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PREFACE

Newton’s theory of gravitation is the basic working theory
of astronomers and of all the scientists dealing with space
exploration and celestial mechanics. On the basis of Newton’s
theory of gravitation we determine the motion of planets and their
satellites, predict the existence and celestial coordinates of planets
not previously observed, launch artificial satellites and space
ships. Nevertheless, Newton’s theory of gravitation has serious
defects. As far as its practical applications are concerned, it is
incapable of accounting for certain fine details of planetary
mmotion. As far as its conceptual content is concerned, it is a
theory of ‘"gravitational state” rather than a theory of
"gravitational process," since it does not provide any information
on the temporal aspect of gravitation'. Furthermore, Newton’s
theory of gravitation cannot be reconciled with the principle of
causality and with the law of conservation of momentum when it
is applied to time-dependent gravitational systems.

And yet, the fundamental validity of Newton’s theory of
gravitation is indisputable and its essential reliability has been
established beyond any doubt. It is plausible therefore that
Newton’s theory of gravitation is merely incomplete and requires
a further development. The purpose of this book is to extend and
to generalize Newton’s theory of gravitation so as to make it free
Irom the above defects and to make it fully applicable to all
possible gravitational systems and interactions.

The starting point of the generalization of Newton’s theory of
gravitation presented in this book is the idea that gravitational
interactions in time-dependent gravitational systems are mediated

'T am indebted to Professor Yu. G. Kosarev for an illuminating
discussion of this property of Newton’s theory.
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by two force fields: the gravitational field proper created by all
masses and acting upon all masses, and by the "cogravitational”
field created by moving masses only and acting upon moving
masses only. In accordance with the principle of causality, the two
fields are represented by retarded field integrals, which, for static
or slowly-varying gravitational systems, reduce to the ordinary
Newtonian gravitational field integral. As the readers will see, the
generalized Newtonian theory of gravitation developed on this
basis yields extremely significant and far-reaching results.

An immediate consequence of the generalized Newtonian
theory of gravitation is that gravitational interactions normally
involve not just one single force of gravitational attraction, but at
least four additional forces associated with velocities, accelerations
and rotations of interacting bodies.

Another direct consequence of the generalized theory of
gravitation is an astonishing complexity of gravitational
interactions and a surprising variety of effects of gravitational
interactions. Here are some examples: a fast-moving point mass
passing a spherically-symmetric body causes the latter to rotate;
a mass moving with rapidly-decreasing velocity exerts both an
attractive and a repulsive force on neighboring bodies; a fast-
moving mass passing a stationary mass exerts an explosion-like
force on the latter; a rotating mass that is suddenly stopped causes
neighboring bodies to rotate; the period of revolution of a planet
or satellite is affected by the rotation of the central body.

The generalized theory of gravitation provides a large variety
of methods for calculating gravitational interactions between
bodies of all shapes and sizes. Among these methods are:
calculations using gravitational-cogravitational force equations,
calculations based on the gravitational-cogravitational field energy,
calculations based on gravitational-cogravitational Maxwell’s
stress integral, direct calculations in terms of scalar and vector
potentials without using gravitational or cogravitational fields.

The generalized theory of gravitation is fully compatible with
the laws of conservation of energy and momentum. A very
important result of this compatibility is the definitive explanation
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provided by the generalized theory of gravitation for the process
of conversion of potential energy (field energy) into the kinetic
energy of bodies falling under the action of a gravitational field.

The generalized theory of gravitation provides explanations
for certain peculiarities of the motion of celestial bodies, and for
the differential rotation of the Sun in particular.

The generalized theory of gravitation is compatible with the
special theory of relativity. As a result, gravitational equations for
stationary gravitational systems can be easily converted into the
corresponding equations for moving gravitational systems, thus
providing an additional method for analyzing and computing
gravitational effects associated with moving bodies.

The generalized theory of gravitation predicts the existence of
gravitation-cogravitational waves and explains how such waves
can be generated.

The generalized theory of gravitation indicates the existence
of a link between gravitation and electromagnetism by showing
that beams of electromagnetic radiation (light beams) are deflected
and bent by gravitational fields. This means that a gravitational
field can be regarded as a medium whose index of refraction is
larger than that of a pure vacuum in the absence of a gravitational
field. Since the index of refraction is associated with the
permittivity and permeability of the medium, and since
electromagnetic forces are affected by permittivity and
permeability, electromagnetic forces become weaker in the
presence of gravitational fields, and electromagnetic processes
(such as the rate of electromagnetic clocks, for example) become
slower when taking place in gravitational fields.

The generalized theory of gravitation also indicates the
existence of antigravitational (repulsive) fields and mass
formations. A cosmological consequence of such fields and mass
formations is a periodic expansion and contraction of the
Universe. Another consequence is that the actual mass of the
Universe may be much larger than the mass revealed by analyzing
gravitational attraction in the galaxies, since antigravitational mass
formations do not attract other masses.
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It is natural to compare the various consequences of the
generalized theory of gravitation with the consequences of the
general relativity theory. In this regard the following three
remarks should be made: First, there are no observable
gravitational effects revealed by the general relativity theory that
do not have their counterparts in the generalized theory of
gravitation. Second, the generalized theory of gravitation describes
a vastly larger number of gravitational effects than those described
by the general relativity theory. Third, numerical values for
gravitational effects predicted by the general relativity theory are
usually different from the corresponding values predicted by the
generalized theory of gravitation; the discrepancy is almost always
a consequence of greater complexity and depth of gravitational
interactions revealed by the generalized theory of gravitation.

Although this book presents the results of original research,
it is written in the style of a textbook and contains numerous
illustrative examples demonstrating various applications of the
theory developed in the book.

The book is a sequel to my Electricity and Magnetism, 2nd
ed., (Electret Scientific, Star City, 1989), Causality,
Electromagnetic Induction, and Gravitation, 2nd ed., (Electret
Scientific, Star City, 2000), and Electromagnetic Retardation and
Theory of Relativity, 2nd ed., (Electret Scientific, Star City,
2004). Some of the material presented here closely parallels the
material presented in the three aforementioned books.

I am very grateful to S. W. Durland and D. K. Walker for
reading the manuscript of this book and for their suggestions and
recommendations. Special thanks are due to I. A. Eganova for her
very useful remarks.

My greatest thanks are however to my wife Valentina for
patiently and carefully reading and correcting several versions of
the manuscript, but, most of all, for her ever-present help, advice,
and encouragement.

Oleg D. Jefimenko
August 14, 2006



CONTENTS

PREFACE v

Part I NEWTON’S GRAVITATIONAL THEORY
GENERALIZED TO TIME-DEPENDENT SYSTEMS

1 NEWTON’S THEORY OF GRAVITATION AND
THE NEED FOR ITS FURTHER DEVELOPMENT

1-1. Newton’s Theory of Gravitation 3
1-2. Newton’s Gravitational Theory and Causality 5
1-3. Newton’s Gravitational Theory and
Conservation of Momentum 7
1-4. Is Newton’s Gravitational Theory Wrong or
Incomplete? 8
References and Remarks for Chapter 1 10
2 PHYSICAL AND MATHEMATICAL BASIS OF
THE GENERALIZED THEORY OF GRAVITATION
2-1. Conceptual Content of the Generalized Theory of
Gravitation 11
2-2. Fundamental Equations of the Generalized Theory of
Gravitation 13
2-3. Gravitational and Cogravitational Forces According to
the Generalized Theory of Gravitation 21

References and Remarks for Chapter 2 24

ix



X

CONTENTS

3 ALTERNATIVE FORMS OF THE PRINCIPAL FIELD
EQUATIONS OF THE GENERALIZED THEORY

OF GRAVITATION
3-1. Alternative Expression for the Principal Field
Equations in Terms of Volume Integrals 26
3-2. Expressing the Principal Field Equations
in Terms of Surface Integrals 30
3-3. Expressing Gravitational and Cogravitational Fields
in Terms of Potentials 36
References and Remarks for Chapter 3 42
4 RETARDED INTEGRALS FOR GRAVITATIONAL AND
COGRAVITATIONAL FIELDS AND POTENTIALS
OF MOVING MASSES
4-1. Using Retarded Integrals for Finding Fields
and Potentials of Moving Mass Distributions 43
4-2. Correlation Between the Gravitational and the
Cogravitational Field of a Moving Mass Distribution 55
References and Remarks for Chapter 4 58
5 GRAVITATIONAL AND COGRAVITATIONAL

FIELDS AND POTENTIALS OF MOVING
POINT AND LINE MASSES

5-1.

5-2.

5-3.

The Gravitational field of a Uniformly Moving

Point Mass 59
The Cogravitational Field of a Uniformly Moving
Point Mass 68

Gravitational and Cogravitational Fields of a Linear
Mass Uniformly Moving Along its Length 70



CONTENTS X1

5-4. The Gravitational Field of a Point Mass
in Arbitrary Motion 77
5-5. The Cogravitational Field of a Point Mass
in Arbitrary Motion 87
5-6. Gravitational and Cogravitational Potentials of a
Moving Point Mass 90
5-7. How Accurate are the Equations for the Fields and
Potentials Obtained in This Chapter? 92
References and Remarks for Chapter 5 93

GRAVITATIONAL AND COGRAVITATIONAL
FIELDS AND POTENTIALS OF ARBITRARY
MASS DISTRIBUTIONS MOVING WITH
CONSTANT VELOCITY

6-1.

6-2.

6-3.

Converting Retarded Field Integrals for Uniformly
Moving Mass Distributions into Present-Time
(Present-Position) Integrals 95
Converting Retarded Potential Integrals for Uniformly
Moving Mass Distributions into Present-Time
(Present-Position) Integrals 107
Some Peculiarities of the Expressions for the

Fields and Potentials Derived in this Chapter 112

References and Remarks for Chapter 6 118

DIFFERENTIAL EQUATIONS FOR GRAVITATIONAL
AND COGRAVITATIONAL FIELDS;
ELECTROMAGNETIC ANALOGY

7-1.

Differential Equations for Gravitational and
Cogravitational Fields; Analogy with Maxwell’s
Electromagnetic Equations 119



Xii

10

CONTENTS

7-2. Corresponding Gravitational-Cogravitational and
Electromagnetic Equations 128
7-3. Gravitational-Cogravitational Equations Obtained
by Analogy with Electromagnetic Equations 130
References and Remarks for Chapter 7 138

ENERGY, ACTION-REACTION, AND MOMENTUM IN
GRAVITATIONAL AND COGRAVITATIONAL FIELDS

8-1. Conservation of Energy in Gravitational

and Cogravitational Systems 139
8-2. Conservation of Momentum in Gravitational and

Cogravitational Systems 141
8-3. Action and Reaction in Gravitational-

Cogravitational Systems 142
8-4. The Law of Action and Reaction and the

Law of Conservation of Momentum 146
References and Remarks for Chapter 8 147

GENERALIZED THEORY OF GRAVITATION AND
THE SPECIAL RELATIVITY THEORY

9-1.

9-2.

Relativistic Transformation Equations for
Gravitational and Cogravitational Fields 148
Covariant Formulation of the Generalized
Theory of Gravitation 159
References and Remarks for Chapter 9 162

CALCULATION OF GRAVITATIONAL AND
COGRAVITATIONAL FORCES FROM POTENTIALS

10-1. Calculation of Gravitational Forces in

Time-Independent Systems from Scalar Potentials 165



11

12

CONTENTS

10-2. Calculation of Gravitational Forces in
Time-Independent Systems from
Vector Potentials

10-3. Calculation of Cogravitational Forces in
Time-Independent Systems from
Vector Potentials

10-4. Calculation of Cogravitational Forces in
Time-Independent Systems from
Scalar Potentials

10-5. Calculation of Gravitational and
Cogravitational Forces in Time-Dependent
Systems from Potentials

References and Remarks for Chapter 10

GRAVIKINETIC FIELD AND ITS PROPERTIES

11-1. The Gravikinetic Field

11-2. Correlation Between the Gravikinetic
Field and the Cogravitational Field

References and Remarks for Chapter 11

GRAVIKINETIC FORCES AND EFFECTS;
GRAVITATIONAL INDUCTION

12-1. Gravikinetic Field and the Mechanical Momentum
12-2. Examples on Calculation of
Gravikinetic Fields
12-3. Dynamic Effects of Gravikinetic Fields;
Gravitational Induction
References and Remarks for Chapter 12

xiil

169

172

177

179
180

182

184
188

189

192

197
203



Xiv CONTENTS

Part Il APPLICATIONS AND PREDICTIONS OF THE
GENERALIZED THEORY OF GRAVITATION

13 SOME ELEMENTARY APPLICATIONS OF THE
GENERALIZED THEORY OF GRAVITATION

13-1. Illustrative Examples on Static Gravitational Fields 207
13-2. Illustrative Examples on Dynamic

Gravitational Fields 217
13-3. Dynamic Gravitational Field Maps and

Explosive Force Generated by a

Fast Moving Mass 232
References and Remarks for Chapter 13 236

14 TORQUE EXERTED BY A MOVING MASS
ON A STATIONARY MASS

14-1. Gravitational Fields of a Point Mass
Uniformly Moving Along a Straight Line

and Along a Circular Orbit 237
14-2. Torque Due to a Point Mass Moving with

Constant Velocity 239
14-3. Torque Due to a Point Mass Moving in a

Circular Orbit 244
14-4. The Differential Rotation of the Sun 250
14-5. Discussion 251
References and Remarks for Chapter 14 253

15 MORE ABOUT ORBITAL MOTION AND ROTATION

15-1 Gravitational and Cogravitational Fields Produced
by a Mass Moving Along a Circular Orbit 255



16

17

18

CONTENTS XV

15-2. Cogravitational Field Produced by a Rotating Body;

Association with Angular Momentum 258
15-3. Cogravitational Force and Torque Experienced

by a Rotating Body 260
15-4. Period of Revolution of a Satellite Orbiting

About a Rotating Central Body 267
15-5. Cogravitational Equivalent of Larmor Precession 266
References and Remarks for Chapter 15 273

TRANSFORMATION OF ENERGY AND MOMENTUM
IN GRAVITATIONAL AND COGRAVITATIONAL
INTERACTIONS

16-1. Energy Exchange Between a Gravitational Field

and Bodies Moving in It 274
16-2. The Physical Nature of Gravitational and

Cogravitational Forces 278
References and Remarks for Chapter 16 286

PHYSICAL LINK BETWEEN GRAVITATIONAL AND
ELECTROMAGNETIC FIELDS

17-1. Coupling of Gravitational and Electromagnetic

Fields 287
17-2. The Bending of Light Under the Action of a

Gravitational Field 291
17-3. Gravitational Shift of Spectral Lines 294
References and Remarks for Chapter 17 297

GRAVITATIONAL AND COGRAVITATIONAL WAVES

18-1. The Existence of Gravitational and
Cogravitational Waves 298



Xvi

19

20

CONTENTS

18-2. Direction of Gravitational and Cogravitational
Field Vectors in Plane Waves

18-3. Energy Relations in Plane Gravitational
and Cogravitational Waves

18-4. Generation of Sinusoidal Gravitational-
Cogravitational Waves

References and Remarks for Chapter 18

GRAVITATION AND ANTIGRAVITATION

19-1. Gravitational Energy as a Source of Gravitation
19-2. Examples of Nonlinear Gravitational Fields
19-3. Properties of Gravitational Fields in Free Space
19-4. Discussion

References and Remarks for Chapter 19

MERCURY’S PERIHELION PRECESSION AND
ANALYSIS OF RELATED CALCULATIONS

20-1. Mercury’s anomaly

20-2. Mercury’s Residual Precession According to the
Generalized Theory of Gravitation

20-3. Einstein’s Formula for Mercury’s Residual
Precession

References and Remarks for Chapter 20

APPENDIX

Vector Identities
Dimensions of Gravitational and Cogravitational
Quantities

INDEX

301

303

304
308

310
313
318
324
328

330

333

337
342

347

350

353



NEWTON’S
GRAVITATIONAL
THEORY
GENERALIZED TO
TIME-DEPENDENT
SYSTEMS






NEWTON’S THEORY OF
GRAVITATION AND THE
NEED FOR ITS FURTHER
DEVELOPMENT

In this chapter we shall summarize Newton’s theory of
gravitation and shall analyze it from the viewpoint of causality and
from the viewpoint of the law of conservation of momentum. We
shall find that it has two major defects: when applied to moving
or time-dependent systems, it violates the principle of causality
and violates the conservation of momentum law. We shall then
discuss the means for correcting these defects.

1-1. Newton’s Theory of Gravitation

Newton’s theory of gravitation is based on the gravitational
force law

F-cm"™, (1-1.1)
2
;
where F is the force with which two point masses m and M attract
each other, G is the universal constant of gravitation, and r is the
distance between the two masses. In vector notation, the
gravitational force law, Eq. (1-1.1), can be written as
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Fim = - G%r“, (1-1.2)
where F is the force exerted on the point mass m by the point
mass M, G and r are as before, and r, is the unit vector directed
from M to m; the minus sign indicates that the force is directed
toward the mass exerting the force.

In modern presentations, Newton’s theory of gravitation is
based not on Eq. (1-1.1) or (1-1.2) directly, but on two equations
that formulate his theory as a force-field theory in terms of the
gravitational field vector g. These equations are

Vxg=0 (1-1.3)
and
Veg = - 41Gp. (1-1.4)
The gravitational field vector g is defined as
g = Fim, (1-1.5)

where F is the force exerted by the gravitational field on a test
mass m, which is at rest in an inertial reference frame
("laboratory"). In Eq. (1-1.4), p is the mass density defined as

p = dm/dV’, (1-1.6)

where dm is a mass element contained in the volume element dV’.
With the help of Egs. (1-1.5) and (1-1.6), Eq. (1-1.2) can be
reformulated into a more general equation

g - - Gj_pirdv’, (1-1.7)
r
where g is the gravitational field created by the mass m distributed
in space with density p, r = [(x -x)* + (y -y')* + (z-2))*]" is
the distance from the source point (x', y', z'), where the volume
element of integration dV' is located, to the field point (x, y, 2),
where g is being observed or computed, r is the radius vector
directed from dV' to the field point. The integral is extended over
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the region of space occupied by the mass m, the minus in front of
the integral indicates that the field g is directed toward the mass
that creates this field.

The force F acting on a mass of density p located in the
gravitational field g is then found from the equation

F - [png, (1-1.8)

where the integration is over the space occupied by the mass
experiencing the force.

For practical applications of Newton’s theory, and in celestial
mechanics in particular, the gravitational field vector g is seldom
computed directly. Instead, one usually computes the gravitational
potential ¢, connected with the field vector g by the equation

g = - Vo, (1-1.9)
and connected with the mass density p by the equation
Vi = 47Gp (1-1.10)

obtained by substituting Eq. (1-1.9) into Eq. (1-1.4). Integrating
Eq. (1-1.10), one obtains the equation

Q= -G[ga'V’, (1-1.11)

from which ¢ can be found directly in terms of p. For a point
mass m, Eq. (1-1.11) reduces to

9o =-G", (1-1.12)
r

1-2. Newton’s Gravitational Theory and Causality

One of the most important tasks of physics is to establish
causal relations between physical phenomena. No physical theory
can be complete unless it provides a clear statement and
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description of causal links involved in the phenomena
encompassed by that theory. In establishing and describing causal
relations it is important not to confuse equations which we call
"basic laws" with "causal equations."” A "basic law" is an equation
(or a system of equations) from which we can derive most
(hopefully all) possible correlations between the various quantities
involved in a particular group of phenomena subject to the "basic
law." A "causal equation,” on the other hand, is an equation that
unambiguously relates a quantity representing an effect to one or
more quantities representing the cause of this effect. Clearly, a
"basic law" need not constitute a causal relation, and an equation
depicting a causal relation may not necessarily be among the
"basic laws" in the above sense.

Causal relations between phenomena are governed by the
principle of causality. According to this principle, all present
phenomena are exclusively determined by past events. Therefore
equations depicting causal relations between physical phenomena
must, in general, be equations where a present-time quantity (the
effect) relates to one or more quantities (causes) that existed at
some previous time. An exception to this rule are equations
constituting causal relations by definition; for example, if force is
defined as the cause of acceleration, then the equation F = ma,
where F is the force and a is the acceleration, is a causal equation
by definition.

In general, then, according to the principle of causality, an
equation between two or more quantities simultaneous in time
cannot represent a causal relation between these quantities
because, according to this principle, the cause must precede its
effect. Therefore the only kind of equations representing causal
relations between physical quantities, other than equations
representing cause and effect by definition, must be equations
involving "retarded" (previous-time) quantities.

Let us apply these considerations to Newton’s law of
gravitation. Since neither of the Egs. (1-1.1)-(1-1.12) is defined
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to be a causal relation, and since all these equations connect
quantities simultaneous in time, neither of these equations
represents a causal relation. In particular, Newton’s gravitational
law Eq. (1-1.1), even though it is a basic law, does not represent
a cause-and-effect relation between the quantities involved. It is
clear therefore that Newton’s gravitational theory has a serious
flaw.

1-3. Newton’s Gravitational Theory and Conservation of
Momentum

One of the most fundamental laws of mechanics is Newton’s
law of action and reaction. It is typically stated as follows:
"Whenever a body exerts a force (action) on a second body, the
second body exerts an equal and opposite force (reaction) on the
first." However, in gravitational systems the law does not always
hold. Consider the following example.

Suppose that a stationary mass is located in the gravitational
field created by another, distant, stationary mass. The two masses
exert upon each other equal and opposite forces, as required by
the law of action and reaction. Suppose now that the first mass is
allowed to move under the action of the field of the second mass
and arrives at a new position. But the second mass, being far
away from the first, does not yet "know" that the first mass has
moved (because, by the principle of causality, a gravitational field
cannot propagate instantaneously) and continues to experience the
same force as before. The forces are now unequal in magnitude
and direction, and the action and reaction law no longer holds!

In two-body systems, the law of action and reaction is
equivalent to the law of the conservation of mechanical
momentum. Therefore, if the law of action and reaction in a
gravitational system involving a moving mass does not hold, then
the mechanical momentum of the system is not conserved. Hence,
Newton’s gravitational law conflicts with the conservation of
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momentum law, which is one of the most fundamental laws of
nature. This conflict constitutes another very serious flaw of
Newton’s theory of gravitation.

1-4. Is Newton’s Gravitational Theory Wrong or Incomplete?

Newton’s theory of gravitation is the basic working theory of
astronomers and of all the scientists dealing with space exploration
and celestial mechanics. The reliability of Newton’s gravitational
theory is indisputable. On the basis of this theory we determine
the motion of planets and of their satellites, predict the existence
and celestial coordinates of planets not previously observed,
launch artificial satellites and space ships. Thus, even though
Newton’s gravitational theory does not agree with the principle of
causality and conflicts with the conservation of momentum law,
the essential validity of the theory has been established beyond
any doubt. It is plausible, therefore, that Newton’s theory of
gravitation is merely incomplete and requires further development,
but does not need to be replaced by another theory of gravitation.
In particular, it must be refined and reformulated so as to satisfy
the principle of causality and to comply with the momentum
conservation law, without destroying the fundamental relations
represented by Eqgs. (1-1.1)-(1-1.12).

In order to reformulate Newton’s gravitational theory in
accordance with the principle of causality, we must establish
causal gravitational equations that agree with Eqgs. (1-1.1)-(1-
1.12). What should be the form of such causal gravitational
equations? Since an effect can be a combined or cumulative result
of several causes, it is plausible that in causal equations a physical
quantity representing an effect should be expressed in terms of
integrals involving physical quantities representing the various
causes of that effect. And since, by the principle of causality, the
cause must precede its effect, the integrals in causal equations
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must be retarded, that is, the integrands in these integrals must
involve quantities as they existed at a time prior to the time for
which the quantity representing the effect is being computed.
Thus, causal gravitational equations must involve retarded
integrals.

However, as was explained above, the reformulated Newton’s
gravitational theory must also satisfy the law of conservation of
momentum. It is well known that there exists a strong similarity
between equations of Newton’s gravitational theory and equations
of electrostatics. It is also well known that in Maxwellian
electromagnetic theory, the momentum conservation law is
satisfied because time-dependent electromagnetic interactions
involve not only the electric field but also the magnetic field. We
may assume therefore that time-dependent gravitational
interactions, just like electromagnetic interactions, involve not
only the gravitational field, but also a second force field, not
taken into account in Newton’s theory. In fact, such a field was
proposed in 1893 by Oliver Heaviside.! According to Heaviside,
this second force field is created by moving masses only and acts
exclusively on moving masses. We shall call it the
“cogravitational,” or “Heaviside’s,” field and shall denote it by
the letter K.

As we shall presently see, by accepting the existence of the
cogravitational field and by expressing the gravitational and
cogravitational fields in terms of retarded integrals, it is possible
to develop and reformulate Newton’s single field theory of
gravitation so that it becomes a special case of the reformulated
theory of gravitation, and so that the reformulated theory satisfies
both the principle of causality and the momentum conservation
law. The reformulated theory basically generalizes Newton’s
original theory to gravitational systems involving moving and
time-dependent masses. Accordingly, we shall call it the
"generalized Newtonian theory of gravitation," or, simply, the
"generalized theory of gravitation."
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1. Oliver Heaviside, "A Gravitational and Electromagnetic
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article is reproduced in Oleg D. Jefimenko, Causaliry,
Electromagnetic Induction and Gravitation, 2nd ed., (Electret
Scientific, Star City, 2000) pp. 189-202.



PHYSICAL AND MATHEMATICAL
BASIS OF THE GENERALIZED
THEORY OF GRAVITATION

In this chapter the conceptual content of the generalized
theory of gravitation is described, the mathematical apparatus used
for the formulations of the theory is explained, and the
fundamental equations of the theory are presented. The main
difference between Newton’s original theory of gravitation and
the generalized theory of gravitation is elucidated.

2-1. Conceptual Content of the Generalized Theory of
Gravitation

The generalized theory of gravitation assumes that
gravitational interactions are mediated by gravitational and
cogravitational force fields.

A gravitational field is a region of space where a mass
experiences a gravitational force. Quantitatively, a gravitational
field is defined in terms of the gravitational field vector g by the
same equation by which it is defined in Newton’s theory:

g =Fm, (1-1.5)

where F is the force exerted by the gravitational field on a
stationary test mass m,.

11



12 CHAPTER 2 GENERALIZED THEORY OF GRAVITATION

A cogravitational field is a region of space where a mass
experiences a cogravitational force. Quantitatively, a
cogravitational field is defined in terms of the field vector K by
the equation

F = m(vxK), 2-1.1)

where F is the force exerted by the cogravitational field on a test
mass m, moving with velocity v. As noted in Chapter I,
cogravitational fields are created by moving masses only and act
upon moving masses only."?

It is assumed that both gravitational and cogravitationl fields
propagate in space with finite velocity. This velocity is not yet
known, but is believed to be equal to the velocity of light.
However, the generalized theory of gravitation is compatible with
a propagation velocity of gravitation different than the velocity of
light and is not affected by the actual speed with which gravitation
propagates.’

The generalized theory of gravitation agrees with the principle
of causality because, as we shall presently see, in this theory the
gravitational and cogravitational fields are expressed in terms of
retarded integrals whose integrands are the causative sources of
the fields.

The generalized theory of gravitation agrees also with the law
of conservation of momentum because, according to this theory,
gravitational-cogravitational fields are repositories of gravitational-
cogravitational field momentum, and because mechanical
momentum of a body moving in a gravitational-cogravitational
field can be converted into the field momentum and the field
momentum can be converted into the mechanical momentum of
the body. As a result of this conversion, the sum of the
mechanical and field momentum of the combined field-body
system is always the same, and the total momentum of the system
is thus conserved (see Chapter 8 for a general proof of momentum
conservation in such systems).
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According to the generalized theory of gravitation,
gravitational-cogravitational fields are also repositories of field
energy. Kinetic energy of a body moving in a gravitational-
cogravitational field can be converted into the energy of the field,
and the energy of the field can be converted into the kinetic
energy of the body. As a result of this conversion, the sum of the
mechanical and field energy of the combined field-body system
is always the same, and the total energy of the system is thus
conserved (see Chapter 8 for a general proof of energy
conservation in such systems).

2-2. Fundamental Equations of the Generalized Theory of
Gravitation

The two principal equations of the generalized theory of
gravitation are the equations for the gravitational field g and the
cogravitational field K:

g=- GH@ o L @]}rdv’ + G jl "’("V)}dv’ 2-2.1)
r3  riclot ctlrl o
and
K--6 j{@ oL a[PV]} xrdv’, 2-2.2)
ctltrr rie ot

where G, p, r, r, and dV' are the same as in Eq. (1-1.7), v is the
velocity with which the mass distribution p moves (the product pv
constitutes the "mass-current density"), and c is the velocity of the
propagation of gravitation (usually assumed to be the same as the
velocity of light). The square brackets in these equations are the
retardation symbol indicating that the quantities between the
brackets are to be evaluated for the “retarded” time, t' = ¢ — r/c,
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where ¢ is the time for which g and K are evaluated. The
integration in the integrals of Eqgs. (2-2.1) and (2-2.2) is over all
space (unless stated otherwise, all integrals in this book are over
all space).

According to Egs. (2-2.1) and (2-2.2), the gravitational field
has three causative sources: the mass density p, the time
derivative of p, and the time derivative of the mass-current density
pv; the cogravitational field has two causative sources: the mass-
current density pv and the time derivative of pv.

Let us note that for time-independent stationary masses Eq.
(2-2.2) disappears and Eq. (2-2.1) becomes

g - - GJ%rdV’, (1-1.7)
that is, Egs. (2-2.1) and (2-2.2) reduce to the gravitational field
equation of Newton’s theory of gravitation. Therefore, in the light
of the generalized theory of gravitation, Newton’s gravitational
theory is an approximate theory in which the dependence of the
gravitational interactions on the motion and temporal variations of
interacting masses is not taken into account.

Equations (2-2.1) and (2-2.2) should be preferably considered
as postulates. Therefore it is not necessary to discuss the original
considerations that led to their formulation (these considerations
can be found elsewhere?). The proof of their validity lies not in
the considerations that led to their formulation, but rather in the
agreement of all the known consequences of these equations with
experimental and observational data within the limits of
experimental errors imposed upon these data by the available
techniques of measurements and observations.

It is important to note that although in Eqs. (2-2.1) and (2-
2.2) the mass density, the mass current, and their derivatives are
retarded, retardation can frequently be neglected, in which case
these equations can be used with ordinary (unretarded) mass
density, mass current, and their derivatives. Let us define the
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"characteristic time" of a gravitational-cogravitational system as
the time 7T during which the mass density, the mass current, or
their temporal derivatives experience a significant change. For
example, in the case of periodic variation of mass and mass
current, 7 may be assumed to be the period of the variation; in
the case of planetary motion, 7 may be assumed to be the period
of revolution; and in the case of monotonously changing masses
and mass currents, 7 may be assumed to be the time during which
the mass density, the mass current, or their temporal derivatives
change by a factor of two. Let us now assume that the largest
linear dimensions of the system under consideration is L. If T and
L satisfy the relation

T > Lic, (2-2.3)

then no significant change occurs in the system during the time
that the gravitational or cogravitational "field signal" moves across
the system, and therefore the retardation in the propagation of the
gravitational or cogravitational fields within the system is
negligible.

In addition to Eqs. (2-2.1) and (2-2.2) for the gravitational
and cogravitational fields, the following equations constitute the
mathematical foundation of the generalized theory of gravitation.

The mass conservation equation ("continuity law"):

dp
V. = - , 2
(ov) ' (2-2.4)
or, in the integral form,
N i}
f#pv -dS = - Ejpdv. (2-2.5)

According to these equations, whenever a mass contained in a
region of space diminishes or increases, there is an outflow or
inflow of mass from or into this region.
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Force acting on a mass distribution of density p.
F = Jp(g +vxK)dv, (2-2.6)

where v is the velocity of p and the integral is extended over the
region of space containing the mass under consideration [for a
stationary point mass this equation reduces to Eq. (1-1.8)].

Density of the field energy contained in the gravitational-
cogravitational field:*
1
U = - —_(g* +cK?). (2-2.7)
v 5 B )

Field energy contained in a region of the gravitational-
cogravitational field:*
v--_1 j(g2 + KDV, (2-2.8)
871G
where the integration is extended over the region under
consideration.

Energy flow vector in the gravitational and cogravitational
field (“gravitational Poynting vector”):

C2
P - 47rGK><g. (2-2.9)
This vector represents the direction and rate of gravitational-
cogravitational energy flow per unit area at a point of space under
consideration. Equation (2-2.9) together with Egs. (2-2.1), (2-
2.2), (2-2.4), and (2-2.7) ensures the conservation of energy in
gravitational-cogravitational interactions.

Density of the field momentum contained in the gravitational-
cogravitational field:
1

G,=___Kxg. 2-2.10
vf 47rG g ( )
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Field momentum contained in a region of the gravitational-
cogravitational field:

G ij v, 2211
| o (2-2.11)

where the integration is extended over the region under
consideration.

Correlations between the mechanical momentum, G,,, and the
gravitational-cogravitational field momentum:

R m[ _2_<f (g2+c21<2)ds - (f g(g - dS) —czth(K : dS)] :
22.12)

where g and K are the gravitational and cogravitational fields in
the system under consideration. In this equation, the derivative on
the left represents the rate of change of the momentum of a body
located in a gravitational-cogravitationl field, the volume integral
represents the rate of change of the field momentum in the region
of the field where the body is located, and the surface integrals
represent the flux of the field momentum through the surface
enclosing the region under consideration. Together with Egs. (2-
2.1), (2-2.2), (2-2.4), (2-2.6), and (2-2.10) this equation ensures
the conservation of momentum in gravitational-cogravitational
interactions.

Equations (2-2.4), (2-2.6), (2-2.7), (2-2.9), (2-2.10) and (2-
2.12) should preferably be considered as postulates, although Eq.
(2-2.9) can be derived from Eqs (2-2.1), (2-2.2), (2-2.4), and (2-
2.7) if conservation of energy is assumed to hold for gravitational-
cogravitational interactions. Likewise, Eq. (2-2.12) can be derived
from Egs. (2-2.1), (2-2.2), (2-2.4), (2-2.7) and (2-2.11), if
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conservation of momentum is assumed to hold for gravitational-
cogravitational interactions.

Note on the mathematical apparatus and techniques used in
the generalized theory of gravitation. The mathematical apparatus
used in the generalized theory of gravitation is mainly vector
analysis, as specifically developed for field-theoretical applications
in the author’s book Electricity and Magnetism® and, for operation
with retarded quantities, in the author’s book Electromagnetic
Retardation and Theory of Relativity®. Most of the mathematical
operations used in the generalized theory of gravitation are simply
transformations of vector-analytical expressions by means of
vector identities. The vector identities used in this book are listed
in the Appendix and are identified by the prefix "V".

Mathematical formulation of the generalized theory of
gravitation is very similar to that of Maxwellian electrodynamics.
Because of this similarity, many electromagnetic equations have
their counterparts in the generalized theory of gravitation. As a
result, it is possible to convert many electromagnetic equations to
gravitational and cogravitational equations by a mere substitution
of symbols. A table of corresponding electromagnetic and
gravitational-cogravitational symbols for the substitution is
presented in Chapter 7, and some particularly useful gravitational
and cogravitational equations obtained by the substitution are also
shown there.

v

Example 2-2.1 A thin, heavy circular ring of radius a and cross-
sectional area s has a uniformly distributed mass m. At ¢ = 0 the
ring starts to rotate with constant angular acceleration « about its
symmetry axis which is also the x axis of rectangular coordinates
(Fig. 2.1). Find the gravitational and cogravitational fields at a
point x on the axis for ¢ > 0.
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Fig. 2.1 Calculation of
the gravitational and
cogravitational fields on
the axis of a heavy ring
rotating  with  angular
acceleration «.

For brevity, let us designate the mass-current density of the
ring by the symbol J. We then have for the rotating ring J = pv =
pwal, = patad,, where p is the mass density in the ring, w is the
angular velocity of the ring, and 6, is a unit vector in the circular
direction (right-handed with respect to x). The time derivative of J
is 0J/0t = paal,. In terms of m, the mass-current density and the
derivative are J = (moat/27s)0, and 8J/0t = (ma/27ws)0,.

To find the gravitational field of the ring, we use Eq. (2-2.1).
Since 3J/0¢ is in the circular direction, and since r is the same for
all points of the ring, the second integral in Eq. (2-2.1) makes no
contribution to the gravitational field on the axis (the contributions
ol any two volume elements on the opposite ends of a diameter
vancel each other). Since the mass density does not depend on time,
the contribution of the first integral is

g = - GJ%rdV’, (2-2.13)
r

which is identical with the expression for the gravitational field

produced by a stationary mass of density p. Integrating Eq. (2-

2.13), we obtain’

_ mx . i
g = Gml. (2-2.14)

To find the cogravitational field, we use Eq. (2-2.2).
Iixpressing [J] and [3J/d¢] in Eq. (2-2.2) in terms of m, «, s, and
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6,, we have
K - - El{moz(t-r/c)ou+ ma 0u}erV,
c? 2mwsr? rlc2ws
= - EH mol g .M 5 . M 0u}><rdV’ (2-2.15)
c2 ) Q2xsr? ric2ws r:c2ws
- - EH maot 0“}>< rdv’.
c?) Q2xsr?

The mass current formed by the ring is filamentary. Its
magnitude is / = Js = maot/2w. Since the mass current is
filamentary, the volume element dV' in Eq. (2-2.15) can be written
as sdl', where dl' is a length element along the circumference of the
ring. Furthermore, we can combine 0, and d!’ into the vector dl' =
dl'd,. Transposing 0, and r, we then have from Eq. (2-2.15)

Gf I

K - Lrxad, (2-2.16)
CZ r3

Integrating Eq. (2-2.16), we obtain

K--2G_la® (2-2.17)
cZ (a2+x2)3/2

or, substituting / = mat/27,

_ maota® )
K = Gwl. (2-2.18)

Note that the cogravitational field is left-handed relative to the
mass current that produces it.

The surprising result of this example is that, once the fields
have reached the point of observation, neither the gravitational nor
the cogravitational field on the axis of the rotating ring is affected
by retardation.

A
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2-3. Gravitational and Cogravitational Forces According to the
Generalized Theory of Gravitation

One of the most important differences between Newton’s
original theory of gravitation and the generalized theory of
pravitation is in the interpretation of the mechanism of
privitational interactions. Whereas in Newton’s original theory of
pravitation gravitational interaction between two bodies involves
one single force of gravitational attraction, in the generalized
theory of gravitation gravitational interaction between two bodies
involves an intricate juxtaposition of several different forces.
Mathematically, these forces result from Eqgs. (2-2.1), (2-2.2) and
(2-2.6). When Eqgs. (2-2.1) and (2-2.2) are written as five separate
imtegrals, they become, using J for pv,

g=—G]£p3_]rdv’—G]_2_@

rdv’ + j : ";J ]dv’ (2-3.1)

N

r ricl ot c
iund
K-- _[ U s rav - G[ LA yrav. (232
ctl r c2dric o

liuch of these integrals represents a force field. Therefore,
according to the generalized theory of gravitation, gravitational
mtcractions between two bodies involve at least five different
lorces. Let us consider the physical sources of these forces.

