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PREEACE 

This book is a sequel to my Electricity and Magnetism, 

2nd ed., (Electret Scientific, Star City, 1989) and Causality, 

Electromagnetic Induction, and Gravitation, (Electret Scientific, 

Star City, 1992). It is a result of a further exploration of the 

classical theory of fields in search of heretofore overlooked 

relations between physical quantities and heretofore overlooked 

applications of the theory. The book is divided into two parts. The 
first part, Chapters 1 to 5, presents the fundamentals of the theory 

of electromagnetic retardation with emphasis on _ recently 

discovered relations and recently developed mathematical 

techniques. The second part, Chapters 6 to 11, presents the 

fundamentals of the theory of relativity based entirely on the 

theory of electromagnetic retardation developed in the first part. 

Electromagnetic retardation is as yet a fairly obscure concept, 

and therefore an explanation of what it is and why a book needs 

to be written about it is in order. 
Electric and magnetic fields propagate with finite velocity. 

Therefore there always is a time delay before a change in 

electromagnetic conditions initiated at a point of space can 

produce an effect at any other point of space. This time delay is 

called electromagnetic retardation. Recent studies have shown that 

electromagnetic retardation is of overriding importance for the 

general electromagnetic theory and, by extension, for the entire 
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classical theory of fields. We now know that electromagnetic 

retardation manifests itself in many different ways including, but 

not limited to, electromagnetic cause-and-effect relations, 

electromagnetic waves generated by oscillating electric charges 

and currents, electromagnetic fields and potentials of time- 

dependent charge and current distributions, electromagnetic fields 

of moving charge distributions, mechanical relations between 

time-dependent or moving charges and currents, dynamics of 

atomic systems, time relations in moving electromagnetic systems, 

and the visual appearance of moving bodies. Perhaps the most 

important recently discovered aspect of the now evolving theory 

of electromagnetic retardation is that this theory leads to, and 

duplicates, many electromagnetic relations that are customarily 

considered to constitute consequences of _ relativistic 

electrodynamics. In fact, it is now clear that there exists an 

intimate relation between the theory of electromagnetic retardation 

and the theory of relativity. Obviously then, the phenomenon of 

electromagnetic retardation and its theoretical representation must 

be thoroughly understood and investigated. 

In contrast with the theory of electromagnetic retardation, the 

theory of relativity is fairly familiar. However, as far as its 

scientific essence is concerned, the theory of relativity means 
different things to different people. It is important therefore to 
give a clear definition of the expression "theory of relativity" as 
it is used in this book. 

In this book, “theory of relativity" (or "relativity theory," or 
simply "relativity") is used as a collective term for the body of 
equations, methods, and techniques whereby physical quantities 
measured in one inertial frame of reference can be correlated with 
physical quantities measured in any other inertial frame of 
reference. 

As already mentioned, there exists an intimate relation 
between the theory of electromagnetic retardation and the theory 
of relativity. On the basis of this relation, all the fundamental 
equations of the theory of relativity, including equations of 
relativistic electrodynamics and relativistic mechanics, are derived 
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in Chapters 6 to 8 in a natural and direct way from equations of 
the theory of electromagnetic retardation without any postulates, 
conjectures, or hypotheses. As a result, Maxwellian electro- 
magnetism, electromagnetic retardation, and the theory of 
relativity are united in this book into one simple, clear, and 

harmonious theory of electromagnetic phenomena and of 

mechanical interactions between moving bodies. 

An important consequence of the theory of relativity 

developed in the above manner is the revelation of certain basic 

errors in the interpretation and use of Einstein’s special relativity 

theory. The nature of these errors and the ways to avoid them are 

explained in Chapter 9. 

One of the most controversial elements of Einstein’s special 

relativity theory is his idea of universal kinematic time dilation, 

according to which the rate of all moving physical and biological 

"clocks" is uniformly dilated in consequence of nothing other than 

the relative motion of the clocks. As is shown in Chapter 10, 
moving elementary electromagnetic clocks indeed run slower than 

the same stationary clocks, but their slower rate is a consequence 
of dynamic interactions and depends on both the velocity and the 

construction of the clocks. 

An extension of the theory of relativity, as it is developed in 

this book, leads to a covariant theory of gravitation analogous to 

relativistic electrodynamics. This extension is presented in Chapter 

11, the concluding chapter of the book. 

Although the book presents the results of original research, it 

is written in the style of a textbook and contains numerous 

illustrative examples demonstrating various applications of the 

theory developed in the book. Therefore it can be used not only 

for independent reading, but also as a supplementary textbook in 

courses on electromagnetic theory and on the theory of relativity. 

I am pleased to acknowledge with gratitude a stimulating 

exchange of correspondence with P. Hillion, J. J. Smulsky, V. N. 

Strel’tsov, and W. E. V. Rosser on some aspects of the theory of 

relativity, and with M. A. Heald on the subject of electromagnetic 

retardation. 
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I am very grateful to S. W. Durland and D. K. Walker for 

carefully reading the manuscript and for their most useful 

suggestions and recommendations. 
Special thanks are due to Yu. G. Kosarev who believes that 

retardation is a universal phenomenon that should be properly 

treated in a new branch of physics which he proposes to call 

"retardics." His comments are highly appreciated. 

Finally, I am very grateful to my wife Valentina for 

proofreading the numerous versions of the manuscript and for 

otherwise helping me to make the book ready for publication. 

Oleg D. Jefimenko 
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PREFACE TO 
THE SECOND EDITION 

The second edition of this book is intended to update the 
presentation of the subject matter and to correct the misprints and 
other errors that appeared in the first edition. Sections 8-2, 9-4, 
and 11-3 have been rewritten. Two new Appendixes have been 
added. Particularly important is Appendix 3, containing an analysis 
of the physical nature of electric and magnetic forces and 
presenting a novel interpretation of the "near-action" mechanism 
of electromagnetic interactions. 

I am pleased to express my gratitude to my wife Valentina for 
her assistance in the preparation of this edition of the book. 

Oleg D. Jefimenko 

March 31, 2004 
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RETARDED INTEGRALS 

AND OPERATIONS WITH 

RETARDED QUANTITIES 

The fundamental laws of electromagnetism are represented 

mathematically by Maxwell’s electromagnetic equations. The 

general solution of these equations for electromagnetic fields in a 

vacuum is expressed in terms of "retarded" field integrals which 

constitute the basic mathematical element in the general theory of 

time-dependent electromagnetic phenomena. A __ thorough 

understanding of the properties and use of retarded integrals is 

therefore indispensable for formulation and application of the 

theory. In this chapter we shall acquaint ourselves with retarded 

integrals and with operations involving quantities and expressions 

appearing in these integrals. 

1-1. Vector Wave Fields and Retarded Integrals’ 

The vector wave field is the field of a vector V which satisfies 

the inhomogeneous wave equation (also known as the general 

wave equation) 
LpOc Ves 

VX X V+ = KGy.2Z1),, (1-1.1) 
C230r7 

where K is some vector function of space and time which, for 
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simplicity, will be assumed here to be zero outside a finite region 

of space (this differential equation constitutes a mathematical 

expression for a wave-like disturbance that propagates in space 

with the speed c). 

An important property of a vector wave field is that this field 

can be represented by the retarded field integral and retarded 

potentials, as explained in the following theorem. 

The Wave Field Theorem. A vector field V satisfying Eq. (1- 

1.1) and vanishing at infinity can be represented by the retarded 

integral 

hee ve Ae 0 (1-1.2) 
At r 

where the brackets are the "retardation symbol," to be explained 

below, and r is the distance from the source point P'(x', y', 2’) 

where the volume element of integration, dV’, is located to the 

field point P(x, y, z) where V is being determined; the primed 

operator V’ operates on the source-point coordinates only. (Note: 

The integration in the above integral is over all space; except 

when noted otherwise, the integration in all integrals that follow 

is also over all space.) 

The derivation of Eq. (1-1.2) is mostly of historical interest 

and will not be presented here.’ In lieu of the derivation we shall 

show in Example 1-2.3 that Eq. (1-1.1) is satisfied by V given by 

Eq. (1-1.2). 

Corollary I. A vector field V satisfying Eq. (1-1.1), vanishing 

at infinity, and having zero divergence outside a finite region of 

space can be represented by the retarded scalar potential y and the 

retarded vector potential A as 

V=-Vyo+VxA, (ei:3) 

with y and A given by 
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sla s dV! +, (1-1.4) 

and 

(1-1.5) 0? 

wee ly (LBS os 
ala @ : 

where K, and K, are the ordinary potentials of the function K of 

Eq. (1-1.1) (so that K = — VK, + V x K,), both vanishing at 

infinity, and @ and Ag are arbitrary constants. 

Corollary II. A vector field V_ satisfying Eq. (1-1.1), 

vanishing at infinity, and having zero divergence outside a finite 

region of space can be represented by the retarded scalar potential 

yg and the retarded vector W as 

V=-Vo+W, (1-1.6) 

with 

Le 

ope Bn eel oe +O (stot) 
4a r 

and 

w- | Bla + w,, (1-1.8) 
4z7/ r 

where ¢ and W, are arbitrary constants. The proof of these 

corollaries is presented in Examples 1-2.1 and 1-2.2. 

The retardation symbol [ ] indicates a special space and time 

dependence of the quantities to which it is applied and is defined 

by the identity 

lary ea. tric), (1-1.9) 

where ¢ is the time for which the retarded integrals are evaluated. 

Thus the value of a function placed between the retardation 
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symbol [ ] is not that which the function has at the time ¢ for 

which the integrals are evaluated, but that which it had at some 

earlier time t’ = ¢ — r/c, or, as one says, the function is retarded. 

The integrals of retarded quantities, or retarded integrals, are 

mathematical expressions reflecting the phenomenon of "final 

signal speed" - that is, the fact that a certain time 7/c must elapse 

before the results of some event at the point x’, y’, z’ can produce 

an effect at the point x, y, z separated from the point x’, y’, z' by 

a distance r. 

Retarded integrals are closely associated with the principle of 

causality. According to this principle, all present phenomena are 

exclusively determined by past events. Therefore equations 

depicting causal relations between physical phenomena must, in 

general, be equations where a present-time quantity (the effect) 
relates to one or more quantities (causes) that existed at some 
previous time. As we shall presently see, in electromagnetic 
theory retarded integrals are "causal equations" expressing electric 
and magnetic fields and potentials in terms of their causative 
sources: the electric charge density p and the electric current 
density J.? 

1-2. Mathematical Operations with Retarded Quantities 

Mathematical manipulations with retarded integrals frequently 
require applications of the operator V to retarded quantities. When 
applying V to such functions, one should take into account that 
they depend on space coordinates not only explicitly, but also 
implicitly through 

PAG -0zy Yaz ))\ 2 eo 
appearing in the retarded time t’ — r/c. One also should take into 
account that V may operate with respect to x, y, Z coordinates as 
well as with respect to x’, y’, z’ coordinates. Finally, one should 
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take into account that a V operation may be performed upon a 
retarded quantity taken at the instant ¢ = constant as well as at the 

instant t’ = ¢ — r/c = constant (the latter operation is identical 

with the corresponding operation upon the same unretarded 

quantity, combined with the subsequent "retardation" of the 

resulting expression by replacing in this expression ¢ by t — r/c). 

Let us designate an unspecified scalar or vector function f(x’, 

y', 2’, t), together with an appropriate multiplication sign, if 

needed, by X. To avoid ambiguities with V operations involving 

X, we shall employ special notations, as follows. If an operation 

is to be performed with respect to primed coordinates, we shall 

use the primed operator V’ in writing this operation, and we shall 

use the ordinary operator V for designating operations with 

respect to unprimed coordinates. If an operation upon a retarded 

X is to be performed considering the retarded time t — r/c as 

constant, we shall denote the operation as [VX] or [V'X], placing 

both the operator and the function upon which it operates between 

the retardation brackets, and we shall use the ordinary notations 

V[X] or V’'[X] for operations upon retarded functions when these 

operations are to be performed considering the present time /, 

rather than ¢ — r/c, as constant. 

We shall frequently use expressions and operations involving 

the radius vector connecting a volume element dV’ of an electric 

charge or current (the source point x’, y’, z’) with the point of 

observation (the field point x, y, z). If this radius vector is 

directed toward the field point, we shall designate it as r, if it is 

directed toward the source point, we shall designate it as r’. 

Likewise, we shall designate the corresponding unit vectors as r, 

Andis Observe thatisince lr =a Xie tayo Va) it 2. 

pokeand rT e— (x — x) + (yy —*y)j + — 2k, the-vector 1 

= —r, so that the result of any operation upon r’ or r’ with V or 

V’ is the negative of the result of the same operation upon r or r, 

and the result of any operation upon r, r’, r or r’ with V is the 

negative of the result of the same operation with V’. 
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We shall now derive several useful operational equations for 

retarded functions. Let us consider the operation 6[X]/dx' | y. 2.45 

where [X] is some retarded scalar or vector function.* Taking into 

account that retarded functions depend on x’, y’, and z’ not only 

directly, but also indirectly through r, we can write 

o[X] _ 9[X] aks OR) PRS pe le SU) 
Ox! Vy'.2' Ox! !y'z't-rle §=©6O(t - r/c) xh y!z! Ox! 

We can simplify the last expression by noting that 

AX] | = Bs (25) 
Ot —TF/C) Vx! y'2" OF Wx!,y",z! 

and that, by Eq. (1-2.1), 

OES HC) eae Xe ee COS (1-2.4) 

Ox! Cr (3 

where cos a is the direction cosine of vector r with respect to the 

x axis (Fig. 1.1). We then obtain 

(1-2.5) O[X] _ OX] i redea fi 
Ox! ylz'yt Ox! y!,2!,t-rlc Cc Ot xyz! 

Analogous expressions can be obtained also for 0[X]/dy’ |... , 

and for 0[X]/0z' |. ,. If we now multiply these expressions by 

the unit vectors i, j, and k, respectively, and then add them 

together, we obtain the following operational equation 

VIX] = [v/x] + #[9% : [X] = [VX] =|=— |; (1-2.6) 

where 

poet 2i@ex) iV kGeZ) 
r r (1-2.7) 

= icosa + jcosB + kcosy 

is the unit vector directed along r toward the point x, y, z (cos B 
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Fig. 1.1 The direction cosine of r with respect to the x axis is cosa 

(Ge 2X) Te 

and cos y are the direction cosines of r with respect to the y and 

z axis, respectively). 

In a similar manner we can obtain the corresponding equation 

for the unprimed V (assuming that X does not explicitly depend 

on x, y, 2) E 

VIX] = - see (1-2.8) 
cl dt 

Combining Eqs. (1-2.8) and (1-2.6), we obtain an equation 

correlating one unprimed V operation with two primed V 

operations 
[v‘x] = V(X] + V’[X]. (1-2.9) 

Differentiating V{[X]/r} and using Eq. (1-2.9), we obtain the 

correlation 

[Ps eh dea rai ie Xie sh (1-2.10) 

and, combining the first and the last term of the last part of Eq. 

(1-2.10), we obtain a useful equation 

[VX] yl), y IAD (1-2.11) 
lf r r 
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Another useful equation is obtained by eliminating V[X] from 

the middle part of Eq. (1-2.10) by means of Eq. (1-2.8): 

Aes ee (1-2.12) 
ip r2 rcl Ot 

Finally we note that, since 

a[X]_ _ 9[X] Pa Nhl ys otitacae 1-2.13 
O(t -r/c) Ot ) 

we have, by Eqs. (1-2.3) and (1-2.13), 

eee ee (1-2.14) 
ot Ot 

v 

Example 1-2.1 Prove Corollary I to the wave field theorem, 

assuming that V - V, K,, and K, are zero outside a finite region of 

space. 

Expressing in Eq. (1-1.2) K as K = — VK, + V x K, and 

using Eq. (1-2.11), we have 

/ Us — Fs (RAMEE ELS 
4a r 

V'(V! -V)+V/K -V'x 
ate ea aX SS aR Saeed 2 (1-2.15) 

Ar r 

ine 

= - ae eee eal Ly vehi, 
An i 4 r 

4 Be oe=ay A fyi Bilav 
4a ip TT r 

The second and the fourth integrals of the last expression can 
be transformed into surface integrals by using vector identities (V- 
20) and (V-21) (see Appendix for a list of vector identities). But 
since, by supposition V - V, K,, and K, are zero outside a finite 
region of space, while the surface integrals are taken over all space, 
the integrals vanish. We thus have 
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Via ER 
Vee (i eae ma [K,] : as L a calc (1-2.16) 

Factoring V out from under the integral signs (we can do so 

because the integration is with respect to primed coordinates, while 

V operates upon the unprimed coordinates) and designating the 

resulting integrals as p — ~) and A — Aj, we obtain Corollary I to 

the wave field theorem. 

Example 1-2.2 Prove Corollary II to the wave field theorem. 

As in the preceding example, we have 

Sees ae NEE gy ee |e ay 
fy i 4 r 

2a\h hoa aa susie Vay 
4a r 4n) or 

The second integral of the last expression is, as in Example 1-2.1, 

zero. We thus have 

vV=-- ca | iB Meee Lae 
an r 4n) or (1-2.18) 

= off Mar] «far 
Designating the first integral as ¢ — ¢, and the second integral 

as W — W,, we obtain Corollary II to the wave field theorem. 

Example 1-2.3 Show that V given by Eq. (1-1.2) satisfies Eq. (1- 

1.1) 
Using vector identity (V-16), we can rewrite Eq. (1-1.1) as 

2 

2 Vie eK 7, (12210) 
(G 

2 or2 

where we have denoted V(V + V) — K as Z for simplicity. 
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Let us now divide the volume of integration in Eq. (1-1.2) into 

two parts: Vol, and Vol,. Let Vol, be a very small region close to 

the point of observation, so that within this region the retardation 

can be neglected. We then have from Eq. (1-1.2) 

Vo | ae (1-2.20) 
u TS Voll 

where the integral is not retarded. But this integral represents the 

well-known solution of the Poisson equation? 

VV = 7, (2220) 

The contribution of Vol, to V’V in Eq. (1-2.19) is therefore given 

by Eq: (1-2.21). 

Let us now determine the contribution of Vol, to V’V in Eq. (1- 

2.19). From Eq. (1-1.2) we have 

VV, =v?{- ze [4g av'|=--1 | eae, G50) 
47 J Vol2 ¢ 4a J vol2 iF : 

where we have placed V* under the integral sign, because V* 

operates upon the unprimed coordinates, while the integration is 

with respect to primed coordinates. 

We can evaluate the last integral in Eq. (1-2.22) by integrating, 

in turn, the x, y, and z components of the integrand. Taking into 

account that V* can be expressed as V + V, using Eqs. (1-2.12), 

(1-2.8), and (1-2.14), and remembering that V - r = 3, V(1/r) = 

— (n/r’*')r,, and r + r, = r, we find, after somewhat lengthy but 

very simple calculations® 

2 

Wl == 2 eae. (1-2.23) Ta) wa F679 
Since similar equation can be obtained also for the y and z 
components of V,, Eq. (1-2.22) becomes 
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1 0° [Z] V7Ve= = | y/ 
a 4 Doeape ; (1-2,24) 

Factoring out 0°/c’dr, we have 

v2V - J - ue WAN av'| (1-2.25) 
, c70t2 47 J Vol2 we : ; 

or, by Eq. (1-1.2), remembering that Z = V(V - V) —-K 

VEN eee (1-2.26) 

The contribution of Vol, to V’V in Eq. (1-2.19) is therefore given 

by Eq. (1-2.26). 

Adding now Eggs. (1-2.21) and (1-2.26), we obtain 

av, 
+ Z. (1-2.27) 2 = 

Paihia! aes 
Since Vol, can be made as small as we please compared to Vol,, 

8°V,/c’dt’ can likewise be made as small as we please compared to 

0°V,/c’dt?. Therefore, assuming that Vol, «< Vol,, we can add 

@V,/Cdr to the right side of Eq. (1-2.27) without affecting the 
equation. We then have 

2 2 
V7(V,+V.)= ee oe +Z= + Say DV) + Zen lez. 23) 

Of20.C-01 cot 

Or 

vv, + V,) - jae Ze (1-2.29) 

so that V, + V,, and therefore V given by Eq. (1-1.2) does indeed 

satisfy Eq. (1-1.1). n 
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RETARDED INTEGRALS FOR 

ELECTROMAGNETIC FIELDS 

AND POTENTIALS 

A basic problem in electromagnetic theory is the obtaining 

of equations expressing electric and magnetic fields and potentials 

in terms of their causative sources: electric charges and currents. 

In the case of time-dependent systems, the most general equations 

expressing electric and magnetic fields and potentials in terms of 

charges and currents involve retarded integrals. Electric and 

magnetic fields and potentials expressed in terms of retarded 

integrals are called retarded electric and magnetic fields and 

potentials. In this chapter we shall derive several types of 

equations for retarded fields and potentials of time-dependent 

charge and current distributions and shall give examples of the use 

of these equations. 

2-1. Maxwell’s Equations and the Wave Field Theorem 

The basic electromagnetic field laws are represented by four 

Maxwell’s equations which, in their differential form, are’ 

VD =p (2-1.1) 

V-B = 0 (2-1.2) il 

15 
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Pa ee (2-1.3) 
Ot 

and 

VxH =e (2-1.4) 

where E is the electric field vector, D is the electric displacement 

vector, H is the magnetic field vector, B is the magnetic flux den- 

sity vector, J is the electric current density vector, and p is the 

electric charge density. For fields in a vacuum (the only fields 

with which we shall be concerned in this book), Maxwell’s 

equations are supplemented by the two constitutive equations 

D = ek (2-1.5) 

and 

B = pH, (2-1.6) 

where &, is the permittivity of space and py is the permeability of 

space. (The names and designations of electromagnetic quantities 

used in this book are the same as those used in Ref. 1.) 

In Maxwell’s equations electric and magnetic fields are linked 

together in an intricate manner, and neither field is explicitly 

represented in terms of its sources. However, with the help of the 

vector wave field theorem introduced in Section 1.1 we can 

express each field in terms of its causative sources. To do so, we 

shall first convert Eqs. (2-1.1) - (2-1.4) into two inhomogeneous 

wave equations, thereby separating the two fields one from the 
other. 

Taking the curl of Eq. (2-1.3) and using Eq. (2-1.6), we have 

0 0 
VxXxVxXE=-—_VxB=-yn—VxH. 2=beh 

Ot ry: u ( ) 

Eliminating V x H by means of Eq. (2-1.4) and using Eq. (2- 
1.5), we obtain 



SECTION 2-1 MAXWELL’S EQUATIONS Ww 

eee J. 8 
Gta ga eG og CTS) 

Rearranging terms and replacing 94) by 1/c’, we finally obtain 

VxXVxE+ 1 OE i oJ pra S wae 2-1.9 
COL. ° Or 

Taking now the curl of Eq. (2-1.4) and using Eq. (2-1.5), we 

have 

VX VXH=VxJ+2VXxD=VxI +e 00XE, (2-1.10) 

Eliminating V x E by means of Eq. (2-1.3) and using Eq. (2- 

1.6), we obtain 

2 2 

VXVXH=VXI-2,00 =VXJ -¢ Sei) 
t 

ULy—— 

Or 

Rearranging terms and replacing éou) by 1/c’, we finally obtain 

2 

vxvxH+ 1 OH Lyyy. (2-1.12) 
co Or 

Equations (2-1.9) and (2-1.12) are the general electromagnetic 

wave equations for the electric and magnetic fields, respectively. 

Applying Eq. (1-1.2) (the vector wave field theorem) to Eqs. (2- 

1.9) and (2-1.12), we can write for the electric field 

view! sa Dearne 
Ee eS |peeeeereee 7) (2-1.13) 

4q if 

and for the magnetic field 
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H = 

view! -H)-V'xJ 
ey, (2-1.14) 

or: r 

where E and H are determined for the instant ¢, and the quantities 

in the brackets are taken at the corresponding retarded time t' = 

t — ric (c is the velocity of light in a vacuum). 

2-2. Solution of Maxwell’s Equations in Terms of Retarded 

Integrals 

According to Eqs. (2-1.1) and (2-1.5), V + E = p/é), and 

according to Eqs. (2-1.2) and (2-1.6), V - H = 0. Applying these 

relations to Eqs (2-1.13) and (2-1.14) and noting that é)4. = 1/c’, 

we obtain oe Bee Sea (2-2.1) 
4m, r 

and " 

He | Meee (2-2.2) 
4r ie 

Equations (2-2.1) and (2-2.2) constitute solutions of 

Maxwell’s equations for fields in a vacuum and represent the 

electric and magnetic fields in terms of their causative sources: the 

electric charge and current distributions.” Since the fields in Eas. 

(2-2.1) and (2-2.2) are expressed in terms of retarded integrals, 

these fields are called retarded fields. 
There are several special forms into which Eqs. (2-2.1) and 

(2-2.2) can be transformed. One such special form is obtained 
from Eqs. (2-2.1) and (2-2.2) by eliminating from them the spatial 

derivatives. This can be done as _ follows. 
Writing Eq. (2-2.1) in terms of two integrals and using vector 

identity (V-33) to transform the first integral, we have 
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“cola ATE, r Ot (22.3) 

chen lobar «88 r}, 
The second integral in the last expression can be transformed into 

a surface integral by means of vector identity (V-20). But this 

integral vanishes, because p is confined to a finite region of space, 

while the surface of integration is at infinity. Transforming the 

integrand in the first integral by means of vector identity (V-34) 

and using r, = r/r, we then obtain for the electric field 

ae ({2- «| 22} av’ - ! afi ave) (2-2.4) 
ATE, 3 re 4mé,C? 0 

Similarly, applying vector identities (V-33) and (V-21) to Eq. 

(2-2.2), taking into account that there are no currents at infinity, 

and using vector identity (V-34), we obtain for the magnetic field 

H - =| eis = oe ieray (2-2.5) 

Observe that in Eqs. (2-2.4) and (2-2.5) the vector r is directed 

toward the point of observation (the field point). 

Equation (2-2.4) represents a generalization of the electrostatic 

Coulomb’s field integral to time-dependent systems and reduces 

to that integral in the case of time-independent fields in a vacuum. 

Likewise, Eq. (2-2.5) represents a generalization of the Biot- 

Savart’s integral for magnetic fields and reduces to that integral 

in the case of time-independent systems.’ 

Another form of the field equation for E can be obtained as 

follows. According to the conservation of electric charge law (the 

continuity law),* 
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Clie (2-2.6) 

Therefore the contribution that 0o/dt makes to the first integral in 

Eq. (2-2.4) can be expressed as 

[eben «|e. aan 
Using now vector identity (V-30) with r, = r/r for transforming 

the last integral, and using vector identity (V-8), we obtain 

| ar = [Pee ae (2-2.8) 

={(t ve las “(- wil SA 
r jee rc? 

Next, using vector identity (V-23), we transform the first term in 

the integrand of the last integral, obtaining 

lew . Bigy’ - 42 (ee as'| : (2 w)zav (2-2.9) 
r 

Since the integration is over all space, and since there is no 

current at infinity, the surface integral in Eq. (2-2.9) vanishes. 

Applying vector identity (V-4) to the integrand of the remaining 

integral in Eq. (2-2.9) and remembering that a V’ operation upon 

r is the negative of the same V operation (see Chapter 1, p. 7), 

we then have 

| ty. iyi Rec (2-2.10) 
G fie Ch 

From Eqs. (2-2.7), (2-2.8), (2-2.9), and (2-2.10), we obtain 

therefore 
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1 ay : je r 1 r-[0J5/0t] ] a LE A A ns aa CS dee ey P2211 
Iz ot ta ad Te face yes 

Substituting Eq. (2-2.11) into Eq. (2-2.4) and taking into account 

that V'(1/r) = 2r/r’, we finally obtain® 

ee | lrav’ a (2-2.12) 

Pei, [{U - ar [J] -r ~ #2). LL hays, 
AREC I N 72 r4 rect ot rcl Ot 

It is important to note that although in Eqs. (2-2.1)-(2-2.12) 

the charge density, the current density, and their derivatives are 

retarded, retardation can frequently be neglected, in which case 

the above equations can be used with ordinary (unretarded) charge 

density, current density, and their derivatives. Let us define the 

"characteristic time" of an electromagnetic system as the time T 

during which the charge density, the current density, or their 

temporal derivatives experience a significant change. For 

example, in the case of periodic charge and current variations, T 

may be assumed to be the period of the oscillations, and in the 

case of monotonously changing charges and currents, JT may be 

assumed to be the time during which the charge density, the 

current density, or their temporal derivatives change by a factor 

of two. Let us now assume that the largest linear dimensions of 

the system under consideration is L. If T and L satisfy the relation 

i 2 Lic. (2-2.13) 

then no significant change occurs in the system during the time 

that the electric or magnetic field signal moves across the system, 

and therefore the retardation in the propagation of the electric or 

magnetic fields within the system is negligible. In Section 2.5 we 

shall discuss in some detail electromagnetic effects in systems to 

which Eq. (2-2.13) applies. 



22 CHAPTER 2. RETARDED FIELDS AND POTENTIALS 

v 

Example 2-2.1 A thin circular ring of radius a and cross-sectional 

area s carries a uniformly distributed charge gq. At ¢ = O the ring 

starts to rotate with constant angular acceleration a@ about its 

symmetry axis which is also the x axis of rectangular coordinates 

(Fig. 2.1). Find the electric and magnetic fields at a point x on the 

axis fort > 0. 

Fig. 2.1 Calculation of the 

electric and magnetic fields 

on the axis of a charged 

ring rotating with angular 

acceleration @. 

The current density J created by the rotating ring is J = pv = 

pwaé, = pataé,, where p is the charge density in the ring, w is the 

angular velocity of the ring, and 6, is a unit vector in the circular 

direction (right-handed with respect to x). The time derivative of J 

is 0J/dt = paaé,. In terms of g, the current density and the 

derivative are J = (gat/27s)6, and 0J/dt = (qa/2Ts)6,. 

To find the electric field, we can use Eq. (2-2.4). Since 0J/0t 

is in the circular direction, and since r is the same for all points of 

the ring, the second integral in Eq. (2-2.4) makes no contribution 

to the electric field on the axis (the contributions of any two volume 

elements on the opposite ends of a diameter cancel each other). 

Since the charge density does not depend on time, the contribution 

of the first integral is 

Eno | Baie (2-2.14) 
ATE, r? 

which is identical with the expression for the electrostatic field 

produced by a stationary charge density p. The solution of Eq. (2- 
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2.14) for a charged ring is well known,° and therefore we shall 

reproduce it here without calculations. It is 

| 0 aatee ot ea (22815) 
ARG (Gant Me) 

To find the magnetic field, we can use Eq. (2-2.5). Expressing 

[J] and [0J/0t] in Eq. (2-2.5) in terms of q, a, s, and 0,, we have 

H = pa Le ella 7, \xrav/ 
4n Ons? rolas © 
=f qot_g a _g , 40 0,}xrdV! (2-2.16) 

4m) \2nsr? r°c2Ts r°c2ts 

E ai qa 4 \xraV", 
4m) \2rsr3 “ 

The current formed by the ring is filamentary. Its magnitude is 

I = Js = gqat/2m. Since the current is filamentary, the volume 

element dV’ in Eq. (2-2.16) can be written as sdl’, where dl’ is a 

length element along the circumference of the ring. Furthermore, 

we can combine @, and dl’ into the vector dl’ = dl',. We then 

have from Eq. (2-2.16) 

Hoe ee cal (2-2.17) 
4nJ 73 

which is identical with the expression for the magnetic field 

produced by a time-independent filamentary current /. The solution 

of Eq. (2-2.17) for a ring current is well known.’ It is 

Ta’ i 
2(a? + x32 : 

or, substituting 7 = gqat/2r, 
2 

ff (pee (2-2.19) 
4m(a? $2)? 

(2-2.18) 

The surprising result of this example is that neither the electric 

nor the magnetic field on the axis of the rotating ring is affected by 

retardation. 
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Example 2-2.2 Electromagnetic waves can be generated by a 

radiating "electric dipole antenna." It consists of a piece of straight 

open wire which carries a current 

I = [,sinot. (2-2.20) 

The current in the wire is produced by cutting the wire in the 

middle and connecting the two parts to a source of alternating 

current. If the length 7 of the antenna is much smaller than the 

wavelength of the generated waves, / < \ = 27c/w, the antenna is 

called a "Hertzian dipole." In a Hertzian dipole the current is the 

same along the entire length of the antenna. Find the magnetic and 

electric fields produced by the Hertzian dipole shown in Fig. 2.2, 

at a large distance r > / from the dipole. 

Con 
Fig. 2.2 Calculation of the 

electric and magnetic fields 

generated by an electric 

dipole antenna. (The unit 

vector @, is directed into 

the page.) 

To find the magnetic field, we can use Eq. (2-2.5). Since the 

current in the antenna is filamentary, we can replace the volume 

integral in this equation by a line integral (note that for a 

filamentary current JdV’ = Jsdl' = Idl', where s is the cross- 

section area of the conductor, and dl’ is a length element vector in 

the direction of J). Furthermore, since the antenna is along the z 

axis, we can write Eq. (2-2.5) as 

He al i : a Sills x rdl!. (2-2.21) 
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Differentiating Eq. (2-2.20), replacing t in Eq. (2-2.20) and in 

its derivative by the retarded time ¢ — r/c, and substituting the 

resulting expressions in Eq. (2-2.21), we then have 

if (eS = T/C) : I,w cos w(t - r/c) 
He== 

4a 3 
Mk Sd a(-2.22) 

r hae 

Since, by supposition, r > XX = 27c/w, the first term in this 

integral is much smaller than the second term and can be neglected. 

Since r > /, r may be considered the same for all points of the 

antenna. The integral reduces therefore to the product of the second 

integrand and the length of the antenna 

I,wcos w(t - r/c) 
See ee ex Pls (2-2.23) 

4ar’c 

or, in terms of the coordinates shown in Fig. 2.2, 

[f@cosa(t - r/c) . 
ee ino (2-2.24) 

4nrc 

To find the electric field, we can use Eq. (2-2.12). Since we 

are only interested in the electric field at a large distance from the 

antenna, we can neglect in Eq. (2-2.12) all terms that approach zero 

at infinity faster than as 1/r. We then have 

E = eee ee er : Laas, (2-2.25) 
4me.c?) \p? Lat rldt 

H 

which we can write similar to Eq. (2-2.22) as 

E- [free P 200s OE 1/e)a— Te cos w(t - ric)hau’. 
4mé,c* Ve r 

‘i (2-2.26) 
Taking into account that k - r = r cos @, and replacing the 

integral, as before, by the product of the integrand and the length 

of the antenna, we obtain 

_ Hyacosutt=rlo (reas? 4) a.an 
4nérc? r 
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Resolving r, and 6, shown in Fig. 2.2 into components along the z 

and x axes, we can easily find that 

rcosé -k =r,cosé - k = sin00,. (2-2.28) 
r 

Therefore we finally have 

LI,wcosw(t-r/c) , 
es ee Mes Cy n6,. (2-2.29) 

4merc* 

An alternative method for obtaining Eq. (2-2.29) is to apply 

Maxwell’s Eq. (2-1.4) to Eq. (2-2.24) and to integrate the result 

with respect to ¢.° 

Example 2-2.3 Another system capable of generating electro- 

magnetic waves is the radiating "magnetic dipole antenna," shown 

in Fig. 2.3. It consists of a circular loop of wire carrying a current 

f= /sinor. (2-2, 30) 

Assuming that the radius of the loop is a, find the electric and 

magnetic fields produced by this antenna at a large distance r > 

= 2tc/w > a from it. 

zhk 

6 va 

| wi Fig. 2.3 Calculation of the r>>a 
9 electric and magnetic fields 

zleaey tZ u generated by a magnetic De 
a me dipole Gena: (The unit 

po x, 1 vector @, is directed into the 

We shall find the electric field produced by the antenna by 
using Eq. (2-2.4). Assuming that the antenna has no net charge, we 
only need to consider the second integral in this equation. Since the 
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current in the antenna is filamentary, the volume integral can be 
replaced by a line integral (see Example 2-2.2). Differentiating then 

Eq. (2-2.30) and replacing ¢ in the derivative by t — r/c, we can 

write Eq. (2-2.4) as 

eae 1 (sollckit = T/C) 

i, 
dl’, (2-2.31) 

4me,c* 

where dl’ has the same direction as the current in the loop. 

Transforming the integral in Eq. (2-2.31) by means of vector 

identity (V-18), factoring out the constants, and using vector 

identity (V-25), we have 

ee Iw | as’ x Y! cos w(t - r/c) 
2 

tea P (2-2.32) 
[,w Do 1 , 

eee re SG Cee = COS CL nC) TX do 
Ame C? rc pe 

But w/c = 27/X and, by the statement of the problem, r > X. 

Therefore the second term in the last integral may be neglected, and 

we obtain 

E = - r,xdS’, — (2-2.33) Iw | sinw(t - r/c) 
3 ATE,C 

Now, since r > a, we can replace the integral by the product of 

the integrand and the surface area of the antenna, so that 

Iw sinw(t - r/c) 

4mé,c° r 
E = - r,Xkaa?, — (2-2.34) 

or 

2a’ sinw(t - r/ SE er (2-2.35) 
4e,c?r 

The magnetic field can be determined from Eq. (2-2.5). Since 

we are only interested in the magnetic field at a large distance from 

the antenna, we can neglect in Eq. (2-2.5) the first term in the 

integrand (it is proportional to 1/r, and for large r is negligible 
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compared with the second term, which is proportional to 1/r). We 

then have, replacing as before volume integration by line 

integration, 
1 { [,wcosw(t - r/c) < H - - x di’. (2-236) 

4a ice 

Since r > a, r may be considered the same at all points of the 

antenna, and therefore we may factor out r/r, obtaining 

I,wecos at - r/c) ee | cose (2-2.37) 
4acr r 

But the integral in Eq. (2-2.37) is the same as in Eq. (2-2.31) for 

E. By Eqs. (2-2.37) and (2-2.31)-(2-2.35), we then have 

Hoe [,w°a? sinw(t - r/c) 
72 sinér xX @,. (2-2.38) 
G 

or 
Dee 

ee el CUO ee 
4c x 

2-3. Surface Integrals for Retarded Electric and Magnetic 

Fields 

A remarkable feature of Eqs. (2-2.1) and (2-2.2) is that they 

correlate the electric field with the gradient of the charge 

distribution and correlate the magnetic field with the curl of the 

current distribution rather than with the charge and current 
distribution as such. Hence, the equations may be interpreted as 
indicating that the electric and magnetic fields are associated not 
with electric charges and currents, but rather with the 
inhomogeneities in the distribution of charges and currents (a 
homogeneous, or uniform, charge distribution has zero gradient, 
and a homogeneous, or uniform, current distribution has zero 
curl). 
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A frequently encountered charge or current distribution is a 
distribution in which the charge or current changes abruptly from 
a finite value in the interior of the distribution to zero outside the 
distribution. For this type of charge and current distribution, Eqs. 

(2-2.1) and (2-2.2) can be transformed into special forms that are 

more convenient to use than Eqs. (2-2.1) and (2-2.2) themselves. 

Consider first Eq. (2-2.1). In this equation the part of the 

integral involving Vp can be separated into two integrals: the 

integral over the boundary layer of the charge distribution under 

consideration and the integral over the interior of the charge 

distribution: 

/ / / 

: je oe iv NTs ey, 223.1) 
47€, r 4mé, 381 or Ane, Jim or 

The first integral on the right of Eq. (2-3.1) can be transformed 

by using vector identity (V-33): 

1 | Wola | v Plays} | vi lay: 
4mé,J86 7 4m€, 184 or 4mé, JB. hs (2-3.2) 

In Eq. (2-3.2), V in the first integral on the right operates upon 

the field point coordinates only. Therefore it can be factored out 

from under the integral sign. The integrand in this integral will 

then be [p]/r. Since both [p] and r are finite, while the integration 

is over the volume of the boundary layer whose thickness, and 

therefore volume, can be assumed to be as small as we please, the 

integral vanishes. The second integral on the right of Eq. (2-3.2) 

can be transformed into a surface integral by using vector identity 

(V-20). Equation (2-3.2) can be written therefore as 

ela Mens Lg Plas’, (23.3) 
47, B.layer 7 ATE, B.layer 7 

where the surface integral is extended over both surfaces (exterior 

and interior) of the boundary layer. 
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In Eq. (2-3.3), dS’ of the exterior surface is directed into the 

space outside the charge distribution, while dS’ of the interior 

surface is directed into the charge distribution. However, since 

there is no charge outside the charge distribution, the integral over 

the exterior surface vanishes. Since the boundary layer can be 

made as thin as we please, we can make the interior surface of the 

boundary layer coincide with the surface of the charge 

distribution. Reversing the sign in front of the surface integral, we 

can write then Eq. (2-3.3) as 

/ 

eae EE ee eis | | O84) 
47, B.layer 7 4TE, Boundary f 

where the integration is now over the surface of the charge 

distribution, and where the surface element vector dS’ is directed, 

as usual, from the charge distribution into the surrounding space. 

From Eqs. (2-2.1), (2-3.1), and (2-3.4) we obtain 

/ 

poe {el as || Wael) ee [4] bv 
4mE, } Boundary 4ne,Jm or 4m&,C? dt 

(2-3.5) 

This equation becomes especially simple in the case of a constant 

(uniform) charge distribution surrounded by a free space. In this 

case Vo in the interior of the distribution is zero, and Eq. (2-3.5) 

simplifies to 

Be ON ge! [eee (2-3.6) 
47, Boundary / 4mé,c? rlot 

Consider now Eq. (2-2.2). Just as in the case of Eq. (2-2.1), 

we can separate the integral in Eq. (2-2.2) into an integral over 
the boundary layer of the current distribution and an integral over 
the interior of the distribution. By the same reasoning as that used 
to simplify Eq. (2-3.2), we find that the integral over the 
boundary layer can be written as 
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cafe cabal ie ele lay a) 1237) 
4m J Bilayer 4m J B.layer r 

Transforming the integral on the right of Eq. (2-3.7) into a 
surface integral by means of vector identity (V-21), and taking 

into account that there is no current in the space outside the 

current distribution, we obtain, just as we obtained Eq. (2-3.4), 

1 OS =a aA yine's Ul yas’, (23.8) 
47 J B.layer r 47 J Boundary yr 

where the integration is over the surface of the current 

distribution, and the surface element vector dS’ is directed from 

the current distribution into the surrounding space. 

Equation (2-2.2) can be written therefore as 

ie 

H- Bix asics (| a EAT ave 23.9) 
4a J Boundary fr 4a J interior r 

For the special case of V xX J = 0 in the interior of the current 

distribution, Eq. (2-3.9) simplifies to 

H- I) x as’. (2-3.10) 
47 J Bounday yr 

v 

Example 2-3.1 A thin, uniformly charged disk of charge density 

p, radius a, and thickness b rotates with constant angular 

acceleration @ about its axis, which is also the x axis of rectangular 

coordinates. The midplane of the disk coincides with the yz plane 

of the coordinates, and the rotation of the disk is right-handed 

relative to the x axis (Fig. 2.4). Using Eqs. (2-3.6) and (2-3.9), find 

the electric and magnetic fields produced by the disk at a point of 

the x axis, if at ¢ = O the angular velocity of the disk is w = 0. 

The disk creates a convection current J = pv = pwRO, = 

patR@,, where R is the distance from the center of the disk, and 0, 

is a unit vector in the circular direction (right-handed with respect 

to @). The time derivative of J is 0J/dt = paR@,. To find V’ x J, 
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Fig. 2.4 Calculation of the 

electric and magnetic fields on 

the axis of a charged disk 

rotating with constant angular 

acceleration &. 

we use the relation v = w X R and vector identity (V-12). Taking 

into account that w is not a function of coordinates, we then obtain 

Vv’ xJ=V! X(pw XR) =p[w(V’ > R) -(° V’)R], (2-3.11) 

and since R = y’j + z’k, while w + V’ = w0/dx', we have 

V’xJ = 2p = 2pat = 2pati. (2-3.12) 

Examining now Eq. (2-3.6) and taking into account that 0J/0t 

is in the circular direction, we recognize that the second integral in 

Eq. (2-3.6) vanishes by symmetry (see Example 2-2.1). And since 

p does not depend on time, we see from Eq. (2-3.6) that the electric 

field of the disk is the ordinary electrostatic field given by 

Eee Wis eS a’ (23.13) 
47, Boundary 7 ATE, Boundary 7 

Let us now evaluate the surface integral in Eq. (2-3.13). By the 

symmetry of the system, only the two flat surfaces of the disk 

contribute to the field on the axis. The back surface is located at x’ 

= — b/2, the front surface is located at x’ = + b/2. The direction 

of the surface element vector dS' is — i for the back surface and + 

i for the front surface. We have therefore 

poe iy 27RdR pans [. 27RdR 
4mé, 19 [R* +(x +b/2)]* 4 te, J 0 [R2 +(x -b/2)]!2 

ne ee: +0 +b/2))}" — (x +B/2) - [a2 +(x -b/2)}"? +(x -b/2)}. 
‘ (2-3.14) 
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Since b < x, we can use the relation 

[a? +(x + b/2)?]'? =[a? +x? +. xb]'” =(a? +x?)!"[1 4xb/2(a? +x?)). 

(2-3.15) 
Substituting Eq. (2-3.15) into Eq. (2-3.14), we obtain after 

elementary simplifications 

E = pe) Sere (2-3.16) ewes eee neh F 
26, aaa 

To find the magnetic field, we use Eq. (2-3.9). Substituting [J] 

= paR(t - r/c)0, and [V' x J] = 2pa(t — r/c)i into Eq. (2-3.9), we 

have 

1 ee) eas) +i | pot =rIe) yr 

r teams (2-3.17) 
By the symmetry of the system, only the curved surface of the disk 

contributes to the first integral. At this surface R = a,r = (a + 

x)'?, 6, x dS' = — ids’, and the surface itself is S’ = 27ab. In 
the second integral r is r = (R* + x°)'” and the volume element is 

dV' = b27RdR. The magnetic field is therefore 

Aq J Boundary 

H- _; paale -(a* +x*)'?/c7]2nab , ipa eee +x?) 1C* > RAR 
4m(a2 +x)? Qn Jo (R2+x2)'? 

2 

=-j pata*b ,,paa’b +ipatb(a? +x2)!2 -j 204 b (2-3.18) 

Da- +72) Ne 2¢ 

or A 
H = ipabt(a? + x2)'71 -__2 _|. (2-3:19) 

2(a* + x’) 

It is interesting to note that neither the electric nor the magnetic 

field of the rotating disk is retarded, just as was the case with the 

fields of the rotating ring discussed in Example 2-2.1 (see, 

however, Example 2-4.2). 
A 
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2-4. Retarded Potentials for Electric and Magnetic Fields 

The calculation of time-dependent electric and magnetic fields 

can sometimes be simplified by using retarded electromagnetic 

potentials. 
For the calculation of magnetic fields in a vacuum it is 

convenient to use the potentials defined in Corollary I of Section 

1-1. Substituting in Eqs. (1-1.3), (1-1.4), and (1-1.5) V = B, V 

-V=V- B= 0, K, = 0, and K, = pJ [because by Eqs (2- 

1.12) and (1-1.1) K = V x J in the wave equation for H, so that 

K = 4,V X J in the wave equations for B = pH], and leaving 

out, as usual, ~ and Ay, we have 

B= VA; (2-4.1) 

where 

NE say (2-4.2) 
4nJ or 

If the current is filamentary, this equation reduces to 

a- holly, (2-4.3) 
4n/ or 

where dl’ is a length element vector in the direction of the 

current. 

For the calculation of electric fields in a vacuum it is 

convenient to use the potentials defined in Corollary II of Section 

1-1. Substituting in Eqs. (1-1.6), (1-1.7), and (1-1.8) V = E, V 

> E=V > (D/é) = p/ey, K = — p0J3/dt [see Eq. (2-1.9)], and 

leaving out ¢ and Wo, we have 

E=-Vo+W, (2-4.4) 
where 

. ! ¢ [el ys ? 
4né, | aad Ca?) 

while 

1| J w--Bpiln | — = (av (2-4.6) 
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Using Eq. (1-2.14) and taking into account that the integration 

in Eq. (2-4.6) involves space coordinates only, we can factor out 

0/dt from under the integral sign, obtaining 

-j2[hr -- 3h) ar}, an 
Therefore, according to Eq. (2-4.2), Eq. (2-4.4) can be written as 

0A 

“Ot” 

where A is the retarded magnetic vector potential given by Eq. (2- 

4.2) or Eq. (2-4.3). 

The potentials y and A given by Eqs. (2-4.5) and (2-4.2) are 

the retarded electromagnetic potentials. They represent a 

generalization of the ordinary electric and magnetic potentials 9 

and A and reduce to them in the case of time-independent fields 

in a vacuum.? 

Kee Vo (2-4.8) 

v 
Example 2-4.1 Show that the retarded potentials y and A satisfy 

Lorenz’s condition 

Vinee 1 oe (2-4.9) 
Ot 

From Eqs. i and (1-2.14) we have 

dp 0 |p] 7 upd / - ta = pally ¢ OT dv’. (2-4.10 
“oto Ge ala HT | af ae 

But according to the continuity law, Eq. (2-2.6), 

dp 
Ot 
en, (2-4.11) 

so that 

Op _ MASON ery, av’. 2-4.12 
oe Zell r aes 

Transforming the integral in Eq. (2-4.12) by means of vector 

identity (V-27), we have 
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dp _ [J] H . Ly] : ~ boty z|[Vsav+ ev <dv’, (24.13) 

The last integral can be transformed into a surface integral by 

means of the vector identity (V-19), and since there is no current at 

infinity, the surface integral is zero, and so is the last integral. In 

the first integral, V can be factored out from under the integral 

sign. Therefore we obtain 

Op _ (9) ays a5 =V- == d Vim 2-4.14) 
Moor Ot =| r 

Eliminating the last integral in Eq. (2-4.14) by means of Eq. (2- 

4.2), we obtain Lorenz’s condition. 

Example 2-4.2 Find the electric and magnetic fields at all points 

of space far from the rotating ring described in Example 2-2.1 (Fig. 

Ze): 

$ va he 
Fig. 2.5 Calculation of the electric 

Ny or and magnetic fields far from the 

I A\\ charged ring rotating with constant 

a, S' angular acceleration. (The unit vector 

r>>a @, is directed into the page.) 

At large distances from the ring, the ring constitutes a point 

charge g, which does not depend on time. Therefore the electric 

potential of the ring is the ordinary electrostatic potential 

y= _4_. (2-4.15) 
Amer 

Since the ring constitutes a convection line current J = gat/2r, 
the magnetic vector potential of the ring is, by Eq. (2-4.3), 
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ne fog ga(t-r/c)/21 i = gouge dl’ — ap, 

4a iF 872 

The last integral on the right of Eq. (2-4.16) is zero. The remaining 

integral can be transformed into a surface integral by means of 

vector identity (V-18). We then obtain 

pa. (2-4.16) 
81c 

at / aty, ¢ ri, 
r2 

where r’, is a unit vector directed from the point of observation 

toward the surface element dS’. 

Now, since the point of observation is far from the ring, the 

integral can be replaced by the (vector) product of the integrand and 

the surface area S’ of the ring, so that the vector potential is 

r xS/, — (2-4.18) 
8r2r2_ " 

where r,, is a unit vector directed from the ring toward the point of 

observation. The magnitude of the vector S’ is 7a’, and the direction 

is along the x axis. Designating the angle between r, and S’ as 8, 

we then have for the vector potential 

2 

=; = sind¢,, (2-4.19) 
T 

ea 

where @, iS a unit vector in the circular direction left-handed 

relative to the x axis. 
By Eq. (2-4.1), the magnetic flux density field associated with 

this vector potential is 
2 gaat 

8ar 
B=V XA = °(2cosdr, +sind9,) — (2-4.20) 

(we do not reproduce the actual calculation of V x A, since it is 

not important for the purpose of the present example; the 

calculation is done by using the expressions for the curl of a vector 

in spherical coordinates"). It is interesting to note that this field is 
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an ordinary (unretarded) field of a current dipole,’ and that on the 

x axis (9 = 0) it reduces to the field found in Example 2-2.1 (for 

5G E> (0), 

Let us now find the electric field of the ring. By Eq. (2-4.8), 

(2-4.15), and (2-4.19), we have 

2 

Ge eine gy (2-4.21) 1g = ‘ 
4nér? Sar 

OF USING S55 = /c: 
2) 

=f yp +_9" sinog. (2-4.22) 

It is interesting to note that although the electric field of the 

ring does not depend on f, the presence of the ¢, term makes the 

field different from the electrostatic field of the ring. This term 

represents the contribution of [0J/0t] in Eq. (2-2.1) and represents 

the "electrokinetic field" (see Section 2-5). In the case under 

consideration, the electrokinetic field is circular and is directed 

opposite to the current in the ring. 

On the x axis, the electric field of the ring reduces to the field 

found in Example 2-2.1. 

A 

2-5. Electromagnetic Induction 

Electromagnetic induction is frequently explained as a 

phenomenon in which a changing magnetic field produces an 

electric field ("Faraday induction") and a changing electric field 

produces a magnetic field ("Maxwell induction"). 

A detailed examination of the causal relations in time- 
dependent electric and magnetic fields shows, however, that 
neither of the two fields can create the other.!2 The causal 
equations for electric and magnetic fields in a vacuum are the 
retarded field equations discussed in Sections 2-2 and 2-3. 
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According to Eqs. (2-2.1), (2-2.2), (2-2.4), (2-2.5), and (2- 

2.12), in time-variable systems electric and magnetic fields are 

always created simultaneously, because they have a common 

causative source: the changing electric current 0J/0t. Once 

created, the two fields coexist from then on without any effect 

upon each other. Therefore electromagnetic induction as a 

phenomenon in which one of the fields creates the other is an 

illusion. The illusion of the "mutual creation" arises from the fact 

that in time-dependent systems the two fields always appear 

prominently together, while their causative sources (the time- 

variable current in particular) remain in the background. 

As can be seen from Eq. (2-2.1) or from Eq. (2-2.4), a time- 

variable electric current creates an electric field parallel to that 

current (parallel to [dJ/dt]). This field exerts an electric force on 

the charges in nearby conductors thereby creating induced electric 

currents in the conductors. Thus, the term "electromagnetic 

induction" is actually a misnomer, since no magnetic effect is 

involved in the phenomenon, and since the induced current is 

caused solely by the time-variable electric current and by the 

electric field produced by that current. 

The electric field produced by a time-variable current differs 

in two important respects from the ordinary electric field produced 

by electric charges at rest: first, the field produced by a current 

is directed along the current rather than along a radius vector, and 

second, the field exists only as long as the current is changing in 

time. Therefore the electric force caused by this field is also 

different from the ordinary electric (electrostatic) force: it is 

directed along the current and it lasts only as long as the current 

is changing. Unlike the electrostatic force, which is always an 

attraction or repulsion between electric charges, the electric force 

due to a time-variable current is a dragging force: it causes 

electric charges to move parallel (or anti-parallel) relative to the 

direction of the current. If the time-variable current is a 

convection current, then the force that this current exerts on 
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neighboring charges causes them to move parallel to the 

convection current, rather than toward or away from the charges 

forming the convection current [the total force is, of course, given 

by all the terms in Eq. (2-2.1) or Eq. (2-2.4)]. 

Since the electric field created by time-variable currents is 

very different from all other fields encountered in electromagnetic 

phenomena, a special name should be given to it. Taking into 

account that the cause of this field is a motion of electric charges 

(current), we may call it the electrokinetic field, and we may call 

the force which this field exerts on an electric charge the 

electrokinetic force.'? Of course, we could simply call this field 

the "induced field." However, such a name would not reflect the 

special nature and properties of this field. 

Let us designate the electrokinetic field by the vector E,. 

From Eq. (2-2.4) we thus have 

E, = - a (2-5.1) 
4nec?d rior 

The electrokinetic field provides a precise and clear ex- 

planation of one of the most remarkable properties of electromag- 

netic induction: Lenz’s law. Consider a straight current-carrying 

conductor parallel to another conductor. According to Lenz’s law, 

the current induced in the second conductor is opposite to the 

inducing current in the first conductor when the inducing current 

is increasing, and is in the same direction as the inducing current 

when the inducing current is decreasing. In the past no convincing 

explanation of this effect was known. But the electrokinetic field 

provides the definitive explanation of Lenz’s law: by Eq. (2-5.1), 
the sign (direction) of the electrokinetic field is opposite to the 
sign of the time derivative of the inducing current. When the 
derivative is positive, the electrokinetic field is opposite to the 
inducing current; when the derivative is negative, the 
electrokinetic field is in the same direction as the inducing 
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current. Since the induced current is caused by the electrokinetic 
field, the direction of this field determines the direction of the 
induced current: opposite to the inducing current when that 

current increases (positive derivative), the same as the inducing 

current when the inducing current decreases (negative derivative). 

