-dl —E, .dl =0
or

(E, — E,) - dl = 0,

where the minus sign is needed because the path from ¢ to 4 is opposite
to the path from a to 4. Replacing in this equation 41 by t, 4/, where t,
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is a unit vector in the direction of 41 (and hence tangent to the interface)
and cancelling 4/, we finally obtain

<E2 - EI) ° tu = O' ' <8"5.1)

This equation can hold in a general case of an arbitrarily oriented t,
(arbitrarily oriented loop) only if vector E, — E; is normal to all t,.
Therefore, since t, is tangent to the interface, E, — E; must be normal
to it. But then both E, and E; must be in a plane normal to the inter-
face, and the components of E, and E; tangent to the interface and
lying in this plane must be equal, or

E,q = E,. (8-5.2)

The two equations (8-5.1) and (8-5.2) represent, respectively, the
vector and scalar boundary conditions for E at a dielectric interface.
The essence of these conditions is that the tangential component of E
Is continuous across a dielectric interface.

To obtain the boundary condition for D, let us construct a
Gaussian surface in the shape of a small, very thin pillbox crossing the
interface under consideration, as shown in Fig. 8.5b, the two bases of
the box being tangent to the interface. Applying Gauss’s law (8-2.2b)
to this surface, we have

¢D.4S = | D,.dS + f D-dSJrJDL-dS:dev.

v
Base 2 Curved surface Base 1

Since the pillbox is very thin, we can neglect the integral over the
curved surface. Since a very thin pillbox can enclose only the charge
residing on the interface, we can replace the volume integral |p dv by
the surface integral [o 4§, where o Is the density of surface charge on
the interface. We then have

J D, .dS + f D, .48 =fadS.
Rase 2 Rase 1
Since both bases can be made as small as we please, we may regard
the entire area of each base as 45, in which case the last equation may
be written as

D,-dS +D,.(—dS) = (D, — D)) :dS = gdS§
(we have assumed that the positive direction of 48 is from dielectric 1

into dielectric 2, and since the surface element vectors in the above
integrals are in the outward direction, 4§ for base 1 is negative).
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Replacing 48 in this equation by n 45, where n;, is a unit vector in
the direction of 48, and cancelling 4S5, we finally obtain

(D, — D)) 'n;, = 0. (8-5.3)

Since n,, is normal to the interface, D, - n;, and D, - n,, represent
the components of D, and D, normal to the interface. Equation (8-5.3)
can be written therefore also as

Dn2 - Dnl = 0. (8-5'4)

In the case when no charge resides on the interface, Eqs. (8-5.3)
and (8-5.4) become
(Dy —D,) -n;, =0 (8-5.3a)
and
D, —D, =0, (8-5.4a)

so that if the interface carries no charge, the normal component of the
displacement field is continuous across this interface.

The two equations (8-5.3) and (8-5.4) represent, respectively, the
vector and scalar boundary conditions for D at a dielectric interface.

It is important to emphasize that the boundary conditions for E
and D derived here are merely special forms of the basic laws (8-2.1)
and (8-2.2) to which these laws reduce at a dielectric interface. Tor a
dielectric interface these conditions have therefore the status of funda-
mental laws and must always be satisfied.

From the boundary conditions for E we can derive the boundary
conditions for the electrostatic potential ¢. Let us consider two points
A and B located across from each other on the opposite sides of the
interface shown in Fig. 8.6. The potential at A with respect to a
reference point € at the edge of the interface is, by Eq. (8-3.2),

¢
ru=[ Edl + g
The potential at B is, similarly,
”
or=| Ei-dl g

Let the path of integration in both integrals be adjacent to the interface.
We can then write

C C
pu=| Bl + po and gy = Budl + gc.

By the boundary condition (8-5.2), however, E,; is everywhere equal
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oC

[

*B

Fic. 8.6 The system of dielectrics used for proving that the electrostatic
potential is the same on each side of a dielectric interface.

to E,. Hence the two integrals are equal, and therefore the two
potentials ¢, and ¢, are also equal. Designating ¢, as ¢; and ¢4 as

@3, We then obtain
F2 = Py {8-5.3)

Thus, the electrostatic potential is continuous across a dielectric
interface.!

One should note that inasmuch as the boundary condition for ¢
is derived from the boundary condition for E, it is not independent of
the latter but is, in fact, equivalent to it.

When dealing with linear isotropic dielectrics, it is frequently
desirable to express the boundary condition for D (8-5.4) in terms of the

0
potential ¢. Since by Eqs. (8-2.3) and (8-3.1) D, = —sosa—(p, this
boundary condition can be written as &

Oy 02

Eofl = - Egfp o = C 8-5.6

0f1 s 2 G % ( )

where n,, designates a direction along a normal to the boundary
pointing from dielectric 1 into dielectric 2.

v

Example 8-5.1 A thin dielectric disk of dielectric constant ¢ is placed
in an initially uniform field E, the bases of the disk being normal to E
(Fig. 8.7). Neglecting edge cffects, find the final field outside and inside the

disk.

1 We assume that the interface does not carry a dipole-type charge distribution
(see Problem 8.13).
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(a) - (b

F1c. 8.7 A thin dielectric disk normal to an initially homogeneous electric
field. (a) The map of the electric ficld E; (b) The map of the displacement
field D.

The final field must satisfy the basic field laws (8-2.1), (8-2.2), and
(8-2.3) inside and outside the disk, must satisfy Egs. (8-5.2) and (8-5.4a)
(boundary conditions) at the surface of the disk, and must be equal to the
initial field at large distances from the disk, Once these requirements are
satisfied, the problem is solved, since no other independent solution satisfying
these requirements can exist. The geometry of the problem suggests that
except at the edgesof the disk the field outside the disk willremain undisturbed

E =E (8-5.7)

and the field inside the disk will be uniform and normal to the disk. In this
case, Eqgs. (8-2.1), (8-2.2), and (8-2.3) will be satisfied both inside and outside
the disk, and the requirement that the final field be equal to the initial field
at large distances from the disk will be met. The boundary condition (8-5.2)
at the bases of the disk will also be satisfied, since E, j e and E} 5140 will
both be zero on the bases. As far as the boundary conditions at the side
surface (curved surface) of the disk are concerned, we may disregard them
altogether, since in a thin disk the side surface is responsible only for edge
effects, which by the statement of the problem are to be neglected. All we
need in order to complete the solution is, then, to satisfy the boundary
condition (8-5.4a) at the bases of the disk, where we must have

D =D

outside 3

n outside 7 inside»
or, since the field is normal to the disk,
Dyisige = Dinsige

But Diusiae = €ofooutsiger aNd Dipgige = €08 Eingige- Therefore, by Eq. (8'5-7)a
the boundary condition (8-5.4a) will be satisfied if

1 -
Eipsige = EE~ (8-3.8)



ELECTROSTATIC FIELD IN MATERIAL MEDIA 239

- S
I ——— e ——
— e v

- e X
—_ e ___P/’_\\\—
A —A—.
A ———’—’/—\—b

(a) (b)

Fie. 8.8 A thin dielectric cylinder parallel to an initially homogeneous
electric field. (a) E map. (b) D map. If ¢ > |, the field is strongly dis-
torted, and the solution given in the text is not valid.

Example 8-5.2 A thi‘n dielectric cylinder of dielectric constant & is
placed in an initially uniform field E, the axis of the cylinder being parallel
to E (Fig. 8.8). Neglecting end effects, find the final field inside and outside
the cylinder,

By inspection wc recognize that, except near the cylinder’s ends, the
field outside the cylinder is undisturbed

E — E, (8-5.9)

and the field inside the cylinder is uniform and parallel to the axis. Since
we neglect the end effects, the boundary conditions need be satisfied at the
curved surface of the cylinder only, where, by Egs. (8-5.2) and (8-5.4a), we
must have

outside

o
D

=FE
=D

¢t outside t inside

and

n outside n inside*

Since we assume that the field is parallel to the cylinder’s axis, the normal
component of the field is zero, and the boundary condition for D is satisfied

automatically. In the boundary condition for £ we can drop the subscript

“1.” We then have £, 4. = L, wiaer and since £, 4. = £, this condition
will be satisfied if
Eipige = E. (8-5.10)

We have obtained Eqgs. {8-53.9) and (8-3.10) largely by inspection, and
therefore we may question their correctness. The equations satisfy, however,
all required boundary conditions and the basic laws. Hence they are
definitely correct provided that the end effects are indeed negligible.

Example 8-5.3 A conducting sphere of radius a carrying a charge ¢
is submerged halfway into a nonconducting liquid of dielectric constant
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(a) (b)

Fic. 8.9 (a) Charged conducting sphere floating in a nonconducting
liquid. (b) Field lines of D. (c¢) Field lines of E.

¢ (Fig. 8.9). Find the electric field outside the sphere and the charge density
on the surface of the sphere. .

Constructing a concentric spherical Gaussian surface S of radius r
enclosing the sphere, and applying Gauss’s law (8-2.2b) to this surface, we
have

§D dS = { Dyjyuia * 48 +f D, d8 =g,
Js, S;

where §; and S, are the parts of the Gaussian surface passing through the
liquid and through the air, respectively. The geometry of the problem
suggests that the field i1s everywhere radial, so that D - dS = D dS. It also
suggests that Dy ;4 is constant at all points of §; and D, is constant at all
points of S,, so that D can be factored out from under the integral signs.
We can therefore write

Dliquidf Ay + Dairf ds = g9,
S1 Sy

or

(Dliquid + Dnir)Qﬂ'rz =4 (8'5'1 l)
. whc-:-r_f;?%r'z“'rsthc area of §; and S,. Now, by the displacement law (8-2.3),
Dyuia = €0tEyquiq-and Dy, = 4E,;.. Since the field is radial, it is tangent
to the boundary between the liquid and the air, and hence, by the boundary

condition (8-5.2), Elmm = E,;;. The subscripts on £ are then not needed,

“and we can write Dy, ;4 = £9eE, D, = gyE. Substituting these expressions
into Eq. (8-5.11), we obtain

(egeF + eoE)2mr? = ¢gy(e + 1)E2nr® = ¢,
or

q =
= — 8-5.1
£ 2meg(e + 1)r2° (8-5.12)
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which gives the electric field both in the liquid and in the air. The displace-
ment is then

&g
2m(e + )r®

9

and Dair = m :

Dijquia = (8-5.13a, b)
The surface charge density ¢ on the sphere is equal to the displacement at

the surface of the sphere, so that

&q

s M e (504a)

T 27(e + Da?

03

on the submerged and the exposed half of the sphere, respectively.

In solving this problem we used symmetry considerations which may
not appear entirely convincing. We may therefore want to verify the
solution. This can be done in two ways. We can set ¢ = | and check
whether the solution reduces to that valid for a sphere in vacuum. Ifit does,
it probably is correct (it does). Or, we can check whether the field satisfies
the basic laws (8-2.1), (8-2.2), (8-2.3) at all points outside the sphere,
satisfies the boundary conditions (8-3.2), (8-5.4a) at the dielectric interface,
is compatible with the charge residing on the sphere, and is regular at
infinity, in which case the field is definitely correct by the uniqueness
theorems for electrostatic fields (see Section 8-6). One can easily see that
the field obtained here does satisfy these requirements. Therefore it is
definitely correct.

A
8-6. Special Methods for the Solution of Electrostatic
Problems Involving Dielectrics of Constant e
Combining Egs. (8-2.2a), (8-2.3), and (8-3.1), we can write
V.D = V.geE = —¢)V . (eVyp) = p,
and, using vector identity (V-4), we obtain
Vi L ve Vg - — L2 (8-6.1)
e €0€
If ¢ is constant, Ve = 0, and we obtain
Vg = — £, (8-6.2)
€oE
If p = 0, this equation reduces to
Vg = 0. (8-6.3)

. Thus, the electrostatic potential ¢ in media of constant &, just as
in vacuum, satisfies Poisson’s equation (8-6.2) (charge-filled region) or
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Laplace’s equation (8-6.3) (charge-free region).! Therefore all special
methods for the solution of electrostatic problems discussed in Chapter
6 can also be used for the solution of the corresponding problems of
electrostatic fields in media of constant . As before, the criteria for
the correctness of solutions are furnished by the uniqueness thecrems
stated in Section 6-2. These theorems are obviously valid for fields in
dielectrics of constant permittivity occupying the entire region under
consideration, because there is no essential difference between the
basic electrostatic laws for vacuum and for dielectrics if ¢ is everywhere
constant, They are valid, however, even if ¢ is different in different
parts of the region, provided that the boundary conditions (8-5.5) and
(8-5.6) are satisfied at all dielectric interfaces (see Problems 8.17 and
8.18).

The special methods discussed in Chapter 6 can be extended to
problems involving dielectric interfaces.” These latter problems are the
only ones which are basically different from the problems discussed
in Chapter 6. Therefore we shall limit the illustrative examples that
follow to problems of this kind only.

v

Example 8-6.1 A dielectric sphere of radius 4 and dielectric constant
¢, is placed in a dielectric liquid of infinite extent and dielectric constant &,

€

Fie. 8.10 Dielectric sphere in a
dielectric liquid.

(Fig. 8.10). A uniform field E was originally present in the liquid. Find
the resultant field inside and outside the sphere.

The problem can be solved by the method of harmonics (the corre-
sponding problem with a conducting sphere was solved in Example 6-3.2).
The initial potential can be written as ¢ = —Ex - @, or

g = —Ercosd - g

I Note, however, that if & is not constant, ¢ in dielcetric media satisfies Lq.
(8-6.1) rather than Poisson’s or Laplace’s equations.
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Let the final potential inside the sphere be ¢, and that outside the sphere
be ¢,. By Egs. (8-3.3) and (8-5.6), the boundary conditions are then

() @1 =@ at r = a (surface of the sphere)

(2) e Jy, . 0,

1 T %

(3) ¢ =@ = —Ercosfl — ¢, for r— co.

at r=a

The geometry of the problem suggests the use of spherical harmonics (see
Table 6-I). The third boundary condition indicates that the potentials
may be represented by just a part of the spherical harmonics (H-4)

pr = (dyr — Byr™®) cos § + ¢,
and
@ = (Agr — By 2) cos § + ¢,

As we see no reason for the potential to be infinite anywhere within the
sphere, we set B} = 0 {otherwise ¢; — o for » — 0). By inspection we
find that the boundary condition (3) is satisfied if 4, = —E. From
boundary conditions (1) and (2), respectively, we then obtain the equations

Aye = —FEa + Bya?
and
e, d;, = —ey(E — 2Bya7%).

Solving these two equations simultaneously, we obtain

3e, & — &y
Ay = — ——=—F By, = ———== Ed®.
gt g — 28 " B e+ 2e ¢
The potentials are therefore
3ey
= — ———E 0 < @,
@, o+ % r cos Fo
o & — €y a3
@y = ——E(l — mr—g)rcos 0 +§[0

Since these potentials satisfy all three boundary conditions stated above, we
are sure that they are correct.

Taking the gradient of these potentials, we obtain the corresponding
equations for the electric field:

3e
E, =2 FE
& + 2¢
and
&, — & a°
1

_ 3
E2:E(1 + 2 = M a")cos@ru —E(l 2 —)sinOOu.

& + 2ey 13 g + 2¢e, 78
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(a) (b)
Fic. 8.11 Dielectric sphere of permittivity &, is embedded in a dielectric
medium of permittivity e, in which a upiform electric field was present
originally. D maps of the resultant field are shown for (a) &; > &, and (b)
& < &

It is interesting to note that these equations reduce to the equation
obtained for the condycting sphere of Example 6-3.2 if ¢; = oo. Thus, as
far as the electrostatic field is concerned, a conductor may he regarded as
a dielectric of infinite permittivity. For ¢, = &,, the above equations reduce
to E; which simply means that if the dielectric constant of the sphere is the
same as that of the surrounding medium the sphere has no effect on the
initial field. For any ¢, and ¢,, the field inside the sphere is homogeneous
and in the same direction as the original field. If ¢; > ¢, (as for a dielectric
sphere in vacuum), the field lines are “‘pulled” into the sphere, and in the
sphere £, << E while D, > D (Fig. 8.11a). If ¢ < ¢, (as for a spherical
cavity in a dielectric), the field lines are “pushed out” from the sphere, and
in the sphere E; > E while D; < D (Fig. 8.11b).

Example 8-6.2 A point charge ¢ in a medium of dielectric constant ¢,
is placed at a distance ¢ from an infinite-plane boundary with another
medium of dielectric constant &,. Prove that the field produced by the
charge can be determined by means of the images shown in Fig. 8.12.