First let us consider Eq. (2-3.1). The field represented by the
lirst integral of this equation is the ordinary Newtonian
pravitational field created by the mass distribution p corrected for
the finite speed of the propagation of the field, as indicated by the
sinare brackets (the retardation symbol) in the numerator. The
held represented by the second integral is created by a mass
whose density varies with time. Like the ordinary Newtonian
pravitational field, these two fields are directed toward the masses
which create them. The field represented by the last integral in
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Eq. (2-3.1) is created by a mass current whose magnitude and/or
direction varies with time. The direction of this field is parallel to
the direction along which the mass current increases. All three
fields in Eq. (2-3.1) act on stationary as well as on moving
masses.

Consider now Eq. (2-3.2). The first integral in this equation
represents the cogravitational field created by the mass current.
The direction of this field is normal to the mass current vector.
The second integral represents the field created by a time-variable
mass current. The direction of this field is normal to the direction
along which the mass current increases. By Eq. (2-2.6), both
fields in Eq. (2-3.2) act on moving masses only.

If the mass under consideration does not move and does not
change with time, then there is no retardation and no mass
current. In this case both integrals in Eq. (2-3.2) vanish and only
the first integral remains in Eq. (2-3.1). As a result, one simply
obtains the integral representing the ordinary Newtonian
gravitational field. Thus, the ordinary Newtonian gravitational
theory is a special case of the generalized theory, as it should be.

As far as the gravitational interaction between two masses is
concerned, the meaning of the five integrals discussed above can
be explained with the help of Fig. 2.2. The upper part of Fig. 2.2
shows the force which the mass m, experiences under the action
of the mass m, according to the ordinary Newtonian theory. The
lower part of Fig. 2.2 shows five forces which the same mass m,
experiences under the action of the mass m, according to the
generalized theory. The time for which the positions of the two
masses and the force experienced by m, are observed is indicated
by the letter ¢. Let us note first of all that, according to the
ordinary Newtonian theory, the mass m, is subjected to one single
force directed to the mass m, at its present location, that is, to
its location at the time ¢. However, according to the generalized
theory, all forces acting on the mass m, are associated not with
the position of the mass m, at the time of observation, but with
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m
2
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Fig. 2.2 The upper part of this figure shows the force that the mass
I, experiences under the action of the mass m, according to the
ordinary Newtonian theory. The lower part shows five forces which
the same mass m, experiences under the action of the mass m,
according to the generalized Newtonian theory.

the position of m, at an earlier time ¢ < t. Therefore, the
magnitude of the mass m,, its position and its state of motion at
the present time ¢ have no effect at all on the mass m,.

The subscripts identifying the five forces shown in the lower
part of Fig. 2.2 correspond to the five integrals in the Egs. (2-3.1)
ad (2-3.2). The force F, is associated simply with the mass m,
aud differs from the ordinary Newtonian gravitational force only
insofar as it is directed not to the mass m, at its present position,
but to the place where m, was located at the past time ¢'. The
lorce F, is associated with the variation of the density of the mass
m, with time; the direction of this force is the same as that of F,.
The force F, is associated with the time variation of the mass
current produced by m,; this force is directed along the
iucceleration vector a (or along the velocity vector v,) which the
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mass m, had at the time ¢'. The three forces are produced by the
gravitational field g (if m, is a point mass moving at constant
velocity, g and the resultant of the three forces are directed
toward the present position of m,; see Chapter 5).

The forces F, and F; are due to the cogravitational field K.
The force F, is associated with the mass current created by the
mass m, and with the velocity of the mass m,. Its direction is
normal to the velocity vector v, which the mass m, had at the time
t' and normal to the velocity vector v, which the mass m, has at
the present time z. The force F; is associated with the velocity of
the mass m, and with the variation of the mass current of the mass
m, with time; the direction of this force is normal to the
acceleration vector (or to the velocity vector) that the mass m, had
at the time ¢’ and normal to the velocity vector that the mass m,
has at the present time ¢. Although not shown in Fig. 2.2,
additional forces associated with the rotation of m, and m,
(angular velocities w, and w,) are generally involved in the
interaction between the two masses (see Chapters 14 and 15).

The forces F,, F;, F,, and Fs are usually much weaker than
the force F, because of the presence of the speed of gravitation
¢ (usually assumed to be the same as the speed of light) in the
denominators of the integrals representing the fields responsible
for these four forces. This means that only when the translational
or rotational velocity of m, or m, is close to c, are the forces F,,
F;, F,, and F, dominant. Of course, the cumulative effect of these
forces in long-lasting gravitational systems (such as the Solar
system, for example) may be significant regardless of the
velocities of the interacting masses.

References and Remarks for Chapter 2

1. It should be noted that the cogravitational field K has not yet
been actually observed. However, it is very likely that it will be
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revealed by the Gravity Probe B launched in 2004 by NASA in a
polar orbit around the Earth.

2. For the various theoretical considerations demanding the
existence of the cogravitational field see Oleg D. Jefimenko,
Causality, Electromagnetic Induction and Gravitation, 2nd ed.,
(Electret Scientific, Star City, 2000), pp. 80-100.

3. Although we say that gravitational and cogravitational fields
"propagate,” it is not entirely clear what physical entity actually
propagates, since by definition gravitational and cogravitational
liclds are "regions of space.” It is conceivable that what actually
propagates is some particles that somehow create the gravitational
and cogravitational fields. It is possible that these particles have
already been described [see M. R. Edwards, Ed., Pushing Gravity
(Apeiron, Montreal, 2002)], and it is possible that some of their
cffects have already been observed [see 1. A. Eganova, The Nature
of Space-Time (Publishing House of SB RAS, Novosibirsk, 2005),
pp. 137-223]. Yet, there is not enough information about these
particles for making any definite statement about their existence,
nature, composition, or properties.

4. Itis important to note that the gravitational-cogravitational field
cnergy is negative. This means that no energy can be extracted
from the gravitational-cogravitational field by destroying the field.
On the contrary, energy must be delivered to the field in order to
destroy the field.

§. Oleg D. lJefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989), pp. 18-62.

6. Oleg D. Jefimenko, Electromagnetic Retardation and Theory of
Relativity, 2nd ed., (Electret Scientific, Star City, 2004), pp. 6-14.
7. Here and throughout this book we use the standard notation i,
J, k for the unit vectors along the x, y and z axis, respectively, of
rectangular system of coordinates.



ALTERNATIVE FORMS OF THE
PRINCIPAL FIELD EQUATIONS
OF THE GENERALIZED THEORY
OF GRAVITATION

The principal field equations of the generalized theory of
gravitation can be converted into several different equations that
may be more useful for practical applications than the original
equations themselves. In this chapter we will present several such
equations, will show their derivations, and will demonstrate some
of their applications.

3-1. Alternative Expressions for the Principal Field Equations
in Terms of Volume Integrals

As will be shown below, the principal equations of the
generalized theory of gravitation, Eqgs. (2-2.1) and (2-2.2), can be
converted into

B [V/p] G Il aJ
g-c| a2V e
and
K -- O [V X34y (3-1.2)
c? r

26
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where, for brevity, the letter J is used for the mass-current density
pv, and where the primed operator V'’ operates on the source-point
coordinates only. The integration, as usual, is over all space.

Furthermore, equations (2-2.1) and (2-2.4) can be combined
into the single equation

g=- Glﬁl‘]rdV’

r N (3-1.3)
2R - B - G G e

Derivation of Eq. (3-1.1). We start with Eq. (2-2.1)

e--of (8- g -2

Using vector identity (V-35) with r, = r/r for replacing the
two terms in the integrand of the first integral of Eq. (2-2.1) by
il single term, we obtain (note that we now use J in place of pv)

g=G] [”]dv' Gl ‘;ﬂdw (3-1.4)

0(ov) | yur
5 ]dV (2-2.1)

‘Transforming the integrand in the first integral of Eq. (3-1.4) by
means of vector identity (V-34), we obtain (note that the ordinary
operator V operates upon the field-point coordinates, whereas the
primed operator V' operates upon the source-point coordinates)

-0 Wav -ofw By S [2av. a1

The second integral in the last equation can be transformed into
u surface integral by means of vector identity (V-20). But this
surface integral vanishes, because p is confined to a finite region
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of space, while the surface of integration is at infinity. We thus
obtain

o - J[V,p]d"/ GJ ZﬂdV’ (-1.1)

Derivation of Eq. (3-1.2). We start with Eq. (2-2.2)

K-=- C_Ci H_[E;Z_] . _1_5 algtv]} xrdv’. (2-2.2)

Applying vector identity (V-35) to Eq. (2-2.2) and noting that

rx = — Xr, we obtain (note that we now use J in place of pv)
K - - E[Vxﬂdv’. (3-1.6)
c? r

Transforming Eq. (3-1.6) by means of vector identity (V-34) and
eliminating V' X ([J]/r) by means of vector identity (V-21) [see
the explanation below Eq. (3-1.5); note that J is confined to a
finite region of space], we obtain for the cogravitational field

/
K- - E]W 1 gy, (3-1.2)
c? r

Derivation of Eq. (3-1.3). We start again with Eq. (2-2.1)

s [{B lahrer ZLS

By Eq. (2-2.4), the contribution that dp/0¢ makes to the first
integral in Eq. (2-2.1) can be expressed as

dv’.(2-2.1)
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/ L]
] ap]rdV’ - - j[V Nrav. (-1.7)
r2cl ot ric

Transforming the last integral by using vector identities (V-31)
and (V-36) with r, = r/r, and using vector identity (V-8), we
obtain

V'3, (V' -[3]. r-[03/01 ) v,
l e rdv _” rc r- P r)dV (3-1.8)
- J(Iv' UMY -Mr)dv’
c r2 ¢ 2 ’

r? ric

Next, using vector identity (V-23), we transform the first term
in the integrand of the last integral of Eq. (3-1.8), obtaining

J%V’ - Blgyr - «H(El -dS’) - ](%] -V’)%dV’. (3-1.9)

r2 r2

Since the integration is over all space, and since there is no mass
current at infinity, the surface integral in Eq. (3-1.9) vanishes.
Applying vector identity (V-4) to the integrand of the remaining
integral on the right of Eq. (3-1.9) and noting that a V' operation
upon r is the negative of the same V operation, we then have

JIV’ By o J[‘” dav’. (3-1.10)
c r? cr?

From Egs. (3-1.7), (3-1.8), (3-1.9), and (3-1.10), we obtain
therefore

[ L[ %]eav - (W -Ipgy.pr L - 2100 gy 111y

or ric ¢ r? ric
Substituting Eq. (3-1.11) into Eq. (2-2.1) and taking into account
that V'(1/7%) = 2r/r*, we finally obtain
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g--G|Brav

r (3-1.3)
1 22

3-2. Expressing the Principal Field Equations in Terms of
Surface Integrals

A remarkable feature of Egs. (3-1.1) and (3-1.2) is that they
correlate the gravitational field with the gradient of the mass
distribution and correlate the cogravitational field with the curl of
the mass-current distribution rather than with the mass and mass-
current distribution as such. Hence, the equations may be
interpreted as indicating that the gravitational and cogravitational
fields are associated not with masses and mass currents, but rather
with the inhomogeneities in the distribution of masses and mass
currents (a homogeneous, or uniform, mass distribution has zero
gradient, and a homogeneous, or uniform, mass-current
distribution has zero curl).

Particularly interesting in this connection is a mass or mass-
current distribution in which the mass or mass-current changes
abruptly from a finite value in the interior of the distribution to
zero outside the distribution. For this type of mass and mass-
current distribution, Eqs. (3-1.1) and (3-1.2) can be transformed
into special forms that are more convenient to use than Eqgs. (3-
1.1) and (3-1.2) themselves.

As is shown below, for the gravitational field the following
equation can be used:

g= -G<f> 0] ys/ +ij[_vﬂdV/+EH[%dv/, 3-2.1)

Boundary 'y r c?
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where the surface integral is extended over the boundary layer of
the mass distribution, and the first volume integral is extended
over the interior of the mass distribution. This equation becomes
especially simple in the case of a constant (uniform) mass
distribution surrounded by a free space. In this case Vp in the
interior of the distribution is zero, and Eq. (3-2.1) simplifies to

- (o] G
g = Ggﬁ Plgs + G

[l[ﬁ!]dw (3-2.2)
Boundary 'y I rlor

For the cogravitational field, the following equations can be
used:

/
K- - Ecﬁ W yasr - Ej N XW gy (323
CZ Interior

Boundary c? r

and, for the special case of V' x J = 0 in the interior of the
mass-current distribution,

K - - ch B yasr (3-2.4)

c? ) Boundary

Derivation of Eq. (3-2.1). We start with Eq. (3-1.1). In this
cquation the integral involving V‘p can be separated into two
integrals: the integral over the boundary layer of the mass
distribution under consideration and the integral over the interior
of the mass distribution:

d A av'= | [V'Pldvuc[ Felayr (32.5)
r Int r

B.layer r

The first integral on the right of Eq. (3-2.5) can be transformed
by using vector identity (V-34):
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/
Gj Vol gy =Gj v Py +Gj v Py -2.6)
B.layer B layer B layer r

In Eq. (3-2.6), the operator V in the first integral on the right
operates upon the field point coordinates only. Therefore it can be
factored out from under the integral sign. The integrand in this
integral will then be [p]/r. Since both [p] and r are finite, while
the integration is over the volume of the boundary layer whose
thickness, and therefore volume, can be assumed to be as small as
we please, the integral vanishes. The second integral on the right
of Eq. (3-2.6) can be transformed into a surface integral by using
vector identity (V-20). Equation (3-2.6) can be written therefore
as

GJ V'o) gy - G(f 0] ysr | (3-2.7)
B.layer

r B layer 1

where the surface integral is extended over both surfaces (exterior
and interior) of the boundary layer.

In Eq. (3-2.7), the surface element vector dS’ of the exterior
surface is directed into the space outside the mass distribution,
while dS’' of the interior surface is directed into the mass
distribution. However, since there is no mass outside the mass
distribution, the integral over the exterior surface vanishes. Since
the boundary layer can be made as thin as we please, we can
make the interior surface of the boundary layer coincide with the
surface of the mass distribution. Reversing the sign in front of the
surface integral, we can write then Eq. (3-2.7) as

6 oayr--cf Dlas, 28
B.layer

r Boundary

where the integration is now over the surface of the mass
distribution, and where the surface element vector dS’ is directed,
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as usual, from the mass distribution into the surrounding space.
From Egs. (3-1.1), (3-2.5) and (3-2.8) we obtain

-Gc_f ﬂdsucjm v’ ”]dw [‘”]dw (3-2.1)

Boundary 1 r

Derivation of Eq. (3-2.3). We start with Eq. (3-1.2). Just as
in the case of Eq. (3-1.1), we can separate the integral in Eq. (3-
1.2) into an integral over the boundary layer of the mass-current
distribution and an integral over the interior of the distribution. By
the same reasoning as that used to simplify Eq. (3-2.5), we find
that the integral over the boundary layer can be written as

/
Sf, ey - &f wx By @29
B.layer B.layer r

c? r c?

Transforming the integral on the right of Eq. (3-2.9) into a
surface integral by means of vector identity (V-21), and taking
into account that there is no mass current in the space outside the
mass-current distribution, we obtain, just as we obtained Eq. (3-
2.8),

CZ

El [V"‘J]dv’ - Gr_f B as, (3:2.10)

B layer Boundary r

where the integration is over the surface of the mass-current

distribution, and the surface element vector dS’ is directed from

the mass-current distribution into the surrounding space.
Equation (3-1.2) can be written therefore as

K- - _G_cf W yas - _G_J VXA 4y (323
Interior

2 J Boundary 'y CZ r
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v

Example 3-2.1 A thin heavy disk of uniform mass density p, radius
a, and thickness b rotates with constant angular acceleration « about
its symmetry axis, which is also the x axis of rectangular
coordinates. The midplane of the disk coincides with the yz plane
of the coordinates, and the rotation of the disk is right-handed
relative to the x axis (Fig. 3.1). Using Eqgs. (3-2.2) and (3-2.3), find
the gravitational and cogravitational fields produced by the disk at
a point of the x axis, if at # = O the angular velocity of the disk is

Fig. 3.1 Calculation of the
gravitational and cogravita-
tional fields on the axis of a
heavy disk rotating with
constant angular acceleration
a.

The disk creates a convection mass-current J = pv = pwRl, =
parRd,, where R is the distance from the center of the disk, and 6,
is a unit vector in the circular direction (right-handed with respect
to «). The time derivative of J is 8J/0t = paRf,. To find V' X J,
we use the relation v = w X R and vector identity (V-12). Taking
into account that w is not a function of coordinates, we then obtain

VixJ=V'x(pwXR)=p[w(V' +R) -(w+ V)R], (3-2.11)
and since R = y‘j + z'k, while w « V' = wd/dx‘, we have
V' xJ =2pw =2par = 2pari. (3-2.12)

Examining now Eq. (3-2.2) and taking into account that 4J/d¢
is in the circular direction, we recognize that the second integral in
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Eq. (3-2.2) vanishes by symmetry (see Example 2-2.1). And since
p does not depend on time, we see from Eq. (3-2.2) that the
gravitational field of the disk is the ordinary Newtonian field given
by

g = - Ggf Pas = - prf s (3213
Boundary

Boundary y r

Let us now evaluate the last surface integral in Eq. (3-2.13). By
the symmetry of the system, only the two flat surfaces of the disk
contribute to the field on the axis. The back surface is located at x’
= — b/2, the front surface is located at x’ = + b/2. The direction
of the surface element vector dS’ is —i for the back surface and +i
for the front surface. We have therefore

°  2mRdR . J 27RdR
0 [R%+(x +b/2)1'2 O [R2+(x-b/2)1'?

27Gpi{[a®+(x+b/2)"1"? - (x+b/2) - [a*+ (x-b/2)"]"*+ (x-b/2)}.

g =GPi[ (3-2.14)

Since b < x, we can use the relation

[a?+(x £b/2)?1? =[a? +x?* £ xb]"? = (@ +x})"[1 +xb/2(a® +x?)].
(3-2.15)

Substituting Eq. (3-2.15) into Eq. (3-2.14), we obtain after
elementary simplifications

X

—_ i (3-2.16)
(@*+x)”

g = - 27erb[1 -

To find the cogravitational field, we use Eq. (3-2.3).
Substituting [J] = paR(t - r/c)8,and [V’ X J] = 2pa(t — r/c)i into
Eq. (3-2.3), we have
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K- _Ef paR(t—r/c)o xdS' _igl Zpa(t—r/c)dv,'
Cz Boundary r u Cz Int r

(3-2.17)
By the symmetry of the system, only the curved surface of the disk
contributes to the first integral. At this surface R = a, r = (a* +
x?)'2, 0, X dS' = — idS’, and the surface itself is S’ = 2mab. In
the second integral r is r = (R* + x?)'? and the volume element is
dV' = b27RdR. The cogravitational field is therefore

K

_; Gpaalr—(a*+x?)'"*/c)2mab _i2Gpa I 1-(R*+x?)"/c
cHa?+x?)\? 2 Jo R
pozta Zb _ paazb _ 2patb(a2 +X 2)1/2 . poa 2b)
Cl(a2+x2)]/2 CJ Cz C3 ’

2wbRAR

=i27G

(3-2.18)
or
K - - i4rGPObH@ + XD
CZ

a’ ] (3-2.19)
2(a?+x?)

It is interesting to note that neither the gravitational nor the
cogravitational field of the rotating disk is retarded, just as was the
case with the fields of the rotating ring discussed in Example 2-2.1.

A

3-3. Expressing Gravitational and Cogravitational Fields in
Terms of Potentials

The calculation of time-dependent gravitational and
cogravitational fields can sometimes be simplified by using
retarded gravitational and cogravitational potentials.

As we shall presently see, the cogravitational field can be
obtained by using the equation
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K =VxA. (3-3.1)

where A is the retarded cogravitational vector potential defined as

a--S8av. (332
Cc r

By vector identity (V-17), Eq. (3-3.1) can be written also as

fa-a - [Kk-as. (3-3.3)

The gravitational field can be obtained by using the equation
0A

= -Vp - 22 (3-3.4)
g ¢ =

where ¢ is the retarded scalar potential defined by the equation
0= - GJ_[p_]dV’. (3-3.5)
r

For time-independent gravitational and cogravitational
systems, the retarded vector potential reduces to

A= - Ejfdv' (3-3.6)
ctlr

and the retarded scalar potential reduces to
Q= - GdeV/. (3-3.7)
r

Thus the scalar potential becomes the familiar scalar potential
of the Newtonian theory of gravitation, once again indicating that
the Newtonian theory is an incomplete theory and constitutes a
special case of the generalized theory of gravitation.

In a mass-free region of space, the gravitational field can also
be expressed in terms of the gravitational vector potential
according to the equation
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g = VXA, (3-3.8)

which, by vector identity (V-17), can be written also as

<]5Ag-dl - [g-ds. (3-3.9)

Likewise, in a mass-free region of space, the cogravitational
field can also be expressed in terms of the cogravitational scalar
potential, according to the equation

iﬁ. (3-3.10)
t

1
K=-Vp + __
@, =73
The validity of Eqs. (3-3.8) and (3-3.10) follows from the fact
that these equations are in accord with Eqgs. (7-1.1)-(7-1.4) (see
Chapter 7), which can be easily verified by direct substitution.?

Derivation of Eqgs. (3-3.1)-(3-3.5). Factoring out the operator
V from under the first integral of Eq. (3-1.4), we immediately
obtain the relation for the retarded gravitational scalar potential ¢

~ G IOJ] ,
= -vp+ G [ L]0 4y, 3.3.11
g=-Vyp Cz[rat (3-3.11)
where
¢=—G[@d1ﬂ. (3-3.5)

Likewise, factoring out the operator V from under the integral
of Eq. (3-1.6), we immediately obtain the relation for the retarded
cogravitational vector potential A

K = VxA, (3-3.1)
where
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a=-SWay (3-3.2)
ctlor

Next, using vector identity (V-36), factoring out the time
derivative from under the integral sign in Eq. (3-3.11), and
eliminating the integral by means of Eq. (3-3.2), we obtain

0A
g Vo & (3-3.4)
v
Example 3-3.1 Show that the retarded potentials ¢ and A satisfy
the relation
vea-- Lo (3-3.12)
c? ot

From Eqgs. (3-3.5) and vector identity (V-36) we have

~ 19y =Eji£]dv’ =£[l@]dv’. (3-3.13)
c2ot clorr ctl) rlot

But according to the continuity law, Eq. (2-2.4), remembering that

we now use J for pv, and noting that p in Eq. (3-3.13) is a function

of primed coordinates |,

ﬁﬂ:qu (3-3.14)
ot
so that
-i%:-ﬁj AP (3-3.15)
c? Ot c? r

Transforming the integral in Eq. (3-3.15) by means of vector
identity (V-34), we have

-iﬁﬁdqWﬂwuﬁpuﬂwaoam
c? ot c? r c? r

The last integral in Eq. (3-3.16) can be transformed into a surface
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integral by means of the vector identity (V-19), and since there is
no mass current at infinity, the surface integral is zero, and so is
the last integral. In the first integral, V can be factored out from
under the integral sign. Therefore we obtain

1oy __yg. ﬁj Dy (3-3.17)
c? Ot ctl r

Eliminating the last integral in Eq. (3-3.17) by means of Eq. (3-
3.2), we obtain Eq. (3-3.12). Note that the analogous equation in
the electromagnetic theory is known as Lorenz’s condition.

Example 3-3.2 Using gravitational and cogravitational potentials,
find gravitational and cogravitational fields at all points of space far
from the rotating ring described in Example 2-2.1 (Fig. 3.2).

oS08
m . r Fig. 3.2 Calculation of the
\ ; gravitational and cogravitational fields
1 \\i\ - far from the heavy ring rotating with
a a,S' X constant angular acceleration. (The
ro>a unit vector ¢, is directed into the
page.)

At large distances from the ring, the ring constitutes a point
mass m, which does not depend on time. Therefore the gravitational
potential of the ring is the ordinary Newtonian potential

o=--G™M. (3-3.18)
r

Since the ring constitutes a filamentary convection mass-current
I = mat/2w, the cogravitational vector potential of the ring is, by
Eq. (3-3.2) with JdV' replaced by Idl' = (mat/2w)dl' and the
volume integral replaced by a line integral,
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A - - G [ ma(t-ric)2w dl = - Gmat(f) dr Gma(f
c? r 27c? 27c3
(3-3.19)

The last integral in Eq. (3-3.19) (closed line integral over vector
length elements) is zero. The remaining integral can be transformed
into a surface integral by means of vector identity (V-18). We then
obtain

Gmat(j; dl’ _ Gmat I x dS’, (3-3.20)
2mc? 2mc2 ) p?

where r’, is a unit vector directed from the point of observation
toward the surface element dS'.

Now, since the point of observation is far from the ring, the
integral can be replaced by the (vector) product of the integrand and
the surface area S’ of the ring, so that the vector potential is

A= - Gmaot I'LXS/ _ Gmout r XS/, (3_321)
2wc?r? 2mwcr? !

where r, is a unit vector directed from the ring toward the point of
observation. The magnitude of the vector S’ is wa?, and the
direction is along the x axis. Designating the angle between r, and
S’ as 8, we then have for the vector potential

A =G0 G64 (3-3.22)
2c%r?
where ¢, is a unit vector in the circular direction left-handed
relative to the x axis.
By Eq. (3-3.1), the cogravitational field associated with this
vector potential is

K-V XA - G;”“ % 2cosdr, +singf) (3-3.23)
C r
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(we do not reproduce the actual calculation of V X A, since it is
not important for the purpose of the present example; the
calculation is done by using the expressions for the curl of a vector
in spherical coordinates'). It is interesting to note that this field is
an ordinary (unretarded) "dipole field." On the x axis (§ = 0) it
reduces to the field found in Example 2-2.1 (for x > a).

Let us now find the gravitational field of the ring. By Egs. (3-
3.4), (3-3.18), and (3-3.22), we have

2
g=-GMr, - sz? %sind g, (3-3.24)
r cr

It is interesting to note that although the gravitational field of
the ring does not depend on ¢, the presence of the ¢, term makes
the field different from the ordinary Newtonian field of the ring.
This term is due to [8J/0f] in Eq. (3-1.1) and represents the
"gravikinetic field" (see Chapter 11). In the case under
consideration, the gravikinetic field is circular and is in the same
direction as the mass current in the ring.

On the x axis, the gravitational field of the ring reduces to the
field found in Example 2-2.1 (for x > a).

A

References and Remarks for Chapter 3

1. See, for example, Oleg D. lJefimenko, Electricity and
Magnetism, 2nd ed., (Electret Scientific, Star City, 1989) p. 55.
2. See also Sections 10.2 and 10.4.



RETARDED INTEGRALS FOR
GRAVITATIONAL AND
COGRAVITATIONAL

FIELDS AND POTENTIALS OF
MOVING MASSES

In this chapter we shall learn how retarded integrals for
gravitational and cogravitational fields and potentials can be used
for finding gravitational and cogravitational fields and potentials
of moving mass distributions. We shall also discover important
relations between the gravitational and cogravitational fields for
two special cases of moving mass distributions: an arbitrary mass
distribution moving with constant velocity and a point mass in
arbitrary motion.

4-1. Using Retarded Integrals for Finding Fields and Potentials
of Moving Mass Distributions

A time-variable mass distribution always involves a movement
of masses. For example, if the density of a mass distribution
changes with time, then some masses change their location within
the mass distribution or move to or from the mass distribution.
Conversely, a moving mass distribution is inevitably a time-

43
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variable mass distribution because it increases mass density in
regions of space which it enters and decreases mass density from
the regions of space which it leaves. Consequently, the
gravitational and cogravitational fields of a moving mass
distribution can be determined from retarded field (or potential)
integrals presented in Chapters 2 and 3 for the general case of
time-dependent mass and mass-current distributions.

To use retarded field integrals for finding gravitational and
cogravitational fields of moving mass distributions, we need to
express the time derivatives dp/0¢ and 4J/0¢t in terms of the
velocity of the mass distribution under consideration. This can be
done as follows. Consider a stationary mass distribution (hereafter
called "mass") of density p as a function of x', y’, 7',

o =px’',yz"). 4-1.1)

If this mass moves with velocity v without changing its density,
the total time derivative of p is

dp _dp , 9p dx'  dp dy' , 9p dz’_@

L P2 P T =P yveVp.
dt 0t ox' dt @9y’ dt 9z dr ot 4-1.2)
Since p remains the same as the mass moves, do/dt = 0, so that
B . _v.vy (4-1.3)
ot

A moving mass constitutes a mass-current whose density is J =
pv. Therefore, differentiating by parts,

aJ _3v) ==(v-Vp)v +p_61 =-(v-V/p)v+pv. (4-1.4)

o ot at
Observe that in the retarded field integrals presented in
Chapters 2 and 3, the denominator r representing the distance
between the volume element dV’ and the point of observation is
not a function of time. Therefore it is not a function of time also
in the case of moving masses. A moving mass must be considered
as moving past different volume elements of space associated with
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different but fixed r’s. The question arises, if dV’ is a volume
element of space, rather than a volume element of a moving mass,
how does one introduce the volume of the mass into the field
integrals? To answer this question, let us examine how the
gravitational and cogravitational fields of a moving mass are
created.

The phenomenon of retardation indicates that time-dependent
masses send out gravitational (and cogravitational) field "signals"
that propagate in all directions with a finite speed ¢ (as stated in
Chapter 2, it is usually assumed that gravitation propagates with
the speed of light). The gravitational or cogravitational field
created by a time-variable mass at the point of observation is the
result of the signals sent out by all the elementary masses within
the mass and simultaneously "received" at the point of observation
at the instant ¢. But different mass elements within the mass are
at different distances from the point of observation, and the times
needed for the signals originating from the different mass elements
to arrive at the point of observation are different. Therefore the
signals that are received at the point of observation simultaneously
at the instant ¢ are sent out from the different mass elements
within the mass at different retarded times ¢ = ¢t — r/c. For a
moving mass these times are different not only because different
mass elements within the mass are located at different distances
from the point of observation, but also because the location of
these mass elements changes as the mass moves. As a result, the
region of space from which the field signals responsible for the
field at the point of observation are sent is not equal to the region
of space, or volume, occupied by the mass when it is at rest.

Consider a mass of length / moving against the x axis with a
constant velocity v. The gravitational field g of the mass is
observed at the point O (Fig. 4.1). A field signal is sent from the
trailing end of the mass when this end is at the distance r; from
the point of observation. A field signal is sent from the leading
end, when this end is at the distance r, from the point of
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observation. Since the leading end is closer to the point of
observation than the trailing end, the field signal from the leading
end must be sent at a later time if it is to arrive at the point of
observation simultaneously with the signal sent from the trailing
end. The difference in the times needed for the two signals to
arrive at the point of observation is r,/c — r,/c. During this time
the mass moves a distance (r,/c — r,/c)v. Hence the distance /*
between the two points from which the two signals are sent is

I*=(r,-r)vic + 1. (4-1.5)

Fig. 4.1 For the two field
signals to arrive simultaneously
at O, the field signal originating
- [ from the leading end of the
moving mass must be sent later

r 7 than the field signal originating

o / from the trailing end of the

mass.

In this chapter we shall be mainly concerned with the special
case of masses for which r,, r, > I*. In this case (see Fig. 4.2),
rn—r = I*cos¢ = I¥r - v)/rv, where r is the distance
between the midpoint of /* and the point of observation, and ¢
is the angle between r and v. Substituting this expression for r,
— r, in Eq. (4-1.5), we have

1* =1*(@r-v)lrc+l, (4-1.6)
or
-t 4-1.7)
1-(r-v)/rc

Therefore, as already mentioned, the region of space from which
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Fig. 4.2 Geomerrical
relations between r,
¢, and I* when ry, r,
> [*. The signifi-
cance of the vector 1*
will  be explained
later.

the moving mass sends out the field signals resulting in the
gravitational and cogravitational fields created at the point of
observation is not equal to the region of space (volume) actually
occupied by the mass. In the case of a mass whose linear
dimensions are small compared with the distance from the mass
to the point of observation, this region of space, usually called the
effective volume, or the retarded volume, AV',, is

ret

/ AV/

AV, = ——~ | 4-1.8
' 1-(r-v)/rc ( )

where AV’ is the actual volume of the mass [this equation is
obtained from Eq. (4-1.7) by noting that the volume dimensions
perpendicular to the direction of motion are not affected by
retardation, and that the dimensions along the direction of motion
change in accordance with Eq. (4-1.7)].

Although the distance /* given by Eq. (4-1.5) or Eq. (4-1.7)
is a distance between two points in space rather than a length of
an object, it is usually called the retarded length. In fact, it is
actually the "visual" length of a rapidly moving body, as the
length of the body would appear to a stationary observer. As
follows from Eq. (4-1.7), the retarded length of a body moving
toward the observer is longer, and the retarded length of a body
moving away from the observer is shorter, than the actual length
of the body.' It should be emphasized that Eqs. (4-1.6)-(4-1.8)
hold only for masses or bodies observed from a distance much
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greater than the linear dimensions of the mass or body. For a
general case, the retarded length or volume of a body cannot be
expressed by a simple formula, but can be calculated in terms of
the actual length of the body once the position of the body at the
time of observation is given (see Section 5-3).

Another effect of retardation that needs to be taken into
account when applying retarded field equations to moving masses
is an apparent distortion of the shape of a moving mass. The
mass appears to change its shape because the retarded times for
different points within the mass are different.

AV |<— v/e — |
T SR
F P P
o) X

Fig. 4.3 Geometrical relations between the "present position
vector" t, and the "retarded position vector" r for a mass moving
with velocity v in the negative x direction.

Consider a mass moving against the x axis with a velocity v
and observed from a point O (Fig. 4.3). The retarded volume
element dV' of the mass is at the point P and is represented by the
vector r. The present position of the same volume element is at
the point P, and is represented by the vector r,. The distance Ax'
from P to P, is the distance that the mass travels during the time
that it takes the field signal to propagate from P to O, that is, Ax’
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= v(r/c). We shall now show that, within the mass, any line
parallel to the y axis when the mass is at rest or at its present
position appears to be slanted when the mass is moving and is at
a retarded position (Fig. 4.4).

First, let us note that, according to Fig. 4.4, the relation
between the x and y components of the retarded position vector r
and the x component of the present position vector r, is (as usual,
we use primes to indicate source-point coordinates)

Ay | «— rv/c —»|
s B

b £

o

X
>

Fig. 4.4 A mass at its retarded position appears to be elongated
and its vertical lines appear to be slanted.

x!' = xg+vrlc, 4-1.9)

or
x! = xp+(x’t+y ) 2. (4-1.10)

Differentiating Eq. (4-1.10) while keeping x,’ constant, we have

&'yl @1.11)
dy!  r[1-(oy(x'Inl’

which can be written as
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dx’ _ y'vic _ y'vlc _ (/o)sing
dy’  r[1-(ccosp]  rl-(@x+-v)/rc] 1-(r-v)irc’
4-1.12)

Thus, according to Eq. (4-1.12), a vertical line (x," = constant,
dx,'/dy,’ = 0) within the mass at the present position appears to
be slanted when the mass is viewed at its retarded position, and
the angle « of the slant is given by

cotor = y'vic . (4-1.13)
r[l = v)/rc]

In the derivations presented later in Chapter 5, we shall
consider a moving mass in the shape of a rectangular prism of
length / and thickness a. For determining the gravitational and
cogravitational field of such a mass we shall make use of two
special vectors shown in Fig. 4.5: the vector I* representing the
retarded length of the mass, given by

P-- b (4-1.14)

1-(r-v)/rc ’

and the vector a* representing the "slanted" thickness of the mass,
given by (note thatr « v = x'v)

. ay'vic

- i- ay'vic . a(r -x'vlc)
r[1-(r - v)/rc] r[1-(r-v)/irc]  r1-(r-v)/rc]”
4-1.15)

We shall also use the following relation derived in Example
4-1.1 for a mass moving with acceleration v = dv/d¢’

v 1 _ r—rv/c+(r-i')r/cz' (4-1.16)
[r-(r-v)/c] 1=« v)/rc]?

Note that if v = 0 (motion with constant velocity), Eq. (4-1.16)
becomes
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Fig. 4.5 Explanation of the vectors 1* and a*. The vector 1*
represents the retarded length of the moving mass, the vector a*
represents the "slanted" thickness of the mass.

/ 1 - r-rvlc
[r-(c-v)/cl Pl-(-v)/rc]

In dealing with retarded integrals for moving masses, we shall
frequently use the expression

r-(r-vlc, (4-1.18)

(4-1.17)

where r is the retarded position vector joining a retarded volume
element dV’ of a moving mass with the point of observation. If
the mass moves with a constant velocity v, this expression can be
converted to the present position of the mass, that is, to the
position occupied by the volume element dV’ of the mass at the
instant for which the gravitational and cogravitational fields are
being determined. This can be done as follows.

First, assuming that the mass moves in the negative x
direction and assuming that dV’ is in the xy plane, we see from
Fig. 4.3 that the present position vector r, of dV' can be
expressed in terms of the retarded position vector r as

r, =r-rvic. 4-1.19)
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Next, we write Eq. (4-1.18) as

[r=(r-v)c]=[r-x"vic] (4-1.20)
=[(r-x"vIcY 12 =[r2-2m'v/c +x"*v¥c "2,

Adding and subtracting x'? and rv*/c? to the right side of Eq. (4-
1.20), we then have

[r-(r-v)/c] (4-1.21)
=[r2-2mc'vic+x"v¥c?+x " -x 2 +rtv¥ct -rvc 2.

Let us now collect the terms on the right of Eq. (4-1.21) into
three groups:

x? - 2;'vic + rv?c? | (4-1.22)
rt -x’?, (4-1.23)

and
x'2?c? - rv¥c?. (4-1.24)

By Eq. (4-1.9), the first group represents x,'?, where x,' is the
distance between the yz plane and the volume element dV' of the
moving mass at its present position. The second group is simply
y'%, where y’ is the (constant) y coordinate of the volume element

dV’. And the third group is —y'?v%c?. We can write therefore
[r-(r - v)/cl=(x)" +y'? -y v¥c?)n (4-1.25)
=+ y )1 -y 2 (xd vy DY,

But, as can be seen from Fig. 4.3, x,”> + y'? = ry?, and y'%/(x¢
+ y'?) = sin? 6, where 6 is the angle between r, and the velocity
vector v. Therefore

[r=(r-v)cl=r[1-(r-v)rc]l=r{l -(v¥/c?)sin’}"*, (4-1.26)

where all the quantities in the last expression are present time
quantities. In obtaining Eqs. (4-1.25) and (4-1.26) we assumed
that the volume element dV' of the moving mass was located in
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the xy plane. Clearly, however, the two equations are valid even
il dV' is not in that plane, provided that we replace in these
cquations y'2 by y'? + z'2

Expressions involving the retarded position vector r and its
magnitude r have a very peculiar and important property which
should be kept in mind when dealing with moving masses and
mass-currents. As already mentioned, a moving mass is assumed
10 move through different but fixed points of space. Therefore
neither the retarded position vector r nor its magnitude r explicitly
appearing in retarded integrals is a function of time. On the other
hand, in the case of moving masses and currents, the distance r
appearing in the retarded time ¢ = ¢ — r/c is variable and
therefore is a function of time. The same applies to Eqs. (4-1.7) -
(4-1.17) presented above and to all similar expressions.

v
Example 4-1.1 Derive Eq. (4-1.16).