Of course, since the direction of the inducing current usually 

varies from point to point in space, the ultimate direction of the 

electrokinetic field and of the current that it produces is 

determined, in general, by the combined effect of all the current 

elements of the inducing current in the integral of Eq. (2-5.1). 

The electrokinetic field also gives a simple explanation of the 

fact (first noted by Faraday) that the strongest induced current is 

produced between parallel conductors, whereas no induction takes 

place between conductors at right angles to each other. This 

phenomenon is now easily understood from the fact that the 

electrokinetic field due to a straight conductor carrying an 

inducing current is always parallel to the conductor. 

Although we have been discussing the electrokinetic field as 

the cause of induced currents in conductors, its significance is 

much more general. This field can exist anywhere in space and 

can manifest itself as a pure force field by its action on free 

electric charges. Of course, because of the c’ in the denominator 

in Eq. (2-5.1), the electrokinetic field cannot be particularly 

strong except when the current changes very fast. This is probably 

the main reason why this field was ignored in the past. Another 

reason is the temporal (transient) nature of this field. 

But even weak electric fields can produce strong currents in 

conductors, and that is why the current-producing effect of the 

electrokinetic field is much more prominent than its force effect 

on electric charges in free space. 

If we compare Eq. (2-5.1) with Eq. (2-4.2) for the retarded 

magnetic vector potential A produced by a current J, we 

recognize that the electrokinetic field is equal to the negative time 

derivative of A (observe that py = 1/éc’): 
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gE, = - 2A. (2-5.2) 
at 

However, although Eq. (2-5.2) correlates the electrokinetic field 

with the magnetic vector potential, there is no causal link between 

the two: the correlation merely reflects the fact that both the 

electrokinetic field and the magnetic vector potential are 

simultaneously caused by the same electric current. 

Important as it is, the electrokinetic field has not been studied 

(or even recognized as a special force field) until very recently, 

although the fact that the time derivative of the retarded vector 

potential is associated with an electric field has been known for a 

long time. 

Electromagnetic induction is a phenomenon associated with 

relatively slow current variations and with electromagnetic fields 

extending over relatively small regions of space (rapid current 

variations and time-variable fields extending over long distances 

are dealt with on the basis of radiation theory; see Examples 2-2.2 

and 2-2.3). More specifically, electromagnetic induction applies 

to systems satisfying Eq. (2-2.13). Therefore, as far as 

electromagnetic induction is concerned, the retardation in the 

propagation of the electric field from the inducing current to the 

conductor in which the induced current is created can be ignored. 

Removing the retardation symbol [ ] in Eq. (2-5.1) and factoring 

out 0/dt, we then obtain for the electrokinetic field 

5 uy 1 ie 
eae ee ae Ve 2-533 

; Ot\4me,c? J r ( ) 

v 

Example 2-5.1 A conducting circular ring of radius R is placed 
outside a long coaxial solenoid of n turns, radius a and length L, 
carrying a current J (Fig. 2.6). Using Eq. (2-5.3) find the 
electrokinetic field and then the voltage induced in the ring when 
the current in the solenoid is changing. Observe that according to 
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the conventional explanation of electromagnetic induction, the 
voltage and the current in the ring is induced by the changing 
magnetic field at the location of the ring. But this explanation does 
not work in the present case, because there is no magnetic field at 
the location of the ring (except for the end-effect field of the 
solenoid, which is negligible). 

Fig. 2.6 Calculation of the voltage induced in a conducting ring 

placed outside a solenoid carrying a variable current. 

Let the axis of the solenoid be the x axis of a rectangular 

system of coordinates, let the ring be in the yz plane, and let the 

ends of the solenoid be at x = — L/2 and x = L/2. To find the 

electrokinetic field induced by the solenoid in the ring, we shall 

consider a point of the ring located on the y axis. We can represent 

this point by the vector Rj. Consider next a point on the surface of 

the solenoid at a distance x from the yz plane. Combining 

cylindrical and rectangular coordinates, we can represent that point 

by the vector b = xi + a cos6j + a sinék. The distance between 

the two points is thenr = Rj — b= — xi + (R — acosé)j — 

a sinok, so that for r in Eq. (2-5.3) we have, by adding the squares 

of the components of r and taking the square root of the sum, r = 

(x? + R® + a’ — 2Ra cos)’. The current density in the solenoid 
can be written as J = (n//Lw)6, = (nI/Lw)(— sinéj + cosdk), 
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where / is the current in the solenoid, w is the thickness of the 

current sheet, and 6, is a unit vector in the direction of the current. 

The volume element to be used in Eq. (2-5.3) can be written as dV’ 

= wadédx. 

By the symmetry of the system, the contribution of the y 

component of J to the electrokinetic field is zero. Equation (2-5.3) 

becomes therefore (we replace 1/€)c* by po) 

2m pLi2 

pe | Ho | | eae 5 cle (2-5.4) 
Ot\4n Jo J -L2 Lw(R? +a? -2Racosé +x?!” 

or 
nla 2a ¢Li2 

Bee het | | ops Oe eerie (2-5.5) 
Ot\ 4mL Jo J 42 (R*+a?-2Racosd +x*)!? 

Integrating by parts over 0, we obtain 

0 Lb nlRa2 2a pLi2 Te) 

eo BA asec | peter are T7 (2-5.6) 
Ot\ 4mL Jo J-t2 (R*+q?-2Racosé +x??? 

Integrating over x and taking into account that L > R, a, we 

obtain 

E - - Ok 
p.nlRa? Qa sin” 6 

* Ot | 
pam a Se ee 7) 2-5.7 

27L J0 (R*+a*-2Racosé) 

The integral in Eq. (2-5.7) is just'* 1/R*. The electrokinetic 

field generated at the point Rj of the ring by the current in the 

solenoid is therefore (replacing k by 0,) 

a ae) 
| paar peschl (pe a 2-5.8 

: OL ee ORE 

and the voltage induced in the ring is 

2 

Ving = fE, +a SB get yy Ai oe (2-5.9) 
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RETARDED INTEGRALS FOR 

ELECTRIC AND MAGNETIC 

FIELDS AND POTENTIALS OF 

MOVING CHARGES 

In this chapter we shall learn how retarded integrals for 

electric and magnetic fields and potentials can be used for finding 

electric and magnetic fields and potentials of moving electric 

charge distributions. We shall also discover important relations 

between the electric and magnetic fields for two special cases of 

moving charge distributions: an arbitrary charge distribution 

moving with constant velocity and a point charge in arbitrary 

motion. 

3-1. Using Retarded Integrals for Finding Electric and 

Magnetic Fields and Potentials of Moving Charge Distributions 

A time-variable electric charge distribution always involves a 

movement of electric charges. For example, if the density of a 

charge distribution changes with time, then some electric charges 

change their location within the charge distribution or move to or 
from the charge distribution. Conversely, a moving charge 
distribution is inevitably a time-variable charge distribution 
because it creates charge density in regions of space which it 

46 
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enters and eliminates charge density from the regions of space 
which it leaves. Consequently, the electric and magnetic fields of 

a moving charge distribution can be determined from retarded 

field (or retarded potential) equations derived in Chapter 2 for the 

general case of time-dependent charge and current distributions. 

To use retarded field integrals for finding electric and 

magnetic fields of moving charge distributions, we need to express 

the time derivatives 0p/dt and 0J/dt in terms of the velocity of the 

charge distribution under consideration. This can be done as 

follows. Consider a stationary charge distribution of density p as 

aetunmction Oley .<V4.0c 

PSG Seok (Hig) 

If this charge distribution moves with velocity v without changing 

its density, the total time derivative of p is 

dp _ 9p , dp dx’ , dp dy’, Op de! _ 9 yyy. do ox! di by! di ae! et eee 
Since p remains the same as the charge moves, dp/dt = 0, so that 

ues -v-V'p. (3-1.3) 
ot 

A moving charge distribution constitutes a current whose density 

is J = pv. Therefore 

OF _ OO) -.(y Wp) +p 2 =-(v + Vip)v+pv. (3-1.4) 
Ot Ot Ot 

Observe that in the retarded field integrals derived in Chapter 

2, the denominator r representing the distance between the volume 

element dV’ and the point of observation is not a function of time. 

Therefore it is not a function of time also in the case of moving 

charge distributions. A moving charge distribution must be 

considered as moving past different volume elements of space 

associated with different but fixed r’s. The question arises, if dV’ 
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is a volume element of space, rather than a volume element of a 

moving charge distribution, how does one introduce the volume 

of the charge distribution into the field integrals? To answer this 

question, let us examine how the electric and magnetic fields of 

a moving charge distribution are created. 

The phenomenon of retardation indicates that time-dependent 

charge distributions send out electric (and magnetic) field 

"signals" that propagate in all directions with the velocity of light. 

The electric or magnetic field created by a time-variable charge 

distribution at the point of observation is the result of the signals 

sent out by all the individual charges within the distribution and 

simultaneously "received" at the point of observation at the instant 

t. But different charges within the distribution are at different 

distances from the point of observation, and the times needed for 

the signals originating from the different charges to arrive at the 

point of observation are different. Therefore the signals that are 

received at the point of observation simultaneously at the instant 

t are sent out from the different charges within the distribution at 

different retarded times ¢’ = ¢ — r/c. For a moving charge 

distribution these times are different not only because different 

charges within the distribution are located at different distances 

from the point of observation, but also because the location of 

these charges changes as the charge distribution moves. As a 

result, the region of space from which the field signals responsible 

for the field at the point of observation are sent is not equal to the 

region of space, or volume, occupied by the charge distribution 

when it is at rest. 

Consider a charge distribution of length / moving against the 

X axis with a constant velocity v. The electric field E of the 

charge is observed at the point O (Fig. 3.1). A field signal is sent 
from the trailing end of the distribution when this end is at the 
distance r, from the point of observation. A field signal is sent 
from the leading end, when this end is at the distance r, from the 
point of observation. Since the leading end is closer to the point 
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of observation than the trailing end, the field signal from the 
leading end must be sent at a later time, if it is to arrive at the 
point of observation simultaneously with the signal sent from the 
trailing end. The difference in the times needed for the two 
signals to arrive at the point of observation is r,/c — r/c. During 

this time the charge distribution moves a distance (r,/c — 1,/c)v. 

Hence the distance /* between the two points from which the two 

signals are sent is 

LBA) Vics (3-1.5) 

Fig. 3.1 For the two field 

signals to arrive simultaneously 

at O, the field signal originating 

from the leading end of the 

moving charge must be sent later 

than the field signal originating 

from the trailing end of the 

charge. 

In this chapter we shall be mainly concerned with the special 

case of charge distributions for which r,,r, > /*. In this case (see 

Fig. 3.2), 7, — 7% = I* cos d = l*(r + y)/rv, where r is the 

distance between the midpoint of /* and the point of observation, 

and ¢ is the angle between r and v. Substituting this expression 

for 7; — 7 in Eq..(3-1.5), we have 

[= (TSV VT Cot Le (3-1.6) 

or 

|G a) ee Ris seca Seley, 
1-(r-v)/rc ( 

Therefore, as already mentioned, the region of space from which 
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Fig. 3.2 Geometrical 

relations between r, 9, 

and I* when r,, rp > 

l*. The significance of 

the vector \* will be 

explained later. 

the moving charge sends out the field signals resulting in the 

electric and magnetic fields created at the point of observation is 

not equal to the region of space (volume) actually occupied by the 

charge. In the case of a charge distribution whose linear 

dimensions are small compared with the distance from the charge 

to the point of observation, this region of space, usually called the 

effective volume, or the retarded volume, AV',., 1S 

AV! VS 
1-(r- v)/rc 

(3-1.8) 

where AV’ is the actual volume of the charge [this equation is 

obtained from Eq. (3-1.7) by noting that the volume dimensions 

perpendicular to the direction of motion are not affected by 

retardation, and that the dimensions along the direction of motion 

change in accordance with Eq. (3-1.7)]. 

Although the distance /* given by Eq. (3-1.5) or Eq. (3-1.7) 

is a distance between two points in space rather than a length of 

an object, it is usually called the retarded length of the charge. In 

fact, it is actually the "visual" length of a rapidly moving body, 

as the length of the body would appear to a stationary observer. 

As follows from Eq. (3-1.7), the retarded length of a body 

moving toward the observer is longer, and the retarded length of 

a body moving away from the observer is shorter, than the actual 
length of the body.' It should be emphasized that Eqs. (3-1.6)-(3- 
1.8) hold only for charges or bodies observed from a distance 
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much greater than the linear dimensions of the charge or body. 
For a general case, the retarded length or volume of a body 
cannot be expressed by a simple formula, but can be calculated in 
terms of the actual length of the body once the position of the 
body at the time of observation is given (Section 4-3). 

Another effect of retardation that needs to be taken into 

account when applying retarded field equations to moving charge 

distributions is an apparent distortion of the shape of a moving 

charge distribution. The distribution appears to change its shape 

because the retarded times for different points within the 

distribution are different. 

Sf — w/c ——»| 

O 

Fig. 3.3 Geometrical relations between the "present position 

vector" Y 9 and the “retarded position vector" r for a charge 

distribution moving with velocity v in the negative x direction. 

Consider a charge distribution moving against the x axis with 

a velocity v and observed from a point O (Fig. 3.3). The retarded 

volume element dV’ of the charge distribution is at the point P 

and is represented by the vector r. The present position of the 

same volume element is at the point P, and is represented by the 

vector ry. The distance Ax’ from P to Py is the distance that the 

charge travels during the time that it takes the field signal to 
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propagate from P to O, that is, Ax’ = v(r/c). We shall now show 

that, within the charge, any line parallel to the y axis when the 

charge is at rest or at its present position appears to be slanted 

when the charge is moving and is at a retarded position. 

First, let us note that according to Fig. 3.3 the relation 

between the x component of the present position vector ry and the 

x and y components of the retarded position vector r is (as usual, 

we use primes to indicate source-point coordinates) 

/ x' = Xe +vric, (3-1.9) 

or 

/ x! = x9 +(e? +y/?)v/c. (3-1. 10) 

Differentiating Eq. (3-1.10) while keeping x)’ constant, we have 

(ee y‘(vic) : Ex ii 
dy! r[1 -(v/c) (x'/n] 

which can be written as 

y |<—_—_— rv/c | 

Fig. 3.4 A charge at its retarded position appears to be elongated 
and its vertical lines appear to be slanted. 



SECTION 3-1 MOVING CHARGE DISTRIBUTIONS 53 

Fig. 3.5 Explanation of the vectors \* and a*. The vector 1* 

represents the retarded length of the moving charge, the vector a* 

represents the "slanted" thickness of the charge. 

iat y'vic 2 y’vic _ (v/c)sing 
ay Til =(/ejcose| (P= Gv) ire ewe) ire 

(3-1.12) 
Thus, according to Eq. (3-1.12), a vertical line (x)' = constant, 

dx,'/dy)' = 0) within the charge at the present position appears to 

be slanted when the charge is viewed at its retarded position (Fig. 

3.4), and the angle a of the slant is given by 

cot SC ee (3-1.13) 
r{1 -(r+ v)/rc] 

In the derivations presented later in Chapter 4, we shall 

consider a moving charge in the shape of a rectangular prism of 

length / and thickness a. For determining the magnetic and 

electric fields of such a charge we shall make use of two special 

vectors shown in Fig. 3.5: the vector 1* representing the retarded 

length of the charge, given by 

eee, Gar ee ery (3-1.14) 
1-(r ° v)/rc 
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and the vector a* representing the "slanted" thickness of the 

charge, given by (note thatr - v = x’v) 

ee Se Ve (aj oe ay vic». af—-Xx Vic) 

r[1-(r + v)/rc] r[l-(rev)/rc] r{1-( + v)/rc] 

(3-1.15) 

We shall also use the following relation derived in Example 

3-1.1 for a charge moving with acceleration vV = dv/0t' 

1 _r-rvict+(re V)ric? (3-1.16) 
Vk eee in De steel ties NS oe RRR 

[ra sy) 1c) r{1-(r+ v)/re/? 

Note that if ¥ = 0 (motion with constant velocity), Eq. (3-1.16) 
becomes 

Pabedan rT @ (Ge 17) 
[r-(rev)/c] [1 -(r + v)/rc}? 

In dealing with retarded integrals for moving electric charges, 

we shall frequently use the expression 

(hav) Ce (3-1.18) 

where r is the retarded position vector joining a retarded volume 

element dV’ of a moving charge distribution with the point of 

observation. If the charge distribution moves with a constant 

velocity v, this expression can be converted to the present position 

of the charge distribution, that is, to the position occupied by the 

volume element dV’ of the charge distribution at the instant for 

which the electric and magnetic fields are being determined. This 

can be done as follows. 

First, assuming that the charge distribution moves in the 

negative x direction and assuming that dV’ is in the xy plane, we 

see from Fig. 3.3 that the present position vector ry of dV’ can be 

expressed in terms of the retarded position vector r as 

ry =Vr-rvic. (3219) 

Next, we write Eq. (3-1.18) as 
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[r-(r + v)/c] =[r-x'v/c] 
3-1.20 

=[(r -x'vic)]'? =[r? -21x' vic +x?v2/e2}'2., 

Adding and subtracting x'* and v’/c’ to the right side of Eq. (3- 
1.20), we then have 

(tev )/c] (sl 0 

=(r? -2rx'vic +x v7? +x/? -x!? + pve? —ry4fe 2]? , 

Let us now collect the terms on the right of Eq. (3-1.21) into 

three groups: 

x! - Ix'vie + revise? , (3-1.22) 

r2 - x/?, (3-1.23) 

and 
i v-le-—r7V1e2. (3-1.24) 

By Eq. (3-1.9), the first group represents x)'*, where x,’ is the 

distance between the yz plane and the volume element dV’ of the 

moving charge at its present position. The second group is simply 

y’*, where y’ is the (constant) y coordinate of the volume element 

dV’. And the third group is —y’’v’/c*. We can write therefore 

[(r-(r ., v)/c] =(x¢° +y/? = y/o)? 

(6-1525) 
=(x9 +y!)7{1 (Vey? (xo ty}. 

But, as can be seen from Fig. 3.3, x9’? + y’? = ro’, and y’7/(x9 
+ y’”) = sin’ 6, where @ is the angle between ry and the velocity 
vector v. Therefore 

[r-(r- v)/c] =r[1 -(r ° v)/rc] =r,{1 -(v7/c’)sin’0}"*, (3-1.26) 

where all the quantities in the last expression are present time 

quantities. In obtaining Eqs. (3-1.25) and (3-1.26) we assumed 

that the volume element dV’ of the moving charge was located in 

the xy plane. Clearly, however, the two equations are valid even 
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if dV’ is not in that plane, provided that we replace in these 

equations y’ by y? + 2”. 
Expressions involving the retarded position vector r and its 

magnitude r have a very peculiar and important property which 

should be kept in mind when dealing with moving charges and 

currents. As already mentioned, a moving charge is assumed to 

move through different but fixed points of space. Therefore 

neither the retarded position vector r nor its magnitude r explicitly 

appearing in retarded integrals is a function of time. On the other 

hand, in the case of moving charges and currents, the distance r 

appearing in the retarded time t’ = ¢ — r/c is variable and 

therefore is a function of time. The same applies to Eqs. (3-1.7) - 

(3-1.17) presented above and to all similar expressions. 

A 

Example 3-1.1 Derive Eq. (3-1.16). 

Let us arrange a rectangular system of coordinates so that the 

acceleration vector of the moving charge is in the xy plane and the 

velocity vector is in the negative x direction. Let the point of 

observation be at the origin. The position vector of the charge is 

then r = — x'i — y’j. Using vector identity (V-7), we have 

fe SRN ey 5 sep 
PAO) [r-(r + v)/c]? 

In differentiating the numerator in Eq. (3-1.27), we should 

remember that the numerator is retarded. However, as explained in 

Section 3-1, neither the position vector r nor its magnitude r 

appearing in retarded integrals is a function of time and therefore 

neither is affected by retardation (the charge moves through 

different but fixed points of space). The only quantity in the 

numerator affected by retardation is the velocity v which is a 
function of the retarded time ¢ — r/c and does change as the charge 
moves. Hence we can write, making use of vector identity (V-5), 
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j 1 __ VW r-V'[(r + v)/c] 

[ie (ireay)i/c [r-(r + v)/c]?? 

© -r,-(1/o)V'[r + v] 

2 [r-(r * v)/c]* 

(3-1.28) 

To evaluate V'[r - v], we first use vector identity (V-30), 

obtaining 
r : 

Vir-v] =[V'(r- v)] fea tls vi (3-1.29) 
Cc Ot 

The first expression on the right can be evaluated with the help of 

vector identity (V-6). Note that in this expression V’ operates upon 

unretarded quantities. Therefore we have 

Vi(r-v) =(r°V/)v +r x(V! Xv) +(v °V)r+vXx(V! Xr). (3-1.30) 

Since all the quantities in this equation are unretarded, and since the 

unretarded v does not depend on spatial coordinates, the first two 

terms on the right of this equation vanish. Since V’ x r = 0, the 

last term vanishes also. By vector identity (V-4), the remaining 

term is simply — v. We thus obtain 

V/(r-v) =-v. (3-1.31) 

Taking into account that r in the last term of Eq. (3-1.29) is not 

a function of time, we have 

ab fe - vy) 
Sclemor 

==| Ov 
—| ) et 

le ae 

r 

=_“(rev]. (3-132) 
(E 

Combining Eqs. (3-1.28), (3-1.29), (3-1.31), and (3-1.32), 

factoring out r in the denominator, and multiplying the numerator 

and the denominator by r, we finally obtain 

Pie DE ea CNC! 737733) 
(=v) /C] r[1 -(r + v)/rc}’ 
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Although all quantities in this equation refer to the retarded position 

of the charge, to avoid an exceedingly cumbersome notation we do 

not place them between the retardation brackets. 
A 

3-2. Correlation Between the Electric and the Magnetic Field 

of a Moving Charge Distribution 

There are two special cases of moving charge distributions for 

which there exist simple correlations between the electric and the 

magnetic field produced by the distributions. The first case is that 

of an arbitrary charge distribution moving with constant velocity. 

The second case is that of a point charge moving with 

acceleration. 

Consider first a charge distribution of arbitrary size and shape 

moving with constant velocity v. Let us form the vector product 

of é)v and Eq. (2-2.1). Since v is a constant vector, we can place 

it under the integral sign, so that 

oyVe Eee ae | eee ear (3-2.1) 

If a charge distribution moves with constant velocity v, then by 

Eq. (3-1.4) the derivative 0J/dt is parallel to v. Therefore the 

product v x [0J/dt] vanishes, and since v is not affected by 

retardation, Eq. (3-2.1) simplifies to 

/ 

ev XE = - | eee sel ys (3-2.2) 
4r r 

Using now the vector identity 

Vv’ x(vp) = (V’ xX v)j—p - vx V'p (3-2.3) 
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and taking into account that V’ x v = O and that vo = J, we 
obtain from Eq. (3-2.2) 

/ 

ev X E = paler (3-2.4) 
4n if 

which, by Eq. (2-2.2), is the same as 

H = ev xE. (3-2.5) 

Since wo>H = B, and é pm) = I/c’, this equation can also be 
written as 

B = (v x E)/c?. (3-2.6) 

Observe that E in Eqs. (3-2.5) and (3-2.6) is the electric field 

produced by a moving charge distribution. 

It is interesting to note that since, in the present case, the term 

0J/dt in Eq. (3-2.1) makes no contribution to v x E, we can 

write Eq. (3-2.6), using Eq. (2-2.1), as 

/ / 

B=-vx 4 We pies ial | NCE (3-2.7) 
ARE Uae) Zech ie 

and, assuming that the velocity is along the x axis, so that v x 

i = 0, as 

hn 
[(V, +V,)p] av’. 

r 
(3-2.8) 

where only the components of V’ perpendicular to v occur. 

Furthermore, using Eq. (2-2.4) and taking into account that 0J/dt 

makes no contribution to v X E and that v xX i = O, we can 

write Eq. (3-2.6) as 
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B-vx ee | {2 boi + zk) dV! 
4me,c? J \ r? 

=yx Ho 0 noe + zk)aV!. 
(3-2.9) 

As it follows from Eqs. (3-1.7) and (3-1.8), for slowly 

moving charge distributions the retardation can be neglected, in 

which case Eq. (3-2.6) reduces to 

B = (vx Bc, (3-2. 10) 

where E is the ordinary electrostatic field of the charge 

distribution under consideration. Likewise, Eqs. (3-2.7) - (3-2.9) 

reduce to the corresponding equations involving unretarded charge 

densities. 

Consider now a point charge moving with acceleration. Let us 

assume that the retarded position of the point charge is given by 

the vector r, and let us form the cross product of r/(roc) and Eq. 

(2-2.12). Assuming that r for a moving point charge can be 

considered the same throughout the entire volume occupied by the 

charge, we can place r/r under the integral signs.” Noting that r 

x r = 0, we then obtain 

rxE _ 1 je «4 [2h xrav’, (3-2.11) 
Mocr Ame pc* thr? 

and, taking into account that éou9c* = 1 and using Eq. (2-2.5), we 

immediately obtain 

Hoe ees (3-2.12) 
pcr 

Or 

Boe (3-2.13) 
cr 
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where r is the retarded position vector connecting the moving 

point charge with the point of observation. Equations (3-2.12) and 

(3-2.13) show that the magnetic field of a moving point charge is 

perpendicular to the electric field produced by the charge and to 

the radius vector joining the retarded position of the charge with 

the point of observation.? 
It is interesting to note that for a point charge moving with 

constant velocity, Eqs. (3-2.5) and (3-2.6) as well as Eqs. (3- 

2.12) and (3-2.13) hold, because Eqs. (3-2.12) and (3-2.13) are 

true for any acceleration, including zero acceleration. However, 

it is important to remember that Eqs. (3-2.12) and (3-2.13) 

involve the retarded position vector r. If the acceleration is zero, 

Eq. (3-2.13) reduces to Eq. (3-2.6), as is shown in Example 4- 

el: 

References and Remarks for Chapter 3 

1. The retarded length should not be confused with the relativistic 

"Lorentz-contracted length." See Section 9-1. 

2. This procedure is generally applicable to stationary point 

charges only. For moving point charges its applicability depends on 

certain parameters of the system under consideration. See Section 

4-7 (in particular Eqs. 4-7.1 and 4-7.2) for details. 

3. It is important to stress that Eqs. (3-2.12) and (3-2.13), 

although usually presented in the literature as perfectly true, are 

actually only approximately correct. See Section 4-7 for details. 



ELECTRIC AND MAGNETIC 

FIELDS AND POTENTIALS OF 

MOVING POINT AND LINE 

CHARGES 

The finite propagation speed of electric and magnetic 

fields has a profound effect on the electric and magnetic fields and 

potentials associated with moving charge distributions. In this 

chapter we shall use retarded integrals for determining electric and 

magnetic fields and potentials of the two simplest types of moving 

charge distributions: a moving point charge and a moving line 

charge. 

4-1. The Electric Field of a Uniformly Moving Point Charge' 

Any stationary charge distribution viewed from a sufficiently 

large distance constitutes a "point charge."* Consider a charge 

distribution of total charge q and density o confined to a small 

rectangular prism (Fig. 4.1) whose center is located at the point 

x', y’ in the xy plane of a rectangular system of coordinates, and 

whose sides J, a, and b are parallel to the x, y, and z axis, 

respectively. Let the point of observation be at the origin of the 

coordinates, and let the distance between the center of the prism 

and the origin be 7) > a, b, 1. Viewed from the origin, this 

62 
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Fig. 4.1 A charge of uniform density p is confined to a small 

rectangular prism. The total charge of the prism is q. The charge 

constitutes a point charge when viewed from a distance large 

compared to the linear dimensions of the prism. 

charge distribution constitutes a point charge.’ Let the charge 

move with uniform velocity v = — vi. We want to find the 

electric and magnetic fields of this charge at the point of 

observation. 

To find the electric field produced by this charge, we shall 

use Eq. (2-2.1). First we eliminate from Eq. (2-2.1) the term with 

the current density J. We can do so with the help of Eq. (3-1.4). 

Since the velocity of our charge is v = v,i = — vi, and since the 

charge moves without acceleration so that Vv = 0, Eq. (3-1.4) 

gives 

Clee ( aay ere (4-1.1) 
Ot * Ax / 

Substituting Eq. (4-1.1) into Eq. (2-2.1), we then have for the 

electric field of the charge 
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Fig. 4.2. When the charge shown in Fig. 4.1 is moving and is at a 

retarded position, its apparent length, shape, and thickness of its 

front and back surface layers are no longer the same as for the 

stationary charge. (All r’s meet at the origin). 

Bisco! [ese tee ilar (4-1.2) 
if 

Observe that in this equation V’ and 0/dx' operate on the 

unretarded p, so that in computing V’p and dp/dx' we must use the 

ordinary, unretarded, shape and size of the prism. Since p is 

constant within the prism, V’p = O within it, and the only 

contribution to V’p comes from the surface layer of the prism, 

where p changes from p (inside the prism) to 0 (outside the prism). 

Let the thickness of the surface layer be w. Taking into account that 

V'p represents the rate of change of p in the direction of the 

greatest rate of change, we then have V'p = (o/w)n,,, where n,, is 

a unit vector normal to the surface layer and pointing into the 

prism. Hence V’p for the right, left, top, bottom, front, and back 

surfaces of the charge (prism) are —(0/w)i, (0/w)i, —(p/w)j, (o/w)j, 

—(o/w)k, and (p/w)k, respectively. Likewise, 0p/0x' is zero 
in the interior of the charge and is different from zero only in the 
left and in the right surface layers of the charge, where 



SECTION 4-1 UNIFORMLY MOVING POINT CHARGE 65 

Fig. 4.3 The relations between r3, r,, and a* for the moving 

charge at a retarded position. (The two r’s meet at the origin.) 

0p/0x' = p/w in the left surface layer and do/dx' = — p/w inthe 

right surface layer. 

The volume integral of Eq. (4-1.2) can be split therefore into 

six integrals, one over each of the six surface layers 

corresponding to the six surfaces of the charge (prism). However, 

since the center of the charge is in the xy plane (z’ = 0), the 

integrals over the two surface layers parallel to the xy plane cancel 

each other, because V'p for one of the layers is opposite to that 

for the other layer, while 7 is the same for both layers. Thus only 

the four integrals over the layers parallel to the xz and yz planes 

remain. Let us designate the retarded distances from these layers 

to the point of observation as r,, 7%, 73, and r, (see Figs. 4.2 and 

4.3). Since the linear dimensions of the charge are much smaller 

than 7,, 7, 73, and r,, we can replace each integral over a surface 

layer by the product of the integrand and the volume of the 

corresponding layer. However, the integration in Eq. (4-1.2) is 

over the effective (retarded) volume of the charge, and therefore 

we must use not the true volume of the surface layers, but their 

effective volume. The effective volume of the surface layers is not 

the same as their actual volume, because, in accordance with Eq. 

(3-1.7), the length / of the two layers parallel to the xz plane must 
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be replaced by 
hae l (4-1.3) 

1-(r-v)/re 

and because, also in accordance with Eq. (3-1.7), the thickness w 

of the two layers parallel to the yz plane must be replaced by 

Wwe = w x (4-1.4) 

1 -(r + v)/rc 

Equation (4-1.2) becomes therefore 

p/w | Oe hwo (4  abwe i+ 2!” bl we) 
Amel 7, r, iS (4-1.5) 

AED yi wj + 2 Se i+ Pl abws (-i)} 
l, r ry 

or, substituting /* and w* from Eqs. (4-1.3) and (4-1.4), 

Ee — mia i) shee ME Sar ienf 
r,-r,°vi Pe viC 

blw(-j) + fee 
pole) 

2 
+ fae abwi+_?!”__ abw( -i)}, 

Cal eat, ea G ele ONE 

blwj (4-1.6) 
AW AKG G 

which simplifies to 

2 ee ate ete eee 
Ate c2/\r,-r,°-v/c 1 a ONS 

| 1 1 \ii 
+ {—__ = dF. 
Ne NUIC™ Ge Ve OFIG 

3 

(4-1.7) 

As can be seen from Figs. 4.2 and 4.3, the differences of the 

fractions in these equations are simply the increments of the 

function 1/(r -r + v/c) associated with the displacement of the tail 
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of r over the distances represented by the vector I* [in the i 
component of Eq. (4-1.7)] and by the vector a* [in the j 

component of Eq. (4-1.7)]. Therefore we can write Eq. (4-1.7) as* 

E = - LE Wo N ae A Ii 
4mé, Ge pene ONAKe 

' (pees: Jea° Li}. 
TAT IC 

Substituting the gradient from Eq. (3-1.17) (remembering that v 

= 0) and substituting 1* and a* from Eqs. (3-1.14) and (3-1.15), 

we have 

gE - 02 (i-4) r-rvic i) la; 
ATE CARL =r « v/rey rie /7e 

fa | EL CE) 
riter-aviroy: | orev (rc) 

+ ( r-rv/c +i] r-x'vic i 

POE evirc)? wre rewire) 

(4-1.8) 

Simplifying and taking into account thatr -i = —x’,r-j= 

—y,v-i=—v,v-j=0, andr -v= x’v, we obtain 

2 

E = ee! 22 ed | ~ ex! +rv/c)i 
Arcee (leer avilrc|, CA 

/ a Sf 

Moles ustaiig Castes Genie) (4-1.10) 
r r 

2) 2 

= assert Ell ss a - rv/c) at : \-nil 
4ne.r7[1 -r + v/re}? Cc C? 

and finally, noting thatr = — x'i — y’j, and that pabl = q, 

Z esis ls ad (4-1.11) 
4ner*[1 -r + v/rce}? 6 
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Equation (4-1.11) expresses E in terms of the retarded 

position of the charge specified by the retarded position vector r 

(see Fig. 3.4). Usually it is desirable to express E in terms of the 

present position of the charge specified by the present position 

vector ry (see Fig. 3.4). We can convert Eq. (4-1.11) from r to 

rp by using Eqs. (3-1.19) and (3-1.26). According to Eq. (3-1.19), 

EWC =i (4-1.12) 

so that the last factor in Eq. (4-1.11) is simply the present position 

vector rp. Substituting Eq. (4-1.12) and Eq. (3-1.26) into Eq. (4- 

1.11), we obtain the desired equation for the electric field of a 

uniformly moving point charge expressed in terms of the present 

position of the charge 

fe a ee (4-1.13) 
4né 75 {1 -(v?/c?) sin’9}3? 

This equation (in a different notation) was first derived by Oliver 

Heaviside in 1888 on the basis of Maxwell’s equations by using 

the "operational calculus" that he invented.° 

Heaviside, the electric field of a 

moving point charge concentrates 

a we liselfe ins the “direction 

perpendicular to the direction of 

motion of the charge and 
Va / II\\* decreases along the line of the 

WL Fig. 4.4 As was first noticed by 

motion. 

There are two interesting properties of Eq. (4-1.13). First, as 
was noted by Heaviside, with increasing velocity of the charge the 
electric field of the charge concentrates itself more and more 
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about the equatorial plane, 9 = 7/2, and decreases along the line 

of motion, 0 = 0. This effect is shown in Fig. 4.4. Second, the 

electric field appears to originate at the charge in its present 

position. This, of course, is merely an illusion, because by 

supposition the distance between the charge and the point of 

observation is much greater than the linear dimensions of the 

charge, so that neither Eq. (4-1.11) nor Eq. (4-1.13) gives us any 

information concerning the structure of the field close to the 

charge. Note also that because of the finite speed of the 

propagation of the field signals and light signals one can never 

observe the charge at its present position. In fact, the charge could 

have stopped after sending the field signal from its retarded 

position, and even then Eq. (4-1.13) would remain valid, although 

in this case Eq. (4-1.13) would apply to the "projected," or 

"anticipated," present position of the charge. 

v 

Example 4-1.1 Show that for a point charge moving without 

acceleration Eq. (3-2.13) reduces to (3-2.6). 

According to Eq. (4-1.12), the retarded position vector of the 

charge can be expressed in terms of the present position as 

Tiara tT Vic. (4-1.14) 

Substituting Eq. (4-1.14) into Eq. (3-2.13), we have 

Tae ag oe eo Loe OPED Bates) 
cr Ch cr cr 

Be 

Since, by Eq. (4-1.13), E is directed along rp, ry X E = 0, and we 

are left with 
B = (v x E)/c2; (4-1. 16) 

which was to be proved. 

Example 4-1.2 Equation (4-1.13) represents a "snapshot" of the 

electric field of a moving point charge, since it does not express the 
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field as a function of time. Modify Eq. (4-1.13) so that it shows 

how the field changes as the charge moves. 

Let us assume that the "snapshot" is for ¢ = 0. If the charge 

moves in the — x direction, the functional dependence of E on the 

x coordinate will be preserved for t # 0 if we express Eq. (4-1.13) 

in terms of x)’ and replace x,’ by X)’ — vt. From Eqs. (3-1.26) and 

(3-1.25), we have 

roll (sie )sine 03) = en FY SY VCs) ee 
= eon live ye la 

Replacing in Eq. (4-1.17) x9’ by x9’ — vt, we obtain 

r{1 -(v2/c?)sin’ $1? = [(xg - vt)? +(1-v2/c?)y"7J'2, (4-1.18) 

where x,’ is now the x coordinate of the point charge at t = 0. 

Expressing rp in terms of its components and replacing x9’ by x9’ — 

vt, we similarly have ry = —(x%)' — vt)i — y’j. Therefore Eq. (4- 

1.13) can be written as 

ql - v7/e?){(xp - vt)i + y/j} 
| Op ts cece ES ie pine OSE 

4ré{(xo - vt)? +(1 -v2/e2)y/*432 
(4-1.19) 

where the dependence of E on ¢ is shown explicitly. This equation 

holds for the charge moving parallel to the x axis in the xy plane. 

If it moves parallel to the x axis anywhere in space, y’ in this 

equation should be replaced by (y’? + z’”). y 

4-2. The Magnetic Field of a Uniformly Moving Point Charge 

Although by using Eq. (2-2.2) or Eq. (2-2.5), we can find the 

magnetic field of a uniformly moving point charge in the same 
manner as we found the electric field in Section 4-1 (see Example 
4-2.1), it is much easier to find it from the known electric field by 
using Eq. (3-2.5) or Eq. (3-2.6). 
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Applying Eq. (3-2.5) to Eq. (4-1.11), we obtain for the 
magnetic field in terms of the retarded position of the charge 

g[1 - v2/c?] 
| ier eee irk Sar es 

4ar%{1 -r - v/rc}3 
<r]. (4-2.1) 

Applying Eq. (3-2.5) to Eq. (4-1.13), we obtain for the 

magnetic field in terms of the present position of the charge 

SS ppae 

RGAE ayer i ae a(4-2,2) 
Amro {1 -(v*/c*) sin’6}3? 

H = 

v 

Example 4-2.1 Find the magnetic field of a uniformly moving 

point charge shown in Fig. 4.1 by using Eq. (2-2.2), 

H = sal [Vix] gy’, (4-2.3) 
4 iP 

To use Eq. (4-2.3), we need to know V’ X J associated with 

the charge under consideration. The moving charge constitutes a 

current density J = pv. Since v is not a function of x’, y’, z', we 

have V’ x J = V’o X v. But ¢ is constant within the charge, and 

therefore the only contribution to V’ x J comes from the surface 

layer of the charge, where p changes from p (inside the charge) to 

0 (outside the charge). Using the values for V’p obtained in Section 

4-1, we then have for V’ xX J of the top, bottom, front, and back 

surface layers of the charge (prism) —pv/wk, pv/wk, pv/wj, and 

—p/wj, respectively; the left and right surface layers make no 

contribution to V’ xX J, because v and V’p are parallel (or 

antiparallel) there. Furthermore, since V’ x J in the front surface 

layer is opposite to V’ x J in the back surface layer, while both 

surface layers are at the same distance r from the point of 

observation, the contributions of these two layers to the integral in 
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Eq. (4-2.3) cancel each other, so that only the top and the bottom 

surface layers contribute to the magnetic field of the charge. 

Since the linear dimensions of the charge are much smaller than 

r, and r,, (see Fig. 4.3), we can replace the integrals over the two 

surface layers by the product of the integrand and the volumes of 

the corresponding layers. Using Eq. (4-2.3) and taking into account 

the effective volume of the boundary layers (see Sections 3-1 and 

4-1), we have, as in Eqs. (4-1.5)-(4-1.7), 

fore oe alee 2 _ lw __wotk| 
CGS eead th © vic r-E Vic (4-2.4) 

let we i : 1 
ATS CS nh aE vic 

The difference of the two fractions in the last expression is 

simply the increment of the function 1/(r - r + w/c) associated with 

the displacement of the tail of r over the distance represented by the 

vector a* (see Fig 4.3). Therefore, using Eqs. (3-1.17) and (3- 

1.15), we can write Eq. (4-2.4) as 

ee Bel r -rv/c -i| y'vic 

4mle(t=revire) Yr rv rc) 4-2.5 
+ ( r-rvic i] r-x'vic | : 

r(i-rev/rce? ~/rd-rev/rc) } 

Simplifying and taking into account thatr > i = —x’,r-° j= — 

y,vei=-—v,v-j=0, andr - v= x’v, we obtain 

ee aM 
4nr?{1 -r° v/rc?? 

Se avileveicAys 

4ar[1 -r + v/rcP 

[(-x'+rv/c)y'v/re +(-y')(1 -x/v/re)]k 

(4-2.6) 

which, noting that vy’k = v x r, is the same as Eq. (4-2.1).° 
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4-3. The Electric and Magnetic Fields of a Line Charge 
Uniformly Moving Along its Length 

Consider a line charge of finite length L, cross-sectional area 

S, charge density p, and linear charge density \ = pS moving 

with constant velocity v parallel to the x axis of a rectangular 

system of coordinates in the negative direction of the axis and at 

a distance R above the axis (Fig. 4.5). Let the point of 

observation O be at the origin. What is the electric field at O at 

the time ¢ when the leading end of the charge is at a distance L, 

from the y axis? 

We can find the electric field of the moving charge by using 

Eq. (2-2.1) or Eq. (2-2.4) if we know the retarded position of the 

Lee Ge ae, 

2! 
ULL LLL ST 

Vv 

vx 

Fig. 4.5 A line charge of linear density \ is moving with constant 

velocity v. The retarded positions of the trailing and leading ends 

of the charge are x,' and x,', respectively. The present positions of 

the two ends are L, and L,, respectively. The distance between the 

trajectory of the charge and the x axis is R. The point of 

observation O is at the origin. The "retarded," or "effective," 

length of the charge is longer than its true length. 
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charge corresponding to the time for which the field is computed. 

We can determine this position as follows. 

First, let us determine the retarded position x,’ of the leading 

end of the charge corresponding to the time ¢, that is, the position 

from which the leading end sends out its field signal which arrives 

at O at the time f¢. If the retarded distance between O and the 

leading end is 7, then the time it takes for the signal to travel 

from the leading end to O is r/c. During this time the charge 

travels a distance v(r,/c). Therefore at the moment when the 

leading end sends out its field signal, the position of the leading 

end is 

XG, =P LT ViCn (4-3.1) 

Next, let us find the retarded position x,' of the trailing end 

of the charge corresponding to the time ¢. If the retarded distance 

between O and the trailing end is 7,, then the time it takes for the 

signal to travel from the trailing end to O is r,/c. During this time 

the charge travels a distance v(r,/c). Hence, at the moment when 

the trailing end sends out its signal, the position of the trailing end 

is 
os, elt Ce (4-3.2) 

The x component of the electric field. We are now ready to 

find the electric field of the charge by using Eq. (2-2.1) or Eq. (2- 

2.4). The easiest way to find the x component of the electric field 

of the charge under consideration is to use Eq. (2-2.1). According 

to this equation, the x component of the field is due to the x 

components of [V’p] and [0J/0¢] of the moving charge. For the 

line charge under consideration, these components exist only at 

the leading and trailing ends of the charge and are the same as for 

the moving charged prism discussed in the preceding sections of 

this chapter: [V'p], = (o/w)i for the leading end, and [V’p], 

= — (0/w)i for the trailing end, [0J/dt], = — (vp/w)i for the 
leading end, and [0J/d¢], = (v’p/w)i for the trailing end, where w 
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is the thickness of the surface layer of the charge (this is the 
actual thickness, not the retarded one). Since the surface layer of 
the charge may be assumed as thin as one wishes, the retarded 

volume integral in Eq. (2-2.1), as far as the x component of the 

field is concerned, reduces to the product of the integrand and the 

volume of the surface layers of the leading and trailing ends of the 

charge at their retarded positions. By Eq. (4-1.4), for the leading 

end, this volume is, using the asterisk to indicate values evaluated 

at retarded positions, 

: 5 Whe ieee 4-3.3 
‘ T-(r,- v)/r,c oe 

and for the trailing end it is 

See ee (4-3.4) 
AC AO IEEE 

The x component of the electric field is therefore 

—pAtae 

5 ee) ae I (4-3.5) 
- 4 é, Bua (Tev inc) sr l= (Gayv)irc] 

or 
Lena 

ES See eo : = (4-3.6) 
4n€, Py Seem an baie 

Equation (4-3.6) gives the electric field in terms of the 

retarded position of the charge. We shall now convert it to the 

present position of the charge (that is, the actual position of the 

charge at the time #). The calculations are similar to those used for 

deriving Eqs. (3-1.20)-(3-1.26). First, we note that, by Eq. (4- 

oi), 

Ly =x) - Wie + rv7le?. (4-3.7) 

Next, we write the denominator of the first fraction inside the 

parentheses of Eq. (4-3.6) as 
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r, -x3v/c =[(r, =x, vic)? =( 2x vic +x2v2fc2)i2_  (4-3.8) 

Adding and subtracting x’? and r,’v’/c’ to the right side of Eq. (4- 

3.8), we then have 

r, -x;,V/C (4-3.9) 

=(r} -2rxy vie +x, VIC? +xy - xy +V2C2-V7/C7)'?, 

Let us now collect the terms on the right of Eq. (4-3.9) into three 

groups: 

Se = ANS SIGE (4-3.10) 

rs - roe ‘ (4-3.11) 

and 
x vc? = reve. (4-3.12) 

By Eq. (4-3.7), the first group represents L,’. The second group 

is simply R? (see Fig. 4.5). And the third group is — R°v’/c’. 
Similar relations hold for the denominator of the second 

fraction inside the parentheses of Eq. (4-3.6). Therefore Eq. (4- 

3.6) transforms to 

= INGE) 1 Z 1 
FSS | Ee OS es 

x 47e€,R (L?/R2 +1 -y2/c2)'2 (L;/R? 1 ~y2/c2)12 

(4-3.13) 
where only the present time quantities appear. 

The y component of the electric field. The easiest way to find 

the y component of the electric field of the charge under 
consideration is to use Eq. (2-2.4). Only the first integral of Eq. 
(2-2.4) makes a contribution to the y component of the field, 
because 0J/dt has no y component. Separating this integral into 
two integrals, we then have 
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= 1 [ele 1 | 1 ee 
| SC pe ee RO Vee een. (As. 

y ATE, r3 ATE, r2cl Ot Crete 

The first integral in Eq. (4-3.14) is the same as for a stationary 
charge, except that the integration must be extended over the 

retarded (effective) length of the charge. Designating the 

contribution of the first integral as E,, and noting that r = (x'* + 

R’)'”, we obtain 

5 aoe oes | Ea =~ P5 | ee 3 15) 
“ 4mé,J r? Ame, ! xf (x/* +R?)3? 

ok / / / / 

ro ON | x; _ Xy es es) 

% AMER 7 4R9 G+RY'21 Ane Rly, 7) 
(4-3.16) 

In order to evaluate the contribution of E,, of the second 

integral of Eq. (4-3.14) to the total field, we must determine the 

value of the derivative [0p/dt]. According to the notation 

convention for retarded quantities explained in Chapter 1, this 

derivative is the ordinary derivative 0p/dt used at the retarded 

position of the moving charge. By Eq. (3-1.3), taking into account 

that for our charge v = — vi, [00/0t] is then simply vdp/dx'. 

Since pe is constant within the line charge, only the leading and the 

trailing ends of the charge contribute to this expression, and the 

contributions are vp/w and — vpo/w, respectively. The electric field 

E,, is therefore 

EY = sath MU R [eave (4-3.17) 
y ATE,C Te TEC Ti 

where the integration is over the surface layers of the leading and 

trailing ends of the charge at the retarded positions of the charge. 

Since the thickness of the surface layers is much smaller than r, 

and r,, we can replace the integrals, as before for E,, by the 
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products of the integrands and the volumes of integration (the 

volumes of the respective surface layers). Using the relations dV,' 

= w,*S, dV,’ = w,*S, and using Eqs. (4-3.3) and (4-3.4) , we 

then have 

2 R vo/w vo/w | 

By =~ gel ens « TEC! 7, -7(r, ° voc r, -7(r, ° v)lc 
(4-3.18) 

AVR 1 4 1 | 

4nécly (r,-x/ vic) —_7,(r,-xz v/C) 

Adding Eqs. (4-3.16) and (4-3.18), we obtain for the y 

component of the field 

Wn [Ree .% Rv/Ic 
rors Saar FeO er eee SS TERE T r(r,-xvic) %% — 4,(7,-x, v/0) (43.19) 

ne x3 (Tr, ~xz v/c) -Rvic «1 (7, -x/v/c) oe 

4méR Ae -x;v/c) re, -x} vic) 

or 
/ == fie ap? / ” ip _p2 

= Ne oe Vice k vie x, Patiny/Gak |. 43.20) 

Ame Rt (r, -xzv/c) r(r,-x1 v/c) 

But x/*vic + Rvic = r,7vic and x,"We + Ryico= pie 
Therefore 

es =I ViCuaa x) -r,vic 
y = ———— = aE aa ae (4-3.21) 

4méR\r -xjvic rr, -x1 vie 

Now, by Eq. (4-3.1), x,’ — nmv/c = L,, and by Eq. (4-3.2), 

x,’ — ryv/c = L,. Substituting L, and L, into Eq. (4-3.21) and 

transforming the denominators to the present position quantities by 

means of Eqs. (4-3.7)-(4-3.12), just as we did in Eq. (4-3.6), we 

finally obtain 

js ae ees [eee : a (43.22) 
Ame Rl (L3/R? +1 -v2/c2)'!2 (L7/R? +1 -v2/c?)!2 
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The magnetic field. Although we could find the magnetic field 
of the moving line charge from Eq. (2-2.2) or from Eq. (2-2.5), 
it is much simpler to find it from the electric field of the charge. 

According to Eq. (3-2.5), the magnetic field H of any uniformly 

moving charge distribution is always 

H = ¢vxE, (4-3.23) 

where E is the electric field of the moving charge distribution. 

Since v = — vi, the only non-vanishing component of the cross 

product in Eq. (4-3.23) is the z component involving E, only. 

Substituting v and Eq. (4-3.22) into Eq. (4-3.23) and denoting dv 

as the current /, we obtain 

je 
I ee ee _ (4-3.24) 

4aR?|(L2/R2+1-v3ey? (LAIR? +1 -v'e)? ) 

4-4, The Electric Field of a Point Charge in Arbitrary Motion 

As before, we consider a constant charge distribution of total 

charge q and density p confined to a small rectangular prism (Fig. 

4.6) whose center is located at the point x’, y’ in the xy plane of 

a rectangular system of coordinates, and whose sides /, a, and b 

are parallel to the x, y, and z axis, respectively. The point of 

observation is at the origin. The distance of the center of the 

prism from the point of observation (the origin) is 7) > a, b, J, 

so that the prism constitutes a point charge.* We shall assume that 

at the retarded time ¢’ the center of the prism moves with velocity 

v in the negative x direction and has an acceleration V. 

For a given present time ¢, the retarded times associated with 

different points of the prism are different, corresponding to 

different retarded distances of these points from the point of 

‘observation. Therefore the retarded velocities of the different 
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ee cele 

Fig. 4.6 A charge of uniform density p is confined to a small 

rectangular prism. The charge constitutes a point charge when 

viewed from a distance large compared to its linear dimensions. 

points of the prism are also different. If the prism is sufficiently 

far from the point of observation, which we assume to be the 

case, the difference between the retarded times corresponding to 

different points of the prism is very small, and therefore the 

retarded acceleration of the prism may be assumed to have the 

same value v for all points of the prism, even if in reality the 

acceleration is variable. Therefore the velocities of the different 

points of the prism can be calculated from velocity formulas for 

motion with constant acceleration. 

As we shall presently see, in addition to the velocity of the 

center of the prism, we only need the velocities of the right, left, 

top, and bottom surfaces of the prism. Let the distances of these 

surfaces from the point of observation be r,, 7, 73, and ry, as 

shown in Fig. 4.7. The time interval between the retarded time 

for the center of the prism and for its left or right surface is then 

approximately (r,—r,)/2c (see Section 3.1), and the time interval 

between the retarded time for the center of the prism and for its 

top or bottom surface is approximately (r,;—r,)/2c. Therefore the 
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* 

3 

Fig. 4.7 When the charge shown in Fig. 4.6 is in a state of 

accelerated motion and is at a retarded position, its apparent 

length, shape, and thickness of its surface layers are no longer the 

same as for the stationary charge. The distances from the center of 

the charge and from the four surface layers to the point of 

observation are represented by the vectors r, ¥,, ¥,, ¥;, and r,. All 

five r’s meet at the point of observation (origin of coordinates). The 

acceleration vector is in the xy plane. 

(approximate) retarded velocities of the right, left, top, and 

bottom surfaces of the prism are, respectively, v; = v — V(r, — 

B26) v= Vv + V(r, — 1)/2c, v7, = vV — VV, — 47,)/2c, and Vv, 

=—¥V + V(r, — r,)/2c. 

As was explained in Section 3-1, the apparent size and shape 

of the prism in its retarded position is not the same as that of the 

prism when it is at rest. In particular, if the prism moves in the 

— x direction, the prism appears to be longer, it appears to be 

slanted, and the effective volume of the prism and of its surface 

layers changes (Fig. 4.7). As a result, the following geometrical 

relations hold for the moving prism at its retarded position: 

The apparent length of the prism is, by Eq. (3-1.7), 

]* = bd pliee (4-4.1) 
l-r-v/rc 

The apparent volume of the prism is, by Eq. (3-1.8), 
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(Gaye 2 eee (4-4.2) 
L=peevire 

By the same equations, the apparent volume of the right surface 

layer (distance r, from the origin) is 

(abn)? = eee (4-4.3) 
Lr Say AC 

the apparent volume of the left surface layer (distance r, from the 

origin) is 

(GbW\ goa OU oe (4-4.4) 
Vanyey, (5c 

the apparent volume of the top surface layer (distance r; from the 

origin) is 

(ib) ee ee (4-4.5) 
Laval rc 

and the apparent volume of the bottom surface layer (distance r, 

from the origin) is 

(Bi) eee (4-4.6) 
TeV .C 

We shall find the electric field of our accelerating point 

charge by using Eq. (2-2.1) 

1 OJ 
V'p + eh 
| f c2 Ot 

EK =- las part Pt (2-2.1) 
ATE, r 

Consider first the contribution of the gradient of the charge 

density, V’p, to the field. Since p is constant within the charge, 

V'p = 0 within it, so that the only contribution to V’o comes 

from the surface layer of the charge, where p changes from 0 
(outside the charge) to p (inside the charge). Let the actual 
thickness of the surface layer of the charge be w. Taking into 
account that V’p represents the rate of change of p in the direction 
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of the greatest rate of change, we then have V’p = (p/w)n,, 

where nj, is a unit vector normal to the surface layer and pointing 

into the charge.’ Since the center of the charge is in the xy plane 

(z' = 0), the integrals over the two surface layers parallel to the 

xy plane cancel each other, because V'p for one of the layers is 

opposite to that for the other layer, while r is the same for both 

layers. Thus, as far as V’p is concerned, only the four integrals 

over the layers parallel to the xz and yz planes remain. Referring 

to Figs. 4.6 and 4.7, they are the right, left, top, and bottom 

surface layers, and V’p associated with these surface layers is, 

respectively —(p/w)i, (0/w)i, —(o/w)j, and (o/w)j (these are the 

same relations that we used for finding the electric field of a 

uniformly moving point charge in Section 4.1). 