First of all we note that the potential due to the images shown in Fig.
8.12 automatically satisfies Laplace’s equation because all point charge
fields do so. Therefore, to prove that the images are correct, we need only
to show that they are compatible with the boundary conditions at the di-
electric interface. These conditions are

(1) @1 =g at x=0,

0 0
(2) 61'%12626;,: at x=0.
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Fic. 8.12 (a) Point charge ¢ in front of a plane dielectric interface. (b)
To find the field in medium 1, the orlgmal charge together with the image
charge ¢’ is used, and thé entlre space is considered filled with medium 1.
( ) To find thc field in medium 2, the orlglnal charge is replaced by the
image charge ¢”, and the entire space is considered filled with medium 2.
(The field lines plotted in these figures are for &, > ¢,).

The potential in medium 1 is, according to Fig. 8.12,

q ]: 1 & — & 1 :l
e —— —_—— | >
drege, \/(x T a)?+ 3 et oe \/(x —a)* +*

¢1(x),y> =

and that in medium 2 is, similarly,

q 2e4 1
dmegaes + eV (x - @ 1

‘Pz(%)‘) =

We see by inspection that these potentials satisfy boundary condition (1).
Substituting these potentials in boundary condition (2), we find that they
satisfy this boundary condition also. Hence the images are correct. Ob-
serve that these images reduce to the ordinary image of a point charge in
front of an infinite-plane conductor if ¢, = .

A

8-7. Polarization

The theory of electric phenomena in material media becomes
especially informative and concise if in addition to the two field vectors
E and D the third field vector, the polarization vector P, is used. The
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polarization vector is defined by the equation

P=D —¢E (8-7.1)
As we shall presently see, this vector allows a convenient description
and analysis of electric phenomena in all nonconducting media, linear
and nonlinear, isotropic and anisotropic, with no restriction upon the
dielectric properties of the media at all.

Using the polarization vector P, we shall now derive several
important formulas for the electrostatic potential and electrostatic field
in material media. ' ‘

Let us take the divergence of Eq. (8-7.1). We have

V.- P=V.D —¢V-E.
This can be written as
&EV-E=V.D - V.P,

3

or

1
V.E=—(p—-V.P) (8-7.2)
o
By the corollary to Poisson’s theorem of vector analysis we obtain
then for the electrostatic potential?
1 —V.P
=1 f P=V-P o (8-7.3)

TEY s
Allspace

where we have omitted the reference potential ¢, as usual. Splitting
this integral into two integrals and using V' to avoid ambiguities in
the transformations which follow, we have
1 1 v.P

f P dv', (8-7.4)

7 = -
dmeg 7 dmeg 7
All space All space

The last integral can be transformed with the aid of vector identity (V-4)

[ l
v.P_ VP p¢! (8-7.5)
7 14 7
into
1 ".P 1 P 1 I
v @' = — ’. V' e—dv — P.V-d.
d7e, 7 dmey | 7 4, 7
Allspace All space All space
By Gauss’s theorem,
1 P
—1 ,'gd('/, - _'dsl>
dme, r d7e, 7
All space . All space

1 Compare with Section 5-3.
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and since E and D, and therefore also P, are regular atinfinity, the sur-
face integral vanishes. This means that the volume integral on the left
vanishes also. Therefore Eq. (8-7.4) can be written in an alternative
form as

1 P f ,
@ = 477'60 f ; dL -+ m— P-V - dL <8-76)
All space ~\II space

As can be seen from Egs. (8-7.4) and (8-7.6), the electrostatic
potential ¢ produced by a charge distribution p in the presence of a

‘dielectric can be regarded as the sum of two partial potentials: the
ordinary ‘“‘vacuum’ potential

1L [p.,
Py ——Lﬁsof;db

identical with the potential associated with p (produced by p) in the
absence of the dielectric, and the “polarization” potential ¢p, which
can be expressed as either

v . 1 1
= -V ~dv 8-7.7a, b

and which is associated with the dielectric, It is therefore clear that,
as far as the calculation of ¢ (or any quantity derivable from @) is
concerned, a dielectric is equivalent to a certain charge. distribution
that would produce the potential @p if the dielectric were replaced by
this charge distribution, This fictitious charge distribution® is called
the polarization charge distribution. The concept of the polarization charge
is very useful since it allows one to treat a dielectric as an equivalent
charge distribution in vacuum, and thus allows one to apply the
“vacuum” field theory developed in the preceding chapters to systems
containing dielectrics.

The polarization charge distribution by which a particular di-
electric may be replaced can be found either from Eq. (8-7.7a) or
from Eq. (8-7.7b). Let us first consider Eq. (8-7.7a). In the case of a
—_dielectric of finite extent, the integral of Eq. (8-7.7a) can be split into
three integrals: an integral over the interior volume of the dielectric
(Fig. 8.13), an integral over the volume of the boundary layer of the
dielectric, and an integral over the space external to the dielectric, so

L As is explained below, this charge distribution is fictitious from the point of
view of the macroscopic theory only.
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- Boundary layer
Interior

Fic. 8.13 Sometimes it is expedient to assume that a dielectric has an
“interior part’”’ and a ‘“‘boundary layer.”

that Eq. (8-7.7a) can be written as

: 1 v .P W 1 vV .P &’
= — ) — —
wr 47e, 7 “drreg r
- Interior Boundary layer
’. P
— ! v dv'.
4, r

External space

_Outside the dielectric, P = 0, and the last integral is therefore zero.

The second integral can be written as two integrals by means of Eq.
(8-7.5), so that

1 f vV .P 1 f P
- d v _ - V/ . d ’
vr drre, r Y dre, r Y
Interigr ) Boundary layer
1 1
-+ P.V -dv.
drre, r

Boundary layer

The volume of the boundary layer may be assumed to be as small asone
pleases, and since P is finite, the last integral in this equation vanishes.
The second integral in this equation can be transformed into a surface
integral by means of Gauss’s theorem, and the potential then becomes

1 v . 1
Fp = — Pdv' — 5{; B-(ZS’.

47e, 7 4re, r
Interior Boundary layer

The surface of integration here consists of both the interior and exterior
surfaces of the boundary layer, but since the exterior surface is outside
the dielectric, P = 0 there, and the only contribution to the surface
integral comes from the interior surface (observe that on this surface &8
is pointing into the dielectric). Furthermore, since the boundary layer
may be assumed to be as thin as one wishes, the surface of integration is
just the surface of the dielectric. Substituting n, 45’ for 48', where n; is
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a unit vector in the direction of an inward normal to the surface of the

dielectric, we then obtain from the last equation

1 v .P 1 P.n
f dv’ — —=dS’. (8-7.8)

r dme, r
Interior Boundary surface

If we compare Eq. (8-7.8) with Eqgs. (5-3.1) and (5-3.2), we immediately
recognize that the potential ¢p can be attributed to a volume distri-

bution of polarization charge
pp=—V-P (8-7.9)

r == 4mre

spread through the interior of the dielectric, and to a surface distribu-

tion of polarization charge
op = —P.n, (8-7.10)

spread over the surface of the dielectric. This means that for the purpose
of the calculation of ¢ (or any quantity derivable from ¢) the interior
part of a dielectric may be replaced by the volume charge pp, = — V- P,
-and-the boundary layer of the dielectric may be replaced by the surface
charge cp = —P - n,. Note thatin this representation the real charges
are regarded as contained in cavities made in the dielectric, so that op
is present on all interfaces between p and the dielectric.

The total electrostatic potential produced by a charge distribution
p in the presence of a dielectric can then be expressed as

: &' - fd' L2 (711
7= 4weof - dme, +4m—:05£7‘ » (8711

and the electric field E produced by p in the presence of a dielectric can
therefore be expressed as

1 r, 1 o, 1 Opt,
E — ff’_ & - fﬁl_ @+ §L 4as’.  (8-7.12)

drey ) 12 T e TE 2

On electrostatic field maps, the field lines begin and end on electric
charges, which thus constitute the “sources” of the electrostatic fields.
According to equation (8-7.12), the sources of the electrostatic field E
in the presence of dielectrics are not only the real charges p, but also the
fictitious, polarization charges pp and . Therefore the field lines of E
begin and end not only at the points where p is present, but also on
dielectric surfaces (op) as well as at points within the dielectrics (pp).
The field lines of D, on the other hand, begin and end only on the real
charges p. This follows from the divergence law V .D = p, which
shows that D is always associated with the real chz{rgés only, so that
only the real charges are sources of D. Therefore an E field and a D
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field may have entirely different structure when dielectrics are present.

As a result, an E map and a D map of the same electrostatic system

containing dielectrics may appear very different (see I'igs. 8.7, 8.t.
8.9, and 8.16).

Let us now consider Eq. {8-7.7b). This equation can be written as

Gp = f i-V’;a’v’. (8-7.13

dre,
Dielectric

If we compare this Cqua-t.ion with Eq. (5-4.10a)

A (5-4.10a
representing the potential of a dipole of moment p, we see that the
integrand in Eq. (8-7.13) can be interpreted as the potential produced
by a fictitious “polarization” dipole of moment dp = Pdz’. The polari-
zation vector P can be interpreted therefore as the dipole moment
density (dipole moment per unit volume) of such polarization dipoles:

dp ,
P = o (8-7.14)
The potential ¢, can then be regarded as the total potential produced
by all these dipoles s.pread through the volume of the dielectric. This
means that for the purpose of the calculation of ¢ (or any quantity
derivable from ¢) a dielectric may be replaced by a dlStrlbuthl’l of
dipoles of dipole moment density dp/dv = P.

Thus a dielectric can be treated as an equivalent space and surface
charge distribution or an equivalent dipole charge distribution. It can
also be treated as and equivalent polarization current distribution, which is
described in Appendix 4.

The representation of a dielectric as an equivalent charge distri-
bution (pp, op, ordp/dv) is especially useful for'dealing with dielec-
trics possessing a permanent polarlzatlon P. Such permanently
polarized dielectrics are called electrets.

Equation (8-7.14) constitutes an important link connecting the
macroscopic theory of electric phenomena with the microscopic theory.
In the microscopic theory, a polarized dielectric is regarded as an
assemblage of atoms and molecules whose charges are displaced from
their unperturbed positions under the influence of the applied field:
molecules having permanent dipole moments are lined up so that the
dipole moments are oriented predominantly in the direction of the
applied field, and all atoms and molecules receive “induced” dipole
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moments as a result of a shift of the negative charges relative to the
positive ones, The average dipole moment of these atomic and mole-
cular dipoles per unit volume of a dielectric is defined as the polariza-
tion vector P in the microscopic theory. By setting P occopic =
P croscopier @ transition between the two theories is achieved. The
“fictitious” polarization charge of the macroscopic theory is, in the
microscopic theory, the charge “bound” within atomic and molecular
systems. The “real” charge of the macroscopic theory is, in the micro-
scopic theory, the “free” charge accessible to macroscopic observations
(such as the observations described in Section 4-1).

In concluding this section, let us note that the boundary conditions
at a dielectric interface derived in Section 8-5 involve real (free)
charges only.

v

Example 8-7.1 A congducting sphere of radius ¢ is embedded in an
infinite dielectric of dielectric constant e. The sphere carries a charge g.
Compare the physical meaning of Eqs. (8-4.3) and (8-7.12) when they are
used for calculating the electrostatic field of the sphere.

y /UP
€ q

(a) (b)

Fic. 8.14 Two methods of calculating the electric field of a charged body
surrounded by a dielectric. (a) Direct calculation. (b) Dielectric is replaced
by an equivalent charge distribution.

In Eq. (8-4.3) the effect of the dielectric is taken into account by using
the product e,e instead of ¢,, and only the real charge is used for the calcu-
lation. The physical system corresponding to this equation is shown in
Fig. 8.14a. When Eq. (8-7.12) is used, however, the sphere is considered to
be in a vacuum, and the dielectric is considered replaced by polarization
charge distributions p;» and op. By Eq. (8-4.3) (or by Gauss’s and displace-
ment laws), the field of the sphere is

E=_-—1 _r (8-7.15)

U’
dreger?

Let us now see what this field is by Eq. (8-7.12). The polarization of the
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dielectric is, by Eqgs. (8-7.1) and (8-7.13),

P:D_EOEZEOEE—EOE:(E_l)4q8r2ru
™

The polarization space charge is then [using Ve = 0 and V. (r /r?) = 0]

q
pp=—V P= _'V'[(E =1 4776r2r"}:0'

The polarization surface charge (representing the effect of the boundary of
the cavity containing the sphere) is

op = —Penj, = —(e¢— 1) 4775a2
The physical system corresponding to Eq. (8-7.12) is shown in Fig. 8.14b.
Note that it is completely different from that shown in Fig. 8.14a. By Eq.
(8-7.12), the field of the sphere is the sum of the field E;- produced by the
real charge ¢ and the field Ep produced by the polarization charge g,
both charges thought to be located in a*vacuum. The first field is

1 8-7.16
E, = Tmey? r,. ( 2)
The second field is, noting that qp =0dp * 4ma® = — (¢ — 1)(q/e),
(e = D¢
Ep = —>—Zr . 8-7.17
” drreger? T ( )

Adding Eqs. (8-7.16) and (8-7.17) we again obtain Eq. (8-7.15).

Example 8-7.2 A cylindrical electret of length 2/ and radius a has
constant polarization P directed along the axis of the electret, as shown in

[t = T o= [« P
=1
= 2 /\7_’
(I S (I ——I,

(a) (b)

Frc. 8.15 (a) Cylindrical electret. (b) Equivalent charge distribution.

Fig. 8.15a. Find the electric field produced by the electret at an external
point on the axis and then obtain the limiting values of the field for a very
long and a very short electret.

The field of the electret can be calculated with the aid of Eq. (8-7.12).
Since no real charge is present anywhere in the system under consideration,
and since inside the electret P is constant so that pp = —V +P = 0, the
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field can be found from ¢ alone. On the cylindrical surface of the electret
P is perpendicular to n,, so that 6p = —P -mn;;, = 0. The only contri-
bution to the field comes therefore from op on the flat bases of the electret,
where P and ny, are parallel. On the left base, P and n,; have the same
direction so that ¢p = —P +n;; = —P. On the right base, P is opposite
to my, so that ¢p = —P.n;) = P. By Eq. (8-7.12), the problem thus
reduces to finding the field of two uniformly charged disks located at the
ends of the electret and carrying surface charges P (Fig. 8.15b).

The field of a uniformly charged disk of charge density ¢ and radius a
has been found in Example 4-3.3, and is

E— I z )k
_250 —\/22+a2 ’

/

where z is the distance from the disk to the point of observation. The field
of the electret under consideration can be obtained from this formula.
Replacing @ by =P and z by z = [ in it and adding the resulting expres-
sions we obtain

E_P[l z'—1 Jk P[l z -1 Jk
- 2¢ Viz = E - a2 2¢, Vit )P+ &
which after simplifications becomes
P z -+ z—1
= — ‘ — . 8-7.18
280[\/(:41)2—ra2 \/(z—1)2+a2J ( )

This can also be written in terms of the angles subtended by the bases of the
electret at the point of observation as

E

P
E = e, (cos O, — cos 0y).

For a very long electret (rod electret), 0, — 0, and the field becomes

P
E 4= 5 (1 —cos b,).

0
If, in addition, the point of observation is very close to the base, 0, is approx-
imately 90°, and the field becomes simply

P

rod — 2— .
€p

E

TFor a very short electret (disk electret

~—

, by Eq. (8-7.18) the field becomes

. (I/a).

Example 8-7.3 Find the electric field E and the displacement field D
at an internal axial point of the electret discussed in Example 8-7.2.

[~

Ey =

2]
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(a) (b)

Frc. 8.16 (a) E map for a cylindrical electret. Note that the lines of E
originate and terminate on the faces of the electret (surface charges op).
(b) D map for a cylindrical electret. Note that the lines of D have no
beginning and no end, and that inside the electret D is opposite to E.

Replacing the electret by two uniformly charged disks as in Example
8-7.2, we have

P [— 2z P z 1
280 N/([—z)2+a2 280 '\/(Z—f—l)2+az
or
)
E:‘Q_EO(QTcosf)l—cosOQ),

where the notations are the same as in Fig. 8.15. For a very long electret
(rod electret), 8§, — 0, 0, —» 7, and the field becomes

Erod = 0.

o

For a very short electret (disk electret), 6, — —, 0, — il , and the field
becomes 2 2

E |
aisk =

The displacement is found from D = P 4 ¢E and is

P
D= 5 {cos Oy — cos §y).

Observe that the direction of D in the electret is opposite to that of E (the
E and D maps for the electret are shown in Fig. 8.16a,b). For a very long
clectret the displacement becomes D = P. For a short electret (disk) it
becomes D = 0.
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(a) (b)

Fic. 8.17 (a) Open ring electret. (b) Equivalent charge distribution.