Let us arrange a rectangular system of coordinates so that the
acceleration vector of the moving mass is in the xy plane and the
velocity vector is in the negative x direction. Let the point of
observation be at the origin. The position vector of the mass is then

r = — x'i — y'j. Using vector identity (V-7), we have
"y =(r
/ 1 __Vir-« v)/c]‘ (4-1.27)
[r=(r-v)/c] [r=(r+v)/c]?

In differentiating the numerator in Eq. (4-1.27), we should
remember that the numerator is retarded. However, as explained in
Section 4-1, neither the position vector r nor its magnitude r
appearing in retarded integrals is a function of time and therefore
ueither is affected by retardation (the mass moves through different
but fixed points of space). The only quantity in the numerator
affected by retardation is the velocity v which is a function of the
retarded time ¢ — r/c and does change as the mass moves. Hence
we can write, making use of vector identity (V-5),
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, 1 __VIr-v'[(r-v)c]
[r-(r-v)/c] [r-(r-v)/c]?

_ r,=(1/e)V'[r - v]

) [r-(r-v)/ic?

(4-1.28)

To evaluate V'[r - v], we first use vector identity (V-31),
obtaining

V/[r - v] =[V/(l'° V)] + E ar - v)
C

. 4-1.29
T ( )

The first expression on the right can be evaluated with the help of
vector identity (V-6). Note that in this expression V' operates upon
unretarded quantities. Therefore we have

V/(r-v)=(r +V)v+r XV xXv)+(v - V)r +vx(V’ xr). (4-1.30)

Since all the quantities in this equation are unretarded, and since the
unretarded v does not depend on spatial coordinates, the first two
terms on the right of this equation vanish. Since V' X r = 0, the
last term vanishes also. By vector identity (V-4), the remaining
term is simply — v. We thus obtain

Vic-v)=-v. (4-1.31)

Taking into account that r in the last term of Eq. (4-1.29) is not
a function of time, we have

Lo -vy|_Tuf  0v|_Tur . 4-1.32
Ljde ] L W} R

Combining Eqgs. (4-1.28), (4-1.29), (4-1.31), and (4-1.32),
factoring out r in the denominator, and multiplying the numerator
and the denominator by r, we finally obtain

V/ 1 _ l‘-l‘V/C+(l"\.I)l‘/C2' (4‘116)

[r-(r-v)/c] r’[1-(r - v)/rc]?
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Although all quantities in Eq. (4-1.16) refer to the retarded position
ol the mass, to avoid an exceedingly cumbersome notation we do
not place them between the retardation brackets.

A

4-2. Correlation Between the Gravitational and the
(Cogravitational Field of a Moving Mass Distribution

There are two special cases of moving mass distributions for
which there exist simple correlations between the gravitational and
the cogravitational field produced by the distributions. The first
case is that of an arbitrary mass distribution moving with constant
velocity. The second case is that of a point mass moving with
acceleration.

Consider first a mass distribution of arbitrary size and shape
moving with constant velocity v. Let us form the vector product
of v and Eq. (3-1.1) with the two integrals in Eq. (3-1.1)
combined into a single integral. Since v is a constant vector, we
can place it under the integral sign, so that

vV X [V’ p + _1_2 g]
vxg=GJ _ 0 ayr (4-2.1)

If a mass distribution moves with constant velocity v, then by Eq.
(4-1.4) the derivative 8J/0¢ is parallel to v. Therefore the product
v X [3J/0¢] vanishes, and since v is not affected by retardation,
Eq. (4-2.1) simplifies to

/
vxg-= GI[_VX_V_ﬂdV’. (4-2.2)
r

Using now vector identity (V-11), taking into account that v X
V'p = — V'p X v, and taking into account that V' X v = 0 and
that vo = J, we obtain from Eq. (4-2.2)
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/
vxg = - GJ VX gy (4-2.3)
r
which, by Eq. (3-1.2), is equivalent to
K = (vxg/c?. 4-2.4)

Note that K is perpendicular to v and g, and that g in Eq. (4-2.4)
is the gravitational field produced by a moving mass distribution.

It is interesting to note that since, in the present case, the term
0J/0t in Eq. (4-2.1) makes no contribution to v X g, we can write
Eq. (4-2.4), using Eq. (3-1.1), as

/
K =vx Ezj Vool gy (4-2.5)
C r

and, assuming that the velocity is along the x axis, so that vXi
=0, as

K=vXx

/ /
G j & +Vo0l (4-2.6)

c? r

where only the components of V' perpendicular to v occur.
Furthermore, using Eq. (2-2.1) and taking into account that 8J/d¢
makes no contribution to v X g and that v X i = 0, we can
write Eq. (4-2.4) as

K=-vx 9 ]{@ +%E[%]}(yj sZ)dvi . (42.7)

C2 r3

As it follows from Egs. (4-1.7) and (4-1.8), for slowly
moving mass distributions the retardation can be neglected, in
which case Eq. (4-2.4) reduces to
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K = (v X g)lc?, (4-2.8)

where g is the ordinary Newtonian gravitational field of the mass
distribution under consideration. Likewise, Eqgs. (4-2.5)-(4-2.7)
reduce to the corresponding equations involving unretarded mass
densities.

Consider now a point mass moving with acceleration. Let us
assume that the retarded position of the point mass is given by the
vector r, and let us form the cross product of r/cr and Eq. (3-
1.3). Assuming that r for a moving point mass can be considered
the same throughout the entire volume occupied by the mass, we
cun place r/r under the integral signs.’ Noting thatr X r = 0, we
then obtain, transposing r in the integrand,

rxg _ _ GH[J]+ 1
cr PR

OJH /
—lrxrdV’. 4-2.9
i e (4-2.9)

Using now Eq. (2-2.2) with J = pv, and using vector identity (V-
36), we immediately obtain

K-rxe (4-2.10)
cr

where r is the retarded position vector connecting the moving
point mass with the point of observation. Equation (4-2.10) shows
that the cogravitational field of a moving point mass is
perpendicular to the gravitational field produced by the mass and
10 the radius vector joining the retarded position of the mass with
the point of observation.?

It is interesting to note that for a point mass moving with
constant velocity, Eq. (4-2.4) as well as Eq. (4-2.10) hold,
because Eqgs. (4-2.10) is true for any acceleration, including zero
acceleration. However, it is important to remember that Eq. (4-
2.10) involves the retarded position vector r. If the acceleration
is zero, Eq. (4-2.10) reduces to Eq. (4-2.4), as is shown in
Iixample 5-1.1.
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References and Remarks for Chapter 4

1. The retarded length should not be confused with the relativistic
"Lorentz-contracted length;" see Oleg D. Jefimenko, Electro-
magnetic Retardation and Theory of Relativity, 2nd ed., (Electret
Scientific, Star City, 2004), pp. 207-209.

2. This procedure is generally applicable to stationary point
masses only. For moving point masses its applicability depends on
certain parameters of the system under consideration. See Section
5-7 [in particular Eqs. (5-7.1) and (5-7.2)] for details.

3. Itis important to stress that Eq. (4-2.10) is only approximately
correct. See Section 5-7 for details.



GRAVITATIONAL AND
COGRAVITATIONAL

FIELDS AND POTENTIALS OF
MOVING POINT AND LINE
MASSES

The finite propagation speed of gravitational and
cogravitational "signals" has a profound effect on the gravitational
and cogravitational fields and potentials of moving mass
distributions. In this chapter, starting with retarded field integrals,
we shall compute and analyze gravitational and cogravitational
lields and potentials of the two simplest types of moving mass
distributions: a moving point mass and a moving line mass.

§-1. The Gravitational Field of a Uniformly Moving Point
Mass

Any stationary mass distribution viewed from a sufficiently
large distance constitutes a "point mass."' Consider a mass
distribution of total mass m and density p confined to a small
rectangular prism (Fig. 5.1) whose center is located at the point
x', y' in the xy plane of a rectangular system of coordinates, and
whose sides [, a, and b are parallel to the x, y, and z axis,
respectively. Let the point of observation be at the origin of the

59
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Fig. 5.1 A mass of uniform density p is confined to a small
rectangular prism. The mass of the prism is m. The mass constitutes
a point mass when viewed from a distance large compared to the
linear dimensions of the prism.

coordinates, and let the distance between the center of the prism
and the origin be ry, > a, b, l. Viewed from the origin, this
mass distribution constitutes a point mass. Let the mass move with
uniform velocity v = — vi. We want to find the gravitational and
cogravitational fields of this mass at the point of observation.’
To find the gravitational field of this mass, we use Eq. (3-
1.1). First we eliminate from Eq. (3-1.1) the term with the mass-
current density J. We can do so with the help of Eq. (4-1.4).

Since the velocity of our mass is v = v,i = — vi, and since the

mass moves without acceleration so that v = 0, Eq. (4-1.4) gives
9 _ (vxﬂ)v = - vzﬂi. (5-1.1)
ot ax' ox'

Substituting Eq. (5-1.1) into Eq. (3-1.1), we then have for the
gravitational field of the mass
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;o viop.
[Vp _ng_/l

g = GI av’. (5-1.2)

RN

Observe that in this equation V' and 8/dx’ operate on the
unretarded p, so that in computing V'p and dp/dx’ we must use
the ordinary, unretarded, shape and size of the prism. Since p is
constant within the prism, V'p = 0 within it, and the only
contribution to V'p comes from the surface layer of the prism,
where p changes from p (inside the prism) to O (outside the
prism). Let the thickness of the surface layer be w. Taking into
account that V'p represents the rate of change of p in the positive
direction of the greatest rate of change, we then have V'p =
(p/w)n,,, where n,, is a unit vector normal to the surface layer and
pointing into the prism. Hence V'p for the right, left, top, bottom,
front, and back surfaces of the mass (prism) are —(p/w)i, (o/w)i,
—(p/w)j, (p/w)j, —(p/W)k, and (p/w)k, respectively. Likewise,
dp/dx' is zero in the interior of the mass and is different from
zero only in the left and in the right surface layers of the mass,
where dp/dx’ = p/w in the left surface layer and dp/dx' = -
p/w in the right surface layer.

The volume integral of Eq. (5-1.2) can be split therefore into
six integrals, one over each of the six surface layers
corresponding to the six surfaces of the mass (prism). However,
since the center of the mass is in the xy plane (z' = 0), the
integrals over the two surface layers parallel to the xy plane cancel
each other, because V'p for one of the layers is opposite to that
for the other layer, while r is the same for both layers. Thus only
the four integrals over the layers parallel to the xz and yz planes
remain. Let us designate the retarded distances from these layers
to the point of observation as r,, r,, r;, and r, (see Figs. 5.2 and
5.3). Since the linear dimensions of the mass are much smaller
than r,, r,, r;, and r,, we can replace each integral over a surface
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Fig. 5.2 When the mass shown in Fig. 5.1 is moving and is at a
retarded position, its apparent length, shape, and thickness of its
front and back surface layers are no longer the same as for the
stationary mass. (All r’s meet at the origin).

layer by the product of the integrand and the volume of the
corresponding layer. However, the integration in Eq. (5-1.2) is
over the effective (retarded) volume of the mass, and therefore we
must use not the true volume of the surface layers, but their
effective volume. The effective volume of the surface layers is not
the same as their actual volume, because, in accordance with Eq.
(4-1.7), the length [ of the two layers parallel to the xz plane must
be replaced by

-t (5-1.3)
1-(r-v)/rc

and because, also in accordance with Eq. (4-1.7), the thickness w
of the two layers parallel to the yz plane must be replaced by

wr=__" (5-1.4)
1-(r-v)/rc

Equation (5-1.2) becomes therefore
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~ ~

Fig. 5.3 The relations between r;, r,, and a* for the moving mass
at a retarded position. (The two v’s meet at the origin.)

g= G[p/wabw,*(—i)+plwabw2 i+ 2 b1t w(=i)
r Iy (5-1.5)
+p/Wbl wj +( )(p/wabw i+ p/wabw{(-i))}
r, 2o, r

or, substituting /* and w* from Egs. (5-1.3) and (5-1.4),

=G _p/lv__abw(—i) + Labwi
g
r,-r, +vic r,-r,*vl/c

P gy P i (5-1.6)
r,-ry-vlc r,-r,*vlc

2
. (V_)(_L abwi + — P abw( -i))],
cNr -r = v/c r,-r,*vic

which simplifies to

2
- otf - -
c*\ry-xryevic r-r +vic (5-1.7)

( 1 1 ) ]
+ - 1jl.
r,-r,-vlc r,-ryevl/c
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As can be seen from Figs. 5.2 and 5.3, the differences of the
fractions in these equations are simply the increments of the
function 1/(r - r « v/c) associated with the displacement of the tail
of r over the distances represented by the vector 1* [in the i
component of Eq. (5-1.7)] and by the vector a* [in the j
component of Eq. (5-1.7)]. Therefore we can write Eq. (5-1.7) as®

g = pr{l —__)[V’—_)- l*]ai
r-r-v/c
+ [(V’—l_)-a* lj}.
r-re-v/c
Substituting the gradient from Eq. (4-1.17) (remembering that v

= () and substituting 1* and a* from Eqgs. (4-1.14) and (4-1.15),
we have

/c . la .
S IS
8 P NP1 -revirc) TV

(5-1.8)

+ ( r -rv/c . i) y V/C alj (5_19)
r’(l-revirc> 'r(l-re-v/rc)
+( r-rvic ) r-x'vic J
r’(1-r-vircy* “/r(l-r-virc
Simplifying and taking into account thatr « i = — x', r - j =
—y,vei=—vyv,vej=0,andr - v = x'v, we obtain
2
g = - M_(l —L)(—x’ +rv/o)i
r’[l1-r-v/rc] c?

(5-1.10)

+

/ oy
(cxt i) 2V o oy L

r 2 2
- - %(1-%)(—x'i—w/c) +(1—V_2)(—y)j],
Cc Cc

r3l-re-v/rcl’t

and finally, noting thatr = — x'i — y'j, and that pabl = m,
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g = - g_mL-vicd) [r—ﬁ}. (5-1.11)
r’[l-r-v/rc]? c

Equation (5-1.11) expresses g in terms of the retarded
position of the mass specified by the retarded position vector r
(see Fig. 4.4). Usually it is desirable to express g in terms of the
present position of the mass specified by the present position
vector r, (see Fig. 4.4). We can convert Eq. (5-1.11) from r to
r, by using Egs. (4-1.19) and (4-1.26). According to Eq. (4-1.19),

r-rvic =r,, (5-1.12)

so that the last factor in Eq. (5-1.11) is simply the present position
vector r,. Substituting Eq. (5-1.12) and Eq. (4-1.26) into Eq. (5-
1.11), we obtain the desired equation for the gravitational field of
a uniformly moving point mass expressed in terms of the present
position of the mass (thus without gravitational aberration)

m-vie) (5-1.13)

g=-6G
ro{1 -(v¥/c?)sin?0}>? ‘

This equation (in a different notation) was first derived by Oliver
Heaviside in 1893 on the basis of the analogy between gravitation
and electromagnetism.*

There are two interesting properties of Eq. (5-1.13). First, as
was noted by Heaviside, with increasing velocity of the mass the
gravitational field of the mass concentrates itself more and more
about the equatorial plane, § = /2, and decreases along the line
of motion, § = 0. This effect is shown in Fig. 5.4a. Second, the
gravitational field appears to originate at the mass in its present
position. This, of course, is merely an illusion, because by
supposition the distance between the mass and the point of
observation is much greater than the linear dimensions of the
mass, so that neither Eq. (5-1.11) nor Eq. (5-1.13) gives us any
information concerning the structure of the field close to the mass.
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Fig. 5.4 (a) As first noticed by Heaviside, the gravitational field of
a moving point mass concentrates itself in the direction
perpendicular to the direction of motion of the mass and decreases
along the line of motion. (b) A more accurate way to show the
gravitational field of a moving point mass is to use uniformly spaced
field vectors of different lengths (see also Section 13-3).

Note also that because of the finite speed of the propagation of the
field signals and light signals one can never observe the mass at
its present position. In fact, the mass could have stopped after
sending the field signal from its retarded position, and even then
Eq. (5-1.13) would remain valid, although in this case Eq. (5-
1.13) would apply to the "projected,” or "anticipated," present
position of the mass.

v
Example 5-1.1 Show that for a point mass moving without
acceleration Eq. (4-2.10) reduces to (4-2.4).

According to Eq. (5-1.12), the retarded position vector of the
mass can be expressed in terms of the present position as
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r =r,+rvic. (5-1.14)

Substituting Eq. (5-1.14) into Eq. (4-2.10), we have

rxg _ (ro+rvic) xg _FoX8  (rvlo)xg
cr cr cr cr

K = (5-1.15)

Since, by Eq. (5-1.13), g is directed along ry, ry, X g = 0, and we
obtain [compare with Eq. (4-2.4)]

K = (v X g)/c2. (5-1.16)

Example 5-1.2 Equation (5-1.13) represents a "snapshot" of the
gravitational field of a moving point mass, since it does not express
the field as a function of time. Modify Eq. (5-1.13) so that it shows
how the field changes as the mass moves.

Let the "snapshot" be for ¢+ = 0. If the mass moves in the —x
direction, the functional dependence of g on the x coordinate will
be preserved for 1 #0 if we express Eq. (5-1.13) in terms of x," and
replace x,’ by x,' —vt. From Egs. (4-1.26) and (4-1.25), we have

ro{1 -(v¥cHsin?0}"? = (X(;z"')’/z —y 22y 5117
- [x(;2+(1 _vzlcz)y/2]l/2‘

Replacing in Eq. (5-1.17) x,’ by x,’ — v, we obtain

ro{1 -(v¥c)sin? 32 = [(xg - ve)2 +(1 -v¥cHy ]2, (5-1.18)
where x,' is now the x coordinate of the point mass at t = 0.
Expressing r, in terms of its components and replacing x," by x,' —

vt, we similarly have ry = —(x,’ — v)i — y'j. Therefore Eq. (5-
1.13) can be written as
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_G n(1 -v¥/ed){(xg - vi +y'j}

= , (5-1.19)
{(xg - vy +(1 -v¥c2)y 3}

where the dependence of g on ¢ is shown explicitly. This equation
holds for the mass moving parallel to the x axis in the xy plane. If
it moves parallel to the x axis anywhere in space, y'’ in this
equation should be replaced by (y'* + z'%).

A

5-2. The Cogravitational Field of a Uniformly Moving Point
Mass

Although by using Eq. (3-1.2) or Eq. (2-2.2), we can find the
cogravitational field of a uniformly moving point mass in the same
manner as we found the gravitational field in Section 5-1 (see
Example 5-2.1), it is much easier to find it from the known
gravitational field by using Eq. (4-2.4).

Applying Eq. (4-2.4) to Eq. (5-1.11), we obtain for the
cogravitational field in terms of the retarded position of the mass

m[l-v¥c?

K = -
r’cql-r-v/rcp

[vxr]. (5-2.1)

Applying Eq. (4-2.4) to Eq. (5-1.13), we obtain for the
cogravitational field in terms of the present position of the mass

K=--6___ ™2V yur). (522

rec?{1 -(v¥c?)sin?h}3?

v

Example 5-2.1 Find the cogravitational field of a uniformly
moving point mass shown in Fig. 5.1 by using Eq. (3-1.2),
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/
K - - E[ V' X3 gy (3-1.2)
c? r

To use Eq. (3-1.2), we need to know V' X J associated with
the mass under consideration. The moving mass constitutes a mass-
current density J = pv. Since v is not a function of x', y', 2, we
have V' X J = V'p X v. But p is constant within the mass, and
therefore the only contribution to V' X J comes from the surface
layer of the mass, where p changes from p (inside the mass) to 0
(outside the mass). Using the values for V’'p obtained in Section 5-
1, we then have for V' X J of the top, bottom, front, and back
surface layers of the mass (prism) —pv/wk, pv/iwk, pv/wj, and
—p/wj, respectively; the left and right surface layers make no
contribution to V' X J, because v and V'p are parallel (or
antiparallel) there. Furthermore, since V' X J in the front surface
layer is opposite to V' X J in the back surface layer, while both
surface layers are at the same distance r from the point of
observation, the contributions of these two layers to the integral in
Eq. (3-1.2) cancel each other, so that only the top and the bottom
surface layers contribute to the cogravitational field of the mass.

Since the linear dimensions of the mass are much smaller than
r; and r, (see Figs. 5.1 and 5.3), we can replace the integrals over
the two surface layers by the product of the integrand and the
volumes of the corresponding layers. Using Eq. (3-1.2) and taking
into account the effective volume of the boundary layers (see
Sections 4-1 and 5-1), we have, as in Egs. (5-1.5)-(5-1.7),

K - E[_ﬂwblk . ﬂwbzk]
clry-ry-vlc r,-ryevlc

Gpvbl[ 1 _ 1 }k
ctlry-ry-vic  r,-r,-vlic

(5-2.3)

The difference of the two fractions in the last expression is
simply the increment of the function 1/(r - r + v/c) associated with
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the displacement of the tail of r over the distance represented by the
vector a* (see Fig 5.3). Therefore, using Eqs. (4-1.17) and (4-
1.15), we can write Eq. (5-2.3) as

K - prvl[( r-rvlc -i) y'vlc
c2 U -r - vircy r(l/-r~v/rc) (5-2.4)
+( r-ric ) r-x'vic a]k.
r3 (1 -r - v/rc)? r(l1-r-v/rc)

Simplifying and taking into account thatr <« i = — x',r » j = —
y,vei=—v,vej=0,andr - v = x'v, we obtain
K=G my [(-x"+rvic)y'virc +(-y")(1 -x'virc)lk

r’c[l-r-v/rcp
mv[l-v¥c?y’
ric[l1-r-v/rc]?

(5-2.5)

which, noting that vy'’k = v X r, is the same as Eq. (5-2.1).
A

5-3. Gravitational and Cogravitational Fields of a Linear
Mass Uniformly Moving Along its Length

Consider a linear mass of finite length L, cross-sectional area
S, mass density p, and linear mass density A = pS moving with
constant velocity v parallel to the x axis of a rectangular system
of coordinates in the negative direction of the axis and at a
distance R above the axis (Fig. 5.5). Let the point of observation
O be at the origin. What is the gravitational field at O at the time
t when the leading end of the mass is at a distance L, from the
y axis?

We can find the gravitational field of the moving mass by
using Eq. (3-1.1) or Eq. (2-2.1) if we know its retarded position
corresponding to the time for which the field is computed. We
can determine this position as follows.
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Fig. 5.5 A line mass of linear density \ is moving with constant
velocity v. The retarded positions of the trailing and leading ends
of the mass are x," and x,’, respectively. The present positions of the
two ends are L, and L,, respectively. The distance between the
trajectory of the mass and the x axis is R. The point of observation
O is at the origin. The "retarded, " or "effective, " length of the mass
is longer than its true length.

First, let us determine the retarded position x,’ of the leading
end of the mass corresponding to the time ¢, that is, the position
from which the leading end sends out its field signal which arrives
at O at the time ¢. If the retarded distance between O and the
leading end is r,, then the time it takes for the signal to travel
from the leading end to O is r,/c. During this time the mass
travels a distance w(r,/c). Therefore at the moment when the
leading end sends out its field signal, the position of the leading

end is
x, =L, + rylc. (5-3.1)

Next, let us find the retarded position x," of the trailing end
of the mass corresponding to the time ¢. If the retarded distance
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between O and the trailing end is r,, then the time it takes for the
signal to travel from the trailing end to O is r,/c. During this time
the mass travels a distance v(r,/c). Hence, at the moment when
the trailing end sends out its signal, the position of the trailing end
is

x/ =L, +rylc. (5-3.2)

The x component of the gravitational field. We are now
ready to find the gravitational field of the mass by using Eq. (3-
1.1) or Eq. (2-2.1). The easiest way to find the x component of
the gravitational field of the mass under consideration is to use
Eq. (3-1.1). According to this equation, the x component of the
field is due to the x components of [V'p] and [3J/0¢] of the
moving mass. For the linear mass under consideration, these
components exist only at the leading and trailing ends of the mass
and are the same as for the moving prism discussed in the
preceding sections of this chapter: [V'p], = (p/w)i for the leading
end, and [V'p], = — (p/w)i for the trailing end, [8J/0f], = —
(Vp/w)i for the leading end, and [8J/dr], = (V’o/w)i for the
trailing end, where w is the thickness of the surface layer of the
mass (this is the actual thickness, not the retarded one). Since the
surface layer of the mass may be assumed as thin as one wishes,
the retarded volume integrals in Eq. (3-1.1), as far as the x
component of the field is concerned, reduces to the product of the
integrands and the volume of the surface layers of the leading and
trailing ends of the mass at their retarded positions. By Eq. (5-
1.4), for the leading end this volume is, using the asterisk to
indicate values evaluated at retarded positions,

. S
§=__ " (5-3.3)
b 1-(r,-v)/rc

and for the trailing end it is



SECTION 5-3 UNIFORMLY MOVING LINE MASS 73

wis=___ " (5-3.4)
1-(r, - v)/rc

The x component of the gravitational field is therefore

1 B 1
rl1-(,*v)rcl r[l-(r,-v)/rc]

8=GpS(1 -vz/cz)( ) (5-3.5)

or
11

g, = GN(1-v?*/c?) ; -
r,-xvic  r-xvic

). (5-3.6)

Equation (5-3.6) gives the gravitational field in terms of the
retarded position of the mass. We shall now convert it to the
present position of the mass (that is, the actual position of the
mass at the time 7). The calculations are similar to those used for
deriving Egs. (4-1.20)-(4-1.26). First, we note that, by Eq. (5-
3.1,

L7 = x° - 2xrvic + rpv¥c?, (5-3.7)

Next, we write the denominator of the first fraction inside the
parentheses of Eq. (5-3.6) as

r, =xsvic =[(r, = x; VIc) 12 =(ry = 2rx;vic +x, v¥e)'2. (5-3.8)
Adding and subtracting x'? and r,2v*/c? to the right side of Eq. (5-
3.8), we then have

r,-x,vlc (5-3.9)

=(ry ~2r s vic +x; Ve +x)t —x)t +rvie? - rivicd)'”.
Let us now collect the terms on the right of Eq. (5-3.9) into three

groups:
x;,_'z - 2rzx2'v/c + rpvic? (5-3.10)
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)

L (5-3.11)

and "
V2c? - rvc?. (5-3.12)

By Eq. (5-3.7), the first group represents L,”. The second group
is simply R’ (see Fig. 5.5). And the third group is — R»?/c?.

Similar relations hold for the denominator of the second
fraction inside the parentheses of Eq. (5-3.6). Therefore Eq. (5-
3.6) transforms to

A(1 -v¥/c?) 1 ] |
R (LR +1-v¥cH?  (LE/IR*+1-v¥cH)\2 ’
(5-3.13)

g =G

where only the present time quantities appear.

The y component of the gravitational field. The easiest way
to find the y component of the gravitational field of the mass
under consideration is to use Eq. (2-2.1). Only the first integral
of Eq. (2-2.1) makes a contribution to the y component of the
field, because 4J/9¢ has no y component. Separating this integral
into two integrals, we then have

8, - G[ Ll rav -G L ap]RdV’ (5-3.14)
Y r’ ricl ot

The first integral in Eq. (5-3.14) is the same as for a stationary
mass, except that the integration must be extended over the
retarded (effective) length of the mass. Designating the
contribution of the first integral as g, and noting that r = (x'2 +
RY)'?, we obtain

- 1Y 1 R / 5-3.15
2, G[_r_stv GpSl s (319
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or
/ /
A X X

/ /
X X

8,"G2 : =G§(_'_-_2_). (5-3.16)
RIRy? Ry R

r

N

In order to evaluate the contribution of g, of the second
integral of Eq. (5-3.14) to the total field, we must determine the
value of the derivative [dp/0f]. According to the notation
convention for retarded quantities, this derivative is the ordinary
derivative dp/dt used at the retarded position of the moving mass.
By Eq. (4-1.3), taking into account that for our mass v = — vi,
[0p/0¢] is then simply vdp/dx'. Since p is constant within the line
mass, only the leading and the trailing ends of the mass contribute
to this expression, and the contributions are vp/w and — vp/w,
respectively. The gravitational field g,, is therefore

& = GR[2Mav; - GR[20Mavi, (s3.1)
z rl

Cc r2

where the integration is over the surface layers of the leading and
trailing ends of the mass at the retarded positions of the mass.
Since the thickness of the surface layers is much smaller than r,
and r,, we can replace the integrals, as before for g,, by the
products of the integrands and the volumes of integration (the
volumes of the respective surface layers). Using the relations dV,’
= wy*S, dV,' = w;*S, and using Eqgs. (5-3.3) and (5-3.4) , we
then have

8,y ~ GE[_.____._.__Z velw wS + _-— velw wS]
Clry =r(r,*v)lc ry=r(r,*v)c
(5-3.18)
)\vR[ _ 1 ]
r(r,=x, v/c) r(r, -x]vic)

Adding Egs. (5-3.16) and (5-3.18), we obtain for the y
component of the field
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g =G X RWe _% R
y R7 T TN F T~
Rtr, r(ri-x;vicy r(r,—x, vic) (5-3.19)
=G_)\_[x1/(rl -x]{vic) -R¥lic _ x5 (r, =, v/c) —sz/c]
R r(r, —xll v/c) ry(r, —x2/ v/c)
or
/12 _p2 12 _p2
gv=Gz\. x,r, —x, vic-R*lc N Tx v/ic-R v/c]' (5-3.20)
’ R r(r, -x/vIc) ry(r, -x, vlc)
But x,'>v/c + R*/c = r2vic and x,’>vic + R*Ic = r2vic.
Therefore
/ /
g - GA(XI rllv/c X rlzv/c)‘ (5-3.21)
R ro-xvlc  r,-xvic

Now, by Eq. (5-3.1), x,’ — r,v/c = L,, and by Eq. (5-3.2),
x," — ryv/lc = L,. Substituting L, and L, into Eq. (5-3.21) and
transforming the denominators to the present position quantities by
means of Eqs. (5-3.7)-(5-3.12), just as we did in Eq. (5-3.6), we
finally obtain
g L, _ L, (53.22)
R*U(LYR*+1-v¥c?)'?  (LJ/IR*+1-v?c?)'”?

y

The cogravitational field. Although we could find the
cogravitational field of the moving linear mass from Eq. (3-1.2)
or Eq. (2-2.2), it is much simpler to find it from the gravitational
field of the mass. According to Eq. (4-2.4), the cogravitational
field K of any uniformly moving mass distribution is always

K = (vXxg)/c?, 4-2.49)

where g is the gravitational field of the moving mass distribution.
Since v = — vi, the only non-vanishing component of the cross
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product in Eq. (4-2.4) is the z component involving g, only.
Substituting v and Eq. (5-3.22) into Eq. (4-2.4) and denoting Av
as the mass current /, we obtain

1 L, L,

K=kG - .(5-3.23)
CRPU(LZ/R*+1-v¥c)2  (LE/R?*+1-v¥c?)\?

5-4. The Gravitational Field of a Point Mass in Arbitrary
Motion

As before, we consider a constant mass distribution of total
mass m and density p confined to a small rectangular prism (Fig.
5.6) whose center is located at the point x’, y' in the xy plane of
a rectangular system of coordinates, and whose sides /, a, and b
are parallel to the x, y, and z axis, respectively. The point of
observation is at the origin. The distance of the center of the
prism from the point of observation (the origin) is r, > a, b, [,

Ay m |‘_ ] _.|

§ 0 ﬁ

&"/‘izy' /7
/

ro>>ab,l

0

| A

Fig. 5.6 A mass of uniform density p is confined to a small
rectangular prism. The mass constitutes a point mass when viewed
from a distance large compared to its linear dimensions.
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so that the prism constitutes a point mass.> We shall assume that
at the retarded time ¢’ the center of the prism moves with velocity
v in the negative x direction and has an acceleration v.

For a given present time ¢, the retarded times associated with
different points of the prism are different, corresponding to
different retarded distances of these points from the point of
observation. Therefore the retarded velocities of the different
points of the prism are also different. If the prism is sufficiently
far from the point of observation, which we assume to be the
case, the difference between the retarded times corresponding to
different points of the prism is very small, and therefore the
retarded acceleration of the prism may be assumed to have the
same value v for all points of the prism, even if in reality the
acceleration is variable. Therefore the velocities of the different
points of the prism can be calculated from velocity formulas for
motion with constant acceleration.

As we shall presently see, in addition to the velocity of the
center of the prism, we only need the velocities of the right, left,
top, and bottom surfaces of the prism. Let the distances of these
surfaces from the point of observation be r,, r,, r;, and r,, as
shown in Fig. 5.7. The time interval between the retarded time
for the center of the prism and for its left or right surface is then
approximately (r,—r,)/2c (see Section 4.1), and the time interval
between the retarded time for the center of the prism and for its
top or bottom surface is approximately (r;—r,)/2c. Therefore the
(approximate) retarded velocities of the right, left, top, and
bottom surfaces of the prism are, respectively, v, = v — ¥(r, —
r)/2¢c, v, = v + ¥(ry — r)l2c, vy = v — v(r; — r)/2c, and v,
=v + v(r; — r)/2c.

As was explained in Section 4-1, the apparent size and shape
of the prism in its retarded position is not the same as that of the
prism when it is at rest. In particular, if the prism moves in the
— x direction, the prism appears to be longer, it appears to be
slanted, and the effective volume of the prism and of its surface
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% // " /

Fig. 5.7 When the mass shown in Fig. 5.6 is in a state of
accelerated motion and is at a retarded position, its apparent
length, shape, and thickness of its surface layers are no longer the
same as for the stationary mass. The distances from the center of
the mass and from the four surface layers to the point of
observation are represented by the vectors r, r,, r, r, and r, All
five r’s meet at the point of observation (origin of coordinates). The
acceleration vector is in the xy plane.

layers changes (Fig. 5.7). As a result, the following geometrical
relations hold for the moving prism at its retarded position:
The apparent length of the prism is, by Eq. (4-1.7),

pro- L (5-4.1)
1-r-virc
The apparent volume of the prism is, by Eq. (4-1.8),
@i = L (5-4.2)
1-r-v/rc
By the same equations, the apparent volume of the right surface
layer (distance r, from the origin) is

(abw); = ab» . (5-4.3)
lL-r v/rc

the apparent volume of the left surface layer (distance r, from the
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origin) is

@wy; = ¥ . (5-4.4)
L-r,-v,/rc
the apparent volume of the top surface layer (distance r; from the
origin) is
wy; = v . (5-4.5)
I-r,v,/rc
and the apparent volume of the bottom surface layer (distance r,
from the origin) is
wwy; = Y (5-4.6)
I-r,~v,/rc
We shall find the gravitational field of our accelerating point
mass by using Eq. (3-1.1)

_ [V/p] G I[OJ] ;
=G Pgv+ Z (2|22 lav B
g GJ . +C2]r . 3-1.1)

Consider first the contribution of the gradient of the mass density,
V'p, to the field. Since p is constant within the mass, V'p = 0
within it, so that the only contribution to V'p comes from the
surface layer of the mass, where p changes from O (outside the
mass) to p (inside the mass). Let the actual thickness of the
surface layer of the mass be w. Taking into account that V'p
represents the rate of change of p in the positive direction of the
greatest rate of change, we then have V'p = (o/w)n,, where n,,
is a unit vector normal to the surface layer and pointing into the
mass.’ Since the center of the mass is in the xy plane (z' = 0), the
integrals over the two surface layers parallel to the xy plane cancel
each other, because V'p for one of the layers is opposite to that
for the other layer, while r is the same for both layers. Thus, as
far as V’p is concerned, only the four integrals over the layers
parallel to the xz and yz planes remain. Referring to Figs. 5.6 and
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5.7, they are the right, left, top, and bottom surface layers, and
V'p associated with these surface layers is, respectively —(p/W)i,
(p/wii, —(p/w)j, and (p/w)j (these are the same relations that we
used for finding the gravitational field of a uniformly moving
point mass in Section 5.1).

Assuming that r,, r,, r;, and r, are much larger than [*, we
can replace the integrals over the four layers by the products of
the integrands and the retarded volumes of the layers, which gives

g= G[ p/W (abw)l*(_i) + 0 p/W (ab )2 +T(lbW)3 W(_J)
r, 3 (5-4.7)
DY bw); w, ] - J I v,
C

4
Let us designate the part of Eq. (5-4.7) which explicitly

depends on p as g,. Using Egs. (5-4.3)-(5-4.6) and cancelling w,
we can write then

o =Gp[( 1 ) 1
g ril-r,-v,/rc}y r{l-r -v/rc}
1 1 .
+ - bljl.
(r4{1 -r v re} r{l-ryev,irc} ) J]

)abi (5-4.8)

The differences of the fractions in this equation are simply the
increments of the function 1/(r - r - v/c) associated with the
displacement of the tail of r over a small distance represented by
the vector 1* [in the i component of Eq. (5-4.8)] and by the vector
a* [in the j component of Eq. (5-4.8)]. Therefore, just as we did
in the case of Eq. (5-1.7), we can write Eq. (5-4.8) as

ool el gl 040

Using Egs. (4-1.16), (4-1.14), and (4-1.15), we now have
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-rvic +(r-V)r/c? . la .
=-G b[(r v -1) i
& g r3(1-r - v/rc)? l1-r-v/rc

- .V 2
+(r rvic +(r - V)ric? i) y'vic alj (5-4.10)
r3(1 -r - v/rc)? r(1-r-v/rc)
+(r—rv/c+(r-w")r/c2 ) r-x'vic }
r3(1 -r - v/rc)? r(l-r-v/rc)
Simplifying and taking into account thatr - i = — x', r - j =
—y,vei=—=v,vej=0,andr - v = x'v, we obtain

pabl

3[1___/_7[[—)# +rvic-(r-v)x'/c?i
r’[l-r-virc

gp:—

/
f[=x! +rvic - (r - 9)x'1c 2V
r

o (5-4.11)
+[_y/ ‘(l’“")y//cz] r-x V/Cj}

pabl
r’l-r-v/rcp
+(vyIcHj -y j-(@r - v)y'lc?j].