Assuming that r,, 7, 7;, and r, are much larger than /*, we 

can replace the integrals over the four layers by the products of 

the integrands and the retarded volumes of the layers, which gives 

E=-5 | PY Cabw HE -i) « 2 (ao): j +?!” bw); w(-j) 
Bore} % (4-4.7) 

+ LY bw); wi - | ration dv! 
ie 4mé,c* r 

Let us designate the part of Eq. (4-4.7) which explicitly 

depends on p as E,. Using Eqs. (4-4.3)-(4-4.6) and cancelling w, 

we can write then 

E -- f(t ei 
Pp  4Te, ALR EON en Filer wc, (4-4.8) 

-| 1 E | jou). 
Filer ic een lake v,/r,c} 

The differences of the fractions in this equation are simply the 

increments of the function 1/(r - r + v/c) associated with the 

displacement of the tail of r over a small distance represented by 
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the vector 1* [in the i component of Eq. (4-4.8)] and by the vector 

a* [in the j component of Eq. (4-4.8)]. Therefore, just as we did 

in the case of Eq. (4-1.7), we can write Eq. (4-4.8) as 

pa IY {(-__}-1-fot+[(v 1 _} -a° 
B ATE, r-r-evic r-rev/c 

Using Eqs. (3-1.16), (3-1.14), and (3-1.15), we now have 

Li} (4-4.9) 

_ pb \(E -rvic+(r°¥)ric? . j la 
1 

= fie Teena} | 
f ATE, r(1-r-v/rcy -r-v/rc 

+(F ~WVIG+(r vric i y‘vie alj a) 
r(1-r- v/rc)* AUN EN Th «e) 

quel t(reyyric™..\ ar =x vic alj). 
r(1-r-v/rc) rd -r-v/rc) 

Simplifying and taking into account thatr - i = — x’,r-°j = 

—yov i= — vy v- j= 0,andr + v = x+y, we obtain 

pabl 
renee eae +rvic-(r° ¥)x'/c7]i 

° 4me yr [1 -r + v/rcP 
/ 

+[-x! + rvic -(r - ¥)x'/c?| pees 
r 

Be, (4-4.11) 
+[-y! =(e- Wyler ZC 

r 

pabl a VCE ov eaCol 
4ner°[1 -r + v/rcP 

cay ale) Vaden Fev) VclGe| |. 

Since we are not interested in the acceleration-independent 
field Ey (this field was found in Section 4-1), we shall drop in EG: 
(4-4.11) the terms that do not contain the acceleration ¥, and shall 
designate the rest of the equations as E,,, with the subscript "A" 
standing for "acceleration." Noting that r = — x'i — y’j, and that 
pabl = q, we then obtain 
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eve ey Te (4-4,12) 
@ 4nec2(1-r- vircy 

Consider now the contribution of 0J/dt to the field. By Eq. (3- 

1.4), we have 

dJ _ O(pv) _ 

Ot Ot 
aCe Vipyv +p ex(v+Vip)v+p¥. 4-413) 

However, because the retarded velocity is different in different 

regions (points) of the charge, we must evaluate Eq. (4-4.13) 

separately for each region under consideration. There are five 

such regions: the interior of the charge, the right surface, the left 

surface, the top surface, and the bottom surface. 

In the interior of the charge, V’o = 0. Therefore for the 

interior we have 

OF eyo, (4-4.14) 
Ot 

At the right surface, V’0=(0p/0x’)i= —(p/w)i, and the velocity 

is v,. By Eq. (4-4.13), for the right surface we therefore have 

ay ) : 
aa =-(v,-V'p)v, +pv¥, = oo +pv, =(0/wW)v,,v, +pV,. 

g x (4-4.15) 
or Ay 

= = (o/w)(v,,V, + wv), (4-4. 16) 

and since we can make w as small as we please, 

OJ 
as = (0/w)Vv,V,. (4-4.17) 

At the left surface, V’o9 = 0p/0x'i = p/wi, and the velocity is 

v,.Therefore, by the same reasoning as in the case of Eq. (4- 

4.16), 
OJ 
= = - (o/w)v,,v,. (4-4.18) 
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At the top surface, V’p = dp/dy'j = — p/wj, and the velocity is 

v;. Lherefore, 

as 
aa = (0/W) Vy¥;. (4-4.19) 

At the bottom surface, V’o = 0p/dy'j=p/wj, and the velocity is 

v,. Therefore 

as, 
a (p/W) VaV4- (4-4.20) 

Let us now designate the integral in Eq. (4-4.7) as E,. Since, 

by supposition, all r’s for the charge (prism) are much larger than 

the linear dimensions of the charge, we can replace the integration 

by the product of the respective integrands and the volumes of the 

five regions that contribute to dJ/dt. Using Eqs. (4-4.14), (4- 

4.17)-(4-4.20) and (4-4.2)-(4-4.6), we then have 

; bl 4té,c°E = ao -4. 
oat) SP er vite (Cee) 

a ee 
rw PS OMA hR(GH Ue. VST Ve 

p lbw lbw aia pve ee ee =2/ se eee) 
r,w Por v,/7.6) rw Rey OMIA 

or 

: VV 
4mé,c’E, = a ane: 

WMUerivirc) peote Val Cam ia Ee ava Cc 
v,V v,,V eS aad, (4-4.22) 

Th A1Va Cel, =EAVG/C 

Since the linear dimensions of the charge are very small 

compared to the r’s, the difference of the fractions in the last two 
terms of Eq. (4-4.22) can be regarded as the total differential 
(increment) df = (df/dx')dx' + (df/dy')dy' of the functions 
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eee (4-4.23) 
r-revic 

and 

oe (4-4.24) 
r-r-vic 

corresponding to the displacements of the tail of r by 1* and by 

a*, respectively (see Fig. 4.7). 

Using Eq. (3-1.16), noting that rr = — x’i — y’j, noting that 

v, = 0 (because v is parallel to the x axis), and remembering that 

v and v are functions of the retarded time t’ = t — r/c, so that 

Ov/dx' = (dv/dt')dt'/dx' = (Ov/dt')x'/rc = V¥x'/rc with similar 

expressions for 0v/dy', dv/dx', and dv/dy', we have for the needed 

partial derivatives of the two functions 

a ( vv Bee Vo Green| Tee) C 
es | ee en ) | ee a A ee ee eee ee 

Oe ee Cv) TCH r= Girl, (4-4.25) 
(VV +Vv,v)x! 

rc{1-(r+v)/rc] 

ps hes Wa a Pam 1006) 
ye WALL CRON ME r°c{1-(r + v)/rc] 

and 
; / 

| Peet Fee (44207) 
oy I= Gy) irc) r°c[1-(r ° v)/rc] 

In evaluating Eq. (4-4.22) with the help of Eqs. (4-4.25)-(4-4.27), 

we shall omit from Eq. (4-4.25) the terms not containing v, since 

they only contribute to the acceleration-independent field Ey, 

which we already found in Section 4-1. Combining Eqs. (4-4.22), 

(4-4.25)-(4-4.27), (3-1.14), and (3-1.15), we then have, denoting 

the acceleration-dependent field as E,, , 
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ten Dey a= 

SACP ONY Bs (VV +V,V)x" 1 j 

po Vy ee ey (4-4.28) 
rec(1-r-v/re) rd-r-v/rc) 

vv y! _ a(r-r-vic) 
> 

ee re ————— 

rec(l-r-vi/rc) r(l-r-:v/rc) 

or 

qv 

FCM te vi7e) 

q =VV(r *V)x’ 

r°c(i-r+v/rc)tred -r + v/re) 

2 cs 47€,c°E,, = 

+ -yyx! (4-4.29) 
. soil 5 / e een ee ee ey) 

VVX VV yoo 
x y. 

rc 1C 

Since r - v = x'y = — x'v, and since = ¥,x' — Wy’ = 

v - r (see Figs. 4.6 and 4.7), Eq. (4-4.29) reduces to 

476,C°E,, = qe (4-4.30) 

Panes A nee: wv Tae) ay) +(r-v)v+(r° v)vI, 
rec(l-r-v/rc)*tre(l -r + v/rc) 

which after elementary simplifications becomes 

_= qv : q(t ° VV _ (4-4.31) 
4mec*r(l-r-v/rey 4me,c*r?(1 -r-v/rc) 

Finally, in accordance with Eq. (4-4.7), subtracting Eq. (4-4.31) 
from Eq. (4-4.12), we obtain for E, 
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ee Fe eco A 
4méc*re(1-r-v/rcP 4 Pera Dea oe 3 0 ¥ r°v/rc) Ree hal =i V/Ic) (4-4.32) 

4mé,c?r( -r - v/rc)?’ 

which can be written in a simpler form as 

- ee | - xi (4-4.33 
“ 4meyrc%(1 -r + virey seg ans 

The total electric field is the sum of the acceleration- 

independent field E, given by Eq. (4-1.11) and of E, given by 

Eq. (4-4.33). Adding Eqs. (4-1.11) and (4-4.33), we obtain for 

the total electric field of a point charge in arbitrary motion 

E Sas eed fy -vJerx|(r- 2} en 
4me,r3(1-r ° v/rc) C Ca Cp Ce 

(4-4.34) 

Note that r, 7, v, v, and ¥ in this equation are retarded. 

Vv 

Example 4-4.1 A point charge moves with constant speed along a 

circle of radius r (Fig 4.8). Find the electric and magnetic fields 

produced by the charge at the center of the circle and discuss the 

significance of the resulting equations for electrodynamics of atomic 

systems. 
For circular motion ¥ = (v’//)r. Substituting v into Eq. (4- 

4.34), taking into account that r + v = O, and simplifying, we 

obtain 

st {r{1 - ¥}-v} (4-4.35) 
4mré,r° c?* G 

Equation (4-4.35) expresses the electric field in terms of the 

retarded position of the charge. Let us convert this expression to the 
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Jo Wee 

Fig. 4.8 Geometrical relations between the "present position 

vector" r, and the "retarded position vector" r for a point charge 

q moving with velocity v ina circular orbit. The field signal 

originates at the "retarded" point P and propagates with velocity c 

toward the center of the orbit O. By the time the signal reaches the 

center of the orbit, the charge has moved an angular distance wr/c 

along the orbit and is at the "present position" point Py). (Note: The 

length of the arc between P nd P, is exaggerated. Since v < c, the 

arc should be shorter than the radius of the orbit.) 

present position of the charge. We can do so by resolving the 

retarded position vector r and the retarded velocity vector v into 

their components along the present position vector r, and the 

present velocity vector v,. Since the angle between the present 

position vector and the retarded position vector is 6. — 0 = wr/c = 

v/c, where w is the angular velocity of the charge, we obtain for the 

two components of E 

2 

{Seg (i -¥}reos w/e - ™ sin(vioh, (4-4.36) 
° Ate r? Cc C 

a 

Eee eh -¥")rsin (vie - *cos(vio}, (4-4.37) 
ee Cc G 
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and for the total field 

eG aye ve 
E Tegeee {( v Joos (v/c) + - sin (vle) 

a y2 

ek 

The most obvious practical application of Eq. (4-4.38) is for the 

case when we can neglect v/c to powers higher than 3. Expanding 

sin(v/c) and cos(v/c) in Eq. (4-4.38) into power series of v/c and 

dropping terms containing v/c to powers higher than 3, we have 

2 

B= 4 (1- Yh, - 2 vb. 44.39) 
4rér° NO: 30° 

(4-4.38) 
+ I sin (vic) = "cos (v/c) 

Vv G 

To find the magnetic field, we apply Eq. (3-2.12) to the electric 

field given by Eq. (4-4.35). This gives 

2 

H = pean =e 
ae 

- -vZ}, (4-4.40) 
ATE UL @ Cc 

or, since r X r = 0, and l/eguy = c’, 

H = _? [vxr}. (Ce) 
Arr 

Although v and r in Eq. (4-4.41) are retarded, their cross 

product is not affected by conversion to the present velocity vector 

and present position vector of the charge, because the cross product 

is the same for all points of the orbit. Therefore the magnetic field 

given by Eq. (4-4.41) is exactly as expected from the Biot-Savart 

law. But Eqs. (4-4.38) and (4-4.39) for the electric field are quite 

unexpected. Intuitively, one would expect the field to be the 

Coulomb field [possibly with the factor (1 — v’/c*)] directed to the 
center of the orbit. Contrary to expectations, the true electric field 

of a point charge moving with constant speed in a circular orbit is 

very different from the Coulomb field: First, the field has a 
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component parallel to the instantaneous velocity vector, and thus is 

not directed to the center of the orbit. Second, the field is not 

proportional to 1/r°. Third, the factor in the radial component of the 

field is (1 — v’/2c’) rather than (1 — v’/c’). 
As far as atomic systems are concerned, it is clear from the 

derivations presented above that the Coulomb law cannot be used 

as a rigorous basis for any atomic model. The problem is that, even 

if the electric field of the nucleus is exactly a Coulomb field, so that 

the electric force exerted by the nucleus on electrons is the ordinary 

1/r force, the electric force exerted by electrons on the nucleus is, 

by Eqs. (4-4.38) and (4-4.39), neither radial nor proportional to 

1/r° [the fact that Eqs. (4-4.38) and (4-4.39) have been obtained for 
a circular, rather than for an elliptical, orbit cannot possibly 

change the essence of the information provided by Eqs. (4-4.38) 

and (4-4.39)]. Therefore any atomic model based on Coulomb field 

or Coulomb potential can at best be only approximately correct, 

although the corrections associated with the acceleration of the 

electrons are clearly very small.® 

A 

4-5. The Magnetic Field of a Point Charge in Arbitrary Motion 

Although by using Eq. (2-2.2) or Eq. (2-2.5) we can find the 

magnetic field produced by a point charge in arbitrary motion in 

the same manner as we found the electric field in Section 4-4 (see 

Example 4-5.1), it is much easier to find it from the known 

electric field by using Eq. (3-2.12). 

Applying Eq. (3-2.12) to Eq. (4-4.33) and using e949 = I/c’, 
we obtain for the acceleration part of the magnetic field after 

elementary simplifications 

= q (VT) asey 4 Set) 
‘ A4nr*c(1-r-v/rc)*trc( -r + v/rc) 
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Applying Eq. (3-2.12) to Eq. (4-4.34) and using é9u) = 1/c’, 
we obtain for the total magnetic field after elementary 
simplifications 

fe) aren Oe) . — qd : VCore Vic (vxry +E] (4-5.2) 

4mr°(1-r-v/rc) rd -r°v/rc) Cc 

v 

Example 4-5.1 Find the magnetic field of an accelerating point 

charge shown in Figs. 4.6 and 4.7 by using Eq. (2-2.2). 

Since J = pv, V' X J=V’' X pv =V'p Xv + pV’ X v. But 

Vv is not a point function (there is no "velocity field"), and therefore 

Vv’ x v = O and V’ X J = V'p X v. As we already know from 

Sections 4-1 and 4-4, V’p for our charge is only different from 

zero at the surface layers of the charge. Therefore the only 

contribution to the integral in Eq. (2-2.2) comes from the right, 

left, top, and bottom surface layers, where V’p is —(p/w)i, (p/w)i, 

—(o/w)j, and (p/w)j, respectively (by symmetry, the contributions 

of the front and back surface layers cancel). Since [V’ x J] in the 

integral of Eq. (2-2.2) is retarded, the velocity in the expression 

[V’'o xX v] is the retarded velocity of each surface under 

consideration. By supposition, the distances from the charge to the 

point of observation is much larger than /*. Therefore the integral 

in Eq. (2-2.2) can be replaced by the integrand and the volume of 

integration (the respective volumes of the surface layers). 

Substituting into [V’ x J] = [V’p x v] = — [v X Vp] the above 

expressions for V'p, and using Eqs. (2-2.2) and (4-4.3)-(4-4.6), we 

then have 

_ p abw (v, X i) ‘ abw(v, X i) 

Anwirdl-re@v irc} nil-r,- vic} (4-5.3) 

blw(v, x j) blw(v, x j) 
Pde eevee Cyaan lee eeaN) 70} 
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or 

H- 2 |___ a Xiab 
Am |\ (hE) Clipe bv C! (4-5.4) 

v; vy, lf ii, 
te ONE Mesa v,/c] 

The differences of the fractions in Eq. (4-5.4), just as before in 

Eq. (4-4.22), are the increments of the functions given by Eqs. (4- 

4.23) and (4-4.24), except that v, and v, in the numerators are now 

absent. By Eqs. (4-4.25) and (4-4.26), taking into account that v, = 

0, the corresponding partial derivatives are 

3 | y \- -x'-rvJe-(r-¥)x/ Ic? 
Ox! \r-revic Pd -revwire? (4-5.5) 

vx! 

rc(1-r-v/rc) 

and 

seal pa AE 
dy! r-revic) rl ~revirey’ 

(4-5.6) 

: wa 
rec(1-r-vi/rc) 

In evaluating Eq. (4-5.4) with the help of Eqs. (4-5.5) and (4- 

5.6), we shall omit from Eqs. (4-5.5) and (4-5.6) the terms not 

containing Vv, since they only contribute to Hy, (the magnetic field 

of a uniformly moving charge), which we do not need. Combining 

Eqs. (4-5.4), (4-5.5), (4-5.6), (3-1.14), and (3-1-15), we then have 

for the acceleration-dependent field 

=f) ( -v(r + v)x! vx! : abl 
CET apg ae Tare marR ye maG | RESSAC IPT 4ml\ r3c*(1-rew/rc) r*c(1-r-+v/rc) 1-r-v/rc 

A NEE ONE vx! \xi ably 'vic Ne ed LS fa ee ee (ASS 
ok r*c(1-r+v/rc) r(1-r-v/rc) Sect 

+( -v(rev)y) vy! )xi- ably'(1 -r+v/rc) 

rc*(1-rev/rc) r?c(1-r-v/rc) ri-rev/rc) | 
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Expanding Eq. (4-5.7), taking into account that v x i = 0, and 

simplifying, we obtain 

ie See |- Pie gy i 
4 4nr-c(l -r-v/rcy ea), TOMS “Vv /TC) eae 

(4-5.8) 
But iv’ + jy’ = — r, and v X jy’ = — v X r (because v is 

parallel to the x axis). Therefore Eq. (4-5.8) can be written as 

- q xr + yee 0) Tas 542530) 
ae 4mr?c(1 -r + v/rc)’ rc -r-v/rc) 

The total magnetic field of an accelerating point charge is the 

sum of Eq. (4-2.1), representing the magnetic field of a uniformly 

moving point charge, and Eq. (4-5.9), representing the effect of the 

acceleration of the charge on the field. Adding Eqs. (4-2.1) and (4- 

5.9), we obtain 

Beye eA a2 . 
epee | Be Ca 4-5 10) 
4nr-°1-revw/rcPl r(l-r-v/rc) c 

Observe that Eqs. (4-5.9) and (4-5.10) express the magnetic field 

in terms of the retarded position of the charge. x 

4-6. Electric and Magnetic Potentials of a Moving Point 

Charge 

Electric and magnetic potentials produced by a moving point 

charge g can be easily obtained from Eqs. (2-4.5) and (2-4.2). 

A "point charge" is a charge distribution viewed from a 

distance large compared to the linear dimensions of the charge 

distribution. Therefore, for a point charge, the distance r in the 

integrals of Eqs. (2-4.5) and (2-4.2) may be considered the same 

for all volume elements of the charge, and therefore each integral 

may be replaced by the product of the integrand and the retarded 

volume of the charge AV’. 
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By Eqs. (2-4.5) and (3-1.8), we then have for the electric 

scalar potential of a moving point charge 

/ 

e= 5 Dis AV! Maer DP Als forename ca) 
TET Ane Marv rc) 

or, replacing pAV' by q, 

pate RAST (4-6.2) 
Amer liar: vire) 

From Eqs. (2-4.2) and (3-1.8) we similarly have for the 

magnetic vector potential of a moving point charge 

/ 

Cae cy A ies on aan (4-6.3) 
4ar mw 4rr(1-r- v/re) 

and since J = pv, 

Bonet hee (4-6.4) 
4nrr(1-r-v/rc) 

Equations (4-6.2) and (4-6.4) are called the Liénard-Wiechert 

potentials.*'° They express the potentials of a moving point charge 

in terms of the retarded position of the charge. If the charge 

moves with constant velocity, Liénard-Wiechert potentials can be 

converted to the present position of the charge. Transforming the 

denominators of Eqs. (4-6.2) and (4-6.4) with the help of Eq. (3- 

1.26), we obtain for a point charge moving with constant velocity 

an EY (4-6.5) 
4né 711 -(v7/c’) sin? 0)!” 

and 

Ee ee 0 ee (4-6.6) 
4nr,[1 -(v7/c*) sin’ 6]'” 

where ro is the present position radius vector, and @ is the angle 
between v and ro. 
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v 
Example 4-6.1 Equations (4-6.5) and (4-6.6) represent the 
"instantaneous" potential of a uniformly moving point charge. Since 
the charge is moving, the potentials change as the time goes by. 
How should they be written to show explicitly their time 
dependence? 

Assuming that the charge moves in the negative x direction, the 

x coordinate of the charge diminishes with time according to x,’ — 

vt, where X,' is the value of the x coordinate at t = 0. Expressing 

the denominators in Eqs. (4-6.5) and (4-6.6) in terms of Cartesian 

coordinates by means of Eq. (3-1.26) and (3-1.25), and replacing 

X,' by xX)’ — vt, we obtain the time-dependent expressions for the 

potentials 

2 ee See eee (4-6.7) 
4 me [(xo - vt)? +(1 -v2/c?)y 7]? 

and 

apne ten nD tetera (4-6.8) 
An[(x9 - vé)* +(1 -v2/c2)y/7]!? A 

4-7. How Accurate are the Equations for the Fields and 

Potentials Obtained in this Chapter? 

The equations for the electric and magnetic fields of a point 

charge in arbitrary motion were first derived in 1898 by A. 

Liénard’ from the potentials which we now call the Liénard- 

Wiechert potentials [Eqs. (4-6.2) and (4-6.4)]. These potentials 

were first derived by Liénard in 1898 and later by Wiechert in 

1900.°?'° Both Liénard and Wiechert obtained the potentials from 
the retarded integrals for the electric and magnetic potentials of a 

time-dependent charge distribution in a manner similar to our 

derivations presented in Section 4-6. 

Liénard invented a special method for integrating retarded 

potential integrals for the case of a charge distribution of "very 
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small dimensions." The essence of the method was that, because 

of the motion of the charge, the region of space from which the 

charge "sends" electric and magnetic field signals is not the same 

as the volume occupied by the stationary charge. According to 

Liénard, if the region occupied by the stationary charge is Q, then 

the integration is to be extended over the region Q/[1 - (u/V) cos 

(u,r)], "en prenant pour u et r une valeur moyenne," that is, by 

using average values for the velocity of the charge u and for the 

distance from the charge to the point of observation r (Liénard 

used V for the velocity of light). One should note that Liénard did 

not specify how these average values were supposed to be 

determined, and that, by using an "average value" for the velocity 

of the moving charge, he eliminated the need for taking into 

account a possible acceleration of the charge. Assuming then that 

the charge was "concentrated" at a "single point," Liénard 

obtained his "point charge" potentials. 

Wiechert’s derivation was essentially the same as that of 

Liénard. However, instead of using the average values for the 

velocity and distance, he simply factored out 1/r from under the 

integral sign because, according to him, "die Variation des 

Nenners r kommt bei unendlich kleinen Dimensionen nicht in 

Betrach," that is, because in the case of the infinitesimal volume 

of the charge, r could be regarded as constant over the volume of 

integration. 

It is clear that since Liénard used average values of the 

integrand in obtaining his potentials, the potentials could not be 

exact. And it is also clear that Wiechert was wrong when he 

referred to the volume of integration as "infinitesimal." Even if 

the actual volume of the charge is "infinitesimal," the volume of 

integration is not — in fact, according to Eq. (3-1.8), it can be 

infinitely large, if the velocity of the charge is equal to the 
velocity of light and if the charge moves toward the point of 
observation! 
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The conventional derivations of potentials and fields of 

moving electric charges now used in most textbooks on electricity 

and magnetism are basically the same as those used by Liénard 

and therefore are subject to the same misgivings. 

Our derivations of the electric and magnetic fields of a 

moving point charge presented in this chapter differ in two 

important aspects from the conventional derivations of these 

fields: (1) the fields are derived directly from the general field 

equations for an arbitrary time-dependent charge and current 

distribution, and (2) the derivations clearly reveal the physical 

effects responsible for the characteristic properties of the fields. 

In contrast, the conventional derivations, based on the Liénard- 

Wiechert potentials, hide these physical effects behind a physically 

obscure mathematical procedure required for transforming the 

potentials into the fields.'' It is difficult to ascertain the range of 

validity of Eqs. (4-1.11), (4-1.13), (4-4.34) and (4-5.2) on the 

basis of conventional derivation. But our direct derivations show 

very clearly what restrictions apply to these equations and how the 

restrictions originate. 

In obtaining the expressions for E and H of moving point 

charges we used several approximations. Our first approximation 

was the replacement of the integrals in Eqs. (2-2.1) and (2-2.2) by 

the products of the integrands and the volumes of integration. This 

can only be done if the relation r > /* is satisfied. Therefore, by 

Eq. (3-1.7), our E and H expressions for moving point charges’” 

are subject to the restriction 

ek oe ee (4-7.1) 
l-r-v/rc 1 -(v/c)cosd’ 

where / is the length of the "point charge," v is the velocity of the 

charge, r is the retarded position vector joining the charge with 

the point of observation, and @ is the angle between v and r. 

Since Eq. (4-7.1) must hold for all values of ¢, including ¢ = 0, 

the velocity of the charge is subject to the restriction 
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v < c(1-l/r). (4-7.2) 

Consider now the approximations that we used for taking into 

account the acceleration of the charge. The retarded time intervals 

between the center and the right-left and top-bottom surfaces of 

the charge are (r, — 7,)/2c = (1 cos)/[2c(1 — r°v/rc)] and (7, 

— r,/2c = (a sind)/[2c(1 — r-+v/rc)], respectively (see Figs. 

4.7, 3.2, and 4.3)."° For Eq. (4-7.1) to hold, the increment in the 

velocity of the charge during these time intervals must be less than 

c — v. Hence the restrictions on the acceleration of the charge in 

the direction of the x axis is 

V(r, -1)/2¢ < c-v, (4-7.3) 

or 

ee eds ey (4-7.4) 
a lcos@ 

A similar restriction applies to the acceleration in any other 

direction. Since the largest possible value for cos yg and sin ¢ is 

1, we obtain from Eq. (4-7.4) for the general case of the 

acceleration Vv 

y < 2c (4-7.5) 
L 

where L is the length of the "point charge" in the direction of the 

acceleration. '4 

References and Remarks for Chapter 4 

1. The calculation that follows is similar to the calculation 
presented in Oleg D. Jefimenko, "Direct calculation of the electric 
and magnetic fields of an electric point charge moving with constant 
velocity," Am. J. Phys. 62, 79-85 (1994). This article also contains 
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J. Phys. 25, 343-350 (2004)], but provides no information on the 

range of validity of the formulas obtained, since the 6-function 
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ELECTRIC AND MAGNETIC 

FIELDS AND POTENTIALS OF 

AN ARBITRARY CHARGE 

DISTRIBUTION MOVING WITH 

CONSTANT VELOCITY 

Electric and magnetic fields and potentials produced by 

any time-independent stationary charge and current distribution 

can be calculated with relative ease by a variety of methods. But 

calculating fields of time-dependent charge and current 

distributions, and the fields of moving charge distributions in 

particular, still remains a formidable task. In this chapter we shall 

obtain general formulas that allow one to determine the fields and 

potentials of any uniformly moving charge distribution directly 

and simply in terms of present time integrals that are not much 

different from the integrals for fields of stationary charges. 

5-1. Converting Retarded Field Integrals for Uniformly 

Moving Charge Distributions into Present-Time (Present- 

Position) Integrals 

As we already know from Chapters 2 and 3, electric and 

magnetic fields of moving charge distributions can be found from 

103 
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the retarded integrals 

ae oe! [ee ee (5-1.1) 
ATE, r 

and 

H = aay, (5-1.2) 
4a i 

or from 

noe {at +4) 2 heave - - [2|4Jav (5-1.3) 
AmERs V2 | arc OL 4m E,c* Ot 

and 

H = ioe ee xrdV!. (5-1.4) 
4n Ot 

We shall presently show that for time-independent charge 

distributions moving with constant velocity, these integrals can be 

converted to the "present" position of the charge distribution, so 

that the integration is performed not over the retarded, or 

effective, volume (see Section 3-1), but over the real volume that 

the charge distribution occupies at the moment ¢ for which the 

fields are being determined. 

The conversion is based on certain properties and relations 

involving retarded integrals and retarded quantities which are 
reviewed below. 

Although in the retarded integrals the retardation symbol [ ] 
usually appears only in the numerators of the integrands, all 
quantities in the integrals are retarded. In particular, the volume 
element dV’ stands for the retarded volume element dV’,,, = [dV'] 
= d{|x')d[y']d[z'], r stands for the retarded distance [r], andr 
stands for the retarded position vector [r]. Note that [Vo] means 
“ordinary Vp used at retarded position,” [dp/d¢] means "derivative 
of ordinary p with respect to ordinary time used at retarded 
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position," and [0J/d¢] means "derivative of ordinary J with respect 
to ordinary time used at retarded position." 

In the derivations that follow, we shall assume that the point 

of observation is atx = y = z = O, and we shall only consider 

a time-independent charge distribution moving with constant 

velocity in the —x direction. For such a charge distribution, 

because the charge density is not a function of time, [9] = p, and, 

because v is constant, [v] = v. Also, as explained in Section 3-1 

[see Eqs. (3-1.8), (3-1.3), (3-1.4), (3-1.25), and (3-1.26)], the 

following relations hold for such a charge distribution 

Hina (5-1.5) 
1 -[r-°v]/rc 

UD oe sepa fipmnes. (5-1.6) 
Ot Ox! 

OJ Op . WS 2 3 Gath ah (5-1.7) Ai (v: V'p)v v aa 

[7] - [re v]/c = {xg ty? 42/2 -(y2 +z v4f/c2} 2 (5-1.8) 

={x, +0772 +21 —y5fC2)}2 = fe)" 4 (yl? 4!) [oP pi? 

[we are using the standard abbreviation y = 1/(1 — v’/c’)'], and 

[r] - [re v]/c =r,{1 -(v7/c?)sin?9}"”, (52129) 

where sin’?@ = (y + 2')/(x.'* + y’ + z'*) and @ is the angle 

between the velocity vector v and the vector [r,] joining [dV'] 

with the point of observation. For clarity, all retarded quantities 

and expressions in the above equations are placed between square 

brackets; the quantities without brackets, and the quantities 

between braces in Eq. (5-1.8) and (5-1.9) in particular, are 

present-time quantities. Observe that Eq. (5-1.8) is obtained from 

Eq. (3-1.25) by replacing y’? by y’ + z’*; the replacement is 
needed because we no longer deal with a point charge and 
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therefore cannot assume that the charge is confined to the xy 

plane. 
We can now proceed with the conversion of Eqs. (5-1.1)- (5- 

1.4). Once again, we shall only consider a time-independent 

charge distribution moving with constant velocity v = — Vi. 

Converting Eq. (5-1.1). Using Eqs. (5-1.5) and (5-1.7) and 

remembering that p and v are not affected by retardation and that 

V’p in Eq. (5-1.1) is the ordinary gradient, we can write Eq. (5- 

1.1) as 

Ee dV’ 1 [RaCet eNO ee 

ATE, [r-r-v/c] 

ia — 2 2), [joe / a 1 ie p —i(v*/c*)(0p/0x ) av! . 

ATE, [r-r-v/c] 

(5-1.10) 

where only the denominator is retarded. Converting the retarded 

denominator in Eq. (5-1.10) with the help of Eq. (5-1.8), we 

obtain the desired equation (we are omitting the subscript "0" at 

x’ for simplicity) 

fse ey (aia a (5-1.11) 
ATE, {x !? + (y/? 42/% fap 

where the integral is a "present position" integral, and where all 

quantities are present-time quantities. 

Equation (5-1.11) can be written in an alternative form. Using 

Eq. (5-1.9) for converting the denominator of the integrand in Eq. 

(5-1.10), we obtain (omitting the subscript "0" at r for simplicity) 

Ree eae Ree ae (5-1.12) 
4mé,/ r{1-(v7/c?)sin?6}!? 

An even simpler expression for E of a moving charge 
distribution can be obtained from Eq. (5-1.1) if the density of the 
charge under consideration is constant within the volume occupied 
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by the charge. As was shown in Section 2-3, in this case the 
charge gradient exists only at the surface of the charge, and the 
volume integral reduces to a surface integral. Equation (5-1.12) 
becomes then 

Ppa) eee aR (55113) 
Ame, / r{1 -(v2/c?)sin?9}!? 

where the surface element vector dS’ is directed from the charge 

distribution into the surrounding space, and the sign in front of i 

is the same as that of 0p/0dx' . 

v 

Example 5-1.1. A thin ring of width w, thickness b, and radius a 

> b carries a uniformly distributed charge q and moves with 

velocity v = — vi along the x axis, which is also the symmetry axis 

of the ring (Fig. 5.1). Find the electric field produced by the ring 

at the origin of coordinates when the center of the ring is at a 

distance x’ from the origin. 

Fig. 5.1 A thin ring of charge q moves with velocity v = — vi 

along the x axis. Find the electric field at the origin. 

We can solve this problem by using Eq. (5-1.13). By 

symmetry, only the front (leading) and the back (trailing) surface 
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of the ring contribute to the electric field at the origin. Let the 

distances from the front and the back surface of the ring to the 

origin be r, and r,. We then have r, = [(x’ — w/2)’ + a’]'?, 1% = 

[(x' + w/2)? + a?]'?, sind, = a/[(x' — w/2)? + a’]'”, sind, = 

al{(x' + w/2)? + a’]'?. Equation (5-1.13) becomes therefore 

E-_? (| -{1-v?/c*}dy/dz'i -| {1 suite} dy dail 

AMEN le (V4/62) si Oya emai bee (V5 Co) SIO ata 

(5-1.14) 

where the integration is over the two flat surfaces of the ring. 

Substituting the above values for 7,, %, sin@,, and sin@, and taking 

into account that the area of each flat surface of the ring is 27ab, 

we then have 

_, ed -v’/c*)2mab -1 

ane, \{@l =wid at -v'aey™ 0 {( ) } (5-1,15) 

oi a ee ee ee ee ee | 
Ca SEE 

E 

or 

E- AAC ae) 1 
ard aren Wl (nD one ee pe Anew = \ {(x! +w/2)? +(1 -v2/c2) a} (5-1.16) 

= | | 
{(x! -w/2)? +(1 -v2/c?)a?}!? 

Example 5-1.2. An infinitely long, thin, straight ribbon of width a 

and thickness b carries a charge of uniform density p and moves 

along its length with velocity v = — vi (Fig. 5.2). The plane of the 

ribbon is in the xz plane of rectangular coordinates and the center 
line of the ribbon is on the x axis. Find the electric and magnetic 
fields produced by the ribbon at the point P(O, 0, R). 

We can solve this problem by using Eqs. (5-1.13) and (3-2.5). 
According to Eq. (5-1.13), the only contribution to the electric field 
of the ribbon at P comes from the edges of the ribbon located at 
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Fig. 5.2 An infinitely long thin ribbon of charge density p moves 

with uniform velocity y = — vi along the x axis of rectangular 

coordinates. Find the electric and magnetic fields produced by the 

ribbon at the point P. 

’ = a/2 and z’ = — a/2. Let us assume that the ends of the ribbon 

are atx’ = — L, and x’ = L,. By Eqs. (5-1.13), (5-1-9), and (5- 

1.8), we then have 

Ree ([- kbdx! =| kbdx! 
ATE, =lby {x2 4(R -al2y/y}!? -L, {0/24 (R + a/2-/y?3! 

a kpb {In (x! Ay {x!? +(R -al2)°/7?}!7) Geli) 

ATE, 

/ ~ n(x! + Ge! +(Realayrney?)| 

or 

E = kpb i enh = O12) iyo 

4T€é, SL {Ll 4(R=a/2yly7 } 2 

L,+{L +(R +a/2y/y7}? 
Se | oe ee eee 

AL (RAID) yeah 

(5-1.18) 

Since R — a < L,,L, and R + a < L,,L,, we can expand the 

expressions in the braces and keep only the leading terms, obtaining 
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_ kpb in L, +L, +(R-a/2P/2L,7 
-L, +L, +(R -a/2)/2L,7° 

L, +L, +(R+a/2y/2L,7 

=D (Re a)2) 2 

_ kpb | et R-al2VI2L,P | Wy *(R+al2y/2L,7 

(R -a/2)°/2L,y’ (R+al2yP/2L,y 

ATE, 

(5-1.19) 

ATE, 

and, finally, 

E = k 2 jp Rra/2) (5-1.20) 
2mé, (R-al2) 

To find the magnetic field, we will use Eq. (3-2.5). By Eqs. (3- 

2.5) and (5-1.20), we have 

H = evxE = (-ixk) ein Rt@) = 5-1.21) 
‘2a == (R-al2) 

Or 

pO pee mS tae ER Gil a) 
In (R-al2) ‘Dna (Real) 

where J is the current density and / is the current formed by the 
ribbon. 

Observe that Eq. (5-1.22) is the same as that obtained for this 
current configuration by means of Biot-Savart’s law (or its 
equivalent),' which, taking into account the diversity and 
complexity of the theoretical considerations leading to Eqs. (5-1.13) 
and (3-2.5), and observing that Eqs. (5-1.13) and (3-2.5) appear to 
have no connection with Biot-Savart’s law, is quite remarkable. 

A 

Converting Eq. (5-1.3). As before, we assume that the charge 
is time independent and moves with constant velocity v = — vi. 
Using Eqs. (5-1.6) and (5-1.7), we can write Eq. (5-1.3) as 
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eee alee fpaltussolesuly See ye 
4mé,/ r? TEC r2 

(5-1.23) 

Note that V’p in this equation represents the ordinary 

gradient, that is, the gradient with respect to the ordinary source- 

point coordinates. For the calculations that follow, we need to 

convert V’p into the gradient with respect to the retarded 

coordinates. According to Eq. (3-1.7), 

/ 

pa (5-1.24) 
1 -[r-v]/[r]c 

and therefore 

= I y (5-1.25) 
Ox! 1-[r-v]/[r]c d[x'] 

Since v is along the x axis, the y’ and z’ are not affected by 

retardation, so that 0/dy’ = 0/d[y'] and 0/dz' = 0/d[z']. Hence 

Bove eli (5-1.26) 
1 -[r°v]/[r]c 

Substituting this expression into Eq. (5-1.23), we obtain 

Boel Mey ee (DY Vi Gy Gei27) 
ATE, J rar? Ane C Sra 77(1-v Tir) 

where all the quantities under the integral signs are retarded, and 

where we have replaced the retardation brackets in the integrands 

by the subscript "ver" at the integral signs. 
Let us designate the last term in Eq. (5-1.27) as E,. We have 

— e / E, = 1 | (CaO Vee Os 7a (5-1.28) 

AmE.C J re r*(1-ver/rc) 

To convert this integral to the present position of the charge, we 
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shall first eliminate V’p from it. To do so, we shall write Eq. (5- 

1.28) in terms of its Cartesian components. For the x component 

we have, remembering that v = — viand thatr = — @’i+ yJ 

eazaK): 

2x 

cies 1 | (vric -x')v C V'p dv’. (5-1.29) 

A4méc tre r2(1-v-r/rc) 

Let us now factor out v- and let us write the integral as a 

difference of two integrals, 

° Va — eal! / 

pee. | ae NEE y (5-1.30) 
4m €,C Jre (1 -v ° r/rc) 

22 we {| v/ (vric-x!)p av'-| ov! (vric -x') av’ 

4mec re (1 -v-r/rc) rt (1 -ver/rc) 

The first integral in the last expression can be converted into 

a surface integral by means of Gauss’s theorem of vector analysis 

[vector identity (V-19)], and since there is no charge outside the 

charge distribution under consideration, the integral vanishes. 

Differentiating the integrand in the second integral, collecting 

terms, reintroducing v- under the integral sign, and simplifying, 

we obtain 

r.-_} | {v7/c*-2ver/re +(ver/rc)}x!-(v2/c? - Ivrie ay 
|| Ne 

ATE, Ire r(1-ver/rcy 

(5-1.31) 

Proceeding in the same manner with the y and z components 

of Eq. (5-1.28), we obtain 

2 octia fy ee Seam RE y 
ri -ver/rcy (5-1.32) 
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and 

= 1 | 5 {v7/c? -2v *r/rco+(v°r/rc)*}z! dv'. (5-1.33) 
Ate, J re r(1-ver/rc) 

Multiplying Eqs. (5-1.31)-(5-1.33), respectively, by i, j, and 

k and then adding them together, we again obtain a single vector 

equation for E,: 

E.= 
2 dv! 

Gl -v-er/rc)y (5-1.34) 

1 | {2v -r/rc -(v °r/rc)’-v7/c7}r +(v2/c?-1)vric 

ANE, ret 

Let us now rewrite Eq. (5-1.27) using Eq. (5-1.34) for the 

second integral of Eq. (5-1.27). We then have 

eel p / E- ae | See (5-1.35) 

re | {2ver/rc -(ver/rc)’-v2/c7}r +(v2/c? -1)vric 

ret 4Té, r(1-v-r/rc) 
dv! 

Adding the two integrals, we obtain 

pe | swale Or SEIO) Fy een(5 1:36) 
ATE, ret eal -v-r/rcy 

We shall now convert the retarded integral in Eq. (5-1.36) to 

the present position of the charge. Replacing the retarded dV’ in 

Eq. (5-1.36) by ordinary dV’ with the help of Eq. (5-1.5) and 

writing 1/y? for 1 — v’/c’, we have 

ae | eCr]-virle) ay (5-1.37) 
4ney! [rPd-ve r/o? 

where, since p, v, v, and c do not depend on time, only r and r 

are retarded. But according to Eq. (3-1.19), the present-position 
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vector ry and the retarded position vector r are connected by the 

relation 
ry > Hea vie, (5-1.38) 

so that the numerator in Eq. (5-1.37) is simply the present- 

position vector ry. Furthermore, according to Eq. (5-1.9), the 

denominator is simply 

ro {1 -(v2/c?)sin2 9 }°?, (5-1.39) 

where fo is the distance from the present-position volume element 

dV’ to the point of observation, and @ is the angle between v and 

Y). Hence Eq. (5-1.37) can be written as 

E = Bie || eens eee (5-1.40) 
4megy! 13 {1 -(v2/c?)sin?6 }3? 

where the integration is over the volume of the charge at its 

present position. 

v 
Example 5-1.3. An irregularly shaped electric charge distribution 

of total charge q moves with constant velocity v = vi. The longest 

linear dimension of the charge distribution is a. Find the electric 

field produced by the charge at a distance r > a from the charge. 

We can solve the problem by using Eq. (5-1.40). Since r > a, 

we can assume r and @ to be the same for all points of the charge. 

Therefore we can factor out r and the denominator of the integrand 

ip Eq. (5-1.40), obtaining 

Ds | 
4negyro {1 =(vcle2)sin7 et 

qXy 

4meyyre {1 -(v2/c?) sin? Op? 

(5-1.41) 
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Converting Eqs. (5-1.2) and (5-1.4). The retarded integrals 
for the magnetic fields in Eq. (5-1.2) and (5-1.4) can be converted 
to the present position of the charge in the same manner as the 
integrals in Eqs. (5-1.1) and (5-1.3) for the electric field. 
However, there is no need to resort to this conversion process, 

because by Eq. (3-2.5) the electric and magnetic fields of any 
uniformly moving charge distribution are connected by the 
relation 

H = e,vxE. (5-1.42) 

From Eqs. (5-1.12) and (5-1.42) we then have, noting that 

vxi=0, 

Fes ee a ay (5-1.43) 
4a} r.{1 =(v*/e*) sin’@}"? 

From Eqs. (5-1.13) and (5-1.42) we have 

CPs os er (5-1.44) 
AT r l= @e sin 0}. 

And from Eqs. (5-1.40) and (5-1.42) we have 

rg fem (5-1.45) 
4ny*! 73 {1 -(v2/c?)sin26 }3? 

5-2. Converting Retarded Potential Integrals for Uniformly 

Moving Charge Distributions into Present-Time (Present 

Position) Integrals 

We know from Chapter 2, Eqs. (2-4.5) and (2-4.2), that the 

electric potential y and the magnetic vector potential A of time- 

variable charge and current distributions in a vacuum can be 

found from the retarded integrals 
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eases | lolay: (5-2.1) 
ATE, r 

and 

AeaaEO | WW) gy: (5-2.2) 
4n) r 

As we shall presently see, for time-independent charge 

distributions moving with constant velocity, these integrals can be 

converted to the "present" position of the charge, so that the 

integration is performed not over the retarded volume, but over 

the volume that the charge distribution occupies at the moment f 

for which the potentials are being determined.” 

Converting Eq. (5-2.1). Using Eq. (5-1.5) and remembering 

that p and v are not affected by retardation, we can write Eq. (5- 

2.1) as 

1 | p / een eee eed Vas (5-2.3) 
“4 Ane (iar vic} 

where only the denominator is retarded. Converting the retarded 

denominator in Eq. (5-2.3) with the help of Eq. (5-1.8), we obtain 

the desired equation (omitting the subscript "0" for simplicity) 

ak | eee ee GI 
ATE, {x +(y”? +z!) /y2}12 

where the integral is a "present position" integral, and where all 

quantities are present-time quantities. 

Equation (5-2.4) can be written in an alternative form. Using 

Eqs. (5-1.8) and (5-1.9) for converting the denominator of the 

integrand in Eq. (5-2.4), we obtain 

eal | p / St at | ee ey (5-2.5) 
i 4mé)/ r{1 -(v7/c?)sin29}'2 
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Equations (5-2.4) and (5-2.5) can be further modified so that 
the potential is expressed not in terms of the charge density p as 
such, but in terms of Vp (that is, in terms of the "charge 

inhomogeneities"). This can be done as follows. 

Taking into account that the position vector r is directed 

toward the point of observation, so thatr = — x'i — y'j — z’k 

and V’> r = — 3, we write 

 - rp = r -v! 
ery 2 +z!) /-y?¥12 Cee +z! *)/ry24172 

+pV'- eines tw. Lh. NaI 
{xl? + (y/? +7/?)/2h12 

a r ine 30 

{x/24(y/? +z!) /ry2h12 {xc!? #(y/2 +2!) /y2}12 

Braet OL ec Ky} p (5-2.6) 
(eave +z!) /o7332 

r:V’o 20 
. {2 ¥(y!2 42/2) pi? a {x!2 4 (y 2 42!) 

Using Eq. (5-2.6) and Eq. (5-2.4), we can now express the 

potential as 

1 Vv! rp / 

Pea ie ‘ /2 /2 /2 21/2 av 
87é, Peet) gece) ye} (5-2.7) 

pee | A ee 
87E, fx! 4 (y/? 47!) far}? 

The first integral in this equation can be transformed into a 

surface integral over all space by means of Gauss’s theorem of 

vector analysis [vector identity (V-19)], and, since there are no 

charges at infinity, the integral vanishes. Hence the potential can 

be written as 
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ae | Pee Ande yi (5-2.8) 
8Té, fy ee ye? 

or, by using Eqs. (5-1.8) and (5-1.9), as 

eye | Se ae Se (5-2.9) 
87E, 4 r{1 -(v7/c?) sin26 }!2 

Equations (5-2.8) and (5-2.9) can be written in a much 

simpler form, if o is constant within the charge distribution. In 

this case V’p is different from zero only in the surface layer of the 

charge distribution, where the charge changes from p within the 

distribution to zero outside the distribution. We then have V’p = 

(o/7)m,, where 7 is the thickness of the surface layer of the 

distribution, and n, is a unit vector normal to the surface of the 
distribution and directed into the distribution. The volume 
element dV’ in Eqs. (5-2.8) and (5-2.9) becomes then 7dS’, where 
dS' is a surface area element of the distribution, and therefore 

Eqs. (5-2.8) and (5-2.9) reduce to 

Spat r dSou (5-2. 10) 
si 8TE, {x/2 4(y? +2) [pri ; i 

and 

/ 

ea 8 re Sou (5-2.11) 
87é,/ r{1 -(v2/c?) sin’6}!? ° 

where dS,,, is a surface element vector directed from the charge 
distribution into the surrounding space. 

Converting Eq. (5-2.2). The current density produced by a 
uniformly moving charge distribution is J = pv with v = const. 
Since po) =I1/c’, the vector potential A for such a charge 
distribution is, by Eqs. (5-2.2) and (5-2.1), A = vy/c?. Hence, 
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using Eqs. (5-2.5), (5-2.9), and (5-2.11), we have 

A = Ley (52512) 
(G 

we ey | Pehle om 1, (5-2.13) 
Ane.c? 4 r{1-(v7/c*)sin’6}"” 

A (i 

| eer eet) 
Oe Carer le (ye cinco) 

and 
/ 

Weert r+ Sou (5-215) 
87e,c?! r{1 -(v2/c?)sin’b}!? ’ 

and similar expressions corresponding to Eqs. (5-2.4), (5-2.8), 

and (5-2.10): 

Re Se [eee errr (5-2. 16) 
Ame?) {x!? 4(y/? +2/%) fy}? 

ee es eee (5-2.17) 
87E,C* (ee eae +z!) /4?}1? 

/ 

ie es af eens (5 8) 
81é,c° {x +(y/? +2!) /y?}12 

v 

Example 5-2.1. An irregularly shaped electric charge distribution 

of total charge g moves with constant velocity v = — wi. The 

longest linear dimension of the charge distribution is a. Find the 

electric and magnetic potentials produced by the charge at a 

distance r > a from the charge. 
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We can solve the problem by using Eqs. (5-2.5) and (5-2. 13). 

Since r > a, we can assume r and @ to be the same for all points 

of the charge. Therefore we can factor out the denominator of the 

integrands in Eq. (5-2.5) and (5-2.13), obtaining 

yp = q ; (5-2.19) 
4nrer {1 -(v7/c?) sin’ 0}? 

= ee ed ee ee (5-2.20) 
4me,c’r{1 -(v7/c*) sin?0 } 1” 

A 

5-3. Some Peculiarities of the Expressions for the Fields and 

Potentials Derived in this Chapter 

Three peculiarities of the equations for the electric and 

magnetic fields and potentials derived in this chapter should be 

noted. 

First, in the equations developed in the preceding chapters we 

used both retarded and present-time (present position) coordinates, 

and therefore we needed to use different notation for the two types 

of coordinates. In particular, we designated the present position 

vector aS ry and the x component of this vector as x)’, while we 

designated the retarded position vector as r and its x component 

as x'. However, since all the resulting expressions for the fields 

and potentials developed in this chapter are for the present 

position of the charge distributions, there is no longer a need to 

use the subscript "0" at r or x’. Therefore, in the field and 

potential equations obtained in this chapter r and x’ stand for the 

present-time (present position) coordinates. 

Second, in deriving our equations for the potentials of moving 

charge distributions, we assumed that the field point (the point for 
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which the potentials are determined) was at the origin. However, 
in practical application of the potentials it is usually necessary to 
differentiate the potentials with respect to the field point. In 

particular, for finding electric and magnetic fields from potentials 

it is necessary to operate upon the electric and magnetic potentials 

with the operator V (which operates upon the field point 

coordinates). Therefore, in general, the field point must be 

allowed to vary. 

We can easily convert our equations for the potentials (and 

fields) into equations with a variable field point. Let us designate 

the coordinates of this point as x, y, and z. If we then replace the 

x', y’, and z’ coordinates appearing explicitly or implicitly in our 

equations for potentials or fields by (x — x’), (y — y’), and (z — 

z'), respectively, the new equations will apply to fields and 

potentials determined for the field point x, y, z. However, if the 

charge density p within the charge distribution under consideration 

is constant, we can differentiate the potentials with respect to the 

field point without actually replacing the x’, y’, z’ coordinates at 

all, because in this case, by vector identity (V-27), the only 

difference between the differentiation of the integrands with 

respect to x’, y’, z’ and with respect to x, y, Z is in the sign of the 

resulting expression. Thus, in the case of constant 9, we can 

compute electric and magnetic fields from the potentials derived 

in this chapter without changing the coordinates, provided that 

after placing V under the integral sign we replace it by —V’ (see 

Example 5-3.1). 

Third, all the fields and potentials derived in this chapter are 

"snapshots" representing only the instantaneous values of the 

observed fields and potentials. In reality the fields and potentials 

of a moving charge distribution vary as the charge distribution 

moves relative to the point of observation. For practical 

applications it may be necessary to determine time derivatives of 

the fields and potentials. Therefore, in general, the fields and 

potentials must be expressed as a function of time. This can be 
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easily done by noting that as a charge distribution moves (with 

constant speed), the present position of dV’ (or dS’) is given by 

x' ¥ vt (the minus applies to motion against the x axis, the plus 

applies to the motion in the direction of the x axis). Thus all we 

need to do for introducing the time dependence into the fields and 

potentials derived in this chapter is to replace x’ appearing 

explicitly or implicitly in our field and potential equations by x’ 

+ vt (see Example 5-3.1, see also Examples 4-1.2 and 4-6.1). 

Vv 

Example 5-3.1 A very long hollow cylinder of wall thickness b 

and radius a > Db carries a uniformly distributed charge of density 

p and moves with velocity v = — vi along the x axis, which is also 

the symmetry axis of the cylinder (Fig. 5.3). Find the electric field 

produced by the cylinder at the origin of coordinates when the 

leading end of the cylinder is at a distance x’ from the origin. 

Fig. 5.3 A very long cylinder of charge density p moves with 
uniform velocity y = — vi along the x axis. Find the electric field 

produced by the cylinder at the origin. 

We shall solve this problem by using Eqs. (5-2.4) and (5-2.16). 
Applying the relation E = — Vy — @A/dt [this is Eq. (2-4.8) 
derived in Section 2.4] to Eqs. (5-2.4) and (5-2.16), we obtain 
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E = = aac | ac ae ee av'] 
TE, {x +(y +7!) fy? 32 (5-3.1) 

appa | bate 2 a) 
Ot 4nec* {x !? (y/? #2/% fa}? 

In Eq. (5-3.1), V operates upon the field point coordinates x, 

y, Zz, which do not appear in Eq. (5-3.1). However, as explained 

above, for constant p we can leave the first integral in Eq. (5-3.1) 

as it now is, provided that for the actual differentiation we replace 

V by —V’. Placing V under the integral sign and replacing it by 

—V’', we have for the part of the electric field due to y (using E = 

E, + E,) 

E Sie hd Sec ey (5-3.2) 
? 47, fx! a (y!? 47/7) [2 V2 

To differentiate the second integral in Eq. (5-3.1), we must first 

express the integrand as a function of ¢. Replacing x’ in the 

integrand by x’ — vt, placing 0/d¢ under the integral sign, and 

differentiating the integrand, we then have for the part of the 

electric field due to A 

--7 | hia dv', (5-3.3) 
AR a 476 C? {(x! =f) +(y” +2!) [2332 

or, setting ¢ = 0, 

2 v | vx'p dv’, (5-3.4) E =— = ee 
A 4me,c? {x2 (y/? +2!) [47332 

which, as one can easily verify by direct differentiation, is the same 

as 

pee Sole [ee oe aye (5-3.5) 
{0/2 4 (yl? 42) /y7}!? 
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The total field is therefore 

E = Se ye aay 
GRE, ee Geez iva (5-3.6) 

Bee Sie | eee cee 
4m ,C? ae ey N aie 

Using now Gauss’s theorem of vector analysis [vector identity 

(V-19)], we can convert the two integrals into integrals over the 

surface of the cylinder, obtaining* 

p if OS ou | Rtas Meenas fi ees eee ee ee 
ATE, (x)? + (y/2 42/2) ryt (5-3.7) 

Vv OS oun | 

where dS,,, 1s a surface element vector directed outward from the 

volume of the cylinder. 