Example 8-7.4 A rir‘lg clectret has the polarization P = (4/7)0,,
where 4 is a constant, 7 is the distance from the axis of the electret, and 0,
Is a unit vector in the circular direction, as shown in Fig. 8.17. The electret
has a narrow slot between two plane faces normal to 0,, which form an
angle 6 with cach other. Neglecting edge effects, find the electric field in the
slot.

The ficld can be calculated from the polarization charges. The polari-
zation space charge is {consult Table 2-1)

1 0 1 94
Pp = —-V.P = —r—?épg = —-;‘a—e(;)zo
The polarization surface charge is zero on the side surfaces of the ring
because P is perpendicular to m;, there, but on the surfaces of the slot
op=—P.nj, = +-P = LAr (Pis parallel to nj, there). The problem
thus reduces to finding the ficld of two surface charge distributions o, =
4 A/[r located at the surfaces of the slot. This system of surface charges
is similar to the system of two charged conducting plates discussed in Example
6-3.4. Therefore the field in the slot is, by Example 6-3.4,

c A
E—-f¢,——9,.
& g
Example 8-7.5 A small spherical cavity of radius r is made in a large

electret of constant polarization P (Fig. 8.18). Neglecting the effect of the
outer boundaries of the electret, find the electric field at the center of the
cavity.

Since the effect of the outer boundaries can be neglected, and since P
is constant, the field can be calculated from the polarization surface charge
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aP=—Pc056—\
y 0

(a) (b)

: 4

Fic. 8.18 (a) Spher‘ical cavity in an electret. (b) Equivalent charge
distribution.

op on the surface of the cavity, Referring to Fig. 8.18, we have

op = —P.n, = —Pcosb.
The field is then, by Eq. (8-7.12),!
1 1 [7Pcost
E—  — 4; TR 47 = f 2 9mr2sin 6 do,
dmey J 7 dmeg o r

where we have 'taken as 45" an elementary ring of area 27r%sin 0 dff. By
symmetry, the field is along the z-axis, so that only the z-component of r,
or zk, needs to be considered when evaluating the above integral. But
zk = ky cos f), and hence '

k (7Pcosl 0 kP (7
i E=—— M—Qwﬂsin@d@:—fc05205i110[z’0,
J dmrey Jo 7 2e4 Jo
! or
E P
 3ey
Example 8-7.6 Find the electrostatic potential at a large distance from

. a small piece of electret of volume v and constant polarization P (Fig. 8.19).

//\ .y

l

Fic. 8.19 Calculation of electric field at a large distance from a piece of
electret.

————

o(r,0)

1 Note that r, appearing in Eq. (8-7.12) is opposite to r shown in Fig. (8.18),
the latter pointing foward the charge.
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This problem can be solved most easily~by regarding the electret as a
single dipole. Since P is constant, the dipole moment of the electret is,
according to Eq. (8-7.14), p — Pu.
The potential is then, by Eq. (5-4.9),

Py

T2 COS 6. (8-7.19)

= 4me,

Example 8-7.7 A thin disk electret of polarization P directed along
the electret’s axis is placed between two conducting plates which are in
contact with each other (“shorted”) as shown in Tig. 8.20. Find how
the plates affect the internal and external fields, £, and E,, of the electret,.

+UP ~w + + b+ + Ee+
’ ’ P f ,l f ~0p—- — S — a_ _WE"
(a) (b)

Fic. 8.20 ({a) Disk electret between two shorted conducting plates. (b)
Equivalent charge distribution.

Since the plates are in contact with each other, the VOltaO’C
between them is zero, and we have, by Eq. (8-3.2),

Ea+ Eb=0. (8-7.20)
From the boundary condition for D, Eq. (8-5.4), we have
D, - D =0,,;=0 (8-7.21)
(observe that this boundary condition involves only the real surface charge).

Expressing D in terms of P and E, we have D, = P; + ¢,E;, = P + ¢,F; and
D, =P, + ¢,E, = g,E,. Eq. (8-7.21) becomes then

eole, — goF; - P = 0. (8-7.22)

Solving Eqs. (8-7.22) and (8-7.20) for E, and E; and taking into account the
direction of P, we obtain

b a
E,=————P d E, P.
: ela — b ela + b)
If b 3> a {free electret) these solutions reduce to those obtained in Examples
8-7.2 and 8-7.3. If 46 — 0, then E; — 0 (one stores electrets between shorted
conducting plates; since £, = 0 in this case, the electret does not lose its
polarization).

A
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8-8. Energy and Force Relations for Electrostatic Fields

with Dielectrics Present

The basic cnergy law for electrostatic systems containing dielectrics
o7 7
can be expressed ast

o
)

o P \
— f Edy — f (fE-dP)dv. (8-8.1)
0

All space All space

In this equation U is the total electric energy of an electrostatic system
under consideration, the first term on the right is the so-called field
energy U, and the second term on tht right is the so-called polarization
energy Up.

The field energy

U, = ; f E*dy (8-8.2)

Is attributed to the electric field as such and does not vanish even if
there are no dielectrics in the field.
The polarization energy

Up = f(f}; : dP) d (8-8.3)

is attributed to the polarization of dielectrics and vanishes if there are
no polarized dielectrics in the field. The designation of L', as the polari-
zation energy is based upon the observation that an amount of energy
given by Eq. (8-8.3) is absorbed by a dielectric when the polarization
of the diclectric changes from zero to P. Depending on the properties
of the dielectric, the energy ), may or may not be conserved (stored
in the dielectric in a rccoverable form). If P is a single-valued function
of E, the encrgy U/, 1s conserved, because then

P 0
fE-dP: —fE-a’P.
0 P

If the corrclation between P and E is such that the curve representing
P as a function of E (polarization curve) does not retrace itself when the
field changes from —E to —E and back to —E, as in Fig. 8.21, U, is

I More than any other clectric or magnetic law, this law and the corresponding
law for magnetic fields are justified by their consequences rather than by their origin.
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rP

/ )
Fic. 8.21 Hysteresis loop for a dielec-

tric.

not conserved, because then

P 0
fE-dP;é—fE-dP.
i} P

In this latter case the diclectric is said to exhibit a hysteresis. The loop
formed by the polarization curve is called the Apsteresis loop. As one can
sce from Tig. 8.21 and Eq. (8-8.3), the area enclosed by the hysteresis
loop is proportional to the energy dissipated in the dielectric during
cach complete cycle in the change of E.

In a linear isotropic dielectric, P = ¢,(e — 1)E, so that

P .
fE.dp:io@_ﬁEz,
0 2

and the polarization energy, according to Eq. (8-8.3), is

060

Up = 5 (e — 1) E3dv. (8-8.4)
Therefore when all dielectrics contained in a system under consideration

are linear and 1sotropic, the total energy of the system, according to

Eq. (8-8.1), is
U= - (e - E = 2 emn, (885)

which is usually written in the symmetrical form
°l
U= 3 fE - D do. (8-8.6)

By inspecting the transformations used in Chapter 7 for obtaining
the special forms and consequences of Eq. (7-1.1a), we find that the
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same transformations can be applied to Eq. (8-8.2), except that ¢,V « E,
by Egs. (8-7.2) and (8-7.9), is now equal to p -+ pp rather than to .
Therefore the equations obtained in Chapter 7 from Eq. (7-1.1a) applv
also to the energy U; of the electrostatic fields in the presence of dielec-
trics, provided that the charge density p appearing in these equations
is replaced by the “effective’ charge density p -+ pp (0p may be used
instead of p, on dielectric boundaries, in which case the volume
integrals over the boundary layer must be replaced by the surface
integrals over the boundary surface). In particular, we find that the
force equation (7-7.1) can be rewritten for the electrostatic fields in the
presence of dielectrics as

F = _‘VUvj, ,p,P:constnm) (8'87>

where U7, in analogy with U’ used in Chapter 7, is given by

)

Ur = f (p + pp)g'do. (8-8.8)

W

The explicit equations for the force are then

F = {(p 4 pp)Edv = f(p + pp)Edv, (8-8.9a, b)
which follow from Egs. (7-8.1) and (7-8.2). Note that Egs. (8-8.9a, b)
allow one to find not only the forces acting on charged bodies (real
charge p) but also the forces acting on neutral dielectrics (polarization
charge pp).

Since the polarization P may be regarded as the dipole moment
density associated with the polarization charges p, the force acting on
a neutral dielectric can be expressed, by Eq. (7-10.2), also as

F = {(P - V) E'dv. (8-8.10)
© As we learned in Chapter 7, an especially important force relation
for an electrostatic system in a vacuum is given by Maxwell’s stress
equation (7-11.3). By inspecting the transformations by means of
which this equation was obtained, we find that it remains valid even if
there are dielectrics in the system under consideration. The electro-
static force acting upon any object {charged body, dielectric, conductor,
etc.) enclosed by a Maxwellian surface § passing through a vacuum is
therefore always (see, however, Appendix 3)

F — _%’SEEZdS+°eOSfE(E.dS). (8-8.11)
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If § is the surface of a free conductor, the force becomes, by analogy
with Eq. (7-11.4), o
F = 70 E248, (8-8.12)
so that a free conductor under electrostatic conditions can always be
regarded as subjected to the electrostatic pressure
%6
b =— E= (8-8.13)
2

It is important to remember, however, that all force equations
given above may be used, in general, only for determining forces acting
on a dielectric body (or bodies) as a whole rather than forces acting on a
part of a body. This is because we have arrived at the concept of the
polarization charge pp by using Poisson’s integral (8-7.3) extended over
the entire volume of each dielectric.

In conclusion, let us mention once again that all equations which
are valid for electrostatic systems contained in vacuum are also valid for
similar systems contained in an infinite dielectric of constant ¢, provided
that ¢, in these equations is replaced by the product e,

v

Example 8-8.1 A voltage FV is applied to a parallel-plate capacitor
consisting of square plates of length « separated by a distance d. A large
dielectric slab of thickness 4 and dielectric constant ¢ is inserted between the
plates, as shown in Fig. 8.22. Neglecting edge effects, find the force acting on
the slab.

+ x ——l '

F1c. 8.22 Calculation of force acting on a dielectric slab in a parallel-plate
capacitor.

We shall solve this problem by using the force-energy relation F, =
— U 0x, valid for all isolated conservative systems. To make the capacitor
an isolated system, we shall imagine that it is disconnected from the battery
{observe that in this case the charge @ of the capacitor, rather than the
voltage I, must be considered constant). The electric field in the capacitor is

vV

i
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The displacement in the empty part of the capacitor and in the part occupied
by the dielectric is, respectively,
14

14
D, =& and D, = €08 7 -

The charge of the capacitor (one plate) is then, by Gauss’s law,
¥ v v 1
Q—sog(a—x)a—}—eoezxa—eoza[a—{—(e— )x],

and the voltage expressed in terms of the charge is therefore

_ Qd

T oggala 4+ (e — Dx]”

The energy of the capacitor is, by Eq. (8-8.6),

o] )

1 1
U= 3 ED(a — ¥)ad + 3 ED,xad

) 2 o] VZ
= &5 (a — x)ad 4 °¢4¢ 272.1‘41(1.

Simplifying and substituting V' (which Is a variable quantity if the capacitor
is disconnected from the battery), we obtain
V2 °Q%d
= gy =, ] — D] = .
U="eggale+ (e = D3 = g e s

The force on the dielectric is therefore

Fo— ou °Q%(e — 1) _ CgVPa(e — 1)
© 0 Ox 2epafa + (e — a2 2d '
Example 8-8.2 A small dielectric sphere of radius a and dielectric

constant ¢ is placed at a distance ¥ > « from a point charge ¢ (Fig. 8.28).
Tind the force on the dielectric sphere.

<

x Y

Fre. 8.23 Calculation of force acting on a small dielectric sphere in the
electric field of a point charge.

This problem can be solved by using Eq. (8-7.14). The electric field
produced by ¢ at the location of the dielectric sphere is.

, g
E = drregxt .

Since x > a, this field, in the first approximation, is uniform throughout the
region occupied by the sphere. The electric field within the sphere is then,
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by Example 8-6.1,

3 ’
E

E:
g2

and the polarization of the sphere is, by Eq. (8-7.1),

Jegle — 1)
P—=D - ¢FE = — DE="2"___‘F".
£ gole ) ) E
Using Eq. (7-10.2) and taking into account that ¢ < x, so that the sphere
may be regarded as a single dipole of moment §7a*P, we have therefore
°4 0 °4
— °f . / = = 3p 4 = — = 3 1
F="°p:-VE 3 Ta P Ep E 3 e P27‘_£0x3 i,

and substituting P, we obtain

o D g2a3
(e — Lg%a® |

— i

2meg(e + 2)x°

Thus, the sphere is attracted to the point charge with a force proportional to
—5

x73.

F— —

3

Example 8-8.3 A point charge ¢ is placed into a nonconducting liquid
of dielectric constant e. A spherical air bubble of radius a has formed at a
distance x > a from the point charge (Fig. 8.24). Find the electric force on
the bubble, assuming that the liquid may be considered as extending to
infinity in all directions.

*— e
®

=

Fic. 8.24 Calculation of force acting on a spherical air bubble in a dielec-
tric liquid under the influence of a point charge. It is assumed that x > a.

We note from Example 8-6.1 that if the original field at the location of
the bubble is £’, the effect of the bubble on the field outside it is to produce
an additional field

E// - 9

e—1a®
———— = FE’'sin08,.
2£+lr3E sin 0 0,

e — 1

2¢ + 1

e
—E’coslr,
;
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Comparing this field with the field of a dipole embedded in a dielectric «of
dielectric constant ¢, given by Eq. (53-4.13) with ¢, replaced by ¢,¢,

p cosf b sin 0

E T, — 6

w?

27wepe 1 drepe 1

we see that the bubble may be regarded as a dipole of moment

e — 1
. ST 3R/
p= 25+1478°EGE'
Since
/ 7 .
E ——1
dmregex® b

P can be written as
e — 1 qa®,

P= g, 1"
The force on the bubble is then, by Eq. (7-10.2),
o , Fe—1 qa® d q .
F="lp VE =— ):26 1 a2 ax(4weoex2 b
or
°(e = Dg%a®

T 2mege(2e = 1) 1‘
Thus in contrast to the dielectric sphere of the preceding example, the bubble
is repelled from the point charge with a force proportional to x5,

Example 8-8.4 A conducting sphere. consisting of two separate hemi-
spheres of radius « is placed in a nonconducting liquid of infinite extent and
dielectric constant e, Find the force with which one hemisphere is repelled
from the other when the sphere is given a charge g¢.

This problem is the same as that discussed in Example 7-11.1, except

that now the sphere is in a dielectric rather than in a vacuum. Therefore
the solution can be obtained from that of Example 7-11.1 by replacing ¢,
by eqe. This gives
¢
F= 327re,ea® -
Examples 8-8.5 A conducting sphere of radius 4 and density p floats
in a nonconducting liquid of density p’ > 2p and dielectric constant e,
How much charge must be placed on the sphere in order to make the sphere
half submerged in the liquid?

By Example 8-5.3, when the sphere is half submerged and carries a
charge ¢, the electric field around it is

q

- 2megle + 1)r2
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and the displacement is

£q

q
Djjquia = (e + D)2

Dur = oo m 2

Thus, the Eand D fields in the liquid are the same as those that would be
produced by the same sphere if the liquid occupied all space around the
sphere and if the sphere carried a charge ¢’ = 2¢g/(e + 1). Since electric
fields are force fields, equal electric fields produce equal forces on charges
located in these fields. By the preceding example, the electric force on the
lower hemisphere is therefore

Oeqz

Fooun = Bresc + %

Similarly, the E and D fields in the air are the same as those that would be
produced by the same sphere in a vacuum if the sphere carried a charge
" = 2¢/(e 4- 1}. The electric force on the upper hemisphere is therefore,
by Example 7-11.1, °g2 '
Fup = 8mey(e + 1)%2°

The total force down is the sum of Fy ., and the weight of the sphere, or
°pg?
£q 4
Fdown total — 87760(6 + l)zaz + _3 stpg.
The total force up is the sum of F,;;, and the bouyant force of the liquid, or

o 2
Fup total = Bres(e - 122 + 3 map's.

Setting - _F
Lyotal down — L'total up

and solving for ¢, we obtain
o 167e(e + e — 20)e%g
(e — 1)

Example 8-8.6 A thin disk electret of thickness a, face areca A4, and
polarization P directed along the electret’s axis-is laid on a conducting plate.
A second conducting plate, connected by a wire to the first, is placed above
the electret at a distance & {rom its surface (Fig. 8.25). Find the force on
this plate neglecting end effects.