[=x"i-rvic - (r-V)x'/c?i

Since we are not interested in the acceleration-independent
field g, (this field was found in Section 5-1), we shall drop in Eq.
(5-4.11) the terms that do not contain the acceleration v, and shall
designate the rest of the equations as g,,, with the subscript "4"
standing for "acceleration." Noting thatr = — x'i — y'j, and that
pabl = m, we then obtain

g, = - G__mrr (5-4.12)
ric2(1-r-v/rc)

Consider now the contribution of dJ/dt to the field. By Eq. (4-
1.4), we have
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aJ _d(pv) _

o
lowever, because the retarded velocity is different in different
regions (points) of the mass, we must evaluate Eq. (5-4.13)
scparately for each region under consideration. There are five
such regions: the interior of the mass, the right surface, the left
surface, the top surface, and the bottom surface.

In the interior of the mass, V’'p = 0. Therefore for the
interior we have

~v - Vp)v +p% c (v Vip)vepy. (5-4.13)

J (5-4.14)

At the right surface, V'p=(dp/dx")i=—(p/w)i, and the velocity
is v,. By Eq. (5-4.13), for the right surface we therefore have

aJ, _ v/ o dp v =(o/ ‘
T ~(v - Vip)v, +pv, = —(leg—/)vl oV, =(p/W)v, v, +pv,.
X (5-4.15)
or 5
_a_t' = (p/W) (v, v, + wv), (5-4.16)
and since we can make w as small as we please,
0J
.a_tl = (p/w)v,v,. (5-4.17)

At the left surface, V'p = dp/dx'i = p/wi, and the velocity is
v,.Therefore, by the same reasoning as in the case of Eq. (5-

4.16),
33,
- = PIwv,yv,. (5-4.18)

At the top surface, V'p = dp/dy'j = — p/wj, and the velocity is
v;. Therefore,

aJ
th = (0 /W) vyv;. (5-4.19)
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At the bottom surface, V'p = dp/dy'j=p/wj, and the velocity is
v,. Therefore

aJ

4

- (P/Wyv,v,. (5-4.20)

Let us now designate the integral in Eq. (5-4.7) as g,;. Since,
by supposition, all 7’s for the mass (prism) are much larger than
the linear dimensions of the mass, we can replace the integration
by the product of the respective integrands and the volumes of the
five regions that contribute to 8J/d¢. Using Egs. (5-4.14), (5-
4.17)-(5-4.20) and (5-4.2)-(5-4.6), we then have

¢ g’:"i( abl ) (5-4.21)
G r\l-r-vlrc
p abw p abw
ViV, 1 el T vzrvz—/
rw -r, v, /rcl rw lL-r,-v,/rc
b
+_ﬂ_(3y3 low )—L(v4yv4___—1 o )
r,w l-ry-v,/r,c] rw -r,*v,/rc
or
c’g, _ mv +pab( Vi, ~ v,V, )
G r(1-r-virc) r,-r,evi/c r,-r,ev,lc
+p bl( NI ) (5-4.22)
ry-ryev,/c r,-r,ev,/c

Since the linear dimensions of the mass are very small
compared to the r’s, the difference of the fractions in the last two
terms of Eq. (5-4.22) can be regarded as the total differential
(increment) df = (3f/0x"ydx’ + (8f/dy")dy’ of the functions

e (5-4.23)
r-r-vlc
and
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W (5-4.24)
r-rev/c

corresponding to the displacements of the tail of r by I* and by
u*, respectively (see Fig. 5.7).

Using Eq. (4-1.16), noting that r = — x'i — y’j, noting that
v, = 0 (because v is parallel to the x axis), and remembering that
v and v are functions of the retarded time ¢’ = ¢t — r/c, so that
dv/ax' = (0v/0t')ot'/ax’ = — (Av/dt)x'/lrc = — vx'/rc with
similar expressions for dv/dy’, 0v/dx’, and dv/dy’, we have for the
needed partial derivatives of the two functions

9 | 1A% )_ -x" = /c-(r-¥)x'/c?
Ox/\r[l -(r - v)/rc] * r3[1 -(r- V)/rC]2 (5-4.25)
vy +vyx’

ric[l-(r-v)/rc]’

i(_vvv___) - - vvx! _(5-4.26)
ax/\r[1-(r - v)/rc] ric[l-(r-v)/rc]

and

3 | vV ) _ vyy' (5-4.27)
ay’ \r[1 =(r - v)/rc] rc(l -(r - v)/rc]

In evaluating Eq. (5-4.22) with the help of Egs. (5-4.25)-(5-4.27),
we shall omit from Eq. (5-4.25) the terms not containing v, since
they only contribute to the acceleration-independent field g,
which we already found in Section 5-1. Combining Eqgs. (5-4.22),
(5-4.25)-(5-4.27), (4-1.14), and (4-1.15), we then have, denoting
the acceleration-dependent field as g;,,
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ngJA - mv
G r(l-r-v/rc)
-vy(r-v)x’ Wy+vv)x’ !
+pab[ — "= ]
r’cX(1-re-virc)* r’c(1-r-virc)) (1-r-v/rc)
—pbl[ Vyvx/ . a'y/v/c (5"428)
r’c(1-r-v/rc) r(l-r-v/rc)
vy’ _a(r-r-vlc)

+

1)

ric(l-r-vircy r(l-r-v/rc)

or
2 N
C8u _ mv
G r(1-r-v/rc)
- « x/
. m V(- ¥x yyx! (5429)
rc(l -r - v/irc)*Lrc(1-r - v/rc)
; I,/ ; Iy o
_v‘.’xl~vyvx y v—f/v A (r-v)
x WY t——
rc rc
Sincer « v=1x'v= —x'v,and since — v, x' — v,y =

v - r (see Figs. 5.6 and 5.7), Eq. (5-4.29) reduces to

2 N
C8yu_ mv (5-4.30)
G r(l1-r-viro)

m v(r-v)(r-v)
r’c(l-r-v/rc)*trc(l-r - v/rc)

+ +(r - V)v+(r - v)v|,

which after elementary simplifications becomes

G M LG mE-VV (5431
B4 c*r(1 -r - vire)? crr(1-revire)’

Finally, in accordance with Eq. (5-4.7), adding Eq. (5-4.31) to
Eq. (5-4.12), we obtain for g,
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g =- Gm(r-v)r _ Gm(r-V)v
(A -revirey (1 -revirc) (5-4.32)
Gmv ’

+ -_—
c’r(1 -r - v/rc)?

which can be written in a simpler form as

g, = ~ Gm {rx[(r - Z)xv
ricX(1-r - v/rc) c

} (5-4.33)

The total gravitational field is the sum of the acceleration-
independent field g, given by Eq. (5-1.11) and of g, given by Eq.
(5-4.33). Adding Egs. (5-1.11) and (5-4.33), we obtain for the
lotal gravitational field of a point mass in arbitrary motion

g=—GL{(r-ﬁx1 —V_2)+rx[(r-ﬁ)x l
r}(1-r-virc)’ c c? cl ¢?

(5-4.34)
Note thatr, r, v, v, and Vv in this equation are retarded.

§-5. The Cogravitational Field of a Point Mass in Arbitrary
Motion

Although by using Eq. (3-1.2) or Eq. (2-2.2) we can find the
cogravitational field produced by a point mass in arbitrary motion
in the same manner as we found the gravitational field in Section
5-4 (see Example 5-5.1), it is much easier to find it from the
known gravitational field by using Eq. (4-2.10).

Applying Eq. (4-2.10) to Eq. (5-4.32), we obtain for the
acceleration part of the cogravitational field after elementary
simplifications

K, -G m CXVNEY) L exy| (5-5.1)
A rrc3(1-r - v/rc)*Lrc(1 -r - virc)
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Applying Eq. (4-2.10) to Eq. (5-4.34), we obtain for the total
cogravitational field after elementary simplifications

K=-G m 1—v2/c2+r-i'/c2(r><v)+rxv

ric?(1 -r-virc)*l r(1-r-v/rc)

. (5-5.2)

v

Example 5-5.1 Find the cogravitational field of an accelerating
point mass shown in Figs. 5.6 and 5.7 by using Eq. (3-1.2).

SinceJ =pv, V' XJ=V' Xpv=VpXv+pV Xv. But
v is not a point function (there is no "velocity field"), and therefore
V'Xv=0and V' X J =V'p X v. As we already know from
Sections 5-1 and 5-4, V'p for our mass is only different from zero
at the surface layers of the mass. Therefore the only contribution to
the integral in Eq. (3-1.2) comes from the right, left, top, and
bottom surface layers, where V'p is —(p/w)i, (po/w)i, —(p/w)j, and
(p/w)j, respectively (by symmetry, the contributions of the front and
back surface layers cancel). Since [V' X J] in the integral of Eq.
(3-1.2) is retarded, the velocity in the expression [V'p X v] is the
retarded velocity of each surface under consideration. By
supposition, the distances from the mass to the point of observation
is much larger than /*. Therefore the integral in Eq. (3-1.2) can be
replaced by the product of the integrand and the volume of
integration (the respective volumes of the surface layers).
Substituting into [V’ X J] = [V'p X v] = — [v X V’'p] the above
expressions for V'p, and using Eqs. (3-1.2) and (5-4.3)-(5-4.6), we
then have

K=-G.P abw (v, X1i) _ abw (v, Xi)
we2lr{l-r -v,/rc} r{l-r,-v,/rc}

(5-5.3)
blw (v, X j) blw (v, % j)

r{l-r, v,irc} T{l-t,-v,rc))

or
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o v v, .
K=-G*L - Xiab
ct\[r,-r -v,/c] [r,-r,-V,lc] (5-5.4)
v, v, )
+( - ) ijl].
[ry-ryevy/c] [r,-r,-v,/c]

The differences of the fractions in Eq. (5-5.4), just as before in
lig. (5-4.22), are the increments of the functions given by Egs. (5-
4.23) and (5-4.24), except that v, and v, in the numerators are now
absent. By Eq. (5-4.25), taking into account that v, = 0, the
corresponding partial derivatives are

3 ( v ) x'-rv/jc-(@x-v)x'lc?
=v

ax’\r-r-vic r}(1-r-virc)? (5-5.5)
vx'

ric(1-r-virc)’

and

al v )zv-y’—(r-\")y’/c2
dy’\r-r-vic) r3(1 -r-v/rc)? (5-5.6)
- vy'
ric(1-r-virc)

In evaluating Eq. (5-5.4) with the help of Egs. (5-5.5) and (5-
5.6), we shall omit from Egs. (5-5.5) and (5-5.6) the terms not
containing v, since they only contribute to K, (the cogravitational
field of a uniformly moving mass), which we do not need.
Combining Egs. (5-5.4), (5-5.5), (5-5.6), (4-1.14), and (4-1-15), we
then have for the acceleration-dependent field

K =_G£[( -vr-¥)x’ vx/! )xi. abl
A c?\r3c?(1 -revirc) ri(l-r-v/rc) 1-r-virc
+( -v(r-v)x' vx/ )x.. ably'vic
r’c}(1-revirc) ri*(l-r-v/rc) r(1-r-v/rc)
+( -v(r-v)y' _ vy' )x' _ably'(1 —r-v/rc)]‘
r’c¥(1-re-v/irc) r(1-r-virc) r(1-rev/rc)

(5-5.7)
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Expanding Eq. (5-5.7), taking into account that v X i = 0, and
simplifying, we obtain

< /
K =G m [‘.,xix,+_____v(r-v)y Xj+vXj ’].
T T e onc] (A e Bt A
(5-5.8)
But ix’ + jy' = — r,and v X jy' = — v X r (because v is

parallel to the x axis). Therefore Eq. (5-5.8) can be written as

m
r2c3(1 -r - v/rc)?

A

X+ M] (5-5.9)
rc(l1-r-v/rc)

The total cogravitational field of an accelerating point mass is

the sum of Eq. (5-2.1), representing the cogravitational field of a

uniformly moving point mass, and Eq. (5-5.9), representing the

effect of the acceleration of the mass on the field. Adding Egs. (5-

2.1) and (5-5.9), we obtain [compare with Eq. (5-5.2)]
m [1-vc2+(r-¥)/c?

K=G (rxv)+

rxv
rc2(1-r-virc)’l r(l-r-v/rc) '

(5-5.10)

Observe that Eqgs. (5-5.9) and (5-5.10) express the cogravitational

field in terms of the retarded position of the mass. A

5-6. Gravitational and Cogravitational Potentials of a Moving
Point Mass

Gravitational and cogravitational potentials produced by a
moving point mass m can be easily obtained from Eqs. (3-3.5) and
(3-3.2).

A "point mass"” is a mass distribution viewed from a distance
large compared to the linear dimensions of the mass distribution.
Therefore, for a point mass, the distance r in the integrals of Egs.
(3-3.5) and (3-3.2) may be considered the same for all volume
elements of the mass, and therefore each integral may be replaced
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by the product of the integrand and the retarded volume of the
nss AV’

By Eqgs. (3-3.5) and (4-1.8) we then have for the gravitational
scilar potential of a moving point mass

pAV’

=-GPaAv, = -G__P2Y 5-6.1
¢ r r(1-r-v/rc) ( )

or, replacing pAV' by m,
¢=-G mn (5-6.2)

r(l-r-virc)’

From Egs. (3-3.2) and (4-1.8) we similarly have for the
cogravitational vector potential of a moving point mass

/
A=-6Iav - g J4V

: T T (5-6.3)
rc rc(l-r-v/rc)

and since J = pv,

A=-G mv : (5-6.4)
rcXl1-r-vlrc)

Equations (5-6.2) and (5-6.4) are similar to the Liénard-
Wiechert potentials of electromagnetic theory.®’ They express the
potentials of a moving point mass in terms of the retarded position
of the mass. If the mass moves with constant velocity, these
potentials can be converted to the present position of the mass.
Transforming the denominators of Eqs. (5-6.2) and (5-6.4) with
the help of Eq. (4-1.26), we obtain for a point mass moving with
constant velocity

= -G n (5-6.5)
v r[1 -(v*/c?)sin*6]"

and

A=-G m__ , (5-6.6)
r,c?[1-(v¥c?) sin*4]"?
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where r, is the present position radius vector, and @ is the angle
between v and r,,.

v
Example 5-6.1 Equations (5-6.5) and (5-6.6) represent the

"instantaneous" potential of a uniformly moving point mass. Since
the mass is moving, the potentials change as time goes by. How
should they be written to show explicitly their time dependence?
Assuming that the mass moves in the negative x direction, the
x coordinate of the mass diminishes with time according to x," —
vt, where x,’ is the value of the x coordinate at # = 0. Expressing
the denominators in Eqs. (5-6.5) and (5-6.6) in terms of Cartesian
coordinates by means of Eq. (4-1.26) and (4-1.25), and replacing
x," by x,' — vt, we obtain the time-dependent expressions for the
potentials
¢=-G m (5-6.7)
[(xg - vi)2 +(1 -v¥/c?y'?2

and

A=-G my . (56.8)
CZ[(X(; _ Vt)2+(1 _v2/02)y/2]1/2

A

5-7. How Accurate are the Equations for the Fields and
Potentials Obtained in this Chapter?

In obtaining the expressions for g and K of moving point
masses we used several approximations. Our first approximation
was the replacement of the integrals in Eqs. (3-1.1) and (3-1.2) by
the products of the integrands and the volumes of integration. This
can only be done if the relation r > [* is satisfied. Therefore, by
Eq. (4-1.7), our g and K expressions for moving point masses®
are subject to the restriction

l l
> - , (5-7.1)
" l1-r-v/rc 1-(v/c)cos¢
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where [ is the length of the "point mass,” v is the velocity of the
mnass, r is the retarded position vector joining the mass with the
point of observation, and ¢ is the angle between v and r. Since
[5q. (5-7.1) must hold for all values of ¢, including ¢ = 0, the
velocity of the mass is subject to the restriction

v < c(1-1/7). (5-7.2)

Consider now the approximations that we used for taking into
account the acceleration of the mass. The retarded time intervals
between the center and the right-left and top-bottom surfaces of
the mass are (r, — r,)/2c = (I cos¢)/[2c(1 — r-v/rc)] and (r; —
r)/2c = (a sing)/[2c(1 — r-v/rc)], respectively (see Figs. 5.7,
4.2, and 5.3).° For Eq. (5-7.1) to hold, the increment in the
velocity of the mass during these time intervals must be less than
¢ — v. Hence the restrictions on the acceleration of the mass in
the direction of the x axis is

v(r,-r)l2c < c-v, (5-7.3)

of 2(c -v)(c-vcos¢) .

v, <
lcoso

(5-7.4)

A similar restriction applies to the acceleration in any other
direction. Since the largest possible value for cos ¢ and sin ¢ is
I, we obtain from Eq. (5-7.4) for the general case of the
acceleration v

2(c-v)?

y < , (5-7.5)

where L is the length of the "point mass” in the direction of the
acceleration.

References and Remarks for Chapter 5

1. A "point mass” is by definition any mass distribution viewed
from a distance large compared with the linear dimensions of that
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distribution, similar to the term "light point," which is frequently
used in reference to stars. In neither case does the word "point"
describe the structure or the constitution of the object; instead, it
reflects the attitude of the observer toward this object.

2. One may think that by choosing the mass in the shape of a
rectangular prism we limit the generality of our derivations. This is
not so. Any mass distribution can be regarded as being composed
of masses confined to small rectangular prisms: this is exactly what
we do when we perform integration over a volume element
(rectangular prism!) dV' = dx' dy' dz'.

3. The increment dU of any scalar function U (x, y, z,) associated
with the displacement dl = xi + yj + zk is dU = VU-dl [see, for
example, Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989) pp. 36-38]. Since in the case
under consideration the displacements 1* and a* are very small
(they represent the length and width of a "point mass"), these
displacements can be treated as differentials.

4. Oliver Heaviside, "A Gravitational and Electromagnetic
Analogy," The Electrician, 31, 281-282 and 359 (1893). This
article is reproduced in modern notation in Oleg D. Jefimenko,
Causality, Electromagnetic Induction and Gravitation, 2nd ed.,
(Electret Scientific, Star City, 2000), pp. 189-202.

5. Equation (3-1.1) contains a retarded gradient of p and retarded
time derivative of J, rather than a gradient of retarded p and time
derivative of retarded J. This means that the gradient and the time
derivative must be determined for the unretarded (stationary) p and
J but must be used at the retarded position of the moving mass.
6. A. Liénard, "Champ électrique et magnetique produit par une
mass électrique concentré en un point et animé d’un mouvement
quelconque," L’Eclairage élect. 16, 5-14, 53-59, 106-112 (1898).
7. E. Wiechert, "Elektrodynamische Elementargesetze," Archives
Néerlanaises (2) 5, 549-573 (1900).

8. These expressions also include Eq. (4-2.10).

9. To simplify the calculations, we assume here that « in Fig. 5.3
is /2.



GRAVITATIONAL AND
COGRAVITATIONAL

FIELDS AND POTENTIALS OF
ARBITRARY MASS
DISTRIBUTIONS MOVING WITH
CONSTANT VELOCITY

Gravitational and cogravitational fields produced by a
time-independent stationary mass and mass-current distribution can
be calculated with relative ease by a variety of methods. But
calculating fields of time-dependent mass and mass-current
distributions, and the fields of moving mass distributions in
particular, is in general a formidable task. In this chapter we shall
obtain formulas that make it possible to determine the fields and
potentials of any uniformly moving mass distribution directly and
simply in terms of present time integrals that are not much
different from the integrals for fields of stationary masses.

6-1. Converting Retarded Field Integrals for Uniformly
Moving Mass Distributions into Present-Time (Present-
Position) Integrals

As we already know from Chapters 3 and 2, gravitational and
cogravitational fields of moving mass distributions can be found

95
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from the retarded integrals

[V’p . iﬂ}

g = Gj rcz 0t gy (6-1.1)

and
K - - Ezj [V/rx‘” v’ (6-1.2)

or from ‘

g = - GH.[%] rlc %‘;]}rdv’ CGZH[%]W/ (6-1.3)

and
K - {”1 [ xrdv'. (614

We shall presently show that for time-independent mass
distributions moving with constant velocity, these integrals can be
converted to the "present" position of the mass distribution, so
that the integration is performed not over the retarded, or
effective, volume (see Section 4-1), but over the real volume that
the mass distribution occupies at the moment ¢ for which the fields
are being determined.

The conversion is based on certain properties and relations
involving retarded integrals and retarded quantities which are
reviewed below.

Although in the retarded integrals the retardation symbol [ ]
usually appears only in the numerators of the integrands, all
quantities in the integrals are retarded. In particular, the volume
element dV' stands for the retarded volume element dV,,,’ = [dV']
= d[x'ldly']ld[z'], r stands for the retarded distance [r], and r
stands for the retarded position vector [r]. Note that [Vp] means
"ordinary Vp used at retarded position," [dp/3f] means "derivative
of ordinary p with respect to ordinary time used at retarded
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position," and [0J/3¢f] means "derivative of ordinary J with respect
to ordinary time used at retarded position. "

In the derivations that follow, we shall assume that the point
of observation is at x = y = z = 0, and we shall only consider
a time-independent mass distribution moving with constant
velocity in the —x direction. For such a mass distribution, because
the mass density is not a function of time, [p] = p, and, because
v is constant, [v] = v. Also, as explained in Section 4-1 [see Egs.
(4-1.8), (4-1.3), (4-1.4), (4-1.25), and (4-1.26)], the following
relations hold for such a mass distribution

@y-_v (6-1.5)
1-[r-v]/rc
%z_v.v/pzv%, (6-1.6)
X
%’t] = - (v.Vp)v = —vzgi, (6-1.7)
X

—Ire 2 12 L 12 (12 45 12Yy, 2/ A 20102
[l -[r-vlc={xq +y*+2"* - (y'* +2'*)v¥c?} (6-1.8)

={xg + "2 +2 (1 -V} = {xg" + ("2 +2 2,
[we are using the standard abbreviation y = 1/(1 — v*/c%"?], and
[r] - Ir « vl/c =r {1 -(v¥/c)sin?0}'2, (6-1.9)

where sin®d = (y2 + z2'9)/(x,”> + y'* + z'») and 6 is the angle
between the velocity vector v and the vector r, joining dV’ with
the point of observation. For clarity, all retarded quantities and
expressions in the above equations are placed between square
brackets; the quantities without brackets, and the quantities
between braces in Eq. (6-1.8) and (6-1.9) in particular, are
present-time quantities. Observe that Eq. (6-1.8) is obtained from
Eq. (4-1.25) by replacing y'? by y'* + z'%; the replacement is
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needed because we no longer deal with a point mass and therefore
cannot assume that the mass is confined to the xy plane.

We can now proceed with the conversion of Eqs. (6-1.1)-(6-
1.4). Once again, we shall only consider a time-independent mass
distribution moving with constant velocity v = — vi.

Converting Eq. (6-1.1). Using Eqgs. (6-1.5) and (6-1.7) and
remembering that p and v are not affected by retardation and that
V'p in Eq. (6-1.1) is the ordinary gradient, we can write Eq. (6-
1.1) as
Vip-(v-Vp)vlic?

g - GJ av'
[r=r-vic (6-1.10)
_ GJ Vip -i(v?/c?)(dplax’) av!
[r-r-v/c] ’

where only the denominator is retarded. Converting the retarded
denominator in Eq. (6-1.10) with the help of Eq. (6-1.8), we
obtain the desired equation (we are omitting the subscript "0" at
x' for simplicity)
g - GJ’ V'p —i(vz/cz)(aplax’)dv,, (6-1.11)
{XI2+(_Y/2 +Z/2)/,YZ}]/2

where the integral is a "present position" integral, and where all
quantities are present-time quantities.

Equation (6-1.11) can be written in an alternative form. Using
Eq. (6-1.9) for converting the denominator of the integrand in Eq.
(6-1.10), we obtain (omitting the subscript "0" at r for simplicity)

¢-G l V'p-i(v*c?)(@p/0x") jvi (6-1.12)
r{l-(v¥c?sin’g}"

An even simpler expression for g of a moving mass
distribution can be obtained from Eq. (6-1.1) if the density of the
mass under consideration is constant within the volume occupied
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by the mass. As was shown in Section 3-2, in this case the mass
gradient exists only at the surface of the mass, and the volume
integral reduces to a surface integral. Equation (6-1.12) becomes
then

g = - das’ ii(vzlcz)dy’dz’ ’ (6-1.13)
r{l -(v¥c*sin’6}'?

where the surface element vector dS' is directed from the mass
distribution into the surrounding space, and the sign in front of i
is the same as that of dp/dx’' .

v

Example 6-1.1. A thin ring of width w, thickness b, and radius a
> b has a uniformly distributed mass m and moves with velocity
v = — i along the x axis, which is also the symmetry axis of the
ring (Fig. 6.1). Find the gravitational field produced by the ring at
the origin of coordinates when the center of the ring is at a distance
x' from the origin.

=¥

Fig. 6.1 A thin ring of mass m moves with velocity v = — vi along
the x axis. Find the gravitational field at the origin.

We can solve this problem by using Eq. (6-1.13). By
symmetry, only the front (leading) and the back (trailing) surface
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of the ring contribute to the gravitational field at the origin. Let the
distances from the front and the back surface of the ring to the
origin be r, and r,. We then have r, = [(x' — w/2)> + @], r, =
[(x" + wi2)* + @', sind, = a/[(x' — w/2)* + a’]'?, sind, =
al[(x’ + w/2)* + a*]'?. Equation (6-1.13) becomes therefore

g=- GP(J' -{1-v¥c¥}dy'dz'i +j’ {1-v?c*}dy'dz'i )
r {1 -(v?*/c?)sin?0 }'? ) r {1-(v*/c?)sin’6,}'"?
(6-1.14)
where the integration is over the two flat surfaces of the ring.
Substituting the above values for r;, r,, sind,, and sind, and taking
into account that the area of each flat surface of the ring is 2mab,
we then have

. -1
=-iGp(1-v?¥c? 27rab(
g ) {(x/ —W/2)2+02—V202/C2}”2
+ 1 ) (6-1.15)
(" +wi2)’ +a* -via?/c} I
or
g - iGm(l -v2/c?) ( 1
w {(x" -wi2)* +(1 -v¥c?)a?}'"?
1 (6-1.16)
{7 +wi2 +(1 -v¥cP)a}? )

Example 6-1.2. A very long, thin, straight ribbon of width a and
thickness b has a mass of uniform density p and moves along its
length with velocity v = — vi (Fig. 6.2). The plane of the ribbon
is in the xz plane of rectangular coordinates and the center line of
the ribbon is on the x axis. Find the gravitational and
cogravitational fields produced by the ribbon at the point P(0, O,
R).

We can solve this problem by using Egs. (6-1.13) and (4-2.4).
According to Eq. (6-1.13), the only contribution to the gravitational
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Fig. 6.2 A very long thin ribbon of mass density p moves with
uniform velocity v .= — vi along the x axis of rectangular
coordinates. Find the gravitational and cogravitational fields
produced by the ribbon at the point P.

field of the ribbon at P comes from the edges of the ribbon located
at z' = a/2 and 7’ = — a/2 (by symmetry, the flat surfaces make
no contribution). Let us assume that the ends of the ribbon are at x’
= — L, and x' = L,. By Egs. (6-1.13), (6-1-9), and (6-1.8), we
then have

g- - Gp“% kbdx’ _I% kbdx’
L {x P+ (R=-al2) 1y )P (R +al2)M iy
= - kab{ln(x’ + {x 2+ (R -al2)y3"7) (6-1.17)
- In(x/ +{x"?+(R +a/2)2/'yz}”2)} : ,
or |

L, +{L}>+(R-al2}y*}'"?
-L,+{L2+(R-al2)}y* }""
L, +{L} +(R +al2)Iy*}'"*
-L,+{L*+R +al2)’Iy }”2] '

g =kGpb [ln
(6-1.18)

- In

Since R —a < L,L,and R + a < L,,L,, we can expand the
expressions in the braces and keep only the leading terms, obtaining
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L,+L,+(R-al2)’/2L,y*
L +L +(R-al2y 2Ly’
2 2
‘I L,+L,+(R+al2)*/2L,y (6-1.19)
=L +L +(R+al2)’2LY*
2L+ (R-al2f2Ly | 2+ (R+al2P 2Ly
(R-al2) 2Ly R+al2 2Ly

g=-kGpb [ln

=-KkGpb |In

and, finally,

g = - kG2pbln g‘;*"gz (6-1.20)
a

To find the cogravitational field, we will use Eq. (4-2.4). By
Egs. (4-2.4) and (6-1.20), we have

K- Lyxg = - (cixk G20V, R+al2) (531
c? c? (R-al2)

or

jG2Jby (R+ald) __;2GI) (R+al) (52

K - - :
T ®-al) ac?  (R-al2)

where J is the mass-current density and I = pvab is the mass-
current formed by the ribbon.

Observe that Eq. (6-1.22) becomes the same as Eq. (5-3.23) if
R > aand, in Eq. (§-3.23), L, = o = — L,. Taking into account
the difference of the methods used for obtaining Eq. (6-1.22) and
Eq. (5-3.23), this result is quite remarkable.

A

Converting Eq. (6-1.3). As before, we assume that the mass
is time independent and moves with constant velocity v = — vi.
Using Eqs. (6-1.6) and (6-1.7), we can write Eq. (6-1.3) as
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g=- GJ_[p_alrdV’ - EJ “Lve Viplr +viv - Viplric yy:
r ¢ r (6-1.23)
Note that V'p in this equation represents the ordinary
gradient, that is, the gradient with respect to the ordinary source-
point coordinates. For the calculations that follow, we need to

convert V'p into the gradient with respect to the retarded
coordinates. According to Eq. (4-1.7),

dx’
dx'] = ——— | (6-1.24)
1-[r-vl/[ric
and therefore

0 1 o (6-1.25)
ax’  1-[r-viilric o]

Since v is along the x axis, the y' and z' are not affected by
retardation, so that 8/dy’ = 8/0[y’'] and 8/dz" = 4/3[z']. Hence

v = V1 [V100] 6-1.26
[v+Vp] T e ( )

Substituting this expression into Eq. (6-1.23), we obtain

g=—G[ ﬂrdv'-ﬁj (vric=nv - V0 4y (6-1.27)
rer 3 C Jrer r2(1 —v-r/rC)

where all the quantities under the integral signs are retarded, and
where we have replaced the retardation brackets in the integrands
by the subscript "ret" at the integral signs.

Let us designate the last term in Eq. (6-1.27) as g,. We have

g=-Zf SHeON Vg (6129)
clra r¥(1-v-rirc)

To convert this integral to the present position of the mass, we
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shall first eliminate V'p from it. To do so, we shall write Eq. (6-
1.28) in terms of its Cartesian components. For the x component

we have, remembering that v = — viand thatr = — (x'i + y'j
+ z2'K),
N\ . O
g2x=£;l vric-xHv V0 4y (6-1.29)
clra r¥1-verirc)

Let us now factor out v+ and, using vector identity (V-5), let us
write the integral as a difference of two integrals

. -/ V/
=GV_] vrle-x)Vp 4y 6-1.30
S ¢ Yt r’(1-v-r/rc) ( )

. —x! !
=GV_{] v _(vrie=xp dv'-] pv/_vrle-x7) av'}.
¢ Y r(1-ver/rc) e rX(1-ver/rc)

The first integral in the last expression can be converted into
a surface integral by means of Gauss’s theorem of vector analysis
[vector identity (V-19)], and since there is no mass outside the
mass distribution under consideration, the integral vanishes.
Differentiating the integrand in the second integral, collecting
terms, reintroducing v+ under the integral sign, and simplifying,
we obtain

av!

_ {vic?-2verirc+(ver/rc)}x'-(v¥c*-1)vric
8= -Gl p 3 5
ret r’(1-ver/rc)
(6-1.31)
Proceeding in the same manner with the y and z components
of Eq. (6-1.28), we obtain

(6-1.32)

2102 . . 2 /
g, = - Gl P {vic?-2verirc+(v-rirc)}}y dv
i ret r3(1 —v-r/rc)2
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and

8=~ G| p W22y wire (v - xiref}2l yyr (6133
ret r’(1-v - r/rc)?

Multiplying Eqgs. (6-1.31)-(6-1.33), respectively, by i, j, and
k and then adding them together, we again obtain a single vector
equation for g,:

g - 'GJ p {2ver/rc -(ver/rcy*-v¥c*r +(v¥c?- l)vr/cdv,
2 ret r3(1 -v-r/rc)? (6-1.34)

Let us now rewrite Eq. (6-1.27) using Eq. (6-1.34) for the
second integral of Eq. (6-1.27). We then have

- Y /
8=-G|[ Lrav (6-135)

_ GJ p {2ver/rc-(ver/rc)>-v¥c?r +(v¥c? - Dyvric v
ret r’(1-v -« r/rc)?

Adding the two integrals, we obtain

g=- GJ' p (1 =-v¥cd(r-vr/c) av' (6-1.36)
ret r3(1 -V r/rc)2

We shall now convert the retarded integral in Eq. (6-1.36) to
the present position of the mass. Replacing the retarded dV' in
Eq. (6-1.36) by the ordinary dV' with the help of Eq. (6-1.5) and
writing 1/9% for 1 — v*/c?, we have

g=-

E[ p([l‘] —v[r]/c) av’ (6-1.37)
v UPA-v-elirey

where, since p, v, v, and ¢ do not depend on time, only r and r
are retarded. But according to Eq. (4-1.19), the present-position
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vector r and the retarded position vector r are connected by the

relation
r, = [r] - v[r]/c, (6-1.38)

so that the numerator in the integrand of Eq. (6-1.37) is simply p
multiplied by the present-position vector r, Furthermore,
according to Eq. (6-1.9), the denominator is simply

ro {1 -(v¥c)sin?8}>? (6-1.39)

where r, is the distance from the present-position volume element
dV' to the point of observation, and @ is the angle between v and
r,. Hence Eq. (6-1.37) can be written as

G [ Py av’ (6-1.40)

g=-
Y {1 -(v¥cYsin?g}3?

where the integration is over the volume of the mass at its present
position [compare with Eq. (5-1.13)]."

v

Example 6-1.3. An irregularly shaped mass distribution of total
mass m moves with constant velocity v = vi. The longest linear
dimension of the distribution is a. Find the gravitational field of the
distribution at a distance r > a from the distribution.

We can solve the problem by using Eq. (6-1.40). Since r > a,
we can assume r and 6 to be the same for all points of the mass.
Therefore we can factor out r and the denominator of the integrand
in Eq. (6-1.40), obtaining [compare with Eq. (5-1.13)]

_ Gr, IpdV’
V2rs {1 - (v¥/c?) sin? 6}

Gmr,

oQ
n

(6-1.41)

vire {1-(v?¥c?Hsin?6}*” '
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Converting Eqs. (6-1.2) and (6-1.4). The retarded integrals for
the cogravitational fields in Eq. (6-1.2) and (6-1.4) can be
converted to the present position of the mass in the same manner
as the integrals in Eqs. (6-1.1) and (6-1.3) for the gravitational
field. However, there is no need to resort to this conversion
process, because by Eq. (4-2.4) the gravitational and
cogravitational fields of any uniformly moving mass distribution
are connected by the relation

K = (vxg)c?. (6-1.42)

From Egs. (6-1.12) and (6-1.42) we then have, noting that v X
i=0,

K-S __"xV0 __av. 6143
c* {1 -(v¥c?)sin?6}"?

From Eqgs. (6-1.13) and (6-1.42) we have

K - - Gﬁcj@ v xds' . (6-1.44)
{1 -(v¥c?)sin’4}"?

And from Egs. (6-1.40) and (6-1.42) we have

- 9 VXK av' . (6-1.45)
A R {1 - e)sin? 032

6-2. Converting Retarded Potential Integrals for Uniformly
Moving Mass Distributions into Present-Time (Present
Position) Integrals

We know from Chapter 3, Egs. (3-3.5) and (3-3.2), that the
gravitational potential ¢ and the cogravitational vector potential A
of time-variable mass and mass-current distributions in a vacuum
can be found from the retarded integrals
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0= - G[[_f].dv' (6-2.1)
and
A-- Elﬂdv’. (6-2.2)
ctl r

As we shall presently see, for time-independent mass distributions
moving with constant velocity, these integrals can be converted to
the present position of the mass, so that the integration is
performed not over the retarded volume, but over the volume that
the mass distribution occupies at the moment ¢ for which the
potentials are being determined.

Converting Eq. (6-2.1). Using Eq. (6-1.5) and remembering
that p and v are not affected by retardation, we can write Eq. (6-
2.1) as

¢=-GL_JL_4W, (6-2.3)
[r-r-v/c]
where only the denominator is retarded. Converting the retarded

denominator in Eq. (6-2.3) with the help of Eq. (6-1.8), we obtain
the desired equation (omitting the subscript "0" for simplicity)

Q= - GJ P av’, (6-2.4)
{xl2+(y/2+zl2)/,),2}l/2

where the integral is a "present position" integral, and where all
quantities are present-time quantities.

Equation (6-2.4) can be written in an alternative form. Using
Egs. (6-1.8) and (6-1.9) for converting the denominator of the
integrand in Eq. (6-2.4), we obtain

0=-G| b _av. (6-2.5)
r{l-(v*c?sin’f}'?
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Equations (6-2.4) and (6-2.5) can be further modified so that
the potential is expressed not in terms of the mass density p as
such, but in terms of Vp (that is, in terms of the "mass
inhomogeneities"). This can be done as follows.

Taking into account that the position vector r is directed

toward the point of observation, so thatr = — x'i — y'j — z'k
and V'- r = — 3, we write [see vector identity (V-8)]
v/ . rp - r . v/
{x/2+(y/2+zl2)/,yz}1/2 {x/2+(y/2 +Z/2)/,Yz}|/2
+pV/ . r
{x/2+(y/2+z/2)/,yz}1/2
= r . V/p - 3p
{x’2+(y 12 +Z/2)/,Yz}|/2 {x/2+(y/2+zl2)/72}1/2
_r-{}i+(@'j 'k} (6-2.6)
{x12+(yl2 +z/2)/,yZ}3/2 '
r-Vp _ 2p

N {x/2+(y/2+zl2)/72}1/2 {x/2+(y/2+zl2)/,yz}1/2'

Using Eq. (6-2.6) and Eq. (6-2.4), we can now express the
potential as

EIV’ . ro av’
2 {x’2+(y’2+z’2)/72}"2
Ej r-ve av’ .

2 {x’2+(y’2 +ZI2)/72}1/2

6-2.7)

The first integral in this equation can be transformed into a
surface integral over all space by means of Gauss’s theorem of
vector analysis [vector identity (V-19)], and, since there are no
masses at infinity, the integral vanishes. Hence the potential can
be written as
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R v/l
Q= - Ej r-vie av’. (6-2.8)
2 {x/2+(y/2 +z/2)/,yz}1/2

or, by using Egs. (6-1.8) and (6-1.9), as

o =- EJ Vo av’. (6-2.9)
20 r{1 -(v¥c?sin’0}'?