By the symmetry of the system, the electric field at the point of 

observation has only the x component. The only surfaces of the 

cylinder contributing to that component are the surfaces of the 

leading and trailing ends of the cylinder. However, since the 

cylinder is very long, the contribution of the trailing end is 

negligible. Furthermore, since the cylinder’s wall is thin, the 

integration over the leading end can be replaced by the 

multiplication of the integrand by the surface area S = 27ab of the 

leading end’s wall. Taking into account that v = — vi, that for the 

leading end y’* + 2’? = a’, dS,, = — dSi, and v - dS,,, = vdS, 
we finally obtain for the "snapshot" of the electric field produced 

by the cylinder at the point of observation 

Rice pab(1 -v7/c?) gw OA (5-3.8) 
2e,{x!* +a>(1 -v2/c2)}!? 
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Example 5-3.2 A line charge of length 2Z and linear charge 
density \ moves along its length with constant velocity v = — vi 
in the xy plane of a rectangular system of coordinates at a distance 
y = R above the x axis. The point of observation is at the origin. 
Find the electric potential, the electric field, and the magnetic field 
at the origin at the moment when the two ends of the charge are at 
equal distances L from the y axis and then obtain the limiting value 
of the fields for a very long charge. 

To find the electric potential, we use Eq. (5-2.4) with pdV’ 

replaced by Adx’. Integrating over the length of the line charge we 

then have 

ela |e » / 
io een ab enn /2 ee 

ome ese) (5-3.9) 
= \ Infc! +(x! +y/? /y2y!% lee 

ATE, 

ee AE PONT! 
pee ee aE yeas} (5-3. 10) 

ATE, {-L+(L?+y!?/y*)!?} i 

To find the electric field, we differentiate Eq. (5-3.10) with 

respect to y’, using the positive derivative (by symmetry, the vector 

potential makes no contribution to the electric field at the origin). 

The result is 

ae A (cm d j. 63.1) 
rey (ey ye ore ROR ye 

The magnetic field of the line charge is, by Eqs. (5-3.11) and 

(3-2.5), 

OS (5-3.12) 
QTROUR yl 

For a very long charge, L > R, so that Eqs. (5-3.11) and (5- 

3.12) reduce to 
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oe ose (5-3.13) 
Ine,R° 

and 

Hoo ee (5-3.14) 
27R 

It is interesting to note that the electric field given by Eq. (5- 

3.13) is the same as that of a stationary infinitely long line charge, 

and that the magnetic field given by Eq. (5-3.14) is the same as the 

magnetic field produced by a current J = dv.° 

A 
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RELATIVITY 





FROM ELECTROMAGNETIC 

RETARDATION TO RELATIVITY 

In the preceding chapters we saw how electric and 

magnetic fields and potentials of moving charge distributions 

could be determined on the basis of the theory of electromagnetic 

retardation. In this and in several chapters that follow we shall 

acquaint ourselves with an alternative method of determining the 

fields and potentials of moving charge distributions. This 

alternative method is based on the principle of relativity and its 

application to electromagnetic phenomena. 

6-1. Relativistic Electromagnetism, Relativistic Terminology, 

the Principle of Relativity, and Theories of Relativity 

We shall enter now into the domain of relativistic 

electromagnetism. The theory of relativistic electromagnetism 

makes use of some special words and expressions a clear 

understanding of which is imperative for a proper understanding 

and use of the theory. A frequently used word in that theory is the 

laboratory. The laboratory is simply a place where instruments 

and devices for measuring and observing physical phenomena are 

located. Unless otherwise stated, the laboratory is assumed to be 

stationary. Another frequently used expression is the frame of 

reference. Physically, a frame of reference is the same as the 

laboratory. However, a frame of reference can be stationary as 

122 
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well as moving and is depicted graphically by a set of Cartesian 

axes of coordinates. In this book, we shall always denote a 

stationary frame of reference by the symbol Y, and a moving 

frame of reference by the symbol L’. A special case of a moving 

frame of reference is a frame of reference moving with constant 

speed along a straight line. Such a frame of reference is called the 

inertial frame of reference. In this book we shall only use inertial 
frames of reference. 

Relativistic electromagnetism combines basic electromagnetic 
laws with the principle of relativity. The principle of relativity was 
first enunciated in 1632 by Galileo as a statement of the fact that 
there are no experiments or observations whereby one could 
distinguish the state of uniform motion along a straight line from 
the state of rest. However, in accordance with the level of 
scientific knowledge of his times, Galileo supported this statement 
by citing only mechanical experiments and observations with an 
indirect reference to the laws of optics. At the beginning of the 
20th century, Lorentz, Poincaré, Larmor, and Einstein, in 
separate works, demonstrated that the principle of relativity was 
applicable to electromagnetic phenomena as well. 

The expression relativity theory (or simply relativity), as it is 
now used in physics, has several different meanings. In particular, 
one differentiates between the relativity theory of Lorentz and 
Poincaré, Einstein’s special relativity theory, and Einstein’s 
general relativity theory. 

Einstein’s general relativity theory is his theory of gravitation 
and has little in common with other "relativities." The Lorentz- 
Poincaré relativity theory and Einstein’s special relativity theory! 
have at least two things in common: they affirm the principle of 
relativity and they describe physical phenomena (mainly 
electromagnetic) associated with rapidly moving particles. 

The significance of the Lorentz-Poincaré relativity theory, the 
significance of Einstein’s special relativity theory, the difference 
between the two theories, and the allocation of priorities in the 
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development of these theories are the subjects of considerable 
controversy.”’* However, there is no doubt that Einstein’s special 
relativity theory is uniquely original insofar as the central point of 

the theory is the idea of the "relativity of space and time" closely 

associated with Einstein’s concepts of "relativistic length 

contraction" and "relativistic time dilation."* 
Relativistic electromagnetism and relativistic mechanics are 

usually presented in textbooks as consequences of Einstein’s 

special relativity theory. However, in this book we shall use a 

novel approach to relativity, quite different from those used by 

Einstein, Lorentz, or Poincaré. We shall develop relativistic 

electromagnetism solely on the basis of electromagnetic 

retardation combined with the principle of relativity without any 

additional postulates, hypotheses, or conjectures. In turn, starting 

with relativistic electromagnetism, we shall develop relativistic 

mechanics, likewise without any additional postulates, hypotheses, 

or conjectures. 

6-2. Equations for Transforming Electric and Magnetic Fields 

of Uniformly Moving Charge Distributions into Electric and 

Magnetic Fields of the Same Stationary Charge Distributions® 

Consider a charge distribution of density 9 moving with 

constant velocity v = v,i = — vi. According to Eq. (5-1.11), the 

electric field of such a charge distribution is given by the present- 

time integral 

E = - SS el (6-2.1) 
ATE, Plena Wiad ayer 

or, factoring out y, 

Sees Y eae ~ ive} 0p 10x" ys (6-2.2) 

4m é, Giese +y!? ez eye 



132 CHAPTER 6 FROM RETARDATION TO RELATIVITY 

where we use the standard abbreviation 

1 y = (6-2.3) 
(1 -v7/c*)'? 

Now, since J = pv and v = v,i = — vi, we have 

= iev'/e) SP = = (ine = (vic yee Di. (6-2.4) 
IX 

or 

: i440) SP = (vic (6-2.5) 
be 

Equation (6-2.2) becomes therefore 

/ 2 ING fae 4i | V'p + (vic*)(AJ,/8x M aye. (6-2.6) 

4TE, Gee +y /2 yg ey We 

The magnetic flux density field produced by the moving 

charge distribution is then, according to Eq. (3-2.6), taking into 
account that v x i = 0 and using 1/c? = Epo, 

Bie Eh ee ee dv! 
(Gees +y/? +2! Vile (6-2.7) 

/ YHo oe V’ X pv dv! 
(y?x 124 yl? +z/%yie2 

or, since pv = pv,i = Ji, 

VW xJi Bp - Yo oy oe Ve (6-2.8) 
(7x 12, 47 /% 102 

For the same stationary charge distribution, the field equations 
corresponding to Eqs. (6-2.6) and (6-2.8) are’ 
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/ 
a eee a (6-2.9) 

ATE, (x/? +y!? +z/%)12 

and 
Ba Oe (6-2.10) 

We shall now obtain a set of transformation equations which 

convert Eqs. (6-2.6) and (6-2.8) into Eqs. (6-2.9) and (6-2.10). 

The extraordinary significance of these transformation equations 

will become clear later, when we shall use them as the foundation 

for developing the theory of relativistic electromagnetism. 

Since we are dealing with similar quantities relating to the 

moving and to the stationary charge distribution, we shall denote 

quantities pertaining to the moving charge distribution by subscript 

"m" and those pertaining to the stationary charge distribution by 

subscript "s," except when the relations are self-evident. 

Let us write Eqs. (6-2.6) and (6-2.8) in terms of their 

Cartesian components. From Eq. (6-2.6) we have, resolving V'p 

into its Cartesian components, 

/ 2 pee oY (ee Mee WVicy 4 av’. (62.11) 

ATE, Gas” Bry [2g eye 

Pere | me Oe alg (C212) 
y 4m, (x +y 247/12 

Fe yea Egy KG 212) 
eu 4m, (2x! +y!? $2 /2)i2 

From Eq. (6-2.8) we similarly have, resolving V' x J,i into its 

Cartesian components [see vector identity (V-11)], 

Ly. (6-2. 14) 
xi 
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ea anteaaee (6-2.15) 
ym Dap /21/ 

(yx #Z' >) 

/ 

ae iS (ee (6-2.16) 
on Gay” +y/? +z /2)12 

Let us also write Eqs. (6-2.9) and (6-2.10), representing the 

electric and magnetic fields of the stationary charge distribution, 

in terms of the Cartesian components. From Eq. (6-2.9) we have 

poo | ee oe (6-2.17) 
tea 4ré, (x! 4y!? 47/12 

a Pe (6-2.18) 
ys ATE, (bee +y/? eye 

Eee Ngee | eS ey era) 
a AME) (x! +y/? 42/12 

From Eq. (6-2.10) we have 

B= BeBe e203 (6-2.20) 

The transformations that we seek are those that transform Eqs. 
(6-2.11)-(6-2.16) into Eqs. (6-2.17)-(6-2.20). 

Clearly, to achieve the desired transformations, we need to 
transform the denominators of the integrands in Eqs. (6-2.11)-(6- 
2.13) into the denominators of the integrands in Eqs. (6-2.17)-(6- 
2.19). Comparing Eqs. (6-2.11)-(6-2.13) with Eqs. (6-2.17)-(6- 
2.19), we recognize that the desired transformation of the 
denominators will be achieved if we use? 

x, = yx), (6-2.21) 
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yf =yJ, (6-2.22) 

zi = 2), (6-2.23) 

because the denominators of the integrands in Eqs. (6-2.11)-(6- 

2.16) can then be written as (x,’*+ y,’?+ z,'7)*7 = (x/?+ y+ 
z'’).? and thus become the same as in Eqs. (6-2.17)-(6-2.19). 

Observe that this transformation simply changes the scale units of 

the x axis for the stationary charge distribution and does not alter 

the physical significance of Eqs. (6-2.17)-(6-2.20). However, if 

we change the scale units of the x axis for the stationary charge 

distribution, then the derivatives 0/dx' in Eqs. (6-2.11) and (6- 

2.17) are no longer equal. According to Eq. (6-2.21), the 

correlation between them is now 

Oe 
Likewise, the volume elements dV’ = dx'dy'dz' in the equations 

for the moving and for the stationary charge distribution are no 

longer the same. The correlation between them is now 

dV! = ydV,!. (6-2.25) 

If we now substitute Eqs. (6-2.21)-(6-2.25) into Eqs. (6-2.11)- 

(6-2.16), we obtain, using subscripts "s" and "m" in the 

integrands to keep track of the transformation steps, 

‘ [pale dv', (6-2.26) 
Em ‘ 4 /2 /2 72x 1/2 

GER G3 eB are wae yf 

/ 

Pei pee ine ay!) (6227) 
a Amey) (Pay! +z/%” 
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ig a | eee 
a Amey) (x yez/ 2° 

Base (6-2.29) 

/ 

B ee ee x (6-2.30) 
ym At Gaye tain 

/ 

eee Sy Ce 
a EC ayo 

Comparing the numerators in Eq. (6-2.17) and Eq. (6-2.26), 

we immediately recognize that the equation for transforming the 

numerator in Eq. (6-2.26) into the numerator in Eq. (6-2.17) is 

p, = y{o + ica ee (6-2.32) 

Substituting Eq. (6-2.32) into Eq. (6-2.26), we obtain 

ie oe | (0/0x'),p, 
a 2) 2 2 1/2 

AME)? (x! +y/2 42!) 
avi.  (6-2.33) xm 

All we now need to complete the transformation of Eq. (6- 

2.11) into Eq. (6-2.17) is to replace E,,, on the left of Eq. (6-2.33) 
by £,,. We denote this transformation step by the field 
transformation equation 

Bae (6-2.34) 

Examining the remaining Eqs. (6-2.27)-(6-2.31), we recognize 
that in order to use Eq. (6-2.32) with these equations we need to 
combine equations for E, and B,,. Noting that poe = l/c’, 
combining Eqs. (6-2.27)-(6-2.28) with Eqs. (6-2.30)-(6-2.31) so 
that the expression y{o + (v/c’)J,} appears in the combined 
equations, using Eqs. (6-2.18) and (6-2.19) as the transformation 
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"targets," and using Eq. (6-2.32), we recognize that the remaining 

transformation equations for the electric field must be 

E,, = WE, + VB) ms (6-2.35) 

1S NCE 0) 6 ee (6-2.36) 

Examining again Eqs. (6-2.27)-(6-2.31), remembering that J, 

= — vp, and using Eq. (6-2.20) as the transformation "target", 

we tentatively identify the transformation equations for the 

magnetic field as 

Bam Be, (6-2.37) 

Biren BOCLVEL IC.) (6-2.38) 

hCG (6-2.39) 

(these equations must be considered tentative because the factor 

in them is as yet uncertain; the need for it will be established in 

the next section). 

As was stated in Sections 4-1, 4-6, and 5-3 (6ee Examples 4- 

1.2, 4-6.1, and 5-3.1), Eqs. (6-2.6), (6-2.7), and the subsequent 

equations for the fields of the moving charge distribution are 

"snapshots" representing instantaneous fields of the charge 

distribution observed at t = 0. Therefore also Eq. (6-2.21) is only 

valid for t = 0, so that x,’ = YX,,,;-o. We shall now put Eq. (6- 

2.21) into a more general form by assuming that the time of 

observation is an unspecified ¢t. Since the charge distribution 

moves with velocity v in the negative direction of the x axis, the 

present position of the distribution is shifted toward smaller values 

of x, in accordance with 

Oana) = (6-2.40) 

as t increases. Hence, for a general case, Eq. (6-2.21) must be 

replaced by 
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ae = (x! + Vis (6-2.41) 

where x’ is the x coordinate of dV’,, at the time ¢. Note that 

although x,’ in Eq. (6-2.41) appears to depend on time, in reality 

it does not depend on time since by Eq. (6-2.40) x’ + vd), = 
Uy 

x m,t=0° 

6-3. Inverse Transformations 

According to the principle of relativity, it is impossible to tell 

whether the charge which we call "moving" really moves with 

velocity v = — vi relative to our laboratory and relative to the 

charge that we call "stationary," or whether the laboratory with 

the charge which we call "stationary" moves with velocity v = vi 

relative to the charge that we call "moving." Consequently, the 

transformation equations obtained in Section 6-2 should be 

applicable not only for transforming the fields of a moving charge 

distribution into the fields of a stationary charge distribution, but 

also for transforming the fields of a stationary charge distribution 
into the fields of a moving charge distribution by simply reversing 
the sign in front of v and transposing the subscripts m and s. 
From Eqs. (6-2.41), (6-2.22), (6-2.23), (6-2.32), and (6-2.34)-(6- 
2.39) we obtain therefore the following set of inverse 
transformation equations (equations for transforming fields of a 
stationary charge distribution into the fields of the same moving 
charge distribution) 

Xn = ye! =i (6-3.1) 

Vea ae (6-3.2) 

Lares (6-3.3) 

Py = Vk0 - (vic>J}., (6-3.4) 
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Ea ee (6-3.5) 

1B Va oe IE) | (6-3.6) 

Ea Ee VB) (6-3.7) 

B., = B,.; (6-3.8) 

Boa (Retain el)e. (6-3.9) 

Bay (By VE, 1 C)e (6-3.10) 

Observe that Eqs. (6-3.6), (6-3.7), (6-3.9), and (6-3.10) can 

also be obtained by solving Eq. (6-2.35), (6-2.36), (6-2.38), and 

(6-2.39) for the components of £,, and B,, in terms of the 

components of F, and B,. Eliminating B,,, between Eqs. (6-2.35) 

and (6-2.39), eliminating B,,,, between Eqs. (6-2.36) and (6-2.38)), 

eliminating E,,, between Eqs. (6-2.36) and (6-2.38), and 

eliminating E,,, between Eqs. (6-2.35) and (6-2.39), we obtain 

Eqs. (6-3.6), (6-3.7), (6-3.9), and (6-3.10) directly, without 

invoking the principle of relativity. However, the equations so 

obtained clearly confirm the principle of relativity for electric and 

magnetic fields. 

We shall now supplement our transformation equations by 

four more equations. Solving Eqs. (6-2.32) and (6-3.4) for J,, and 

Jom We obtain 
xm? 

Je VJ Vp)- (6-3.11) 

and 
JV) =) V0) ac (6-3.12) 

Solving Eqs. (6-2.41) and (6-3.1) for ¢, and ¢,,, we obtain 

t. = y(t + vx'lc’),,» (G23) 
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and 
Peay (Cav. e (6-3.14) 

Let us now prove the need for the factor y in Eqs. (6-2.38) 

and (6-2.39). According to Eq. (3-2.6), a uniformly moving 

charge distribution always creates a magnetic flux density field 

given by 
B, = (VXE,)/c’, (6-3.15) 

where E,, is the electric field produced by the moving charge 
distribution. Consider, for example, the y component of B,,. If v 
= — vi, then by Eq. (6-3.15), this component is 

Bema VEC ce (6-3.16) 
ym 

But by Eq. (6-3.9), the same component is (noting that for a 
stationary charge B,, = 0) 

B,, = WE,,/c?. (6-3.17) 

Now, according to Eq. (6-3.7), E,, = YE,,, So that Eq. (6-3.17) 
can be written as 

By = VE) ic?) (6-3.18) 
ym 

which is exactly the same as Eq. (6-3.16). Clearly, if the factor 
Y were not present in Eq. (6-3.9), then the factor 1/y would 
appear in Eq. (6-3.18), the agreement between Eq. (6-3.16) and 
Eq. (6-3.18) would not be possible, and therefore our 
transformation equations for B would be incorrect. But since Eq. 
(6-3.9) has been obtained from Eq. (6-2.38), the factor y must be 
present also in Eq. (6-2.38) [and therefore in Eq. (6-2.39) as 
well]. 

Note that none of the transformation equations obtained in this 
and in the preceding section of the book constitute actual 
equalities between the quantities involved. These equations are 
merely prescriptions for obtaining electric and magnetic fields of 
a Stationary charge distribution from the fields of the same moving 
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charge distribution by replacing quantities pertaining to the 
moving charge distribution by quantities pertaining to the 
stationary charge distribution and vice versa. 

6-4. Equations for Transforming Electric and Magnetic 

Potentials of Uniformly Moving Charge Distributions into 

Electric and Magnetic Potentials of the Same Stationary 

Charge Distributions and Vice Versa 

According to Eq. (5-2.4), the electric scalar potential of a 

uniformly moving charge distribution is given by the present-time 

integral 

: | p dv’, (6-4.1) 
Sele ATE, {x!2 + (y!2 42/2) pp yi? 

or, factoring out vy, 

pli fi tl Dk 6.4.2 
"  4ne,) (Px ry 47)? Oe) 

and, according to Eq. (5-2.16), the magnetic vector potential is 

given by the present-time integral 

Aves pee, | eee ee eee (6-4.3) 
m 4me,c° {x2 4(y? #715) fyi te 

or 

Ness eited it 
m 

NON | ee Ae Ve 0-44) 
gal (yx ayia ey 

For the same stationary charge distribution, the potential equations 

corresponding to Eqs. (6-4.2) and (6-4.4) are” 

Ew | p dv! 6-4.5 
Ps 4 E, (x! +y/242/?y12 ( ) 
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a rer (6-4.6) 
We shall now obtain a set of simple transformation equations 

that convert Eqs. (6-4.2) and (6-4.4) into Eqs. (6-4.5) and (6-4.6). 

As before, since we are dealing with similar quantities relating 

to the moving and to the stationary charge distribution, we shall 

denote quantities pertaining to the moving charge distribution by 
" " 

subscript "m" and those pertaining to the stationary charge 

distribution by subscript "s," except when the relations are 
self-evident. 

Let us write Eqs (6-4.4) and (6-4.6) in terms of their 
Cartesian components. Assuming, as before, that the charge 
distribution under consideration moves with velocity v = — vi, 
and using v,0 = J,, we have from Eq. (6-4.4) 

[et ate ee ie A a 4m€,C? (x? ty! 47/212 

Ay, = 0, (6-4.8) 
Ae ete (6-4.9) 

From Eq. (6-4.6), we obtain 

A, = A, =A, =0, (6-4. 10) 

We seek transformation equations that convert Eq. (6-4.2) into 
Eq. (6-4.5) and Eqs. (6-4.7)-(6-4.9) into Eq. (6-4.10). Clearly, to 
achieve the desired transformations, we need to transform the 
denominator in the integrand of Eq. (6-4.2) into the denominator 
of Eqs. (6-4.5). However, we have already found that this 
transformation can be achieved by using Eqs. (6-2.21)-(6-2.23). 
Of course, if we use Eqs. (6-2.21)-(6-2.23), then we must also 
use Eq. (6-2.25) for transforming the volume elements in the 
integrals of Eqs. (6-4.2) and (6-4.7). Naturally, we want 
to use as few transformation equations for all electric and 
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magnetic quantities and formulas as possible, and since we have 
already obtained Eq. (6-2.32) for transforming p, we shall use Eq. 
(6-2.32) now again. 

Using Eqs. (6-2.21)-(6-2.23), (6-2.25), and (6-2.32) for 

substituting x’, y’, 2’, dV’, and p in Eq. (6-4.5) , we obtain 

7 | {0 + (v/c?)J,}., 
1/2 ATE, 

ai ee Ae (6-4.11) 

(Px!2 sy? 42/22” 

Examining Eq. (6-4.11), we recognize that the integral in it 

is a combination of Eqs. (6-4.2) and (6-4.7), so that Eq. (6-4.11) 

can be written as 

P= VW(pr+ VA), (6-4.12) 

which is the desired transformation equation for the scalar 

potential. 

Remembering that vo = — J, and combining Eqs. (6-4.2) 

and (6-4.7) so that A,, = O [as required by Eq. (6-4.10)], we find 

that the transformation equation for the x component of the 

magnetic vector potential is 

A,, = Y{A, + (v/c?)9},, (6-4. 13) 

(this equation must be considered tentative because the factor 7 in 

it is as yet uncertain; we shall prove the need for it shortly). 

For the remaining components of A, we obtain by comparing 

Eqs. (6-4.8), (6-4.9), and (6-4. 10) 

Ay, = Ayn. (6-4.14) 

A= A,,. (6-4. 15) 
r4 

As in the case of transformation equations for electric and 

magnetic fields, the relativity principle demands that the inverse 

transformation equations should be obtainable from Eqs. (6-4.12)- 

(6-4.15) by simply reversing the sign in front of v and transposing 
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" " 

the subscripts "s" and "m." The inverse transformation equations 

are therefore 

P= Vp - VA). (6-4. 16) 

Aim = VIA, - (vic?)¢],, (6-4.17) 

Ay, AS. (6-4.18) 

Ave (6-4.19) 

Let us now prove the need for the factor y in Eqs. (6-4.13) 
and (6-4.17). According to Eq. (5-2.12), the magnetic and electric 
potentials of a uniformly moving charge distribution are connected 
by the equation 

A,, = Vo,,/c?. (6-4.20) 

Consider the x component of A,,. If v = — vi, then by Eq. (6- 
4.20), this component is 

Am = ~ Vo,/c?. (6-4.21) 

But by Eq. (6-4.17), the same component is (noting that for a 
stationary charge A,, = 0) 

Am = ~ Yv¢~,/c?. (6-4.22) 

Now, according to Eq. (6-4.16), yg, = Y?,;, SO that Eq. (6-4.22) 
can be written as 

Am = ~ vo,,{c?, (6-4.23) xm 

which is exactly the same as Eq. (6-4.21). Clearly, if the factor 
Y were not present in Eq. (6-4.17), then the factor 1/y would 
appear in Eq. (6-4.23), the agreement between Eq. (6-4.21) and 
Eq. (6-4.23) would not be possible, and therefore our 
transformation equations for A would be incorrect. But since Eq: 
(6-4.17) has been obtained from Eq. (6-4.13), the factor yy must 
be present also in Eq. (6-4. 13). 
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Note that none of the transformation equations obtained in this 
section of the book constitute actual equalities between the 
quantities involved. These equations are merely prescriptions for 
obtaining electric and magnetic potentials of a stationary charge 

distribution from the potentials of the same moving charge 

distribution by replacing quantities pertaining to the moving 

charge distribution by quantities pertaining to the stationary charge 

distribution and vice versa. 

References and Remarks for Chapter 6 

1. The name "relativity theory" ("Relativtheorie" in German) was 

coined by Max Planck as an abbreviation for the Lorentz-Einstein 

("Lorentz-Einsteinsche") electrodynamic theory and its application 

to the motion of the electron [see Max Planck, "Die Kaufmannschen 

Messungen der Ablenkbarkeit der 6-Strahlen in ihrer Bedeutung fiir 

die Dynamik der Elektronen," Phys. Z. 7, 753-761 (1906); A. H. 

Bucherer, in the discussion section of this article, called Einstein’s 

theory the "Relativitatstheorie"]. Einstein used the name "relativity 

theory” ("Relativitatstheorie") for the first time in his article "Die 

vom Relativitatsprinzip geforderte Tragheit der Energie," Ann. 

Phys. 23, 371-384 (1907). 
2. According to E. T. Whittaker (author of the highly respected 

A History of the Theories of Aether and Electricity), Einstein’s 

contribution to relativity theory was minimal. Referring to 

Einstein’s famous article "Zur Elektrodynamik bewegter Korper," 

Ann. Phys. 17, 891-921 (1905), Whittaker says : "In the autumn of 

the same year [1905]. . . , Einstein published a paper which set 

forth the relativity theory of Poincaré and Lorentz with some 

amplifications, and which attracted much attention" [see E. T. 

Whittaker, A History of the Theories of Aether and Electricity 

(Thomas Nelson, London, 1953) Vol. II, Chapt. 2 ("The Relativity 

Theory of Poincaré and Lorentz") p. 40]. Whittaker’s assessment 

is contrasted, for example, with that by Arthur I. Miller [author of 

the very detailed "biography and analysis of the (Einstein’s) 
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relativity paper set into its historical context"]. Miller describes 

Einstein’s 1905 article as follows: "Page for page Einstein’s 

relativity paper is unparalleled in the history of science in its depth, 

breadth and sheer intellectual virtuosity. . . the consequences of the 

special relativity theory changed mankind’s very view of its relation 

to cosmos. . ." [see Arthur I. Miller, "Albert Einstein’s Special 

Theory of Relativity, (Addison-Wesley, Reading, Massachusetts, 
1981) p. xiii]. 

3. According to K. N. Schaffner (a very thorough investigator of 
the history of Lorentz’s and Einstein’s relativity theories) ". . . it 
is clear that Lorentz’s theory and Einstein’s theory are rather 
different theories — but it is exceedingly difficult precisely to define 
the difference" [Kenneth F. Schaffner, "The Lorentz Electron 
Theory of Relativity," Am. J. Phys. 37, 498-513 (1969)]. See also 
Charles Scribner, Jr., "Henri Poincaré and the Principle of 
Relativity," Am. J. Phys. 32, 672-678 (1964); Stanley Goldberg, 
"Henri Poincaré and Einstein’s Theory of Relativity," Am. J. Phys. 
35, 934-944 (1967); C. Kittel, "Larmor and the Prehistory of the 
Lorentz Transformation," Am. J. Phys. 42, 726-729 (1974). 
4. The controversy is partly caused by the fact that neither of the 
two articles on relativity published by Einstein in 1905 [the first 
article was "Zur Elektrodynamik bewegter K6rper," Ann. Phys. 17, 
891-921 (1905), the second article was "Ist die Tragheit eines 
K6rpers von seinem Energieinhalt abhangig?," Ann. Phys. 18, 639- 
641 (1905)] has any references to works by other authors, although 
Lorentz transformations of coordinates and time, transformations of 
electric and magnetic fields, etc., which Einstein used in his first 
paper were well known in 1905 from the works of Lorentz, 
Larmor, and Poincaré (see Refs. 1 and 2 in Chapter 7). In this 
connection it is noteworthy that the editors of the Collected Papers 
of H. Poincaré specifically pointed out that the method of clock 
synchronization by means of light signals used by Einstein in his 
first relativity article was due to Poincaré. They also stated that 
from the mathematical point of view Einstein’s 1905 article 
presented nothing more than what had been published by Lorentz 
and Poincaré ("Le célébre Mémoir de A. Einstein Zur 
Elektrodynamik bewegter Kérper n’apportant rien de plus au point 
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de vue mathématique que les publications de H. A. Lorentz et de 
H. Poincaré") [see Ouvres de Henri Poincaré, (Gauthier-Villars, 
Paris, 1954) Vol. IX, pp. 698, 699 (this volume contains most of 
Poincaré’s papers pertaining to relativity); see also Handbuch der 

Physik, (Springer, Berlin, 1927) Vol. XII, p. 270]. It is also 

noteworthy that A. I. Miller in his comprehensive book on the 
history of Einstein’s special relativity theory (see Ref. 2, above) 

decided not to discuss Larmor’s contribution to relativity theory 

"because in my opinion Larmor’s work had an indirect effect, if 

any, on Lorentz’s thinking toward the electron theory of 1904" (p. 

114). Taking into account that as early as 1900 Larmor, in his book 
Aether and Matter (Cambridge U. P., Cambridge, 1900), published 

(in his own notation) all basic relativistic transformation equations 
for time and space coordinates and for electromagnetic quantities 

which Einstein presented in his first 1905 article, and that in 1895 

Poincaré devoted a large article (in four separate parts) to Larmor’s 

earlier work, Miller’s decision only perpetuates the controversy. 

5. See Albert Einstein, The Meaning of Relativity, (Princeton 

University Press, Princeton, New Jersey, 1950), pp. 30, 31, 36 and 

A. Einstein "Die Relativitatstheorie" in E. Lecher, ed., Physik, 2nd 

ed., (Teubner, Leipzig, 1925) pp. 791-793. 

6. See also Oleg D. Jefimenko, "Retardation and relativity: 

Derivation of Lorentz-Einstein transformations from retarded 
integrals for electric and magnetic fields," Am. J. Phys. 63, 267- 

2721995): 
7. Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed., 

(Electret Scientific, Star City, 1989) pp. 93 and 343. Observe that 

Eqs. (6-2.9) and (6-2.10) can be obtained from Eqs. (6-2.6) and (6- 

2.8) by setting v = 0 and J = 0. 

8. It is important to note that in the transformation equations that 

we are deducing, the "=" sign does not signify the equality of the 

quantities on the two sides of the equations; it only shows that the 

quantities which it connects can be substituted one for the other. 

9. See, for example, Ref. 7, pp. 120 and 364. Observe that Eqs. 

(6-4.5) and (6-4.6) can be obtained from Eqs. (6-4.2) and (6-4.4) 

by setting v = 0. 



THE ESSENTIALS OF 

RELATIVISTIC 

ELECTRODYNAMICS 

Relativistic electrodynamics provides powerful yet simple 
methods for solving a variety of problems involving uniformly 
moving electromagnetic systems. In this chapter we shall 
familiarize ourselves with the basic equations of relativistic 
electrodynamics, their properties, consequences, and methods of 
their application. 

7-1. Basic Relativistic Transformation Equations 

The basic equations of relativistic electrodynamics are the 
transformation equations for coordinates, time, and 
electromagnetic quantities derived in Chapter 6. However, in 
relativistic electrodynamics these equations have a somewhat 
different physical meaning and are customarily expressed in a 
notation different from the notation used in Chapter 6. 

To convert the equations derived in Chapter 6 into the 
standard relativistic form, we shall now assume that the stationary 
charge distribution used in Chapter 6 is located in a reference 
frame L’ uniformly moving with respect to the laboratory 
(reference frame L). Since the charge is at rest in Lo eall 
quantities with subscript "s" used in Chapter 6 apply now to 

148 
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measurements performed in that reference frame. And since the 

reference frame ’ together with the charge distribution moves 
with respect to the laboratory (reference frame ZL), all quantities 

with subscripts "m" apply now to measurements performed in the 

laboratory. The transformation equations derived in Chapter 6 

applied to a charge distribution moving with a velocity v = — vi, 

that is, in the negative direction of the x axis. In relativistic 

electrodynamics the reference frame L’ is usually assumed to 

move with a velocity v = vi, that is, in the positive direction of 

the x axis, and both frames © and »’ are assumed to have a 

common x axis and a common xy plane (Fig. 7.1). Furthermore, 

in relativistic electrodynamics the quantities pertaining to the 

moving and the stationary charge distribution are customarily 

designated not by means of subscripts, but by using primes for 

identifying the quantities measured in the moving frame L’ and by 

using ordinary notation for the quantities measured in the 

laboratory. 

IBS AIRY Reference 

frame &’ moves with 

velocity v with respect to 

the laboratory (reference 

frame X). 

To put the transformation equations obtained in Chapter 6 into 

the customary relativistic form, we need therefore to modify these 

equations as follows: omit the subscript "™," replace the subscript 

"s" by a prime, and reverse the sign in front of v. Observe that 

we no longer can denote the field point coordinates by primes, 

since the primes must now be used only for denoting quantities 

measured in the moving reference system. Therefore, before 

making any other modifications, we must first remove the primes 
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from the transformation equations obtained in Chapter 6. Finally, 

since we shall not use retarded quantities in relativistic equations, 

we shall use the square brackets in relativistic equations and 

elsewhere as the ordinary algebraic symbols. 

After making the indicated changes of notation, we then 

obtain for the quantities measured in Y expressed in terms of the 

quantities measured in L’: 

(a) For the space and time coordinates 

x = y(x' +vt"), (7-1.1) 

y=yl, (7-1.2) 

z=2', (7-1.3) 

t= y(t’ + vx'/c?). (@inay 

(b) For the electric field 

je ee (7-1.5) 

E, = y(E, + vB,), (7-1.6) 

E, = ¥(E; - vBy). (1) 

(c) For the magnetic flux density field 

Ba= B (7-1.8) 

B, = ¥(B, - vE{Ic?), (72189) 

B, = y(B; + vEyIc?). (7-1.10) 

(d) For the charge and current densities 

Dae Vien ie Wal CO 
J. =U; + vp’), (7-1.12) 

Jarre. (7-113) 

esa ieee (7-1.14) 
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[Eqs. (7-1.13) and (7-1.14) follow from the fact that J, and J, do 

not enter into the transformation equations obtained in Chapter 6]. 

(e) For the scalar and vector potentials 

gy = yy! + vAZ), G-115) 

A= Th Oa (7-1.16) 
if A, = Ay, C-1AlZ) 

AterA) (i 18) 

For the quantities measured in L’ expressed in terms of the 

quantities measured in Y we similarly obtain: 

(a) For the space and time coordinates 

x! = y(x-vt), C=119) 

oon (7-1.20) 

eee (7-1.21) 

{2 (feel )e (7-1.22) 

(b) For the electric field 

E 1. (7-1.23) 

E, = y(E, - vB,), (7-1.24) 

E! = V(E, ee vB). (7-1.25) 

(c) For the magnetic flux density field 

By = B., (7-1.26) 

B, = ¥(B, + vE,/c’), (7-1.27) 

Bae Bye vice). (7-1.28) 
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(d) For charge and current densities 

p’ = y[o - (vic*)J,J, (7-1.29) 

J’. = J, - vp), (7-1.30) 

Le = J,, (7-1.31) 

i eal (71.32) 

(e) For the scalar and vector potentials 

C= (OnavA)), (7-1.33) 

A,’ = y[A, - (v/c?¢], (7-1.34) 

AM = Aye (7-1.35) 

A! =A). (7-1.36) 

The relativistic transformation equations for coordinates, time, 
and electric and magnetic fields are usually called the Lorentz 
transformation equations.’ The relativistic transformation 
equations for electric and magnetic fields together with the 
transformation equations for the electric charge and current 
density are sometimes called the Lorentz-Einstein transformation 
equations.” The relativistic transformation equations for scalar and 
vector potentials are due to Poincaré? but do not carry his name. 

In the derivations that follow, we shall frequently use 
"hybrid" transformation equations obtained from the "regular" 
transformation equations listed above by transposing their terms 
so that an unprimed or a primed quantity becomes associated with 
both a primed quantity and an unprimed quantity. An example of 
such a hybrid equation is 

E, = Eyly + vB, (7-1.37) 

obtained from Eq. (7-1.24). 
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7-2. Transformation Equations for Velocity and Acceleration 

Since relativistic electrodynamics is primarily concerned with 

moving electromagnetic systems, we need to know how to 

transform velocity and acceleration from one reference frame to 

another. 

Let us first obtain transformation equations for velocity.’ Let 

an object move with a velocity whose x, y, and z components 

measured in the rest frame Y are dx/dt = u,, dy/dt = u,, and 

dz/dt = u,. Let the corresponding components measured in the 

moving frame L' be dx'/dt' = u,', dy'/dt' = u,', and dz'/dt' = 

u,'. Differentiating Eqs. (7-1.1)-(7-1.4), we have 

dx = (dx! +vdt') = y(uz +v)dt', G2) 

dy — dy", (7-22) 

dz = dz', (7-2.3) 

dt = y(dt' + vdx'/c?) = y(1 + vuj/c?)dt'. (7-2.4) 

Dividing Eqs. (7-2.1)-(7-2.3) by Eq. (7-2.4), we obtain 

transformation equations for the velocity 

/ 

pcs A (7-2.5) 
1 +vu;/c? 

ul 

oe y (7-2.6) 
y(1 + vu, /c?) 

/ 

so fe Gam 
y(1 + vu; /c?) 

The inverse transformation equations are obtained, as usual, 

by transposing the primes and changing the sign in front of v. 
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They are 

f ES u, a , (7-2.8) 

evi co 

ie uy (7-2.9) 
7 v= vu,,/C7) 

[ee oe (7-2.10) 
ia ue Ge) : 

Let us now obtain transformation equations for an 

acceleration.” Let an object move with an acceleration whose x, 

y, and z components measured in the rest frame L are du,/dt = a,, 
du,/dt = a,, and dudt = a,. Let the corresponding components 
measured in the moving frame L’ be du,'/dt' = a,', du,'/dt' = 
a,’, and du,'/dt' = a,'. 

Differentiating Eqs. (7-2.5)-(7-2.7), we obtain 

(1 + vu; /c?)duy - (uy + vyvdulic? (1 - v?/c?)\du; 
du, = - oe 

(1 + wu, /c*)? (1 + vu /c2)? 
aye (72201) 

VP + vulle2)? 

Pie (1+vu, /c*)du, - uy vdu; Ic? z du, uy vdu, /c? 

i y(1 + vu /c?) y(l+vuz/e?) yA + vu) /c2)? 

(7-2.12) 

Pte (1 +vu, /c*)du; - uf vdul Ic? : du; u; vdu, Ic? 

: y(1 + vu /c?)? y(1+vu;/c?) yA +vulic2)2 

(7-2.13) 

Dividing Eqs. (7-2.11)-(7-2.13) by Eq. (7-2.4), we obtain 
transformation equations for the acceleration 
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ES CB eae (7-2.14) 
(1 + vu /c2)3 

/ he lig 
id dy Uy Va, /C § 

MGR ER ER sa Vile Vi Ce) eevee Vil Co) 

/ / If fix) 

Fe ee ee ity LE (7-2.16) 
V1 +vuzle2)? (1 + vu! /c?)3 

The inverse transformation equations are 

; a 2 a’ (7217) 
a, 

2 hos a F u,va,/C Ge meg FS ee. (9218) 
VC lea VEN Ca) cemmeys (evince): 

2 

al = * ee (7-2.19) 
VU -vuley YU -vu,/cP 

Let us now obtain a transformation equation for the expression 

1 — u/c’, which frequently occurs in relativistic calculations. 

Consider a charge distribution moving with velocity u’ in the 

reference frame L’. The magnitude of u’ is given by 

ul? ae Tie : ne Fee (7-2.20) 

Using Eqs. (7-2.8)-(7-2.10), we can write Eq. (7-2.20) as 

_ (4, ~ v? + (u? + uz) - v?/c) 
ple 

(iva es) 
(7-2.21) 

For the y and z components of u in L we have 

Vie us = yr - The (7-2.22) 
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Combining Eqs. (7-2.21) and (7-2.22) and dividing by c*, we can 

write for 1 — u/c? 

(u,/c -vic)? + (u2/c? -u;/c2)(1 -v2/c?) 
teaweictad i aaleF (7-2.23) 

which after simplifications becomes 

eee (7-2.24) 
(l= vale)" 

The inverse transformation equation is, as usual, 

epee a hee (7-2.25) 
Vl + vu! le? 

7-3. Transformation Equations for Partial Derivatives with 
Respect to Coordinates and Time 

We have arrived at the relativistic transformation equations for 
coordinates, time, fields, and potentials by converting electric and 
magnetic fields of a moving charge distribution into the 
corresponding fields of a stationary charge distribution. As we 
know from Chapter 2, the electric and magnetic field equations 
that we used for this purpose are solutions of Maxwell’s 
equations. We may suspect therefore that Maxwell’s equations 
themselves can be transformed from one reference frame to 
another by means of the same transformation equations. We shall 
explore this possibility in the next section. 

Since Maxwell’s equations involve partial differentiation with 
respect to space coordinates as well as partial differentiation with 
respect to time, we need to know how to transform these 
operations from one reference frame to another. 

Let us first find the equations for transforming 0/dx and 0/0dt 
from the rest frame Y (laboratory) to the moving frame L’. The 
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transformation must take into account that, according to Eqs. (7- 

1.1) and (7-1.4), a variation of x alone or ¢ alone in L is 

associated with a variation of both x’ and t’ in L’, so that for the 

purpose of the transformation, a function of x or ¢ must be treated 

as a function of x’ and fr’. 

For 0/dx we then have 

BONE Po main ele OE (7-3.1) 
Ox Ox! Ox ot’ Ox 

Now, by Eq. (7-1.19), 0x’'/dx = y, and by Eq. (7-1.22), dt'/dx 

= — yv/c’. Therefore Eq. (7-3.1) becomes 

oe ae : ee (G32) 
dx OXE ic0r! 

The inverse equation, obtained by transposing the primes and 

changing the sign in front of v, is 

0 

Ox 

The corresponding hybrid equations are 

| (7-3.3) 
Ox c2 Ot 

oh ae (7-3.4) 
Ov ana) OX merc Oh, 

and 

pono ee Oe, (7-3.5) 
Ox = Y Ox! c? Ot 

For 0/dt we similarly have 

Os OMe oot, (7-3.6) 
OLD 30%. Of ar’ Ot 

By Eq. (7-1.19), dx'/dt = — v, and by Eq. (7-1.22), dt'/dt = 

y. Therefore Eq. (7-3.6) becomes 

ai eka (7-3.7) 
ot ar! ax’ 
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The inverse equation is 

a ee : wees (7-3.8) 
or’ Ot Ox 

The corresponding hybrid equations are 

io eee ace (7-3.9) 

and 

CeCe Om (7-3.10) 

By Eqs. (7-1.2) and (7-1.3) or (7-1.20) and (7-1.21), the 
derivatives with respect to y and z transform simply as 

Cie ae Gan) 
dy dy’ 

and 

Ome on (7-3.12) 
0z dz! 

7-4. The Invariance of the Cartesian Components of Maxwell’s 
Equations under Relativistic Transformations 

The significance of the relativistic transformations presented 
in the preceding sections of this chapter is twofold: First, the 
transformations make it possible to correlate electromagnetic 
quantities measured in different reference frames. Second, as we 
shall now show, subject to certain limitations to be explained 
below, Maxwell’s equations are invariant with respect to these 
transformations.° Therefore also solutions of Maxwell’s equations 
are invariant with respect to these transformations. This means, 
among other things, that with the help of relativistic 
transformations we can obtain solutions to problems involving 
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uniformly moving electromagnetic systems by merely applying 
relativistic transformations to solutions obtained for the same 
stationary electromagnetic systems. And since electric and 

magnetic fields of stationary electromagnetic systems can be easily 

determined, relativistic transformations provide a powerful and 

convenient special method for analyzing uniformly moving 

electromagnetic systems and solving problems pertaining to these 

systems. 

Let us now show that Maxwell’s equations (two of them only 

in their scalar form) are invariant with respect to relativistic 

transformations. Some special methods based on this invariance 

will be developed and demonstrated in the next chapter. 

Transformation of V - D = p. Remembering that D = ¢,E 

and writing Maxwell’s Eq. (2-1.1) in terms of Cartesian 

components, we have 

OE - dE, ae OL (7-4.1) 
Oy oy a p. 

Using the hybrid Eq. (7-3.5) and Eq. (7-1.5), using Eq. (7-3.11) 

and the hybrid Eq. (7-1.37), using Eq. (7-3.12) and the hybrid 

equation for £, obtained from Eqs. (7-1.25), and using the hybrid 

equation for p obtained from Eq. (7-1.29), we can write Eq. (7- 

4.1) as 

é 

dE; y OE, OE; OB, dE! oe 0B, 
— ar <e a Cae CT Cee — 

“ax! Py? Dy ae? 
ay cif (7-4.2) 

VY (6 

Rearranging, we have 

Uae , Fey is 

Y\ ax! dy’ dz! (7-4.3) 
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However, since B = pH, since é,u) = 1/c*, and since é,E = D, 

the last two terms in Eq. (7-4.3) are simply the x component of 

the expression 

Mle W251 ey eed (7-44) 
C2 Ot 

which by Maxwell’s Eq. (2-1.4) is zero. Hence, dropping the last 

two terms in Eq. (7-4.3), cancelling y, replacing €,E' by D’, and 

restoring the vector notation, we obtain 

Vv’ -D! =o’. (7-4.5) 

Thus Maxwell’s Eq. (2-1.1) is invariant under relativistic 

transformations. 

Transformation of V - B = 0. Writing Maxwell’s Eq. (2- 

1.2) in terms of Cartesian components, we have 

Cee eel ier ()y (7-4.6) 
Ox dy dz 

Using the hybrid Eq. (7-3.5) and Eq. (7-1.8), using Eqs. (7-3.11), 
(7-3.12) and the hybrid equations for B, and B, obtained from 

Eqs. (7-1.27) and (7-1.28), we can write Eq. (7-4.6) as 

/ / / 

ei AUR ilies oii CE AOE aye OE ane 
vox! CoNOr Gy "eT0ya NV 07" G78 0z 

Multiplying by y and rearranging, we have 

02 COB aOR: Ce MUS pales : se : see (7-4.8) 
aye! dy! dz! c7\ dy Oz | Ot 

However, the expression in the brackets is simply the x 
component of the expression 

aN XE + =| 
Ca Ot 

(7-4.9) 
> 
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which by Maxwell’s Eq. (2-1.3) is zero. Replacing the right side 

of Eq. (7-4.8) by zero and restoring the vector notation, we obtain 

Vv’ -B! =0. (7-4.10) 

Thus Maxwell’s Eq. (2-1.2) is invariant under relativistic 

transformations. 

Transformation of V xX E = — 0@B/dt. Writing Maxwell’s 

Eq. (2-1.3) in terms of Cartesian components, we have 

GE. OE) |0E. OE Fees dE OE ale 2) ue dy dz Ox Gra dy G41) 
OB _OB 0B 

SES ue ees 
Ot Ot ot 

Using Eqs. (7-3.11), (7-3.12), (7-1.5)-(7-1.8), and (7-3.7), we 
can write Eq. (7-4.11) as 

za) 
Y= es aes 

More | oe 82! 
/ / 

i i a Sa eco sae) (7-4.12) 
dz’ Ox 

aBY OB;\ .0B 
peas Va ae ae 
| dr’ | ot Ot 

)- 

According to Eq. (7-4.10), the terms with the derivatives 

0B’ ,/dx', OB',/dy', OB',/dz' in Eq. (7-4.12) vanish, so that the 

equation simplifies to 

/ / / OE; 5 | ! ee oF : «(Oe ; bes) 
yY— -¥— — - = =o 

Oy! az" Oe ET ake aie) 
OB! OB OB 

=- iy— ons j paw = Fe Seas 

Ot’ Or Ot 

Using Eqs. (7-1.7), (7-1.6), (7-1.9), and (7-1.10), we can write 
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Eq. (7-4.13) as 

a, 

/ / / / 1 OE; aaa fa = fy MEO _ OE, 

oy edz) logs Ox ax dy! 
/ / wer 0B; ae 0(B, -vE; Ic?) Be Ic?) (7-4.14) 

riya Ot Ot 

or, rearranging, as 

a G2. ad 

(ie Nar 
/ / i / / i Bee er ee 

dz! Ox cc? Ot Ox c2 Ot dy’ 

/ / if / / 

= Seer “nf wv) =k fee eee ) (7-4. 15) 
ar! Ot Ox Ot Ox 

which, by Eqs. (7-3.3) and (7-3.8), is 

Ox! = By 
(7-4.16) 

EF! 0E,\ .j0E, dE; dies) OE. 
I ayt Yagi) gee ert dy/ dz! dz! Ox! 

le ee aB! 
=—_— ] aa, See tod te ls ae 

i ot’ : at’ ot! 

Comparing the x, y, and z components of the left side of Eq. 
(7-4.16) with those of the right side, we find that the components 
have the same form as the components of Eq. (7-4.11) (the factor 
y in the x components cancels if one compares only the individual 
components of the left and the right side of the equation). Thus 
the Cartesian components of Maxwell’s Eq. (2-1.3) are invariant 
under relativistic transformations, but the equation itself is not 
invariant because, due to the presence of Y in the x components 
of Eq. (7-4.16), Eq. (7-4.16) is not the same as Eq. (7-4.11). 
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Transformation of V x H = J + dD/dt. Remembering that 
D = ¢E and writing Maxwell’s Eq. (2-1.4) in terms of Cartesian 
components, we have 

y 
(ce eae (oe 0H, 

a) ° mx Oy 
oe | OH = 0H. 

dy dz Oz 10K) 
(7-4.17) 

; ; we. dE, 
Sa ee Ky ie Jes + ke, ae 

Using Eqs. (7-1.2), (7-1.3), (7-1.5), (7-1.8)-(7-1.10), (7-1.12)-(7- 

1.14), and (7-3.7), and remembering that B = pH, we can write 

Eq. (7-4.17) as 

| dH; dE, dH! dE! | 
1) ey ty ee 

dy’ : pc dy ow i pc 702' 

/ 
py ie =) «(2 - | 

0z/ Ox Ox dy’ 

= iy) + vp!) +jJ) +d, vig (Oe =v) 56, +ke,——!. 
at’ = ax’ ot ot 

(7-4.18) 

According to Eq. (7-4.5) and taking into account that 1/p,c? 

= € , the terms with the derivatives 0E’,/dx', 0E',/dy', OE",/0z' 

and p' in Eq. (7-4.18) vanish, so that the equation simplifies to 

GL OEE OER (OE Oe alel” Glee 

thes, “Taree ee el eee ae Oz! “Ox. Ox Gy! 

i! 

x =iyJ; +jJ, +k, +iye, = 

(7-4.19) 

+jé +ké, 
con it Te 

Using Eqs. (7-1.6), (7-1.7), (7-1.9), and (7-1.10), we can write 

Eq. (7-4.19) as 
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fel alan 
or ae] dy! dz! 

[OH Ae Nelae Q(Hy -vE;/u,c?) OH, 

Ss | az! acer ol OE 
dE, .  a(E, + vB) 0(E; - vBy) 

lee 
(7-4.20) 

or, noting that €58 = H/c’, 1/p,.c? = é) and rearranging, as 

: dH! dH, 
VY — 

dy dz! 

ee vel ye 0H, y9H)\ 0H, se ae ale ae) dz! OS "C01 C2 Or dy 
(7-4.21) 

° a ah i 0 OE, 
=iyJ, +jJ, +k/, Oar 

+yV 

Ot ax | 

dE, +) “ i) Ets) es 

dae ae] Ot Ox 
nee 

which, by Eqs. (7-3.3) and (7-3.8), is 

dH; dH! 0H, 0H! dH, dH; 
lise eal tear meee Seer Gy emg? 02g OX dx’ = dy’ 

; ; ‘ (7-4.22) 
= s / ey/ / ° OE, a) 3 dE, =1yJ, +4, + kJ, es +j eg tat” 

Comparing the x, y, and z components of the left side of Eq. 
(7-4.22) with those of the right side, we find that the components 
have the same form as the components of Eq. (7-4.17) (the factor 
y in the x components cancels if one equates only the individual 
components of the left and the right side of the equation). Thus 
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the Cartesian components of Maxwell’s Eq. (2-1.4) are invariant 
under relativistic transformations, but the equation itself is not 
invariant because, due to the presence of y in the x components 

of Eq. (7-4.22), Eq. (7-4.22) is not the same as Eq. (7-4.17).’ 

7-5. Testing Relativistic Transformations 

Although we have no reason to doubt the correctness of our 

derivations and the correctness of the relativistic transformations 

that we have obtained, it is instructive to test some of the 

transformation equations. We can do so by using relativistic 

transformations for solving some problems whose solution is 

already known on the basis of general electromagnetic laws. 

Correlation between electric and magnetic fields of a moving 

charge distribution. For the first test, let us see what effect 

relativistic transformations have on the relation between the 

electric and magnetic fields of a moving point charge. Consider 

the equation expressing the magnetic flux density field B of a 

uniformly moving charge distribution in terms of the electric field 

E and the velocity u of the distribution [Eq. (3-2.10)] 

B = (ux E)/c’. (7-5.1) 

By the relativity principle, this equation should not depend on the 

reference frame in which E, u, and B are measured. Let us see if 

this conclusion is supported by our transformation equations. 

Let a charge distribution move with velocity u’ with respect 

to a reference frame ©’, which moves with velocity v = vi with 

respect to the laboratory. In L’ Eq. (7-5.1) is then 

B’ = (u’ X E’)/c?. (7-5.2) 

We shall now transform this equation to the laboratory frame. To 

do so we first write Eq. (7-5.2) in terms of its Cartesian 

components 
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Il = B, = (u,E, -u,E,){c? (7-5.3) 

B, = (u,E, -u,E, ie? S54) 

Boa, Bue eee (7-523) 

Substituting into Eqs. (7-5.3)-(7-5.5) E,’ from Eq. (7-1.5) and the 

hybrid equations for Ey’, and E,’ obtained from Eq. (7-1.6) and 

(7-1.7), we have 

By = (uy (E,/y + vBy) - uj (E,/y -vB)Vc? (7-56) 

B) = [uJE, - u,(E,/y + vB) Vc? (7-5.7) 

BL = (ul(E,/y - vB) - uJ Ee’. (7-5.8) 

We shall now simplify Eq. (7-5.6) with the help of Eq. (7- 

5.2) by using the relation 

uw -B =u'-(W x E’)/c? = 0, (7-5-9) 

from which it follows that 

Ted) Soop 5 cit AEE (7-5.10) 

Substituting Eq. (7-5.10) into Eq. (7-5.6), we obtain 

B, = (uyE,/y - uj E,/y - vu, B,)Ic? (7-5.11) 
or 

Bi(1 + vuzie?) = (WE,/y -ufE,/ylc2, — (7-5.12) 
so that 

/ 

Bue Ty 5p aie Sale GEG jies 
yd +vuic?) © (1 +vulics “ec?” 

which, by Eqs. (7-1.26), (7-2.6), and (7-2.7), is 

Be Peer Vice (7-5.14) 
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Rearranging now Eq. (7-5.7), we have 

By (1+ vujle?) = (UE, - ufE,/yyIc? 

or 
/ 

jake = | u, E = Uy z.| 1 

y fo ELL es AS Se iets A513 
(1 + vu; /c2) y(1+vulic2) “)c? 