Fic. 8.25 Calculation of force acting on a metal plate placed above an
electret. §' is a Maxwellian surface enclosing the plate.
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The force can be found from Eq. (8-8.12). The electric field above the
plate is zero. The electric field below the plate is, by Example 8-7.7,

B a
gy la+b)
The force is therefore, by Eq. (8-8.12),

e a*pP? s °a*P24
2 exla - 6)277 T 2¢(a 4 b)?
Plate

P.

F =

directed towards the electret,

Example 8-8.7 Determine the change in electric energy which takes
place when a linear isotropic dielectric is placed in the electric fleld of a
capacitor carrying a constant charge. *

Let the initial field be E,. The initial electric energy is then, by Eq.
(7-1.1),

°l
UO = EJ\EO . DOdU,

When the dielectric is introduced into the field, the field changes to
E, and the energy becomes, by Eq. (8-8.6),

°l
= §J\E -D dv.

The change in energy is
o)

1
AU = §f(E-D»EO-DO)dv,

which can be written as

o) o)

1 1
AU = §J(E Dy, — D-Ejdv - §J<E + Ey) « (D — Dy)dv

°] °]
~ 3J® D, — D Bja — Vi + )0~ DY

where ¢ and ¢, are the potentials corresponding to E and E,. We shall show
now that the last integral is zero. Since

V(g + @o) - (D —Dy) = V- [(p+ ¢o)(D—Dy)]
— (¢ - gV (D —Dy)
and since V-D = V . D, = 0 throughout the space under consideration,
we can transform the last integral into a surface integral:

°] °1
3| Vig = 5 0 —Dgar = 3§y~ @)D Dy a5,

This surface integral is extended over a surface enclosing all space and over
the surfaces of the capacitor plates, The surface enclosing all space makes



ELECTROSTATIC FIELD IN MATERIAL MEDIA 267

no contribution to the integral because the field is regular at infinity. The
surfaces of the capacitor plates also make no contribution to the integral.
This is because ¢ and ¢, are constant at all points of each plate, and the
integrals

ffﬁn-ds and fj)DO-dS

arc both equal to the charge residing on the plate over whose surface the
integrals arc taken. The surface integral under consideration is therefore
zero, and so the last volume integral is zero. The change in the energy is
then °]

AU = 5 ((E -D, — D-Ejdv.

Now, outside the dielectric, E: D, — D-E, = E . (¢,E;) — {¢,E) - E, = 0.
Therefore the last integral needs to be extended only over the volume
occupied by the dielectric, Thus we obtain

‘1
AU = 5 ( (E-Dy, —D-E)dv
Dielectric
‘1
= 35 [E: (gE)) — D-Eyldv
Dielectric
°1
=— 3 ( (D — &,E) « Eydv,
Dieltetrie
or
‘1
AU = — 5 (P - Eqdv. (8-8.14)
Example 8-8.9 A nonconducting liquid of dielectric constant & and

density p is contained i a U-tube of rectangular cross section. When the
tube is inserted between the plates of a parallel-plate capacitor (Fig. 8.26)

N RN

S Y
-

Fic. 8.26 Dielectric liquid is pulled in the : A
electric field of a parallel-plate capacitor.
This phenomenon can be used for deter-
mining ¢ of the liquid.
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whose charges are kept constant, the liquid between the plates rises by an
amount 2. Neglecting all edge effects, find 4 if the initial field between the
plates is E;, the dielectric constant of the tube is ¢ = 1, and the inner
dimensions of the tube’s cross section are a (perpendicular to Eg) and 4
(parallel to Eg), with a > b.

By the preceding example, the final electric energy of the system is

cl ~
U=U; — EJ P.E..

Since all edge effects are neglected, P may be assumed constant in the part
of the tube located between the plates of the capacitor and zero elsewhere,
and if the height of the liquid between the plates with respect to their lower
edge is p, the energy can be written as

o

1
U=Uy— 3P-Eqby.

The electric force on the liquid is then

: oUu  °l
F =

y —7}2 EP'anb'

This force is kept in equilibrium by the weight of the liquid contained in the
portion of the tube of length 24:

w = 2abhpg.

Combining the last two equations, we obtain

°P.E,
h= dpg
To complete the solution, we must find P. Since the tube has a rectangular
cross section with a 3> b, the field in the liquid contained in the tube is the
same as in the thin disk discussed in Example 8-5.1. By Example 8-3.1, we
then have in the liquid
I

D =¢E, and E = ;EO.

The polarization is therefore

gle — 1)

P—D — ¢E =
£

E,,

and we finally obtain

Cegle — 1YEP?
depg

h =
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PrOBLEMS

8.1. Prove that if a capacitor is filled with a material of dielectric con-
stant ¢, the capacitance of the capacitor will increase ¢ times.

8.2. A large dielectric slab of thickness ¢ and dielectric constant ¢ is
inserted between the plates of a thin parallel-plate capacitor of plate area
A and plate separation d. The slab is parallel to the plates and its edges are
outside the capacitor. Neglecting edge effects, show that the capacitance of
the capacitor is

C = gpedled — (e — )L,

8.3. The plates of a thin parallel-plate capacitor are separated by a
distance d. The maximum voltage which can be applied to this capacitor
before a spark occurs in the air inside the capacitor is V. A dielectric plate
of dielectric constant e and thickness ¢ <C & is laid on the inner surface of
one of the capacitor’s plates. Show that the maximum voltage which can
now be applied to the capacitor before a spark in the air inside the capacitor
occurs is only

V=V, — (d)(1 — 1]e)].

8.4. A parallel plate capacitor of plate area 4 and plate separation 4 is
filled with a dielectric whose permittivity varies uniformly from ¢, at one
plate to e, at the other. Neglecting edge effects, show that the capacitance
of this capacitor is
god & — &

¢= d In (eafey)

8.5. A cvlindrical capacitor is filled with a dielectric of variable
permittivity ¢ = «fr, where « is a constant and r is the distance from the
axis of the capacitor. The radius of the inner cylinder is a4, that of the outer
cylinder is 4. Find the capacitance per unit length.

8.6. The radit of the two cylinders forming a cylindrical capacitor are
a and 4. The medium between the cylinders has a diclectric constant &,
from a to r and &, from 7 to b. Show that the capacitance per unit length of

this capacitor is
1

1 r ) 7
CL = 2#60(6—1 In ; — —&; In -b-)
8.7. A conducting sphere of radius a receives a coat of material of
uniform thickness { and dielectric constant e. Show that the capacitance of
the sphere increases by the factor
ela + 1)
- ga + i
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8.8. A spherical capacitor is formed by two spheres whose radii are a
and b, a < b. The inner sphere receives a uniform coat of material of
thickness ¢ and dielectric constant ¢. Show that if ¢ < a, the capacitance
increases approximately by
(e — 1)6
AC = 4‘77805 Z(T:_a_)é

.

8.9. A spherical capacitor is filled with a dielectric of variable permit-
tivity ¢ = /7%, where « is a constant and 7 is the distance from the center.
The radius of the inner sphere is a, that of the outer sphere is 4. Find the
capacitance.

8.10. The radii of the two spheres forming a spherical capacitor are a
and 5. The medium between the spheres has a dielectric constant ¢, from a
to 7 and ¢, from 7 to 6. Show that the capacitance of the capacitor is

O 4 1 /1 Iy 1 /1 1\
=4 ol 7) e )]

8.11. Alarge dielectric slab of dielectric constant ¢ is placed in a uniform
electric field E which makes an angle 8 with the normal to the surface of the
slab. Find the magnitude and direction of the electric field within the slab.

8.12. Consider an interface between two dielectrics, 1 and 2, of
dielectric constant &, and &,. At the interface, the electric field vector in the
two dielectrics makes, respectively, angles «; and «, with the normal to the
interface. Show that these angles satisfy the “law of refraction”

g, COt oy = &, COt &y,

8.13. A dielectric interface carries a double layer of charge, whose
dipole moment per unit area is rm,, where n, is a unit vector normal to
the interface. Show that the potentials on the two sides of the interface
satisfy the condition

Py — @z = T[q.

8.14. The lower half of a spherical capacitor is filled with a dielectric
of dielectric constant ¢&. Show that the capacitance of the capacitor is the
same as if the entire capacitor were filled with a material of dielectric
constant

g =31 + e).

8.15. Show that if the space between two equipotential surfaces of an
electrostatic system is filled with a material of dielectric constant &, the two
surfaces will remain equipotential, but the potential difference between
thern will sink to 1/e of its original value.

8.16. Show that if the space between two equipotential surfaces in the
field of a capacitor is filled with a material of dielectric constant &, the
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capacitance of the capacitor will increase by the factor

€
e —fle—1)°
where fis the ratio of the initial potential difference between the two surfaces
to the voltage applied between the terminals of the capacitor,

8.17. Prove that in a linear isotropic dielectric the electrostatic potential
satisfies Uniqueness Theorems I, II, and III of Section 6-2, provided that
the boundary conditions discussed in Section 8-5 are satisfied at all dielectric
interfaces.

8.18. Prove that in a linear isotropic dielectric the electric field satisfies
Uniqueness Theorems A, B, C, and D of Section 6-2, provided that the
boundary conditions discussed in Section 8-5 are satisfied at all dielectric
interfaces.

8.19. If the charge of the capacitor described in Problem 8.9 is ¢, the
potential in the capacitor is

7

4o

@ <b — 7’).
Show that this potential does not satisfy Laplace’s equation, but satisfies
Eq. (8-6.1) instead.

8.20. A spherical capacitor is formed by two spheres of radii a and b.
The capacitor is filled with a material of variable permittivity e = (=« -+ 7)/r,
where « is a constant and 7 is the distance from the center. Using the basic

laws, show that if @ <C b the potential in the capacitor is

_ 1 et
v = dmegn (a4 6)°

where ¢ is the charge of the capacitor. Then show that this potential satisfies
Eq. (8-6.1).

— 8.21. An infinitely long circular dielectric cylinder of radius @ and
dielectric constant g, is placed with its axis perpendicular to a uniform
electric field E; in an infinite dielectric liquid of dielectric constant e,.
Show that the resultant field is

g — & a?
=E, + L 1 - 2—2 (cos Or, +sin00,)
&y T &7
outside the cylinder and
2e,
T gy 0

inside the cylinder, where ) and r are cylindrical coordinates of the point of
observation. '

8.22. When a dielectric or conducting sphere is placed in a uniform
electric field Eg, the resultant field E outside the sphere becomes

E=E, + E,
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(a) Show that E, can be attributed to a dipole-type charge distribution
of moment p induced in the sphere by the field E and given by

p = 4meyaE,,

where « is a constant of proportionality.
(b) The constant of proportionality o is called polarizability.! Show
that in the case under consideration it is given by

e — 1
e =2

as,

a4 =

8.23. A dielectric sphere of dielectric constant & and radius 2a contains
a concentric conducting sphere of radius a. Show that if the spheres are
placed in a uniform field E, the total positive (or negative) charge induced
on the metal sphere is

36meqea’
7= 5,27 F

8.24. A spherical shell of radii ¢ and & (b > 4) and dielectric constant
¢ is placed in an initialty uniform field E;. Show that the final field inside
the central cavity of the shell is

9e

E=g o= 236> — 1)

E,.

8.25. Consider a line charge of density 4 per unit length in a medium of
dielectric constant ¢ a distance ¢ from an infinite plane boundary with
another medium of dielectric constant ¢,. Show that the potential in medium
1 is the same as that due to the actual charge / and an image line charge
7= [leg — &)/(ey + £,)]7 placed a distance @ on the other side of
the boundary (considering the entire space to be filled with medium 1),
Show that the potential in medium 2 is the same as that due to an image
line charge of density 27 = [2¢,/{e; + &)/ at the position actually occupied
by 2 (considering the entire space to be filled with medium 2).

8.26. Consider a line charge of density 7 per unit length in a medium of
dielectric constant ¢, a distance d from the axis of an infinite circular cylinder
of radius @ and dielectric constant ¢,. Show that the potential outside the
cylinder is the same as that due to the actual charge Z and two image
charges 2] = [(e; — &5)/(&; + €5) ]2 and 2, = —[(e, — &,)/(&; + £,)]7 located
at distances / = a?/d and [/ = 0 from the axis of the cylinder, respectively
(all charges lie in one plane and the entire space is considered to be filled with
medium 1). Show that the potential in the cylinder is the same as that due to
an image line charge of density 2 = [2¢,/(&; -~ ¢,)]4 at the position actually
occupied by 7 (considering the entire space to be filled with medium 2).

L Polarizability is frequently defined as p = 2E, where = incorporates the factor
4rey.
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8.27, Show that the electrostatic potential measured at the center of a
spherical cavity made in a uniformly polarized dielectric is independent of
the size of the cavity.

8.28. Assuming that the electret described in Example 8-7.2 is such
that / 2 4, and using the method of axial expansion, find the potential at all
points near one end of the electret.

8.29. A spherical electret of radius « is made from a permanently
polarized material of uniform polarization P. Show that the potential of the
electret at a distance r > a from the center is

P-ria?
= 3¢e, (;)

8.30. A spherical electret of diameter 22 and a cubical electret of
length 24 on a side both have the same uniform polarization P. Show that
at large distances from the electrets the maximum field produced by the
cubical electret exceeds that produced by the spherical electret 6/7 times.

8.31. Two electrets of different shape are made from equal amounts of
the same material of the*same uniform polarization P. Show that at large
distances from the electrets the maximum fields which the two electrets can

produce are equal.
8.32. A disk electret of radius ¢ and uniform polarization P directed

along the symmetry axis is placed between two conducting plates connected
by a wire. The wire is then removed from the plates and the plates are
removed from the electret. Show that opposite charges, not exceeding
q = ma?P, will appear on the plates.

8.33. Show that the force between two point charges ¢, and ¢, em-
bedded in an infinite liquid of dielectric constant € a distance 7 apart is

Q
N9
dregert

8.34. Two point charges ¢, and ¢, are placed at the respective centers
of two small spherical cavities located a distance » apart in an infinite solid
body of dielectric constant e. Show that each charge is subjected to the
force

B 39,4, .
T dmey(2e + 12T

8.35. The space between the plates of a thin parallel-plate capacitor
of plate separation  is filled with a dielectric of dielectric constant e. A
voltage V'is applied to the capacitor. Find the force acting on a point charge
g when this charge is placed in (a) a very small needle-shaped cavity made
in the dielectric with the axis normal to the plates, and (b) a very small
coin-shaped cavity made in the dielectric with the axis normal to the plates.

8.36. A small, slender dielectric cylinder of dielectric constant ¢ and
volume z is placed at a large distance 7 from a small conducting sphere of
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radius a kept at a potential ¥. The axis of the cylinder is along the line
joining the sphere with the cylinder. Neglecting the end effects of the
cylinder, show that the cylinder is attracted to the sphere with a force

I °2¢y(e - 1) V22 .
7--')

8.37. A small piece of electret of uniform polarization P and volume v,
is placed at a large distance 7 from a small, thin dielectric disk of dielectric
constant ¢ and volume v,. The polarization of the electret is in the direction
of the line joining the electret with the disk. The flat surfaces of the disk
are normal to this line. Neglecting the edge effects of the disk, show that the
disk is attracted to the electret with a force

Fo °3(e — 1) Py,
dm2eqer’

8.38. A large container made of dielectric material is covered with two
conducting plates separated from each *other by a straight narrow gap.
The container is filled with a dielectric liquid of dielectric constant ¢ and
density p, and a voltage V is applied between the plates. A small spherical
air bubble has formed in the liquid at a depth 4 directly below the gap
separating the plates. Neglecting all edge and end effects, show that the

(2e + L)m?pgh®

oy
vtz 3eqele — 1)

8.39. A cylindrical capacitor consisting of two coaxial cylinders of
radil @ and & and length / is used as an electrostatic dust percipitator (dust
particles in the inhomogeneous field of the capacitor experience an attraction
to the inner cylinder). The air to be filtered contains spherical dust particles
of density p and dielectric constant . Show that when a voltage Vis applied
to the capacitor, the velocity v with which the air must be blown through
the capacitor in order to be made completely free of dust must be

_ V3ey(e — NIV
U o= .
T bln (bla)Vp(e + 2)(h% — @)

8.40. A parallel-plate capacitor of plate separation ¢ and area A has
a dielectric slab also of area 4 and thickness ¢ between the plates. The
plates and the dielectric are not fastened to each other. Show that when
a voltage V is applied to the capacitor and the capacitor is kept in a
horizontal position, the entire capacitor can be lifted by its upper plate
without coming apart if the combined weight w of the lower plate and
dielectric satisfies the relation

o < Cepe?124
-2
8.41. A long, horizontal, hollow dielectric cylinder of dielectric con-
stant ¢, inner radius @, outer radius b, and length / has its upper halfreplaced
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by two semi-infinite horizontal metal plates which almost touch each other
along the axis of the cvlinder. Show that if a voltage ¥ is applied between the
plates, the dielectric will stay in place without being fastened to the plates
provided that its weight w« satisfies the relation

SRR I)

W=
2 a b

8.42. The upper half of a hollow conducting sphere of radius 4 is filled
with a solid dielectric of dielectric constant e. The dielectric has a hemi-
spherical depression of radius a2 concentric with the hollow sphere. A
conducting sphere of radius a is placed into this depression, and a voltage
I”is applied between the two spheres. Show that the smaller sphere will stay
in place without being fastened to the diclectric if the weight of the smaller
sphere w satisfies the relation

™

V2h?
w = Thmey(e? — ) o—x3 .
2 0( >(b _ (Z>2
8.43. A line charge of density 2 is placed in a dielectric liquid of
dielectric constant g, parallel to, and at a distance a from, the infinite-plane
boundary with a solid dielectric €,. Show that the force per unit length of

the line charge is os2

f 2oy — &)

T dmegeale; + &)

8.44. Two coaxial cylinders of radii @ and b are lowered vertically into a
dielectric liquid of density p. Show that if the liquid in the space between
the cylinders rises a distance # when a voltage V is applied between them,
the dielectric constant of the liquid is

pzh(b? — @%) In (b/a)
€= “g V2

8.45. A nonconducting liquid of dielectric constant ¢ and density p
is contained in a U-tube of circular cross section. The inner radius of the
tube is a, and the dielectric constant of the tube is ¢ = 1. One half of
the tube is located between the plates of a thin parallel-plate capacitor, the
other half is outside the capacitor. The separation between the plates is
d, (d> a), and the voltage between the plates is V. Show that difference
of liquid levels in the two halves of the tube is
“egle — )V2
e T Dped®

8.46. Show that the electrostatic energy of a system consisting of a small
dielectric or conducting sphere located at a distance r from a point charge

— 1.