Equations (6-2.8) and (6-2.9) can be written in a much
simpler form, if p is constant within the mass distribution. In this
case V'p is different from zero only in the surface layer of the
mass distribution, where the mass changes from p within the
distribution to zero outside the distribution. We then have V'p =
(p/T)n,, where 7 is the thickness of the surface layer of the
distribution, and n, is a unit vector normal to the surface of the
distribution and directed into the distribution. The volume
element dV' in Egs. (6-2.8) and (6-2.9) becomes then 7dS’, where
dS' is a surface area element of the distribution, and therefore
Egs. (6-2.8) and (6-2.9) reduce to

/
0 = _G_&f r - dS , (6-2.10)
2 {x/2+(y/2 +Z/2)/,Yz}1/2

and

Gp r- dem,
0 = _Lf , (6-2.11)
2 ) r{1-(¥c?sin’0}'”

where dS,, is a surface element vector directed from the mass
distribution into the surrounding space.

Converting Eq. (6-2.2). The mass-current density produced
by a uniformly moving mass distribution is J = pv with v =
const. The vector potential A for such a mass distribution is, by
Egs. (6-2.2) and (6-2.1),
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A=Y
C2

Hence, using Eqgs. (6-2.5), (6-2.9), and (6-2.11), we have

(6-2.12)

)

A= - EX] p av'.  (62.13)
c?  r{1-(¥c?sin?4}'
A-- ﬂj r-vip av'.  (6:2.14)
2¢?) r{l -(v¥c?sin%0}'?
and
/
A = Gvw r-dSu (6-2.15)

2¢2 3 r{1-(v¥c¥Hsin?g}2’

and similar expressions corresponding to Eqs. (6-2.4), (6-2.8),
and (6-2.10):

A= - EX] p av'. (6-2.16)
C2 {x/2+(y/2 +Z/2)/,Yz}1/2
A=- _G_vj r-v av’, (6-2.17)
2C2 {x /2+(y/2 +Z/2)/,YZ}1/2
/
A -G S (62.18)
2¢? {x/2+(y/2 +Z/2)/,YZ}I/2
v
Example 6-2.1. An irregularly shaped mass distribution of total
mass m moves with constant velocity v = — vi. The longest linear

dimension of the mass distribution is a. Find the gravitational and
cogravitational potentials produced by the mass at a distance r >
a from the mass.
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We can solve the problem by using Eqs. (6-2.5) and (6-2.13).
Since r > a, we can assume r and 8 to be the same for all points
of the mass. Therefore we can factor out the denominator of the
integrands in Eq. (6-2.5) and (6-2.13), obtaining [compare with
Egs. (5-6.5) and (5-6.6)]

0=-G m , (6-2.19)
r{l-(v?/c?sin*g}'?

A--G vm , (6-2.20)
cir{l -(v¥c?sin?0}'?

A

6-3. Some Peculiarities of the Expressions for the Fields and
Potentials Derived in this Chapter

Three peculiarities of the equations for the gravitational and
cogravitational fields and potentials derived in this chapter should
be noted.

First, in the equations developed in the preceding chapters we
used both retarded and present-time (present position) coordinates,
and therefore we needed to use different notation for the two types
of coordinates. In particular, we designated the present position
vector as r, and the x component of this vector as x,’, while we
designated the retarded position vector as r and its x component
as x'. However, since all the resulting expressions for the fields
and potentials developed in this chapter are for the present
position of the mass distributions, there is no longer a need to use
the subscript "0" at r or x'. Therefore, in the field and potential
equations obtained in this chapter, r and x’ stand for the present-
time (present position) coordinates.

Second, in deriving our equations for the potentials of moving
mass distributions, we assumed that the field point (the point for
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which the potentials are determined) was at the origin. However,
m practical application of the potentials it is usually necessary to
dilferentiate the potentials with respect to the field point. In
particular, for finding gravitational and cogravitational fields from
potentials it is necessary to operate upon the gravitational and
cogravitational potentials with the operator V (which operates
npon the field point coordinates). Therefore, in general, the field
point must be allowed to vary.

We can easily convert our equations for the potentials (and
liclds) into equations with a variable field point. Let us designate
the coordinates of this point as x, y, and z. If we then replace the
v', y', and z' coordinates appearing explicitly or implicitly in our
cquations for potentials or fields by (x — x"), (y — ¥'), and (z —
:'), respectively, the new equations will apply to fields and
potentials determined for the field point x, y, z. However, if the
nass density p within the mass distribution under consideration is
constant, we can differentiate the potentials with respect to the
lield point without actually replacing the x', y’, z' coordinates at
all, because in this case, by vector identity (V-27), the only
difference between the differentiation of the integrands with
respect to x', y', z' and with respect to x, y, z is in the sign of the
resulting expression. Thus, in the case of constant p, we can
compute gravitational and cogravitational fields from the potentials
derived in this chapter without changing the coordinates, provided
that after placing V under the integral sign we replace it by —V’
(see Example 6-3.1).

Third, all the fields and potentials derived in this chapter are
"snapshots" representing only the instantaneous values of the
observed fields and potentials. In reality the fields and potentials
of a moving mass distribution vary as the mass distribution moves
relative to the point of observation. For practical applications it
may be necessary to determine time derivatives of the fields and
potentials. Therefore, in general, the fields and potentials must be
expressed as a function of time. This can be easily done by noting



114 CHAPTER 6 MOVING MASS DISTRIBUTIONS

that when a mass distribution moves with constant speed parallel
to the x axis, the present position of dV’ (or dS') is x’ + vt (the
minus applies to motion against the x axis, the plus applies to the
motion in the direction of the x axis). Thus all we need to do for
introducing the time dependence into the fields and potentials
derived in this chapter is to replace x' appearing explicitly or
implicitly in our field and potential equations by x' + vr (see
Example 6-3.1, see also Examples 5-1.2 and 5-6.1).

v

Example 6-3.1 A very long hollow cylinder of wall thickness b and
radius a > b has a uniformly distributed mass of density p and
moves with velocity v = — vi along the x axis, which is also the
symmetry axis of the cylinder (Fig. 6.3). Find the gravitational field
produced by the cylinder at the origin of coordinates when the
leading end of the cylinder is at a distance x' from the origin.

AY

Fig. 6.3 A very long cylinder of mass density p moves with uniform
velocity v . = — Vi along the x axis. Find the gravitational field
produced by the cylinder at the origin.

We shall solve this problem by using Eqgs. (6-2.4) and (6-2.16).
Applying the relation g = — Vo — 0A/dr [this is Eq. (3-3.4)
derived in Section 3.3] to Egs. (6-2.4) and (6-2.16), we obtain
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=-Vv(-G P 4
g ( l {x12+(y/2 +Z/2)/,YZ}1/2 a ) (6_3])

- 3(— _G_V] p dv/),
ot c? {x’2+(y’2+z’2)/72}"2

In Eq. (6-3.1), V operates upon the field point coordinates x,
¥, z, which do not appear in Eq. (6-3.1). However, as explained
above, for constant p we can leave the first integral in Eq. (6-3.1)
as it now is, provided that for the actual differentiation we replace
V by —V'. Placing V under the integral sign and replacing it by
—V'’, we have for the part of the gravitational field due to ¢ (using
g=2g, *8)

g,=-G[v p av'. (632
{x/2 +0)/2 +Z/2)/,Yz}|/2

To differentiate the second integral in Eq. (6-3.1), we must first
express the integrand as a function of ¢. Replacing x' in the
integrand by x’ — w, placing 8/d¢ under the integral sign, and
differentiating the integrand, we then have for the part of the
gravitational field due to A

2,61 | pux’ -y av', (63.3)
C2 {(x/ —Vt)2+(y/2 +z/2)/,YZ}3/2
or, setting ¢t = 0,
g, =G| vx'p av',  (63.4)
4 c? {x/2+(y/2+212)/,yz}3/2

which, as one can easily verify by direct differentiation, is the same
as

FERALTY | /——T R )
{x/ +(yl +Z/)/,YZ}1/2
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The total field is therefore

g = - G]v' p av’
{x/2+(y/2 +z/2)/,y2}1/2 (6-36)
* Gllv : JV/{ /2 (y/2p 12)/ Z}IIZdV/'
C X'+ +2 Y

Using now Gauss’s theorem of vector analysis [vector identity
(V-19)], we can convert the two integrals into integrals over the
surface of the cylinder, obtaining’

dSo“l
g =" Gpﬁ F A
{2+ +2"") v} (6-3.7)

\/ dsow }
- ?v *{x/2+(y/2+z/2)/,),2}1/2 ’

where dS,,, is a surface element vector directed outward from the
volume of the cylinder.

By the symmetry of the system, the gravitational field at the
point of observation has only the x component. The only surfaces
of the cylinder contributing to that component are the surfaces of
the leading and trailing ends of the cylinder. However, since the
cylinder is very long, the contribution of the trailing end is
negligible. Furthermore, since the cylinder’s wall is thin, the
integration over the leading end can be replaced by the
multiplication of the integrand by the surface area S = 2mab of the
leading end’s wall. Taking into account that v = — vi, that for the
leading end y'? + ' = &, dS,, = — dSi, and v - dS,, = vdS,
we finally obtain for the "snapshot" of the gravitational field
produced by the cylinder at the point of observation

2mpab(1-v¥c?) | (6-3.8)

g=G .
{x/2+a2(1 _VZ/CZ)}I/Z
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li’xample 6-3.2 A line mass of length 2L and linear mass density
N moves along its length with constant velocity v = — vi in the xy
plane of a rectangular system of coordinates at a distance y = R
inhove the x axis. The point of observation is at the origin. Find the
pravitational  potential, the gravitational field, and the
cogravitational field at the origin at the moment when the two ends
ol the mass are at equal distances L from the y axis and then obtain
the limiting value of the fields for a very long mass.

To find the gravitational potential, we use Eq. (6-2.4) with
ndV' replaced by Adx'. Integrating over the length of the line mass

we then have
L
Q= - GI S SR
L (xFay 2 )2 (6-3.9)

_ G)\ln{xl +(x’2+y’2/72)"2} Iva

or
0 = - Gain ALy (6-3.10)
{—L+(L2+y/2/72)"2} ’

To find the gravitational field, we differentiate Eq. (6-3.10)
with respect to y’, using the positive derivative (by symmetry, the
vector potential makes no contribution to the gravitational field at
the origin). The result is

g=G {2\ i=G Zh j. (63.11)
yl(l +y/2/,YZL2)l/2 R(l +R2/,Y2L2)I/2

The cogravitational field of the line mass is, by Eqs. (6-3.11)
und (4-2.4),

K=-G 2hv k. (6-3.12)
CZR(I +R2/,YZL2)I/2

For a very long mass, L > R, so that Eqs. (6-3.11) and (6-
1.12) reduce to
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2\ .
= G2 (6-3.13)
Y R J
and
K - - g2Mk. (6-3.14)
c’R

It is interesting to note that the gravitational field given by Eq.
(6-3.13) is the same as that of a stationary infinitely long line mass,
and that the cogravitational field given by Eq. (6-3.14) is the same
as the cogravitational field produced by a mass-current / = A\v
(compare with Example 6-1.2 and Eq. 5-3.23).

A

References and Remarks for Chapter 6

1. As was mentioned in Section 5-1, Eq. (5-1.13) for a moving
point mass was first derived (in a different form) by Oliver
Heaviside. Heaviside noted that his equation provided an
explanation for the absence of gravitational aberration even if
gravitation propagated at a finite speed. Equation (6-1.40) shows
that also in the case of a mass distribution of any shape moving
with a finite speed v there is no gravitational aberration, because the
gravitational field appears to originate at the present position of the
moving mass.

2. When using this method, the volume of integration must be
inside the mass distribution, because only there p is constant. The
surface of integration remains within the mass distribution, just
touching the surface layer of the mass, but not stepping out of the
mass distribution into the space where there is no mass. See Section
3-2.



DIFFERENTIAL EQUATIONS
FOR GRAVITATIONAL AND
COGRAVITATIONAL FIELDS;
ELECTROMAGNETIC ANALOGY

In this chapter we shall derive differential equations for
pravitational and cogravitational fields. As we shall see, these
cquations are similar to Maxwell’s electromagnetic equations,
which makes the generalized theory of gravitation very similar to
Maxwellian electrodynamics. An important consequence of this
similarity is that many methods and techniques originally
developed for solving electromagnetic problems can be used for
solving problems involving gravitational and cogravitational
interactions.

7-1. Differential Equations for Gravitational and
Cogravitational Fields; Analogy with Maxwell’s
Electromagnetic Equations

Practical applications of the principal field equations, Eqgs. (2-
2.1) and (2-2.2), as well as of their special forms derived in
Chapter 3 are rather difficult because they involve retarded
integrals, in which the integrands must be evaluated for a past
time ¢', rather than for the present time ¢ (the time for which the

119
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fields g and K are determined). Therefore, for practical
applications, Egs. (2-2.1), (2-2.2) and their equivalents should be
preferably converted into equations where all the quantities are
evaluated for the present time ¢. In general, converting equations
involving retarded integrals into equations with present-time
integrals is not possible (see Chapters 5 and 6 for several
exceptions). However, as we shall presently see, some equations
containing retarded integrals can be converted into differential and
integral equations involving present-time quantities only.

From the theoretical point of view, particularly important is
the fact that Eqs. (2-2.1) and (2-2.2) can be converted into the
following present-time differential equations:

V-g = - 47['pr (7-11)
V'K =0, (7-1.2)

0K
Vxg = - 9™ (7-1.3)

& 3

and
VxK - - 470y . 108 (7-1.4)
c? c? ot

By applying vector identity (V-19) to Egs. (7-1.1) and (7-1.2)
and by applying vector identity (V-17) to Eqs. (7-1.3) and (7-1.4),
Egs. (7-1.1)-(7-1.4) can be further converted into the following
present-time integral equations:

<f>g-a'S - - 41rG[pdv. (7-1.5)
<fK-ds - 0. (7-1.6)
*g-dl = - %lK-dS. (7-1.7)

and
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+K-d| - - _l-l(4wGJ - E)-ds. (7-1.8)
c? ot

Readers familiar with electromagnetic theory will immediately
recognize that Eqgs. (7-1.1)-(7-1.8) are similar to Maxwell’s
clectromagnetic equations in their differential and integral forms,'
cxcept that the symbols and constants in Egs. (7-1.1)-(7-1.8) are
different from the symbols and constants appearing in Maxwell’s
cquations. It is important to note that, as early as in 1893, Oliver
lleaviside suggested the possibility of an analogy between
gravitation and electromagnetics and the possibility of expressing
gravitational fields and the gravitational "analog of magnetic"
fields by equations similar to Maxwell’s equations.” Heaviside’s
suggestion was entirely intuitive and was not supported by
substantive physical or mathematical arguments. However, as is
now clear, this analogy is actually a rigorous consequence of the
fundamental premises of the generalized theory of gravitation and
of Egs. (2-2.1) and (2-2.2) in particular. It is also clear therefore
that the similarity of Egs. (7-1.1)-(7-1.8) with Maxwell’s
clectromagnetic equations is more than a mere analogy: Egs. (7-
1.1)-(7-1.8) are completely autonomous equations for gravitational
and cogravitational fields reflecting intrinsic properties of these
fields.

The analogy between gravitational-cogravitational and
electrodynamic equations is not perfect, of course. In particular,
whereas the electric field may be directed to or from the electric
charge by which it is created (depending on whether the charge is
negative or positive), the gravitational field is always directed to
the mass by which it is created. Also, whereas the magnetic field
is always right-handed relative to the electric current by which it
is created, the cogravitational field is always left-handed relative
to the mass current by which it is created, and whereas like
electric currents attract each other and opposite electric currents
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repel each other, like mass currents repel each other and opposite
mass currents attract each other. Furthermore, whereas electric
charges may attract or repel each other, masses always attract
each other (see, however, Chapter 19).

There may also be a difference in the interpretation of the
physical significance of Eq. (7-1.3) and of its electromagnetic
counterpart. Maxwell’s electromagnetic equation similar to Eq. (7-
1.3) was in the past interpreted as representing the phenomenon
of electromagnetic induction and was thought to show that a
changing magnetic field creates an electric field. One may think
therefore that Eq. (7-1.3) likewise represents a gravitational-
cogravitational induction phenomenon. However, it has now been
proved that Maxwell’s electromagnetic equation similar to Eq. (7-
1.3) does not represent electromagnetic induction and that electric
fields are not created by changing magnetic fields.>* Clearly then,
Eq. (7-1.3) does not represent an induction effect either.
Moreover, since the gravitational and cogravitational fields in this
equation are simultaneous in time, the equation does not reveal
any causal relation between these fields. Similar considerations
apply to Eq. (7-1.4), where the cogravitational and gravitational
fields are also simultaneous in time and therefore are not causally
connected with each other.

Derivation of Eq. (7-1.1). We start with Eq. (3-1.1) [which,
as is shown in Chapter 3, is a consequence of Eq. (2-2.1)]

\4 1[6J
g=G[[—r—p]dV’+C—G2[7 Tt]d‘”- (3-1.1)

Multiplying Eq. (3-1.1) by V-, we have

/
v.g=Gv-j@dV/+Ev.jl[ﬂ av'. (7-1.9)
r c? rlot



SECTION 7-1 EQUATIONS AND THEIR DERIVATIONS 123

The operator V- can be placed under the integral sign because it
operates on the field-point coordinates x, y, z, while the
integration is over the source-point coordinates x', y’, z'. This
pives

V-g-= G[V [V"]dvf CG [‘”]dv’. (7-1.10)

Applying vector identity (V-34) to the first integral of Eq. (7-
1.10), we have

]v- 0l gy - IV’ VOl gy deva (7-1.11)
r r r

‘The first integral on the right of Eq. (7-1.11) can be transformed
into a surface integral by means of vector identity (V-19). But this
surface integral vanishes, because p is confined to a finite region
of space, while the surface of integration is at infinity (as was
cxplained in Section 2-2, unless stated otherwise, all integrals in
this book are over all space). Thus we obtain for the first integral
in Eq. (7-1.10)

IV-L/‘)]dV’ - dev'. (7-1.12)
r r

Using the same considerations, we obtain for the second
integral in Eq. (7-1.10)

[v aJ]dV’ - [v’ }dV’ =lr[av J]dV’ (7-1.13)

ot ot
Thus, Eq. (7-1.10) can be written as

Veg- G[W_V"_]dw [‘W J]dV’.(7-1.14)
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Using now the continuity law, Eq. (2-2.4), with J substituted
for pv,

v.y--% (2-2.4)
ot

we can rewrite Eq. (7-1.14) as

v wn- L0
v-g=Gj 9 gy
r

(7-1.15)

But according to vector identity (V-30), the right side of Eq. (7-
1.15) is simply - 47Gp, and therefore

Vg = - 471Gp. (7-1.1)

Derivation of Eq. (7-1.2). We start with Eq. (3-1.2) [which,
as is shown in Chapter 3, is a consequence of Eq. (2-2.2)]

K - - EI[V’ X9 gy, (3-1.2)
c? r

Multiplying Eq. (3-1.2) by V-, we have

v.K--USy. jMdW (7-1.16)
i r

As in the case of Eq. (7-1.9), the operator V- can be placed under

the integral sign because it operates on the field-point coordinates

X, y, Z, while the integration is over the source-point coordinates

x', y', 2'. This gives

/
VK - -gjv~[v X gy (7-1.17)
C r
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Transforming now the integral in Eq. (7-1.17) just as we
transformed the first integral in Eq. (7-1.11), we obtain

VK-=- ijdva (7-1.18)
c? r
and, since V'- V' X = 0,

V-K = 0. (7-1.2)

Derivation of Eq. (7-1.3). We again start with Eq. (3-1.1)

/
g=GerPldV/+Ezjl %]dw G-1.1)
C r

Multiplying Eq. (3-1.1) by VX , we have

/

vxg -GVx | A ayr. Svx jl[ﬁ]dv/ (7-1.19)
r c? rlot

The operator VX can be placed under the integral sign because it

operates on the field-point coordinates x, y, z, while the

integration is over the source-point coordinates x', y', z'. We then
have

/
Vxg = GJVX Nolgy s G lel[ﬁ]dV’ . (7-1.20)
r c? rlor

Applying vector identity (V-34) to the first integral of Eq. (7-
1.20), we have

va [V/p] av’ =- lv/x [V/p] av’ +J [V/XV/p] av’. (7-121)
r r r
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The first integral on the right of Eq. (7-1.21) can be transformed
into a surface integral by means of vector identity (V-21). But this
surface integral vanishes, because p is confined to a finite region
of space, while the surface of integration is at infinity. Thus we
obtain for the first integral in Eq. (7-1.20)

/ /
[Vx Lrp]dV’ = dev’. (7-1.22)

However, V' x V' = 0, and therefore the last integral vanishes and
so does the first integral in Eq. (7-1.20). Equation (7-1.20)
reduces therefore to

vxg-C G [6J

av’ . ]
- ] (7-1.23)

Let us now differentiate Eq. (3-1.2) with respect to time. We
have

K __ EEIMW. (7-1.24)
ot 2 9t r

Applying vector identity (V-34) to the integral in Eq. (7-1.24) and
eliminating V' x {[V'xJ]/r} by means of vector identity (V-21)
[see the explanation below Eq. (7-1.21); note that J = pv and
therefore J is confined to a finite region of space], we obtain

OK G
a2

OEIVX Way. (7-1.25)

Differentiating under the integral sign, we obtain
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K _ G J 1 [OJ ] /
= - VX2 |dV, -
o = FiT (7-1.26)
which together with Eq. (7-1.23) yields

0K
Vxg = - & (7-1.3
g 3 )

Derivation of Eq. (7-1.4). We start once again with Eq. (3-
1.2)

/
K- - EJ[V I gy (3-1.2)
c? r

Multiplying Eq. (3-1.2) by VX , we have

/
VK - - Sox [ Xy (7-1.27)
c? r

In Eq. (7-1.27) the operator VX can be placed under the integral
sign because it operates on the field-point coordinates x, y, z,
while the integration is over the source-point coordinates x', y’',

Z'. We then have

/
VxK = - EZIVXMdV’. (7-1.28)
C r

Transforming now the integral in Eq. (7-1.28) just as we
transformed the first integral in Eq. (7-1.20), we obtain

VXK = - ijw/. (7-1.29)
c? r

Let us now find the time derivative of g by differentiating Eq.
(3-1.1). We have
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0g=GJOIVp]d ,+Glal aJ]dV,

ot ot r atrlor
) (7-1.30)
=G]l[ a"’]dv' G[ ‘”]dv’
rl ot or?

and, making use of the continuity law, Eq. (2-2.4), we obtain

og _ J[v’(w Mgy . g l r[a J] (I-1.31)

ot or?

Next, let us divide Eq. (7-1.31) by ¢? and subtract it from Eq.
(7-1.29). Combining the three integrals into a single integral, we
obtain

[v'(v’ J)- V’x(V’xJ)-iaJ]
VXK-_I_Z% c? o’ av’.

‘LI Q
S—

r
(7-1.32)

But, according to vector identity (V-28), the integral on the right
in Eq. (7-1.32) is simply —4wGJ/c’. Replacing this integral by
—47GJ/c* and transferring (1/c?)(dg/dr) to the right, we obtain

VxK = - 30y, 108 (7-1.4)
c? c? ot

7-2. Corresponding Gravitational-Cogravitational and
Electromagnetic Equations

The similarity of differential equations for gravitational-
cogravitational fields, Egs. (7-1.1)-(7-1.8), with Maxwell’s
electromagnetic equations indicates that many methods and
techniques originally developed for solving problems involving
electromagnetic fields can be used for solving problems involving
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gravitational and cogravitational fields. This similarity also
indicates that it is possible to convert many equations originally
derived for electromagnetic systems into the corresponding
equations for  gravitational-cogravitational systems. The
corresponding equations are identical except for the symbols and
constants occurring in them. Therefore, in order to convert an
appropriate electromagnetic equation into a gravitational-
cogravitational equation, one only needs to replace symbols and
constants appearing in the electromagnetic equation by the
corresponding gravitational-cogravitational symbols and constants.
The relations between the corresponding symbols and constants
are shown in Table 7-1.°

Table 7-1

Corresponding Electromagnetic and Gravitational-
Cogravitational Symbols and Constants

Electric Gravitational
q (charge) m (mass)
p (volume charge density) p (volume mass density)
o (surface charge density) o (surface mass density)
N (line charge density) A (line mass density)
@ (scalar potential) ¢ (scalar potential)
A (vector potential) A (vector potential)
J (convection current density) J (mass-current density)
I (electric current) I (mass current)
In (magnetic dipole moment) d (cogravitational moment)
E (electric field) g (gravitational field)
B (magnetic field) K(cogravitational field)
&, (permittivity of space) —1/41G
Io (permeability of space) —-47Glc?
—1/4Tey or —p,c/4T G (gravitational constant)

Symbols that are not specific to electromagnetism, such as
those for force, energy, momentum, etc., need not be replaced.
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It is important to keep in mind, however, that only electro-
magnetic equations for fields in a vacuum have their gravitational
counterparts, and only the electromagnetic symbols listed in Table
7-1 can be directly replaced by the corresponding gravitational
symbols. In all other cases the following conversion procedure
should be used:

(1) If an electromagnetic equation is for fields in the presence
of material media, reduce the equation to fields in a vacuum.

(2) If electromagnetic equations contain field vectors D or H,
replace them by E or B, using the relations D = ¢E and B =
poH.

(3) Use Table 7-1 to replace electromagnetic constants by the
corresponding gravitational-cogravitational constants.

7-3. Gravitational-Cogravitational Equations Obtained by
Analogy with Electromagnetic Equations

Listed below are gravitational-cogravitational equations that
have been obtained by converting electromagnetic equations in
accordance with the procedure explained in Section 7-2. The
electromagnetic equations used for conversion were taken from the
author’s book Electricity and Magnetism.' Some readers may want
to examine these electromagnetic equations and their derivations.
For this purpose each gravitational-cogravitational equation
appearing below is provided with the number of the page where
the corresponding electromagnetic equation appears in Electricity
and Magnetism (hereafter abbreviated as EM). The equations are
arranged in three categories: equations for calculating fields and
potentials, equations for calculating energy and forces, and wave
equations. Note that traditionally by far the majority of
electromagnetic equations are derived for static fields or for fields
involving slowly moving charges (conduction currents). In such
fields the retardation does not exist or is ignored. Therefore some
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of the gravitational-cogravitational equations listed below do not
apply to systems involving time-dependent or rapidly moving mass
distributions; consult the derivations presented in this book if in
doubt. Several equations listed below have already been directly
derived in the preceding chapters; nevertheless, it is instructive to
introduce them also as equations analogous to electromagnetic
equations. (Primed fields and potentials indicate fields and
potentials created by external sources.)

(1) Equations for calculating gravitational fields and potentials:

Basic gravitational laws in present-time
differential notation, EM502

V-g = - 47Gp, (7-3.1)
VK =0, (7-3.2)
0K
vxg - - 9K 7-3.3
g 3 ( )
VxK = - 47Gy , 108 (7-3.4)
c? c? ot

Basic gravitational laws in present-time
integral notation, EM502

fa-ds - - 47G [pav. (7-3.5)

<]gK-dS - 0. (7-3.6)



132 CHAPTER 7 DIFFERENTIAL EQUATIONS FOR g AND K
fg-ar - - %]K-ds. (73.7)

fK-dl - - _1_](41rGJ . a_g)°dS. (7-3.8)
c? ot

Gravitational field of a point mass, EM96
g = - GLn_ru‘ (7-39)
r2

Gravitational field of a mass distribution, EM93

g--G|Lrav. (7-3.10)
r

Gravitational field in terms of mass inhomogeneities
(constant interior mass), EM103

/
g = _Gp(fds ' (7-3.11)
r
Gravitational scalar potential (with respect to o), EM120

0 --G[Lav. (7-3.12)
r
Gravitational potential of a point mass, EM121

o =-GM (7-3.13)
r

Gravitational field in terms of scalar potential, EM111

g =-Vo. (7-3.14)
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Gravitational potential in terms of the field, EM112

0, |gaso. (7-3.15)

Poisson’s equation for scalar potential, EM 142

Vi = 47Gp. (7-3.16)

Gravitational field in terms of vector potential ®
g = VxA,. (7-3.17)
Cogravitational field of a moving point mass, EM390

m(v Xr )

K=-G (7-3.18)

C2 r2
Cogravitational field of a current distribution, EM344

K - - G[“’wvn (7-3.19)

CZ r2

Cogravitational field in terms of current inhomogeneities
(constant mass-current density), EM352

K = - G [ IxdS . (7-3.20)

c? r

Cogravitational vector potential, EM364

A= - Ejidv'. (7-3.21)
ctlr

Cogravitational field in terms of vector potential, EM363

K =VxA. (7-3.22)
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Poisson’s equation for cogravitational
vector potential, EM364

viA = 416y (7-3.23)
C

Cogravitational field in terms of scalar potential, EM373

K - 47szv<p(' (7-3.24)
Cc

Cogravitational dipole moment of filamentary mass current |
(S' is right-handed relative to I), EM381

d-- 20 (7-3.25)
C

Cogravitational dipole field, EM 381

K = _d__cosﬁr” . 4 sind @, . (7-3.26)
27r? 47r3

(2) Equations for calculating gravitational forces and energy:
Gravitational force on a mass distribution, EM208
F - ] og'dv. (7-3.27)

Gravitational force in terms of scalar potential’
(single mass of constant density), EM211

F - - p§¢/ds. (7-3.28)

Gravitational force in terms of vector potential ®’
(single mass of constant density)

F = -pfA;xds. (7-3.29)
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Maxwell’s stress integral for the gravitational
field, EM215

1 1
F-_ feas - L feas). (7330
§7GJ & GG | &)
Cogravitational force on a mass current, EM440
F - [IxK’av. (7-3.31)
Cogravitational force on a mass-current dipole, EM446
F--_% @wk (7-3.32)
anG ' '
Cogravitational torque on a mass-current dipole, EM446
c2
T=-_—-_dxK. (7-3.33)

441G

Cogravitational force in terms of vector potential’
(constant mass-current density), EM453

F - 4}A/-st. (7-3.34)

Cogravitational force in terms of scalar potential ’
(constant mass-current density), EM453

F - 4_”294}¢§de5. (7-3.35)
c
Maxwell’s stress integral for the cogravitational field, EM447

2 2
F-_° $Kus - C_§K(K-dS). (7-3.36)
871G 4G
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Gravitational field energy, EM186

U- - ;ngdv. (7-3.37)
871G

Gravitational energy in terms of potential, EM190

_ 1 7-3.38
U EIcppdV. (7-3.38)

Energy of a system of point masses, EM192

o (7-3.39)

Energy of a mass distribution in an extemal field, EM195

U = ]p¢'dv. (7-3.40)
Energy of a point mass in an external field, EM195

U =my'. (7-3.41)
Cogravitational field energy, EM427

U - ]KZdv (7-3.42)
87rG

Cogravitational energy in terms of vector potential, EM430

U - %]A-Jdv. (7-3.43)

Cogravitational energy of a mass current in an
external field, EM432

Ul = ]J-A'dv. (7-3.44)
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Gravitational Poynting’s vector, EM509

P = 7-3.45
41rG ( )
Gravitational field momentum, EM513
! jK x gdV. (7-3.46)
47rG
Gravitational field angular momentum
1
L- L [rx@xgav. 7.3.47
TG (Kxg) ( )

(3) Equations for gravitational waves (see also Chapter 18):

Direction of field vectors in a plane wave
propagating in the z-direction, EM531

K- lkxg. (7-3.48)
c
Energy density in a gravitational wave, EM533
1 c?
U =-__—__g>=- K2, 7-3.49
T T w6 T ImG (7349)

The analogy between electromagnetic and gravitational-
cogravitational equations is, of course, not limited to the equations
listed above.® Not only basic electromagnetic equations, but also
most equations representing a solution of an electromagnetic
problem for fields or forces not involving conducting, dielectric,
or magnetic bodies have their gravitational counterparts. However,
if the propagation velocity of gravitation is not equal to the
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velocity of light (see Section 9-1), then ¢ appearing in the
gravitational-cogravitational equations should be, in general, the
velocity of the propagation of gravitation rather than the velocity
of light.

Observe, however, that gravitational equations depicting
"nonlinear" gravitational effects (see Chapter 19) do not have their
electromagnetic counterparts.
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ENERGY, ACTION-REACTION,
AND MOMENTUM IN
GRAVITATIONAL AND
COGRAVITATIONAL FIELDS

In this chapter we shall discuss energy and momentum
relations in gravitational and cogravitational fields. We shall
present the proof that energy is always conserved in closed
gravitational-cogravitational systems and is always conserved in
gravitational and cogravitational interactions. We shall also
present the proof that momentum in closed gravitational-
cogravitational systems is always conserved. And we shall prove
that, although the law of action and reaction does not always hold
in gravitational-cogravitational interactions, the law of momentum
conservation is always fulfilled in such interactions.

8-1. Conservation of Energy in Gravitational and
Cogravitational Systems

Let us consider a closed gravitational-cogravitational system.
In such a system there is no inflow or outflow of field energy to
or from the system. By Eq. (2-2.9) we then have

139
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2
fp-ds - c_<fK><g-dS -0, (8-1.1)
4G

where the surface of integration encloses the system under
consideration. Transforming the last surface integral in Eq. (8-1.1)
into a volume integral by using vector identity (V-19), we obtain

_ffK xgds =< jv (Kxg)dV =0. (812)

471G

Expanding the integrand of the last integral in Eq. (8-1.2) by
means of vector identity (V-9), we obtain

V-(Kxg) =g-(VxK) - K-(Vxg). (8-1.3)

Using now Egs. (7-1.4) and (7-1.3), we can write the two
terms on the right of Eq. (8-1.3) as

g-(VxK) = - g- 4Gy . g. L ag (8-1.4)
c? 2°9¢
and
K-(Vxg) = - K-%. (8-1.5)

Substituting Eqs.(8-1.4) and (8-1.5) into Eq. (8-1.3), we
obtain

41rG lag + K- 6K

—_— 1y

(8-1.6)
c? ot

V-Kxg) = -

which can be written as

V-Kxg)-- 4LGg. [1a(g 8, %Za(Ka;K)], (8-1.7)

or

2 2
V-Kxg) - - ﬁgq 1/10g’ ﬂ(_], (8-1.8)
C

C
2127 2 ot
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By Eq. (2-2.8), Eq. (8-1.8) can be written as

U
V-(Kxg) = - 2Cg.y - 4TCT @19
c ct ot

where U, is the energy density in the gravitational and
cogravitational field.

Substituting Eq. (8-1.9) into Eq. (8-1.2) and noting that J =
pv, we obtain

ou
[g.pvav . [-a_tVdv -0, (8-1.10)
or, for constant g,
mg-v + Oa_ltj =0, (8-1.11)

where m is the mass contained in the system under consideration
and U is the gravitational-cogravitational energy of the system.

The first term in Eqs. (8-1.10) and (8-1.11) represents the
rate at which the energy of the moving mass m (its kinetic energy)
increases under the actions of the gravitational field g. The second
term represents the decrease [note that, by Eqgs. (2-2.7) and (2-
2.8), U is negative] of the gravitational-cogravitational field
energy. Thus Eqs.(8-1.10) and (8-1.11) show that the total energy
in a closed gravitational-cogravitational system is conserved:
kinetic energy of a mass (or masses) in the system increases at the
expense of the field energy and vice-versa [the latter is true
because Eqs. (8-1.10) and (8-1.11) remain valid when multiplied
by —1].!

8-2. Conservation of Momentum in Gravitational and
Cogravitational Systems

Let us again consider a closed gravitational-cogravitational
system. In such a system there is no inflow or outflow of field
momentum to or from the system. By Eq. (2-2.11) we then have
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_MI_G[%ﬁ(g“csz)dS-tj;g(g-dS)—cz(f K(K-dS)] -0 (82.1)

and therefore

aG,, 1 la
M- | __(Kxg)dV. (8-2.2
& @mc) <8 )

By Eq. (2-2.11) we then have

Ay 3G, (8-2.3)
dt ot

Thus in a closed gravitational-cogravitational system the

mechanical momentum of the system increases at the expense of

the field momentum, and vice versa [the latter is true because Eq.

(8-2.3) remains valid when multiplied by —1]."

8-3. Action and Reaction in Gravitational-Cogravitational
Systeins

Let us consider a closed gravitational-cogravitational system
consisting of two mass distributions p, and p, producing,
respectively, gravitational fields g, and g, and cogravitational
fields K, and K,. If we apply vector identity (V-22) to the fields
g, and g,, we obtain

fie2)ds - §a,@-a5) - $e (g, a5) -
8-3.1)
J (8,x(VXg) +8,x(VXg) -8,(V'8) ~8,(V-g)ldV,

where the surface of integration encloses the system. Since the
system is closed, the surface integrals vanish (we can assume that
the surface of integration is at infinity, where there are no
gravitational and cogravitational fields). We are thus left with
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[ 18, x(Vxg) +g,x(Vxg) -8,(V-8) ~g,(V-g)ldV =0. (8:3.2)

Let us now assume that the two mass distributions are
stationary and are time independent. In this case, by Eq. (7-1.3),
Vxg = 0, so that the first two terms in the integrand of Eq. (8-
3.2) vanish. Using Eq. (7-1.1) for replacing V- g, and V - g, by
(-47Gp,) and (-47Gp,), respectively, canceling (-4wG), and
expressing the resulting integral as two integrals, we then obtain

[ogoav = - [0.8,av. (8-3.3)

But, by Eq. (2-2.6), [ p,g,dV is the force exerted by p, upon p,
and | p,g, dV is the force exerted by p, upon p,. Hence the forces
acting on the two mass distributions are equal in magnitude and
opposite in direction, as required by the law of action and
reaction. Thus the law of action and reaction holds for
gravitational interactions between constant stationary mass
distributions.

Let us now assume that p, is moving and/or is time
dependent. In this case Vxg, = 0, but, by Eq. (7-1.3), VXg, =
— 0K,/0t. Substituting in Eq. (8-3.2) V-g, V-g,, VXg,, and
Vxg,, we find that now only the second term in the integrand of
Eq. (8-3.2) vanishes. Simplifying, we then obtain

_ 1 0K,
lplgzdv - - Jng,dV R m]g, x ZlaV. (83.4)
Hence, if one of the two interacting mass distributions is time
variable or is moving, the action-reaction law does not hold: the
two forces differ by the value of the integral containing K,.

Let us now assume that both mass distributions are moving
and/or are time dependent. In this case Vxg, = — dK,/dt and
VXE, = — 0K,/dt. Substituting in Eq. (8-3.2) V-g, Vg,
VxK,, and VxK,, we obtain
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] av - L j x I 4y
P&, 47G & “or

oK
= - Ing,dv + 1 ]gl X __2dV.
47G at

(8-3.5)

Thus, when both mass distributions are time variable or are
in motion, the law of action and reaction, in general, does not
hold: the two forces differ by the value of the two integrals
containing K, and K,. However, if the two integrals happen to be
equal in magnitude but have opposite signs, they cancel each
other, so that in this case the law of action and reaction does hold
even when the two masses vary or move.