Substituting B,’ from Eq. (7-1.27), we obtain 

u u,, 1 (B,+vE, Ic?) — : a 
(1 +vu, /c?) yv(1 +vuj/c?) “Se? 

or 

TE u, B, = es 2 ENS A 3h 0 
(1 + vu /c?) (1 + vu; /c?) Ge 

/ 

(7-5.15) 

(7-5.16) 

(7517) 

E | u, soso u,(1-v2/c?) +W(1 + wile) 

(1 + vu, /c*) (1 + vu; /c?) (oe 

u; uy +V 1 &: | ae ee (7-5.18) 
(1 + vu, /c?) (1+vu,/c?) Jc 

which, by Eqs. (7-2.7) and (7-2.5), is 

Be oe ice (7-5.19) 

Clearly, Eq. (7-.5.5) transforms in the same manner into 

eho A Ue i wilt) hem. (7-5.20) 

Recombining Eqs. (7-5.14), (7-5.19), and (7-5.20) into a 

single vector equation, we finally obtain Eq. (7-5.1) thus 

demonstrating the validity of our transformations. 

Electric field of a moving point charge. For the second test, 

let us see what effect relativistic transformations have on the 
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electric field of a moving point charge. Consider a point charge 

g moving with constant velocity u’ = u’i relative to a reference 

frame &’, which moves with velocity v = vi relative to the 

laboratory (reference frame ©). Let the charge be in the x’y’ 

plane, let the point of observation in L’ be atx’ = 0, y’ = 0, 

z’ = O, let the time of observation in L’ be t’ = O, and let the 

point of observation in Y be atx = 0, y = O, z = O. As usual, 

let the x’ axis coincide with the x axis, and let the x'y’ plane 

coincide with the xy plane. 

The electric field produced by q in L’ is, by Eq. (4-1.19), 

ql - u'*/c?)(xpi + y’j) Fe ee Ee 
4ne,{xy +(1 -u/2/c2)y /2}3? 

(7-35.21) 

where x,’ is the x’ coordinate of the point charge at t’ = 0. If our 

relativistic transformation equations are correct, then the only 

effect of these transformations on Eq. (7-5.21) when the equation 

is transformed to the reference frame © should be the absence of 

the primes in the equation. 

To perform the transformation, let us first write the equation 

in terms of its Cartesian components. We have 

ql -u'?/c*) xg 
| ie ee ret Pat Res ile amie 

4me,{x5 +(1 -u!?/c2)y/2¥32 
(7-5.22) 

and 
2 EI = aed Ke (7-5.23) 

Ane, {Xo +(1 = 7le7)y 732 

Substituting now into Eq. (7-5.22) Eqs. (7-1.23), (7-2.24), (7- 
1,20), and the hybrid equation for x’ obtained from Eq. (7-1.1) 
with ¢’ = QO, and noting that in the case under consideration u,’ 
= u’', we obtain 
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| q(1 -u2/c?)x/y 

* 4megV(l -vule?PO2/7? + (1 -u2/02)/97( —vule2yy}3? 

g(1 -u2le?\(1 -yule?)x 
Ameria (l—yule-) 4(1 u/c) 2\>2 (7-5.24) 

Now, since in L’ the charge was observed at t' = 0, x in Eq. 

(7-5.24) is, according to Eq. (7-1.22), the position of the charge 

at ¢ = vx/c’. But to make the electric field given by Eq. (7-5.24) 

correspond to the field observed in L’, the time of observation in 

L& must be the same as in L’, that is, t = 0. Therefore we must 

replace x in Eq. (7-5.24) by Xo, the position occupied by the 

charge at ¢ = O. Setting 

x =x, + ut =x, + u(vxic?) (T2520) 

and solving for x, we obtain 

jibe ala esie fe ah (7-5.26) 
1 /e2 

Substituting Eq. (7-5.26) into Eq. (7-5.24), we obtain 

fol lyae oe Gaus e)x. . (7-5.27) 

4m, {x +(1 -u2/c?)y?}3? 

For transforming Eq. (7-5.23), we need to use Eq. (7-1.24) 

which contains B,. To obtain B,, we use Eq. (7-5.1), which gives 

(note that the velocity of the charge in » is u) 

B, = uE,/c*. (7-5.28) 

Substituting Eq. (7-5.28) into Eq. (7-1.24), we obtain 

y 
E, = E,(1 - vulc?). (7-5.29) 

Substituting now into Eq. (7-5.23) Eqs. (7-5.29), (7-2.24), (7- 

1.20), and the hybrid equation for x’ obtained from Eq. (7-1.1) 

with ¢’ = O, and taking into account that in the case under 
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consideration u,’ = wu’, we obtain 

yE, (1 -vulc’) 

= g(1 -u*/c*)y 

ee aH TL (7-5.30) 
Ane {x7(1 -vulc*)* +(1 -u2/c*)y?3? 

ot Bi yas 

2 ql -utle*yy (7-5.31) 

Substituting Eq. (7-5.26) into Eq. (7-5.31), we obtain 

Feo REG) aes (7-5.32) 
4me {xg + (1 -u2/c2)y2}3? 

Recombining Eqs. (7-5.32) and (7-5.27) into a single vector 

equation, we finally obtain 

ql -u*lc*)(xgi + yj) 
Ea eee 

4me {xg +(1 -u2/c?)y2}32 
(7-5.33) 

thus once again demonstrating the validity of our transformations.® 

7-6. The Method of Corresponding States 

In 1895, H. A. Lorentz enunciated a theorem, which he 
called the theorem of corresponding states, according to which to 
any electromagnetic system that is a function of space and time 
coordinates in the rest frame Y, there corresponds an 
electromagnetic system in the moving frame YL’, being the same 
function of space and time coordinates (primed coordinates) in 
L’.’ The theorem constitutes one of the most effective tools of 
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relativistic electrodynamics, making possible a very simple 
derivation of various equations for electric and magnetic fields of 
uniformly moving charge distributions from the corresponding 

electrostatic and magnetostatic equations. Several examples of the 

use of this theorem are provided below. '® 

v 

Example 7-6.1 The electric field of a stationary charge distribution 

can be found from"! 

pesuse | “Pav. (7-6.1) 
4mé,/ 1 

Using Eq. (7-6.1) and appropriate transformation equations, find the 

electric field produced by a charge distribution moving with 

uniform velocity v = vi. 

Let us apply Eq. (7-6.1) to a charge distribution p’ resting in 

a reference frame &’ which moves with respect to the laboratory 

(reference frame ©) with constant velocity v = vi. The Cartesian 

components of the electric field E’ produced by p’ in this reference 

frame are the same as those of Eq. (7-6.1) with V, p, r, and dV 

replaced by the corresponding primed quantities, that is 

TAs 

igo = F z(Oies ey de (7-6.2) 
0 Deer Vga, 

d/dy')p' 

E 4 im F - a mg ay Sea: 
Ge WA a awe 

Ned Fee am F a eg ty de (7-6.4) 
TE, REY MHZ 

Since the electric field in L’ does not depend on time, we are 

free to choose the time of observation t' in L’ and therefore, by Eq. 

(7-1.4), the time of observation ¢ in L. For simplicity we shall use 

t = 0. Also since the electric field in L’ does not depend on time, 
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so that 0/dt’ = O, the derivative 0/dx’, by Eq. (7-3.2), transforms 

into 0/ydx. Taking into account that there is no magnetic field in L’ 

(because the charge distribution is at rest there) and using Eqs. (7- 

1.5)-(7-1.7), (7-1.19) with t = 0, (7-1.20), (7-1.21), and (7-1.11) 

with J,’ = 0 (because there is no current in L’) we transform Eqs. 

(7-6.2)-(7-6.4) into 

1 | (0/y0x)p /y TGkS 
Ea ee Gt dydz a 

: Ame, J [(yx) ty? +27]? one 

1 | (d/dy)p /y : (ys = ene eee aa Ginastera, (eG) 
Ey a Ame, [(yx)* +y2 427712 (7 )dy 

1 | (0/dz)p /y : 
Ii, ee eS Ed (yn) avdz oe) 
wv” Fe, | Tomy eye? 

or 

pee | ee a2 (7-6.8) 
Amey [ee +(y? +27)/¥7]!2 

|S ele [esos Nay, (7-6.9) 
y 47€, [x2 +(y2 +22)/77]!? ; 

jae = ES i (9/02)0 gy. (7-610) 
“ 4né, [x2 +(y2 +2)/7]!2 

The denominators in Eqs. (7-6.8)-(7-6.10) can be simplified with 

the help of Eqs. (5-1.8) and (5-1.9). Multiplying Eqs. (7-6.8)-(7- 

6.10) by i, j, and k, respectively, adding the equations, and 

observing that 1/y? = 1 — W/c’, we obtain 

ree 1 [ee “i(v7/e)\(0/0x)p dV. (7-6.11) 

4mé, J r[1 -(v2/c?) sin? 6]!? 

Observe that, except for notation, Eq. (7-6.11) is the same as 
Eq. (5-1.12) that we obtained by converting the retarded integral 
for the electric field given by Eq. (5-1.1) into the present-position 
integral [the primes in Eq. (5-1.12) were used to indicate the 
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source-point coordinates; in Eq. (7-6.11) these coordinates appear 

without primes, because in relativistic electrodynamics the primes 

are used for identifying quantities in moving reference frames]. 

Example 7-6.2 The best known expression for calculating electric 

fields of stationary charges is the "Coulomb’s field" equation’ 

eee | Lave (7-6.12) 
4m7é,/ r 

Convert this equation into the equation for the electric field 

produced by a charge distribution moving with constant velocity and 

obtain the corresponding equation for the magnetic field produced 

by the moving charge distribution. 

Consider a charge distribution p’ resting in a reference frame 

L’ which moves, as usual, with respect to the laboratory (reference 

frame ©) with constant velocity v = vi. The electric field E’ 

produced by p’ in &’ may be found from Eq. (7-6.12). Let us 

rewrite this equation in terms of its Cartesian components (using 

primed coordinates, since the coordinates are in L’) 

ao = 1 | exe dx'dy'dz',  (7-6.13) 

ee 2 2 ATE, Hy oaZie)se 

ig, = Fea |e es aaa ic (7-6.14) 
ATE, (Gey ay 

fy kt Den Le Deli e epee sees (ee AE yids. ual-O2 15) 
ATE, (Cate ty”? +2/2)3/2 

To find the electric and magnetic fields that the charge 

distribution produces in the laboratory, we shall apply to Eqs. (7- 

6.13)-(7-6.15) our relativistic transformation equations. Since the 

electric field in the moving reference frame &’ does not depend on 

time, we shall use, for simplicity, t = 0 for the time of observation 

in the stationary reference frame L. Taking into account that there 
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is no magnetic field in L’ (because the charge distribution is at rest 

there) and using Eqs. (7-1.5)-(7-1.7), (7-1.19)-(7-1.21), and (7- 

1.11) with J.’ = 0 (because there is no current in L’) we transform 

Eqs. (7-6.13)-(7-6.15) into 

Ee | ie aya (O10) 
(Y ATE, 2 +y2 42232 

or 

je a ee ee (7-6.17) 
¥ Amey [x2 +(y? +27) /7°)°? 

a= 1 [__@My andar (76.18) 7 Ane, ) (x2 +y2 +22)? 

or 

ji seats ae, (7-6.19) 
y 4neyy } [x2 +(y2 +29)? 

and, similarly, 

gore Lae | OO) 
© Amey?! [x2 +(y2 +22)/°P? 

The denominators in Eqs. (7-6.17), (7-6.19), and (7-6.20) can 
be simplified with the help of Eqs. (5-1.8) and (5-1.9). 
Recombining Eqs. (7-6.17), (7-6.19), and (7-6.20) into a single 
vector equation, we then obtain 

eee | pr dV -620) 
Amey? [1 -(v7/c?) sina? 

Observe that, except for notation, Eq. (7-6.21) is the same as 
Eq. (5-1.40) which we obtained by converting retarded integrals 
into present-time integrals. 

Although the magnetic field produced by this charge 
distribution could be found by applying relativistic transformations 
[Eqs. (7-1.8)-(7-1.10) in particular] to Eqs. (7-6.13)-(7-6.15), it is 
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much easier to find it by applying Eq. (3-2.6) to Eq. (7-6.21). 
Clearly, this would yield Eq. (5-1.45). 

Example 7-6.3 The electric field at a distance R from a stationary 
line charge with endpoints at x, = L, and x, = L,, as in Fig. 4.5, 
1S 

us | 1 E I Ween(7-6.22) 
* Gre RULR +1) (LARP +1) 

ra scan bee eee (7-6.23) 
: AmegR?L(L{/R2+1)'2 — (Lz/R? +1)!” 

where 2X is the line density of the charge, and where the point of 

observation is at the origin.'? What is the electric field of this line 

charge if the charge moves parallel to the x axis? 

Let us suppose that the charge is at rest in a reference frame L’ 

which is moving with velocity vy = vi relative to the laboratory 

reference frame L along their common x axis. In the L’ frame the 

x component of the electric field of the line charge is, by Eq. (7- 

G22); 

em IE taper ee? Cie Le aS 172024) 
Age Rel (Le Ros |) ame (Ro 12 

To find the corresponding electric field in the & frame, we 

transform E,', R’, \', and L’ by using Eqs. (7-1.23), (7-1.20), (7- 

1.11), and (7-1.19) (observe that )’ transforms like p’, R’ 

transforms like y', and L' transforms like x’). Selecting ¢ = O for 

the time of observation in L (we can choose ¢ at will because the 

charge is time-independent in &’) and noting that J’, = 0 because 

the charge is stationary in L’, we obtain from Eq. (7-6.24) after 

elementary simplifications 

Ee yee! 1 5 =a VisG-) 1 
X 47é,R (L7/R2 +1 -v/c*)? (L;/R? +1 -y/eR)12 F 

(7-6.25) 
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Note that Eq. (7-6.25) is exactly the same as Eq. (4-3.13) that we 

obtained by using the retarded field calculations. 

By Eq. (7-6.23), the y component of the electric field in the L’ 

frame, where the charge is stationary, is 

=o L', ¥ L', _ (7-6.26) 
4neé,R!* (OA IRE ye (Reel) 2 

Using Eqs. (=1.6), (@-1-20), (-1-1 1). =and Ge 19) tor 

transforming E£,’, R’, \’, and L’ and taking into account that there 

is no magnetic field in L’ (because the charge is at rest there) we 

obtain from Eq. (7-6.26) after elementary simplifications 

E, = 

uN fp Ei (7-6.27) 
” Ame RU(LR? +1 -v3c)'? (LR? +1 -v2/ey)'7) 

which also is exactly the same as Eq. (4-3.22) obtained from 

classical calculations. 

Example 7-6.4 The scalar potential of a stationary charge 
distribution can be found from the well-known equation 

Buel | 2av. (7-6.28) 
ATE, if 

Convert Eq. (7-6.28) into the scalar potential produced by a charge 
distribution moving with constant velocity v = vi. 

Consider a charge distribution p’ at rest in a reference frame L’ 
which moves with respect to the laboratory with uniform velocity 
v = vi. The electric potential y’ produced by p’ in this reference 
frame is given by Eq. (7-6.28) with y, p, r, and dV replaced by the 
corresponding primed quantities, that is 

haere p’ / ieee [eed Vee -6:29) 
4, r! 
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To find the potential in the laboratory, we transform the primed 
quantities in Eq. (7-6.29) into the corresponding unprimed 
quantities. Setting ¢ = 0 and using Eqs. (7-1.19)-(7-1.21), (7-1.11), 
and (7-1.15) with J,’ = 0 and A,’ = 0 (because there is no current 
and no magnetic field in £’), we obtain 

3 ea | | oly 

ye RR 
7-6.30 

Y 408) (Pxt+y? +z? (yx)dydz,  ( ) 

or, simplifying and using Eqs. (5-1.8) and (5-1.9), 

Sees | La arp (7-6.31) 
4mé, J r[1 - (v*/c?) sin’ ]!? 

which, except for notation, is the same as Eq.(5-2.5) that was 

obtained from a retarded potential integral. 

Example 7-6.5 The scalar potential of a stationary charge 

distribution whose charge density is constant throughout the volume 

occupied by the distribution can be found from the equation’* 

g=- 9 of -as_, (7-6.32) Bre, | 7 
where dS,,,, is a surface element vector directed from the charge 

distribution into the surrounding space. Convert Eq. (7-6.32) into 

the scalar potential produced by a charge distribution moving with 

constant velocity v = vi. 

Consider a charge distribution p’ at rest ina reference frame L’ 

which moves with respect to the laboratory (reference frame ©) with 

uniform velocity v = vi. The electric potential y’ produced by p’ 

in this reference frame is given by Eq. (7-6.32) with y, p, r,r, 

and dS replaced by the corresponding primed quantities: 

yl =- pe | Cae cle (7-6.33) 
87é, J r/ x 
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To find the potential in the laboratory, we transform the primed 

quantities in Eq. (7-6.33) into the equivalent expressions in terms 

of unprimed quantities. First, however, we expand the dot product 

in Eq. (7-6.33), obtaining 

Pm oS EES las 35 
87E, r! 

Now, setting ¢ = 0 and using Eqs. (7-1.19)-(7-1.21), (7-1.11), and 

(7-1.15) with J,’ = 0 and A,’ = O (because there is no current and 

no magnetic field in L’), we have 

gp __ ply § (yxdydz+ ydzydx + zydxdy),,, (7-6.35) 
Y 87, Gee +y? +2712 

or, simplifying, using Eqs. (5-1.8) and (5-1.9), and restoring the 

vector notation, 

p Keds =e ; (7-6.36) 
87,2 r[1 - (v7/c*)sin’6]!? 

aes 

which, except for notation, is the same as Eq. (5-2.11) obtained 

from a retarded potential integral. i 
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FROM RELATIVISTIC 

ELECTROMAGNETISM TO 

RELATIVISTIC MECHANICS 

Electric and magnetic fields are force fields. They exert 

forces on charged bodies and affect the state of motion of these 

bodies. The study of the motion of bodies under the action of 

different forces is the domain of mechanics. However, classical 

mechanics was developed much earlier than electromagnetic 

theory and before the advent of relativistic electrodynamics. It is 

clear therefore that classical mechanics needs to be reformulated 

to make it compatible with relativistic electrodynamics. The 

mechanics thus reformulated is called relativistic mechanics. Its 

fundamentals are presented in this chapter on the basis of already 

developed relations of relativistic electrodynamics. 

8-1. Transformation of the Lorentz Force 

In Chapter 7 we derived relativistic transformation equations 

for electric and magnetic fields. Electric and magnetic fields are 

force fields. We may expect, therefore, that our transformation 

equations for electric and magnetic fields could be converted into 

force transformation equations. To explore this possibility we shall 

proceed as follows.” 

181 
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The force experienced by a point charge g moving with 

velocity u in the presence of an electric field E and a magnetic 

flux density field B is given by the Lorentz force law’ 

F = gE+uxB). (8-1.1) 

This law does not depend on the inertial reference frame in which 

q, u, E, and B are measured. Therefore in an inertial reference 

frame L’ moving with velocity v relative to the laboratory 

(reference frame 2) in the direction of their common x axis, 

Lorentz force law can be written as 

F’ = q(E’+u! xB’), (8-1.2) 

where the primes are used to indicate quantities measured in the 

moving reference frame (there is no prime on q because the 
charge does not depend on the velocity with which it moves). All 
we need to do to obtain an equation transforming F’ to F is to 
express E, u, and B in Eq. (8-1.1) in terms of primed quantities 
and to group the latter together in the form of Eq. (8-1.2). 
However, when dealing with relativistic transformation, it is 
usually much simpler to write the transformation equations in 
terms of the Cartesian components of the vectors involved rather 
than in terms of the vectors themselves. In terms of the 
components, Eqs. (8-1.1) and (8-1.2) are 

F, = q(E,+u,B,-uB), (8-1.3) 

Hehe BIA 8.) (8-1.4) 

esq Epa Bam B.), (8-1.5) 

and 

Fy = q(E, +B -u/B,), (8-1.6) 

P(e Ren Bee (8-1.7) 

Fi = q(E; +u/B) -u/B,). (8-1.8) 
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Transformation equation for the x component of F. 

Substituting Eqs. (7-1.5), (7-2.6), (7-1.10), (7-2.7), and (7-1.9) 

into Eq. (8-1.3) and cancelling gamma, we have 

/ / / 

Rope (ol). ty EY et) 
. L+vulic2\ ~~ ¢? L+vulic2\”  c? 

Adding and subtracting 

Vily U; By 

c%(1 +vu;/c?) 

we obtain 

=gsl>— [pls %r)__ _{y 
4 L+vu;/c? ce l+vu;/c? ee 

vu, u, B, Vly u, By 

cX(1+vuzle2) c2(1+vu; ic?) 

/ / /p/ 

weet tft EB) 
L+vu;/c? a Ga (8-1.10) 

u; | ) VE, f vu, By % 

2 2 
L+vu; /c? c c 

Vly oO egh, Saleen er ee +E, +; Bi] 
cX(1+vuj/c?)\ ¥ 

7 (<p, -Ey +48, 

cX1+vuj /c2)\ V a ea) 

Adding and subtracting u,'B,’ inside the parentheses of the 

first term and u,’B,' inside the parentheses of the second term of 

the last expression, we then have 
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/ 

bs / Vuy Cay tly aa ieee een | 

eae oe 
4 (21h tt) i 

22 
i /p/ / /p/ ae Ras SBA +u,B, a By E, + uyB,)) 

2 LION \\ W Cot Vises) 

Simplifying Eq. (8-1.11), we obtain 

/ d) Wf fr 9 

¢ c2(1 +vuz/c2) v 
/ 

7 Vu; fas + VU, (o) aia wB!)) 

c2(1 + vu; /c?) v 
(8-1.12) 

or 

vue 
i. 2 of: te uy B a u, By ee as u; By 7 u:B.) 

c7(1 +vu, /c?) 
at (8-1.13) 

+ ee aif WB) 
c%(1+vu;/c?) 

Comparing Eq. (8-1.13) with Eqs. (8-1.6), (8-1.7), and (8- 

1.8), we recognize that Eq. (8-1.13) can be written as 

/ vu. 

i = Ee oe eee ape ee ee (8-1.14) 

c2(1+vu; /c?) c*(1+vu;/c?) 

which is the transformation equation for obtaining the x 
component of the force measured in the laboratory system from 
the x, y, and z components of the force measured in the moving 
system. 

Transformation equation for the y component of F. 
Substituting Eqs. (7-1.6), (7-2.7), (7-1.8), (7-2.5), and (7-1.10) 
into Eq. (8-1.4), we have 
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/ / 
F = qy(Ej + vB{)+___= _! u,+v ai 2 

y(1 + vu /c?) : 1+ vu! /c? ecm, 
(8-1.15) 

Factoring out 

saan MRS 
L+vu/c? 

simplifying, and rearranging, we obtain 

vu, 
F = ee) 2 | 

1+vu,/c? Ca 

/ - / / Pe at oer) i eB eae +y)(B oR | 
‘( 2 © C2? (8-1.16) 

" 
2 2 2 

| Ns, = ui (I = =A) a ui(1 ee 
1+vul/c? Ga Ce Ce 

x q (Ee Rae Be 

(1 +vu; /c?) eA 

or, with Eq. (8-1.7), 

ies (8-1.17) 
(1 +vu,/c?) 

which is the transformation equation for obtaining the y 

component of the force measured in the laboratory system from 

the y component of the force measured in the moving system. 

Transformation equation for the z component of F. 

Substituting Eqs. (7-1.7), (7-2.5), (7-1.9), (7-2.6), and (7-1.8) 

into Eq. (8-1.5) and proceeding as we did for deriving Eq. (8- 

(17 ys we set 

F. = ee (8-1.18) 
v(1 +vu,/c?) 

which is the transformation equation for obtaining the z 
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component of the force measured in the laboratory system from 

the z component of the force measured in the moving system. 

Inverse transformation equations for F. The transformation 

equations that we have obtained are for transforming forces from 

the moving (primed) reference frame to the laboratory (stationary) 

reference frame. The inverse transformations can be derived in the 

same manner. However, as usual, the inverse transformations can 

be obtained without additional derivations by simply switching 

primes from the primed to the unprimed quantities and reversing 

the sign in front of v. The result is 

| ad pat ay ye (GEL ON 
iG (VeVi c.) = mec aval c?) ae 

Es ee re (8-1.20) 
le vice) a. 

and 

ae 2 (8-1.21) 
yl -vu,lc?) * 

8-2. Transformation of Electromagnetic Energy and 
Momentum of a Parallel-Plate Capacitor 

We shall deduce transformation formulas for mechanical 
energy and momentum from transformation formulas for 
electromagnetic energy and momentum of an electromagnetic 
system that closely resembles a mass particle. Since a typical mass 
particle is neutral and is confined to a limited region of space, a 
corresponding electromagnetic system should also be neutral and 
should be confined to a limited region of space. A small thin 
parallel-plate capacitor, whose end effects are neglected, satisfies 
these requirements. 
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Let the charges on the plates of the capacitor be +q and — g. 
The energy of electric interaction of the capacitor’s plates with 
each other is then* 

Up = 4, (8-2.1) 

where ¢ is the potential produced by the charge of one of the 

plates at the location of the other plate. 

If the capacitor moves with velocity u in a direction parallel 

to its plates, the charges move with the plates and constitute 

electric currents, a magnetic field is created in the space between 

the plates, and there is then also the energy of magnetic 

interaction of the capacitor’s plates, 

U_ = qu:A, (8-2.2) 
m 

where A is the magnetic vector potential produced by the current 

formed by the charge of one of the plates at the location of the 

other plate.° 
Furthermore, if the capacitor moves, there exists an 

electromagnetic momentum associated with the charge of one of 

the plates and the magnetic vector potential produced by the 

current formed by the charge of the other plate, 

G =@A. (8-2.3) 

Equation (8-2.3) can be obtained as follows. The 

electromagnetic momentum contained in an electromagnetic field 

of the capacitor is® 

G = e4,[EXHdV, (8-2.4) 

where E is the electric field and H is the magnetic field, and the 

integration is extended over the region where the two fields are 

present. Since in a vacuum, by Eqs. (2-1.5) and (2-1.6), woH = 

B and €.E = D, and since, by Eq. (2-4.1), B = V x A, we can 

write Eq. (8-2.4) as 

ce [Dx (V xA)dV. (8-2.5) 
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Let us apply vector identity (V-22) to Eq. (8-2.5). We obtain 

} D-A)as }A@-dS) : } D(A- dS) (8-2.6) 

= | (Dx (V xA) +A x(Vx D) -D(V- A) - A(V-D)]dV, 

where the integration is over the space occupied by the capacitor. 

Let D be due to the charge of one of the capacitor’s plates and let 

A be due to the current formed by the charge of the other plate. 

By symmetry, the surface integrals vanish. Also, by Eq. (2-1.1), 

V - D = 9, and, since H and E are time-independent, by Eqs. 

(2-1.3) and (2-1.5), V x D = 0, and by Eqs. (2-1.6) and (2-4.9), 

V - A = 0. Therefore Eq. (8-2.6) reduces to 

[Dx (VxA)aV = | Apav. (8-2.7) 

By symmetry, A is constant on the capacitor’s plate containing 

p, and therefor A can be factored out from the last integral in Eq. 

(8-2-7). Since | pdV = q, we then obtain Eq. (8-2.3) from Eqs. 
(8-2.7) and (8-2.5). 

Let us now assume that the capacitor is at rest in a reference 

frame &’ which moves with velocity v = vi relative to the 
laboratory (reference frame L). By Eq. (8-2.1), the energy of 

electric interaction of the capacitor’s plates in L’ is 

U; = q¢’ : (8-2.8) 

Let us now express U,’ in terms of the quantities measured in the 
laboratory. Using Eq. (7-1.33) for transforming y', we have 

U. = ayy -vA,) (8-2.9) 

ss Us = v(qp - qvA,). (8-2.10) 
However, by Eq. (8-2.1), gy is the energy of electric interaction 
of the capacitor’s plates as measured in the laboratory [this 
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relation is valid for a moving capacitor as long as the capacitor 
moves with uniform velocity because, by Eq. (2.4.8), E is then 
equal to — Vy] and by Eq. (8-2.2), qvA, is the energy of magnetic 
interaction of the capacitor’s plates as measured in the laboratory. 

Hence the transformation equation for the electric interaction 

energy for our capacitor is 

U, = (U,-U,). (8-2.11) 

As usual, the inverse transformation equation is 

U, = y(U;, +U,) (8.219) 

[the "+" sign follows from Eq. (8-2.10), where there is a '"—" in 

front of qv]. 

Observe that instead of interpreting the term qvA, in Eq. (8- 

2.10) as the magnetic interaction energy, we can interpret it, 

according to Eq. (8-2.3), as the product of v and the x component 

of the electromagnetic momentum G,. Therefore we can also write 

Eq. (8-2.11) as 

U; = y(U,-vG.), (8-2. 13) 

and Eq. (8-2.12) as 

U_ = ¥(U, +vG.). (8-2.14) 

Let us now obtain transformation equations for the 

electromagnetic momentum G of our capacitor. Writing Eq. (8- 

2.3) in terms of Cartesian components and using Eqs. (7-1.34)-(7- 

1.36), we can express the electromagnetic momentum G'’ 

measured in L’ in terms of the electric and magnetic potentials 

measured in the laboratory as 

G = qylA, - (vic?)¢], (8-2.15) 
Gis gA,, (8-2.16) 

G! = @A.. (8-2.17) 
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However, gA,, qAy, and gA, are the components of the 

electromagnetic momentum associated with g as measured in the 

laboratory, and q¢ is the electric interaction energy as measured 

in the laboratory. Hence, by Eqs. (8-2.15)-(8-2.17) we have for 

the transformation of electromagnetic momentum of the capacitor 

G, = YG, -(v/c?)U,], (8-2.18) 

Gy. = G,, (8-2.19) 

Gi =G. (8-2.20) 

The inverse transformation equations are then 

G, = VIG, + (v/c2)U2], (8-2.21) 

GG. (8-2.22) 

CG. (8-2.23) 

8-3. Relativistic Expression for Mechanical Momentum 

Let a charged particle of mass m move with velocity u = u,i 
at the moment of observation in the laboratory reference frame . 
Observed in a reference frame ©’ which moves with velocity v = 
vi = u,i relative to the laboratory, the particle is at rest. Let there 
be an electric field in L' acting on the particle with a force F’. 
Since the particle is at rest in L’, it obeys the well-known laws of 
classical mechanics there. In particular, it experiences an 
acceleration under the action of F’ according to Newton’s second 
law, so that, considering the x component of the force, we have 

F! = ma! (8-3.1) Bs 

where a,’ is the acceleration of the particle in L’ (note that 
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although the particle is at rest in L’, so that u,’ = 0, a,’ Oifa 
force acts upon the particle). 

Let us convert Eq. (8-3.1) to the laboratory reference frame. 
Taking into account that wu,’ = uy’ = u,' = 0 and that v = u,, and 
replacing in Eq. (8-3.1) F,’ by F, and a,’ by a, with the help of 
Eqs. (8-1.14) and (7-2.14), we have 

F = y°ma,. (8-3.2) 

Consider now the relation 

“| u, : (1-u;/c?)'du, /dt +[uj/o?(1 -uz/c?)!| du, /at 

Cee) |) a=) es aah 

i du, (8-3.3) 
a = ——____—__ a, 

(1 —uzic?)3 at (1 —ujic2)3? 

Since by supposition &’ moves with velocity v = u,i, so that u, 

= v, the fraction in the last term is the same as 7° so that we can 

write 

Z| Ms |- 3g. (8-3.4) 
dt (1 -u2/c?)'? x 

Combining Eqs. (8-3.2) and (8-3.4), we obtain 

ae S| ——=} (8-3.5) 
6 Gh él ~u2/c?)!2 

But, by Newton’s second law, the force acting on a body is 

equal to the rate of change of the momentum of the body. 

Therefore the x component of the mechanical momentum of the 

particle under consideration is not p, = mu,, as it is defined in 

classical mechanics, but 

mu, DP, = (8-3.6) 
(1-u;ic?)'” 
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For the y component of the force acting on the particle in L’ 

we have 

oS ilie. (8-3.7) 

Let us convert Eq. (8-3.7) to the laboratory reference frame. 

Taking into account that vu,’ = u,’ = u,’ = 0 and that v = u,, and 

replacing in Eq. (8-3.7) F,' by F, and a,’ by a, with the help of 

Eqs. (8-1.17) and (7-2.15), we have 

VF, = yma, (8-3.8) 

ig 8-3.9 F, = yma,. (8-3.9) 

Consider now the relation 

zi uy | (1 -uj/c *)'"du,/dt +[uyu,/cr( -u,/c?)'?\du Jdt 

a(t} ?)) i ae tae ea 

1 1 
a eee 

(1 -u;/c?)!? Y d -uZ/c2)'2 y 

(in obtaining this relation we took into account that u, = 0, 

because by supposition u = vi, so that only the x component of 

u is different from zero). Since u, = v, the fraction in the last 
term of Eq. (8-3.10) is the same as y, so that we can write 

Es 7 : (8-3.11) 
al -uric?)'2 Me 

Combining Eqs. (8-3.9) and (8-3.11), we obtain 

ee | Les (8-3.12) 
(1 -uzie212 

Therefore the y component of the mechanical momentum of the 
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particle under consideration is not Py, = mu,, as it is defined in 

classical mechanics, but 

ge) (8-3.13) Py = 
Sie 

By the same procedure we find that the z component of the 

mechanical momentum of the particle is 

ee (8-3.14) 
. Ce 

Combining Eqs. (8-3.6), (8-3.13), and (8-3.14) into a single 

vector equation, and remembering that by supposition u = u,i and 

Vv = u,i, so that u = v, we obtain for the relativistic momentum 

of a particle of mass m moving with velocity u’ 

mu ean Dolo ee (8-3.15) 
P a SC e 

Observe that if a particle moves with a velocity much smaller than 

c, its relativistic momentum reduces to the classical mechanical 

momentum 

= mu. (8-3.16) Py <c 

8-4. Relativistic Mass, Longitudinal Mass, and Transverse 

Mass 

We can write Eq. (8-3.15) in the classical form by introducing 

the concept of a velocity-dependent relativistic mass, defined as 

Had ee (8-4.1) 
r al -u2/c)!? 

where m is the ordinary mass measured when the body under 

consideration is at rest, sometimes called the proper mass, or the 
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rest mass. In terms of relativistic mass, the mechanical momentum 

given by Eq. (8-3.15) becomes 

p = mu. (8-4.2) 

The utility of the concept of relativistic mass is highly 
questionable and we shall not use the concepts or expressions 
"relativistic mass," "proper mass," or "rest mass" in this book.® 

There are, however, two other "masses" in relativity theory, 
which occasionally have useful applications (see Chapter 10). 
Their meaning is explained below. 

The primary significance of Eq. (8-3.15) is that with the help 
of this equation it becomes possible to determine the acceleration, 
velocity, and trajectory of particles moving under the influence of 
external forces with speeds close to c. From Newton’s second law 
and Eq. (8-3.15), we have 

po Gs Ape ae (8-4.3) 
at at (1 =lCey 

Differentiating, we have 

Figen dU oe ee TE a oe al ~u2/c?)'2 dt cl =u2/c2)32 “te 

Using Eq. (8-4.3), we can also write 

(~*)u-{-4] mu e sfu-{4 

Ce dtl (1 -u2/c?)'2} ¢? dt 

leaaerela’ 

mu | u hu 
(1 STI he Cc 

mu*uulc? du (8-4.5) 
cd -u2/c?)? ‘dt c2(1 - 2/023? ‘dt 

r muu 1-u2/c* +u7/c?)\du _ muu du 
i C1 -uicy? (eacieen alan C1 -wic) 2 dt 

or 

muu du ie ° =| 
= u. cd - u/c? “dt (8-4.6) 

c2 



SECTION 8-4 RELATIVISTIC MASS 195 

Substituting Eq. (8-4.6) into Eq. (8-4.4), solving the resulting 

equation for du/dt and replacing du/dt by a, we obtain 

is F = (i 5 u)u/c? (8-4.7) 
2 ye yee Se eee 

m/(1 -u2/c?)!? 

Examining Eq. (8-4.7) we notice that contrary to the laws of 

classical mechanics, because of the presence of the vector u in the 

numerator of Eq. (8-4.7), the direction of the acceleration of a 

particle is, in general, not parallel to the direction of the force 

applied to the particle [note, however, that if u < c, so that w/c? 

is negligible, Eq. (8-4.7) becomes the ordinary Newtonian 

equation of motion]. Let us now take a closer look at Eq. (8-4.7). 

Let us assume that the applied force is in the direction of the 

velocity of the particle ("longitudinal" direction). In this case (F- 

u)u = Fw’, and Eq. (8-4.7) becomes 

Dihiree 

4S i Dee ee ie ee etsy 
m/(1-u2/c?)'?—m/(1 - u/c?” 

so that in this case the acceleration is parallel to the force. If we 

now define the longitudinal mass as 

my = pees ees > (8-4.9) 

(1 -u*lc*? 

we can write Eq. (8-4.8) as 

Aerial (8-4.10) (Mc Sea 
I 

which, except for the subscripts "||", looks just like the classical 

equation for the acceleration of a particle. 

Let us now assume that the force is applied in a direction 

perpendicular to the velocity of the particle ("transverse" 

direction). In this case the last term in the numerator of Eq. (8- 

4.7) vanishes, and the equation becomes 
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Fi (8-4.11) a : 
1 mid -wie?)” 

so that also in this case the acceleration is parallel to the force. If 

we now define the transverse mass as 

= me 8-4.12 le eS ae 
we can write Eq. (8-4.11) as 

a) = a (8-4.13) 
ah 

which, except for the subscripts "1", also looks just like the 

classical equation for the acceleration of a particle.’ 

In the past it was thought that the formulas for the relativistic 

mass, the transverse mass and the longitudinal mass indicated that 

the mass of a body depended on the velocity of the body. This 

interpretation of the formulas is now generally rejected, and the 

formulas are regarded merely as definitions of abbreviations that 

simplify the writing of certain equations but have no physical 

significance as such. 

8-5. Transformation Equations for Mechanical Force, Energy, 

and Momentum 

The principle of relativity demands that if a body is in 
equilibrium under the action of forces in a moving reference 
frame, it must remain in equilibrium under the action of forces in 
the laboratory. A charged body cannot be in a state of stable 
equilibrium under the action of electric forces alone (this 
Statement is known as the "Earnshaw theorem"). Therefore 
mechanical forces must be present to keep the body in 
equilibrium. But if the transformation equations for mechanical 
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forces are not the same as those for electromagnetic forces, then 
a charged body in a state of equilibrium in a moving reference 
frame will not be in equilibrium in the laboratory. Hence the 
transformation equations for mechanical forces must be the same 
as Eqs. (8-1.14), (8-1.17), (8-1.18), and (8-1.19)-(8-1.21), that is 

/ / 
vu 

Es = | wea + z Eee (8-5. 1) 

c°(1 +vul /c?) c7(1 +vu/c?) 

ens (8-5.2) 
y(1 +vu,/c?) 

(ph ieee, (8-5.3) 
v1 +vuj/c2) 

and 

ie ee ey Ce 
ec (levine) e(lavude): 

jh ieee Wary oe (8-5.5) 
vl vinice 

geome he: (8-5.6) 
VE ViniC) © 

By inspection we see that equations for F, and F,' can also be 

written as 

F! +(vic?)(F! + wu’) 
F (8-5.7) 

: L+vu;/c? 

and 

phe Ee > (vic?)(F -u) (8-5.8) 

i vile 

Note that for v < c these equations reduce to the ordinary 

equations of Newtonian mechanics (according to which a force is 

not affected by the motion of an inertial reference frame). 
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The laws of conservation of energy and momentum demand 

that in any interaction between bodies and electromagnetic fields 

both the energy and momentum must be conserved. This means 

that the electromagnetic energy of interaction between electric 

charges and currents and the electromagnetic momentum 

associated with these charges and currents can be converted into 

mechanical energy and momentum and vice versa. Therefore, 

taking into account the similarity between the capacitor discussed 

in Section 8-2 and a mass particle, the transformation equations 

for the energy and momentum derived in Section 8-2 should be 

applicable to mechanical energy and momentum of mass particles. 

If we designate the mechanical energy of a body by W and its 

mechanical momentum by p, then from Eqs. (8-2.13) and (8-3. 14) 

we obtain for the mechanical energy and momentum of the body 

W’ = y(W - vp.) (8-5.9) 

and 

Wei vp.) (8-5.10) 

where, as usual, the primed quantities are measured in the moving 
reference frame L', and the unprimed quantities are measured in 
the laboratory. 

From Eq. (8-2.18)-(8-2.20) and (8-2.21)-(8-2.23) we obtain 

Px = Ip, - (vic?)W), (8-5.11) 

ee ie (8-5.12) 

iD, iis (8-5. 13) 

The inverse transformation equations are 

P, = Yip, + (vic2)W’], (8-5.14) 

Py = Dy, (8-5.15) 
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p, = pl. (8-5. 16) 

A rigorous derivation of Eqs. (8-5.9)-(8-5.16) is presented in 
Appendix 2. 

8-6. Transformation of Torque 

Torque is defined by the equation 

T=rxF, (8-6.1) 

where F is the force and r is the vector joining the pivot with the 

point of application of the force. In terms of Cartesian 

components, Eq. (8-6.1) is 

is fede - is (8-6.2) 

eS ed eae) ae (8-6.3) 

1a gu Deeg (8-6.4) 

Let us assume that the system experiencing the torque is at 

rest in the reference frame ©’ which is moving with uniform 

velocity v = vi relative to the laboratory reference frame L. 

Choosing ¢t = 0 as the time of observation in /, transforming the 

components of r by means of Eqs. (7-1.19)-(7-1.21) (the r 

components transform like x, y, z), and transforming the 

components of F by means of Eqs. (8-5.1)-(8-5.3) (note that since 

the system under consideration is at rest in L’, u’ = 0), we have 

T. = (Elly) - (Bly) = {Fl -r/E)ly, (8-6-5) 

T, = rLFl - (rE) = Fi - (FIP, 8-6-9) 

T, = (KIW(BI) -n Fe = Ber F867) 
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In the moving reference frame L’ the torque components are 

/ / yl = Te shea (8-6.8) 

Te prs k or he (8-6.9) 

IIE Hh, Jie (8-6. 10) 

Comparing Eqs. (8-6.5)-(8-6.7) with Eqs. (8-6.8)-(8-6.10), and 

noting that 1/y? = 1 — w/c’, we recognize that the components 
of T can be expressed in terms of the components of T’ as follows 

Teens iy. (8-6.11) 

Eaae lye (ic) rak (8-6.12) 

Tel le he. (8-6.13) 

The inverse transformation equations (for the system at rest in L) 

are obtained by simply transposing the primes from the left to the 

right side of Eqs. (8-6.11)-(8-6.13). 

8-7. Rest Energy, Kinetic Energy, and the Relation between 

Relativistic and Classical Mechanics 

It is not difficult to see that there appears to be a serious 

problem with the transformation equations for mechanical energy 

and momentum derived in Section 8-5. Suppose that in the L’ 

reference frame a body of mass m is at rest and no external forces 

act on the body. In this case W’ and p’ are zero. But then, by 
Egs. (8-5.10) and (8-5.14)-(8-5.16), W and p are zero also in the 
laboratory, which is obviously wrong, since the mass moves 
relative to the laboratory (its velocity is that of the frame L') and 
thus has both kinetic energy and momentum there. Thus either our 
transformation equations are wrong, or the energy of a body must 
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be different from zero even when the body is at rest and no forces 
act upon it. 

A charged body has energy even if it is at rest and in the 

absence of an external electric field — its energy is due to the 

electric self-field of the body. Since all bodies contain electric 

charges in them, it is reasonable to assume that all bodies possess 

a certain amount of self-energy.'° Thus there are very good 

reasons to assume that a body at rest possesses energy even in the 

absence of external forces acting upon it. 

Since according to Eq. (8-3.15) the mechanical momentum of 

a body at rest is zero, Eq. (8-5.11) allows us to determine what 

the self-energy of a body should be so that our energy and 

momentum transformation equations would be free from 

contradictions. Consider a body at rest in £’ moving with velocity 

Vv = ui relative to the laboratory. Since p’ is then zero and p, = 

p, Eq. (8-5.11) can be written as 

0 = y[p - (ul/c2)W). (8-7.1) 

Hence, solving Eq. (8-7.1) for W, we obtain the correlation 

between the energy and momentum of a body moving with 

velocity u 
w= CP. (8-7.2) 

Uu 

which can also be written as 

- uW 8-7.3 p= =. (8-7.3) 

Let us now substitute in Eq. (8-7.2) the expression for the 

mechanical momentum given by Eq. (8-3.15). We obtain 

_ © mu (8-7.4) 

so that the energy of a body moving with velocity u is 

____me? (8-7.5) 
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from which it follows that the self-energy of a body at rest, or its 

"rest energy," is 
W = mce?. (8-7.6) 

This equation is generally known as Einstein’s mass-energy 

equation, and is usually written as E = mc’; we prefer to 

designate the energy by the symbol W, so as not to confuse the 

energy with the electric field.'':'? Note that since the rest energy 
is expressed in terms of m and c, both of which are invariant 

under relativistic transformations, Eq. (8-7.6) holds for any 

inertial frame of reference. 

The energy given by Eq. (8-7.5) is the total energy of a 

moving body, that is, its kinetic energy together with its rest 

energy. Subtracting Eq. (8-7.6) from Eq. (8-7.5), we obtain the 

kinetic energy 

Ke a -] 
es 

(S79) 
Tee 

If the velocity of the body under consideration is much 

smaller than c, Eq. (8-7.7) can be written as 

K, cee = me7\1 +u?/2c? - 1 (8-7.8) 
or 

2) 

ioe — (8-7.9) 

which, except for the subscript, is the familiar expression for the 
kinetic energy of classical mechanics. 

In the preceding sections of this chapter we found that 
relativistic equations for force and mechanical momentum reduce 
to the corresponding classical expressions if the velocity of the 
moving reference frame or the velocity of the body under 
consideration is much less than c. As we have just seen, also the 
relativistic expression for the energy of a moving body reduces to 
the classical expression for the kinetic energy of the body if the 
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velocity of the body is much less than c. It is clear therefore that 
relativistic mechanics has a wider range of applicability than 

classical mechanics, and that classical mechanics may be regarded 

as a subset of relativistic mechanics. On the other hand, the only 

presently known objects which can move with velocities 

comparable to that of light and can be used for experimentation 

are charged microscopic (atomic) particles. Therefore classical 

mechanics is, in general, perfectly adequate for analyzing and 

describing kinematic and dynamic relations involving common 

macroscopic bodies. However, as will be shown in Chapter 11, 

relativistic mechanics should be applicable also to planetary 

systems, including our Solar system. 

Vv 
Example §-7.1 Equation (8-7.5) for the mechanical energy of a 

moving body was derived for the laboratory reference frame. Show 

that it is valid for any inertial reference frame. 

Let us transform Eq. (8-7.5) to a reference frame L’ moving 

with respect to the laboratory with velocity v = ui. Using Eqs. (8- 

5.9), (8-7.5) and (8-3.6), we have 

W'= mc2 Be mu, fs mc2 - Vu, 

ais M2 paa\t2 ea aie of Ty Ip alle 2 (leis) (ltt 7Ce) Clieusic:) C 
(8-7.10) 

Simplifying the last expression with the help of Eq. (7-2.24), we 

obtain 

peo laa a (8-7.11) 
CSE) 

Thus the energy expression that we have derived for the laboratory 

frame is valid for all inertial frames. 

Example 8-7.2 Equation (8-3.15) for the mechanical momentum of 

a moving body was derived for the laboratory reference frame. 

Show that it is valid for any inertial frame. 



204 CHAPTER 8 RELATIVISTIC MECHANICS 

Consider first the x component of Eq. (8-3.15). Using Eqs. (8- 

5.11), (8-3.15), and (8-7.5), we can write 

UV). 

(8-7.12) 

Multiplying and dividing the last expression by 1 — vu, /c’ and 

using Eq. (7-2.8), we have 

mu, v mc? 2 m 

(3) " = pas a a Se eS) Se ee eee ergs 

Px 7 =u2/c?)!? C2 (1 ~u2/c)!? a ~u?ic?)'2 

hg Bal ——| 1-vu,/c? 
ae Ne FIAT (e4 (8-7.13) 

i SOV al Gaye 

which, by Eq. (7-2.24), is 

Ay (8-7.14) 
(ie u!2/c2)'2 , 

Consider now the y component of Eq. (8-3.15). Using Eqs. (8- 

5.12), (8-3.15), and (7-2.9), we can write 

/ A; 2 
PC ee ne 

y (J = u2/c2)'? Ges u2/c2)2 

which, by Eq. (7-2.4), is 
/ 

pape Beat (8-7.16) 
Ges u!2/c2)'? : 

The equation for the z component of Eq. (8-3.15) is clearly 
similar to Eq. (8-7.16). Combining the equations for the 
components of p’ into a single vector equation, we obtain 

Pe eS 8-7.17 
P al = y!7/¢2)12 ( 

Thus the expression for mechanical momentum that we have 
derived for the laboratory frame is valid for all inertial frames. 
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COMMON MISCONCEPTIONS 

ABOUT RELATIVITY THEORY 

There is a widespread belief that according to relativity 

theory the length of a body becomes shorter when the body 

moves. This is incorrect. The length of a body is defined as the 

length measured when the body is at rest relative to the observer 

and is an invariant quantity. There is also a widespread belief that 

individual relativistic transformation equations have a physical 

significance of their own and can be used independently one from 

the other. This is also wrong. Although some relativistic 

transformation equations may be used individually, in general 

relativistic transformation equations must be used collectively, so 

that all transformable quantities in the system under consideration 

are properly transformed. These and similar errors in the 

understanding of relativistic concepts and equations frequently 

result in incorrect representations of physical phenomena and in 

various relativistic "paradoxes" that have caused some scientists 

to criticize and even to reject relativity theory as such. In this 

chapter we shall discuss some of these errors and show the ways 

to avoid them. 

9-1. The Lorentz Length Contraction 

In 1887, A. A. Michelson and E. W. Morley carried out an 

experiment! attempting to detect the "world ether," which was 

207 
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thought to be the invisible medium occupying the entire universe 

and transmitting electromagnetic effects and radiation. In spite of 

the great sensitivity of their apparatus, no ether was detected. In 

an attempt to explain the negative result of the experiment without 

abandoning the idea of the ether, G. F. Fitzgerald in 1889 and H. 

A. Lorentz in 1892 proposed a hypothesis”? that, because of an 

interaction with the ether, all bodies are contracted in the direction 

of their motion relative to the ether by a factor (1 — v/c?)!”. 
This hypothesis provides a plausible explanation of the 

transformation equation for the x coordinate [our Eq. (7-1.1)] in 

the Lorentz-Poincaré relativity theory, and the effect (albeit 

hypothetical) became known as "Lorentz contraction." 

A. Einstein in his famous 1905 article* discarded the idea of 

world ether as "superfluous" and presented a derivation of the 

Lorentz transformation equations of coordinates and time on the 

basis of his postulates of relativity and of independence of the 

velocity of light on the velocity of the emitter.° However, while 

rejecting the reality of ether, he accepted length contraction of 

moving bodies as an observable effect, and stated that all moving 

objects "viewed" from a stationary system appear shortened in the 

ratio 1 to (1 — v’/c*)!?. He also suggested the following method 
for measuring the length of a moving object (rod): observers in 
the stationary system ascertain at what points of the stationary 
system the two ends of the moving rod are located at the same 
time t; the distance between these two points is the "length of the 
moving rod." In a later paper Einstein emphasized that this was 
a measuring procedure fundamentally different from the procedure 
used for measuring the length of stationary objects.° Therefore 
Einstein’s measuring procedure actually constituted the definition 
of the new quantity, which he called "length of a moving body," 
different from "length" in the conventional sense.’ Clearly then, 
to say that the "length of a moving body" is shorter than the 
"length" of a body is not the same as to say that the body 
becomes shorter when it moves. Moreover, it is far from clear 
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how the visual appearance of a moving body can be associated 
with Einstein’s measuring procedure, since the visual appearance 

is an optical effect unrelated to the measuring procedure proposed 

by Einstein. It is not surprising therefore that the reality of length 

contraction and its concrete effect on the appearance of moving 

bodies has been a subject of considerable controversy and re- 

evaluation.® It should be noted that although Einstein’s relativistic 

length contraction has nothing to do with the world ether, it 

continues to be known as the "Lorentz contraction." 
Taking into account that in Chapters 6 and 7 we obtained 

correct relativistic transformation equations on the basis of the 

retarded \ength and volume of moving charge distributions, taking 

into account that Lorentz contraction requires not one but two 

observers (two points of observation) for its exact manifestation, 

and taking into account that electromagnetic fields and light 

propagate with the same speed, we have hardly any choice but to 

conclude that the relativistically correct visual shape of a moving 

body is its retarded shape. We then also have a clear answer to 

why the retarded field theory, without using Lorentz contraction 

for determining the effective shape of the moving charge, yields 

relativistically correct fields of the charge (see Chapter 5 and 

Sections 7-5 and 7-6). The answer is very simple: as a physical 

phenomenon the relativistic (kinematic) Lorentz contraction does 

not exist. And the fact that the several revisions of this concept 

had no ill effect on relativistic electrodynamics or on any other 

branch of physics is an excellent indication that the concept does 

not represent a physical phenomenon in the conventional sense. 

v 

Example 9-1.1 In 1888, on the basis of Maxwell’s equations, 

Oliver Heaviside’ obtained the equation for the electric field of a 

point charge q moving with constant velocity v 
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(0) 

Fig. 9.1 A line charge is moving with velocity vy = — vi. To obtain 

the correct expression for the electric field of the charge, one must 

use the ordinary length of the charge (Fig. 9.1la). If the Lorentz- 

contracted length is used (Fig. 9.1b), the resulting field is incorrect. 

enews Clee cert ay (9-1.1) 
4rer [1 -(v2/c?) sin26}>? 

where r is the vector connecting the point charge with the point of 

observation, and @ is the angle between v and r. We obtained the 

same equation in Chapter 4 [Eq. (4-1.13)] on the basis of electro- 
magnetic retardation, and we obtained its integral form in Chapter 
7 [Eq. (7-6.21)] by using relativistic transformations. Thus there is 
no doubt that this equation is correct. In Section 4-3 we found on 
the basis of electromagnetic retardation the equations for the electric 
field of a moving line charge [Eqs. (4-3.13) and (4-3.22)] 

LING =| 1 : 1 | | 

: 4m7éR (L?/R2 +1 = Valeo yue (L3/R? +1 -v2/c?)!2 ‘ 

(9-1.2) 

jeurliiess ws ee (9-1.3) 
Ame R? (L3/R2+1 =V-/eo) (L;/R2+1 -y2/c?)i/2 

In Chapter 7 we obtained the same equations on the basis of 
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relativistic transformations [Eqs. (7-6.25) and (7-6.27)]. Thus there 
is no doubt that also these two equations are correct.!° Show that 
the same two equations can be obtained by integrating Heaviside’s 
Eq. (9-1.1) over the actual length of the moving charge, but not by 
integrating over the Lorentz-contracted length (thus demonstrating 

that Lorentz contraction is not a true physical effect). 

Replacing in Eq. (9-1.1) q by dx and integrating the x 

component of Eq. (9-1.1) between L, and L, (see Fig. 9.1), we 

obtain for E, (observe that r is directed toward the point of 

observation so that its x and y components are negative) 

52 eed eee eae 
: 4mé, 34 r3[1 -(v2/c2) sin6}>? 

Ae. sacle xdx (9-1.4) 
Geren eeRe (lively)? 

_ dd ae) 1 : 1 

For E, we similarly obtain 

eee steel (1 - v*/c?) 

y 4mé, $4 [1 -(v2/c?) sin2é}>” 

ee NCL aly b dx (9-1.5) 
4TE, L, [x2+R%(1 -v2/c2)P? 

3 ae a | L, > L, 
47€,R? (L2/R2 +1 -y2/c2)12 (L7/R? +1 ~v2/c?)!2 ‘ 

These are exactly the same equations as Eqs. (9-1.2) and (9-1.3). 

Let us now assume that the line charge is Lorentz contracted. 