Ah ~

g can be expressed as y “ug

__ M .y
8megrt o

where o is the polarizability of the sphere (sece Problem 8.22) and U, is the
self energy of the point charge.



STATIONARY ELECTRIC
FIELD IN CONDUCTING
MEDIA

The sphere of existence of electric fields is not limited to
vacuum and dielectrics. Electric fields can exist in all media, including
conductors. In this chapter we shall study the time-independent
electric fields in conducting media. We shall call these fields the
stationary fields.

9-1. Electric Fields in Conductors. Current Density Field

The electric field in a conductor is defined in the same manner as
the electric field in any other medium—that is, as the electric field E
measured in a needle-shaped cavity drilled along the direction of
the field.

Electric fields in conductors are always accompanied by electric
currents (electrostatic fields cannot exist in conductors). Itis convenient
to describe these currents in terms of the electric current density J. The
current density is a vector defined by the formula

zzfj-ds, (9-1.1)

where 7 is the current through the surface of integration §. The current
density may also be defined in the equivalent differential form as

a1
4s,’
276

J, = (9-1.2)
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-
2.
[y

ar

Fra. 9.1 Definition of electric current density.

where J, is the component of J along some direction a, 4S5, is an element
of area normal to this*direction, and 4/ is the current through this
element of area (Fig. 9.1). From this definition it follows that J =
dlldS,, where dS; is an element of area so oriented that the ratio 41/dS is
a maximum (compare with the definition of the displacement vector
D, p. 81). The sense of the direction of J is defined to be the same as
that of the current [ at the point under consideration; the general
orientation of J is therefore from the positive to the negative terminal
of the current source. The units of current density are amp/m?2.

The space distribution of the clectric current density constitutes
a vector fleld. This field is intimately related to the electric field E.

9-2. Fundamental Laws of the Stationary Electric Fields
in Conducting Media

Just like electrostatic fields, electric fields of current-carrying
conductors can be made “visible” by means of lines-of-force pictures
formed by grass seeds (Plates 6-9). The study of these fields has
shown that the curl and circulation laws for them are the same as for
the electrostatic fields: ‘

VxE =090, é;E-dl:O. (9-2.1a, b)

! The method for obtaining such pictures is described in Oleg D. Jefimenko
‘‘Demonstration of the Electric Fields of Current-Carrying Conductors,”” American_Journal
of Physics 30, 19-21 (1962).
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The study of the stationary current density ficlds has shown tha:
the divergence and flux laws for them are

V-J=0, $J-d8=0. (9-2.2a, b

Furthermore, it has been established that in the majority of
common conducting media the current density field J is connected
with the electric field E by the equation

J = ¢E, (9-2.3
where ¢ is a factor of proportionality called the conductivity. The con-
ductivity has different values for different substances and usually
depends on temperature and other parameters characterizing the state
of the substance under consideration. The units of conductivity are
amp/volt - m. The reciprocal of the conductivity is called the resistivity p,

1

o

its units are volt - m/amp. Equation (9-2.3) is usually called Ohm’s law,
and the media for which thislaw holds are called ofmic conductors, or linear
isotropic conductors.

Equations (9-2.1), (9-2.2), and (9-2.3) completely determine the
curl and divergence laws for both the stationary E field and the station-
ary J field and thus, by Helmholtz’s theorem of vector analysis, con-
stitute a complete set of equations uniquely specifying these fields.

As one can see, the basic field laws for the stationary fields are
analogous to the basic laws for the electrostatic fields in charge-free
dielectrics. In fact, they can be formally obtained from the correspond-
ing electrostatic laws by merely substituting J for D (1 for ¢), and ¢ for
eoe. Similarly, the dimensions of the stationary field quantities can be
formally obtained from the dimensions of the corresponding electro-
static quantities by merely changing amp - sec to amp. This is a very
useful analogy, since it allows one to write down immediately various
consequences of the stationary field laws by using the consequences
derived previously from the electrostatic field laws, and also allows one
to extend the techniques and methods used for the solution of electro-
static problems to the splution of the stationary field problems.

Ohm’s law (9-2.3) constitutes an important link connecting the
macroscopic theory of currents in metallic conductors with the mi-
croscopic theory. In the microscopic theory, electric current in metals
is attributed to a drift of free electrons under the action of the applied
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electric field, and the current density is given by (comparc with
Example 1-3.3)
J - K]ZV([’

where ¢ is the charge of an clectron, 2 i1s the number of free clectrons
per unit volume, and v, is the drift velocity of the electrons. The
drift velocity 1s

°] ¢cE

Vo= 5
! 2m

where m 1s the mass of an electron, E is the applied electric ficld, and ¢
Is the average time between collisions of an clectron with the atoms
(ions) that make up the metal. This time is given by

where [ is the mean free path of the electrons, and v, is their thermal
velocity (which usually is much larger than 2,). Combining these
equations, one obtains

°1 &%
J = 5" e, E,
and 1f one sets
°1 €%
572—772—2/'[ = a,

where ¢ is the conductivity of the metal, a transition between the
macroscopic and the microscopic theory is achieved.

9-3. Some Consequences of the Fundamental Laws.

Conductance and Resistance

We shall now derive the most important consequences of the
stationary field laws.

According to the curl law (9-2.1a) and corollary to Poisson’s
theorem of vector analysis, a stationary electric field in a conductor
can be expressed in terms of the scalar potential ¢ defined (just as for
the electrostatic field) by the equation

E - —Veg. (9-3.1)
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Taking the line integral of this equation, we obtain the familiar integral
formula for the potential

b
Po — Py :f E. dl = qu) (9—32)

where V,, is the voltage between the points @ and 6.

Applying the circulation law (9-2.1b) to an infinitesimal loop
enclosing the interface between two different conductors, we obtain
the boundary condition for E (compare with the derivation of the
boundary conditions at a dielectric interface, Section 8-3)

E, = Ep, (9-3.3)
and hence the boundary condition for ¢
P1 = Po- (9-3.4)

Applying the flux law (9-2.2b) to an infinitesimal ‘‘pillbox”’
enclosing the interface between two different conductors, we similarly
obtain the boundary condition for J (compare with the derivation of
the boundary conditions for D in Section 8-5)

\jnl = Jnoy (9-35)

and combining this equation with Eqgs. (9-2.3) and (9-3.1), we obtain
0 O, :

oy al; = g, 6—712 , (9-3.6)

where n designates a direction normal to the interface. Observe that
because no current can be present in a dielectric, Eq. {9-3.5) implies
that J,, and hence E,, Is zero at a conductor-dielectric interface, so
that only J, and £, may exist at such an interface under stationary
conditions.

Finally, combining Egs. (9-2.2a), (9-2.3), and (9-3.1), we can
write

V.J=V.6E=Vs.E ~0oV.E= —Vg.Vp — oV =0,
or

1
Vig + - Vo . Vg =0, (9-3.7)

which in the case of constant ¢ reduces to Laplace’s equation
Vip = 0. (9-3.8)

To complete this set of equations, we shall now introduce two
important quantities correlating current and voltage in a conductor.
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The first of these quantities is the conductance G. It is defined by the
equation

I
=7

where V is the voltage applied to the conductor, and [ is the current in
it. As one can see from this formula, G constitutes the stationary field
counterpart of the capacitance C. The other quantity is the reciprocal of
the conductance, called the resistance R. The resistance is thus defined by

G (9-3.9)

(9-3.10)
or

(9-3.11)

(this formula is often mistaken for a law and is sometimes referred to
as “Ohm’s law”). The units of resistance are volt/amp, commonly
called “ohm”; the units of conductance are amp/volt, sometimes called
“mho”. The procedure for the calculation of the conductance or
resistance is analogous to that for the calculation of capacitance.

In any conducting system in which a steady current is maintained
by external sources, there are at least two conducting bodies by means
of which the electric field is established in the system and through
which the current enters and leaves this system. They are called
electrodes and correspond to the capacitor plates of an electrostatic
system. In order to minimize heat losses (see Section 9-7), electrodes
are usually made of materials having very high conductivity g, so that
for a finite current the electric field inside an electrode is practically
zero, and hence the potential at all points of an electrode is practically
constant. It is therefore customary to consider electrodes as equipoten-
tial bodies whenever no explicit statement to the contrary is made.

»

v

Example 9-3.1 Determine the conductance and the resistance of
a straight cylindrical rod of conductivity o, cross-section area §, and
length [, between two plane electrodes normal to the axis of the rod
(Fig. 9.2).

The electric field in the rod is homogeneous (a straight rod is the
stationary field counterpart of a parallel-plate capacitor of electrostatics)
and is given by

_E_V
=7
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T
|

Frc. 9.2 Calculation of the conductance and resistance of a cylindrical rod.

where Vis the voltage applied to the rod. Substituting this expression into
Ohm’s law (9-2.3), we have

J_ 14
=07
The current in the rod is then :
i |18
[= J JodS=o0-—,
and the conductance, G == I/V, is therefore
C S

(in analogy with the capacitance of a parallel plate capacitor). The resist-
ance, R = V/l 1s

[

R {

Example 9-3.2 A spherical electrode of radius a 1s lowered centrally
into a perfectly conducting hemispherical bowl of inner radius 4, which is
then filled with a conducting liquid of conductivity ¢ (Fig. 9.3). Find the
resistance of the liquid between the bowl and the sphere.

Describing a concentric spherical Gaussian surface S of radius r around
the spherical electrode and applying the flux law (9-2.2b) to this surface,
we have

§j-dS=0.

Let us now split this integral into three integrals: the integral over the part
of the Gaussian surface submerged in the liquid, S;; the integral over the
part of the Gaussian surface crossing the lead wire, S,; and the integral over
the part of the Gaussian surface external to the liquid and to the lead wire,
S5, We then obtain

§j-ds :fjl-ds1 +fj2.ds.z +fjg-dsg —0.

By symmetry, the current density J on the surface ) is radial and constant,
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Frc. 9.3 Calculation of the resistance of a liquid contained in a hemi-
spherical bowl.

so that the first integral is
JJI < dS, = Jfa’Sl = J2mr2

By the definition of current density, the second integral represents the current
carried by the lead wire in the outward direction, or

J:]g < dSy = —1,

where [ is the current entering the Gaussian surface through this wire.
Since no current is present outside the liquid and the lead wire, the third
integral is zero. We thus have

J2mr? — [ =0,

or, solving for J and taking into account the radial direction of the current,

J=gmre

The field is then, by Ohm’s law (9-2.3),
I

T 2mor

r,.

Taking the line integral of E, we obtain for the voltage V,, between the
two electrodes

v JDE J v , I /1 I\
@ ) ’ r*(.?narzr“.(rm%ro a*b)’

€3

which, by Eq. (9-3.11), gives for the resistance

R | 1 \
=55le 7 3)
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dS = tadf

Fic. 9.4 Calculation of the resistance of a circular tube.

Example 9-3.3 A thin-walled tube of circular cross-section, radius q,
wall thickness t <© 4, and resistivity p is bent to form a “half-ring” of median
radius 6 (Fig. 9.4). Two flat electrodes are attached to the ends of the tube.
Find the resistance of the tube between the two electrodes, and determine
the limiting value of this resistance for a very narrow tube (a << b).

By inspection we see that the field lines are coaxial circular arcs parallel
to the axis of the tube. The field is therefore

4
E——,

wr

where V' is the voltage applied to the tube and =7 is the length of the arc of
radius 7 joining the two electrodes. The current density is then

V

T pmr
The current in the tube can be found by integrating J over the cross-sectional
area of the tube. The element of area for this integration is dS = fa d0),
where 4 is the angle between the vertical plane and the radius vector joining
dS with the axis of the tube. The radius r expressed in terms of f is r =
b - acos ). The current is therefore

I 7S — Vta df
J-ds = p(b — a cos 0)

Vta [(b — a) tan 0/2:| T
e tan_l —_—
p77 \/[;2_42 ViE— @ 0

Vta 4 ™ 2Vta

pr VB — g 2 pVipE g2

and the resistance, R = V/I, i

If a € b, we can write
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which upon multiplication and division by 7 and substitution of .S for 2rat
(cross-sectional area of the tube wall) and / for = (length of the tube) gives

Thus in this limiting case the resistance approaches the value that it would
have if the tube were straight (see Example 9-3.1).

Example 9-3.4 A coaxial cable has two layers of different insulating

materials between the core and the sheath. The length of the cable is /;

the radius of the core is a, that of the sheath is 4, the radius of the boundary

between the two insulating layers is ¢, the resistivity of the inner layer is py,

that of the outer is p, (Fig. 9.3). Find the leakage resistance of the cable.
The leakage current density is, by the flux law (9-2.2b),

The electric field associated with this current is, by Egs. (9-2.3) and (9-2.4),

Pl Pl
El = m and E‘Z = ﬁrl

for the inner and the outer insulating layers, respectively. The voltage
between the core and the sheath is, by Eq. (9-3.2),

I/nb = (

[y [t
_J; 2771l dr ) 2m dr

I
= T’rl,(pl Incfa + p,Inbjc).

1 e b
E.dr :J Edr + ( Eydr

Fic. 9.5 Calculation of the leakage
resistance of a coaxial cable with two
layers of insulating material.
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The resistance is therefore

1
R = 77 (pyIncfa + pyIn bjc).

9-4. Special Methods for the Solution of Stationary Electric
Field Problems

Just as in the case of the electrostatic field problems involving linear
isotropic dielectrics, most special methods for the solution of the
stationary field problems involving ohmic conductors are based on the
uniqueness theorems for the potential ¢ representing the fields under
consideration. R

The potential for the stationary fields in ohmic conductors of
constant conductivity satisfies Laplace’s equations, is constant on the
surfaces of electrodes, and satisfies the boundary conditions at conductor-
conductor interfaces analogous to the boundary conditions which are
satisfied by the electrostatic potential at dielectric-dielectric interfaces.
Therefore the potential ¢ for the stationary fields in ohmic conductors
is subject to essentially the same uniqueness theorems that apply to the
electrostatic ¢ except that the theorems are now formulated in reference
to electrodes and currents instead of conductors and charges.® Con-
sequently, all those special methods for the solution of the electrostatic
problems that are based on the uniqueness theorems for ¢ are applicable
for the solution of the stationary field problems as well.

Moreover, it is clear that the electrostatic and the stationary field
problems of identical geometry have identical solutions, except that in
the formulas representing the electrostatic solutions the symbols D, ¢,
C, and ¢, appear in places where the symbols J, 7, G, and ¢ appear in
the formulas representing the stationary field solutions. Hence, one
can “borrow’ solutions for the stationary field problems from electro-
static problems.