It should be pointed out that although the law of action and
reaction does mnot hold for certain types of gravitational
interactions, the law of conservation of momentum is valid for all
gravitational and cogravitational interactions, without exceptions.
This will be shown later in this chapter.

We shall now examine what happens to the action and
reaction law in cogravitational interactions.

Consider two constant, stationary mass-current distributions
J, and J, in a closed gravitational-cogravitational system. The
cogravitational fields produced by J, and J, are K, and K,,
respectively. The force exerted by J, on J, is, by Eq. (2-2.6),
§ J,xK, dV and the force exerted by J, on J, is [ J,xK, dV.

Applying vector identity (V-22) to K, and K,, we have

P, -Kds - §K, K -a5) - K (K, ds) -
(8-3.6)
[ &, (7 xKy) K, X (VXK ) -K (VK - K, (VK IV,

As before, the surface integrals vanish. By Eq. (7-1.2), V- K =
0, so that the last two terms in the volume integral vanish also.
Taking into account that, by Eq. (7-1.4), for stationary (time-



SECTION 8-3 ACTION AND REACTION 145

independent) systems VXK = — (47G/c?)J, and simplifying the
two remaining terms in Eq. (8-3.6), we then obtain

Ja,xK,av = - [3,xK,av. (8-3.7)

Thus, for cogravitational interactions between two constant
stationary mass-currents, the two forces are equal in magnitude
and opposite in direction, and the law of action and reaction
holds.

Let us now assume that J, is variable or is in a state of
motion. In this case, by Eq. (7-1.4), VXK, = — 4rG/c)], +
(1/c*)dg,/dt. Noting that the surface integrals of Eq. (8-3.6) still
vanish, and simplifying the volume integral as before, we obtain

9
[3,xK,av = - [3,xKav - _L_[K, x agde (8-3.8)

4G

Hence, when one of the currents is changing or is in motion,
the two forces are not equal and differ by the amount of the
integral containing g,. The law of action and reaction does not
hold.

Let us now assume that J, is also variable. In this case VXK,
= — (47G/cHI, + (1/cH)dg,/dt and VXK, = — (47G/cHI, +
(1/c*)dg,/dt. From Eq. (8-3.6) we now obtain (noting that the
surface integrals vanish as before)

ag,
Ja, xKav+ L[k, x Lav
471G ot
on, (83.9)
- 9, x K av - m[Kl x 2dV.

Thus, when both mass-currents are changing or are moving,
the law of action and reaction, in general, does not hold: the
forces differ by the values of the integrals containing g, and g,.
However, if the two integrals are equal in magnitude but have
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opposite signs, they cancel, and then the law of action and
reaction does hold.

8-4. The Law of Action and Reaction and the Law of
Conservation of Momentum

As we have seen, Newton’s third law, the law of action and
reaction, has only a limited validity in the domain of gravitational
and cogravitational interactions. In general, it holds only for
interactions between constant stationary masses and for
interactions between constant stationary mass currents. However,
it is not necessary to state Newton’s third law as the law of action
and reaction. One can state this law more accurately as the law of
conservation of momentum. If we examine the time dependent
terms appearing in Eqs. (8-3.4), (8-3.5), (8-3.8), and (8-3.9), we
recognize that these terms represent rates of change of
gravitational-cogravitational field momentum, Eq. (2-2.11),

G, - L [Kxgav, (2-2.11)
471G

Therefore these equations show that, although the forces are
different, the total momentum (mechanical plus gravitational-
cogravitational) of the system is always conserved. An exchange
of momentum between a mass or a mass current and the
surrounding field is, of course, necessary since gravitational and
cogravitational fields propagate with finite speed, so that no direct
interactions between field-producing and field-experiencing masses
or mass currents are possible (see Section 16-2).

It is important to note that Eqs. (8-3.4), (8-3.5), (8-3.8), and
(8-3.9) involve only the interaction, or mutual, momentum rather
than the total gravitational-cogravitational momentum of the
systems under consideration. Specifically, in the case of
gravitational systems, the rate of momentum change is expressed
as the cross product of the gravitational field and the time
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derivative of the cogravitational field. And in the case of
cogravitational systems, this rate of momentum change is
expressed as the cross product of the cogravitational field and the
time derivative of the gravitational field. A remarkable feature of
these equations is that they only involve partial fields: g, and K,
or g, and K,. This means that even in a region of space where the
total field g = g, +g, or K = K, +K, is zero, there still can be an
exchange of the gravitational-cogravitational and mechanical
momenturm.

The apparent simplicity of Eq. (8-3.3) for the gravitational
interactions is misleading. Assumed by Newton to hold for all
gravitational interactions, and for the interactions in the Solar
system in particular, it actually holds only for interactions between
stationary time-independent masses. According to the generalized
theory of gravitation, it certainly does not hold for planetary
interactions. As we shall see later (Sections 14.3 and 15.1), the
force with which the Sun acts on a planet is not equal to the force
with which the planet acts on the Sun. In fact, according to the
generalized theory of gravitation, the interaction is actually not
between the Sun and the planet, but between the planet and the
field created by the Sun at the location of the planet and between
the Sun and the field created by the planet at the locations of the
Sun. However, although the law of action and reaction does not
hold for planetary interaction, the law of momentum conservation
does hold without exception.?

References and Remarks for Chapter 8

1. See also Chapter 16.

2. For a related discussion of the action-reaction law and of the
momentum conservation law in electromagnetic systems see O. D.
Jefimenko, Causality, Electromagnetic Induction, and Gravitation,
2nd ed., (Electret Scientific, Star City, 2000), pp. 67-79.



GENERALIZED THEORY OF
GRAVITATION AND THE
SPECIAL RELATIVITY THEORY

As we saw in Chapter 7, many electromagnetic equations
have their gravitational and cogravitational counterparts. In this
chapter we shall explore the analogy between electromagnetism
and gravitation even further, and, on the basis of this analogy,
shall develop a relativistic theory of gravitation analogous to
relativistic electrodynamics. We shall present illustrative examples
demonstrating the use and power of relativistic transformations
applied to gravitational and cogravitational equations. Then we
shall briefly discuss the so-called "covariant formulation" of
gravitational and cogravitational equations.

9-1. Relativistic Transformation Equations for Gravitational
and Cogravitational Fields

Until recently it was believed that the analogy between
electromagnetic and gravitational equations could not apply to fast
moving systems, because the electric charge is not affected by
velocity, but the mass of a moving body was thought to vary with
velocity. It is now generally accepted that mass, just like the
electric charge, does not depend on velocity.' This also means that
transformation equations of the special relativity theory developed
for electromagnetic systems’ have their gravitational and

148
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cogravitational counterparts. In agreement with considerations
presented in Section 7-2, the only essential difference between the
relativistic  gravitational-cogravitational equations and the
corresponding electromagnetic equations is in the symbols and
constants appearing in these equations.

Thus there is no need to derive relativistic gravitational-
cogravitational transformation equations, because we can easily
obtain them by replacing symbols and constants appearing in
relativistic  electromagnetic  equations by the corresponding
pravitational-cogravitational symbols and constants with the help
ol Table 7-1. The basic relativistic gravitational-cogravitational
transformation equations obtained in this way? are listed below. In
these equations, the unprimed quantities are those measured in the
stationary reference frame Y ("laboratory"), and the primed
yuantities are those measured in the moving reference frame X'.

Transformation equations correlating quantities measured im
L with quantities measured in X’':

(a) Equations for space and time coordinates

x =y +w’), 9-1.1)
y =y, (9-1.2)

7z =12z, (9-1.3)

t =@t +wx'lc?). (9-1.4)

(b) Equations for the gravitational field

g =gl (9-1.5)

g, = v + VK, (9-1.6)

8. = Y@ - k). (9-1.7)
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(c) Equations for the cogravitational field

K =K/, (9-1.8)
K, = v(K; - vg./c?), (9-1.9)
K, = y(k! + vglic?). (9-1.10)

(d) Equations for the mass and mass-current densities

p =l + (vic)HJ,], (9-1.11)
J = vJ! + vp'), (9-1.12)
J, =J), (9-1.13)

J =J. (9-1.14)

(e) Equations for gravitational and cogravitational potentials

o =@ +vA)), (9-1.15)
A, = 4] + (VcHe'], (9-1.16)
A, = A, (9-1.17)

A, = A (9-1.18)

Transformation equations correlating quantities measured in
Y’ with quantities measured in X:

(a) Equations for space and time coordinates

x! = y(x-w), (9-1.19)
y' =y, (9-1.20)
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7 =z, (9-1.21)
t' =@ - vxlch). (9-1.22)
(b) Equations for the gravitational field
g =8, (9-1.23)
g =@, - K), (9-1.24)
g =@, *+ K). (9-1.25)
(c) Equations for the cogravitational field
K/ =K, (9-1.26)
K] = ¥, + vg.lc?), (9-1.27)
K! = y(K, - vg,lcY). (9-1.28)
(d) Equations for the mass and mass current densities
p' =l - (v/cH], (9-1.29)
I =y, - w), (9-1.30)
o=J, (9-1.31)
o= (9-1.32)
(e) Equations for gravitational and cogravitational potentials
¢ =Y - VA), (9-1.33)
Al =4 - (vicdHgl, (9-1.34)
A=A, (9-1.35)

Al = 4. (9-1.36)



152 CHAPTER 9 GRAVITATION AND RELATIVITY

Quite clearly, transformation equations for physical quantities
not involving electric and magnetic fields (such as velocity,
acceleration, force, etc.) remain valid for gravitational-
cogravitational systems as well. However, the constant ¢
appearing in the conventional relativistic transformation equations
represents the velocity of propagation of electromagnetic fields in
a vacuum, which is the same as the velocity of light. The velocity
of propagation of gravitational and cogravitational fields is not
known, although it is generally believed to be equal to the velocity
of light. If the velocity of propagation of gravitational fields is not
the same as the velocity of light, our relativistic transformation
equations for gravitation would still remain correct, but the
constant ¢ appearing in them would be different from ¢ appearing
in the corresponding electromagnetic equations. Therefore the
behavior of rapidly moving bodies involved in gravitational
interactions would be different from the behavior of rapidly
moving bodies involved in electromagnetic interactions. In effect,
there would be two different mechanics - the "gravitational-
cogravitational mechanics,” and the "electromagnetic mechanics”
- involving different effective masses, different effective
momenta, and different rest energies.

A possibility exists that our gravitational relativistic
transformation equations are not entirely correct. According to
Einstein’s mass-energy equation, any energy has a certain mass.
But a mass is a source of gravitation. Therefore the gravitational
field of a mass distribution may be caused not only by the mass
of the distribution as such, but also by the gravitational energy of
this distribution.* If this effect is taken into account, the equation
for the divergence of the gravitational field, Eq. (7-1.1) becomes
only approximately correct, and all equations derived with the
help of Eq. (7-1.1) also become only approximately correct. It is
important to note, however, that this energy effect, if it exists, is
typically extremely small.’
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v

Example 9-1.1 The Newtonian equation for the gravitational field
of a stationary point mass is

g=-GMr. (9-1.37)
r

Starting with this equation and using relativistic transformations
obtain the equation for the gravitational field of a point mass
moving with uniform velocity v parallel to the x axis.

For simplicity, let us assume that the gravitational field is in the
xy plane and the point of observation is at the origin. In this case r
in Eq. (9-1.37)is r = (x> + y*)"2

To obtain the gravitational field of the mass when the mass
moves with constant speed parallel to the x axis, we shall assume
that the mass is at rest in a reference frame X' which moves with
velocity v = vi relative to the laboratory (reference frame X). By
Eq. (9-1.37), in the reference frame L' the x component of the
gravitational field is given by

gl = -G___™ __x, (9-1.38)

(x/Z + y/2)3/2
and the y component is given by

g =-G6__" ’ (9-1.39)

(x/2 +y/2)3/2y

Since we are free to choose the time of observation in X
(laboratory), we choose ¢ = 0 for simplicity.® Equation (9-1.5) tells
us that to find g, of the moving mass in X, we must replace g,’ on
the left of Eq. (9-1.38) by g,, while Eq. (9-1.19) tells us that, since
t = 0, we must replace x' in Eq. (9-1.38) by yx [observe that in
Eq. (9-1.38) x appears in the numerator and in the denominator].
Finally, Eq. (9-1.20) tells us that y’ in the denominator of Eq. (9-
1.38) must be replaced by y. Making the substitutions, we obtain
for g, of the moving point mass
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g =-G__— " __yx=-G6__™ & (9140

X [(,yx)z +y2]3/2 ,yZ(x2 +y2/,yZ)3/2

To obtain the y component of the gravitational field of the
moving mass, we shall use Egs. (9-1.6), (9-1.19), and again Eq. (9-
1.20). Since K’ = 0 for the stationary mass, Eq. (9-1.6) tells us
that, to find g/ of the moving mass, we must replace g, on the left
of Eq. (9-1.39) by g,/v, while Egs. (9-1.19) and (9-1.20) tell us that
we must replace x’ in Eq. (9-1.39) by yx and y’ by y. Making the
substitutions, we then obtain for g, of the moving point mass

- - m -
o s O
or
-_— — m -
s L

Replacing now ¥y in Egs. (9-1.40) and (9-1.42) by 1/(1 —
v2/c?)'2, factoring out x> + y* from the denominator, taking into
account that r = xi + yj, where i and j are unit vectors in the
direction of the x and y axes, and noting that y*/(x*> + y?) = sin’4,
where 4 is the angle between v and r, we finally obtain

m(l "VZ/CZ) r. (9_143)
r3[1 -(v?*/c?sin*4)*"

g = -

Equation (9-1.43) is the same as Eq. (5-1.13) (the "Heaviside
equation") that we obtained in Chapter 5 directly from the
fundamental gravitational field equation. Note that r and r in Eq.
(9-1.43) represent the present position of the mass and are therefore
the same as r, and ry in Eq. (5-1.13). Note also that in applying
relativistic transformations we did not transform the mass m. Just
like the electric charge ¢, the mass of a body is invariant under
relativistic transformations.
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Example 9-1.2 The gravitational scalar potential of a stationary
mass distribution p is represented by the Newtonian Eq. (1-1.11)
{which is the same as Eq. (3-3.7)]

Q= - ngdv. (1-1.11)

(we omit the prime on dV so as not to confuse dV referring to the
reference frame ¥ with dV' referring to the reference frame L').
Using relativistic transformation equations, convert Eq. (1-1.11)
into the equation for the cogravitational vector potential produced
by a mass distribution moving with constant velocity v = v i.

Let a mass distribution p’ be at rest in the moving reference
frame X' and let the point of observation be at the origin. By Eq.
(1-1.11), the gravitational potential ¢’ produced by p’ in this
reference frame is

o = - G["_’dv’. (9-1.44)
r/
Observed from the laboratory (reference frame X), the mass
distribution p' moves with velocity v along a line parallel to the x
axis. Like all moving masses, it creates a cogravitational field. To
find the associated cogravitational vector potential, we transform
Eq. (9-1.44) by using appropriate transformation equations listed in
Section 9-1. However, first we express r' and dV' appearing in Eq.
(9-1.44) in terms of x', y’, and z':

0= O] | [ i /! 0149

+),/2 + z/2)1/2

Since we are free to choose the time of observation in the
faboratory, we choose ¢ = 0 for simplicity.® By Egs. (9-1.19), (9-
{.20) and (9-1.21) we then have

x/ =vx, y’:y, z’ =Z. (9-1.46)

By Eq. (9-1.11) (noting that there is no mass current in X’
where the mass is stationary) we have
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By Eq. (9-1.16) (noting that there is no cogravitational vector
potential in £’ where the mass is stationary), we have

¢’ = Aty (9-1.48)

Substituting Eqgs. (9-1.46)-(9-1.48) into Eq. (9-1.45), we obtain

/
A4 =-6Y Py d(yx)dydz
' ¢ J I J (y + y* + 2% (9-1.49)

n

-cY p dxdydz .
CZI II 2+ (¥ + 2] -
and since
14 =1 -v¥c?, (9-1.50)

we obtain upon simplifying the denominator in the last integral of
Eq. (9-1.49) and replacing dxdydz by dV

A, =- Glj p dv, (9-1.51)
C2 r[l _(y2 + ZZ)VZ/’.ZCZ]IIZ
or
A4=-GL j p__ av, (9-1.52)
¢t 1 - (v? /eHsin?]' 2

where @ is the angle between the velocity vector v of the moving
mass distribution and the radius vector r connecting dV with the
point of observation. For the y and z components of the vector
potential we obtain from Eqs. (9-1.17) and (9-1.18)

A, =A,=0. (9-1.53)

Observe that Eqs. (9-1.52) and (9-1.53) are the x, y, and z
components of Eq. (6-2.13) that we previously derived from the
fundamental gravitational and cogravitational laws. It is quite
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remarkable that, by applying relativistic transformations to the
Newtonian equation for the gravitational potential, we have obtained
equations for the cogravitational vector potential, although at first
sight there appears to be no connection whatsoever between the
Newtonian gravitational potential and the cogravitational vector
potential of the generalized theory of gravitation.

Example 9-1.3 The Newtonian gravitational field of a stationary
mass distribution p is represented by Eq. (1-1.7)

g = - Gj P rav, (1-1.7)
r3

Applying relativistic transformation equations to Eq. (1-1.7), find
the cogravitational field produced by a mass distribution moving
with constant velocity v = v i.

As in the preceding example, let a mass distribution p' be at
rest in the moving reference frame E'. Rewriting Eq. (1-1.7) in
terms of its Cartesian components and prime coordinates, we have
for the gravitational field produced by p' in £’

g =-G[” p'x! dx'dy’dz’, (9-1.54)

(x’2 + y/Z +Z/2)3/2

=" oy’ 'dy'dz!. (9-1.55
g ij[(x,2+y,2+z,2)3/zdx dy'dz’, ( )

8 =0 || & O _axdydr’. (9-1.56)

+ y/2 + Z/2)3/2

For the time of observation in the laboratory we choose as
before ¢ = 0, so that Eq. (9-1.46) applies again. Also, since there
is no mass current in X', Eq. (9-1.47) applies. By Eqgs. (9-1.8)-(9-
1.10) (noting that there is no cogravitational field in £’ where the
mass is stationary) we have
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K =0, (9-1.57)
= —vo! -
K, = -yvg./c?, (9-1.58)
K_=vg, Ic. (9-1.59)

Substituting Eqs. (9-1.46), (9-1.47), (9-1.58), and (9-1.59) into
Egs. (9-1.56) and (9-1.55), we obtain

K, -GY [ [ I _ M aywdydz, (9-1.60)
(v

cl 22 4y + )02

K =-GX [ [ [— P atmyaydz. (9-1.61
z c? j j ,[ (,yzxz +yz + )2 (yx)dydz . ( )

Rewriting Eq. (9-1.57) and simplifying Eqs. (9-1.60) and (9-
1.61) just as we simplified Eq. (9-1.49) in Example 9-1.2, we
obtain for the cogravitational field produced by a moving mass
distribution

K =0, (9-1.62)

X

21,2
K =GY[_ PU-vIicHz 4y 9-1.63
' czj r?[1 - (v¥/c?)sin’6)*? ( )

K.=-G%| PA-VICNY 4y (9-1.64)
‘ c2) r[1 - (v¥/c?)sin?)*?

Observe that Egs. (9-1.62), (9-1.63) and (9-1.64) are the x, y,
and z components of Eq. (6-1.45) that we previously derived from
the fundamental gravitational and cogravitational laws. One cannot
help but be impressed by the fact that, by applying relativistic
transformations to the Newtonian equation for the gravitational
field, we have obtained equations for the cogravitational field,
although at first sight there appears to be no connection whatsoever



SECTION 9-2 COVARIANT FORMULATION 159

between the Newtonian gravitational field and the cogravitational
field of the generalized theory of gravitation.
A

9-2. Covariant Formulation of the Generalized Theory of
Gravitation

Covariant formulation of physical formulas and equations is
considered by some authors to be the most appropriate formulation
for expressing the laws of physics in a frame-independent form.
It is also believed by some authors to be more concise and
occasionally more informative than the conventional formulation.
Since any equation invariant under relativistic transformations
should be expressible in a covariant form, and since the principle
of relativity is considered to be a fundamental law of nature, the
laws of physics that cannot be expressed in a covariant form are
considered by some authors to be incomplete or incorrect.’

Newton’s gravitational law is an example of a physical law
that cannot be expressed in a covariant form. The problem of
finding an invariant form of the law of gravitation was first
considered by Poincaré, but without success.® It is interesting to
note that Poincaré attempted to solve the problem on the basis of
just one gravitational field (the gravitational analog of the
electrostatic field). But even if the theory of gravitation is built
upon two fields, a covariant theory of gravitation is not possible
unless the gravitational mass, just like the electric charge, does
not depend on the velocity with which the mass moves.

As already mentioned in Section 9-1, until recently it was
believed that the mass of a moving body was a function of the
velocity of the body and thus was not invariant under relativistic
transformations. This was the most important reason for
questioning the possibility of a relativistic theory of gravitation
analogous to relativistic electromagnetism. If mass, unlike the
electric charge, is not invariant, then the analogy between
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electromagnetism and gravitation is not sufficiently complete to
allow a construction of a relativistic gravitational theory similar to
relativistic electrodynamics based on the gravitational field vector,
with or without the addition of a second (the cogravitational) field
vector.

However, it is now generally accepted that mass does not
depend on the velocity with which a body moves.' Therefore a
covariant formulation of the theory of gravitation based on
gravitational-cogravitational fields is not only possible but can be
constructed straightaway from the covariant theory of
electromagnetism by a mere substitution of symbols and constants
in accordance with Table 7-1.

In particular, from electromagnetic equations’ we directly
obtain for the covariant "position 4-vector"

ro=(,x,x,x,) = (x,,z,ic), 9-2.1)

where i isV/-1. From the 4-vector electric current® we obtain by
substitutions the covariant expression for the 4-vector mass current

J = (,,J,,0,,0) = J,J,J icp), (9-2.2)
1P20Y 3V Yy

where J,, J,, and J, are the x, y, and z components of mass-
current density. From the electromagnetic field tensor’ we obtain
the gravitational-cogravitational field tensor by replacing, with the
help of Table 7-1, the x, y, and z components of E by the
corresponding components of g and the x, y, and z components of
B by the corresponding components of K

0 K, -K -iglc

4

-k, 0 K -iglc
F = ‘ Tl (9-2.3)
“” K, -K 0 -iglc

ig/c ig lc iglc O

where the subscript p indicates the row (1, 2, 3, 4 top to bottom)
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and the subscript » indicates the column (1, 2, 3, 4 left to right).

Finally, in the same manner, we obtain covariant expressions
of the present-time differential equations for gravitational-
cogravitational fields:

i OF
y e oo o 410, (9-2.4)
v=1 axv Cz #
and
OF,, + OF,, + OF), =0. (9-2.5)
ox, ax“ ox,

It should be kept in mind, however, that ¢ in the gravitational-
cogravitational equations stands for the speed of propagation of
gravitational-cogravitational fields, which is generally assumed to
be the same as the speed of light, but has never been actually
measured. '

v

Example 9-2.1 Show that Eq. (9-2.4) is equivalent to Egs. (7-1.1)
and (7-1.4), and that Eq. (9-2.5) is equivalent to Eqs. (7-1.2) and
(7-1.3).

Replacing in Eq. (9-2.4) F,, by F,,, substituting x, y, z, and ict
for x,, x,, x5, and x,, respectively, using, according to Eq. (9-2.3),
F, = iglc, Fy = iglc, Fi3 = iglc, and Fyy = 0, and using,
according to Eq. (9-2.2), J, = icp, we have

aig /o) lig,/) (ig,Jo) | 90 _ _4xG

- ico,  (9-2.6
o 3y 7 e e 029

which, after cancelling i and ¢, becomes the same as Eq. (7-1.1).

Setting in Eq. (9-2.4) u = 1, and using, according to Eq. (9-
23),F, =0,F,=K,F;=—-K, F, = — ig/c, we similarly
obtain
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90 0K, 0K, gl __4nG; (907
ox 0y 0z a(ict) c? 7
or
oK. _OK, __ 4G, % (9-2.8)
dy 0z c? ' cPor

which is the x component of Eq. (7-1.4). Likewise, setting p = 2
and then ¢ = 3 in Eq. (9-2.4) and using Eq. (9-2.3), we obtain the
y and z components of Eq. (7-1.4).
Setting in Eq. (9-2.5) p = 1, » = 2, A = 3, and using Eq. (9-
2.3), we obtain
oK VIRV Ly, (9-2.9)
0z Ox Oy
which is the same as Eq. (7-1.2).
Setting in Eq. (9-2.5) u = 2, » = 3, A = 4, and using Eq. (9-
2.3), we similarly obtain
0s. _ %, 9K (9-2.10)
ay 0z ot

which is the x component of Eq. (7-1.3). The remaining two
components are obtained in the same manner by setting u = 1, v =

3, N=4andpu =1,» =2, N\ =4,
A
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10

CALCULATION OF
GRAVITATIONAL AND
COGRAVITATIONAL FORCES
FROM POTENTIALS

One of the main problems in the generalized theory of
gravitation is the determination of forces involved in gravitational
and cogravitational interactions. In this chapter we shall present
a new method for calculating these forces based on using
gravitational and cogravitational potentials rather than fields. Since
potentials are frequently easier to compute than the corresponding
fields, this method provides an effective alternative for force
calculations. From the theoretical point of view, this method
reveals a physical significance of gravitational and cogravitational
potentials not heretofore apparent.

10-1. Calculation of Gravitational Forces in Time-Independent
Systeins from Scalar Potentials

The gravitational force on a mass distribution p located in a
gravitational field g is, according to Eq. (2-2.6),

F- lpng. (10-1.1)

165
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Let us write this equation as'
F- IS lﬂyé‘fpgdv * Ilnlerlorpgdv’ (10-1 2)

where the first integral is extended over the surface layer of the
mass distribution, and the second integral is extended over the
interior of the mass distribution. The volume of the surface layer
may be assumed as small as we please, so that the first integral
may be disregarded. We then have

F- jl  pgav, (10-1.3)

In accordance with Eq. (1-1.9) [which for time-independent
systems is the same as Eq. (3-3.4)], let us now replace g in Eq.
(10-1.3) by —Vo, and let us then transform the integrand by
means of vector identity (V-5). We have

F-|, pgav--|  pvoav
Interior Interior

(10-1.4)
B JInlenor‘prdV - Jlmeriorv(p sD)dV .

If we now transform the last integral by means of vector identity
(V-20), we obtain

F - Ilnleriorsovpdv - #Smfacepsods’ (10-15)

where the second integral is extended over the surface of the mass
distribution.> 3

A remarkable feature of Eq. (10-1.5) is that it associates the
force on a mass distribution directly with the potential rather than
with the field. The equation is immediately suspect, because the
potential is determined only to within an additive constant, while
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the force must be a single-valued quantity. However, a closer
examination of Eq. (10-1.5) shows that any additive constant
appearing in ¢ integrates out and has no effect on the force.*

If the mass distribution is constant, the first integral in
Eq.(10-1.5) vanishes, and we have

F=-p§f>sodS- (10-1.6)

If the mass is confined to a thin layer, the surface integral in
Eqgs. (10-1.5) and (10-1.6) can be split into the integrals over the
broad surface of the layer and over the rim of the layer. The
latter integral contributes to the total force an amount

F,, = - foord,, = - food,,. (10-1.7)

where ¢ is the thickness of the layer, ¢ is the surface mass density
of the layer, and dl,, is a vector representing a length element of
the rim directed out of the mass distribution (normal to the rim).

It should be noted that the external potential ¢ appearing in
the above equations can be replaced by the total potential because
a self-potential cannot produce a net force on a mass distribution.

v

Example 10-1.1 A point mass m is located on the axis (x axis) of
a thin-walled cylinder of uniform surface mass (mass per unit
surface area) ¢, length 2L, and radius a. The distance between m
and the center of the cylinder (assumed to be to the right of m) is
x. Find the force exerted on the cylinder by the point mass.

Since the mass distribution is uniform, only the surfaces of the
cylinder contribute to the force experienced by the cylinder, and,
by the symmetry of the system, the only contribution comes from
the two end surfaces (rims) of the cylinder. By Eq. (1-1.12), the
potential produced by m at the rim of the cylinder closest to the
mass is* ¢ = — Gm[(x — L)* + a’]'?, and that at the other end is
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¢ = — Gm[(x + L)* + a*]"*. By Eq. (10-1.7), taking into account
that the integrand is a constant, the force is then (compare with
Example 6-1.1 for v = 0)

F = -iGmo2ra 1 - 1 (10-1.8)
(x —L)2+a2]”2 [(x +L)2+02]”2

Example 10-1.2 A spherical mass m of uniform density p and
radius a consists of two separate hemispheres. Find the force
between the hemispheres.

Since p is constant, we can use Eq. (10-1.6). We shall use it
with the total potential ¢, because the external potential is difficult
to compute in this particular case. The total potential at a distance
r < a from the center of the sphere is (see Example 13-1.3)

- m 2 _ 2 -
Y = G?a_3(3a r’, (10-1.9)

where r is the distance from the center of the sphere. Let us assume
that the hemispheres are separated by a horizontal plane, and let us
calculate the force on the upper hemisphere. The surface integral in
Eq. (10-1.6) can be split into a part over the hemispherical surface
and a part over the flat base of the upper hemisphere. Since the
magnitude of { dS over a hemispherical surface is just the area of
the projection of the hemisphere on its base, the contribution of the
hemispherical surface to the force is

F, =-iGpmma®/a = - iGpmma, (10-1.10)

where 1 iIs a unit vector normal to the base and directed downward.
The contribution of the base of the hemisphere is

F, = iGPJO%GaZ - r’)2xrdr =iGp7r<_3';a _mna
‘ (10-1.11)

=iGS7rpma‘




SECTION 10-2 g FORCE FROM VECTOR POTENTIALS 169

The total force F, + F, is therefore

2

F-iGPM™ -G 3m
16a

(10-1.12)

A

10-2. Calculation of Gravitational Forces in Time-Independent
Systems from Vector Potentials

As we know from Section 3-3, gravitational fields in
mass-free regions can be represented not only as gradients of
scalar potentials but also as curls of vector potentials.

Let us replace g in Eq. (10-1.1) by V x A,, where A, is the
vector potential due to the sources producing g [the presence of
p in Eq. (10-1.1) does not preclude the existence of the external
vector potential A, at the location of p, since all sources of A, are
outside of p). We have

F=fpVx A, av. (10-2.1)

Splitting the integral into an integral over the surface layer of the
mass and an integral over the interior of the mass, and ignoring
the first integral as before in Eq. (10-1.2), we have

F- f“ PV X AdV. (10-2.2)

Using now vector identity (V-11), we can write

F=[, oVxaav=[  Vxeayav

Interior
(10-2.3)
- Jlnr riorvp X Agdv’
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and, using vector identity (V-21), we obtain

- JI"'e'iorAg X Vpdv B %SﬂlfarepAg X dS. (10'24)

For constant p, Eq. (10-2.4) simplifies to

F=—p§{>Agxds. (10-2.5)

For a mass layer the contribution of the rim of the layer to the
total force is
F, =- IpAgxtdlow =- laAgxdl

nm

our? (10-2.6)
where ¢, 0, and dl,, are the same as in Eq. (10-1.7).

Note that, in contrast to the similar equations for scalar
potentials, only the external vector potentials can be used in Egs.
(10-2.1)-(10-2.6), because a gravitational vector potential is
defined only for regions of space external to the masses that
produce the vector potential.

v

Example 10-2.1 A point mass m is at the origin of coordinates. A
thin disk of mass M and radius a has its center on the x axis at a
distance x from the origin. The density ¢ (mass per unit area) of the
disk is uniform. The surface of the disk is perpendicular to the x
axis. Find the force with which the point mass attracts the disk.

The vector potential of the point mass is, in spherical
coordinates centered at the point mass,®

[1 - cosB
sind

(10-2.7)

ll

where 4 is the angle between r and the x axis, and ¢, is a circular
unit vector right-handed relative to the x axis.
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Only the rim of the disk makes a non-vanishing contribution to
the force (the contributions of the two flat surfaces, being in
opposite directions, cancel each other). Substituting cos § = x/(x* +
a*)'? and rsinf = a, we obtain, by Eq. (10-2.6) (compare with
Example 3-2.1),

F

_ iG+6m[1 - x/(x? + a’)'" dl
a
_ g omll - x/xt+ah)?), (10-2.8)
a
2mM[, _ x
a? | (x? + a?)” )

= - iG

Example 10-2.2 An infinitely long line mass of density A is placed
along the z axis of rectangular coordinates. An infinite plane sheet
of surface mass density

o = ola*/(a* + y’] (10-2.9)

is placed parallel to the yz plane at the distance x = a from the line
mass; the center of the sheet being on the x axis. Find the force per
unit length exerted by the line mass on the sheet.

Since the density of the sheet is not constant, we must use Eq.
(10-2.4). Assuming that the thickness of the sheet is ¢, we have for
Vo

Vo = lVa = - la 2ya’

; PGy (10-2.10)

The vector potential produced by the line mass is, in cylindrical
coordinates,®

A, = - G2Mk, (10-2.11)
where § is the angle around the z axis in the xy plane. By the
symmetry of the system, the surface integral in Eq. (10-2.4) makes
no contribution to the force (the contributions of the front and back
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surfaces cancel, and there is no contribution from the edges of the
sheet at infinity).

Expressing the gradient of the mass density in terms of the
angle 8, we have

Vp = - (20,/ta)sinfcos®d j . (10-2.12)

Using the first integral in Eq. (10-2.4), we obtain for the force
per unit length exerted by the line mass on the sheet

o 20
F, = iGl 2)\0t_°sinﬁcos30tdy
o v

xR dao
- icz)\ooj 20sinfcos’d
- cos*d (10-2.13)

T2

- - iG2ha, | osin20ap

= - iG\7a,.

A

10-3. Calculation of Cogravitational Forces in Time-
Independent Systems from Vector Potentials

By Eq. (2-2.6), the cogravitational force acting on a mass
current distribution J due to an external cogravitational field K is

F - ijKdv. (10-3.1)

Replacing K in Eq. (10-3.1) by V X A, where A is the external
vector potential, and splitting the integral into an integral over the
surface layer and an integral over the interior of the mass current,
we have

Inter

F - ,lS IayerJ X (V X A)dv + J er X (V X A)dV (10_32)
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As before, the integral over the surface layer can be ignored. The
integral over the interior can be transformed by using vector
identity (V-22) to

F- ]A(V-J)dw ]J(v - A)dV

++(A.J)ds-{>J(A-dS) (10-3.3)

—<f>A(J-dS) - ij (V x J)dV.

However, by Eq. (2-2.4), V-J = 0 for time-independent systems,
and, by Eq. (3-3.12), V:A = 0 for time-independent systems,
and, since a time-independent (steady) mass current is always
parallel to its surface, also J:dS = 0. Therefore, we have

F- +(A . 3)dS - ch(A- ds)
(10-3.4)
- ]Ax (V x J)dV.

We can also transform the second volume integral together
with the second surface integral in Eq. (10-3.3) by using vector
identity (V-23). We then obtain an alternative force equation

F- 35(A - J)dS - ](A - V)JdV
(10-3.5)
. [Ax (V x J)dV.

From Eq. (10-3.5) we immediately see that for constant J the
force is simply

F- 35(A . J)dS. (10-3.6)

For a surface mass-current of density J© = 4
per unit width, where ¢ is the thickness of the mass current sheet,
the edges (rim) of the current contribute
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an = (f(A ° J(S)) dlo,‘, - #JU)(A ° dlout) (10-37)

to Eq. (10-3.4) and
F, - $@-Joal, (10-3.8)

nm

to Egs. (10-3.5) or (10-3.6).

Although the above equations have been derived for the
external potential, they remain valid if the total potential is used
in them, because the self-potential cannot create a net force on a
mass current.

v

Example 10-3.1 A long thin-walled cylinder of radius a and surface
mass density o, rotates with angular velocity w, about its symmetry
axis, thereby creating a surface mass-current J,* = g,w,a in a
circular direction round the symmetry axis. A larger long thin-
walled cylinder of radius b and surface mass density o, rotates with
angular velocity w, about its symmetry axis in the same direction,
thereby creating a surface mass current J,** = g,w,b. The smaller
cylinder is partially inserted into the larger cylinder coaxially with
it; their common axis is the z axis of cylindrical coordinates.
Neglecting end effects (that is, assuming that the cogravitational
field of each cylinder is confined to the interior of the cylinder),
find the cogravitational force exerted by the larger cylinder upon
the smaller cylinder.

We can use Eq. (10-3.8) to solve the problem. Let us assume
that the smaller cylinder is to the right of the larger cylinder, that
both cylinders rotate in the right-handed direction relative to the z
axis, and that the z axis is directed to the right. The vector potential
produced by the larger cylinder is then, in cylindrical coordinates,’

2wo,w,br

A=-G_ 17T 9, (10-3.9)
C
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where 6, is a unit vector in circular direction right-handed relative
to the z axis. Since the end effects are neglected and by the
symmetry of the system, only the end (rim) of the smaller cylinder
inside the larger cylinder contributes to the force. Since the surface
mass current of the smaller cylinder is J,¥ = g,0,a0,, the force is,
by Eq. (10-3.8),

by
il

o,waldl

1 out

+(_G27r02w2ba

¢ 10-3.10

4720,0,0,0,a°b (10-3.10)
G.._—Z—k

c

It is interesting to note that the larger cylinder repels the
smaller one, which is a consequence of the general property of mass
currents whereby like mass currents repel and opposite mass
currents attract each other.

Note that the force represented by Eq. (10-3.10) is not the total
force between the two cylinders. The total force between them is
the sum of the gravitational and the cogravitational force. In this
particular case (the cylinders rotate in the same direction) the
cogravitational force lessens the gravitational attraction, but if the
two cylinders rotated in opposite directions, then the cogravitational
force would strengthen the gravitational attraction between them.

Example 10-3.2 A spherical shell having a uniformly distributed
mass of density p, inner radius a, and outer radius b consists of two
separate hemispheres. The shell rotates with angular velocity
about its vertical symmetry axis (z axis) passing at right angles to
the equatorial plane separating the two hemispheres. The rotation
of the shell creates a mass current density in the shell, which is, in
spherical coordinates centered at the center of the shell, J = w X
r. Find the cogravitational force between the two hemispheres if it
is known that the cogravitational vector potential inside the shell is
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A=-G 217;‘0(2') (5b*-3r*-2a’/r)rsinf¢,, (10-3.11)
c

where ¢, is a circular unit vector in a spherical system of
coordinates.’

Let us find the force on the upper hemisphere. To do so we can
use Eq. (10-3.4). By vector identities (V-12) and (V-4), V X J =
2pw, and since w is parallel to the z axis, the integral containing A
X (V X J), by symmetry, does not contribute to the net force.
Thus only the surface integrals in Eq. (10-3.4) need to be
considered. Since A is perpendicular to dS, the second integral in
Eq. (10-3.4) vanishes. Thus the force is all due to the first integral
in Eq. (10-3.4).