Then its charge density will be not \ but \. = yA (because the total 

charge must remain unchanged). Furthermore, if the position of the 

leading end of the charge is L,, then the position of the trailing end 

will be L;, = L, + (L, — L,)/y. Therefore the Lorentz-contracted 
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versions of Eqs. (9-1.4) and (9-1.5) are 

Nel maa 1 : 1 | 

47é,R (L;./R? +1 -y4fe2i2 (L3/R2 +1 -y2/e2)\2 

(9-1.6) 
and 

E Se eee ee ee (9-1.7) 
” 4me,R7l(L2/R? +1 -v2/c2)!2 (L7. /R? +1 -v2/e?)'? 

which are quite different from the correct Eqs. (9-1.2) and (9-1.3). 

A 

9-2. The Electric Field of a Moving Parallel-Plate Capacitor 

A typical elementary problem involving electromagnetic 

transformation equations is the problem of finding the electric 

field of a parallel-plate capacitor moving with uniform velocity in 

a direction parallel to its plates. In some textbooks on 

electromagnetic theory and relativity this problem is solved as 

follows: "The electric field in the stationary capacitor is E = 0/€p. 

If the capacitor is moving, the length of the plates is Lorentz- 

contracted by the factor 7, so that the surface charge density o of 

the capacitor is increased by the factor y. Therefore the electric 

field E,, in the moving capacitor is 

E_ = yE 
m 

ie (9-2.1) 

where E, is the electric field in the stationary capacitor.""' 
In some textbooks the same problem is solved as follows: 

"Let the plates of the capacitor be parallel to the xz plane. The 

electric field in the stationary capacitor is then E,. Using the 

Lorentz-Einstein transformation equation for the y component of 
the electric field [our Eq. (7-1.6)] and taking into account that 
there is no magnetic field in the stationary capacitor, we obtain 
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E,, = YE, (9-2.2) 

for the electric field in the moving capacitor." 

Similar solutions are frequently presented for the electric field 

of an infinitely long line charge uniformly moving in the direction 

of its length. Invoking the Lorentz length contraction and the 

corresponding increase of the charge density, or using the 

transformation equation for the perpendicular component of the 

electric field, the equation for the electric field of a moving line 

charge is "shown to be" 

i = le eee (9-2.3) 
2 2m EF 

Se 

where 2 is the line charge density of the stationary charge, and r 

is the vector directed from the line charge to the point of 

observation at right angles to the line charge. 

Clearly, Eq. (9-2.3) is compatible with Eqs. (9-2.1) and (9- 

2.2) because the electric field of a parallel-plate capacitor can be 

regarded as a superposition of the electric fields of infinitesimally 

narrow charged ribbons whose fields (dE,,) are given by Eq. (9- 

2.3) with X = o dw, where w is the width of the capacitor plates. 

Equation (9-2.3) for the electric field of the moving infinitely 

long line charge is, however, not at all as obvious as it is claimed 

to be. In fact, if the electric field of the moving line charge is 

determined by integrating Heaviside’s equation for the electric 

field of a moving point charge (see Example 9-1.1) the result is'? 

a (9-2.4) 
27ér? 

m 

that is, the field of the moving infinitely long line charge is 

exactly the same as the field of the same stationary line charge. 

But if the correct electric field of an infinitely long line charge 

moving along its length is the same as that of the stationary line 

charge, then also the correct electric field of a parallel-plate 
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capacitor moving in a direction parallel to its plates is the same as 

the field of the stationary capacitor, that is 

E, =E, (9-2.5) 

rather than the field given by Eq. (9-2.1) or Eq. (9-2.2). 

Consider now the magnetic field. According to Eq. (3-2.6), 

the magnetic flux density field B,, of any charge distribution 

moving with uniform velocity v is connected with the electric field 

of this distribution by 

B, = (vxE,)/c?. (9-2.6) 

Therefore, if the electric field of the moving capacitor is 

correctly given by Eqs. (9-2.1) or (9-2.2), then the magnetic flux 

density field of this capacitor should be [using the vector notation 

E, = (0/€,)j] 

B, = ——vxj = yu,ovk, (9-2.7) 
Ce, 

where we have used c? = 1/€ po. Likewise, if the electric field 
of a moving infinite line charge is correctly given by Eq. (9-2.3), 

then the magnetic flux density field of this charge should be 

oN 
SST Fea Me (9-2.8) 
CME Qar 

But if the electric fields of the moving capacitor and of the 

line charge are correctly given by Eqs. (9-2.5) and (9-2.4), 

respectively, then the corresponding magnetic flux density fields 

should be 

B,, = —-vxj = p,0vk, (9-2.9) 
Ce. 

and 

nN Bee ee wvxr.  (9-2.10) 
C22RET- rr 
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In Maxwellian electrodynamics the convection current density 

is defined as pv in terms of the stationary p, so that the current 

produced by a line charge moving with velocity v along its length 

is Av, where ) is the stationary line charge density . By Ampere’s 

law'?, the magnetic field of the moving line charge is then given 

by Eq. (9-2.10) rather than by Eq. (9-2.8), and therefore the 

correct electric field of the moving line charge must be the field 

given by Eq. (9-2.4) rather than by Eq. (9-2.3). 

One could argue, of course, that the convection current should 

be properly defined as ypv rather than as pv. But if one so 

redefines the convection current, then one must accept that 

Maxwell’s equations themselves are incorrect (because Maxwell’s 

equation for VXH involves pv rather than ypv).'* And if one 

accepts that Maxwell’s equations are incorrect, then one must also 

accept that relativistic electrodynamics is incorrect, since it is 

based on Maxwell’s equations. Thus, unless we are willing to 

reject the most fundamental relations of both classical and the 

relativistic electrodynamics, we must conclude that Eq. (9-2.3), 

and therefore Eqs. (9-2.1) and (9-2.2), are wrong. 

Obviously then, the reasoning upon which Eqs. (9-2.1), (9- 

2.2) and (9-2.3) are based is wrong. In order to understand the 

fallacy of the arguments leading to Eqs. (9-2.1), (9-2.2), and (9- 

2.3) it is necessary to look into the origin of the relativistic 

transformation equations. 
The Lorentz transformation equations (see Section 7-1) were 

first discovered by Lorentz and by other scientists as relations 

that, when used in the aggregate, made it possible to adapt 

Maxwell’s equations to uniformly moving reference frames 

without changing the mathematical form of these equations. '° The 

same transformation equations were also obtained by Einstein as 

relations that made Maxwell’s equations valid for uniformly 

moving coordinate systems. '° 
We obtained these equations in Chapters 6 and 7 by 

considering retarded electric and magnetic fields. Our derivations 
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show very clearly that none of the Lorentz transformation 

equations can be ignored when transforming electric or magnetic 

fields from one reference frame to another. Therefore one cannot 

obtain correct expressions for electric and magnetic fields by 

means of Lorentz transformations unless all transformable 

quantities involved in the system under considerations are 

transformed. 

Thus the true significance of the Lorentz transformation 

equations is not in what this or that individual equation may mean, 

but in the fact that when taken together, and only when taken 

together,'’ they constitute an "operator," a "machine," that allows 

one to convert Maxwell’s equations, and therefore all solutions of 

Maxwell’s equations, from one inertial reference frame to another. 

Obviously then, none of the relativistic transformation 

equations may be regarded as ordinary physical equations 

expressing physical laws or relationships between physical 

quantities. Relativistic transformation equations must be regarded 

as prescriptions for replacing one set of quantities by another set 

in order to obtain relations between quantities pertaining to one 

inertial frame of reference from the corresponding relations 

between quantities pertaining to another inertial frame of 

reference: 

The error in the reasoning leading to Eqs. (9-2.1), (9-2.2), 

and (9-2.3) is now clear: the equations were obtained by assuming 

that a single relativistic transformation equation had an 

independent physical validity and by transforming just one of the 

transformable quantities involved in the system under 

consideration [of course, invoking the non-existent Lorentz 

contraction for obtaining Eq. (9-2.1) or Eq. (9-2.3) was also 

wrong, as explained in Section 9-1]. 

The correct application of relativistic transformations for 

obtaining the electric and magnetic fields of a moving parallel- 
plate capacitor is shown in the next section. 
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9-3. Using Lorentz Transformations for Finding Electric and 
Magnetic Fields of a Moving Parallel-Plate Capacitor 

We shall now show the correct use of Lorentz transformation 

equations for determining the electric and magnetic fields of the 

moving capacitor discussed in Section 9-2 (the correct electric and 

magnetic fields of the moving line charge were already obtained 

in Section 4-3 as well as in Example 7-6.3 and there is no need 

to repeat the calculations here). 

(0) 

Fig. 9.2 The electric field in a moving parallel-plate capacitor 

(Fig. 9.2b) is the same as when the capacitor is at rest (Fig. 9.2a). 

(The distance between the plates is assumed to be very small.) 

In the reference frame &’ co-moving with the capacitor the 

electric field of the capacitor is'’ (we assume that the capacitor is 
thin and that its plates are parallel to the xz plane, see Fig. 9.2) 

ja ued, (9-3.1) 

There are two transformable quantities in this equation: £,' and 

o’. Using Eqs. (7-1.5)-(7-1.7) and (7-1.11), taking into account 

that 0’ = p'w, where w is the thickness of the capacitor’s plates 

[which, by Eq. (7-1.2) is not affected by transformations], and 

taking into account that there is no current and no magnetic field 
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in the L’ frame, we obtain for the electric field of the moving 

capacitor as measured in the laboratory 

ea eal (9-3.2) 
Vise nyes 

Or 

pe eS (9-3.3) 
Yds 

which is exactly the same field as in the stationary capacitor. In 

the vector notation we then have 

E. =E. (9-3.4) 

in agreement with Eq. (9-2.5). 

Using Eqs. (7-1.8)-(7-1.10), taking into account that E,' = 0 

and that there is no magnetic field in the L’ frame, and using Eqs. 

(7-1.6) and (9-3.3), we obtain for the magnetic flux density field 

of the moving capacitor as measured in the laboratory 

re WES. SVE, 
2 2 6 YC 

k = p,0vk, (9-3.5) 

which is the same as Eq. (9-2.9) (we omit the subscript "m" here 

as superfluous). 

9-4. The Right-Angle Lever Paradox 

Numerous "relativistic paradoxes" can be found in the 
literature on relativity. They usually reflect a lack of 
understanding of the physical significance of relativistic equations. 
One of the oldest of such paradoxes is the so-called "right-angle 
lever," or "L-shaped lever paradox," also known as the "Lewis- 
Tolman lever paradox." It was first reported in 1909.19 
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(0) 

Fig. 9.3 The right-angle lever is in equilibrium in the moving 

reference frame (Fig. 9.3a) but, according to seemingly correct 

calculations, should be rotating when observed in the stationary 

reference frame (Fig. 9.3b). 

The essence of the paradox is as follows. Consider an L- 

shaped lever at rest in the reference frame ©’ moving with 

velocity v relative to the laboratory frame » (Fig. 9.3). Two equal 

forces F’ are applied to the lever at right angles to the arms and 

at equal distances L’ from the pivot P. Since 

ji fh eal in RES HI OL, (9-4.1) 

(L'. and L’, are lever arms along the x and y axes) the torque is 

Tala Fie ie Fie 805 (9-4.2) 

so that the lever is in equilibrium in L’. Using now Eqs. (8-6.11)- 

(8-6.13) to transform the torque to the laboratory frame L, and 

substituting 7,’ = 0, we obtain 

i) / pl 
Tee ele rere (Vile Ler, 4) 

Thus in the laboratory frame ¥ the lever experiences a net torque 

and appears to be not in equilibrium. This result is considered to 

be a paradox, because by the principle of relativity, if a physical 
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system is in equilibrium in one inertial reference frame, it is in 

equilibrium when observed in any other inertial reference frame. 

Numerous articles in scientific journals have been devoted to 

this paradox proposing a variety of solutions of ever increasing 

complexity,”” and many books on relativity have described the 

paradox without arriving at a meaningful solution. Some authors, 

unable to present an acceptable solution, prefer to leave the 

paradox unsolved. Thus, for example, after explaining the 

paradox, the author of an authoritative and comprehensive book 

on special relativity theory concludes by saying: "We shall let the 

reader contemplate about it." 

(0) 

Fig. 9.4 The right-angle lever paradox can be resolved if instead 
of the unspecified abstract forces one uses real physical forces, such 
as the forces created by two interacting opposite electric charges. 

To reveal the error in the reasoning leading to this paradox, 
let us consider the system shown in Fig. 9.4. This system is 
similar to the one shown in Fig. 9.3, except that instead of the 
two undefined forces applied to the lever, the forces applied to the 
lever are now caused by two equal and opposite electric charges 
q, and q, placed on the two arms of the lever at equal distances L 
from the pivot. In the L’ reference frame, the forces between the 
charges are purely electrostatic, each charge exerting on the other 
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a force of the same magnitude but in opposite direction 

2 

tes ES eee (9-4.4) 
4ne yr! 4rer” 

where q is the magnitude of the charges, r’ is the distance 

between the charges, and r’ is directed from the field-producing 

to the field-experiencing charge. By the symmetry of the system, 

the net force and torque acting on the lever is zero. 

Consider now the same lever with the two charges as 

observed in the laboratory reference frame L. Let us first analyze 

the lever in terms of classical electrodynamics without any 

reference to the relativity theory. Since the lever with the charges 

moves with respect to the laboratory, the electric field produced 

by each of the two charges is now, according to Heaviside’s Eq. 

(4-1.13), 
an ee 

ERIE iG) aa (9-4.5) 
Aner? -(v7/c’) sino}? 

where @ is the angle between the velocity vector of the field- 

producing charge v and vector r directed from the field-producing 

to the field-experiencing charge. The electric force exerted by the 

charges one upon the other is now 

Fe pee ala (9-4.6) 
4neéyr*[1 -(v7/c*) sin’0}** 

Again, by the symmetry of the system, the net force and the net 

torque experienced by the lever due to electric interaction between 

the charges is zero. 
However, a moving charge produces a magnetic field, and if 

a charge moves in a magnetic field it experiences a Lorentz force. 

Thus, in the laboratory reference frame not only the electric 

interaction between the charges but also the magnetic interaction 

must be taken into account. 
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Consider the magnetic field produced by the charge q, located 

in the horizontal arm of the lever. The charge moves with velocity 

v = vi. According to Eqs. (3-2.6) and (9-4.5), the magnetic field 

(as measured in the laboratory) produced by this charge at the 

point where the charge q, is located is 

ney bee 

: Gil veice) ee Ou 
4mé,c’r?[1 -(v7/c*) sin’6}>? 

where r is directed from q, to q. 

Since the charge qg, moves through this field with velocity v 

= vi, it experiences a magnetic force F, = q,v X B,, or 

Gd, eave! Ca) 

} 4n6,c7r ll (We
) sin'OP? x(n

) oo) 2 

Expanding the triple cross product in Eq. (9-4.8) by means of 
vector identity (V-3), we have 

vX(vxXr) = v(ver)-rv-v) =v(ver)-vr, (9-4.9) 

and if we express r in terms of its Cartesian components as r = 
— Li — Lj and use v = vi, we find that the triple product 
reduces to 

vX(vxXr) = vilvi: (-Li -Lj)] -v2(-Li -Lj) = v?Lj. (9-4.10) 

The force experienced by the charge g, due to the magnetic field 
produced by the charge gq, is therefore 

F, as ie ql -v7/c)L ° (9-4.11) 

Cc 4neyr [1 -(v7/c?) sin’? 

Since this force is directed along the vertical lever arm, it 
produces no torque on the lever. 

Consider now the magnetic field produced by the charge q, 
located in the vertical arm of the lever. The charge g, moves with 
velocity v = vi. According to Eqs. (3-2.6) and (9-4.5), the 
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magnetic field produced by this charge at the point where the 

charge q, is located is 
jl = 2/ 2 

z Cpe, sh CRIB) 
Ane c7r?[1 -(v7/c?) sin’6]>” 

where r is directed from q, to q;. 

The charge g, moves through this field with velocity v = vi 

and therefore experiences a magnetic force F, = q,v X By, or 

CGO 2919) 
Spee Lee ey (YX Ty (9413) 

: me ocr (even) sil Uli 

The triple cross product in Eq. (9-4.13) is the same as in Eq. (9- 

4.9), and if we express r in terms of its Cartesian components as 

r = Li + Lj and use v = vi, we find that the triple product 

reduces to 

vX(vXr) = vilvi- (Li+Lj)] - v7(Li +Lj) = - v?Lj. (9-4.14) 

The force experienced by the charge q, due to the magnetic field 

produced by the charge gq, is therefore 

ps a ql -v7/c?)L j (9-4.15) 

Cc 4meyr[1 -(v7/c*) sin’)? 

This force is perpendicular to the horizontal lever arm and 

therefore produces a torque 

T -rxF, - Ce (9-4.16) 
C7) 4rer[1 -(v7/c?) sin?6)>” 

Thus, the appearance of the torque on the moving lever carrying 

the two charges is an electromagnetic rather than a relativistic 

eitect 

Let us now analyze the lever with the two charges by means 

of relativistic transformation. Assuming for simplicity that the 

vertical arm of the lever is on the y axis and that the charge q, 1s 
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at the origin of coordinates, we have, by Eq. (9-4.4), for the 

vertical component of the force experienced by the charge gq, in 

the moving reference frame L’ 

aa q° y!, (9-4.17) 
y 4ner' 4me (x? =ryll 22/2 

where x’ and y’ are the coordinates of g,. By Eq. (9-4.3), the 

torque experienced by the lever in © can then be written as 

iP iy q?x'y' (9-4.18) 
z er D 23/2” CaVAT Ee Oger y 

Transforming x’ and y’ to the corresponding values in £ by means 

of Eqs. (7-1.19) and (7-1.20) with t = 0 (we are free to choose 

the time of observation in L because the lever is stationary in L’), 

we obtain 

T = i ES Se i) qx _ (9-4.19) 
Clare (yx ry yp? \c7/4ney PQ? +y/y yp? 

Expanding y, usingx = L,y =L,re +y=/7,yl + y) = 
sin’@ and using vector notation, we can write Eq. (9-4.19) as 

‘\___ a= vile) L? (9-4.20) T = is pone CE 
Aner 1 -(v2/c?) sino?” C2 

which is exactly the same torque as that given by Eq. (9-4.16) 
obtained by direct electromagnetic calculations. Since the 
relativistic transformations of the torque associated with 
electromagnetic forces acting on the lever yield the same results 
as the direct calculations, there is no doubt that the appearance of 
the torque in our electromagnetic version of the lever is not a 
relativistic effect. This strongly suggests that the original right- 
angle lever paradox, although discovered on the bases of 
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relativistic transformations, is actually not a relativistic paradox as 

such. 

In this connections let us note that the lever and the forces 

upon which the original paradox was based (see Fig. 9.3), did not 

represent a real physical system. Indeed, the forces indicated in 

Fig. 9.3 are unspecified abstract forces of unknown origin and 

unknown mode of action, and the lever itself is not a material 

physical body but merely a drawing lacking any physical 

properties. Since the lever with its forces does not represent an 

real physical system, it should not be surprising that transforming 

it to a different frame of reference yields absurd results. 

Let us therefore concentrate on the electromagnetic version of 

the lever shown in Fig. 9.4. In this system the lever is subjected 

to real physical forces. However, the system is physically 

incomplete because the physical properties of the lever have not 

been specified. Quite clearly, unless the lever itself exerts forces 

on the two charges, thus preventing them (and the arms of the 

lever) form moving toward each other, the system cannot be in 

equilibrium in the L’ reference frame — the lever will simply 

collapse. We can introduce the forces needed to keep the lever in 

equilibrium in L’ by assuming that the lever has some rigidity and 

elasticity. However, it is much simpler to assume that the lever, 

although rigid, does not itself exert any forces on the charges and 

that the needed forces are provided by a sufficiently strong elastic 

rod inserted into the lever between the two points where the two 

charges are located (line r in Fig 9.4). We assume, of course, that 

the lever and the rod are nonconductors. 
We now have a sufficiently complete physical system in the 

reference frame L'. The system involves not just two, but four 

forces: (1) the electric force F’,, attracting the charge q, to the 

charge g,, (2) an equal in magnitude but oppositely directed 

"elastic" force F’,, exerted by the rod on the charge q, and 

keeping the charge q, at rest, (3) the electric force F’, attracting 

the charge q, to the charge q,, and (4) an equal in magnitude but 
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oppositely directed "elastic" force F’,, exerted by the rod on the 

charge q, keeping the charge q, at rest. 

For the y component of the total force applied to the lever at 

the location of the charge g, we now have 

je ee Fol a Ean = 0 > (9-4.21) » 

and for the x component of the total force applied to the lever at 

the location of the charge q, we now have 

[a ep Ueda y ale (9-4.22) 

These are the only force components that could contribute to the 

torque in X’, but since both of them are equal to zero, there is no 

torque in &’. Using now Eqs. (8-6.11)-(8-6.13), we find that there 

is no torque in the reference frame » either and that specifically, 

by Eq. (8-6.13), 

T= TF, =e), Fe, =0/-01= 0: (9-4.23) 

Thus, by inserting an elastic rod into our lever carrying 

electric charges and by converting thereby the original incomplete 

physical system into a reasonably complete one, we have removed 

the paradox as far as the relativistic transformations are 

concerned. But what do we now obtain from direct calculations? 

Quite clearly, the presence of the rod has no effect on the 

electromagnetic forces, and therefore Eqs. (9-4.4)-(9-4.16) still 
hold, and the torque represented by Eq. (9-4.16) still acts on the 
level in the reference frame ©. Expressed in terms of the Py 
component of the electromagnetic force acting on the charge q,, 
this torque is 

ee ~ Fy yLk. (9-4 .24) 

However, we now also have a torque due to the y component of 
the elastic force of the rod 



SECTION 9-4 RIGHT-ANGLE LEVER PARADOX 229 

T,,, = F,,Lk, (9-4.25) 
and since Fy,, = — F),, (otherwise the lever would collapse), the 

two torques cancel each other. Thus once again we find that our 

lever with electric charges is in equilibrium in the laboratory just 

as it is in the moving reference frame L’. 

An important consequence of this result is that although we 

have derived force and then torque transformation equations in 

Chapter 8 by initially considering electromagnetic forces only, 

these transformation equations apply to any forces by which 

electromagnetic forces can be balanced. 

Clearly, the right-angle lever paradox is merely a result of an 

incomplete statement of the problem, when instead of real 

physical forces one uses unspecified forces F', and F,, applied to an 

imaginary lever that has no physical properties. The pertinent 

physical effects that take place when the forces are clearly defined 

and are applied to a physically meaningful lever are then ignored. 

As was explained in Section 9-2, relativistic transformations 

cannot yield correct results unless all transformable quantities in 

the system under consideration are transformed. In the original 

calculations leading to the right-angle lever paradox, the fact that 

the lever could not be in equilibrium in the reference frame L’ 

without some forces equalizing the applied forces F,’ and F,' was 

ignored. Thus, important transformable quantities were left out of 

the calculations, and the paradox inevitably followed. Obviously, 

the paradox would not have resulted if forces counteracting the 

applied forces and preventing the lever from collapsing were taken 

into account. 

Similar to the right-angle lever paradox is the "Trouton-Noble 

paradox."”' In this paradox, an "inexplicable" torque appears to 

act on a moving parallel-plate capacitor, although there is no 

torque on the stationary capacitor. The paradox arises from 

ignoring mechanical forces that prevent the capacitor’s plates from 

moving toward each other. 
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9-5. Is the Magnetic Field due to an Electric Current a 

Relativistic Effect? 

Several authors have asserted that the magnetic field due to an 

electric current is a relativistic effect. This assertion is based on 

the fact that if the interaction between electric charges is entirely 

due to an electric field in the laboratory, then relativistic 

transformation equations manifest the existence of a magnetic 

interaction between these charges in a moving reference frame.” 
It is shown below that one could assert with equal justification 

that the electric field, rather than the magnetic field, is a 

relativistic effect. Therefore, since it is impossible for both fields 

to be relativistic effects, neither field should be regarded as a 

relativistic effect.” 

Fig. 9.5 In the laboratory reference frame & (Fig. 9.5a) the point 
charge q experiences a magnetic force. But in the moving reference 
frame &" (Fig. 9.5b) the charge experiences an electric force. 

Consider two very long ("infinitely long") line charges of 
opposite polarity adjacent to each other along their entire length 
and observed in the laboratory reference frame L. Let the charges 
be parallel to the x axis and let the magnitude of the line charge 
density in each line charge be \. Let the positive line charge move 
with velocity v = vi and let the negative line charge move with 
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velocity v = — vi (Fig. 9.5). Let us now assume that a positive 
point charge q is present in the xy plane at a distance R from the 
line charges and let us assume that it moves with velocity v in the 
positive direction of the x axis. 

In the laboratory reference frame L, the two line charges 

constitute a current 2\v. By Ampere’s law,” the magnetic flux 
density field that this current produces at the location of g is 

B - RALeORS (9-5.1) 

TR? 

where v = vi, and where R is the vector joining the line charge 

with g and directed toward g. The force exerted by B on q is 

F = g(v xB) = gly xn, 0%), (9-5.2) 
TR? 

or 
een FIN : E> oy - (9-5.3) 

Let us now look at the two line charges and the point charge 

from a reference frame ©’ moving with velocity v = vi relative 

to the laboratory. The point charge q is stationary in this reference 

frame and therefore experiences no magnetic force at all. 

However, according to the force transformation equations 

[Eqs. (8-1.14), (8-1.17) and (8-1.18) with u,’ = u,’ = u,' = 0], 

if g experiences a force F (in the y direction) in the laboratory, 

then the force F’ that it experiences in the moving reference frame 

L’ can be found by using the transformation 

Re kdeyia) = (9-5.4) 

which, with Eq. (9-5.3), becomes 

2 a qyy (9-5.5) Er) farerec i vOaeraers * 
YO TRI vey” 

[R is the same in both reference frames because of Eq. (7-1.2)]. 
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Of course, Eq. (9-5.5) is not really meaningful unless ) in it 

is transformed to )’ pertaining to the moving reference frame L’. 

To transform X to A’ we use Eq. (7-1.29) 

p’ = ylo-(v/c?)J,]. (9-5.6) 

The charge density p in the laboratory reference frame is p = 

(A, + A_)/S = O and the current density is J, = 2Av/S, where 

S is the cross-sectional area of the positive and the negative line 

charge. Substituting p and J, into Eq. (9-5.6) and multiplying by 

S, we obtain the transformation relation 

»/ ae 2rv2 «= 2dv2 (9-5.7) 

Substituting Eq. (9-5.7) into Eq. (9-5.5), we obtain for the 

force acting on the point charge q in the moving reference frame 
yey 

2 / 

F! = Bes (9-5.8) 
T 

andsince 1,¢.—"1/eq 

F! = ep (9-5.9) 
TE 

which is exactly what we would have obtained for the force 
exerted on q in the moving reference frame L’ by the electric field 
produced to the line charge of density \’ as measured in the 
moving reference frame L’.” 

As is clear from Eqs. (9-5.1)-(9-5.9), relativistic force 
transformation equations manifest the presence of an electric field 
in &’ when the interactions between electric charges are assumed 
to be entirely due to a magnetic force in L. We could interpret 
this result as evidence that the electric field is a relativistic effect. 
But the well-known fact” that similar calculations manifest the 
presence of a magnetic field in L’, if the interactions between the 
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charges are assumed to be entirely due to an electric field in L, 
makes such an interpretation impossible (unless we are willing to 

classify both the magnetic and the electric field as relativistic 

effects, which is absurd). We must conclude therefore that neither 

the magnetic nor the electric field is a relativistic effect.> 

The only correct interpretation of the above calculations must 

then be that interactions between electric charges that are either 

entirely velocity independent or entirely velocity dependent is 

incompatible with the relativity theory. Both fields — the electric 

field (producing a force independent of the velocity of the charge 

experiencing the force) and the magnetic field (producing a force 

dependent on the velocity of the charge experiencing the force) — 

are necessary to make interactions between electric charges 

relativistically correct. By inference then, any force field 

compatible with relativity theory must have an electric-like 

"subfield" and a magnetic-like "subfield." In fact, as is shown in 

Chapter 11, this is exactly what happens in the case of 

gravitational fields. 
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10 
THE RATE OF MOVING CLOCKS 

One of the most enduring relativistic paradoxes is the so- 

called "clock paradox" (commonly known as the "twin paradox"), 

according to which time runs slower in moving reference frames 

than in stationary reference frames. This "time dilation" is 

considered to be a purely kinematic relativistic effect, a 

consequence of nothing more than relative motion. Several 

experiments appear to support the reality of time dilation. 

However, in the preceding chapters we saw that certain 

electromagnetic and mechanical interactions between moving 

bodies are easily overlooked because of their subtleness and their 

difference from the familiar interactions between stationary 

bodies. It is conceivable therefore that moving clocks may run 

slower than stationary clocks as a result of some heretofore 

ignored interactions affecting moving clocks, rather than as a 

result of their motion as such. With this idea in mind, we shall 

compare in this chapter the rates of some _ primitive 

electromagnetic "clocks" resting in the laboratory with the rates 

of the same "clocks" moving with respect to the laboratory by 

using well-established laws of electromagnetism and mechanics. 

10-1. The Idea of Time Dilation 

The idea that some physical phenomena occur at a slower rate 

when the system in which the phenomena take place is moving 

235 
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with respect to the observer dates back to 1897, when Joseph 

Larmor, using transformations for length and time analogous to 

Lorentz transformations, concluded that the periods of orbiting 

electrons are shorter by the factor y in the rest system than in the 

moving system.' Albert Einstein in his famous 1905 paper 

interpreted the Lorentz transformation equation of coordinates and 

time as indicating that the rate of a moving clock, "when viewed 

from the stationary system," is slower by the factor y than the 

rate of the same clock at rest in the stationary system.” Later he 

generalized this statement by declaring that "a living organism 

after any lengthy flight could be returned to its original spot in a 

scarcely altered condition, while corresponding organism which 

had remained in the original position had already long since given 
way to new generations" and that "every happening in a physical 
system slows down when this system is set in translational 
motion."** Thus, according to Einstein, not only clocks run slow, 
but time itself is "dilated" in systems that move with respect to the 
systems considered to be stationary (laboratory). 

The idea of the slowing down of moving clocks as a strictly 
kinematic effect was unacceptable to many of Einstein’s 
contemporaries® and the idea of time dilation remains to this day 
one of the most controversial aspects of Einstein’s special 
relativity theory’. However, experiments on the radioactive decay 
of fast mesons show that their decay occurs indeed at a rate 
Slower by the factor y (within experimental errors) than for 
resting or slowly-moving mesons.” 

As a physical entity, time is defined in terms of specific 
measurement procedures, which may be described simply as 
“observing the rate of clocks." But a clock is a physical apparatus 
or device and is subject to the laws of physics in accordance with 
which the clock is constructed. Therefore, if a clock slows down 
when it moves, its slower rate should be explainable on the basis 
of the specific laws responsible for the operation of the clock. For 
some inexplicable reason, apparently nobody has attempted to 
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calculate and compare the rates of any types of stationary and 
moving Clocks, although such a calculation would be of the utmost 

significance as a means of resolving the above-mentioned 

controversy and as an answer to the question of whether or not 

the slow rate of moving clocks (if it can be confirmed by 

calculations) can be explained as a dynamic cause-and-effect 

phenomenon rather than as the kinematic effect enunciated by 

Einstein. 

Naturally, insofar as, according to Einstein, the slowing down 

is supposed to hold for any clock mechanism whatsoever, an 

all-inclusive dynamic (causal) interpretation of the slow rate of 

moving clocks is hardly possible. But it should be possible to 

provide a causal interpretation of the slow rate for at least some 

specific well-defined clock mechanisms. With this idea in mind, 

we shall compute and compare in this chapter the rates of twelve 

stationary elementary electromagnetic "clocks" with the rates of 

the same moving "clocks." We shall base our calculations on the 

fundamental laws of electromagnetism and mechanics with no 

input from relativity theory [although we shall use the longitudinal 

and transverse masses, which may be regarded either as 

experimentally obtained quantities, or as relativistic concepts (see 

Section 8-4 and Ref. 9 in Chapter 8]. The operation of our clocks 

will be based on the interaction between a field-experiencing 

electric point charge and different field-producing electric charge 

configurations. 

As we shall see, some moving clocks do indeed run in 

agreement with the Einstein’s theory,’ but others do not. 

10-2. Clocks Running in Accordance with Einstein’s Special 

Relativity Theory 

Clock #1. Consider a ring of radius a carrying a uniformly 

distributed charge g,. Let the axis of the ring be the x axis, and 



238 CHAPTER 10 THE RATE OF MOVING CLOCKS 

let the center of the ring be the origin of rectangular coordinates 

(Fig. 10.1). The electric field on the axis of the ring is’° 

Fig. 10.1 A point charge q, is placed 

on the axis of an oppositely charged 

ring carrying a charge q,. The point 

charge oscillates along the x axis 

about the center of the ring. This 

system can be used as a primitive 

clock. 

Fi ile et: (10-2.1) 
Ane (Gua) oe 

A charge q,, whose polarity is opposite to that of g, and whose 
Mass is Mo, is placed on the x axis near the center of the ring at 
a distance x from the center and is constrained to move only along 
the axis.'’ By Eq. (10-2.1), if q, is sufficiently close to the center, 
so that x < a, which we assume to be the case, the force on q), 
F = @E, is essentially 

Rise (10-2.2) 
4ré,a° 

Let the ring be fixed in the laboratory. Since the force given 
by Eq. (10-2.2) is a linear restoring force, the ring and the charge 
constitute a simple harmonic oscillator, and the period of the 
oscillations of gq, is 

a = Anica y. (10-2.3) 
I dpe 9195 

Clearly, the ring and the charge may be considered to 
constitute a clock and can be used for measuring time in terms of 
the period of oscillations T. 

T= 2n| 
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Let us now assume that the same ring and the charge gq, are 
located in a reference frame moving along the x axis with velocity 
v = vi relative to the laboratory. By symmetry, the electric field 

on the axis of the ring is the same as the x component of the 

electric field of a moving point charge gq, whose perpendicular 

distance from the axis is a. The electric field of a moving point 

charge is given by Heaviside’s Eq. (4-1.13)” 

eee a see (10-2.4) 
4ner[1 -(v7/c?)sin’6p? 

where v is the velocity of the charge, c is the velocity of light, r 

is the vector from the present position of the charge to the point 

of observation, and @ is the angle between r and y; the subscript 

m is used to indicate that the field under consideration is that of 

the moving charge. Since Pr = (a’ + x’)? and since sin’?@ = 

a’l(a’ + x’), we have for the field on the axis of the ring 

CO Saeaps 
a eens a ee ae ee 0-9) 

m 4ne(a*+x?P[] ee a 

Assuming, as before, that x < a, we then have for the force 

on q> 

eS pee eee org (10-2.6) 
o 4nea>(1 -v7/c?)'” 

Let us also assume that the velocity v of the moving reference 

frame is much larger than the maximum velocity of q, relative to 

the ring. In this case the velocity of q, relative to the laboratory 

is essentially v, and the longitudinal mass of q, is, by Eq. (8-4.9), 

pie ae Eiki ep (10-2.7) 
II (1 -v2/e2)3? 

The period of the oscillations of g, is therefore 
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m,, \12 m.4me,a>(1 -v7/c?)2 2 T, = Ais = er F [x (l-vc"ad } (40.2.8) 
= 4 732q3/2 ee 

(1 -v7/c*) 4,4, 
so that 

2 I T. (10-2.9) 
m Gi -v/c?)'2 

Thus the period of the oscillations of g, located in the moving 

reference frame, as observed from the laboratory (stationary) 

reference frame, is by the factor (1 — v’/c’)~!? longer than the 

period of the oscillations of g, in the laboratory. Hence our clock 

consisting of the charged ring and the point charge runs slower 
when the clock is moving, and the rate of the moving clock is 
(1— v’/c*)~'? = ¥ times the rate of the same stationary clock. 

Clock #2. Consider two point charges of the same magnitude 
and polarity located at the points +a of the y axis. Let the 
magnitude of each charge be q, and let the charges be fixed in the 
laboratory. A point charge g,, whose polarity is opposite to that 
of the first two charges and whose mass is 7m, is placed at a point 
x of the x axis close to the origin (x « a) (Fig. 10.2). By the 
same reasoning as in the case of Clock #1, the force on q, is 

Rese cider (10-2. 10) 
27é,a° 

Therefore this system, too, is a harmonic oscillator, and the 
period of oscillations of q, is 

1 
My 

/2 

a 3 10-2.11 =i (27a) al ( ) je 2a ete 
1% 
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4 
Fig. 10.2 A point charge q, { 

oscillates under the action of the two | ie 
fixed point charges q, whose polarity 1 o q, ai 

is Opposite to that of q,. This system { Be x 

can be used as a primitive clock. O4, 

Clearly, the three charges can be regarded as a clock for 

measuring time in terms of the period of oscillations T. 

As in the case of Clock #1, if the three charges are placed in 

a reference frame moving along the x axis with velocity v = vi 

relative to the laboratory, the charge q, will experience a force 

ees Coast Cee eae (10-2. 12) 
Ome a eave Gone 

Therefore gq, will oscillate with a period 

M£v 1/2 

line (20 0) (10-2. 13) 
ev ear, 

3 

so that 

é I T. (10-2.14) 
m al =v/e7) 12 

Hence our clock consisting of the three charges runs slower 

when the clock is moving, and the rate of the moving clock is (1 

— vic’)? = ¥ times the rate of the same stationary clock. 

Clock #3. Consider now the same system of three charges but 

in a different configuration relative to the coordinate axes. Let the 

q, charges be located on the z axis at distances +a from the 

origin, and let the charge q, be located on the y axis at a distance 

y close to the origin (y < a) (Fig. 10.3). The electric field at the 

location of qg, is now 
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4 & q, Fig. 10.3 A point charge q, 

+ ro) a oscillates along the y axis under the 
ed si action of the two fixed point charges 
o q, whose polarity is opposite to that 

of) Of q,. This system can be used as a 
1 primitive clock. 

: LY (10-2.15) 

which, after neglecting y* in the denominator, becomes 

i (10-2. 16) 
27é,a° 

The force on q, is therefore 

ee EE (10-2.17) 
DY COP 

Except for the direction, this is the same force as that given by 
Eq. (10-2.10). Therefore qg, executes a simple harmonic motion 
with the period given by Eq. (10-2.11) (with x replaced by y). 

Let us now assume that the three charges are placed in a 
reference frame moving along the x axis with velocity v = vi 
relative to the laboratory. In determining the force on g,, we must 
now take into account that q, is subjected not only to the electric 
field but also to the magnetic field. As seen from the laboratory, 
the force on q, is therefore the Lorentz force (we assume, as 
before, that the velocity of q, is essentially v) 

Fe at yx B,,); (10-2.18) 

where E,, is the electric field, and B,, is the magnetic flux density 
field produced at the location of q, by the moving charges q,. 
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The electric field at the location of q, is given by Eq. (10-2.4) 
with g = qr = yj,r = (@ + y’)!?, sin @ ~ 1, and with the 
factor 2 instead of 4 in the denominator, that is 

Gi Taye )y E, = -  (10-2.19) 
nea) ) [1 -v*/c* 

which, after neglecting y’, becomes 

Z diy j. (10-2.20) 
1h STA OLE co re 

By Eq. (3-2.6), the electric and magnetic fields of a uniformly 

moving charge distribution are connected by the formula 

B, = (VXE,)/c’. (10-2.21) 

Therefore, by Eq. (10-2.18), (10-2.20), and (10-2.21), we have 

for the Lorentz force acting on q, 

ies Vi Qy Awe == (10-2.22) 
i Den (VC) C 

or 

ee eee 0-2) i, (10-2.23) 
OD ET Oe 

Using now the transverse mass of q> [see Eq. (8-4.12)] 

LS (10-2.24) 1 le A 
ak (1 -v/c? 

we obtain for the period of the oscillations of q, 

MoE Fs (10-2.25) 
CLAVE CGR 

1/2 

} = Qa)” 
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Once again therefore 

5 I (10-2.26) 
Me (1 -v2/c%)'?2 

so that our clock consisting of the three charges runs slower when 

the clock is moving, and the rate of the moving clock is (1 — 

v’/c’)~'? = vy times the rate of the same stationary clock. 

Clock #4. Consider two point charges gq; and q, of the same 

polarity located at a distance rv one from the other (Fig. 10.4). Let 

q, be fixed in the laboratory and let g, be free to move under the 

action of g,. The force exerted by q, upon q, is 

Be eo (10-2.27) 
4te yr? 

te 

© 4, Fig. 10.4 A point charge q, moves under 

the action of the point charge q, whose 

i. polarity is the same as that of q. This 

WE, o q YY, system can be used as a primitive clock. 

If r is sufficiently large, and if g, moves only a short distance, 

which we assume to be the case, we can ignore the variation of 

the force with r, so that the force can be considered essentially 

constant.'’ Let the mass of q, be mp. The distance traveled by q, 
during a time interval Ar (as measured by the "standard clock" in 

the laboratory) is then 

LS Le EE a (10-2.28) 
2M, Sime mr? 

OnnO 

Hence we can use the two charges as a clock for measuring time 
intervals in terms of the distance d traveled by q,. By Eq. (10- 
2.28), the formula for converting d into At is 
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2 

ae Aen (10-2.29) 
9,9, 

Note that the rate of our two-charge clock depends on how fast g, 

travels under the action of g,: for a given d, the larger At is, the 

slower the rate of the clock. 

Let us now assume that we have a second two-charge clock, 

identical with the one just described, but located in a reference 

frame that moves along the x axis with velocity v = vi relative to 

the laboratory. Let us also assume that the line joining the two 

charges is perpendicular to v, and let us assume that the velocity 

which q, acquires under the action of g, is much smaller than v. 

As seen from the laboratory, the force on q, is then the Lorentz 

force 

F = q{E,, +yVx B,) / (10-2.30) 

where E,, is the electric field, and B,, is the magnetic flux density 

field produced at the location of q, by the moving q,. 

Since the line joining the two charges is perpendicular to v, 

so that sin 6 = 1 in Eq. (10-2.4), the electric field E,, is 

x qi . (10-231) 
"  4ner3( -Vv21c2)? 

and the magnetic flux density field is 

_ XE nn qi 1022639) 
a c? 4mer?c7(1 -y/c?)'? 

Hence the Lorentz force on q, is 

Sparel St acsraed Pe eses (10-2.33) 
eedte (RVC. e 

or 
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Fee (1-2 )"r. (10-2.34) 
4ner? Ga 

Using now the transverse mass of q, [see Eq. (8-4.12)], we 

obtain for the distance traveled by qg, under the action of q, 

Say fiae 

He ae, re Aiea (10-2.35) 
POOLS TE Mor? 

where the subscripts m are used to indicate that we are now 

dealing with the moving two-charge clock. According to Eq. (10- 

2.35), the time interval needed for gq, to travel through the 

distance d,, is 

a 8TE Myr? 12 

Gq te=\ cee 

Let us now compare Af and Af, corresponding to equal 

distances traveled by g, under the action of q, in the stationary 

and in the moving two-charge clock, that is, corresponding to 

At 
m 

(10-2.36) 

d, = d. (10-2.37) 

From Eqs. (10-2.29), (10-2.36), and (10-2.37) we have 

: Lemar iy (10-2.38) 
m (1 -y2/c%)!?2 

Thus Az,, is by the factor (1 — W/c?)-'? longer than At. 
Hence our moving two-charge clock runs (1 — W/c’)"!? = ¥ 
times slower than the identical stationary clock. 

Clock #5. This clock is similar to Clock #4 just discussed, 

except that the fixed point charge gq, is now replaced by a long 
line charge of uniform line density \ lying along the z axis of 
rectangular coordinates and having its midpoint at the origin (Fig. 
10.5). The point charge q (no subscript is needed now) is placed 
on the y axis at a distance r from the origin. 
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4 F 

OF 
Fig. 10.5 A point charge q moves 

under the action of the line charge Wz 

whose polarity is the same as that of aE Oe 

q. This system can be used as a V 

primitive clock. 

Kz 

The electric field produced by the line charge at the location 

of g is’ 

tp eee (10-2.39) 
2RES 

and the force exerted by the line charge upon q is 

Re dN (10-2.40) 
27 Ef 

As before, if r is sufficiently large, and if g moves only a 

short distance, which we assume to be the case, we can ignore the 

variation of the force with r, so that the force can be considered 

essentially constant.'? Let the mass of q be mp. The distance 
traveled by q during a time interval At (as measured by the 

"standard clock" in the laboratory) is then 

qn Pe EN (An). (10-2.41) 
2m, 4TE Nr 

Hence we can use this line charge and the point charge as a clock 

for measuring time in terms of the distance d traveled by q in 

accordance with 

ee (ana lie (10-2.42) 
qn 
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Let us now assume that we have a second clock, identical 

with the one just described, but located in a reference frame 

moving along the x axis with velocity v relative to the laboratory. 

Let us also assume that the velocity which g acquires under the 

action of the line charge is much smaller than v. As seen from the 

laboratory, the force on q is then the Lorentz force 

F, = q(E,+vxB,), (10-2.43) 
where E,, is the electric field, and B,, is the magnetic flux density 

field produced at the location of q by the moving line charge. 

The electric field of the moving line charge can be found by 

integrating Eq. (10-2.4). Since the integration is rather simple, we 

shall not reproduce it here and shall merely state the result: 

= x fi. (10-2.44) 
Deen keV cle yaa 

The Lorentz force acting on gq is therefore, by Eqs. (10-2.43), 

(10-2.21) and (10-2.44), 

qn vx (v xj) 

Dqer Cl = VelCon. C2 
F; j+ Ens (.- a (10-2.45) 

he c2 

Using now the transverse mass of q [see Eq. (8-4.12)], we 

obtain for the distance traveled by qg under the action of the line 

charge 

ener elies 
(1 -v2/c?) Ary = GAU-VICD Arp (10-2.46 m= x (At)? = SP (Aar,)®. (10-2.46) 

EqINy 

The time interval needed for g to travel through the distance d., is 
then 

4mé mor 12 
7a Ss) | a ala a oe 

gX(1-v2/c2) 
m 

(10-2.47) 

Let us now compare Ar and At, corresponding to equal 
distances traveled by q under the action of in the laboratory and 
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in the moving reference frame, that is, corresponding to 

d,=d. (10-2.48) 

From Eqs. (10-2.42), (10-2.47), and (10-2.48) we have 

1 age At. (10-2.49) 
él =ye/62) 2 

Thus Af,, is by the factor (1 — v’/c?)~'” longer than At. Hence 

our moving clock consisting of the line charge and the point 

charge runs (1 — v/c’)~'* = y times slower than the identical 

stationary clock. 

Fig. 10.6 A point charge q oscillates a 

along the x axis under the action of Zz ’ 

two fixed line charges \. This system A 

can be used as a primitive clock. 

Clock #6. This clock is similar to Clock #2 except that instead 

of the two point charges two infinitely long line charges of line 

charge density \ are now placed in the yz plane parallel to the z 

axis at distances +a from the axis. The point charge q (there is 

no need for a subscript now) is again on the x axis close to the 

origin (x < a) (Fig. 10.6). 

The electric field produced by the line charges at the location 

of q is" 

oye pa IE (10-2.50) 
TE (a? +x?) 
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or, since x < a, 

Eo ay (10-2.51) 
TEA 

The force experienced by q is therefore a linear restoring 

force 

p-- 2%, (10-2.52) 
Rete 

causing q to oscillate with the period 

T= 2x( 70)" = 2na{ OT)" (102.53) 
Filx aN 

Let us now assume that the same field-producing line charges 

\ and the point charge q are located in a reference frame moving 

along the x axis with velocity v = vi relative to the laboratory. 

As seen from the laboratory, g now experiences an electric 

field which can be obtained by integrating Eq. (10-2.4) and is! 

(1 -v2/e2)"2 E = ; (10-2.54) 
Telk- +o (-Vie-)| 

or, since x < a, 

ees (10-2.55) 
mend (lv 2c 2) 

The force acting upon q is therefore 

Beale go el ae | (10-2.56) x 
Rea (lveles ye 

causing q to oscillate with the period [observe that we must now 
use the longitudinal mass, see Eq. (8-4.9)] 

1/2 

a 2n{ I = i (10-2.57) 
(1 ~v7/c?)\gx 
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Thus, by Eqs. (10-2.53) and (10-2.57), the relation between 

the periods of our moving Clock #6 and of the same stationary 

clock is 
= 1 T. (10-2.58) 

(1 PVC) 

Once again 7,, is by the factor (1 — v/c’)~'” longer than T. 
Hence our moving Clock #6 runs (1 — V/c’)"'7 = y times 

slower than the identical stationary clock. 

10-3. Clocks that do not Run in Accordance with Einstein’s 

Special Relativity Theory 

Clock #7. This clock is the same as Clock #3 except that the 

field-producing charges q, are now placed along the x axis at the 

points +a of the axis. The point charge q, is again on the y axis 

close to the origin (y < a) (Fig. 10.7). 

hs 

Fig. 10.7 A point charge q, 

oscillates along the y axis under + @Q¢q 
yr t2 x 

the action of two fixed point OR ar, —_> 

charges q,. This system can be q, | q, 

used as a primitive clock. 

Clearly, the period of the oscillations of q, in the laboratory 

frame is the same as for Clock #3, that is 

12 

T = 7 ay = nan Ze) (10-3.1) 

Fly 9,92 

Let us now assume that the same field-producing charges 4, 

and the charge q, are located in a reference frame moving along 

the x axis with velocity v = vi relative to the laboratory. 
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As seen from the laboratory, g, now experiences an electric 

field and a magnetic field. The electric field is given by Eq. (10- 

2.4) withg = 9. — Vj, (ety) sion yaaa 

and the factor 2 instead of 4 in the denominator, that is 

Be fray 

fi Sie oe © ig ae Cw) 
RE (Gast y 2) wail -(v7/e)[y2H(a2 +y)] >? 

or, remembering that y < a and neglecting y* and y*/(a’? + y’), 

ia 

ore) (10-3.3) 
27é,a° 

E 
m 

The magnetic field, according to Eqs. (10-2.21) and (10-3.3), 

Sey hae 

SE Say (10-3.4) B SE eet 
Ih ke omiie 

m 

The Lorentz force on q, is therefore 

mie BORO SEO 

27é,a° 
F jee) (10-3.5) 

Cc 
ML 

or 

= 9,9, = VtiGe) c 

27é,a° - 
F (10-3.6) 

L 

Using now the transverse mass of q [see Eq. (8-4.12)] 

S iy : my oa (10-3.7) 

we obtain for the period of the oscillations of q, 

1/2 2 

pee | = Qray7{_ 0 (10.3.8) 
Ply (1 eye?) aa. 
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Thus the relation between the periods of this moving clock 
and of the same stationary clock is 

: ! T (10-3.9) 
m (I -v/c94 ? 

so that although our clock consisting of the three charges runs 

slower when the clock is moving, the rate of the moving clock is 

(1 — v’/c*)~** = >” times the rate of the same stationary clock. 

Fig. 10.8 A point charge q moves te 

under the action of the fixed line ae 

charge i. This system can be used as r 

a primitive clock. ee eae 

Clock #8. This clock is similar to Clock #5, except that the 

line charge is now placed along the x axis (the midpoint of the 

line charge is, as before, at the origin; see Fig. 10.8. If the clock 

is stationary, the force on q is the same as in the case of Clock #5 

and is given by Eq. (10-2.40). Therefore the distance traveled by 

q during a time interval A? (as measured by the "standard clock" 

in the laboratory) is also the same as for Clock #5 and is given by 

Eq. (10-2.41). Consequently, the time interval needed for q to 

travel through the distance d is also the same as for Clock #5 

given by Eq. (10-2.42), that is 

Wee (eee (10-3.10) 
qn 

Let us now assume that a second line-charge point-charge 

clock, identical with the one just described, is located in a 

reference frame that is moving along the x axis with velocity v = 

vi relative to the laboratory. 
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By Eq. (5-3.13) or Eq. (9-2.4) the electric field produced by 

the moving infinitely long line charge is the same as the field 

produced by the stationary charge, so that [see Eq. (10-2.39)]'® 

Comet (10-3.11) 
27E Fr 

The magnetic field produced by the line charge is then, by 

Eq. (10-2.21) 

Bee ee (10-3. 12) 
QKE Cor, 

and the Lorentz force acting on q is 

ae as eee qn Shh. (10-3. 13) 
= Ome, C2 2MEr\ nce 

Using now the transverse mass of q [see Eq. (8-4.12)], we 

obtain for the distance traveled by q under the action of the line 
charge 

F pole OP 
ig RTE (Ne SCSI) Serre (NDS) 

m 4ré nr 

The time interval needed for g to travel through the distance d., is 
then 

1/2 | a Se A ar (10-3.15) 
GX (faye 

Let us now compare At and At, corresponding to equal 
distances traveled by q under the action of \ in the laboratory and 
in the moving reference frame, that is, corresponding to 

ile eh (10-3.16) 

From Eqs. (10-3.10), (10-3.15), and (10-3.16) we have 

1 
At hate ee 

dd -v7/c?34 m 
(10-3.17) 
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Hence although our clock consisting of a line charge and a 

point charge runs slower when the clock is moving, the rate of the 

moving clock is (1 — v/c’)~** = >” times the rate of the same 
stationary clock. 

; YY 
figs 310.9% “A point 1 

charge q_ oscillates ts ae 

along the y axis under +0 “ee a 

the action of two line He 
charges . This system re | 

can be used as a aes 

primitive clock. Pe 

Clock #9. This clock is similar to Clock #3 except that instead 

of the two point charges two infinitely long line charges of line 

charge density \ are now placed in the xz plane parallel to the x 

axis at distances +a from the axis. The point charge q (there is 

no need for the subscript now) is again on the y axis close to the 

origin (y < a) (Fig. 10.9). 

The electric field produced by the line charges at the location 

Ofg is: 

Fae eee! (10-3.18) 
TE(a? +y’) 

OLusinceay <<. 

pot el (10-3.19) 
TE,a* 

The force experienced by q is therefore a linear restoring 

force 

pee; (10-3.20) 
TE? 

causing q to oscillate with the period 
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T= 2a(22)" - nae)" 103.21) 
Fly qn 

Let us now assume that the same field-producing line charges 

d and the point charge q are located in a reference frame moving 

along the x axis with velocity v = vi relative to the laboratory. 

As seen from the laboratory, g now experiences an electric 

field and a magnetic field. The electric field, by Eq. (5-3.13) or 

Eq. (9-2.4), is the same as the field produced by the stationary 

line charges, that is 

Doe a (10-3.22) 
A hea: 

The magnetic field, according to Eq. (9-2.10), is 

B, = —)_yxj. (10-3.23) 
Te Ge: 

The Lorentz force on q is therefore 

F = - Py ja. (10-3.24) 
TEa° Ge 

or 

ey Cae 

ty ere CN Ie (10-3.25) 
TEA" 

Using now the transverse mass of q [see Eq. (8-4.12)], we 
obtain for the period of the oscillations of q 

1/2 

T= 2a( 7 | : ee "* (10-3.26) 
Eyly (1 -v2/c2?gn 

Thus the relation between the periods of this moving clock 
and of the same stationary clock is 
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ie Laps i7: (10-3.27) 
Cl =V/Ge)a 

so that although our Clock #9 runs slower when the clock is 

moving, the rate of the moving clock is (1 — v/c?)"34 = +3? 
times the rate of the same stationary clock. 

Fig. 10.10 A point charge q 

moves along the y axis under the 

action of a_ charged plate 

carrying a surface charge o. This 

system can be used as a primitive 

clock. 

Clock #10. Consider a large uniformly charged plate of 

surface charge density o. Let the plate be in the xz plane with its 

center at the origin. A point charge q of the same polarity as the 

plate is placed on the y axis not far from the plate (Fig. 10.10). 

Let the plate be fixed in the laboratory and let g be free to move 

under the action of o. The electric field produced by o at the 

location of q is 

E = aay (10-3.28) 
PE 

The force exerted on q is therefore 

04; (10-3.29) Ly Se ee 
Der: 

Let the mass of g be mp. The distance traveled by q during a 

time interval At (as measured by the "standard clock" in the 

laboratory) is then 

Aa 3 ECT (10-3.30) 
2m, 4é,m, 
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Hence we can use the plate and the charge as a clock for 

measuring time intervals in terms of the distance d traveled by q. 