It must be pointed out, however, that there are certain limitations
in the applicability of such borrowed solutions. In particular, the lead
wires necessary for maintaining the current in conductors may introduce
field distortions that do not have a counterpart in the electrostatic
fields, and tHus may impair the accuracy of the results obtained from
the borrowed solutions. Furthermore, since in the free space ¢ = 1,

! The proof of the theorems is left to Problem 9.1.
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while ¢ = 0, the electrostatic systems may have fringing fields (edge
effects) that do not have a counterpart in the geometrically similar
stationary field systems (see Example 9-4.5). 'This also imposes limita-
tions on the use of the borrowed solutions.

Another important exception to the analogy between the electro-
static and the stationary field problems is that whereas there are only
two types of electrostatic images (one due to the dielectric-conductor
interface, the other due to the dielectric-diclectric interface), there are
three types of images for stationary flelds. The first type is due to the
conductor-clectrode interface (Table 9-1), the second due to the con-
ductor-conductor interface,’ and the third due to the conductor-
dielectric interface {Table 9-1I); the latter has no counterpart in
electrostatics.?

v 3
Example 9-4.1 A spherical shell of resistivity p contains two conical
electrodes as shown in Fig. 9.6. Find the resistance of the shell between the
two electrodes and check the result by investigating the limiting case of
o = 7|2 — {3, where 8 < | (in this limiting case the shell becomes a thin
flatéring).

This problem can be solved by using the method of harmonics. By

i

Iic. 9.6 Calculation of the resistance of a spherical shell.

1 These images are analogous to the ones described in Example 8-6.2 and
Problems 8.25 and 8.26.

2 The correctness of the images given in Tables 9-I and 9-II is verified, as usual,
by checking whether the images satisfy the required boundary conditions.
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the symmetry of the problem, the potential must be constant on conical
surfaces coaxial with the electrodes and having the common apex in the
center of the shell. A suitable function found from Tables 6-1 and 5-1 is

. 1 + cos
@ = AOQ()(COS 6) =4 Inl_——cos—a'

The constant 4 can be determined from the boundary conditions

N <t

(1) athh = a, ¢ =

bl

V
(2)ath =7 — a, =73

V( 1 -+ cos or.)‘l
= —|In————1 .

which require that

2 I — cos a

/

The electric field is then

Op 1 + cos 0)
E=—-Vr=—155%~= *m(““rm,
- 24
T orsinf ¥

The current density is therefore

1 24

J:;E:prsine u

The current in the shell may now be found by integrating J over the cross
section of the shell. Taking the equatorial cross section (simplest integration,
) = w/2,sin § = 1), we have

»24 1
I=\JdS=| —2mrdr=—-4nd(b — a),

and substituting A,

1 1 A\
I =—2nV(b — a)(ln —iﬂ) .
p 1 — cos o
The resistance, R = V/I, is then
p I - cos o

R =

5lh —a) BT cos 2
If o = 7/2 — f, where § <7 1, we can write

lJrcos:x_1 1 -+ cos (w2 — f)
"T " cosa

| +sinp I 1+ 8

1 "T—sing T "T=p

=1

M — cos (w2 — p) ~ 26,
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The resistance becomes in this case

R~ 2.

P
2m(b — a)

)
b—a 1 2
9 2(b—a) b+a

R~ p2f8

If we now observe that for < 1 the conducting shell degenerates into a
flat circular ring of average thickness ¢ = 25 - (6 4 a)/2 and arca S =
m(6% — a?), we can write
14
R~ P § B
which was to be expected by analogy with the parallel-plate capacitor or by
Example 9-3.1.

Example 9-4.2 To measure the conductivity of sea water, two spherical
electrodes (Fig. 9.7a) of radius @ are lowered in the sea to a depth £ at a
distance d from each other*(both % and d are large compared to ). Find the
conductivity of the water if a voltage I applied to the electrodes produces
a current / between them, and estimate the accuracy of the obtained
expression.

T R e .
— : —
e :
h v h
E-LL"% f _——“ _________ ,7__
k = h h ’ ’ h
1 2 1
115 el L | L
‘ d - fe———d——1

(a) (b)

Fic. 9.7 Method of images for current carrying conductors. (a) Two
spherical electrodes in water. (b) Equivalent image system.

We shall solve this problem by the method of images. The image system
is shown in Fig. 9.7b. By analogy with electrostatics [Eq. (5-3.4)] or by Egs.
(9-2.2b), (9-2.3) and (9-3.2), the potential due to a spherical electrode delivering
a current [ to an ohmic conductor is ¢ = I/4mor, where r is the distance
from the center of the electrode to the point of observation {(we assume that
the clectrode is so small compared to other characteristic dimensions of the
system, that the field around the electrode may be considered spherically
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2

o

TasLe 9-1
Images in Conductor-Electrode Interfaces®

Actual System | Equivalent Image System

Point or line electrode in front of an
infinite plane electrode:

1
—~

Point or line electrode in front of two intersecting,
infinite plane electrodes:

I
—

Point electrode in front of a spherical electrode:

I'=(ald)I; I"=1-1; l=a2d

Line electrode in front of a cylindrical electrode:

= a%d

* Except for the third system. all images in this table are valid also for thin conducting
sheets,
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F—

TasrLe 9-11
Images in Conductor-Dielectric Interfaces®

Actual System

Equivalent Image System

Point or line electrode in front of an infinite plane
conductor-dielectric boundary:

Point or line electrode in front of two intersecting,

infinite, plane conducto

Two line electrodes in

Line electrode in front

r-dielectric boundaries:

= a?/d

of a cylindrical cavity:

* All images in this table are valid also for

I=a%d

- thin conducting sheets.
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symmetric). The potential on the surface of the electrode 1, being the sum
of the potentials due to the two electrodes and their images, is then

1 1 I I

NT irea T dmod  amgV a2 — 42 " 4mg2h

1 a a a}
— QR Il
4770(1[ d A4z L ap 0 2h

The potential on the surface of the electrode 2 is similarly

1 | a a a}
Y27 4oa| T f(—z’%'—\/d2_74/1‘2 24|

The voltage between the two electrodes is therefore

p I'I a a a
TN T T o —z_i_\/d2+4/l2+2/z'

This gives for the conductivity

7 | a a o a
CT 9wV T d Vi~ a2k

To estimate the accuracy of this expression, we first note that the method
of images as we have used it in this problem applies only to point charges or
point electrodes. Also, the method for the calculation of potentials that we
have used here is justifiable only if all electrodes may be regarded as point
sources from the location of other electrodes. As it follows from Problem
4.12 and Eq. (5-3.4), any electrode may be regarded as a point source from a
distance { > 2na, provided that the maximum admissible error in the poten-
tial does not exceed (100/7)% . Hence, neglecting the effect of the lead wires,
the accuracy of our expression for 0 may be expected to be at least (2¢/d)100%
or (a/h)100%, whichever is larger.

Example 9-4.3 Under the action of mechanical stress, a conducting
bar of conductivity ¢ is deformed from the initial shape shown in Fig. 9.8a
to the final shape shown in Fig. 9.8b. Find the relative change in the
resistance of the bar between the faces A4 and B if the thickness of the bar
does not change.

This problem can be solved by the method of curvilinear squares. By
analogy with the capacitance, the conductance of a plane conductor of
uniform thickness t and conductivity ¢ is given by [see Eq. (6-6.5)]

N,
G = ’Tf at,
D
where .V, is the number of flux tubes (current tubes), and &, is the number
of potential division (voltage steps) on the conductor’s field map. Using
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~
N

oS
o]

(a) (b)

Frc. 9.8 Method of curvilinear squares for current-carrying conductors.
(a) Curvilinear-square map of a conducting bar. (b) Curvilinear-square map
of the bar after it has deformed.

the maps drawn in Figs. 9.8a and 9.8b, we then have for the original and
the deformed bar, respectively,

G + ¢ d G—4
0_160'. an d—IBO‘L

The relative change in resistance (the reciprocal of the relative change in
conductance) is therefore

R, G, )
R—To = 5; = 1.125.

Example 9-4.4 Electric current enters an infinite plane conducting
sheet at a point P and leaves at infinity. A circular hole, exclusive of P, is
cut in the sheet, and the point G nearest to P on the edge of the hole is
grounded (Fig. 9.9). Show that the potential at any point on the edge of the
hole with respect to the ground is twice that which was present before the
hole was cut.

Before the hole was cut, the electric field E, in the sheet was radial, so
that if the thickness of the sheet is ¢, we have from the flux law (9-2.2b) and
Ohm’s law (9-2.3)

1

E, = r.
0 2motr ¢

N
a - - 3
f6\ _‘_/ﬁﬂ ;

{
—

T

(a) (b)

TFre. 9.9 Method of images for current-carrying conductors. (a) Actual
system. (b) Equivalent image system.
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The corresponding potential at any point & of the circle forming the edge
of the hole was then

I 71 I Vd% 4+ 2% — 2ad cos 0

.
= E, - _ — — — =
7ol 0) J;.o o dr 2mot In Ty 2mot In d—a ’

where the symbols are the same as in Fig. 9.9a. The potential at the same
point after the hole was cut is obtained by the method of images (Table
9-1I) and is, accordingly, the sum of the three partial potentials

I l Vd? -+ a2 — 2ad cos f I \/12+az—2(zlc050
n n

¢(a, 0) =

" 270t d—a T 2mot a—1
I l a
T 9ot nae

where the symbols are the same as in Fig. 9.9b. Substituting [ = a%/d, we

obtain after simplifications >

1 1 (d* + a* — 2ad cos 0)
SR

¢(a> 0) = = 2970(0) 0).

" 9mot

Example 9-4.5 As it has been stated above, one can find the conduct-
ance of a conductor by replacing ¢y by ¢ in the expression for the capaci-
tance of the geometrically similar capacitor. Investigate the limitations of
this method by considering the system of two electrodes (Fig. 9.10), the
space between which is partially filled with a material of conductivity ¢
and dielectric constant e.

The ratio of the capacitance to the conductance of this system is

c Qv Q

G vi I’
where @ is the charge of one electrode and [ is the current carried by the
intervening medium from one electrode to the other. The charge @ can be
expressed as the surface integral §D - dS evaluated over a surface enclosing
the electrode carrying @, so that

¢ 17
5:7§Dws

e ™~
L/ \
_T_-')me

- /81 am—— o 9.10 Correlation between capac-

I itance and conductance.
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The surface integral can be expressed as the sum of two integrals taken over
the surface §; (lying inside the material between the two electrodes) and S,
(external to the material). This gives with D, replaced by eg,E,,

¢ 1
C = j(fGOEEl < dS, —!—fDZ . dsz).

Replacing E; by J/o, we now obtain

C 1 J
el 808(—;_°dsl+ D, - 4S,

1 I
27 8088—!— Dz-dsz)

e, ] _we . 9
T o +IfD2.dSZ— s T T

where Q' is the charge that is responsible for the flux through the surface
S,. If this charge is very small, it may be disregarded as the “edge effect.”

In this case one can write

G gt oC

==, or G=—,

G 1 LN
so that the conductance may be obtained from the capacitance by merely
replacing e,¢ by 6. This formula is accurate, however, only to the extent

that one can neglect the edge effects in the calculation of C.
A

9-5. Displacement Field and Static Charge in Current-

Carrying Conductors

As in any material medium, the displacement field in a current-
carrying conductor is defined in terms of the displacement vector D
measured in a coin-shaped cavity whose axis lies in the direction of this
vector. It has been found that D in conductors carrying a steady current
is subject to the same basic laws as in the dielectric media. In particular,
for the majority of common conductors

D = ¢, ¢E, (9-5.1)

and for all conductors
V:D=p and fﬁD - dS :fp dv. (9-5.2a, b)

An important consequence of these equations is that currents are
associated with accumulations of static space and surface charge in the
conductors that carry these currents.
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A static space charge accumulates in electrically inhomogeneous
current-carrying conductors at the points where either e or o, or botk
¢ and o, are such functions of position that V(e/o) does not vanish.
This can be shown by combining Egs. (9-5.2a), (9-5.1), and (9-2.3),
which give for a space charge distribution!

Pcharge = V-D = V’Eer = V'sosg

[ £
:SOJ'V;'J[—EO;V'J.

Since V . J = 0 by Eq. (9-2.2a), we obtain
—eJ VI, (9-5.3)
g

Pcharge

A static surface charge accumulates on the interface between two

different conductors at the points where the currents traverse this

interface, This can be shown as follows. According to Eq. (8-5.4)

(which, being a consequence of VD = p, is valid for conductors
as well as for dielectrics) the surface charge on an interface is

= Dnz - Dnl‘

Gcharge
Since

D = egeE = gy = J,
ag

we can write
&

£
Ocharge — o gg Jng — & ; Jnl'
2 1
But, by Eq. (9-3.5),
Jn1 = Jno
and hence we obtain
Ocharge — SOJn(fTZ - _Z_l) . (9-54—)
2 1

Since all complete conducting systems contain interfaces traversed
by currents (conductor-electrode interfaces, for example) and many
systems contain inhomogeneous conductors, electric currents in con-
ductors are always associated with stationary charge accumulations.?
Therefore, according to Egs. (9-5.1) and (9-5.2), the stationary electric
field (or potential) in a current-carrying conductor can be determined

1 We shall use subscripts “charge” to differentiate the charge densities p and
o from the resistivity p and conductivity ¢ whenever a confusion of symbols could
result if the subscripts were not used.

2 Charges accumulate also on conductor-dielectric interfaces (see Section 9-6).
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by the ordinary electrostatic methods from these charge accumulations
once the location and density of all these accumulations are known.
That is to say, as far as the calculation of the stationary electric field
inside (or outside, see Section 9-6) a current-carrying conductor is
concerned, the current as such may be completely ignored, and only
the charge distribution on the surface and in the interior of the con-
ductor needs to be taken into account. Thus the stationary fields of
current-carrying conductors, just like the electrostatic fields, have
electric charges as their sources.!

The phenomenon of the formation of space and surface charge
accumulations associated with leakage currents in dielectrics is called
dielectric absorption. The dielectric absorption is, among other things,
responsible for the residual charge appearing on the plates of a capacitor
shortly after the capacitor has been disconnected from the voltage
source and has been discharged by a spark. It may also be responsible
for certain properties of wax electrets (see Example 9-5.2).

v

Example 9-5.1  Find the surface charge accumulating on the core and the

sheath (“‘electrodes’”) and on the diclectric interface of the coaxial cable of Ex-

ample 9-3.4 when a voltage V is applied between the core and the sheath.
The current density at the interface is

I vV

S =5 = TaR

where R is the leakage resistance of the cable. Using the value for R found
in Example 9-3.4, we have

J= r

¢(pylncla + pplnbje)’

The surface charge density on the interface is then, by Egs. (9-5.4) and
(9-2.4),

&V
¢(pyIncla — pyln djc

Ocharge =

) (p2gs — Pr&a)s

where ¢, and ¢, are the dielectric constants of the inner and outer insulator,
respectively. The surface charge density on the electrodes is, similarly,
(taking into account that the resistivity of electrodes is zero by definition)

o &V
Ochiarge = F a(p,Incla + p,In bjc) Préx

11t must be emphasized that the charge accumulations described above are
associated with stationary currents and are different from the charge distributions
that appear in conductors carrying time-dependent currents.
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and
NG
Ocharge = — P2fe

blpyInela + pylnble)

for the inner and outer electrode, respectively.

Example 9-5.2 A heated wax slab of thickness 4 and area S is placed
between two parallel plate electrodes, and a voltage V is applied to them.
Because of the irregular cooling of the slab, its permittivity becomes smaller
near the surfaces than well inside, and will be assumed to be given by

T y .
£ = kl(l —+ kysin 7), where £, and k, are constants, and x'is the distance

from the positive electrode toward the negative one. The conductivity ¢
of the slab will be assumed constant. Find the space charge accumulating
in the slab as a result of the current in it (such charge accumulations may
be formed during the making of wax electrets !).

By Eq. (9-5.3) the space charge is

£ J . omx
p=¢&J" V(E) =& Vl:kl(l -+ ky sin 7)]
= SOE-(klkzgcos%xi)
= soklkng-cosﬂ——;i.

Since J and o are constant everywhere in the slab, E = J/o is also constant,
and hence £ = V/d. The space charge is therefore

T
Pcharge = 7780/“1/‘2 d_2 cos _d .
Example 9-5.3 Show that the potential

I
4or

¢:

due to a single spherical electrode delivering a current / to an infinite
conductor of conductivity ¢ is the same as that given by the electrostatic
formula

9

== bl
dreger

2

where ¢ is the charge on the electrode-conductor interface and ¢ is the
permittivity of the conductor.

!'D. K. Walker and O. D. Jefimenko *‘Volume Charge Distribution in Carnauba
Wax Electrets,”” jJournal of Applied Physics 44, 3459-3464 (1973).