The contribution of the flat base of the hemisphere to the force
on the hemisphere is then

b 5
F, -k Gz’”’“’(sz;z -3r2- 2% )rpwranrdr
@ 15¢? ri

(10-3.12)

2.2,2
”1;’ ‘;’ (3b° - 5b2a* - 8ba’ + 10a°).
C

=kG

Only the vertical component of dS makes a net contribution to
the integral over the outer hemispherical surface. Hence this surface
contributes

/2 5
F, = -kJ Gz’”’"’(st—st- 287 psingpwb
°  15¢? b3

xsinf2wbsinfcos Hd8 (10-3.13)

2 2,2
= kGETPY h5_g5)p.
15¢?

The inner surface of the hemisphere contributes, similarly,
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[P R2TPw 0 o
F3—kl0 G 37 (b*-a*)asinfpwa

Xsinf2mwa’sinfcosfd b (10-3.14)
T2 0% w?
3¢?

=kG (b2 -a?a’.

The total force is therefore

F, +F,+F =kGT

0 (po-6bas+ 5a%). (10-3.15)
15¢2 ’

As in the preceding example, this force represents a repulsion.
However, it is important to remember that Eq. (10-3.15) represents
only the cogravitational force between the two hemispheres and that
there is also a gravitational attraction between them.

A

10-4. Calculation of Cogravitational Forces in Time-
Independent Systems from Scalar Potentials

Let us replace the cogravitational vector K in Eq. (10-3.1) by
— Vg, where ¢, is the external cogravitational scalar potential
[see Eq. (3-3.10)] . Transforming Eq. (10-3.1) as before, we have

Fe- L werd X VAV l IxVeodV. (10-4.1)

Interior

Disregarding the integral over the surface layer and using vector
identity (V-11), we obtain

F-- J,u _IxXVedV = [ VX (o J)dV

Intertor
(10-4.2)
_ l“ o VXJdV.
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The first integral on the right can be transformed by using vector
identity (V-21) into a surface integral, so that the force becomes

F-- <f<prJ X dS - Jcp(V xJdv. (10-4.3)

For a surface current J* the contribution of the rim surface is

F, --§odoxd,, (10-4.4)

Note that only the external potential can be used in the above
equations because the cogravitational scalar potential is defined
only for regions of space external to the source of the potential
(see Section 3-3).

v

Example 10-4.1 A thin disk of uniform mass density p, radius a,
and thickness ¢ rotates with angular velocity w about its symmetry
axis, which is also the z axis of cylindrical coordinates. The center
of the disk is at z = 0. At a point z of the z axis and perpendicular
to the axis is a distant rotating ring forming a filamentary mass
current /. The surface area of the ring is S. Assuming that the mass
current in the ring and the rotation of the disk are right-handed
relative to the z axis, find the force exerted by the ring on the disk.
The rotating ring constitutes a "cogravitational dipole" and the
scalar potential of the ring is, in cylindrical coordinates,’
IS[

@, = (10-4.5)

T
where z is the distance from the ring and r is the distance from the
Z axis (see Section 5-2).

The rotating disk constitutes a mass current distribution J
pwrd, for which, by vector identities (V-12) and (V-4), V X J =
2pwk. Using Egs. (10-4.3) and (10-4.4) and taking into account
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that, by the symmetry of the system, only the rim of the ring
contributes to the surface integral, and that the potential and the
mass current density are constant at the rim, we have

F = —kGprat%ra +kj GMtZwrdr
cXzt+a?)? 0 2z 2+ 2y
(10-4.6)
- _xgiTiSpwt[  a’z | F4 _1]
c? [2(22 +a?)yr  (P+ad)”? '

Note that the ring repels the disk. It is important to remember,
however, that the force represented by Eq. (10-4.6) does not
include the gravitational attraction between the ring and the disk.

A

10-5. Calculation of Gravitational and Cogravitational Forces
in Time-Dependent Systems from Potentials

The force equations derived in the preceding sections can be
easily extended to time-dependent systems by using retarded
gravitational and cogravitational potentials defined in Section 3-3.
It is important to realize that although the potentials of time-
dependent mass and mass-current distributions are retarded, the
retardation does not directly affect the calculation of gravitational
and cogravitational forces, because these forces are assumed to act
upon masses and mass-current distribution at the time for which
the forces are calculated.

However, in time-dependent systems, the gravitational field
cannot be expressed in terms of a scalar potential alone. Instead,
by Eq. (3-3.4), it is expressed as a combination of the retarded
gravitational scalar potential and the retarded cogravitational
vector potential:

g=—V<p—%. (3-3.4)
ot
Therefore Eqgs. (10-1.5), (10-1.6) and (10-1.7) acquire the
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additional term

aArel
F--[pZmav. (10-5.1)
ot
Similarly, by Eq. (3-3.10), the cogravitational field cannot be
expressed in terms of a scalar potential alone. Instead, it is
expressed as a combination of the retarded cogravitational scalar
potential and the retarded gravitational vector potential:

K- -Vp + e (3-3.10)
‘ cot

Therefore, in time-dependent systems, Eqs. (10-4.3) and (10-4.4)
acquire the additional term

1 0A, .
F-L[rx ey, (10-5.2)

As we shall presently see, Eq. (10-5.1) is very important in
the generalized theory of gravitation, since it indicates the
presence of an entirely new force in gravitational interactions. The
properties and significance of this force, which we shall call the
"gravikinetic force,"” will be discussed in the next chapter.

References and Remarks for Chapter 10

1. All basic force equations in this chapter are derived for
external, rather than for internal, gravitational and cogravitational
fields. This is done for two reasons: first, only the external fields
produce net forces on stationary and moving masses; second, only
external fields can always be associated with scalar as well as with
vector potentials.

2.. The electric counterpart of this equation is derived in Oleg D.
Jefimenko, Electricity and Magnetism, 2nd ed., (Electret Scientific,
Star City, 1989), pp. 210-211.
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3. See also Oleg D. Jefimenko, "Direct calculation of electric and
magnetic forces from potentials,” Am. J. Phys. §8, 625-631 (1990).
4. This can be easily shown by replacing the potential in Eq. (10-
1.5) by a constant and again using vector identity (V-20).

S. In order not to dilute the presentation by excessive details, the
potential is stated without derivation.

6. A simple way to compute this potential is to use Eq. (3-3.9).
7. A simple way to compute this potential is first to use Eq. (7-
1.8) for finding the cogravitational field in the cylinder and then to
use Eq. (3-3.3). See also Example 12-2.3.
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GRAVIKINETIC FIELD
AND ITS PROPERTIES

One of the main differences between the generalized
theory of gravitation and Newton’s gravitational theory is that in
the generalized theory of gravitation there is a special force field
- the cogravitational, or Heaviside’s field. The cogravitational
field is produced by all moving masses, and it acts on all moving
masses. In this chapter we shall learn that in the generalized
theory of gravitation there is yet another force field produced by
moving masses. However, in contrast with the cogravitational
field, this field is produced only by masses whose velocity
changes in time and, again in contrast with the cogravitational
field, it acts on all masses, moving as well as stationary.

11-1. The Gravikinetic Field

As we know from Chapter 2, the principal gravitational field
equation of the generalized theory of gravitation is

dp G (1[0J
=-G {M L[_]} av' + © __]dV’, )
g j apmaka +czjr - 2-2.1)

where J = pv is the mass current density produced by a moving
mass distribution p. The first term on the right in Eq. (2-2.1)
represents the retarded Newtonian gravitational field. Just like the
ordinary Newtonian field, this field originates at any mass

182
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distribution p and is responsible for the gravitational attraction.
llowever, the last term on the right of Eq. (2-2.1) represents a
gravitational field very different from the Newtonian field. As can
be seen from Eq. (2-2.1), this new field is produced by a time-
variable mass current 4J/9¢ and it differs in two important respects
from the Newtonian gravitational field: it is directed along the
mass-current (more accurately, along its partial time derivative)
rather than along a radius vector, and it exists only as long as the
current is changing in time. Therefore the gravitational force
caused by this field is also different from the ordinary
gravitational (Newtonian) force. This force (designated as F; in
Ifig. 2.2) is directed along dJ/d¢ and it lasts only as long as the
mass current is changing. Unlike the Newtonian gravitational
force, which is always an attraction between gravitating masses,
the force due to the time-variable J is basically a dragging force.
If only the magnitude but not the direction of J changes, this force
is directed parallel or antiparallel (if 4J/d¢ is negative) to J,
causing a mass subjected to this force to move parallel or
antiparallel to (rather than toward) the mass distribution forming
the mass current. However, like the Newtonian force, the force
due to the time-variable J acts upon all masses.

It is important to note that unlike the cogravitational field, the
field produced by dJ/dt usually is not created by masses moving
with constant velocity v [see, however, Eq. (4-1.4)].

Since the gravitational field created by time-variable mass
currents is very different from the Newtonian field and from the
cogravitational field, a special name should be given to it. Taking
into account that the cause of this field is a motion of masses, we
may call it the gravikinetic field, and we may call the force which
this field exerts on other masses the gravikinetic force. We shall
designate the gravikinetic field by the vector g,. From Eq. (2-2.1)
we thus have
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ﬂ]dv’. (11-1.1)

_G (1
S i

ctlr

Because of the ¢? in the denominator in Eq. (11-1.1), the
gravikinetic field cannot be particularly strong except when the
mass-current responsible for it changes very fast. On the other
hand, taking into account that the time scale in gravitational
interactions taking place in the Universe may be very long, the
ultimate effect of the gravikinetic field in such interactions may be
very considerable regardless of the rate at which the mass current
changes.

11-2. Correlation Between the Gravikinetic Field and the
Cogravitational Field

If we compare Eq. (11-1.1) with the expression for the
retarded cogravitational vector potential A,, produced by a mass
current J,

A -- E[ﬂdv', (3-3.2)

ret c 2 r

we recognize that the gravikinetic field is equal to the time
derivative of retarded A,,:

rer

g, = - o (11-2.1)

It is interesting to note that Eq. (11-2.1) points out the
possibility of a new definition and interpretation of the
cogravitational vector potential. Let us integrate Eq. (11-2.1). We
obtain

A, =- Jgkdt + const. (11-2.2)

Let us call the time integral of g, the gravikinetic impulse. We
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then can say that the cogravitational vector potential created by a
mmass current at a point in space is equal to the negative of the
gravikinetic impulse produced by this current at that point during
the action of the mass current. Since the gravikinetic impulse is,
in principle, a measurable quantity, we thus have an operational
definition and a physical interpretation of the cogravitational
vector potential.'

It may be useful to mention that although Eqgs. (11-2.1) and
(11-2.2) correlate the gravikinetic field with the cogravitational
vector potential, there is no causal link between the two: the cor-
relation merely reflects the fact that both the gravikinetic field and
the cogravitational vector potential are simultaneously caused by
the same mass current.?

A more direct (albeit not causal) relation between the
gravikinetic field and the cogravitational field can be obtained as
lollows. Let us assume that an initially stationary mass current
J(x',y',z") (an initially stationary rotating spherical mass, for
example) moves as a whole with a constant velocity v toward a
stationary observer located at the origin of coordinates. The mass
current is then a function of (x' —vf), (y'—v, 1), and (z' —v,?), or

J = -v i,y -tz -v). (11-2.3)
The time derivative of the current is

aJ _ aJ aJ aJ

= I _— —V

9 = - (V). (11-2.4
at ax’ a8y’ ' 87 - AR )

The gravikinetic field caused by the moving mass current is then,
by Eqgs. (11-1.1) and (11-2.4),

= - El [(V'V/)J] dv’ .

g
k C2 r

(11-2.5)

The spatial derivative appearing in Eq. (11-2.5) can be
eliminated as follows. Using vector identity (V-6), which can be
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written as

Vi(vJ)y=(v-V)J+vX (V' xJ)+J-V)v+I X (V' X v), (11-2.6)
and taking into account that v is a constant vector, we obtain

- - EI [V(v-9] dv'’ + EI [vx (V' xJ)] dv’

g
k c? r c? r

C(11:2.7)

If we compare Eq. (11-2.7) with Eq. (3-1.2) for the
cogravitational field,

dav’, (3-1.2)

/
K:_EI[V x J]
c? r

we find that Eq. (11-2.7) can be written as

/ .
g, - _gjlv (: Mav - yxK, (11-2.8)

where K is the cogravitational field created by the moving mass
current J.

v

Example 11-2.1 Show that if g, is linear in time, g, = a + by,
then the retarded cogravitational vector potential in Eq. (11-2.1) can
be replaced by the ordinary (unretarded) vector potential.

We shall solve this problem by using Helmholtz’s theorem of
vector analysis, vector identity (V-24):

/ /. - / /
V=—LJV(V V) - V' x(V xV)dV,. (V-24)
4w r

As we know from Example 3-3.1 the divergence of the retarded
cogravitational vector potential satisfies the relation
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vea =- L% (3-3.12)
ret CZ ot

where ¢ is the retarded scalar potential of g. Therefore, by Egs.
(11-2.1) and (3-3.12), we have

2
vog, - L20m (11-2.9)
c* or?
For the curl of g, we have, by Eq. (11-2.1) and by the
definition of the cogravitational vector potential,

Vxg, = - Qa%, (11-2.10)

I'or V(V-g,) we then have, by Eq. (11-2.9), by Eq. (3-3.4), and by
liq. (11-2.1),

2 0A
Vg = - L8 e ey L8 gy, 121D

C2 atZ at 2 a =2
where g is the total gravitational field given by Eq. (2-2.1). For
VX (Vxg,) we have, by Eqs. (11-2.10) and (7-1.4),

47rG ay

Vx(Vxg) = Do

1% a12.12
c? ar?

Substituting Eqgs. (11-2.11) and (11-2.12) into vector identity (V-
24), canceling (1/c%)(8%g/dr%), noting that 8°g,/dr> = 0 (because g,

is linear in £), and comparing the result with Eq. (3-3.6), we finally
obtain

GllaJ 0A
= av’ = - . 2.12
B~ r ot ot (11-2.12)

A
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References and Remarks for Chapter 11

1. For a related interpretation of the magnetic vector potential see
Oleg D. Jefimenko, Causality, Electromagnetic Induction, and
Gravitation, 2nd ed. (Electret Scientific, Star City, 2000) pp. 30,

31.
2. Nor is there, of course, a causal relation between the gravikinetic

field and the cogravitational field, since they, too, are
simultaneously produced by the same mass current.
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GRAVIKINETIC FORCES AND
EFFECTS; GRAVITATIONAL
INDUCTION

In this chapter we shall present illustrative examples on
the calculation and effects of gravikinetic fields and forces. We
shall compute gravikinetic forces acting on mass distributions in
the vicinity of time-variable mass currents. We shall establish a
connection between the change of the mechanical momentum of
a mass distribution subjected to a gravikinetic field and the
cogravitational vector potential associated with the time-variable
mass current that produces the gravikinetic field. And we shall
demonstrate how gravikinetic fields can influence the translation
and rotation of masses subjected to it.

12-1. Gravikinetic Fields and the Mechanical Momentum

We shall now present examples on calculation of gravikinetic
fields and gravikinetic forces and examples on effects of these
fields and forces. We shall use examples requiring only very
simple calculations. It is not the complexity of the examples that
is important for our purpose. Qur purpose is to provide an
unambiguous demonstration of the effects and actions of
gravikinetic fields; this can be best achieved with uncomplicated
examples.

189
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For simplicity, we shall limit our calculations to relatively
small systems and relatively slow variations of mass currents. In
such systems retardation effects are negligible (see Section 2-2),
so that Eq. (11-1.1) can be written without brackets as

_ Gll aJ ..
= |-_—daVv’. (12-1.1)
& ctlr ot

If the mass current is filamentary, Eq. (12-1.1) can be written as

3 G [ dV
- EFJ_’ (12-1.2)

g ;

where [ is the mass current in the filament and dl' is a length
element of the filament in the direction of the current. Finally, if
the retardation is neglected, the gravikinetic field of a mass
current J can be found, according to Eq. (11-2.1), from

0A

-, 12-1.3
T ( )

g =~
where A is the ordinary (not retarded) cogravitational vector
potential associated with J.

When the gravikinetic force acts on a mass distribution p, it
changes the mechanical momentum G,, of the mass distribution in
accordance with

AG, = let = llpgdedt. (12-1.4)
If g, is a function of time only, the momentum change is

AG, - m[gdi = - mAA, (12-1.5)
where m is the total mass of the distribution, and AA is the

change in the vector potential during the time interval under
consideration.
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If a circular gravikinetic force acts on a mass distribution
restricted to a circular motion, the angular momentum of the mass
distribution changes. For a mass distribution and gravikinetic field
of circular symmetry, the change in the angular momentum is

aL = [[rxgdmar = - [rxAam, (216

where L,, is the angular momentum and r is the lever arm of g,.
As already mentioned, we are using the ordinary vector potential
for simplicity; for exact calculations the retarded vector potential
must be used in Egs. (12-1.3), (12-1.4), (12-1.5), and (12-1.6).

It should be pointed out that an association between the
momentum change of a body and the change of the cogravitational
vector potential at the location of the body does not signify a
causal relation. This association is a consequence of the fact that
both a gravikinetic force and a time-variable cogravitational field
(and its time-variable vector potential) are simultaneously created
by a time-variable mass current.

As is known, a vector potential may contain an arbitrary
additive function of zero curl ("gauge calibration"). However,
only the vector potential given by Eq. (3-3.2) and by its
unretarded version can be used for the calculation of the
gravikinetic field.

An explanatory note is required concerning calculations of
forces and torques exerted on mass distributions by gravikinetic
fields. The force experienced by a mass distribution is determined,
in general, by the total gravitational field given by Eq. (2-2.1),
not just by the gravikinetic field, Eqs. (11-1.1), (12-1.1), or (12-
1.2). Therefore a force calculated from the gravikinetic field alone
may not be the true force experienced by the mass distribution
under consideration. In contrast, only the gravikinetic force has an
effect on the torque experienced by rings of mass and by similar
objects. This is because the torque in such systems is determined
by a closed line integral of the gravitational field, and only the
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gravikinetic field gives a non-vanishing contribution to such
integrals [the first term of Eq. (2-2.1), being a function of r in the
direction of r, has zero curl and therefore cannot contribute to
closed line integrals; see Eqs. (7-1.19)-(7-1.23)].

12-2. Examples on Calculation of Gravikinetic Fields

In this section we shall present several illustrative examples
on calculation of gravikinetic fields. A direct calculation of
gravikinetic fields from Eq. (11-1.1) or from its unretarded
versions, Egs. (12-1.1) and (12-1.2), involves exactly the same
techniques that are used for calculating cogravitational vector
potentials from Eq. (3-3.2) or from its unretarded versions. These
are the same techniques that have been developed for calculating
the magnetic vector potential in the electromagnetic theory.
Therefore we shall avoid presenting examples on direct calculation
of gravikinetic fields here, since such examples would basically
duplicate examples on magnetic vector potential calculations
provided in most textbooks on electromagnetic theory. Instead,
with one exception, we shall make use of Eq. (12-1.3), of Table
7-1 for converting electromagnetic quantities to gravitational and
cogravitational quantities, and of the readily available expressions
for the magnetic vector potentials.

v

Example 12-2.1 A straight stationary rod of length 2L and cross-
sectional area S has a uniformly distributed mass of density p (Fig.
12.1). The rod is suddenly set in motion along its length. Find the
gravikinetic field created by the rod at a distance R from the rod at
a point equidistant from the ends of the rod.

The electromagnetic counterpart of the moving rod is a straight
wire carrying a current /. The magnetic vector potential for such a
wire is'
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8
R
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- 2L >

Fig. 12.1 An accelerating rod produces a gravikinetic field.

7 2 2\172
A=t L@ R

, 12-2.1
2T R ( )

where k is a unit vector in the direction of the current /. By Eq.
(12-1.3) and Table 7-1, the gravikinetic field of the rod is then

2 23172
_ 312G L+(L?+R)"2

U T , (12-2.2)

where [ is now the filamentary mass current produced by the
moving rod, I = pvS, (v is the velocity of the rod). If the rod is
long, so that L’>R’, we may neglect R* in Eqs. (12-2.2) The
gravikinetic field of the rod is then

_ 812G, 2L
g, = ——In—k. (12-2.3)

0t ¢c? R
Example 12-2.2  An initially stationary, thin-walled cylinder of
radius R, length 2L and wall thickness ¢ has a uniformly distributed
mass of density p (Fig. 12.2). The cylinder is suddenly set in
motion along its length. Find the gravikinetic field created by the
cylinder outside and inside the cylinder.

The electromagnetic counterpart of the moving cylinder is a
cylinder carrying an electric current along its length. The magnetic
vector potential outside a current-carrying cylinder is the same as
if the current of the cylinder were confined to the axis of the
cylinder.” The magnetic vector potential outside the cylinder is
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l7t) ———»

Fig. 12.2 An accelerating cylinder creates a gravikinetic field
outside and inside the cylinder.

therefore again given by Eq. (12-2.1), and the corresponding
gravikinetic field is again given by Eqs. (12-2.2) and (12-2.3).
However, the mass current / produced by the cylinder is pv27TRt.

The cogravitational vector potential inside a moving cylinder is
constant and is equal to the cogravitational vector potential just
outside the cylinder. (Since there is no cogravitational field inside
the cylinder, this statement may appear incredulous. However, the
absence of K inside the cylinder merely requires that A is the same
at all points inside the cylinder. It does not require that A = 0.)
Substituting R, for R in Eq. (12-2.3), we then have for the
gravikinetic field inside the (long) cylinder

g - g_fzc_?ln%k. (12-2.4)
Example 12-2.3 A stationary cylinder similar to that described in
Example 12-2.2 but of length L is suddenly set in rotation about its
symmetry axis. Neglecting end effects, find the gravikinetic field
inside the cylinder.

The electromagnetic counterpart of the rotating cylinder is a
cylinder carrying a circular current over its entire length. If the end
effects are neglected, the magnetic field inside such cylinder is
homogeneous, and the magnetic vector potential is *

I

A = st (12-2.5)
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where r is the distance from the axis of the cylinder and 6, is the
azimuthal unit vector whose direction is the same as that of the
circulating current in the cylinder. The gravikinetic field is then, by
Eq. (12-1.3) and Table 7-1 ,

_2nGalr
cz L "

where I = pwRyLt and w is the angular velocity of the cylinder.

g, (12-2.6)

Example 12-2.4 A ring of radius b carries a uniformly distributed
mass m, and rotates with a variable angular velocity w, about its
symmetry axis (Fig. 12.3). Find the gravikinetic field in the plane
of the ring near the center of the ring.

T ’I’ Ou
DI
LT

Fig. 12.3 Calculation of the gravi-
kinetic field near the center of a
rotating ring.

The ring constitutes a circular current / = wym,/2w. The
cogravitational field on the axis of a similar ring was calculated in
Example 2-2.1. At the center of the ring it is, by Eq. (2-2.18),

K =-G_2"k, (12-2.7)

where k is a unit vector along the axis of the ring right-handed
relative to the direction of rotation.* Within a small region near the
center of the ring this field is nearly homogeneous, so that the
cogravitational vector potential in the plane of the ring is
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approximately?

0 , (12-2.8)

where r is the distance from the center, and 6, is the azimuthal unit
vector in the direction of the rotation of the ring. By Eq. (12-1.3),
the gravikinetic field near the center of the ring is then
approximately

G 0w, m,r

—-——__9,. 12-2.9
ct dr 2b ¢ ( )

g ~

Example 12-2.5 A ring of radius a carries a uniformly distributed
mass m, and rotates with increasing angular velocity w, about its
symmetry axis (Fig. 12.4). Find the gravikinetic field far from the
ring in the plane of the ring.

€k
Sup ™
/oy

Fig. 12.4 Calculation of the I }
gravikinetic field at a large distance :
from a rotating ring.

We shall solve this problem by direct calculation using Eq. (12-
1.2). Let us first convert the line integral of Eq. (12-1.2) into a
surface integral by means of vector identity (V-18). We then have
[compare with Eq. (3-3.20)]

/
2 aGEa a_’Ejods', (12-2.10)
ot c2J r ot c2J p3
where dS’ is right-handed relative to dl' (or /). For field points far
from the ring, r may be considered constant over the entire surface
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area of the ring, and ~* may be factored out from under the integral
sign. Since we are calculating the field in the plane of the ring, r
is perpendicular to dS’, so that the cross product in the last integral
becomes —rdS'd,, where the unit vector 6, is as shown in Fig.
12.4. Canceling r, replacing the integral by the area of the ring,
wa’, and replacing the current I by wm,/2m, we obtain

3l Gra? G 0w, ma’
=__ 279 =_J_°_° @. 2.
SO vt R i T T (12-2.1D
It is instructive to compare this result with Eq. (3-3.22). Note that
¢, in Eq. (3-3.22) is opposite to 4, in Eq. (12-2.11).
A

12-3. Dynamic Effects of Gravikinetic Fields; Gravitational
Induction

We shall now present several examples demonstrating force
effects of the gravikinetic field. For simplicity we shall use
gravikinetic fields calculated in the preceding section.

The force effects that we shall show constitute the
gravitational analogue of electromagnetic induction and of
electromagnetic Lenz’s law. As we now know, electromagnetic
induction is caused by the electrokinetic field.> The gravikinetic
field is the gravitational counterpart of the electrokinetic field, and
their dynamic effects are similar, except that the gravikinetic force
exerted on a mass by an increasing/decreasing gravikinetic field
is parallel/antiparallel to the field, whereas the electrokinetic force
exerted on a positive charge by an increasing/decreasing
electrokinetic field is antiparallel/parallel to the field.

v

Example 12-3.1 The cylinder of Example 12-2.2 is initially at
rest. A ring of mass m, and radius R is placed around the cylinder
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Fig. 12.5 Accelerating cylinder drags the ring with itself.

coaxially with it. The cylinder is then suddenly set in motion along
its axis and attains a velocity v, (mass current /). The gravikinetic
force causes the ring to move along (follow) the cylinder (Fig.
12.5). Assuming that no other forces act on the ring, and assuming
that the ring stays near the middle of the cylinder during the time
that the velocity of the cylinder changes, find the final velocity v,
of the ring.

According to our assumptions, the gravikinetic field through
which the ring moves is a function of time only. Therefore we can
use Eq. (12-1.5) for finding the final momentum and velocity of the
ring. From Eqgs. (12-1.5) and (12-2.3) (see Example 12-2.2), we
have

AG, = my, - m,lc%"lnz_RLk, (12-3.1)
so that the final velocity of the ring is
2L

= __IIn_k. 12-3.
,= Sl (12:3.2)

\4

Substituting pv,2mRt for I., where p is the density of the cylinder,
R, is its radius, and ¢ is its thickness, we obtain

4Gpv TR 1
v, = PN 2y (12-3.3)
c? R
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The cylinder drags the ring so that the ring moves in the
direction of the moving cylinder. It is interesting to note that the
final velocity of the ring does not depend on its mass.

Example 12-3.2 The cylinder of Example 12-2.3 is initially at
rest. A small thin-walled cylinder of mass m and radius r is placed
inside it and coaxially with it (Fig. 12.6). The larger cylinder is
then suddenly set in rotation about its symmetry axis and attains a
final angular velocity w, (mass current ;). The gravikinetic force
causes the small cylinder to rotate. Find the final angular velocity
w, of the small cylinder.

Fig. 12.6 A small cylinder placed inside a larger cylinder rotates
when the larger cylinder is set in rotation. Both cylinders rotate
then in the same direction.

Since the gravikinetic field causing the cylinder to rotate is a
function of time only, we can use Eq. (12-1.5) for finding the
angular velocity of the cylinder. From Eqgs. (12-1.5) and (12-2.6)
we have ’

) ) _ o 2wGlpr
AG,, = mv, = mw Xr = m_cz_T W (12-3.4)
and since r is perpendicular t0 w;,
2wGl,
w, = k, (12-3.5)

T3
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where k is a unit vector right-handed relative to the direction of
rotation of the large cylinder. Substituting I, = pw,R,Lt, where p,
wg, Ry, L, and ¢ are the density, final angular velocity, radius,
length, and thickness of the large cylinder, respectively, (see
Example 12-2.3), we obtain

_27Gpw Ryt K

2

® (12-3.6)
4 C

Both cylinders rotate in the same direction. It is interesting to
note that the angular velocity of the small cylinder does not depend
on its mass or radius.

Example 12-3.3 The cylinder of Example 12-2.3 initially rotates
with angular velocity w, (mass current /;) about its symmetry axis.
A disk of mass m and radius a is placed inside the cylinder
coaxially with it (Fig. 12.7). The rotation of the cylinder is then
suddenly stopped. The gravikinetic force causes the disk to rotate.
Find the final angular velocity w, of the disk.

Fig. 12.7 A small disk is placed inside a rotating cylinder. When
the cylinder is stopped, the disk rotates in the direction opposite to
that of the cylinder .

The disk acquires an angular momentum AL that can be found
from Eq. (12-1.6) and Eq. (12-2.6). Let us divide the disk into
elementary rings. Consider an elementary ring of radius r and width
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dr. The mass of the ring is dm = (m/ma*2wrdr. Substituting dm
and —g, (negative sign is needed because the cylinder decelerates)
from Eq. (12-2.6) in Eq. (12-1.6), integrating over dr, and taking
into account that r is perpendicular to g,, we have

@« (2GTl,r\ m 4w GIym (¢
AL = - l r( 0 )_27rrdrk =- 0 J ridrk (12-3.7
o\ ¢ Ira? c’La* Yo ( )
or AL - - G 7rma21Ok
K (12-3.8)

where Kk is a unit vector right-handed relative to the direction of the
rotation of the cylinder. Since the moment of inertia of the disk is
ma®/2, we obtain for the angular velocity

27l
f 2 k.
c’L

(12-3.9)

Substituting I, = pw,R,Lt, where p, w,, Ry, L, and ¢ are the density,
initial angular velocity, radius, length, and thickness of the large
cylinder, respectively, (see Example 12-2.3), we obtain

G 2mpw Rt

W = -

: K. (12-3.10)

C2

The rotation of the disk is opposite to the rotation of the cylinder.
Note that the angular velocity of the disk does not depend on its
mass or radius.

Example 12-3.4 The masses of the rings described in Examples
12-2.4 and 12-2.5 are m, and m,, and their radii are such that b>a.
The rings are placed in the same plane, and their centers coincide
(Fig. 12.8). (a) Ring b is given an angular acceleration ¢,. Find the
angular acceleration of ring a due to the gravikinetic field of ring
b. (b) Ring a is given an angular acceleration «,. Find the angular
acceleration of ring b due to the gravikinetic field of ring a.
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o
Fig. 12.8 When one of the two b
mass rings is rotated, the other
ring starts to rotate in the same
direction.

(a) By the definition of the gravikinetic force and by Eq. (12-
2.9), the torque experienced by ring a due to the gravikinetic field
of ring b is

_ _ G ma
T, =rxmg, = ama?ab%k, (12-3.11)
where k is a unit vector along the axis of the rings right-handed
relative to the rotation of ring b. Since the moment of inertia of
ring a is m,a?, its angular acceleration is

. 2bb2a”’ (12-3.12)
C

Both rings rotate in the same direction.

(b) Using Eq. (12-2.11), we find, as above in Part (a), that the
angular acceleration of ring b due to the gravikinetic field of ring
ais

m,a’
a, =G

p = G e, (12-3.13)

Once again the two rings rotate in the same direction.®
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Examples 12-3.1-12-3.4 illustrate the phenomenon of
gravitational induction, whereby a changing mass current induces
a secondary mass current in the neighboring bodies. The effect is
similar to electromagnetic induction,’ except that, in contrast to
the latter, the direction of the induced current is the same as that
of the original current if the original current increases, and is
opposite to the original current if the original current decreases.
Thus the sign of the "gravitational Lenz’s law" is opposite to that
of the electromagnetic Lenz’s law.

References and Remarks for Chapter 12

1. See Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989) p. 366.

2. Ref. 1, p. 367.

3. Ref. I, p. 383, Problem 11.2.

4. Compare Ref. 1, pp. 346-347.

5. See Oleg. D. Jefimenko, Causality, Electromagnetic Induction,
and Gravitation, 2nd ed., (Electret Scientific, Star City, 2000) pp.
19-66.

6. Similar rotation should occur when two coaxial disks are placed
close to each other and one of them changes its rotational motion.
7. For a detailed analyses and novel interpretation of the
phenomenon of electromagnetic induction see Ref. 5 and Oleg D.
Jefimenko, "Presenting electromagnetic theory in accordance with
the principle of causality," Eur. J. Phys. 25, 287-296 (2004).
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SOME ELEMENTARY
APPLICATIONS OF THE
GENERALIZED THEORY
OF GRAVITATION

We shall now present several elementary illustrative
examples demonstrating the wuse of gravitational and
cogravitational equations and methods introduced in Chapters 2 to
12. As far as static gravitational systems are concerned, the
generalized theory of gravitation does not add substantially to the
Newtonian theory, but as we shall now see, it provides a much
larger variety of methods for calculation of static gravitational
systems than the Newtonian theory. The greatest impact of the
generalized theory of gravitation is, however, in the domain of
moving and time-dependent gravitational systems, where, as the
examples presented here will show, the generalized theory of
gravitation yields entirely new results not at all foreseen in the
Newtonian theory.

13-1. Illustrative Examples on Static Gravitational Fields
As has been shown in Chapter 7, many readily available

solutions of electrostatic problems can be converted to solutions
of the corresponding gravitational problems by merely replacing

207
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electric quantities and constants by the corresponding gravitational
quantities and constants according to Table 7-1. Several examples
presented in this section make use of such conversions. The
electrostatic equations used for the conversion are taken from the
author’s book Electricity and Magnetism'. Some readers may want
to examine these equations and their derivations. For this purpose
each gravitational equation appearing below and obtained by
conversion is provided with the number of the page where the
corresponding electrostatic equation appears in Electricity and
Magnetism (hereafter abbreviated as EM).

v

Example 13-1.1 The electric field on the axis of a thin, uniformly
charged disk of radius a and charge ¢ at a distance z from the
center of the disk is

E=_9 |1- z K, (13-1.1)
2me,a’ (a*+ z)'"”

where Kk is a unit vector along the axis of the disk pointing away
from the disk (EM100). Using the analogy between electric and
gravitational equations, find the gravitational field on the axis of a
similar disk of mass m (Fig. 13.1).

Replacing in Eq. (13-1.1) E by g, g by m, ¢, by —1/47G, we
obtain for the gravitational field of a disk of radius @ and mass m

Fig. 13.1 Calculation of the gravita-
tional field on the axis of a disk.
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g=-G21 - __%2 k. (13-1.2)
aZ (aZ+ Z2)!/2

Observe that, except for notation, Eq. (13-1.2) is the same as
Eq. (3-2.16) for a disk rotating with constant angular acceleration
about its symmetry axis. This may be erroneously interpreted as
indicating that the axial gravitation field of a stationary disk, as well
as the axial gravitation field of a rotating and accelerating disk,
propagate instantaneously (with infinite speed). In reality, however,
neither field propagates instantaneously: Eq. (13-1.2) and Eq. (3-
2.16) hold only for the time of observation subsequent to the
moment when the field signal has reached the point of observation.
Note also that although the disk in this example is referred to as
"stationary," it had to be created and placed in position before
becoming "stationary." Prior to that time it was in the state of
"being created," and thus in the state of motion, and its field
propagated (and continues to propagate) with the usual speed c.

Example 13-1.2 The electric force between a uniformly charged
ring of charge ¢’ and radius a and a thin, uniformly charged rod of
charge ¢ and length 2d lying along the axis of the ring is

/

F- % { 1 - ! }k, (13-1.3)
87[-60(1 [az +(ZO - d)Z]l/Z [az +(ZO + d)Z]l/Z

where z, is the distance from the center of the ring to the center of
the rod, and Kk is a unit vector along the axis of the ring pointing
away from the ring (EM209-210, EM211-212). Find the
gravitational force between a similar ring of mass m' and a rod of
mass m (Fig. 13.2).

Substituting in Eq. (13-3.3) m for g, m' for ¢', and —1/47G
for g,, we obtain for the gravitational force between the ring and
the rod
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Fig. 13.2 Calculation of the gravitational force acting on a rod
inside a ring.

R w— - Ll a3
2d [az + (ZO — d)Z]I/Z [aZ + (ZO + d)2]1/2

Example 13-1.3 The electrostatic potential inside and outside a
spherical charge of uniform density p and radius a is (EM115)

Pinside — ) 9 3(3(!2 -r),
TE,a (13-1.5)

- 9
sooulside - m
0

Find the gravitational potential inside and outside a similar spherical
mass.

Replacing in Eq. (13-1.5) ¢; by —1/47G and q by m, we obtain
for the potentials of a spherical mass of radius a

- _ m 2 _ 2
‘pmside - Gﬁ (3(1 r )’

(13-1.6)

m
Pouside -~ G?
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Example 13-1.4 The electrostatic energy of a uniformly charged
spherical shell of charge g and radius a is (EM190)
2

U-_4

=_1 (13-1.7)
8me,a

Find the gravitational energy of a similar shell of mass m.
Replacing q by m and ¢, by —1/47G, we obtain for the
gravitational energy of a spherical shell of radius a and mass m

2

U= - G;l_. (13-1.8)
a

Example 13-1.5 Consider a stationary cylinder of uniform mass
density p, length 2¢, and radius a. The axis of the cylinder is also
the z-axis of cylindrical coordinates whose origin is at the center
of the cylinder. A spherical cavity is made around an internal axial
point of the cylinder at a distance z = d from the center of the
cylinder. A particle of mass m is placed at the center of the cavity
(Fig. 13.3). Find the gravitational force exerted by the cylinder on
the particle.

Fig. 13.3 Calculation of the gravitational force on a point mass
placed in a spherical cavity inside a cylinder.

This problem is best solved by using Eq. (7-3.11) [since the
cylinder is stationary, Eq. (7-3.11) is the same as Eq. (3-2.2)],
which makes it possible to find the gravitational field of a mass by
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integrating over the boundary surfaces of the mass. We see by
inspection that the surface of the cavity makes no contribution to the
field at its center [a spherical surface produces only a radial field,
all components of which meet at the center and cancel each other
(compare EM105)]. Likewise, the curved surface of the cylinder
makes no contribution to the field. Only the two flat surfaces of the
cylinder make a contribution.

The contribution of the closest flat surface (z>0) of the
cylinder to the field at the center of the cavity is, by Eq. (7-3.11),

s’ _ °  27RdR
B G"IT = - Ok I R +G-d"
CIRTH(-DTT (13 9y

- 21Gp{la’ +(t - - (t - d)}k.