The formula for converting d into At is, by Eq. (10-3.30), 

(10-3.31) 4em, \I2 
Ar = ( 2 °a| 

oq 

Let us now assume that we have a second clock, identical 

with the one just described, but located in a reference frame that 

moves along the x axis with velocity v = vi relative to the 

laboratory. Let us also assume that the velocity which g acquires 

under the action of o is much smaller than v. As seen from the 

laboratory, the force on q is then the Lorentz force 

gE tv xB): (10-3.32) 

where E,, is the electric field, and B,, is the magnetic flux density 
field produced at the location of g by the moving plate. 

According to Section 9-2, the electric field E,, produced by 
the moving plate is the same as that of the stationary plate, that 
is!” 

| ena (10-3.33) 
OES 

The Lorentz force acting on gq is then 

Ro eed) 
L C2 

2&5 ’ 
: Si ah. (10-3.34) 

pass c2 

Using now the transverse mass of q [see Eq. (8-4.12)], we 
obtain for the distance traveled by g under the action of the plate 

F ONG) De ee area (Ar. (10-3.35) 
2m ft Eo 0 

According to Eq. (10-3.35), the time interval needed for q to 
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travel through the distance d,, is 

1/2 

Yes | I a (10-3.36) 
NCTE ye 

Let us now compare Af and At, corresponding to equal 

distances traveled by q under the action of the charged plate in the 

stationary and in the moving clock, that is, corresponding to 

Ah = ah (10-3-37) 

From Eqs. (10-3.31), (10-3.36), and (10-3.37) we have 

ep atten HAP) (10-3.38) 
m (1 -y2/c%)34 

Hence although our clock consisting of a charged plate and 

the point charge runs slower when the clock is moving, the rate 

of the moving clock is (1 — v’/c’)~*4 = y°” times the rate of the 
same stationary clock. 

Fig. 10.11 A point charge q moves A F 

along the x axis under the action of a 

charged plate carrying a_ surface 

charge o. This system can be used as 

a primitive clock. 

Clock #11. This clock is the same as the one just discussed, 

except that the plate is now in the yz plane and the point charge 

q is on the x axis. The clock at rest in the laboratory behaves 

exactly like Clock #10, and therefore Eq. (10-3.31) applies also 

to the present clock, so that 
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ioe | (10-3.39) as 
oq 

The electric field produced at the location of g by the moving 

plate, as seen from the laboratory, can be obtained by integrating 

Eq. (10-2.4). However, this time we shall obtain the field by 

making use of the method of corresponding states (see Section 7- 

6). Taking into account that the charge and the surface area of the 

plate are invariant under Lorentz transformations and using Eq. 

(7-1.5), we find that the electric field of the moving plate at the 

location of gq is the same as that of the stationary plate.'® 

Furthermore, since the electric field is parallel to the velocity of 

the plate, the plate produces no magnetic field at the location of 

q. Hence the force exerted by the moving plate on gq is 

Paes i (10-3.40) 

Using the longitudinal mass 2 Eq. (8-4.9)], 

fr r= es UR (10-3.41) 
(1 =e) 

we then find that the distance traveled by g under the action of the 

moving plate, as seen from the laboratory, is 

Bayo ieNGIe 

d, = a SEUSS VEAP 1Oeae) 
im 4é ym, 

so that 

4 1/2 
Arees, | oe cele Oates (10-3.43) 

Ogil=V ce) - 3 

Hence although our clock consisting of a charged plate and 
the point charge runs slower when the clock is moving, the rate 
of the moving clock is (1 — v’*/c*)~34 = +3? times the rate of the 
same stationary clock. 
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y, 

Fig. 10.12 A point charge q, moves along y r F 

the x axis under the action of the point 2S, 5 arte 
y 4, charge q,. This system can be used as a oy 

primitive clock. y 

Clock #12. This clock is the same as Clock #4, except that the 

line joining the two charges is parallel to the x axis (Fig. 10.12). 

In the laboratory, the clock functions exactly as Clock #4, so 

that the time interval given by Eq. (10-2.29) 

(10-3.44) 8mE,mr>_\i/2 
ae ae 

1,9, 

applies also to the present clock. 

When the clock moves along the x axis with velocity v = vi 

relative to the laboratory, the electric field due to charge gq, 

becomes, according to Eq. (10-2.4), 

= WANVAL 

pees, (10-3.45) 
v 4ré,r? 

and the force on q, becomes 

yy ya 

ier IE (10-3.46) 
, 4néyr? 

Using the longitudinal mass [see Eq. (8-4.9)], we find that the 

distance traveled by q, under the action of g, is now 

F Pay7/c2)" 
d, = =" (At, = eA oa 

m 2 
mM STE Mor 

(At,)?, (10-3.47) 

and the time interval needed for q, to travel the distance d,, is 
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Ne S| (10-3.48) 
m q,q@(l -v7/c*)? m 

Let us now compare Af and At, corresponding to equal 

distances traveled by q, under the action of g, in the stationary 

and in the moving two-charge clock, that is, corresponding to 

d,=d. (10-3.49) 

From Eqs. (10-3.44), (10-3.48), and (10-3.49) we obtain 

: oe ee (10-3.50) 
Ke (1 aye 

Thus Az,, is by the factor (1 — w/c’)~>* longer than At. 
Hence our moving two-charge clock runs (1 — v/c’?)~*4 = +5? 

times slower than the identical stationary clock. 

10-4. Reconciling the Theory with Experimental Data 

As we have seen, the primitive electromagnetic clocks 

discussed above run slow when the clocks move, but their rate 
depends on the type of the clock and even on the orientation of 
the clock relative to the direction of motion. Thus, contrary to 
Einstein’s conception, the slowing down of the moving clocks is 
a dynamic rather than a kinematic effect, and the slowing down 
is not, in general, proportional to y. Therefore, if "time" is that 
which is measured by physical devices (clocks), there is no such 
thing as time dilation depending solely on the velocity of the 
clocks and being the same for all the clocks moving with the same 
velocity. 

In fact, our calculations show that the slowing down of the 
clocks is not really a relativistic effect at all. The calculations that 
we used were based on the laws of classical electromagnetism 
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(classical field equations and Lorentz force law) with no input 
from relativity theory except for the longitudinal and transverse 

masses (which just as well may be considered to be experimentally 

obtained relations).'? However, as one can easily see, even if we 

used the ordinary classical expression for the mass, we would still 

find that moving clocks run slow. Therefore relativity theory at 

best improves the accuracy of the calculations but does not affect 

the qualitative physical essence of our results. 

Furthermore, relativity theory, which, as we have seen, is 

derived from, and is based upon, the laws of electromagnetism, 

does not provide us with any information on the rate of processes 

other than the electromagnetic ones. In particular, it does not 

provide us with any information on the rate of biological effects, 

such as aging. Therefore the widely popularized idea, allegedly 

supported by relativity theory, that space travelers moving with a 

velocity close to the velocity of light age slower than their 

Earthbound twins is no more than an attractive hypothesis having 

no adequate scientific foundation.” Actually, as far as space travel 
is concerned, it is very likely that interstellar magnetic fields and 

other external factors will have a much stronger effect on the rate 

of the clocks and on the condition of space travelers than any 

kinematic relativistic effects. 

But what about experiments’ that are interpreted as proofs of 

the reality of time dilation? The only thing that these experiments 

really prove is that the rate of certain physical phenomena is 

slower in systems moving at very high speeds, which, as we have 

just seen, need not be regarded as a relativistic effect. Therefore 

it is more prudent to interpret these experiments as indicating the 

existence of certain velocity-dependent interactions in the systems 

under consideration similar to the electromagnetic interactions that 

made the clocks discussed in this chapter run slower when in 

motion. More experiments and greater accuracy are definitely 

needed in order to elucidate the nature of these interactions and 

the numerical factor (or factors) by which time-dependent 
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phenomena in moving systems differ from the same phenomena 

in stationary systems. 

Finally, it is important to note that we have developed in this 

book all the essential elements of the theory of relativity as a 

direct mathematical and logical extension of classical 

electromagnetic theory without ever using the concepts of clock 

synchronization,”’ Lorentz contraction, and time dilation. 
Therefore, although clock synchronization, Lorentz contraction, 

and time dilation are indispensable elements in Einstein’s approach 

to the development of the theory of relativity,” they cannot be 
considered to constitute elements of the theory itself.” 
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1] 
GRAVITATION AND 

COVARIANCE 

Recent advances in the theory of time-dependent 

Newtonian gravitational fields provide the foundation for a new 

approach to the study of gravitation and to the investigation of the 

connection between gravitation and other physical phenomena and 

effects. The basic equations representing time-dependent 

gravitational fields and interactions are very similar to the basic 

equations representing time-dependent electromagnetic fields and 

interactions, and most electromagnetic equations, including 

Maxwell’s equations and retarded field equations, have their 

gravitational counterparts. In this chapter we shall explore the 

analogy between electromagnetism and gravitation and, on the 

basis of this analogy, shall develop a relativistic theory of 

gravitation analogous to relativistic electrodynamics and 

incorporating relativistic mechanics. Then we shall briefly discuss 

the so-called "covariant formulation" of electromagnetic and 

gravitational equations. 

11-1. Analogy of Electromagnetism with Gravitation 

According to the theory of time-dependent gravitational 

fields,' gravitational forces are associated with two fields: the 

ordinary Newtonian gravitational field g and the cogravitational 

267 



268 CHAPTER 11 GRAVITATION AND COVARIANCE 

field K (also known as the gravimagnetic field or Heaviside’s 

field’). Just like the electric field, the gravitational field g acts on 

stationary as well as on moving bodies, whereas the 

cogravitational field acts only on moving bodies. The two fields 

are assumed to propagate with a finite velocity c. The value of 

this velocity is as yet unknown. However, it is generally assumed 

that it is the same as that of the velocity of light. A summary of 

the basic gravitational equations for time-dependent gravitational 

and cogravitational fields is presented below.’ The equations 

included in this summary are separated in three categories: 

(1) Basic definition equations for gravitational fields 

Gravitational field g 

g = Fim, (11-1.1) 
Cogravitational field K 

F = muxXKk), (11-1.2) 
Mass density p 

p = dmidVv, (11-1.3) 

Mass current density J 

J = pu. (11-1.4) 

(2) Basic differential equations for gravitational fields 

V-g = - 4aGp, (11-1.5) 

VK = 0, (11-1.6) 

Vg = oe (11-1.7) 
8 

il Sc tea goa te (11-1.8) 
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(3) Basic causal equations for gravitational fields 

oe | ee) OED (11-1.9) 
r 

kee se Mee (11-1.10) 
c? ie 

5 1 Op] eeG (10s : -Gf{2l. a. dV le ey | ee ilebel 
: Fo rote 3 i c2) rl or oar 

—"-G K = - = {a Ue ath (11-1.12) 
re 

Observe that for time-independent systems Eq. (11-1.11) reduces 

to the ordinary Newtonian gravitational field. 

Let us now list the basic electromagnetic equations for fields 

in a vacuum. Arranging them in categories similar to those used 

for gravitational equations, we have: 

(1) Basic definitions 

Electric field E 

E = F/q, (11-1.13) 

Magnetic flux density field B 

F = qu xB), (11-1.14) 

Electric charge density p 

p = dgidV, (11-1.15) 

Electric convection current J 

J = pu. (11-1.16) 
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(2) Maxwell’s equations for electromagnetic fields in a vacuum 

V-E = ple), (11-1.17) 

V-B=0, (11-1.18) 

VxE = - 3B (11-1.19) 
Ot 

E 1 dE 11-1.20 VxXB=ypJ + ae ( ) 

(3) Basic causal electromagnetic equations 

ob ae pl NL CE (11-1.21) 
ames i; 

and 
/ 

B= lo | We (11-1,22) 
At r 

If we compare the gravitational equations listed above with the 
electromagnetic equations, we find that to each gravitational 
equation there corresponds an electromagnetic equation. The 
corresponding equations are identical except for the symbols and 
constants occurring in them. The relations between the 
corresponding symbols and constants are shown in Table 11-1. 

It is clear that most equations derivable from the basic 
electromagnetic equations listed above have their gravitational 
counterparts, and that various gravitational equations can be 
obtained from the corresponding electromagnetic equations by 
simply replacing the electromagnetic symbols and constants by the 
corresponding gravitational symbols and constants in accordance 
with Table 11-1 (note, however, that mass has only one "polarity”). 
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Table 11-1 

Corresponding Electromagnetic and Gravitational 

Symbols and Constants 

Electric Gravitational 

q (charge) m (mass) 

p (volume charge density) p (volume mass density) 

o (surface charge density) o (surface mass density) 

d (line charge density) (line mass density) 

J (convection current density) J (mass current density) 

E (electric field) g (gravitational field) 

B (magnetic field) K (cogravitational field) 

y (scalar potential) y (scalar potential) 

A (vector potential) A (vector potential) 

€) (permittivity of space) —1/44rG 

Lo (permeability of space) —4rG/c 
—1/41€, or —poc?/4r G (gravitational constant) 
c (velocity of light) c (velocity of gravitation) 

It is important to keep in mind, however, that only 

electromagnetic equations for fields in a vacuum have their 

gravitational counterparts, and only the electromagnetic symbols 

listed in Table 11-1 can be directly replaced by the corresponding 

gravitational symbols. In all other cases the following conversion 

procedure should be used: 

(1) If an electromagnetic equation is for fields in the presence 

of material media, reduce the equation to fields in a vacuum. 

(2) If the equations contain field vectors D or H, replace them 

by E or B, using the relations D = €,E and B = pH. 

(3) Use Table 11-1 to replace electromagnetic symbols by the 

corresponding gravitational symbols.’ 
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v 

Example 11-1.1 Using the analogy between electromagnetic and 

gravitational equations, convert Eqs. (3-2.6), (3-2.13), (4-1.13), (4- 

2.2), (4-4.34), (4-5.10), (4-6.5), (4-6.6), and (5-1.11). 
Replacing in Eq. (3-2.6) E by g and B by K, we obtain for the 

cogravitational field associated with the gravitational field of a mass 

distribution moving with velocity v 

K = (v X g)/c?. (11-1.23) 

Replacing in Eq. (3-2.13) E by g and B by K, we obtain for 

the cogravitational field associated with the gravitational field of a 
point mass in arbitrary motion 

K.= E28. (11-1.24) 
cr 

Replacing in Eq. (4-1.13) E by g, &) by —1/4G, and q by m, 
we obtain for the gravitational field of a uniformly moving point 
mass in terms of the present position of the mass> ° 

m(1 - v7/c?) 
9355-5 Gee ee ae 

ral -(v2/c2) sin26]3? ° 
C= 1325) 

Replacing in Eq. (4-2.2) H by B/py, B by K, py. by —471G/c’, 
and q by m, we obtain for the cogravitational field of a uniformly 
moving point mass in terms of the present position of the mass 

m(1 - v7/c?) 
K = - G—__~__* _ 

c*ry {1 -(v7/c?) sin29}32 
vXry]. (111.26) 

Replacing in Eq. (4-4.34) E by g, €, by —1/47G, and q by m, 
we obtain for the gravitational field of a point mass moving with 
acceleration (in terms of the retarded position of the mass) 

2 : 

g=- Gm fr Aft jorx lex + }ar1.27 r(1-rev/re)? c @ Glee Cz 
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Replacing in Eq. (4-5.10) H by B/, B by K, py by —41G/c’, 
and q by m, we obtain for the cogravitational field of a point mass 
moving with acceleration (in terms of the retarded position of the 
mass) 

Kea m Mae CRT Cory cyte h 

Cr (1-4 vir) ri-r-v/rc) 

(1-138) 

Replacing in Eq. (4-6.5) &) by —1/4aG and q by m, we obtain 

for the gravitational scalar potential of a uniformly moving point 

mass (in terms of the present position of the mass) 

m TSS (aah ee (11-1.29) 
Pile @7/e ysin. 0g) 

Replacing in Eq. (4-6.6) 4) by —44G/c’ and g by m, we obtain 

for the cogravitational vector potential of a uniformly moving point 

mass (in terms of the present position of the mass) 

Ket G eee ee (11-1.30) 
Ca (ie. sino) 2 

Replacing in Eq. (5-1.11) E by g and e, by —1/47G, we obtain 

for the gravitational field of a mass distribution of density p moving 

with constant speed (in terms of the present position of the mass) 

pen ope / 
Be G| V oe i(v*/e")(Op)/(Ox") ays (11-1.31) 

( +(y!? 42/7) fy2}12 

Example 11-1.2 Consider a planet moving in a circular orbit about 

a central body. Using the electric field obtained in Example 4-4.1, 

discuss the consequences of retardation on the motion of the central 

body and on the planets whose orbits are interior relative to the 

orbit of the planet under consideration.’ 
Replacing in Eq. (4-4.39) E by g, € by —1/4mG, and q by m, 

we obtain for the gravitational field produced by the planet at the 

center of the orbit 
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m ve DS aie ‘ ee oes ze veh: (11-1.32) 

According to Eq. (11-1.32), the gravitational field produced by 

the planet is quite different from Newton’s gravitational field. In 

particular, because of the presence of the component in the 

direction of the instantaneous velocity vector, the field is not even 

radial. In our solar system, this new component of the gravitational 

field may have important consequences both on the motion of the 

Sun and on the motion of planets. Although the field given by Eq. 

(11-1.32) is for the center of the orbit, this field should be 

approximately correct within a certain region of space around the 

center of the orbit. As far as the Sun is concerned, the new 

component of the gravitational field exerts then a torque on the Sun 

and causes it to rotate in the direction of the orbital velocity of the 
planet. 

Because of the new component of the gravitational field, outer 

planets should produce a similar effect on the motion of the inner 
planets, causing an acceleration (and deceleration) of their orbital 

velocities and, what is most important, causing a secular motion of 
the large axes of the orbits of the inner planets in the direction of 
the orbital velocity of the outer planets. 

In the middle of the last century, Urbain Le Verrier found that 
Newton’s gravitational law was incapable of explaining certain 
discrepancies between the observed and calculated parameters of 
planetary motions. In particular, he computed the secular 
perturbations of the motion of Mercury under the action of the other 
planets and found that there was an inexplicable "residual" 
precession of Mercury’s perihelion. According to the presently 
accepted data, the precession of Mercury’s perihelion is 
approximately 575 seconds of arc per century, of which 532 
seconds can be attributed to Newtonian attraction between Mercury 
and other planets, while about 43 seconds cannot be explained on 
the basis of Newton’s gravitational law. It was the greatest triumph 
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of Einstein’s general relativity theory when, on the basis of this 

theory, Einstein explained the residual 43 seconds in the precession 

of Mercury’s perihelion. In fact, to this day most of the credibility 

of the general relativity theory is directly attributable to the amazing 

accuracy of this explanation and therefore indirectly attributable to 

the accuracy of celestial mechanics based on Newton’s gravitational 

law. 

But according to Eq. (11-1.32), the precession of Mercury’s 

perihelion caused by other planets may be different from the 

presently accepted 532 seconds. Furthermore, the gravitational field 

experienced by a planet in the reference frame of the planet is not 

a Newtonian field, but the field given by Eq. (11-1.25) or, more 

accurately, by Eq. (11-1.27). And there is also a cogravitational 

field created by the Sun. Therefore the true "residual" precession 

(if it exists at all) may be quite different from the presently accepted 

43 seconds. Thus the explanation of the residual precession of 

Mercury by the general relativity theory can hardly be considered 

as definitive. 

A 

11-2. Relativistic Transformation Equations for Gravitational 

and Cogravitational Fields 

In Chapters 6 and 7 we derived relativistic transformation 

equations for electric and magnetic fields starting from Eq. (5- 

1.11) representing the electric field of a uniformly moving charge 

distribution and Eq. (3-2.6) expressing the magnetic field of a 

uniformly moving charge distribution in terms of its electric field. 

As was shown in Example 11-1.1, the gravitational counterparts 

of these equations are Eqs. (11-1.31) and (11-1.23), which differ 

from the electromagnetic equations only by the field symbols and 

by the factor and sign in front of the integral in Eq. (11-1.31) and 

in the corresponding time-independent equation. Therefore the 

same calculations that led to the relativistic transformation 
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equations for electromagnetic fields can be duplicated for deriving 

relativistic transformation equations for the  gravitational- 

cogravitational fields. The only difference between the resulting 

equations and the corresponding electromagnetic equations will 

then be the appearance of the components of g and K in the 

gravitational-cogravitational equations instead of the components 

of E and B in the corresponding electromagnetic equations.* 

The same holds for the relativistic transformation equations 

for potentials (see Section 6-4), except that in the case of 

potentials there is no need to change the symbols. 

Thus there is actually no need to derive the relativistic 

transformation equations for the gravitational-cogravitational fields 

and potentials. All we need to do for obtaining these equations is 

to replace the components of E and B in Eqs. (7-1.5)-(7-1.10) and 

(7-1.23)-(7-1.28) by the corresponding components of g and K 

and to copy Eqs. (7-1.1)-(7-1.4), (7-1.11)-(7-1.18), (7-1.19)-(7- 

1.22) and (7-1.29)-(7-1.36). The resulting relativistic 

transformation equations for the quantities measured in Y 

expressed in terms of the quantities measured in L’ are: 

(a) For the space and time coordinates (these equations are the 

same as those derived in Chapters 6 and 7 by considering electric 

and magnetic fields) 

SC A (ii-21) 

ey (11-2.2) 

ee (Eos) 

t= y(t! + vx'/c?). (i124) 

(b) For the gravitational field 

g. =e), (11-2.5) 
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8, = (8, + VK;), (11-2.6) 

g, = ¥(g; ~ vKj). (e287) 

(c) For the cogravitational field 

Kee Ka, (11-2.8) 

Keak aaive, ic), (11-2.9) 

K, = V(K, + vg,/c?). (11-2.10) 

(d) For the mass and mass current densities 

p = ylo’ + Wie?) J/], (leah) 

Jaeeey() aeavp), (11-2.12) 

Deady (11-2.13) 

{Ree (11-2.14) 

(e) For the gravitational scalar potential and the 

cogravitational vector potential 

e = 9" + VA,), (11-2.15) 

A, = yA; + (v/c?)9'], (112-16) 

A, = Ay: (eo eia) 

AR= AS. (11-2.18) 

Relativistic equations for the quantities measured in L’ 

expressed in terms of the quantities measured in are: 

(a) For the space and time coordinates (these equations are the 

same as those derived in Chapters 6 and 7 by considering electric 

and magnetic fields) 
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x! = (x -vt), 

fa Meee 

t' = y(t - vxic). 

(b) For the gravitational field 

eat 

g, = yg, - vK,), 

8. = (8, + VK,). 

(c) For the cogravitational field 

Ky = K,, 

K, = ¥(K, + vg,/c?), 

K; = ¥(K, - vg,/c?).. 

(d) For the mass and mass current densities 

Pave yi), 

J; =U, - vp), 

Jnedy, 

ip aas 

(e) For the gravitational scalar potential and the 
cogravitational vector potential 

gy’ = ye - VA), 

A, = VIA, —(ileVol, 

(11-2.19) 

($122.20) 

DIA 

(11-222) 

(11-2723) 

(11-2.24) 

(11-2225) 

(11-2.26) 

(11-2.27) 

(11-2.28) 

(11-2.29) 

(11-2.30) 

(1281) 

(11-2.32) 

(11-233) 

(11-2.34) 
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y? AteasA (11-2735) 

ay BeAr (11-2.36) 

Quite clearly, transformation equations obtained in Chapter 7 

for quantities not containing electric and magnetic fields or their 

components (such as velocity, acceleration, gradient, etc.) remain 

valid for gravitational-cogravitational fields as well. 

Vv 

Example 11-2.1 The Newtonian equation for the gravitational field 

of a stationary point mass is 

g = - Gor. (11-2.37) 
if 

Starting with this equation and using relativistic transformation 

obtain the equation for the gravitational field of a point mass 

moving with uniform velocity v parallel to the x axis. 

For simplicity, let us assume that the gravitational field is in the 

xy plane. In this case r in Eq. (11-2.37) is r = (x? + y* )'”. 
To obtain the gravitational field of the mass when the mass 

moves with constant speed parallel to the x axis, we shall assume 

that the mass is located in a reference frame L’ which moves with 

velocity v = vi relative to the laboratory (reference frame L). By 

Eq. (11-2.37), in the reference frame ©’ the x component of the 

field is given by 
/ ah a2 m / Fs 

gy ira ; (11-2.38) 

and the y component is given by 

/ m 
Rey (Ga ey (11-2.39) 

8y (x! aay 4 

Since the mass is stationary in L’, we are free to choose the time of 

observation in £. We choose t = 0. Equation (11-2.5) tells us that 
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to find g, of the moving mass, we must replace g,’ on the left of 

Eq. (11-2.38) by g,, while Eq. (11-2.19) tells us that, since t = 0, 

we must replace x’ in Eq. (11-2.38) by yx [observe that in Eq. (11- 

2.38) x appears in the numerator and in the denominator]. Finally, 

Eq. (11-2.20) tells us that y’ in the denominator of Eq. (11-2.38) 

must be replaced by y. Making the substitutions, we obtain for g, 

of the moving point mass 

—— in = - ls 11-2.40 8 ~ OTe ~~ Corerayaape 
To obtain the y component of the field of the moving mass, we 

shall use Eqs. (11-2.6), (11-2.19), and again Eq. (11-2.20). Since 

K = 0 for the stationary mass, Eq. (11-2.6) tells us that, to find g, 

of the moving mass, we must replace g,’ on the left of Eq. (11- 

2.39) by g,/y, while Eqs. (11-2.19) and (11-2.20) tell us that we 

must replace x’ in Eq. (11-2.39) by yx and y’ by y. Making the 

substitutions, we then obtain for g, of the moving point mass 

m EG at eee 2.4 Sy pyre (11-2.41) 

or 

Sees mM : = - Ga a. (11-2.42) 

Replacing now vy in Eqs. (11-2.40) and (11-2.42) by 1/(1 — 

v-/c*)'?, factoring out x + y* from the denominator, taking into 

account that r = xi + yj, where i and j are unit vectors in the 

direction of the x and y axes, and noting that y*/(x° + y’) = sin’, 
where @ is the angle between v and r, we finally obtain 

m(1 -v2/c?) 

Pl -(7/c? sin
26p2 (11-2.43) iter kG 

which is the same equation (the "Heaviside equation") that we 
obtained in Example 11-1.1 [Eq. (11-1.25)] by transforming 
electromagnetic equations into gravitational equations [r and r in 
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Eq. (11-2.43) represent the present position of the mass and are 

therefore the same as 7p and rp in Eq. (11-1.25)]. 
Note that in applying relativistic transformations we did not 

transform the mass m. Just like the electric charge g, the 
gravitational mass of a body is invariant under relativistic 

transformations. In fact, the inertial mass is also invariant, as was 

explained in Section 8-4. 

A 

11-3. Relativistic Gravitation and Relativistic Mechanics 

In Chapter 8 we developed relativistic mechanics on the basis 

of the force, momentum, and energy relations pertaining to 

electromagnetic fields. Now we need to determine whether the 

same relativistic mechanics applies to gravitational interaction. 

First we note that the gravitational counterpart of the Lorentz 

force law is° 
F = m(g+uxXK), (11-3.1) 

where F is the force acting on a point mass m moving with 

velocity u in the presence of a gravitational field g and a 

cogravitational field K. This law does not depend on the inertial 

reference frame in which m, u, g, and K are measured. 

Examining the calculations used in Section 8-1 for obtaining force 

transformation equations on the basis of Lorentz force law, we 

recognize that the same calculations can be used for obtaining the 

same force transformation equations on the basis of Eq. (11-3.1). 

Therefore the relativistic force transformation equations obtained 

in Section 8-5 are valid for both electromagnetic interactions and 

gravitational interactions. 

Of course, the analogy between electromagnetic and 

gravitational fields and forces is not perfect. In particular, since 

there are no repulsive gravitational forces, there is no gravitational 

counterpart of the parallel-plate capacitor, which we used in 

Sections 8-2 and 8-5 for obtaining transformation equations for 
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mechanical energy and momentum. However, as is shown in 

Appendix 2, the same transformation equations can be rigorously 

derived from force transformation equations obtained in Section 

8-5. And since these transformation equations are valid for 

gravitational interactions, the transformation equations for energy 

and momentum obtained in Section 8-5 are also valid for 

gravitational interactions. 

It must be noted that the constant c appearing in the various 

equations derived and used in Chapters 6-10, represents the 

velocity of propagation of electromagnetic fields in vacuum, 

which is the same as the velocity of light. The velocity of 

propagation of gravitational fields is not known, although it is 

generally believed to be equal to the velocity of light.'° If the 
velocity of propagation of gravitational fields is not the same as 

the velocity of light, our relativistic transformation equations for 

gravitation would still remain correct, but the gravitational force 
and momentum equations would then contain c different from c 
appearing in the corresponding electromagnetic equations. 
Therefore the mechanical behavior of rapidly moving bodies 
involved in gravitational interactions would be different from the 
behavior of rapidly moving bodies involved in electromagnetic 
interactions. In effect, there would be two different mechanics - 
the "gravitational-cogravitational mechanics," and the "electro- 
magnetic mechanics" - involving different effective masses, 
different effective momenta, and different rest energies. 

A possibility exists that our gravitational relativistic 
transformation equations are not entirely correct. According to 
Einstein’s mass-energy equation, any energy has a certain mass. 
But any mass is a source of gravitation. Therefore the 
gravitational field of a mass distribution may be caused not only 
by the mass of the distribution as such, but also by the 
gravitational energy of this distribution.'! If this effect is taken 
into account, the equation for the divergence of the gravitational 
field, Eq. (11-1.5), becomes only approximately correct, and all 
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equations derived with the help of Eq. (11-1.5) become also only 

approximately correct. It is important to note, however, that this 

effect, if it exists, is extremely small.!* 

v 

Example 11-3.1 A reference frame ©’ is fixed on a spherical 

planet. The planet moves with velocity v = vi relative to the 

laboratory reference frame & along their common x and x’ axes. 

The center of the planet is on the x’ axis. A pendulum of length 1’ 

is located on the planet on the x’ axis. The pendulum bob, when at 

rest, is on the x’ axis, the mass of the bob is m, the acceleration of 

gravity on the planet is g’. The period of pendulum’s oscillations is 

}/ 1/2 

[= 24+] ; (11-3.2) 
g / 

(a) Show that this formula is invariant under relativistic 

transformations. (b) Assuming that the entire mass of the planet is 

concentrated at its center, find how the motion of the planet affects 

the period of the pendulum observed from L. 

(a) Let the time of observation in & be ¢ = 0. Transforming 1’ 

by means of Eq. (11-2.19) and transforming g’ by means of Eq. (7- 

2.14), we obtain 
1/2 1/2 

iia 2a{ 1) : t2n(4) ; (11-3.3) 
vy \g 

Now, 7” is a time increment measured at a fixed location in L’. By 

Eq. (11-2.4), we then have 7’ = 7/y and therefore 

] 1/2 

T = 2a{ 4) : (11-3.4) 
g 

where all the quantities are as observed in L. 
(b) If the entire mass of the moving planet is concentrated at its 

center, the force F acting on the pendulum bob as observed from 

Lv is, by Eqs. (11-2.37) and (11-2.43), F = YFyianers Where Fyiane 

is the force acting on the bob as observed in L’. Using the 
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longitudinal mass [see Eq. (8-4.9)] of the pendulum bob, we obtain 

for g on the moving planet as observed from L, g = F/m,, = 

YF ianerY /m = y °g'. Substituting g into Eq. (11-3.4), we find 
that the period of the pendulum located on the moving planet but 

observed from ¥ is 

] 1/2 I! 1/2 

(f= 2a : = oxime) ey 27 gen leo) 
ued qs 

(Compare this result with that for Clock #12 in Chapter 10.) 

11-4. Covariant Formulation of the Electromagnetic and of the 
Gravitational-Cogravitational Theories” 

In 1906, H. Poincaré discovered that Lorentz transformations 
of coordinates and time could be associated with an imaginary 
four-dimensional "space" represented by four "orthogonal" axes, 
three of which were the ordinary space axes while the fourth was 
the time axis calibrated in units of it, where i = V-1.'4 The effect 
of the Lorentz transformations applied to a position vector in this 
four-dimensional space could be interpreted as a change of the 
components of this vector caused by a rotation of the axes around 
the origin. The idea of associating relativistic transformations with 
geometrical relations in four-dimensional space was later 
developed by Hermann Minkowski, who laid the foundation of 
what is known as the covariant formulation of electrodynamics. 

Whereas in the standard formulation of electrodynamics the 
basic mathematical elements are scalars and vectors in ordinary 
three-dimensional space, in the covariant formulation the basic 
mathematical elements are scalars ("Lorentzian scalars"), 4- 
vectors, and 4-tensors in the four-dimensional space ("Minkowski 
space"). 

There are two commonly used notations for 4-vectors. In the 
so-called "covariant" notation a 4-vector A is identified by its four 
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components written as A,, A,, A;, Ay, or, for brevity, as A), with 
fe accepting the values of 1, 2, 3, and 4. In the so-called 

“contravariant" notation a 4-vector A is identified by its four 
components written as A°, A’, A’, A?, or, for brevity, as A” with 
pu accepting the values of 0, 1, 2, and 3.'° We shall only use the 

covariant notation and shall designate 4-vectors by bold italic 

letters. In the covariant notation the first three components of a 4- 

vector are the components along the ordinary space axes while the 

fourth component is along the time axis. 

The exact definition of what particular entity constitutes a 4- 

vector starts with the definition of the "position 4-vector" r in the 

laboratory reference frame » as 

l= (Ke X55) = Os Vacn1Cl) = (ICL). (11-4.1) 

where r inside the last parentheses is used as an abbreviation for 

the three components of r along the actual space axes.!’ In the 

moving reference frame &’ the position vector is then 

Eee (x yee cr =r ocr yal 42) 

If one applies Lorentz transformations of coordinates and time to 

Eq. (11-4.2), one obtains (see Example 11-4.1) 

Tear OX ey ee Ve 101.) (11-4.3) 

where 6 = v/c. But since the effect of Lorentz transformations on 

the components of r is the same as a rotation of the axes in the 

four-dimensional space, and since the rotation of the axes should 

affect the components of all 4-vectors in a similar way, one 

defines any 4-vector 

A = (A,,A,,4,,4,) = (A,ica) (11-4.4) 

as an entity that transforms under a relativistic transformation 

("Lorentz transformation"), just like r does, into 

A’ = [yG, +iGA,),A,,4,,V(A, - A,)]. (11-4.5) 
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Now, Eq. (11-4.5) can be written as 

A! = (A; ,A;,A;,4,) =(A ico’). (11-4.6) 

Thus a 4-vector, by its very definition, retains its form under the 

Lorentz transformation, or, as one says, is "Lorentz covariant," 

or "space-time covariant," or simply "covariant." Therefore any 

physical law expressed as a relation between 4-vectors remains the 

same in all uniformly moving reference frames and_ thus 

automatically satisfies the principle of relativity. 
An example of an electromagnetic 4-vector is the 

electromagnetic "current density" 4-vector 

iO bedi dod Wal bed itar (11-4.7) 

Observe that J incorporates the components of the ordinary 
current density J and the charge density p into a single entity. 

Not all frame-independent physical quantities can be 
incorporated into 4-vectors. In particular, it is impossible to 
express the electric and magnetic field vectors in the form of 4- 
vectors. However, electric and magnetic fields can be 
incorporated into the covariant “electromagnetic 4-tensor" 
compatible with the 4-vector formulation of the current density 
and of other electromagnetic quantities. This electromagnetic 4- 
tensor is designated as F,,, and is defined as 

@) B ass, SUS e 

=B 0 B -1E,/c poe : : - (11-4.8) 
" B, -B, 0 -iE/c y x 

iE,/ic iE/c iE/e 0 

where the subscript indicates the row (1, 2, 3, 4 top to bottom) 
and the subscript p indicates the column (1, 2, 3, 4 left to right). 

As an example of the use and applications of the covariant 
formulation of electromagnetism, consider the equation 
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OF, 
= pol). (11-4.9) 

v= dx, 

With » = 4 (see Example 11-4.2) this equation represents 

Maxwell’s equation (in terms of its Cartesian components) 

V-E= f. (11-4.10) 
& 

With » = 1, 2, 3 (see Example 11-4.2) the same equation 

represents Maxwell’s equation (in terms of its Cartesian 

components) 

1 OE aq 7 bd (11-4.11) VxB- 

Likewise, the equation (see Example 11-4.3) 

ei ere ea 11-4.12 + = a 

Oem OC ares sacpisne 
v 

where » ~ v # X = 1, 2, 3, 4 represents the remaining two 

Maxwell’s equations 

V-B=0 (11-4.13) 

and 

OB 
Vion =) 11-4.14 7 ( ) 

Covariant formulation is considered by some authors to be the 

most appropriate formulation for expressing the laws of physics 

in a frame-independent form. It is also believed to be by some 

authors more concise and occasionally more informative than the 

conventional formulation. Since any equation invariant under 

relativistic transformations should be expressible in a covariant 

form, and since the principle of relativity is considered to be a 

fundamental law of nature, the laws of physics that cannot be 
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expressed in a covariant form are considered by some authors to 

be incomplete or incorrect.'® 
Newton’s gravitational law is an example of a physical law 

that cannot be expressed in a covariant form. The problem of 

finding an invariant form of the law of gravitation was first 

considered by Poincaré, but without success.'? It is interesting to 

note that Poincaré attempted to solve the problem on the basis of 

just one gravitational field (the gravitational analog of the 

electrostatic field). But even if the theory of gravitation is built 

upon two fields, as we have done in this chapter, a covariant 

theory of gravitation is not possible unless the gravitational mass, 

just like the electric charge, does not depend on the velocity with 

which the mass moves. 

Until recently it was generally believed that the mass of a 

moving body was a function of the velocity of the body (see 

Section 8-4) and thus was not invariant under relativistic 

transformations. The alleged noninvariance of mass under 

relativistic transformations was the most important reason for 
questioning the possibility of a theory of gravitation analogous to 
the theory of electromagnetism. If mass, unlike the electric 
charge, is mot invariant, then the analogy between 
electromagnetism and gravitation is not sufficiently complete to 
allow a construction of a relativistic gravitational theory similar to 
relativistic electrodynamics based on the gravitational field vector, 
with or without the addition of a second (the cogravitational) field 
vector. A theory of gravitation was therefore created by Einstein 
based not on the concept of the gravitational force field, but on 

the concept of the "curvature of space."”° 
However, as we now know, neither the gravitational nor the 

inertial mass depends on the velocity with which a body moves. 
In fact, as far as the principle of relativity, relativistic transforma- 
tions of all pertinent quantities, and relativistic mechanics are 
concerned, the analogy between electromagnetism and gravitation- 
cogravitation is complete. Therefore a covariant formulation of the 
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theory of gravitation based on gravitational-cogravitational fields 

is not only possible but can be constructed straightaway from the 

covariant theory of electromagnetism by a mere substitution of 

symbols and constants in accordance with Table 11-1. 

Thus, for example, the 4-vector mass current can be obtained 

from Eq. (11-4.7) [according to Table 11-1, none of the symbols 

or constants in Eq. (11-4.7) need to be replaced]; the result is 

Spa) e Jed tcpye (11-415) 

Likewise, the gravitational-cogravitational field tensor can be 

obtained from Eq. (11-4.8), this tume by replacing, with the help 

of Table 11-1, the components of E by the corresponding 

components of g and the components of B by the corresponding 

components of K; the result is 

ON ets 1c 
a 

= Kage Ke Hig ic 
F. = - (11-4.16) 
o KES Ke OPA gic 

y 

igic ig,ic ig,ic 0 

Finally, from Eqs. (11-4.9), (11-4.12) and Table 11-1 we 

obtain for the basic laws of gravitational-cogravitational fields 

Oh y siggitee amy (11-4.17) 
y=l Ox, oe 

and 

OF OR OR (11-4. 18) 
Ox, Ox, Ox, 

It should be kept in mind, however, that c in the gravitational 

equations stands for the speed of propagation of gravitational- 

cogravitational fields, which is generally assumed to be the same 

as the speed of light, but has never been actually measured. 
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v 

Example 11-4.1 Starting with Eq. (11-4.2) derive Eq. (11-4.3). 

Applying Eqs. (7-1.19)-(7-1.22) to the x’, y’, z’, and ict’ 

components of r’ in Eq. (11-4.2), we obtain 

r’ =[y(x - vt), y,z, icy(t - vx/c”)] 

= [yx - vict/ic), y,z, y(ict - icvx/c?)] 

= {y[x + i(v/c)ict], y,z, ylict - i(v/c)x]}. 

(11-4.19) 

Replacing in Eq. (11-4.19) x, y, z, and ict by x,, x», x3, x,, and 

replacing v/c by 6, we obtain Eq. (11-4.3). 

Example 11-4.2 Show that Eq. (11-4.9) is equivalent to Eqs. (11- 

4.10) and (11-4.11). 

Replacing in Eq. (11-4.9) F., by F,,, substituting x, y, z, and ict 

for X,, X,, X;, and x,, respectively, using, according to Eq. (11-4.8), 

Fy = 1E,/¢c, Fy = 1E,/c, F., = iEJc, and F, = 0, and using, 

according to Eq. (11-4.7), J, = icp, we have 

Q(iE,/c) | HGE,/c) _ AE,/c) a0 eee) TOO icp Lea) 
ae By age 0Ge) eae 

and since pC’ = 1/é€,, we obtain Eq. (11-4.10) (written in terms of 
Cartesian components). 

Setting in Eq. (11-4.9) » = 1, we similarly obtain 

90 0B, 0B AiE./c) 
a oS - = Ae ie egy ea 6 (BEL OY 

ax Oy Oz ocr) ‘* 
or 

ies | ce rae Hol (11-4.22) 
dy 02 cOt ‘ 

which is the x component of Eq. (11-4.11). Setting » = 2 and then 
= 3, we obtain the y and z components of Eq. (11-4.11). 
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Example 11-4.3 Show that Eq. (11-4.12) is equivalent to Eqs. (11- 
4.13), and (11-4.14). 

Setting in Eq. (11-4.12) w = 1, vy = 2, X = 3, and using Eq. 
(11-4.8), we obtain 

ee ee =) (11-4.23) 

which is the same as Eq. (11-4.13). 

Setting in Eq. (11-4.12) » = 2, vy = 3, \ = 4, and using Eqs. 

(11-4.8), we obtain 

@B  -A(-iE./c) O(iE Ic ens nO eee. (11-4.24) 
O(ict) dy dz 

Or 

OE, 9E, OB, ee 
ae car ae 

which is the x component of Eq. (11-4.14). The remaining two 

components are obtained in the same manner by setting » = 1, vy = 

3,X =4andyp=1,7=2,r = 4. 

Example 11-4.4 Show that Eq. (11-4.17) is equivalent to Eqs. (11- 

1.5), and (11-1.8) and that Eq. (11-4.18) is equivalent to Eqs. (11- 

1.6), and (11-1.7). 

Replacing in Eq. (11-4.17) F,, by F,,, substituting x, y, z, and 

ict for x,, X, X;, and x4, respectively, using, according to Eq. (11- 

4.16), Fa = ig,/c, Fy = ig,/c, Fy = ig,/c, and F,, = 0, and using, 

according to Eq. (11-4.15), J, = icp, we have 

EUON AOS OPAC VME CEsG sai etors asco dy az d(ict) ce 

which, after cancelling i and c, becomes the same as Eq. (11-1.5). 

Setting in Eq. (11-4.17) » = 1, and using, according to Eq. 11- 

4.16), F;, = 0, Fy, = K,, Fis = — K,, Fig = — ig,/c, we similarly 

obtain 
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00), OR 2 EO EEG ete 
Ox Oy Oz O(ict) Co 

or 

Mee) aces cea nh AG, eS (11-4.28) 
dy az Cer 

which is the x component of Eq. (11-1.8). Likewise, setting » = 2 

and then » = 3 in Eq. (11-4.17) and using Eq. (11-4.16), we obtain 

the y and z components of Eq. (11-1.8). 

Setting in Eq. (11-4.18) w = 1, vy = 2, X = 3, and using Eq. 

(11-4.16), we obtain 

MESS Bll =a(i, (11-4.29) 
dz dx dy 

which is the same as Eq. (11-1.6). 

Setting in Eq. (11-4.18) w = 2, v = 3, \ = 4, and using Eq. 

(11-4.16), we similarly obtain 

Le Ee (11-4.30) 
dy 0z Ot 

which is the x component of Eq. (11-1.7). The remaining two 
components are obtained in the same manner by setting p = 1, v = 
SNC = 84 andes leer =e 2 4 yn 
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APPENDIX 1 

Vector Identities 

In the vector identities listed below g and U are scalar point 

functions; A, B, and C are vector point functions; X is a scalar or 

vector point function of primed coordinates and incorporates an 

appropriate multiplication sign (dot or cross for vectors). 

Box product 

(V-1) A:(BXC) = B-(C XA) = C:(A XB) 

(V-2) A:(BXC) = (AXB)-C = - (BXA):C 

"BAC CAB" expansion 

(Wee) A x (Bx C) = B(A-C) - C(A-B) 

"Do nothing" identity 

(V-4) (A: V)r = -(A°V)r’ =A 

Identities for the calculation of gradient 

(V-5) V(pU) = pVU + UV 

(V-6) V(A:B) =(A:V)B+A x (VX B) +(B: V)A +B x (V X A) 

(V-7) Vo(U,--U,) = s sev 

Identities for the calculation of divergence 

(V-8) V:(~A) = pV-A + A'Vop 

(V-9) V-(AXB) = B-VXA - A:VXB 

(V-10) V-A(U,---U,) = vy, 2A 
i=1 a, 



(Walt) 

(V-12) 

(V-13) 

(V-14) 

(V-15) 

(V-16) 

VECTOR IDENTITIES 

Identities for the calculation of curl 

Vx (vA) = pVXA + VoXA 

V x (A X B) =(B: V)A +A(V-B) -(A: V)B-B(V- A) 

0A Vx A(U,::-U,) SE eae 

Repeated application of V 

V-(VxA) =0 

VxVU =0 

Vx(VxA) = V(V-A) - V2A 

Identities for the calculation of line and surface integrals 

(V-17) 

(V-18) 

f A-dl : |v Xx A-dS  (Stokes’s theorem) 

f Udl : | asx vu 

297 

Identities for the calculation of surface and volume integrals 

(V-19) 

(V-20) 

(V-21) 

(V-22) 

(V-23) 

pA-ds = [v-aav (Gauss’s theorem) 

} vas = [vuav 

pA xds se Jvx Adv 

f (A-B)ds } B(A-dS) : } AB-aS) 

} AB- dS) z Juv -B)A + (B- V)AlaV 

fs | [Ax (7 xB) +Bx(V x A) - A(V-B) - B(V- A)]dV 
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Helmholtz’s (Poisson’s) theorem 

(V-24) V = - | ate bat eT 
At J an space r 

Operations with V in Helmholtz’s (Poisson’s) integrals 

v7 &) = GO) =9 CS) (V-25) Laas 
r ie i 

ee vX) 2. 00 
r IZ 

(V-27) we) eS) e vi) + vA) 
r r le 

Retarded (causal) integrals 

2 

view-v) -¥'x (Vx V)- uaa 
(v-28) yve-_ Pee er, 

4m Jan space lp 

lve " Ea 
(V-29) V=- =| ce ae 

4m Jan space r 

Operations with V in retarded (causal) integrals 

(V-30) V'[X] = [v’x] + * 9X) 
c Ot 

(V-31) Vix] = - 2¢ 9X) 
C= Or 

(V-32) [Ve Sie VLE Vie 

(V-33) WAT yl. y 
ia fe ié 

(V-34) eal = eR ee 
r lee rear 



TRANSFORMATION OF MOMENTUM AND ENERGY 299 

APPENDIX 2 

Transformation Equations for Momentum and Energy 

When a force F acts on a particle during some time interval f, 

the momentum p of the particle changes according to the formula 

Ap = | Fat (A-2.1) 

or, in terms of components, 

ND. | Fat, (A-2.2) 

Ap, = | F dt , (A223) 

Ap, = | F.dt. (A-2.4) 

Likewise, when a force acts on a particle over some straight 

distance s, the energy W of the particle changes according to the 

formula 

AW = [F - ds (Ae2.5) 

or, in terms of components, 

AW = | (Fax + F, dy +F,d2). (A-2.6) 

Let us now apply Eqs. (A-2.2)-(A-2.4) to a particle in the 

reference frame ©’ which is moving with uniform velocity v = vi 

relative to the laboratory reference frame L. We have 

Ap; = [ Frac’, (A-2.7) 

Ape | Bydel, (A-2.8) 

Nay = | F dt! . (A-2.9) 

Substituting Eq. (8-5.4) into Eq. (A-2.7), we obtain 
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vu vu 
TT aA WAN ce es a a ey SN Ue) 
P: j| CO URvaicy = secavi Cy 

Transposing the primes and changing the sign in front of v in 

Eq. (7-2.4), we have 

dt’ =(1 - vu,/c*)dt. (A-Z21) 

Substituting Eq. (A-2.11) into Eq. (A-2.10) and simplifying, we 

obtain 

Ap, = v| [Ps ICU Te uF nl) | de x2 2) 

However, u,dt = dx, u,dt = dy and u,dt = dz. Therefore, by Eqs. 

(A-2.2) and (A-2.6), Eq. (A-2.12) yields 

Ap; = ylAp, - (vic?)AW]. (A-2. 13) 

From Eqs. (A-2.8), (8-5.5), (A-2.11), and (A-2.3) we similarly 

obtain 
/ 

Ap, e=2Ape (A-2.14) 

and from Eqs. (A-2.9), (8-5.6), (A-2.11), and (A-2.4) we obtain 

AD Ap, (A-2.15) 

If the particle starts from rest in the reference frame L’, Eq. 
(A-2.13)-(A-2.15) become 

Ps = Yip, - (vic?)W), (A-2. 16) 

Py =D, (A227) 

P= pe CATE 

Transposing the primes and changing the sign in front of v we obtain 
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P, = Pz + (vic?)W'), (A-2.19) 

Py = Py (A-2.20) 

P, = Pi (A221) 

Equations (A-2.16)-(A-2.21) are the transformation equations 

for mechanical momentum that we obtained in Section 8-5 by a 

different method. 

Solving Eqs. (A-2.16) and (A-2.19) for W’, we have 

W’' = y(W- vp.) (A-2.22) 

and, transposing the prime and changing the sign in front of v, 

W = y(W! +vp,), (A22:28) 

which are the transformation equations for mechanical energy that 

we obtained in Section 8-5 by a different method. 
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APPENDIX 3 
The Physical Nature of Electric and Magnetic Forces 

I. Introduction 

Electric and magnetic forces are fundamental electromagnetic 

concepts. Electric and magnetic fields are defined in terms of 

electric and magnetic forces. Many relativistic transformations 

crucially depend on the properties of these forces. And yet we know 

very little about their physical nature. Why do they occur? How 

are they created? Where do they originate? How are they 

transmitted? How do they act? Where do they act? 

To find the answers to some of these questions, three different 

properties of electric and magnetic forces are analyzed below: the 

mode of force propagation and action, the point (or points) to which 

the forces are applied, and the role that these forces play in the 

conversion of electromagnetic energy. As a result of this analysis, 

a new insight emerges into the physical nature of electric and 
magnetic forces, and a new interpretation of the mechanism of 

electromagnetic interactions presents itself. 

II. Transmission and Action of Electric and Magnetic Forces 
The famous electric force law discovered by Coulomb implied 

that electric forces originated from charges, were transmitted 
through space instantaneously, and acted on distant charges without 
any delay. However, the “action-at-a-distance” theory of electric 
and magnetic forces based on Coulomb’s law for electric charges 
and on a similar law for magnetic poles was not fruitful and helped 
little toward a better understanding or utilization of electricity and 
magnetism. 

Faraday, who founded the concept of electric and magnetic 
fields, interpreted electric and magnetic forces as fundamental 
properties of these fields. Maxwell transformed Faraday’s 
qualitative ideas into a mathematical form and developed the 
“near-action” theory of electric and magnetic forces. According to 
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Maxwell, electric and magnetic forces on charges and currents were 

due to electric and magnetic fields, as they existed at the location 

of the charges and currents experiencing these forces. The 

near-action theory of electric and magnetic forces is universally 

accepted to the present day. 

Force is usually understood as a "push or pull". Faraday 

suggested that electric and magnetic fields possessed "physical lines 

of force" that created tension along their directions and pressure in 

perpendicular directions. However we now know that "lines of 

force" (or "field lines") are only a means for pictorial representation 

of electric and magnetic fields, but not a true physical entity. 

Force can also be understood as a “stress or strain”. Maxwell 

regarded electric and magnetic fields as a special state of an elastic 

ether occupying all space and proposed new electromagnetic force 

equations, “electric and magnetic stress tensors”, based on the 

existence of this ether. He believed that electric and magnetic forces 

were transmitted from one charged body to another through 

adjacent elements of the ether stressed by these bodies. However, 

the present-day science denies the existence of an elastic ether. 

In fact, among the various known properties of electric and 

magnetic fields there is nothing that can be unambiguously 

interpreted as a push or pull or as a stress or strain mechanism. 

How do then electric and magnetic forces really act? Quite clearly, 

if neither Faraday’s lines of force nor Maxwell’s elastic ether exist, 

then the true mechanism of electromagnetic interactions is still 

unexplained. As we shall see, the calculations presented in the 

following three sections provide a very compelling idea of what this 

mechanism really is. 

III. The points to which electric force is applied in charged 

bodies 

The fundamental electromagnetic force equation is the Lorentz 

force equation 
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r= p | (E+vxByav, (A3.1) 

where F is the force acting on a charge distribution of density p, E 

is the electric field at the location of p, v is the velocity of the 

charge distribution, and B is the magnetic flux density at the 

location of p; the integration is over the volume occupied by the 

charge distribution. 

The Lorentz force equation is one of the most important and 

one of the most frequently used electromagnetic equations. Its 

validity is unquestionable. However, it is only one of the several 

equivalent force equations. A very interesting and, for the present 

discussion, very significant property of these equations is that they 

show that it is impossible to identify unambiguously the points upon 

which electric or magnetic forces act in a charged body. 

Fig. A3.1. Calculation of electric force 

between two uniformly charged dielec- 

tric plates. Depending on the method 

i——* of calculation, the force acts on 

different points of the right plate or 
NG even on the imaginary plane between 

lee eee the plates. 

Let us first consider the electric force. Let us calculate by 
several different methods the force with which two thin, uniformly 
charged dielectric plates of opposite polarity attract each other. We 
shall assume that the two plates are circular, each of radius a and 
thickness ¢ (Fig. A3.1). The left plate carries a uniformly distributed 
positive charge q of density p and is in the yz plane of rectangular 
coordinates with its center at the origin. The right plate carries a 
uniformly distributed negative charge —q of density pin = —/; its 
left surface is at a small distance x = d from the left plate. We 
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shall assume that d < a, in which case the end effects of the 
two-plate system can be neglected and the electric field in the space 

between the plates can be considered uniform.' (Our two-plate 

system is similar to a thin parallel-plate capacitor, but, unlike the 

capacitor, has charge distributions of well-defined thickness, which 

is important for the calculations that follow.) 

(a) Force computed from the Lorentz equation. The electric 

field produced by the left plate at the location of the right plate is 

| a ee Mee Pe (A3.2) 
27€,a° 

where i is a unit vector along the x axis. By Eq. (A3.1), the force 

acting on the right plate, taking into account that E is constant and 

that J Pj, dV = — q, is then 

F-_4 fe teal F A3.3 
27€,a° ae 

Observe that, according to Eq. (A3.1), the force is applied to each 

individual charge element pdV within the right plate. 

(b) Force computed from electric scalar potential. The electric 

force between charged bodies can be computed not only by using 

the Lorentz equation, but also by several other, equivalent, 

equations. One such equation for the electric force acting on charge 

distribution of constant density is *° 

F = - p> pds, (A3.4) 

In this equation, y is the electric scalar potential due to the 

force-producing charge distribution at the location of the 

force-experiencing charge distribution, the integration is over the 

surface of the force-experiencing charge distribution, and dS is a 

surface element vector directed from the force-experiencing charge 

distribution into the surrounding space. 
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The electric scalar potential produced by the left plate at a 

distance x from the origin is (as can be verified by evaluating E = 

=a?) 
p=- a X+Qp, (A3.5) 

27é,a° 

where @ is a reference potential at x = 0. According to Eq. 