STATIONARY ELECTRIC FIELD IN CONDUCTING MEDIA 299

Let the quantities pertaining to the conductor be designated by sub-
script 2 and those pertaining to the electrode by subscript 1. According
to Eq. (9-5.4), the surface charge density on the electrode-conductor

interface is then . .
2 1
Ocharge = 80"11( - _)

Og 01

The conductivity of the electrode, oy, is infinite by definition. The current
density at the interface is, by symmetry,

7

T 4e?’

J

where a is the radius of the electrode. We have therefore

I e,
Gcharge — €p dmad ; .
2

Multiplying this expression by the surface area of the electrode, we obtain
for the total charge residing on the electrode ¢ = g,¢,//0,. The potential due
to this charge is, by symmetry,

q

dege,r

¥

Substituting ¢ in this expression and dropping the subscripts, we therefore
obtain for the potential due to the electrode under consideration

which was to be proved. A

9-6. Electric Field Outside a Current-Carrying Conductor

In contrast to the electrostatic field outside a conductor in the
state of electrostatic equilibrium, the electric field outside a conductor
carrying a current has a nonvanishing tangential component at the
surface of the conductor. Indeed, as it has been shown in Sections 8-5
and 9-3, the tangential component of E must be continuous across a
dielectric-dielectric and a conductor-conductor interface. Since there
Is no demarcation line between substances which we call conductors
and substances which we call dielectrics, however, the tangential
component of E must also be continuous across a conductor-dielectric
interface and, thus, across any interface whatsoever. Therefore at the
surface of any body, E satisfies the relation

Ez = L4 inside* (9'6- 1)

outside
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Hence, since at the surface of a current-carrying conductor there is a
nonvanishing tangential component of E inside the conductor, there
also must be an equal nonvanishing component of E outside the con-
ductor.

On the other hand, the normal component of the electric field
outside a current-carrying conductor is exactly the same as it would be if
the conductor were in electrostatic equilibrium:

4

noutside — T
£4€

E (9-6.2)
where o Is the surface charge density on the conductor and e is the di-
electric constant of the medium outside the conductor. Indeed, the
boundary conditions for D, obtained in Section 8-5 require that at
the surface of any body

Dn outside Dn ipside G,
and, since E,, and hence also D,, is zero inside a conductor at a con-
ductor-dielectric interface, Eq. (9-6.2) results.

One should note that Eq. (9-6.1) implies the continuity of the
potential ¢ across the surface of a current-carrying conductor (see
Sections 8-5 and 9-3)

Poutside — Pinside* (9'63)

These properties of the electric field outside a current-carrying
conductor have a remarkable consequence: a time-independent elec-
tric field can exist in a charge-free space completely enclosed by con-
ducting walls, provided that there is an electric current in these walls.
What is more, one can confine and shape time-independent electric
fields in chambers with current-carrying walls. The structure of such
fields is determined by the geometry of the chamber and is not affected
by stationary charges or steady currents outside the chamber. Figure
9.11 presents a simple example of such confinement and shaping of
electric fields. :

It is interesting to note that the structure of the field inside a
chamber with current-carrying walls does not depend on the con-
ductivity of the walls. Therefore the poorer the conductor used for the
chamber walls, the better, because with poorer conductors less energy
is needed to maintain the field (see Section 9-7). The poorer the con-
ductor, however, the longer the time required for the field to establish
itself in equilibrium (see Sections 15-1 and 15-2). Thus, if rapidly vary-
ing fields are present either outside or inside the chamber, walls made
of good conductors are needed.
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Fi1c. 9.11 (a) Map of the electric field inside and outside a chamber with
semiconducting current-carrying walls. The map shows equipotential
lines (marked in volts) determined with a radioactive probe. The current
in the walls is 0.5 X 10=® amp. (b) Map of the electric field of the same
system but with a conducting disk atr 80 volts potential placed outside the
chamber. Although the field outside the chamber has changed, the field
inside remains the same. [O. D. Jefimenko, T. L. Barnett, and W. H. Kelly
“‘Confinement and Shaping of Electric Fields by Current-Carrying Conduc-
tors,”” Proceedings of the West Virginia Academy of Science 34, 163-167 (1962).]

There are numerous examples when a field produced by current-
carrying conductors is more convenient to use than the ordinary
electrostatic field. For instance, a uniform electrostatic field 10 m long
is impractical with a parallel-plate capacitor; the plates would have to
be as wide as the front of a house. However, one can easily produce a
uniform field 10 m long in a tube, say 1 cm in diameter, simply by
coating the inside of this tube with a uniform semi-conducting film and
by establishing a current in this film.

The surest way to determine the electric field in the space external
to a current-carrying conductor is to find the potential ¢ in this space
and then take the gradient of this potential. It must be kept in mind,
however, that the surface of a current-carrying conductor is, in general,
not an equipotential one, and therefore the potential distribution on this
surface must be determined before the potential in the surrounding
space can be found.
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v

Example 9-6.1 A straight conducting tube of uniform conductivity and
length [ is sealed off at its ends by two plane electrodes normal to the axis
of the tube. What is the electric field inside the tube when a voltage V is
applied between these electrodes?
By symmetry of the system, we immediately recognize that the field
inside the tube is homogeneous, so that
E =

n\.|~<:

Example 9-6.2 Two very large, thin, rectangular, uniform, conducting
plates of length [ meet along one of their edges. Their opposite edges are
separated by a distance d from each other. A battery of terminal voltage
V' is connected to these edges, thus producing a current in the plates (Fig.
9.12a). Neglecting edge effects, find the electric field in the space between
the plates. s
The electric field within the plates is
E

plates

{
and tangent to the surface of the plates. By inspection, we recognize that

the field between the plates is then simply

E 14
T d

directed at a right angle to the symmetry plane of the system. Indeed, at

|14
2(

the surface of the plates the tangential component of this field is

(a) (b)

Fic. 9.12 (a) Two intersecting plates carrying a current. (b) Schematic
map of the electric field between and outside the plates.
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so that the boundary condition for E, is satisfied. Since this is the only
condition imposed by the statement of the problem upon the field between
the plates, however, the field that we have found is the correct one. The
charge density on the inner surfaces of the plates is then

0= dek, = Fe,k cos a,

+ VA/I i

0= 4 — =

=0 42’

where the plus sign indicates the plate connected to the positive terminal of
the battery and the minus sign indicates the plate connected to the negative

terminal. A schematic map of this field is shown in Fig. 9.12b and is to be
compared with the lines-of-force picture for this system shown in Plate 7.

or

Example 9-6.3 ‘T'wg moderately-conducting plates form a thin parallel-
plate capacitor of length / and plate separation d. The capacitor is shorted
and grounded along one of its edges and a voltage V is applied to it at the
opposite edge, thus producing a stationary current in the plates (Fig. 9.13a).
Neglecting edge effects, find the electric field in the space between the plates
and the surface charge density on the plates and on the shorting bar.

We shall find the electric field in the space between the plates by finding
first the corresponding potential function ¢. The eclectric field inside the
plates is, by inspection, E = —(V/2))i and E = (V/2/)i for the upper and
the lower plates, respectively. The potential (with respect to the ground)
at any point of the upper plate (y = d/2) is therefore

0 Vx Vx
@(%) upper piate = EE <dl+ = 57 +0= 97"

T T

},
b

(a) (b)

R
P
‘e/
[
—~

!
j

?
\

Fic. 9.13 (a) A shorted parallel-plate capacitor carrying a current. (b)
Schematic map of the electric field between and outside the plates.
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Similarly, the potential at any point of the lower plate (y = — d/2) is
0 Vi Vi
q)(x)lowerplate = ZE - dl + Qo = — 2_[ +0=— 5[ ]

These expressions constitute the boundary conditions which must be satisfied
by the potential function ¢ in the space between the plates. The potential
function compatible with the geometry of the problem and capable of
satisfying these boundary conditions is

¢ = Ay

[this is function (H-1} of Table 6-1 with all constants other than C, set equal
to zero and C, = A]. Since at y = +d/2 the potential must reduce to
@ = +Vx/2[, we have

Vx

Ax 5]

N A,

or

A—V
T

The potential in the space between the plates is then

v
=

Taking the gradient of this expression, we now obtain for the electric field
between the plates

dy Vy
L= =w
and
op Vi
Ev:_a_y:_z?'

The surface charge on the plates is, by Eq. (9-6.2),

0= g = Tk,

n outside
or

Vx
U:ieoﬁ>

where + and — correspond to the upper and the lower plate, respectively.
The surface charge on the shorting bar is similarly

&
0 = —§& E .
A schematic map of this field is shown in Fig. 9.13b. This map is to be
compared with the lines-of-force picture for this system shown in Plate 6.
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Example 9-6.4 A small spherical cavity has formed inside a large
conducting slab that was carrying a uniform current of density J, = Jk
prior to the formation of the cavity. Prove that the potentials after the
formation of the cavity are (with reference to the cavity center)

a3
Fslap = _PJD([ -+ ‘273) r cos
and

= 3
Feavity = "QPJOr cos 9’

where p is the resistivity of the slab, @ is the radius of the cavity, » is the
distance from the center of the cavity, and f is the polar angle with respect
to the z-axis. Also find the charge on the surface of the cavity.

By the uniqueness theorems for potential functions, the above expressions
are correct if they constitute solutions of Laplace’s equation V3p = 0 and
satisfy the boundary conditions characterizing the system under considera-
tion. As can be easily verified by direct differentiation or by consulting
Table 6-1, these expres¢sions do constitute solutions of Laplace’s equation.
The boundary conditions characterizing the system under consideration
are as follows:

(1) Since the cavity is small, the potential at large distances from the
cavity must be the same as it was before the formation of the cavity,

0 0
Vesa :J Ejtiar + dr :f oJo s dr = —pJyr cos 0.

(2) Since the potential must be continuous across the surface of the
conductor,

Peavity = Fslab at r=a.

(3) Since there may be no normal component of the electric field in the
slab at the surface of the cavity,

O¢sian
N T =0 at r=a.
The potentials ¢y, and ¢,y given in the problem clearly satisfy all these
conditions and hence are the only possible and thus the correct potentials.
The charge on the wall of the cavity is, according to Eq. (9-6.2),

a@cavity

o = &k, cavity = — &Ly cavity == € a5
r

or

— _23
o = —3eypdy cos 6.
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9-7. Dissipation of Energy in Current-Carrying

Conductors

An electric current generates heat in the conductor which carries
this current. Thus energy is continuously dissipated in a current-
carrying conductor, and a continuous supply of energy compensating
for this dissipation is necessary in order to maintain the current and
hence the electric field in the conductor. This energy dissipation is the
most important characteristic differentiating the electric field in a
current-carrying conductor from the electric field in a dielectric, where
no energy is consumed once the field has been established and therefore
no energy is needed to maintain the field.

The generation of heat caused by an electric current in a conductor
can be attributed mainly to the effect known as Joule’s heating.

The basic law representing the dissipation of energy in the process
of Joule’s heating is, according to calorimetric measurements,

P= of J-Ed, (9-7.1)

All conductor

where P is the rate of energy dissipation, P = dU/dt, or, which is the
same, the power consumed in the process of Jcule’s heating. The rate
of the energy dissipation per unit volume of a conductor, P, = dP/dv,
is accordingly

P, ="°J-E. (9-7.2)

These two equations are frequently referred to as Joule’s law in its
integral and differential form, respectively. Joule’s law constitutes the
stationary field counterpart of the basic electrostatic energy law (7-1.1)
and (7-1.2) [observe, however, that unlike Egs. (7-1.1) and (7-1.2),
Egs. (9-7.1) and (9-7.2) do not contain the factor ].

Joule’s law (9-7.1) can be transformed into various special forms
which in many instances are more convenient to use than the original
expression itself,

One of the most important special forms of Joule’s law is the
equation representing the rate of energy dissipation due to Joule’s
heating in terms of the currents entering a conductor through individual
electrodes. It may be obtained as follows. Substituting E = — Vg into
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Eq. (9-7.1), and using vector identity (V-4), we have
P = fj-Edv = — fj Vo dv
= — JV o)) dv + f¢V - J dv.

Since for a stationary current V .J = 0, the last integral vanishes.
Changing the remaining integral into a surface integral by means of
Gauss’s theorem, we then have

P=~"dayas,

where the integration is extended over the surface of the conductor
under consideration. This integral can be expressed as the sum of

n -+ 1 integrals
: ntl

P=-° Z (ann ¢ dsrn
n=1

where the first n integrals are taken over the electrode-conductor
interfaces, while the last, n + I-s¢, integral is taken over the remaining
portion of the conductor’s surface (free surface). Since the current
density has no normal component at the free surface of the conductor,
J.1 - dS, ., is zero, and this last integral vanishes. Furthermore, since
an electrode-conductor interface constitutes an equipotential surface,
¢, 1s constant in each of the remaining » integrals and may be factored
out from under the integral signs, so that

P = —° i q)zzfjn * dsn'
n=1

But each integral [J, - dS, represents the current leaving the conductor
through the n-th electrode. Therefore, substituting

fJn * dsn = _Im

we finally obtain

P =°3 q.l, (9-7.3)
n=1

where ¢, is the potential of the n-th electrode, and 7, is the current
entering the conductor through this electrode.

The most common conducting system consists of a conductor with
only two electrodes. For this system Eq. (9-7.3) reduces to a much
simpler form. Indeed, by the flux law (9-2.2b), in a two-electrode
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system one electrode delivers the current to the conductor, while the
other carries this current away from it, so that we can write I, = Iand
I, = —1I, where I is the current in the conductor. We then have from
Eq. (9-7.3)

P =gy + ¢:ly) = (9] — @uI) = °I{q¢, — @,).

But ¢, — ¢, represents the voltage V' between the two electrodes, and
hence we obtain

P ="cIy. (9-7.4)

This formula can be expressed in two alternative forms by using the
resistance of the conductor, R. Since R = V/I, we have by substitution

P ="°I’R, (9-7.5)

and
o) Vg _

P = T (9-7.6)
\
Example 9-7.1 At what points is the conductor of the two-dimensional
conducting system shown in Fig. 9.14 most likely to start melting in conse-
quence of Joule’s heating ?

Fic. 9.14 A two-dimensional con-
ductor between a plane electrode and
a cylindrical electrode.

The melting is most likely to begin at the points of the largest P,, which,
according to Joule’s law (9-7.2), occurs at the points of the largest E. By
using the method of curvilinear squares, we find that in this system there
are two regions where E is especially large: one is at the cylindrical electrode
(K", the other is in the straight part of the conductor (£”). The melting is
therefore most likely to start somewhere within these regions.

Example 9-7.2 Show that when a capacitor is charged by a battery,
the amount of Joule’s heat developed in the circuit is equal to the final
electrostatic energy of the capacitor, so that not more than one half of the
energy released by the battery is stored in the capacitor (assume that the
charging occurs so slowly that the current can be treated as being essentially
stationary).

Let the potentials of the capacitor plates and the potentials of the
battery terminals be ¢, ¢,, ¢, and ¢,, as shown in Fig. 9.15. Using
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.
I Ve I
| f
W
-+
Fic. 9.15 Dissipation of energy during the charging — ll——
of a capacitor. L) A

Eq. (9-7.4), we then have for the rate of Joule’s heating in the two lead wires
P ="llp, — 5) + *Lg, — ¢.)
="llg, — ¢,) — “Lg. — ¢.)-

But ¢, — ¢, represents the terminal voltage V), of the battery (constant),

while ¢ — ¢, represents the voltage V, across the capacitor (increasing).
The rate of the energy dissipation due to heating is therefore

dU—P—OIV °Iv.
a — 5 v e

The energy dissipated in the lead wires during charging (duration T') is

o T
U:Jun—mwz
0

o T o T
= J v, dt — J v, dt
0 o
T o T
zobe ldt — J 1V, dt.
Jo 0
Since I dt = dq (dq is the charge delivered to the capacitor during the time

interval dt), we have, using the final charge on the capacitor @ and the
capacitance of the capacitor C = ¢/V,

° e °re q
C=cne— | ra=cre— | da
0 o G
oy @
After the charging is completed, V, = V, = @/C, so that
Looles
V=237¢>

which according to Eq. (7-6.4) is equal to the energy stored in the capacitor
in the process of charging.

A
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9-8. Stored Energy and Forces Associated with the Electric
Field of Current-Carrying Conductors

Like all electric fields, the electric field of a current-carrying
conductor possesses energy given by the basic law (assuming linear iso-
tropic media)

°1
U= 3 f E:Ddv. (9-8.1)

All space

This energy is associated with both the internal and the external fields
of the conductor.