(A3.5), the potential produced by left plate at the location of the left 

surface of the right plate is 

ee Abies (A3.6) 
¥1 27€,a° ve 

and the potential produced by the left plate at the location of the 

right surface of the right plate is 

gy, = - —4 (a+t+9,. (A3.7) 
276,07 

The surface of integration in Eq. (A3.4) consists of two flat 
surfaces and the circular rim of the right plate. By symmetry, the 
circular rim makes no contribution to integral in Eq. (A3.4), so that 
only the two flat surfaces contribute to the integral. By Eq. (A3.4), 
the force on the right plate is therefore 

0 
2 2 Propet =- Tae (A3.8) 

Observe that although the force shown by Eq. (A3.8) is exactly the 
same as that computed from the Lorentz equation, it acts, according 
to Eq. (A3.4) and to our calculations, not on the charge elements 
within the right plate, but on the flat surfaces of the right plate. 

(c) Force computed from electric vector potential. An electric 
field can be represented not only by its scalar potential, but also by 
its vector potential (however, the electric vector potential is defined 
only for the region of space external to the charge distribution that 
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produces the vector potential). The force acting on a uniform 

charge distribution can be calculated by using the electric vector 

potential according to the formula? 

F = - pax ds. (A3.9) 

In this equation, A is the electric vector potential due to the 

force-producing charge distribution at the location of the 

force-experiencing charge distribution, the integration is over the 

surface of the force-experiencing charge distribution, and dS is a 

surface element vector directed from the force-experiencing charge 

distribution into the surrounding space. 

The electric vector potential produced by the left plate for x > 

0 is (as can be verified by evaluating E = V X A ) 

Annee (A3. 10) 
47&,a 

where r is a perpendicular distance from the x axis, and @, is a 

right-handed circular unit vector around the x axis. By Eq. (A3.9), 

the force on the right plate is then 

ae qr F = ~ Pay f a9, % dS. (A3.11) 
0 

The surface of integration in Eq. (A3.11) consists of the two 

flat surfaces and the circular rim of the right plate. By symmetry, 

the contributions of the two flat surfaces to the integral in Eq. 

(A3.11) cancel. The only nonvanishing contribution to the integral 

comes from the rim of the plate. Since the thickness of the plate is 

t, the surface element vector of the rim is dS = ‘¢dl,,,, where dl,,, 

is a vector representing a length element of the rim and directed 

radially outward from the rim. The force on the right plate is 

therefore 
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at t c ae at 8, dg =~ Pray 20a) 
Red 0 (A3.12) 

2 

Se ane 
27€,a° 

Observe that although the force shown by Eq. (A3.12) is 

exactly the same as that computed from the Lorentz equation, it 

acts, according to Eq. (A3.9) and to our calculations, not on the 

charge elements within the right plate, but on the rim of the right 

plate. 

(d) Force computed from Maxwell stress integral. Finally, let 

us compute the force acting on the right plate by using the Maxwell 

stress integral? (Maxwell stress tensor) 

F = - 2 dEds + ep ECE dS). (A3.13) 

where E is the total electric field at an arbitrary surface 

("Maxwellian surface") enclosing the charge distribution under 

consideration, and dS is a surface element vector of the surface (dS 

is directed outward from the space enclosed). 

For the Maxwellian surface let us use an infinitely large 

hemispherical surface, whose flat part passes between the two 

charged plates. The total electric field (the field produced by the 

two plates together) in the space between the plates is 

E = oi, (A3.14) 
0 

and is zero at infinity. Therefore the Maxwell stress integral for this 
particular Maxwellian surface is 

2 

p= - 2 ((_4 Jas + «| q ( q i - ds}, (A3.15) 
2) \qe,a* Téa? \TE a? 

where the integration is only over the flat surface passing between 
the plates, and where the surface element vector dS = — dSi. Since 
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the edge effects of the plates are neglected, there is no electric field 
except directly between the plates. Hence, Eq. (A3.15) reduces to 

E ¢ 2 
k= al q J nai - e4( A Ja’, (A3.16) 

2 \mE,a° TEA? 

Or 5 

Freeh ie (A3.17) 
27€,a7 

Once again we have obtained exactly the same force as before 

from the Lorentz equation. However, according to Eq. (A.13) and 

to our calculations, the force acts not on the charge elements within 

the right plate and not even on the plate itself, but on an imaginary 

plane passing between the two plates. 

IV. The points to which magnetic force is applied in 

current-carrying conductors 

Let us now consider the magnetic force. Let us calculate by 

several different methods the force between a long, straight 

current-carrying wire and a segment of a long, straight current- 

carrying bar of rectangular cross-section placed parallel to the wire 

A, y, Fig. A3.2. Calculation of 

magnetic force between 

current-carrying wire and 

bar. Depending on_ the 

method of calculation, the 

+\als force acts on different points 
et x 
i —— of the bar or even on the 

| Sed | d>>a imaginary plane between the 

wire and the bar. 

(Fig. A3.2). The wire is at x = — d/2 in the xz plane of 

rectangular coordinates and carries a current / in the z direction. 
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The central line of the bar is also in the xz plane at x = d/2. The 

length of the bar segment is L, its thickness is a. The distance d 

between the wire and the bar is much larger than the thickness of 

the bar. The bar carries a current / (the same as that of the wire) of 

density J’ in the z direction [so that J’ = (//a*)k]. The flat surfaces 

of the bar are parallel to the xz and yz planes. 

(a) Force computed from the Lorentz equation. The magnetic 

flux-density field produced by the wire at the location of the bar is 

nee Hol 5 (A3.18) 

where j is a unit vector in the direction of the y axis. Replacing in 

the Lorentz equation, Eq. (1), pv by J’, we find that the bar is 

attracted to the wire with a force 

1g aD Dp Mpla*L ; Bgl oe 
F = | J’ x B)atdz = J! var ove -(A3.19 

0 asd ETE ot ape es 

Observe that, according to Eq. (A3.19), the force acts on each 

individual current element J'a°dz along the bar segment. 

(b) Force computed from magnetic vector potential. The force 
acting on a uniform current distribution can be calculated by using 

the magnetic vector potential according to the formula? 

F = f(a - Jods. (A3.20) 

In this equation, A is the magnetic vector potential due to the 
force-producing current distribution at the location of the 
force-experiencing current distribution, the integration is over the 
surface of the force-experiencing current distribution, and dS is a 
surface element vector directed from the force-experiencing current 
distribution into the surrounding space. 

The vector potential produced by the wire is, in cylindrical 
coordinates ,° 
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A= - 
I 

fe dnp, (A3.21) 
21 

where r is the distance from the wire. The force on the bar is then, 

by Eqs. (A3.20) and (A3.21), 

Lees f Pe imrck AMR = f Bel nas. (A3.22) 
27 27 

By symmetry, the horizontal surfaces of the bar make no 

contribution to Eq. (A3.22), so that the force on the bar is, 

remembering that a << d and replacing the integrals over the 

vertical surfaces by the product of the integrand and the surface 

area, 

ply’ head 
F = - _°__Indd - a/2)aL(-i) - 1 + i = n(d - a/2)aL(-i) 5 n(d + a/2)aL(i) 

eos yee eee 
25 (1 +a/2d) 

Of since @ <= <.d, 

cae 1b 
Fe (7/0 (AS 24) 

27 27d 

Observe that although the force shown by Eq. (A3.24) is 

exactly the same as that computed from the Lorentz equation, it 

acts, according to Eq. (A3.20) and to our calculations, not on the 

current elements in the bar, but on the vertical surfaces of the bar. 

(c) Force computed from magnetic scalar potential. The force 

acting on a uniform current distribution can be calculated by using 

the magnetic scalar potential according to the formula’ 

F = ~ pp pd x dS. (A3.25) 

In this equation, y is the magnetic scalar potential due to the 

force-producing current distribution at the location of the 
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force-experiencing current distribution, the integration is over the 

surface of the force-experiencing current distribution, and dS is a 

surface element vector directed from the force-experiencing current 

distribution into the surrounding space. 

The scalar potential produced by the wire is, in rectangular 

coordinates,” 

eee satan '[y(al2 +x] for y>0O (A3.26) 
TT 

and 

De satan" -y/(al2 Vey for! yO PAE) 
T 

By symmetry, the only contribution to the integral in Eq. 

(A3.25) is made by the horizontal surfaces of the bar. On the upper 

horizontal surface y = a/2, and on the lower horizontal surface y 

= — a/2. Therefore, since a << x, the potentials for the upper 

and the lower horizontal surfaces of the bar can be written as 

la 
ny Sage ees for > 0 (A3.28 

=~ TCS) y 
and ie 

eo eee ve for <n() A3.29 
= da (dioee) : Oo) 

respectively. Because a < < d, the integration over the horizontal 
surfaces in Eq. (A3.25) can be replaced by the product of the 
surface area and the average value of the potentials on these 

surfaces (that is, potentials at x = d/2), which yields 

la ; la F = - » —~“ J’La(k x aes -j A3.30 boa a(k x j) + yee La{k x (-j)], ¢ ) 

or / a) 2 

[Pee freee eee een 4 ect 
na 21d 

Observe that although the force shown by Eq. (A3.31) is 
exactly the same as that computed from the Lorentz equation, it 
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acts, according to Eq. (A3.25) and to our calculations, not on the 
current elements in the bar, but on the horizontal surfaces of the 
bar. 

(d) Force computed from Maxwell stress integral. Finally, let 

us compute the force acting on the bar by using the Maxwell stress 

integral’ (Maxwell stress tensor) 

FH - Pop Has * yop HCH = dS), (A3.32) 

where H is the total magnetic field at an arbitrary surface 

("Maxwellian surface") enclosing the current distribution under 

consideration, and dS is a surface element vector of the surface (dS 

is directed outward from the space enclosed). 

For the Maxwellian surface let us use an infinitely large 

hemicylindrical surface enclosing the bar, with the flat part of the 

surface in the yz plane. The total magnetic field (the field produced 

by the wire and the bar together) at the points of the yz plane is® 

eel 

T 
ae (A3.33) 
(di2y? +y?! 

and on the cylindrical part of the surface it is 

H-_6, (A3.34) 
Tr 

where r is the radius of the cylindrical surface, and 6, is a unit 

vector in the circular direction in the xy plane, right-handed with 

respect to the direction of the current in the wire and in the bar. 

However, the cylindrical part of the Maxwellian surface makes no 

contribution to the integrals in Eq. (A3.32), because the area of this 

surface is proportional to r, while the integrands in Eq. (A3.32), by 

Eq. (A3.34), are proportional to 1/7’, and because, by supposition, 

r approaches infinity on this surface. Thus the only contribution to 

the integrals in Eq. (A3.32) is made by the flat part of the 
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Maxwellian surface, where the magnetic field is given by Eq. 

(A3.33). Substituting Eq. (A3.33) into Eq. (A3.32), we have 

+00) 7 \2 2 4007 712 2 
F--2| (4) ee dS +y.| es pave | i(i- dS), 

2 J -o\m/ L(d/2)*+y? -o\M/ L(d/2)*+y 

(A3.35) 

where the integration is only over the flat surface in the xy plane. 

Since on this surface dS = Ldy(—i), Eq. (A3.35) reduces to 

2r ) 2 

ae ta Fed dy. _ (A3.36) 
2m* J -ol (d/2)* + y? 

Integrating, we obtain 

2 +00 

F=- le, ape a anes, (A3.37) 
2n | Wadyry] d  d2 -co 

or 
2 2 

F = - eas spiel oe ae ae 
Ped 2 a2 217d 

Once again we have obtained exactly the same force as that 
computed from the Lorentz equation. However, according to Eq. 
(A3.32) and to our calculations, the force acts not on the current 

elements in the bar, and not even on the bar itself, but on an 

imaginary plane located between the bar and the wire. 

V. Energy transfer in electromagnetic fields 
Let us now look into the process by means of which energy is 

transferred from an electromagnetic field to a charged body located 
in this field. Consider a charge distribution q of arbitrary shape and 
size moving in the presence of a uniform electric field E = Ei. Let 
the velocity of q at the moment of observation be v = vi, and let 
the magnetic field created by the moving q be H.. 

The influx of the energy U into the moving charge distribution 
is given by 
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dU | 
= OPS: A3=39 
dt a 

where P is the Poynting vector? 

Beak He (A3.40) 

The integration in Eq. (A3.39) is over the surface of the moving 

charge distribution, and the surface element vector dS,, is directed 

into the charge distribution. Substituting Eq. (A3.40) into Eq. 

(A3.39) and changing dS,, to the standard dS directed out of the 

charge distribution, we have for the rate at which the kinetic energy 

of q increases 

dU _ fore PEXH,-dS = - bE+H, xdS. (A3.41) 

Factoring out E (which is a constant vector) and using Gauss’s 

theorem of vector analysis to transform the last surface integral into 

a volume integral, we have 

W -E-|VxHav. (A3.42) 
dt 

Replacing now V X H.,, in accordance with Maxwell’s equation for 

V x H, by pv, where p is the density of the moving charge 

distribution, we have 

ee ee | ovav. (A3.43) 

Finally, factoring out v and replacing the integral over the charge 

density by the charge q, we obtain 

Cy (A3.44) 
dt 

Observe that we have obtained this result without ever referring 

to the force acting on the charge distribution. According to our 
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calculations, the kinetic energy that the charge q receives from the 

electric field in which it is located does not involve any force action 

at all and occurs entirely due to the energy influx into q via the 

Poynting vector. [However, Eq. (A3.44) can be interpreted as the 

product of the force gE acting on the charge distribution and of the 

velocity of the charge distribution. ] 

VI. Discussion 

Let us now summarize what we have found above about the 

properties of electric and magnetic forces. 

(a) Origin, transmission and the mode of action of electric and 

magnetic forces. Consciously or subconsciously we associate 
electric and magnetic forces with some invisible "threads" (after 
Faraday’s "physical lines of force") that "attach" themselves to 
electric charges and currents or we associate these forces with 
"stresses" in electric and magnetic fields (after Maxwell’s "stress 
tensors"). But, as explained in Section II, in the absence of such 
threads and in the absence of an elastic ether (neither of which is 
accepted by the present-day science) there must be a different 
explanation of the origin, transmission and the mode of action of 
electric and magnetic forces. 

(b) Points of application of electric and magnetic forces. We 
customarily accept that electric and magnetic forces act on some 
specific points within charged bodies. But, as the examples 
presented in Sections III and IV show, it is impossible to define 
unambiguously the point or points upon which electric and magnetic 
forces act. Depending on the method of calculation, electric and 
magnetic forces appear to act upon entirely different parts of 
electric charges or even not on the charges themselves, but on 
imaginary surfaces in the space around the charges. 

(c) Conversion of field energy into the energy of moving 
charges. We customarily believe that a moving body changes its 
energy as a result of force action upon the body. But, as shown in 
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Section V, electric field energy is converted into kinetic energy of 

moving charges by a direct process - an influx via the Poynting 

vector not involving any force action whatsoever. 

The findings that we have just enumerated do not quite agree 

with the concept of force in the conventional meaning of the word. 

Conventionally, and as defined in Newtonian mechanics, where the 

concept originated, force is inevitably associated with some device 

or mechanism that exerts "push or pull" or "stress or strain". But 

no such device or mechanism exists in electric and magnetic fields. 

Furthermore, in Newtonian mechanics, the point of application of 

a force is always clearly identifiable - in fact, the motion of a body 

resulting from the application of a force depends crucially on the 

point to which the force is applied. But in electromagnetic systems 

the point of application of an electric or magnetic force appears to 

be quite irrelevant, taking into account that such a point is not 

uniquely defined. In Newtonian mechanics a moving body increases 

its energy because a force acts on the body. But in electromagnetic 

systems energy transfer may apparently take place without 

participation of a force, since the transfer occurs by means of direct 

energy influx into the charged body. 

So, what exactly are electric and magnetic forces? To what are 

they applied? How are they transmitted and by what mechanism do 

they affect the motion of charged bodies? 

All we can actually say about electric and magnetic forces is 

that electric and magnetic fields affect the state of motion (or the 

shape) of charges and currents located in these fields. We can 

account for these changes by evaluating certain surface or volume 

integrals involving electric and magnetic fields or potentials. 

Certainly, there is no objective reason to ascribe to any of these 

integrals or calculations a greater physical significance than to any 

other.'° But then we must accept that our various force equations, 

including the Lorentz force equation itself, are merely means for 

predicting the outcome of certain electromagnetic events, and do not 
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actually provide any information about electric and magnetic forces 

as a physical reality. 

The question arises therefore: Is it possible to explain the 

various effects that we attribute to electric and magnetic forces 

without referring to electromagnetic force equations? A hint of such 

an explanation is found in the example on the energy transfer 

presented in Section V. This example shows that the energy of an 

electric field is converted into the kinetic energy of a charged body 

by direct influx of field energy into the body. However, whenever 
the kinetic energy of a body changes, its velocity changes, and 
therefore its momentum changes. Clearly, for a body isolated in an 
electric or magnetic field, the only source of momentum must be 
this field. Hence, an influx of field energy into a moving body must 
be accompanied by an influx of field momentum into the body. 
And, in fact, there is a known mechanism for such a momentum 
influx in electromagnetic systems. 

As is generally accepted, the electromagnetic field is a 
repository of electromagnetic momentum. The electromagnetic 
momentum interacts with the mechanical momentum G,, of an 
electric charge or current distribution according to the equation!! 

dG,, 1fo ee aay 
dt c* J of (A3.45) 
-|s4 (€)E? +pgH?)dS ef E(E, -dS) - bap H(H,- as) 

where c is the velocity of light, E, is the total electric field (the 
external electric field plus the electric field created by the charge 
itself) and H, is the total magnetic field (the external magnetic field 
plus the magnetic field created by the charge or current itself) of the 
system under consideration. The first integral (volume integral) in 
Eq. (A3.45) is evaluated over an arbitrary region of space 
containing the charge under consideration and represents the rate of 
change of electromagnetic momentum within this region. The 
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remaining integrals (surface integrals) are evaluated over the 

boundary surface enclosing the region over which the first integral 

is evaluated and represent the flux of electromagnetic momentum 

through this surface. 

Equation (A3.45) shows that the increase of the mechanical 

momentum of the charge occurs at the expense of the 

electromagnetic momentum lost by the region in which the charge 

is located, as well as at the expense of the electromagnetic 

momentum entering the region from the surrounding space. 

It is important to note that although Eq. (A3.45) is usually 

presented in textbooks as an equation derived from the Lorentz 

force equation, only its mathematical form is actually derived. The 

physical significance of the terms appearing in it is either 

interpreted"! or postulated. In particular, the volume integral in Eq. 

(A3.45) is either interpreted or postulated as representing the 

electromagnetic momentum, and the surface integrals are similarly 

interpreted or postulated as representing the flux of electromagnetic 

momentum. Therefore, as far as the physical significance of Eq. 

(A3.45) is concerned, the equation is not really a consequence of 

the Lorentz force equation, but rather a fundamental equation in its 

own right. On the other hand, as is shown below, Lorentz force 

equation follows from Eq. (A3.45) rigorously and directly. 

Let us apply to the surface integrals in Eq. (A3.45) the vector 

identity’? 

+} A*ds 5 paca -dS) = [ta x(VX A) - A(V-A)]dV, 
2 (A3.46) 

where A is an arbitrary vector field. We obtain 

dG i | a teetee POE (XA) dV 
dt ce an ) (A3.47) 

+ | [e,(V *E)E+y,(V + H)H -6,E x (V XE) - pH x(V x H)]dV. 

(omitting subscripts "t" for brevity). Now, by Maxwell’s equations, 
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Ou H de,E 
e,V+E=p, u,V°-H=0, VxE=--—, VxH=J+ = 

(A3.48) 

Substituting these expressions into Eq. (A3.47), we have 

dG 1 | a 
= (ar ay, 

dt c? Th ) (A3.49) 
du oH 0é,E 

» [pee x (=) atx 6 + Sv 
Since Eo = 1/C and H x 0¢,E/dt = — 0e,E/dt x H, the 
expressions containing the time derivatives cancel, and we are left 

with 

a : | (E Til Ue = | WE +3 XB)dV. (A3.50) 

which is the Lorentz force equation, except that instead of the usual 

force on the left side of the equation we have the rate of change of 
the mechanical momentum of the charge and current distribution 

subjected to the fields E and B. 

In connection with the above derivation, it may be noted that 
for time-independent systems Eq. (A3.45) reduces to Maxwell’s 
stress integrals for electric and magnetic fields (with the rate of 
change of mechanical momentum in place of the usual force) 

dG 1 
m —- 5¢ (6g +ugHt:)dS +2, E (E, + dS) + Hop HH, - dS) 

(A3.51) 
Although Eq. (A3.45) is well known, it has been customarily 
interpreted as a conservation of momentum formula, whereas it has 
a much greater significance as a relation revealing the existence of 
a direct process for converting (exchanging) electromagnetic 
momentum into mechanical momentum and vice versa. Since the 
effect of a force cannot be distinguished from that of a change of 
mechanical momentum, and since force is a much more familiar 



ELECTRIC AND MAGNETIC FORCES yall 

concept than momentum, we naturally see "force actions" in electric 

and magnetic fields, although, as explained above, certain aspects 

of such actions are ambiguous, and although what unquestionably 

does happen according to Eq. (A3.45) is a straightforward 

momentum exchange between the electromagnetic field and the 

body (charge) located in this electromagnetic field. 

But how can a momentum exchange create a static force? As a 

matter of fact, Newtonian mechanics gives us a hint of such a 

possibility. Note that when a projectile is fired into a ballistic 

pendulum, the pendulum deflects (experiences a force) as a 

consequence of momentum transfer from the projectile to the 

pendulum. The pendulum will sustain its deflection (that is, will 

appear to be subjected to a static force) if projectiles are fired into 

it in rapid succession. Thus, in mechanical systems, transferring or 

delivering mechanical momentum to a body can imitate a static 

force. It is therefore entirely possible that in electric and magnetic 

systems electrostatic and magnetostatic forces are imitated in an 

analogous manner by electromagnetic momentum flux into (or out 

of) the objects seemingly experiencing these forces. Does it mean 

that in electromagnetic fields there exist some "electromagnetic 

projectiles" carrying electromagnetic momentum? Time will tell.'° 

VII. Conclusion 

The examples and calculations presented in this Appendix show 

that force in electric and magnetic systems is a convenient and 

important mathematical device, but not the physical effect, entity, 

or agent as we know force in mechanics. They also show that in 

electric and magnetic systems there occurs a direct exchange of 

momentum between the electromagnetic field and charges or 

currents located in this field; this momentum exchange is perceived 

as an electric or magnetic force. Thus, what we call "force" in 

electric and magnetic systems is a actually a surrogate for the 

momentum transfer phenomenon. 
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When a charged body moves in an electric or magnetic field, 

its mechanical momentum changes as a result of direct momentum 

transfer from the electromagnetic field to the body (or vice versa). 

The rate of change of the mechanical momentum of the body is 

completely accounted for in magnitude and direction by the influx 

of electromagnetic momentum into the body or efflux of mechanical 

momentum into the field. 

Moreover, even if a charged body does not move, the 

electrostatic force that it experiences in an external electric field can 

be attributed to momentum transfer from the field to the body (and 

vice versa), just as when the body does move. This follows from 

the obvious fact that although for an observer co-moving with the 

body the body is stationary, one can always find a reference frame 

in which the body is moving relative to the observer, but the 

momentum transfer process cannot be affected by the location or 

motion of the observer. 

Electric and magnetic forces can be calculated from Maxwell’s 

stress integrals, Eq. (A3.51). Maxwell’s stress integrals are surface 

integrals exactly the same as those in our Eq. (A3.45). And since 

surface integrals in Eq. (A3.45) represent electromagnetic 
momentum flux, they must represent electromagnetic momentum 
flux also in Eq. (A3.51), rather than a stress in the ether, as 

originally thought by Maxwell. 

Although Eq. (A3.45) is usually considered a derived equation 
subordinate to Lorentz force equation, our analysis shows that Eq. 
(A3.45) is a fundamental electromagnetic equation, and that it is 
quite correct to regard Lorentz force equation as a consequence of 
Eq. (A3.45). Of course, the validity and the utmost practical 
significance of the Lorentz force equation is indisputable, however, 
it tells us nothing at all about the physical nature of electric and 
magnetic forces. That information is clearly provided by Eq. 
(A3.45): we see electric and magnetic force actions where, 
according to Eq. (A3.45), there is a direct transfer of 
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electromagnetic momentum into the mechanical momentum (and 

vice versa). The momentum transfer is closely related to the direct 

transfer of electric and magnetic field energy into the mechanical 

energy (and vice versa) via the Poynting vector, and, in fact, is 

inseparable from the energy transfer." 

ILLUSTRATIVE EXAMPLES 

We shall illustrate the details of electromagnetic momentum 

transfer into mechanical momentum occurring in accordance with 

Eq. (A3.45) by the two following examples. 

Example I. A cylindrical electric charge moving in a uniform 

electric field. 

Consider a positive electric charge q in the shape of a long 

cylinder of length / and radius a, moving in a uniform electric field 

E. Let / > a, let E be directed along the z axis of a cylindrical 

system of coordinates, so that E = Ek (where k is a unit vector in 

the direction of the z axis), let the axis of the cylinder coincide with 

the z axis, and let the cylinder move at the time of observation with 

velocity v < c along the z axis (Fig. A3.3). 

(a) 

Fig. A3.3. (a) A positive electric charge q in the shape of a long 

cylinder moves with velocity v in an external electric field E. (b) 

End view of the charge (the charge moves out of page). E. is the 

electric self-field of the moving charge, H, is the magnetic self-field 

of the moving charge 
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Since / > a, we can neglect the end effects of the cylinder, in 

which case the electric field produced by the cylinder outside the 

cylinder, taking into account that v < c, is 

aise Sri (A3E. 1) 
eRe ae 

where r, is a unit vector at right angles to the axis of the cylinder 

directed from the axis into the surrounding space. The total electric 

field outside the cylinder is the sum of the cylinder’s field E. and 

of the external field E = Ek in which the cylinder moves: 

ae ter. 4 Ek. (A3E.2) 
‘ Di aie = 

The magnetic field created by the cylinder outside the cylinder 

aoe! H. = ae (A3E:3) 

where 6, is a unit vector in circular direction right-handed with 

respect to the velocity vector v (and therefore right-handed with 

respect to the z axis). Since there is no other magnetic field in the 

system, H, is the total magnetic field H, of the system. 

Let us construct a cylindrical surface enclosing the cylinder just 

outside the cylinder, and let us apply the first integral of Eq. 

(A3.45) to the enclosed volume and apply the remaining integrals 

to the surface by which the cylinder is enclosed. Since the electric 

and magnetic fields inside the cylinder are not functions of time, 
and since we neglect the end effects of the cylinder, the first 
integral in Eq. (A3.45) (volume integral) vanishes, and Eq. (A3.45) 

reduces to 

aGee ai ee sf (cE Holl) dS +6,> E,(E, dS) + bo HH, -dS) 
(A3E.4) 

The first integral in this equation vanishes by symmetry [to every 
dS at a point of the cylindrical surface there corresponds an equal 
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but opposite dS at a diametrically opposite point, while E?= 
(q/4meéorl)’ +2q/4meorir, * EK+E? = (q/4ne,rl)?+E° and H? are the 
same at both points, and on the two flat ends of the cylinder dS’s 
are also in opposite directions, while E and H? are the same at 
both ends]. The last integral vanishes because on the cylindrical 

surface H, is perpendicular to dS, and on the two flat ends of the 

cylinder dS’s are in opposite directions, while H, is the same at 

both ends. Thus only the second integral survives in Eq. (A3E.4), 

so that 
dG, =" = 6p BE, -d8). (A3E.5) 

Substituting into Eq. (A3E.5) E, from Eq. (A3E.2) and taking into 

account that at the surface of the cylinder r = a, we obtain 

dG, q q - efi er, : Bx|| r, + Fk)-d8|. (A3E.6) 
at 27€,la 27€la 

On the cylindrical surface Ek is perpendicular to dS, so that Ek- dS 

= 0, and on the flat ends of the cylinder dS’s are in opposite 

directions, while Ek is the same at both ends. Hence Eq. (A3E.6) 

reduces to 

dG aE aa, ey, ' | q r, dS}. (A3E.7) 
dt 27 Ela 27 Ela 

Factoring out the constants and taking into account that r,, is parallel 

to dS on the cylindrical surface (so that r,*-dS = dS) and 

perpendicular to dS on the flat ends (so that the flat ends make no 

contribution to the integral), we obtain 

nee 4 [(_4 +, + ek\is, (ASE) 
dt 2mla } \27é,la : 

where the integration is now only over the cylindrical surface. Since 

to every r,, at a point of the cylindrical surface there corresponds an 
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equal but opposite r, at a diametrically opposite point, the first term 

of the integrand makes no contribution to the integral, and we have 

oes 1 _| zxas. (A3E.9) 
dt 2tla 

Factoring out Ek and integrating over the cylindrical surface, we 

finally obtain 

dG m . gEk | ds - 9Ek 
dt 27la 

= 2hla = gek. (A3E=10) 
2Tla 

Thus the rate of change of the mechanical momentum of the 

cylinder is gEk, just as it should be according to the conventional 

formula for the force exerted by the electric field on an electric 

charge. 

Example II. A cylindrical electric charge moving in a uniform 

magnetic field 

Consider again a positive electric charge q in the shape of a 

long cylinder of length / and radius a, this time moving in a 
uniform magnetic field H. Let H be directed along the x axis of a 
rectangular system of coordinates, so that H = Hi (where i is a unit 
vector in the direction of the x axis), let the axis of the cylinder 
coincide with the z axis, let / > a, and let the cylinder move at the 
time of observation with velocity v < c along the z axis (Fig. 
A3.4). As before, we shall neglect the end effects of the cylinder. 

The electric field produced by the cylinder is again 

Eee ern (A3E. 11) 
27E Ir 

Since there is no external electric field, E, is the total electric field 
E, of the system. 
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Fig. A3.4. (a) A positive electric charge q in the shape of a long 

cylinder moves with velocity v in an external magnetic field H=Hi. 

(b) End view of the charge (the charge moves out of page). H, is 

the magnetic self-field of the moving charge, 6, is a circular unit 

vector, dS is a surface element vector, @ is the angle between the 

negative y axis and dS. 

As before, the magnetic field created by the cylinder is 

H.=,- 63 (A3E. 12) 
27lr 

but now there is an external magnetic field H, so that the total 

magnetic field in the system is H, = H, + H, or 

H, = 2°06, + Hi. (A3E. 13) 
Ox ioe 

Let us again construct a cylindrical surface enclosing the 

cylinder just outside the cylinder, and let us apply the first integral 

of Eq. (A3.45) to the enclosed volume and apply the remaining 

integrals to the surface by which the cylinder is enclosed. Since the 

electric and magnetic fields inside the cylinder are not functions of 

time, and since we neglect the end effects of the cylinder, the first 

integral in Eq. (A3.45) (the volume integral) vanishes, and Kg. 

(A3.45) again reduces to Eq. (A3E.4). 



328 APPENDIX 3 

In the first integral of Eq. (A3E.4), E, is the same at all points 

of the cylindrical surface and the same at both ends of the cylinder, 

and therefore, by symmetry, makes no contribution to the integral. 

But H? = (qv/2alr)? + 2qv/2nird, > Hi + H = (qv/2airy + 

(qvH/tlr)cosé + H’ (see Fig. A3.4b), so that although (qv/2nlr) 

and H’ are constant and make no contribution to the integral, 

(qvH/tlr)cosé is different at different points of the surface of 

integration. Therefore Eq. (A3E.4) now becomes 

Gn 5.9 to ericos0 dS of E, (E, - dS) +H H, (H,- dS) . 
(A3E. 14) 

The second integral in Eq. (A3E.14) vanishes because on the 

cylindrical surface E, - dS = EdS and because to every r, at a 

point of the cylindrical surface there corresponds an equal but 

Opposite r, at a diametrically opposite point, while at the two flat 

ends of the cylinder dS’s are in opposite directions and E, is the 

same at both ends. Thus Eq. (A3E.14) becomes 

dG, 1 vH 5 = 54 bor cosods + Hof H (H,- dS) : (A3Ea15) 

Substituting into Eq. (A3E.15) H, from Eq. (A3E.13), and 

taking into account that at the surface of the cylinder r = a, we 

obtain 

=-__® 4 __cosédS 
dt 28) ala 

+ Ho (5 Has dei Ane + Hi]-dS|. (A3E.16) 

On the cylindrical surface 0, is perpendicular to dS, so that @,- dS 
= 0, and on the flat ends of the cylinder dS’s are in opposite 
directions, while H, is the same at both ends. Hence Eq. (A3E. 16) 
reduces to 
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SS = - oh We cosb dS “Hof (2-8, ' Hi EH dS). 
(A3E. 17) 

Noting that i » dS = dS,, where dS, is the x component of dS, and 

noting that on the flat ends i - dS = 0 (because dS is perpendicular 

to the x axis there), we obtain 

dG, a | qvH 

“Dy. 
PH cosa +u|( Mary Hi)Has 

dt tla 2tla “ ‘ ane (A3E. 18) 
where the integration is now only over the cylindrical surface. Since 

to every dS, at a point of the cylindrical surface there corresponds 

an equal but opposite dS, at a diametrically opposite point, while Hi 

is everywhere the same, Hi makes no contribution to the last 

integral, and we obtain, factoring out the constants, 

dG uqvH 
ee Pat | coseas += + 
dt 2ala 

vH fof | 0,dS,. (A3E.19) 
27a 

In rectangular coordinates, dS = al[(sin@)i — (cosé@)j]d6, 0, = 

(cosO)i + (sin@)j, and dS, = al(sin@)d@. Substituting dS, 0, and dS, 

into Eq. (A3E.19) and integrating over @ from 0 to 27, we have 

d jis 
OSs ins ie (-sinOi + cos6j) cos@aldé 

dt “Qnla 

2a 

+ |. (cos@i + sin@j) alsin6 dé (A3B.20) 

vH = (r+) j 
27 

or 
dG 

nm = uqvHj . (A3E.21) 

at 

Thus the rate of change of the mechanical momentum of the 

cylinder is qvBj, just as it should be according to the Lorentz force 

formula. 
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References and Remarks for Appendix 3 

1. The illustrative examples used in this Appendix are deliberately 
very simple, since their sole purpose is to elucidate as clearly and 

as simply as possible the ideas presented here. 

2. Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed., 

(Electret Scientific, Star City, 1989), pp. 210-211. 

3. Oleg D. Jefimenko, "Direct calculation of electric and magnetic 

forces from potential", Am. J. Phys., 58, 625-631 (1990). 

4. The possibility of expressing the electrostatic fields by vector 

potentials is not well known. Since V-(VxXA)=0, the vector 

potential for electrostatic field can only be used in charge-free 

regions of space, where V-E=0. This limitation of the electric 

vector potential is probably the reason why it is practically ignored 

in textbooks. 

5. See, for example, Ref, 2, pps215-216: 

6. See, for example, Ref. 2, pp. 366-367. 

7. See, for example, Ref. 2, pp. 446-447. 

8. See, for example, Ref. 2, pp. 334-335. 

9. See, for example, Ref. 2, pp. 508-509. 

10. Historically, the most important force equation is the 

Coulomb’s force equation. But within the logical framework of 

electromagnetic field theory Coulomb’s equation is a derived 

equation and is not more significant than any other force equation. 

See Ref 2, pp. 186-209 and pp. 427-440 (for magnetic fields). 

11. See, for example, J. D. Jackson, Classical Electrodynamics, 

3rd ed., (Wiley, New York, 1999), pp. 260-262. 

12. See, for example, Ref. 2, p. 58. 

13. It may be noted that in quantum electrodynamics 
electromagnetic interactions are assumed to be mediated by photons. 
14. Similar conclusions apply to gravitational forces. See O. D. 
Jefimenko, "Retardics and Gravitation," a paper presented at the IV 
Siberian Conference on Mathematical Problems of Space-Time 
Physics of Complex Systems (FPV-2002), Novosibirsk, July 28-31, 
2002. See also M. R. Edwards, Ed., Pushing Gravity (Apeiron, 
Montreal, 2002). 



INDEX 

Abraham, M., 205 

Acceleration, 104, 105 

transformation of, 154-156 

Action-at-a-distance, 302 

AdlernGaGre205 

Ampére’s law, 215, 229 

Analogy, electromagnetic and 

gravitational, 267-271, 288 

Antenna, 

electric dipole, 24 

Hertzian dipole, 24 

magnetic dipole, 26 

Atomic model, 92 

Bailey, J., 265 

Barger, V. D., 233 

BAC CAB expansion, 296 

Basic laws, 15, 268-270 

Becker, R., 14, 294 

Beckmann, P., 236 

Biological effects, 263 

Biot-Savart law, 19, 91, 110 

Borer, K., 265 

Box product, 297 

Brillouin, L., 264 

Bucherer, A. H., 145 

Butler; Jz W2, 233 

Capacitor, 186-190, 212-218 

Causal equations, 

electromagnetic, 

gravitational, 269 

Causality, 6, 38, 237 

Causative sources, 6, 16, 18, 39 

Cavalleri, G. 233 

Characteristic time, 21 

Charge, 

moving, 47-100, 103-124, 131 

does not depend on velocity, 28, 

106, 107, 117 

stationary, 132, 133, 138, 141 

Charge density, transformation of, 

EKO, HBS, ISO, ee? 

Oy Sih5 ZU 

331 

Circular orbit, 90, 91, 236, 274 

Clock, 131, 232-267 

paradox, 235, 266 

synchronization, 146, 264, 266 

Clocks, moving, 235-264 

Cogravitational field, 277, 278 

of accelerating point mass, 273 

of uniformly moving point mass, 

Aaypp 

related to gravitational field, 

272 

transformation of, 277, 278 

Cogravitational potential, 

of uniformly moving point mass, 

273 

transformation of, 277-279 

Combley, F., 265 

Conservation, 

of charge, 19 

of energy, 197 

of momentum, 225, 320 

Constitutive equations, 16 

Continuity equation, electric, 20 

Convection current, electric, 215 

Conversion, 

electromagnetism to 

gravitation, 271-273 

electromagnetic momentum to 

mechanical momentum, 320- 

323 

to present position, 

LOGrEl S272 

Coordinates, transformation of, 

Mes7/j isk, Sh), TIE), ileyit 

Correlation between the electric 

and the magnetic field, 58-61, 

69, 165-167 

Corresponding states, 170, 265 

Corresponding symbols, 

electromagnetic and 

gravitational, 271 

Coulomb’s field, 19, 91, 92 

Coulomb’s law, 202, 330 

91, 104, 



33) INDEX 

Covariance, 165, 267, 287, 288 

Covariant formulation, 284-291 

Cid, 1G, WW, AB, Ba, 2X97 

Current, see Electric current, Mass 

current, 

Curvature of space, 288 

Derivatives, partial, transformation 

of, 156-158 

Dirac 6-function, 102 

Divergence, 4, 5, 296 

Durland, S. W.., viii 

Dushek, O., 102 

Dragging force, 39 

Drumm, H., 265 

Earnshaw theorem, 196 

Effective 

lenotheay Samra 

volume, 50, 65, 72, 81, 104 

EPinsteinee Acre! Ss Omstsieni4 5147p 

179-180, 202, 206, 208, 209, 

IN, DUS), BEL, WEG, 2E/, 

262-266, 269, 275, 288, 294 

Einstein’s 

derivations, 231, 232 

mass-energy relation, 202 

postulates, 208 

special relativity theory, 130, 

ISI, VilBs, BS 

velocity addition law, 179 

Electric charge, 

conservation of, 19 

invariance of, 182, 288 

density, transformation of, 136, 

138, 150, 152 

Electric current density, 

inhomogeneities, 28 

transformation of, 139, 150, 

SY, 22/7, 2K 

Electric field, 

of accelerating point charge, 

79-91 

of charged cylinder, 323, 326 

of dielectric plate, 305 

of electric dipole antenna, 25 

of Hertzian dipole, 25, 26 

of magnetic dipole antenna, 27 

of rotating disk, 32 

of rotating ring, 22, 23, 38 

of stationary charge distribution, 

134, 171, 173 

of uniformly moving, 

charge distribution, 48, 103, 

106, 107, 11-114, 120-122, 

1S US 2s E1 74. 

charged cylinder, 122-124, 

323-324, 326 

line charge, 73-79, 175, 176, 

210-213, 248, 250, 254, 
256 

charged ribbon, 108-110 

charged ring, 107-108, 239 

charged plate, 258 

point charge, 62-70, 

102,167-170, 241, 243, 

245, 252, 261 

parallel-plate capacitor, 121- 

214, 217, 218 

retarded, 18, 19, 21, 30 

snapshot of, 69-70, 121, 137 

transformation of, 131-139 

Electric potential, 115, 120, 176, 

305-307, 317, 330 

of moving point charge, 95-99 

of stationary charge, 141, 143 

of uniformly moving charge 

distribution, 116, 118, 120- 

122, 176-178 

retarded, 34, 35, 115-119 

snapshot of, 121 
transformation of, 141, 151, 152 

Electrokinetic 

field, 40-44 

force, 40 

Electromagnetic, 

energy transformation, 186189 



Electromagnetic (continued), 

field tensor, 286 

induction, 38-43 

momentum, 187, 189, 197, 

224, 318-323 

flux of, 318-322 

Electron, 289 

orbital motion of, 92 

slower period of revolution of, 

236 

Electrostatic 

field 6071p 1732175 

potential, 176, 177 

Energy, 

conservation of, 

314-318, 323 

electromagnetic, transformation 

of, 186-189 

flux of, 314, 316-318 

kinetic, 202, 315-318 

mechanical, transformation of, 

198, 203, 299-301 

Ether, 207-209, 303, 316, 322 

198, 302, 

Faraday, M. 41, 302, 303, 316 

Faraday induction, 38 

Farley, F. J. M., 265 

Field, J. H., 265 

Field, see Cogravitational field, 

Electric field, Electromagnetic 

field, Force field, Gravimagnetic 

field, Gravitational field, 

Heaviside field 

Field point, 4 

Field signal, 48, 69, 74 

Field tensor, 

electromagnetic, 286 

gravitational, 289 

Fisch, D. H. 265 

Fitzgerald, G. F., 208, 231 

Fitzgerald-Lorentz contraction, 208 

Flegel, W., 265 

Force (see also Lorentz’s force), 

INDEX B35. 

electromagnetic, physical nature 

of, 302-330 

gravitational, 281-283, 330 

Lorentz’s, transformation of, 

181-186 

mechanical, transformation of, 

196-197, 229 

Force field, 41, 42, 231, 288 

Four-vector, 284-286, 289 

Four-tensor, 286 

Frame of reference, 

202, 216 

inertial, 120 

moving, 130, 182 

stationary, (see also Rest frame) 

130 

RrencheAw beso O5 

We). iU2%0). 

Galilean relativity, 130 

Galilei, Galileo, 130 

Gamba, A., 232 

Gamov, G. 265 

Gauss’s theorem, 297 

General wave equation, 3, 16 

Goldberg, S., 146 

Gradient, 28, 82, 106, 107, 111, 

296 

retarded, 101 

Gravimagnetic field, see 

Cogravitational field 

Gravitation, 130, 267, 268, 271, 

281, 284, 288, 289 

time-dependent, 267-269, 272- 

275 

velocity of propagation, 268, 

282, 289 

Gravitational 

current density, transformation 

OLD 2TS 

field, 277, 279, 283, 289 

of accelerating mass, 272 

of uniformly moving mass 

distribution, 273 



334 

Gravitational (continued), 

field, 

of uniformly moving point 

mass, 272, 279, 280 

retarded, 269, 272 

time-dependent, 267269 

transformation of, 276-278 

tensor, 299 

mechanics, 281-284 

potential, 273 

Griffiths, D. J., 102 

Gren, 9., 233 

Hall, D. B., 265 

Hattersley, H. C., 265 

Hayden, H. C., 264 

Heald, M. A., vii, 14 

Heaviside, Oliver, 68, 101,209, 

DA, WEY), ASS, PAKS), PV), HL} 

Heaviside’s 

equation, 

for moving point charge, 68, 

MNO, Yi, 2B, PN, BES 

for moving point mass, 272, 

280 

field, 268 

Helmholtz’s theorem, 298 

Hillion, P., vii 

Hybrid transformation equations, 

Sy? 

Inertial frame of reference, 130, 

I, 20H, PUB), YNO, 72240) 

Inhomogeneous wave equation, 3, 

16 

Integrals, 

present position, 106, 107, 114, 

OLS, SUIS), ITU, SHI, We AL 

retarded, see Retarded integrals 

Invariance, 

of Maxwell equations, 158-165 

of charge, 28, 106, 107, 117 

of mass, 202, 281, 288 

Jackson, J. D., 294, 330 

Jefimenko, O. D., 45, 100-102, 

125, 147, 180, 205, 233, 234, 

265, 292, 293, 330 

Jensen, D. G., 233 

Kinetic energy, 200, 202 

Kirchhoff, G., 14 

Kittel, C., 146, 264 

Konopinski, E. J., 294 

Kosarev, Yu. G., viii 

Krienen, F. 265 

Kuzmin, S. V., 102 

Laboratory, 129, 138, 239-261 

Lange, F., 265 

Larmor, J., 130, 146, 147, 178- 

180, 264 

Lecher, E., 147, 232, 264 

Length, 207, 208 

apparent, 64, 81 

contraction of, 207-209, 211- 

IBID, PNG 

retarded, see Retarded length 

Lenz’s law, 40 

Ike Vernier Umea 14: 

Lewis, G. N., 218, 233 

Liénard, 96-99, 102 

Liénard-Wiechert potentials, 96, 

97, 99 

Light signal, 69 

Line charge, 73-79, 125, 175, 

176, 210-214, 218, 228, 229, 

248, 250, 254, 256 

Longitudinal mass, 195, 205, 239, 

250, 260, 261, 263 

Lorentz, H. A., 130, 145, 146, 

170, 178-180, 205, 215, 231 

Lorentz’s, 

contraction, 61, 207- 209, 211- 

DismolOw232235e2 04 

WHOKES, Wi, Wa, BMD, axle}. aaAIS). 

248, 252, 254, 256, 258, 262, 

281, 303-312, 314, 317, 319, 

320, 322, 329 



Lorentz’s (continued), 

transformations (see also 

Relativistic transformations), 

146, 152, 178, 179, 208, 215- 

217, 236, 260, 284, 285 

as an operator, 216 

Lorentz-Einstein, 

electrodynamic theory, 145 

transformations, 152, 212, 265 

Lorentz-Fitzgerald contraction, 

208 

Lorentz-Poincaré relativity theory, 

130, 145-147, 208 

Lorenz’s condition, 35, 36 

Magnetic field, 

of accelerating point charge, 

91-95 

of charged cylinder, 324, 327 

of electric current, 228, 310 

of electric dipole antenna, 24, 

25 

of Hertzian dipole, 24, 25 

of magnetic dipole antenna, 27 

of solenoid, 43 

of rotating disk, 33 

of rotating ring, 23, 37 

of uniformly moving 

charge distribution, 115, 132 

charged ribbon, 110 

line charge, 79, 229, 254, 

256 

parallel-plate capacitor, 214, 

218 

point charge, 70-72, 93, 95, 

222A 24S 22 

related to electric field, 58-61, 

69, 165-167 

retardedsa 1S, 19s) 3) 95 

snapshot of, 137 

transformations of, 131-139, 

1/510), tapi 

Magnetic, 

force, 222, 223, 228-230 

330 

potential, 37, 41, 42, 96-99, 

119-121, 141-144, 310-312, 

317, 330 

Marion, J. B., 14 

Mass, see also Longitudinal mass, 

Relativistic mass, Rest mass, 

Transverse mass 

density, transformation of, 277, 

278 

does not depend on velocity, 

196, 288 

proper, 193 

Mass-energy relation, 202 

Maxwell’s equations, 3, 15, 16, 

18, 68, 156, 158, 165, 179, 

NeXO), PAV, WilSy., WWE), WSs). AS 7/. 

271, 287, 294, 319 

invariance of Cartesian 

components of, 158-165, 180 

non-invariance of the vector 

form of, 162, 165, 180 

solutions of, 18 

Maxwell’s induction, 38 

Maxwell’s stress integral, 308, 

Silsh,, Bn 

Maxwell’s stress tensor, 303, 308, 

313, 316 

McAdory, R. T., 233 

McQuistan, R. B., 14 

Mechanics, relativistic, 190-204, 

267, 281, 288 

Mercury, perihelion displacement 

Oi, VIE\, DIB 

Mesons, 236, 265 

Method of corresponding states 

170-178 

Michelson, A. A., 207, 231 

Michelson-Morley experiment, 207 

Miller, A. I., 145-147, 206, 208, 

232, 264 

Minkowski, H., 284, 294 

Momentum, 

conservation of, 225 



336 

Momentum (continued), 

electromagnetic, 187, 189, 198, 

224, 318-323 

mechanical, 190-193, 306, 318- 

323, 329 

transformation of, 198, 204 

299-301 

Morley, E. W., 207, 231 

Near-action, viii, 302, 303 

Newton, 293 

Newton’s, 

gravitational law, 101, 275, 288 

gravitational field, 267, 274 

second law, 190, 191, 193 

Nickerson, J. C., 233 

Okun, L. B., 205 

Olsson, M. G., 233 

Panofsky, W. K. H., 45, 306 

Paradoxes, relativistic, 207, 218- 

IA. HBS), WES 

Parallel-plate capacitor, 186-190, 

212-218 

Partial derivatives, transformation 

of, 156-158 

Pendulum, 283, 284 

Phillips, M., 45, 294 

Picasso, E., 265 

Planck, Max, 145, 205 

Planetary motion, 101, 273-275 

Jetoytneente, Jel, WSO), IB, W'S, 1S, 

179, 180, 206, 232, 284, 294 

Point charge, 60-72, 79-100, 213, 

238-261 

Poisson’s, 

equation, 12 

theorem, 298 

Position, 

present, 51-54, 56, 58, 60, 61, 

64, 65, 68, 69, 71, 73-76, 81, 

83, 89, 90, 91, 96, 99, 104, 

NOS), IU, R20), B77. DA 

retarded, 51, 52, 54, 65, 68, 

73-75, 104, 105, 114 

projected present, 69 

Position vector, 7, 61, 90, 91, 99, 

104, 114, 117, 120, 285, 286 

Postulates, Einstein’s, 208 

Potential, see also Cogravitational 

potential, Electric potential, 

Electromagnetic potential, 

Gravitational potential, Magnetic 

potential 

electromagnetic, transformation 

of, 141-144, 151, 152 

of moving charge distribution, 

115-120, 177, 178 

of moving point charge, 95-100 

of rotating ring, 36, 37 

of stationary charge distribution, 

141, 176, 177 

retarded, 4, 5, 34, 35, 41, 42, 

115-119 

Poynting vector, 315-317, 323 

Present position, see Position 

Present time, 6, 7 

Present time quantities, 6, 55, 76, 

78, 105, 106 

Principle, 

of causality, 6 

of relativity, 129-131, 138, 139 

Purcell, E. M., 233 

Quantities, corresponding electric 

and gravitational, 271 

Reference frame, 129-149 

inertial, 130, 182, 202, 203, 

216, 220 

moving, 130, 148, 149, 182 

Stationary, 130, 148, 149 

Relativistic, 

electrodynamics, 148, 149 

electromagnetism, 129, 131, 

133 



Relativistic (continued), 

force, 196-197, 202, 230, 281 

mass, 193-196 

mechanics, 190-204, 267, 281, 

288 

momentum, 190-193, 202 

paradoxes, 207, 218, 227-235, 

266 

transformations, 158-178, 215, 

216, 281, 284, 285, 288 

of acceleration, 154-156 

of charge density, 150, 152 

of cogravitational field, 278, 

279 

of coordinates, 150, 151, 

178, 276, 278 

of current density, 150, 152 

of electric and magnetic 

fields, 150-152, 179 

of electric and magnetic 

potentials, 151, 152 

of electromagnetic energy, 

186-188 

of electromagnetic 

momentum, 186-190 

of gravitational fields, 276- 

278 

of gravitational potentials, 

277-279 

of Lorentz force, 181-186 

of mass density, 277-278 

of mass-current density, 277, 

278 

of mechanical energy, 198 

of mechanical force, 196, 

197, 229 

of mechanical momentum, 

198 

of partial derivatives, 156- 

158 

of time, 150, 151, 178, 226, 

278 

of torque, 199, 200 

337 

of velocity, 153, 154, 156 

Relativity, Galilean, 130 

general, 130, 275, 293 

of space and time, 131 

principle, 129-131, 138, 139, 

165 

Special ue sO sis len21Ge236. 

MB PN, ATS 

theory, 130, 131, 180, 207, 

231, 263, 264, 266 

of Einstein, 130, 145-147, 

Ms AGS, AIS, 2X8 

of Lorentz and Poincaré, 

130, 145-147, 208 

Rest energy, 200-202 

Rest frame, 153, 154, 156, 170 

Rest mass, 193 

Retardation, 56 

Retarded, (see also Field, Position, 

Potential, Time, Volume) 

function, 6, 8 

integrals, 3-6, 10-12, 18, 104, 

INS, IIS), 724, DAoke 

surface, 30, 31 

syyi, SW), Dil, si, 13, V1, 2S 

quantities, 3, 6, 10, 104, 105, 

111, 150, 298 

Retardation symbol, 5, 104 

Richardson, O. W., 14 

Right-angle lever paradox, 218- 

2a 

Rosser, W. E. V., vii, 294 

Rossi, B., 265 

von Ruden, W., 265 

Sandin, T. R., 205 

Sauter, F., 14, 294 

Scale units, 135 

Schaffner, K. F., 146, 180 

Neo, Ge 1D, ABW 

Scribner, Jr., C., 146 

Self-energy, 201 

Shape, apparent, 51-53, 64, 8, 

232 



338 

Signal speed, 6 

Smulsky, J. J., vii, 206 

Smith, J. H., 265 

Solenoid, 42-44 

Source point, 4 

Spinelli, G., 233 

Stokes’s theorem, 297 

SmePisoy, Wo INI. Wit, 287 

Subfield, 231 

SUifernay Ken Gamez 2 

SUN 4 eS 

Surface integrals, 30-33, 107, 

118, 297, 305, 307, 308, 310, 

313-315, 322, 324-329, 

Symbols, corresponding electric 

and gravitational, 271 

Tensor, 

electromagnetic, 286 

gravitational-cogravitational, 

289 

Maxwell’s stress, 303, 308, 

313, 316 

Merrell lee sD 

Theory of relativity, see Relativity 

theory, 

Thomson, J. J., 178, 206 

Time dilation, 131, 235-237, 

262-264 

experimental verification of, 

236, 263, 

Time, 

retarded, 6, 7, 18, 48, 56, 80 

87 

present, 6, 7 

transformation of, 139, 140, 

WSO), 155i 

Time-dependent gravitational 

equations, 267-269, 272, 273, 

276-284, 289, 291 

Tolman, R. C., 218, 233 

Torque, 199, 200, 219-227, 274 

transformation of, 199, 200 

’ 

Transformation, see under the type 

or name of transformation, such 

as Coordinate transformation, 

Electric field transformation, 

Lorentz transformation, etc. 

Transverse mass, 195, 205, 245, 

246, 248, 252, 254, 263 

Twin paradox, 235 

Vacuum polarization, 294 

Vector identities, 297, 298 

Vector wave field theorem, 4, 10, 

ib, Hy, ie 

Velocity, 

of electromagnetic propagation, 

18 

of gravitation, 268, 283 

of light, 18, 48, 98, 268, 283 

relativistic addition of, 153, 179 

retarded, 81, 85, 93 

transformation of, 153-156 

Viner, M. R., 232 

Visual appearance of moving 

bodies, 209, 232 

Voigt, W., 179 

Voltage, induced in ring, 42-44 

Volume, 

apparent, 82 

effective, 50, 65, 72, 81, 104 

element, retarded, 50, 51, 54, 

DOO Seals 

retarded, 65, 104, 116, 209 

Walker, D. K., viii 

Wave field theorem, 4, 10, 11, 

IN}, 19 

Waves, electromagnetic, 24, 26 

Weinstein, R., 232 

Weisskopf, V. F., 232 

Whittaker, E. T., 145, 205 

Wiechert, 96-99, 102 

Zapffe, C. A., 264 



\\ 







beer 

% 

+ 
* ¥ 

fag 
in
t 

4 

7% 

- 