Like all electric fields, the field of a current-carrying conductor
exerts forces upon charges located in this field. These forces can be
found from the usual force equations!

F = pr’dz; or F= JpE dv, (9-8.2a, b)

Since a current-carrying conductor always has a surface charge
and may also have interface and space charges (see Section 9-5), a
current-carrying conductor always experiences electric forces due to its
own field or due to external fields. (Magnetic forces acting on current-
carrying conductors are discussed in Chapter 13.)

Like all conductors, current-carrying conductors also exert image
forces on the charged bodies placed in the vicinity of these conductors.
These forces are identical with the image forces appearing in electro-
statics and are found from the image systems given in Table 6-II (the
presence of a current in the conductor has no effect upon the image
field, as can be easily deduced from the uniqueness theorems for E or
®). The total force on a charged body placed in the vicinity of a current-
carrying conductor is, of course, the sum of the force due to the image
field and the force due to the conductor’s field proper.

v

Example 9.8.1 A current [ is maintained between two small spherical
electrodes placed at a large distance 7 from each other in an infinite liquid
of conductivity o and permittivity e. Neglecting the effect of the lead wires,
find the force between the electrodes.

1 These equations are valid for all electric fields regardless of their origin because
they are valid for electrostatic fields and because all electric fields are force fields by
definition.
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By Example 9-3.3, the clectric field produced by one electrode at the
location of the other is £ = I[/47or?, and the charge of the electrodes is
q = eqelfo. Taking into account that the electrodes are small compared
to 7 so that each electrode may be regarded as a point charge from the
location of the other, we then have by Eq. (9-8.2a)

Ce el °g?

4o dmeger?’
0

Example 9-8.2 Neglecting the outside field and the edge effects, find
the electric force with which the plates of the shorted capacitor of Example
9-6.3 attract each other (the width of the plates is 4).
For the normal component of the force acting upon the upper plate
we have o
F, = faE;l as,

n

where o is the surface charge density on the plate and £ is the normal
component of the external electric field at the location of g. This component
is equal to the normal component of the total field £, just outside the plate
minus the contribution of the surface charge ¢ to this component. By
Examples 4-3.3 and 9-6.3, this contribution is ¢/2¢; = JE,, and hence
E' = 1FE . Using the expressions obtained for ¢ and £, in Example 9-6.3

n
and observing that £, = E,, we then have (disregarding the minus sign)

°ft Ve 1 Vx “eg V[,
ZV — —_— . " _— — "< ({"
" fo 0742 b dx 2 [24® fo o

or

%eq V2
F =2
& 6 bl
Example 9-8.3 A point charge ¢ is placed midway between the current-

carrying plates shown in Fig. 9.16. The plates are very wide, and the angle
between them is /2. Find the force acting on the charge.
— Ty

f

Fic. 9.16 Calculation of the force on
a point charge placed near two inter-
secting current-carrying plates. —x
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The force acting on the charge is the sum of the force due to the field of
the plates and the force due to the image field. The field of the plates is, by
Example 9-6.2, E = —jV/d. The image field is formed by three image
charges as shown in Fig. 9.16. This field 1s

E ( q V2 q V2 , q )
=i - . T .
¢ 4me a2 dmeg2a® 2 4mwegda?)
—i—2 (199,
167e,

The force is therefore
P or/3y 1 4V
Feig (1 -2V —i—-

ProBLEMS

9.1. Using Section 6-2 as a guide; state and prove three uniqueness
theorems for the potential and four uniqueness theorems for the stationary
electric field in current-carrying conductors.

9.2. A metal bar of conductivity ¢ is bent to form a flat 90° sector
{(quarter-ring) of inner radius 4, outer radius b, and thickness ¢ (Fig. 9.17).

Frc. 9.17 TFind the resistance of

L .
]L\ this 90° sector.
t

Show that the resistance of this sector between the two horizontal surfaces is

R 44
T oom{b? — a¥) "

9.3. Show that the resistance of the conducting sector, described in
Problem 9.2, between the two end surfaces (vertical areas) of the sector is

ki

R = ot (bja) *
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9.4. Show that the resistance of the conducting sector, described in
Problem 9.2, between the two curved surfaces is

2 b
=—1In-.
ot a

9.5. A conducting circular cylinder of resistivity p, inner radius a,
outer radius b, and length L is cut in half along its length. The cylinder is
then reassembled with two thin sheet electrodes inserted between the halves,
cach side of both electrodes being in contact with the entire arca of the wall
exposed in cutting the cylinder. Show that the resistance of the cylinder
between these electrodes is

7p
R=———.
2L In (b/a)

9.6. Two small circular electrodes of radius 4 are attached at two
antipodal points to a thin spherical shell of thickness ¢, radius a, and con-
ductivity g. Show thatsthe resistance of the shell between these electrodes is

1 1 2a
~—In—.
mot b

9.7. A conductor of conductivity ¢ is made in the shape of a truncated
cone of half angle o with the two bases formed by concentric spherical
surfaces of radii @ and b > q, respectively; the spherical surfaces have their
center at the apex of the conical surface of the cone. Show that the resistance
of this conductor between the two bases is

1 1 1
R= 2mo(l — cos &) (Z B 77)

9.8. A spherical electrode of radius a has two thin-walled, cone-shaped
conductors attached to it opposite each other, each conductor having a ring
electrode attached to its free end. The wall thickness of the conducting
cones is {, the conductivity is ¢, the distance from the edge of each cone to the
center of the spherical electrode is d, and the half-angle of each cone is a.
Show that the resistance between the spherical electrode and the two ring
electrodes is

1
~ 47olsin o In a’

9.9. A spherical grounding terminal of an antenna tower is sunk
halfway into the ground and carries a current / to the ground. Show that
this current produces a voltage between the feet of a man directly approach-
ing the tower (“step voltage”), the magnitude of the voltage being

I l
T mor 7+ 17
where [ is the length of the man’s step, r is his distance from the tower, and
o is the conductivity of the ground.

V
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9.10. Two spherical grounding electrodes, each of radius a, are sunk
halfway into the surface of the ground at a distance d 3 a from each other.
A second pair of electrodes, identical with the first, 1s sunk into the surface of
the ground at a distance 4 » a from the first, so that the four clectrodes form
a rectangle of length ¢ and width 4. Show that when a voltage V is applied
to the first pair of electrodes, an “interference voltage”

1 l
V.= Val- — ——
i a(k N dz)

will appear between the second pair.
9.11. A coaxial cable contains an insulating material of conductivity
o, 1n its lower half and of conductivity o, in its upper half. The radius of the
central wire Is a, that of the sheath is 4, the length of the cable is /. Show that
the leakage resistance of the cable is
L
" wl(o] + 0y) e

9.12. Show that, disregarding the temperature- and pressure-induced
variations, the resistance of any conducting system consisting of ohmic
conductors does not depend on the voltage applied to the system.

9.13. The capacitance of a capacitor is ¢, the dielectric constant and
the leakage conductivity of its dielectric are ¢ and o, respectively. Show
that if a voltage V is applied to the capacitor, the leakage current in it is

I~—7.
o€
9.14. A small circular hole of radius a is made near the center of a large
conducting sheet of resistivity p initially carrying a current of uniform
density J,. (a) Show that after the hole is made, the potential distribution
in the sheet and in the hole is, respectively,

122
Psheet = —PJ()?' 1 + ?2) cos 0,
Phole = —2pJy7 cos 8,

where 7 and 6 are polar coordinates about the center of the hole, and 0§ is
measured with respect to the original direction of the current. {b) Show
that the electric field in the hole is

Ehole = 2E'0>

where E, is the original electric field in the sheet,
9.15. A stationary current of uniform density J, is carried by a large
conducting sheet of conductivity o. Show that if a small circular portion of
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radius a in the central part of this sheet is replaced by one having the con-
ductivity ¢’, the current in this portion will be
20’
J=Ji77-

9.16. A sphere of conductivity ¢’ is embedded in a large conducting
block of conductivity ¢ and a current is established in the block. The
sphere itself is not accessible for current measurements, but the current has
been measured near the surface of the block and has been found to be
everywhere of the same density J,. Show that the current density in the
sphere must then be

3¢’
Jsphere = JO m .

9.17. A spherical electrode of radius « is placed in a medium of con-
ductivity ¢ at a distance d > a from a large perfectly conducting plate.
Show that the resistarice between the sphere and the plate is in the first
approximation

1 a
9.18. Two small circular electrodes are placed on a large, thin, con-
ducting sheet so that the line joining their centers is perpendicular to the
edge of the sheet. Show that the resistance between the electrodes is in the
first approximation
L (4 — df)?
= mot 4d,dyayay

R

where ay, a, are the radii of the electrodes, d;, d, are the distances of their
centers from the edge of the sheet, o is the conductivity of the sheet, and ¢ is
its thickness.

9.19. Show that the resistance of a long conducting strip of conductivity
o, thickness ¢, and width & between two small circular electrodes of radius a
with their centers distance  apart on the middle line of the strip is in the
first approximation

9.20. A current is carried by a medium of conductivity o from a large
hollow spherical electrode of radius @ to a point electrode located inside the
first one at a distance d from its center. Find the distribution of current
density at the inner surface of the outer electrode.

9.21. The radii of the core and the sheath of a coaxial cable are a and 34,
respectively. The conductivity of the medium between the core and the
sheath is 0. Using the method of curvilinear squares, find the leakage resistance
per unit length of the cable and compare the result numerically with that ob-
tained from an analytical calculation.
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2em lc 10cm
cm m 4 cm lem 2 cm /1 cm
[ ‘ T
L 3 cm
1cm

F1c. 9.18 Find the resistance of this bar.

9.22. Using the method of curvilinear squares, find the resistance be-
tween the end surfaces of the conducting bar shown in Fig. 9.18.

9.23. Find the resistance of the medium of conductivity ¢ and thickness
¢ between the hollow cylindrical electrode and the Jong rectangular electrode
shown in Fig. 9.19. :

Frc. 9.19 Find the resistance of the
medium between the inner bar and the
outer cylinder.

9.24. Two circular electrodes of radius ¢ = 2 cm are laid on the edge of
a thin circular disk of conductivity ¢, thickness ¢, and radius » = 10 cm, so
that the centers of the two electrodes are on the periphery of the disk and
10 cm apart. Using the method of curvilinear squares, or otherwise, find the
resistance of the disk between the two electrodes.

9.25. Using dimensional analysis, show that the ratio of resistances of
any two ohmic conductors of identical shapes but of different linear dimen-
sions is

Ry ogly
R, oily’
where /; and /, are the distances between any two corresponding points on
the two conductors (“characteristic lengths”), and ¢; and ¢, are the con-
ductivities.
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9.26. Show that the distribution of the surface charge in the hole of the
conductor described in Problem 9.14 is 6 = —2¢yE, cos 6.

9.27. What is the total charge accumulating in the upper half of the
wax electret described in Example 9-5.2?

9.28. The dielectric of a thin parallel-plate capacitor of plate area 4
consists of two plane slabs of thicknesses 2 and 4, dielectric constants ¢, and
&y, and conductivities ¢, and g, respectively. (a) Show that the leakage
resistance of this capacitor is
R 2% -+ bo,

Ao,o,

(b) Show that when a voltage V is applied to the capacitor, the potential of
the dielectric interface with respect to the plate adjacent to the slab of
thickness a is
Vao,
p== ac, -+ bo,’

(c¢) Show that the surface charge appearing on the interface when a voltage
V is applied to the capacitor is
V(gaab _ gbaa)

Ocharge = igo ag, | bo
b a

9.29. A parallel-plate capacitor of plate separation 4 is filled with a
laminated material so composed that its permittivity is

X
Ezkl 1 +k2C057 y
and its conductivity is

. T
g = k3(l 4 kysin 7),

where £, k,, kg, and £, are constants and x is the distance from the positive
plate toward the negative one. (a) Find the capacitance and the leakage
resistance of this capacitor. (b) Find the density of space charge accumu-
lating in the laminated material when a voltage V'is applied to the capacitor.

9.30. Show that the stationary electric field of an infinite current-
carrying ohmic conductor of conductivity ¢ satisfies the relation

E— - f J-vor, .,

47 a?r?
All space
if the field is regular at infinity.

9.31. Find the electric field between the plates described in Example
9-6.2 by first determining the potential and then taking the gradient of this
potential.

9.32. Two large, thin, rectangular, conducting plates of length / meet
at an angle 2« along one of their edges, while their opposite edges are
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shorted by means of a perfectly conducting plate extending over the entire
length of these edges. Show that if a voltage V' is applied between the
common edge of the two plates (negative terminal) and the shorting plate
(positive terminal) the electric field in the space between the plates is

14 14

= i—=—1
lcos a L”

where 1 is a unit vector normal to the shorting plate and pointing toward
the common edge, and L is the distance between this plate and the edge.
9.33. A long cylindrical conducting tube of uniform conductivity has
a narrow slot along its entire length. 'Two electrodes are attached to the
exposed surfaces of the tube’s wall in the slot, both electrodes extending
over the entire length of the tube. (a) Show that if a voltage V is applied
between the electrodes, the clectric ficld in the space inside the tube is

E——0

r @

where 7 and § are polar coordinates about theslot as the z-axis. (b) Find the
surface charge on the inner surface of the tube.

9.34. A cylindrical coaxial cable carries a current from a battery of
voltage V located at z = 0 to a load resistance R and back. (a) Show that
the potential in the space between the central wire and the sheath is

V R,z R,z

_ [ ‘ _
¥ = Tn bJal I_Z(Ra+Rb+R) 1“[’/’Tz<Ra+Rb+R>I“’/“>

where [ 1s the length of the cable, R, Is the resistance of the central wire, a
is the radius of this wire, R, is the resistance of the sheath, and 4 is the radius
of the sheath. (b) Find the distribution of the surface charge in the cable.

9.35. Show that the time neceded to dissipate as much energy in Joule’s
heating of an ohmic conductor carrying a steady current as is stored in the
electric field within this conductor is
&€
é;' »
where ¢ is the permittivity, and ¢ is the conductivity, both assumed constant
throughout the conductor.

9.36. Show that as a result of the deformation of the conducting bar
described in Example 9-4.3 the power loss due to Joule’s heating of the bar
decreases 1.125 times.

9.37. A cubic vessel of side / has the bottom two the sides made of
nonconducting material and the two ends made of perfect conductors
serving as electrodes. Show that if a voltage V' is applied between the elec-
trodes, and if the vessel is filled with liquid of conductivity o, specific heat
¢, and density 4, the temperature 7" of the liquid will rise at the rate

aT  °ol?
R

=
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9.38. Find the power lost in Joule’s heating per unit length of the
dielectric in the cable described in Problem 9.11.

9.39. Find the rate at which heat is generated in Joule’s heating of the
leaky dielectric in the capacitor described in Problem 9.13.

9.40. Find the energy of the electric field in the space inside the tube
described in Example 9-6.1.

9.41. Show that the force with which the inner surfaces of the con-
ducting plates described in Problem 9.32 are attracted to the shorting bar
is
g V3

[cos a

1.
F="°2 tan oc(§ sin? o -+ cos? a ),
and show that the force with which the inner surface of the shorting bar is

attracted to the plates is
R Vi
F ="g, Tood g Sina,
where 4 is the width of'the plates and the bar.

9.42. Find the force resulting from the accumulation of surface charge
on the dielectric interface described in Problem 9.28.

9.43. Show that as a result of charge accumulation in the wax slab
(electret) described in Example 9-5.2 the slab is subjected to a volume force
{force per unit volume)

2 .
F, = %mepk ks % cos % i,
and show that the maximum pressure inside the wax due to the charge
accumulation is
“gofiiko V2
Prmax = T

9.44. A hollow, perfectly conducting sphere of radius & is half filled with
a liquid of conductivity ¢ and permittivity ¢. A smaller perfectly conducting
sphere of radius a is half submerged in the liquid, and the centers of the
spheres coincide. The two spheres are connected to a battery of terminal
voltage V, so that a current is present in the liquid. Neglecring the effect of
the lead wires, show that the smaller sphere is subjected to the electric force

‘eole — DymV2p?
20 —a2

and then show that the same force acts on the sphere if the liquid is
nonconducting.



STATIONARY MAGNETIC
FIELD IN VACUUM

The basic definitions, formulas, and equations used for the
quantitative representation of magnetic phenomena are analogous to
those used for the quantitative representation of electric phenomena.
Moreover, most of the fundamental electric quantities have magnetic
counterparts. Thus, the electric field vector E[V/m] corresponds to the
magnetic field vector H[A/m], the electric displacement vector D[As/m?]
corresponds to the magnetic induction vector B[Vs/m?], capacitance
C[As/V] corresponds to inductance L