&

The contribution of the other flat surface (z<0) is, similarly,

/ a
g2 s’ _ G"kl 27RdR

- Gp | & —_—
"I r 0 [R?+ @+ 1" (13,4 10)
27Gp{la® + (@ +d)'"* - (t + d)} k.

The field at the center of the cavity is then g, + g,, or
g= 27|-Gp{[a2+(t+d)2]l/2 _ [a2+(t—d)2]”2—2d}k. (13_111)

The force on the particle of mass m at the center of the cavity
is therefore, by Eq. (1-1.5) or by the general force equation, Eq.
(2-2.6),

F =27Gmp {[a+(t +d)*]'"? - [a*+(t -d)}]'? -2d} k. (13-1.12)
Example 13-1.6 An irregular cavity has formed inside a liquid of

density p in the region where the gravitational potential is ¢’. Find
the buoyant force on the cavity (Fig. 13.4).
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Fig. 13.4 Calculation of the buoyant force on a cavity formed in a
liquid. (a) Surface element vectors of the cavity. (b) Surface element
vectors of the liquid initially contained in the cavity.

This problem on Archimedes’s principle is usually solved by
means of a plausibility argument based on the consideration of the
pressure inside the liquid. Here we shall provide a rigorous solution
of the problem by means of Eq. (10-1.6) [or (7-3.28)]. This
cquation allows one to find the gravitational force on a volume
hounded by a given surface. The surface element vector dS in this
cequation is directed from the mass under consideration into the
empty space, regardless of whether the mass is inside or outside the
bounding surface.? Therefore the force on the cavity and the force
on the liquid initially contained in the cavity are exactly the same
in magnitude, but opposite in direction. Hence, the buoyant force
is equal to the weight of the liquid initially contained in the cavity.

Example 13-1.7 A gravitational "parallel-plate capacitor” consists
of two large circular plates of radius a having a uniformly
distributed mass m (Fig. 13.5). One of the plates is in the y,z plane
of rectangular coordinates with its center at the origin. The second
plate is at a small distance x=d from the first. Using five different
methods, and neglecting edge effects, find the gravitational force
between the plates. *
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Fig. 13.5 Calculation of
the gravitational attrac-
tion between two
circular plates. | a— o —»| d<<a

(a) Direct calculation. By Gauss’s law, Eq. (7-3.5), and by the
symmetry of the system, the gravitational field produced at x >0 by
the first plate is

g’ = -2G 1. (13-1.13)
a2

By Eq. (1-1.8) or (2-2.6), the force on the second plate is then
2
F = mg' = - 2G_m_2i. (13-1.14)
a

(b) Force in terms of scalar potential. The potential produced
by the first plate at a distance x from the origin is, by Egs. (7-3.195)
and (13-1.13)

0 0
oo fwasa- [l
x x a (13-1.15)

m
= 2GFX + @y

where ¢, is a reference potential at x=0. Let us assume that the
thickness of the second plate is z. The potential at the front surface
and at the back surface of the plate is then
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‘pj/’rom = 2Gﬂ2d + ‘1009 ()ol/mrk = 2G£2(d +t) + ‘100' (13-116)
a a

By Eq. (10-1.6) or (7-3.28), the force on the second plate is
therefore [note that, by symmetry, the rim of the plate adds nothing
to Eq. (10-1.6)]

F--_2 (2Gﬁ2d+¢0)(-m2i)
Ta’t) a (13-1.17)
- 2Gﬁ(d+z)+<po]7ra2i,
Ta’t a’
or )
F--26". (13-1.18)
2

a

(c) Force in terms of gravitational vector potential. For x>0,
the vector potential of the gravitational field of the first plate
(homogeneous field) is *

A =-GMy, (13-1.19)
& aZ u
where r is a perpendicular distance from the x-axis, and 0, is a
right-handed circular unit vector around the x-axis [the easiest way
to obtain Eq. (13-1.19) is to use Eq. (13-1.13) together with Eq. (3-
3.9)]. By Eq. (10-2.5) [or (7-3.29)], the force on the second plate
is then

F = - p«f(-cifo“)xds. (13-1.20)
a

The surface of integration in Eq. (13-1.20) consists of the two flat
surfaces and the circular rim of the second plate. By symmetry, the
contributions of the two flat surfaces to the integral of Eq. (13-1.20)
cancel. The only non-vanishing contribution to the integral comes
from the rim of the plate. If the thickness of the plate is ¢, the
surface element vector of the rim is dS=tdl , where dl_, is a vector

out out
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representing a length element of the rim and directed radially
outward from the rim. The force on the second plate is therefore
[see Eq. 10-2.6]

F=_"06"¢ xta,,. (13-1.21)
ma’t!  a’

Simplifying, we obtain

F - -2 (13-1.22)
a2

(d) Force in terms of Maxwell’s stress integral (compare EM
215-218). The total gravitational field in the space between the two
plates is zero, because there the fields of the plates have opposite
directions. The total gravitational field outside the plates, to the
right of the second plate, is double the field of each single plate
given by Eq. (13-1.13), because there the two fields are in the same
direction. We thus have

m.
gbelween = O’ gou!side = 46?1 (13-123)

Applying Eq. (7-3.30) to a Maxwellian surface enclosing the second
plate, we then obtain

2
F = __l__[0-7ra2(—i) + (—40&) -mati
871G Tal
- __1_[0-(0-1ra2)(—i) + (—4Gl)-(-40i)-m2i
471G Ta? Ta’
2
= - 2Gizi.

a (13-1.24)

(e) Force in terms of energy. The total field in the space
between the plates and in the space outside the plates is given by
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lig. (13-1.23). According to Eq. (2-2.7) or Eq. (7-3.37), the
gravitational energy density in the system is then

=0,

v berween

(13-1.25)

2 2
Uv ourside = l ( 4G_"‘) = - 2Gm_ °
- 871G a a'

Suppose now that the second plate moves through a distance dx.
The relation between the force on the plate and the energy change
associated with the displacement of the plate is

F--9U;__adu; (13-1.26)
6x

The energy change associated with the displacement dx is

dU = ( 2G_)7ra2dx (13-1.27)
Ta

(The minus sign in front of parenthesis reflects the fact that the
cnergy in the space between the plates is zero.) Thus the force on
the second plate is

F--26m4 (13-1.28)
a A

13-2. Illustrative Examples on Dynamic Gravitational Fields

We shall now present illustrative examples involving nonstatic
gravitational fields. These examples will depict several remarkable
gravitational phenomena not revealed by the Newtonian
gravitational theory. As in the preceding section, we shall start
with simple conversion of electromagnetic equations to
gravitational equations.
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v

Example 13-2.1 A long beam of charged particles moves with
velocity v along its length. The charge density in the beam is p, the
radius of the beam is a. The beam creates a magnetic field which,
inside and outside the beam, is (EM332)

vXr
insigze ~ P ,
2x (13-2.1)
_ 2, ¥V Xr
Houl.\'ide - p a 2"2 ’

where r is a radius vector directed from the axis of the beam to the
point of observation. Find the cogravitational field of a similar
beam of mass particles moving with velocity v along its length.
Since the above expressions are for H rather than for B, we
must convert them to B by using B = uH. Then replacing B by K
and p, by —4wG/c?, we obtain for the cogravitational field of a
beam of mass particles of density p, radius a, and velocity v

27p

Kmslde = G-—var,

¢ , (13-2.2)
Kout:ide = - szpa vXr.

C2r2

Example 13-2.2 Consider a single particle of mass m on the surface
of the beam of mass particles described in Example 13-2.1. Find
the expression for the total force (gravitational and cogravitational)
acting on the particle.

Constructing a cylindrical Gaussian surface around the beam
and applying Eq. (7-1.5) to this surface, we obtain for the
gravitational field at the surface of the beam (compare EM89-90,
EM420)

g = - 2nGpar , (13-2.3)

where r, is a unit vector pointing away from the axis of the beam
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nt right angles to it. The cogravitational field at the surface of the
heam is, by Eq. (13-2.2),

K=-GXP%xr,. (13-2.4)
C

‘I'he force on the mass particle (mass m) on the surface of the beam
is then, by Eq. (2-2.6),

F =m(g + vxK), (13-2.5)

or, after substituting K, expanding the cross product, and
simplifying,

2
F = - 27erma(1 - _V_z)r (13-2.6)
C

Thus the particle is always attracted to the beam, although the
lorce of attraction is smaller than for a stationary cylinder of the
same mass density and radius. The gravitational attraction always
dominates over the cogravitational repulsion, so that the beam
compresses as it moves. When the speed of the beam approaches ¢
(the speed of the propagation of gravitation), the force on the
particle approaches zero.

Example 13-2.3 A spherical shell of radius R and uniform surface
charge density o rotates with angular velocity w about a diameter
which is also the polar axis of spherical coordinates whose origin
is at the center of the shell. The shell creates a magnetic field in the
space inside and outside the shell given by (EM378)

H .= zaka,
nside 3

20wR* owR*
outside COSBl'u + 3

3r3 3r

(13-2.7)

sindé .
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Fig.13.6Calculation
of the cogravita-
tional field of a
rotating  spherical
shell.

Find the cogravitational field of a similar shell of uniformly
distributed mass m (Fig. 13.6).

Since the two equations are for the magnetic field H rather than
for the flux density field B, we must first convert them to B, by
using B = u H. Replacing then B by K, u, by —47G/c?, and ¢ by
m/4wR?, we obtain for the cogravitational field of the shell of radius
R and mass m rotating with angular velocity o

Kiwe =G 2”;@ k,
, 3R . (13-2.8)
K. =- G2k osor, - 6 ™R singo .
outside 3¢ 2" u 3c 2" 3 u

The rotating spherical shell constitutes a "cogravitational
dipole" (see Section 15-2) whose dipole moment is (compare
EM381)

d = - gimmR® (13-2.9)
3¢?

Observe that  in this example is right-handed relative to the z axis.
As will be explained in Section 15-2, it is convenient to express
the cogravitational dipole moment and the dipole field of a rotating
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body in terms of the angular momentum L of the body. The angular
momentum of a spherical shell rotating about a diameter is L =
(2mR*/3)w, and therefore we have

d- - G2_72rL (13-2.10)
c
and
K usice = ~ Gicoser“ -G singg,. (13-2.11)
c’r’ 2c%r?

Example 13-2.4 Show that a cogravitational dipole uniformly
moving with velocity v appears to acquire a gravitational dipole
moment
Poppren = - %c?’ (13-2.12)

where d is the dipole moment of the cogravitational dipole.

Consider a square frame of zero mass and length L on a side.
The frame supports a string of uniformly distributed particles of
total mass 4m sliding with velocity # < ¢ along the sides of the
frame (Fig. 13.7). Let the frame be stationary and let it be located
in the xy-plane of rectangular coordinates with its center at the
origin. Let the motion of the particles be as shown in Fig. 13.7.

The gravitational field given by the first integral of Eq. (2-2.1)
can be expressed in terms of the retarded gravitational scalar
potential as

g - - GJ[M +iM}r dv = - Vo. (132.13)
rt rc op )"

The present-time form of the retarded gravitational scalar potential
for a point mass moving with constant velocity v is, by Eq. (5-6.5),

Q= - G m . (5'65)
r[1 - (v¥/c?)sin?6]'?

If v < c, this potential can be expressed as
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Y
1
y
___IIT 1 | v X
Yo
-

R r>>7

Fig. 13.7 When a closed mass-current drifts as a whole, it appears
to generate a positive as well as a negative mass. The positive
(ordinary) mass appears to be generated by the particles whose
resulting velocity is greater than the drift velocity v. The negative
mass appears to be generated by the particles whose resulting
velocity is smaller than v.

Q= - GE(1+V_2sinze). (13-2.14)
r 2c?

Let us find the potential that the sliding particles produce at a
point of the y axis at a distance r > L from the frame. Applying
Eq. (13-2.14) to the particles on the horizontal sides of the frame
(8 = w/2) (since r > L, we can treat these particles as a single
point mass), we have

2
= - 2Gﬁ(1 +“_). (13-2.15)
r 2c?

12 horizontal

Applying Eq.(13-2.14) to the particles on the vertical sides of the
frame (§ = O or m), we similarly have

<‘ovcrlical = - zcg (13‘216)
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The total potential is therefore

2
o = -4GI" gt (13-2.17)
r rc

Thus the particles appear to have acquired a mass
2
- mu (13-2.18)

m =
apparent
c 2

as a result of their motion along the frame.
Let us now assume that the frame is moving with velocity v in

the positive x direction. The potential due to the particles on the
upper horizontal side of the frame (y > 0) is now

m{l .\ (v+u)2}

qoupper =" G_ 2
r 2 (13-2.19)
= - GE{I +_v2_ +ﬂ+£},
r 2c? ¢* 2c?

and the potential due to the particles on the lower horizontal side (y

2
. Gg{l (v-u) }
‘plower r + 2C2

- Gﬁ{l +v_2-ﬂ+u_2}.
r 2¢? ¢?  2c?

< 0)is

(13-2.20)

To find the potential due to the particles on the vertical sides of
the frame, we must take into account that the velocity of the
particles on these sides is (v*+u?)'""?, and that sind for these particles
is now v/(v*+u*)'?. The potential due to these particles is therefore

2

2
- 2Gﬁ(1 + Y *f sin20)

(pvenicnl
r 2c (13-2.21)

- 2Gﬁ(l + v_z)
r 2c?
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Thus the total potential of the particles is now, by Eqgs. (13-
2.19), (13-2.20), and (13-2.21),

2 2

o = -4GIM g g (13-2.22)
r rc? rc?

so that, as a result of the motion of the frame, the particles appear

to have acquired an additional mass

; _ 2mv?

apparent
c 2

(13-2.23)

Observe, however, that Egs. (13-2.19) and (13-2.20) contain
inside the parentheses the terms uv/c* and —uv/c*. These terms may
be interpreted as representing an additional positive mass on the
upper horizontal side of the frame and an additional negative mass
on the lower horizontal side of the frame created by the motion of
the frame. The two masses give rise to an apparent gravitational
dipole (compare EM 125,126 and EM130,131)

2
P = 2l 1j = 1LV5, (13-2.24)
c c
where [ is the mass current of the particles sliding along the frame
which, expressed in terms of the line mass density A, is

I =N\u = %u. (13-2.25)

By analogy with electromagnetism, the mass particles sliding
along the frame in Fig. 13.7 constitute a cogravitational dipole,
whose dipole moment is (compare EM381)

d=-%4Cs, (13-2.26)
C2
where S is the surface area vector of the frame, right-handed
relative to the direction of the mass current. In terms of L, A, and
u, the cogravitational dipole moment of the sliding particles is
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d =Gk = 370\, (13-2.27)
c? c?

By Eq. (13-2.24), the apparent gravitational dipole moment can be
expressed therefore as

vxd

= - ___. 13-2.12
P apparent a1G ( )
Example 13-2.5 Show that in the case of a cogravitational dipole
uniformly moving with speed v < ¢, the gravikinetic field equation

/iy
g -- 2 [T Mgy - yxk,  1128)
c? r
becomes
8 = ~ gdipole - vxK, (13-228)

where g, is the gravitational field of the apparent gravitational
dipole created by the moving cogravitational dipole and K is the
cogravitational dipole field.

Since v < ¢, the retardation in Eq. (11-2.8) can be ignored.
We then have

/(v e
g =-S[YODay _yxk. (13229
k C2 r

We can transform Eq. (13-2.29) by using vector identity (V-27),
obtaining

g - - E[VV_"'dv’ . EIV/V_'JdV/ ~vxK. (13-2.30)
c? r c? r

Using vector identity (V-20), we can transform the second
volume integral in Eq. (13-2.30) into a surface integral. But,
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because there are no mass currents at infinity, the surface integral
vanishes, and so does the volume integral. Since V in the first
integral does not operate on source-point coordinates, it can be
factored out from under the integral sign. This gives

g - - Zv[Xdav - vxk. 323D
c? r
Without loss of generality, the mass current forming the
cogravitational dipole can be considered filamentary. Therefore we
can write

Y
g - - Glgdvd |k, (13-2.32)
k CZ r

where dl’ is a length element vector in the direction of the mass
current /. Factoring out v + , using vector identity (V-18), and taking
into account that the linear dimensions of the cogravitational dipole
are much smaller than r, we then have

g - ﬂV(v-l%de’) - vxK

c? r (13-2.33)
= ._G_IV(V . EXS’) - vxK,
CZ r2

where S’ is the surface area of the mass current loop forming the
dipole. Transposing v and r, in Eq. (13-2.33), we can write [see
vector identity (V-2)]

g - -9 yxs) - vyxk. (13234

c2

~

As was shown in Example 13-2.4, a moving cogravitational
dipole generates an apparent gravitational dipole. By analogy with
the electric field of an electrostatic dipole, the gravitational field of
a gravitational dipole of dipole moment p can be written as (see
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EM130)

— pa aren, - rll -
Sapote = GV = rzl ) (13-2.35)
Substituting p,,pe., from Eq. (13-2.12) into Eq. (13-2.35) and
using Eq. (13-2.26), we obtain

GIr,

gd‘ o = JR——
ipole C2 r2

cvxS. (13-2.36)

Adding Egs. (13-2.36) and (13-2.34), we finally obtain
8 = = By ~ VXK. (13-2.28)

Example 13-2.6 Consider a circular ring of radius a rotating about
its symmetry axis, which is parallel to the z axis of rectangular
coordinates (Fig. 13.8). Let the ring move with velocity v < ¢
along the x axis, and let the center of the ring be momentarily at the
origin of the coordinates. (a) Disregarding the ordinary Newtonian
attraction, what is the force exerted by the ring on a point mass m’
located on the z axis at a distance d > a from the origin? (b)
Assuming that the ring is at rest with its center at the origin, and
assuming that the point mass m' moves in the minus x direction

Fig. 13.8 A rotating ring
moving past a point mass
exerts a force on the point
mass. The plus and minus
masses on the ring are
fictitious: the ring appears to
acquire them as a result of
its motion (see Example 13-

2.4).
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with velocity v < ¢, and ignoring the ordinary Newtonian
attraction, what is the force experienced by the point mass?

(a) Since the radius of the ring is much smaller than the
distance between the ring and the point mass, the mass current / of
the ring, viewed from the location of the point mass, constitutes a
cogravitational dipole. As it was shown in Example 13-2.4, a
moving cogravitational dipole appears to acquire a gravitational
dipole moment, so that the total non-Newtonian gravitational field
produced by the moving ring is the sum of the gravikinetic field and
the gravitational dipole field. By Eq. (13-2.28), this sum is

8 * 8o = - VXK. (13-2.37)

For the present example, since v < ¢, K in Eq. (13-2.37) is the
cogravitational field produced by the ring as if it were at rest. By
Eq. (2-2.17) with x replaced by d, taking into account that a < d,
and taking into account that, according to Fig. 13.8, the rotation Of
the ring is left-handed relative to the z axis, we have

2rla?
cid?

K =G k. (13-2.38)

Hence, in addition to the Newtonian attraction, the force exerted by
the moving rotating ring on the stationary point mass m' is, by Eqs.
(13-2.37) and (13-2.38),

/ 2
F - GZ1rm via j.

Ry (13-2.39)

(b) If the ring is at rest, but the point mass is moving, the force
acting on the point mass is given by Eq. (2-2.6). In addition to the
Newtonian attraction, the point mass experiences then the force

/ 2
F=-m'vxK = g2Tmvia’, (13-2.40)
cid?
which, under the assumed conditions (slow velocity, v = — vi and

neglected retardation), is exactly the same as the additional force
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experienced by the stationary point mass due to the mass current in
the moving ring.

Example 13-2.7 A rotating sphere of mass m and radius a moves
with velocity v < c along the x axis of rectangular coordinates. The
angular velocity of the sphere is w and it is directed along the y
axis. A point mass m' is at rest on the z axis at a distance r > a
from the origin. Find the force exerted by the sphere on the point
mass at the moment when the sphere passes the origin (Fig 13.9).

b4
CT‘ Fig. 13.9 A rotating

R sphere moving past a
m stationary  point mass
e exerts on the point mass
—’—' not only the ordinary
Newtonian gravitational

-— =\
Vs / force but also a velocity-
m'l F dependent and a rotation-
z r>>a  dependent force.

The force exerted by the sphere on the point mass can be found
from Eqs. (2-2.1) and (1-1.5), which yield (omitting the retardation
brackets, since v < ¢)

dp

__)r av'+m' S jlﬂdv/_ (13-2.41)
a

F=—m’GJ(_‘O__1_
2 rc ctlrot

r

Since the radius of the sphere is much smaller than the distance
between the sphere and the point mass, the rotating sphere, from
the location of the point mass, can be considered to be a point mass
plus a cogravitational dipole. As was shown in Example 13-2.4, a
moving cogravitational dipole appears to acquire an additional mass
and creates a gravitational dipole field. By Eq. (13-2.23), a
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cogravitational dipole of mass 4m moving with velocity v < ¢
appears to have an additional mass 2mv*/c* [we can ignore the
apparent mass given by Eq. (13-2.18), since it is insignificant
unless the rotation is extremely fast]. For our sphere, whose mass
is m, the additional mass is mv’/2c>. Designating the apparent
gravitational dipole field of the sphere as g we can then
express the first integral of Eq. (13-2.41) as

dipole»

/ / 2
F, -Gy - G’; me e em'g,,,. (13242)
r Cr

The force on the point mass is therefore
/

/ 2 /
Fo-D M -Gy vm'g,,, +Go [ L B avr (13-2.43)
rr " 2cr? wele - c2 ) r ot

According to Eqs. (13-2.28) and (11-1.1), the last two terms in
this equation are

F +F, =-mvxK, (13-244)

dipole k

where K is the cogravitational field produced by the rotating sphere
at the location of the point mass, when the sphere has no
translational motion. This field can be found by integrating the
expression for the external field of the spherical shell given in Eq.
(13-2.8). The result is

K - gmea’; (13-2.45)
5r3c?

The total force on the point mass is therefore, by Eqs. (13-2.43),
(13-2.44), and (13-2.45),

Fo-Glmy _gmm’y _ gmmwa’y  (132.46)
r? 2c?r? S5ric?

Thus the force exerted by a slowly moving, rotating sphere on
a distant stationary point mass differs from the Newtonian
gravitational force by the presence of two additional terms that
depend on the linear and angular velocity of the sphere.
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Although we have derived Eq. (13-2.46) for the moving sphere
and stationary point mass, it is clear that within the accuracy of our
derivations (slow velocity, neglected retardation) Eq. (13-2.46) also
applies for a point mass moving relative to the sphere. Thus Eq.
(13-2.46) represents a generalization of Newton’s gravitational law
that should preferably be used for computing planetary orbits and
for similar problems of celestial mechanics (see Chapter 20).

Example 13-2.8 Consider two point masses m and m'. The mass m
is in free fall toward the ground, the mass m' is at rest below m. At
the moment when m passes m', m' is released so that it, too, falls
to the ground. (a) What is the acceleration of m'? (b) What is the
acceleration of m before and after m' is released? (c) Does the
acceleration of a falling body depend on its mass? (Neglect the
attraction between the two masses, neglect retardation, and neglect
terms of the order v/c or smaller).

(a) Let us designate the acceleration of gravity vector as a.
Normally, m' would then fall with the acceleration a. However, m’
is subject not only to the force of gravity, but also to the force
exerted upon it by the accelerating mass m. According to Eq. (5-
4.34), this force is (within the limits of accuracy specified in the
statement of the problem)

F = - Gmm'r B Gmm'[rx(rxa)]
m;;’r mm’r(:jc:) mm'a (13-2.47)
=-G - +G ,
r’ ric? rc?

where, since we neglect retardation, all the quantities are present-
time quantities. The first two terms in the last expression are in the
direction of the vector r joining the two masses and represent the
attraction between m and m'. Disregarding these terms in
accordance with the statement of the problem, we are left with the
gravikinetic force
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a, (13-2.48)

where r is the distance between the two masses. Since the force F,
is in the direction of the acceleration of gravity, it provides an
additional acceleration to the mass m'. The total initial acceleration
of m' is therefore

By = (14 G, (13-2.49)

rc

and, being in the direction of the acceleration a of mass m,
represents the gravitational "drag" ("gravikinetic" force) exerted by
m upon m’.

(b) As soon as m' begins to fall, it exerts an additional
acceleration on m. Both masses now fall with an acceleration
greater than a. The additional acceleration of m enhances even
further the initial acceleration of m’, and so on.

(c) According to the results of Parts (a) and (b), falling masses
amplify the gravitational acceleration of the neighboring masses.
Therefore a large mass should fall with a greater acceleration than
a small mass. However, because of the ¢? in the denominator of Eq.

(13-2.49), this effect is very small.
A

13-3. Dynamic Gravitational Field Maps and Explosive Force
Generated by a Fast Moving Mass

The two gravitational field maps shown in Fig. 5.4 represent
the time-independent gravitational field that moves with the mass
rather than the really important field that a single stationary
observer would detect as the mass moves past the observer. To
show the latter field, one has to construct a dynamic gravitational
field map. Such a map depicts the gravitational field of the
moving mass at a stationary point as a function of time, or, which
is the same, as the function of the distance r and the angle 8 in the
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P

V

Fig. 13.10 This dynamic map of the gravitational field of the point
mass m moving with velocity v shows gravitational field vectors at
the stationary point of observation P as the mass moves past P. The
field vectors correspond to thirteen sequential positions of the mass.
The first position is indicated by the light circle. The mass (dark
circle) is at the last position. The map is drawn for v = 0.5c.

Heaviside’s Eq. (5-1.13) corresponding to the various positions of
the moving mass.

A dynamic gravitational field map is shown in Fig. 13.10.
The point of observation is at P. Thirteen different values for
r and § corresponding to thirteen instantaneous sequential position
occupied by the moving mass at the ends of equal time intervals
At were used for constructing this map. The first position of the
mass is indicated by the hollow circle, the mass is at the last
(thirteenth) position. The direction and strength of the
gravitational field observed at P is indicated by the direction and
length of the arrows.
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Whereas the two maps shown in Fig. 5.4 are "snapshots" of
the gravitational field co-moving with the mass producing this
field, the map shown in Fig. 13.10 is a "multiple exposure" map
where the individual field vectors as they would be measured by
the stationary observer at equal time intervals Az are shown all
together. Of course, the entire map represents a very short event.
For example, if the point P is located 1 meter above the trajectory
of the moving mass, the entire map represents an event that lasts
only 10 seconds.

Closely related to the dynamic gravitational field map is the
"gravitational field contour curve" representing the locus of the
end points of the gravitational field vectors of a moving point
mass as these vectors would be measured by the stationary
observer at the point P. A gravitational field contour curve is
strongly affected by the velocity of the mass under consideration.
Three gravitational field contour curves for the same point mass
moving with velocities v = 0.0lc, v = 0.70c, and v = 0.96c,
respectively, are shown in Fig. 13.10.

Dynamic gravitational field maps and the corresponding
contour curves provide a new way for depicting and analyzing the
gravitational field of uniformly moving point masses and reveal
several important properties of this field. In particular, just by
looking at Eq. (5-1.13), it may appear that a moving point mass
exerts a gradually changing force on a stationary mass. However,
according to Fig. 13.10, the gravitational field of a fast moving
point mass, as seen by a stationary observer, is actually a
momentary pulse, or burst, a sort of gravitational field explosion.

It may also appear by looking at Eq. (5-1.13) that, for a
moving point mass, the gravitational field component in the
direction of motion of the mass rapidly diminishes with increasing
velocity of the mass and the component perpendicular to this
direction rapidly increases. This appears to follow from Eq. (5-
1.13) if v—=cand § = 0 or § = /2. However, the contour
curves shown in Fig. 13.11 indicate that this assumption is only
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P

<4 v=00Ic
4 v=0.70c
4 v =0.96c

Fig. 13.11 The lengths of the gravitational field contour curves are
strongly affected by the velocity of the mass, but the widths of the
curves do not noticeable depend on v. The three contour curves
shown here are for the same point mass moving at velocities v =
0.0lc, v = 0.70c, and v = 0.96c, as indicated.

partially correct. Note that whereas the heights of the curves in
Fig. 13.11 are strongly affected by v, the widths of the curves do
not noticeable depend on v. Since the half-width of a contour
curve represents the maximum value of the field component
parallel to the trajectory of the moving mass, it is clear that this
value is hardly affected by the speed of the mass. Of course, if P
is located on the trajectory of the mass (the x-axis), the only field
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component observed at P is the x component, and the value of this
component diminishes with the distance of the charge from P and
with the velocity of the charge, becoming zero for v - c.

Another important effect revealed by the dynamic gravitational
field map shown in Fig. 13.10 and by the contour curves shown
in Fig. 13.11 concerns the force exerted by a moving point mass
on a stationary mass when the moving mass passes the stationary
mass. As is clear from Figs. 13.10 and 13.11, this force lasts only
a very short time and is essentially normal to the trajectory of the
moving mass. Therefore its main effect on the stationary mass is
to give a sudden thrust to the stationary mass in the direction
normal to the trajectory of the moving mass. Hence the force
exerted by a fast moving mass passing close to a stationary mass
may have a violent explosion-like distractive effect on the
stationary mass, breaking up the stationary mass by the very
strong tidal forces.

Clearly, of all the graphical representations of the
gravitational field of a uniformly moving point mass discussed
above, the dynamic field map is by far the most important and the
most informative representation.

References and Remarks for Chapter 13

1. Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989).

2. Ref. 1, pp. 101-103 and 210-211.

3. This example involves mostly rather novel, unconventional,
computations of forces. The reader is advised to consult Ref. 1,
Sections 7-9 and 7-11.

4. The fact that the gravitational field can be expressed in terms
of vector potential and that the gravitational force can be calculated
from this vector potential is not well known. See Sections 3-3 and
10-2.
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TORQUE EXERTED BY A MOVING
MASS ON A STATIONARY MASS

It is generally believed that a highly symmetrical mass
distribution (a spherical mass of uniform mass density, for
example) located in an external gravitational field experiences a
force but does not experience a torque. However, according to the
generalized theory of gravitation, gravitational interactions are
very complex phenomena, and, as will be shown in this chapter,
even a spherical mass of uniform density experiences not only a
force but also a torque when located in the field of a moving
mass. The torque is associated with the asymmetry of the
gravitational field of the moving mass and is present even if the
stationary mass is highly symmetrical, such as a sphere of uniform
density. As a result of the torque, the stationary mass is set in
rotation. The rotating stationary mass creates a cogravitational and
a gravikinetic field that act on the moving mass, thus further
contributing to the complexity of the interaction.

14-1. Gravitational Fields of a Point Mass Uniforinly Moving
Along a Straight Line and Along a Circular Orbit

We know from the derivations presented in Chapter 5 that the
gravitational field g of a point mass m moving with constant
velocity v is represented by Heaviside’s formula

237
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g=-Gg__ml-vich (5-1.13)
r3[1 -(v¥c?sin*g]*?

where ¢ is the velocity of gravitation, r is the present-position
radius vector directed from m to the point of observation, r is the
magnitude of r, v is the magnitude of v, and 6 is the angle
between r and v.

We also know from the derivations presented in Chapter 5
that the gravitational field of a point mass m moving with
acceleration v is represented by the formula

g= —GL{(r—EXI -v_2)+r>< [(r—ﬁ)x l
r3(1-rev/rc) c c? c c?

(5-4.34)
where the notations are the same as in Eq. (5-1.13), except that
v, r and v are retarded, that is, are evaluated for the time ¢’ = ¢
— rlc, where tis the present time (the time for which g is
evaluated). If the mass moves along a circular orbit of radius R,
the acceleration is v = (V/R®)R, where R is directed from m to
the center of the orbit. Therefore for a mass moving along a
circular orbit Eq. (5-4.34) becomes

2 2
S LA VR PR (R DY
8 r*(1-r-v/rc)’ ' c? T c’R?

(14-1.1)

In contrast to the gravitational field of a stationary point mass,

the gravitational fields represented by Egs. (5-1.13), (5-4.34) and
(14-1.1) are not radially-symmetric. As we shall presently see, it
is the asymmetry of these fields that is responsible for the torque
and rotation experienced by highly symmetrical mass distributions
under the action of these fields. However, because of the
complexity of Egs. (5-1.13), (5-4.34) and (14-1.4), exact
analytical calculations of the torque exerted on an arbitrary mass
distribution by a point mass moving at an arbitrary speed is hardly
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possible. Therefore we shall restrict the calculations that follow to
the special case of a moving point mass whose velocity is
considerably smaller than the velocity of gravitation and to the
special case of a stationary mass whose linear dimensions are
considerably smaller than the distance of this mass from the
moving mass.

14-2. Torque Due to a Point Mass Moving with Constant
Velocity

Fig. 14.1 A point mass m moves past a stationary spherical mass
M. The force dF, acting on the mass element located at P, is larger
than the force dF, acting on an equal mass element located at P,.
Therefore the stationary mass M experiences a torque causing it to
rotate.

Let a point mass m move with constant velocity v past a
spherical mass M of uniform mass density p, and let m and the
center of M be in a plane normal to the page (Fig. 14.1).
Consider two points P, and P, within M located symmetrically
with respect to that plane. According to Eq. (5-1.13), the force
dF, = g,dM exerted by m on the mass element dM located at P,
is larger than the force dF, = g,dM exerted by m on the mass
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element dM located at P, (because sinf, is larger than sind,).
Therefore the torque with respect to the center of M acting on dM
at P, is also larger than the oppositely directed torque with respect
to the center of M acting on dM at P,. Since the same
considerations apply to all such symmetrically located points
within M, the mass M, as a result of the force exerted upon it by
the moving mass m, experiences a net torque with respect to its
center and is caused to rotate about its center. In particular, for
the configuration of m and M shown in Fig. 14.1, M rotates
clockwise.

As mentioned in Section 14-1, exact calculations of the torque
exerted by a point mass moving at an arbitrary velocity on a
stationary mass of arbitrary linear dimensions are difficult.
Therefore we shall calculate the torque for the special case of a
moving point mass m whose velocity v satisfies the relation v <
¢, and, as the stationary mass M, we shall use a ring, disk and
sphere whose radius a satisfies the relation a < r,, where r, is the
distance between m and the center of M.

a. Torque on a ring of uniform density. Let a point mass m move
with constant velocity v in the plane of a ring of radius a and
cross-sectional area S having a uniformly distributed mass M of
density p, as shown in Fig. 14.2. Let v satisfy the relation v <
¢ and let the radius vector r, representing the distance from m to
the center of the ring satisfy the relation a < r,. The torque dT
with respect to the center of the ring exerted by m on the mass
element pSady contained in the shaded segment of the ring is then

dT =pSadp(a x g) =kpSa’gsinBdp =kpSa’gsin(ep +a)dyp,
(14-2.1)
where the angles «, 8, and ¢ are as shown in Fig. 14.2, g is the
gravitational field produced by m at the location of the mass
element, g is the magnitude of g, and k is a unit vector directed
into the page.
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Fig. 14.2 The torque acting on a ring of mass M is found by
integrating the torque acting on the shaded segment of the ring.

Since, by supposition, v < ¢, we can simplify Eq. (5-1.13) as
follows:

m(1-v?¥c?
r{1-(v?¥c?)sin%*9)*"?

~y2/a2
~ GM[I +(32)v¥ct)sime]  (142.2)
r
2
= Gﬂ[l +V_(§sin20—l)].
2 \2

Using 8 = 8, + o, where 8, is the angle between v and r, and
taking into account that o is a small angle (because, by
supposition, a < r,), we have for sin’0

sin®d =sin*(d, + o) =(sind,coso +sinocosd,)* = (sinf, +ccosb,)’

~sin?, +2 ocsind,cosf, = sin’f, +asin26,. (14-2.3)
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Equation (14-2.2) can therefore be written as

m v?
g = Gafi L,

%(sinzao . asin200)—l]}. (14-2.4)
We can further simplify Eq. (14-2.4) by expressing r in terms
of r,. From Fig. 14.2 we see that
r? =a® +ry - 2ar,cosy, (14-2.5)
which, since a < r;, can be written as
r? = rg[l - 2(alry)cosp]l = rg. (14-2.6)

Equation (14-2.4) becomes therefore
2
g = Gﬂ{l +v_[3(sin200 + asin200)—1]}. 14-2.7)
el 2

Now, remembering that « is a small angle, we simplify Eq.
(14-2.1) to
dT =kpSa’gsin(p +a)dp = kpSa’g(sing +acosp)dp. (14-2.8)

Substituting g from Eq. (14-2.7), we then have

2 2
dT = GM{] + v_[g (sinzﬂ0 +asin200) -1
no U a2

}(simp +cosp)dy.
(14-2.9)

Finally, recognizing from Fig. 14.2 that o = (a sin ¢)/r,, we

obtain
2 2 sin24. sin
dar zGM{I +v_2[3 (sin26’0 + al—"‘p)—l }(simp
(14-2.10)

. 2
Ty ¢ o

, acosy sin<p) do.
To

Integrating Eq. (14-2.10) from O to 27, we have
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as in26,sin
T= kaSam { _[ ! 1¢) 1]}(51n<p

O
(14-2.11)
, acospsing )d<p,

which gives for the torque acting on the entire ring
T~kG Msmw (14-2.12)
2r03 c

where we have dropped the small term with a*/r,’.
Replacing in Eq. (4-2.12) p by M/2maS, we obtain the
expression for the torque in terms of the mass M of the ring

AMma*v?
4ryc?

T=kG sin26

0"

(14-2.13)

b. Torque on a disk of uniform density. We can use Eq. (14-
2.12) for finding the torque acting on a small disk by considering
the ring shown in Fig. 14.2 to be a differential element of the
disk.

Let the thickness of the disk be 7 and let its radius be a.
Replacing S in Eq. (14-2.12) by 7dx, replacing a by x, and
integrating over x from O to a, we obtain for the torque acting on
the disk

T= kGMstBJ Xdx, (14-2.14)
2r03c2
or
T~ kG ITATE M o, . (14-2.15)
8ric?

Replacing p in Eq. (14-2.15) by M/na’*7, we find the torque
acting on the disk in terms of the mass M of the disk
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3AMma?v?

3
8ryc?

T = kG sin24,,. (14-2.16)

¢. Torque on a sphere of uniform density. Since a thin disk may
be regarded as a differential element of a sphere, we can find the
torque acting on a small sphere of radius a by using Eq. (14-
2.15). To do so, we replace in Eq. (14-2.15) a* by (a® - y%?,
replace 7 by dy, and integrate over y from —a to +a. The result
is

2 +a
T = kG3“3”'2V sin2f, | “(@* - 2a%y? + yhdy, (142.17)
8ryc a

or

5,2
T ~ kG2T2MY g, (14-2.18)
Sryc?

Replacing p in Eq. (14-2.18) by 3M/4wa’, we find the torque
acting on the sphere in terms of the mass M of the sphere

24,2
3Mma’y sin26,

T =kG 00 o (14-2.19)
0

14-3. Torque Due to a Point Mass Moving in a Circular Orbit

We start with Eq. (14-1.1) for the gravitational field of a mass
m moving with uniform velocity v along a circular orbit of radius
R (Fig. 14-3). Let us find the gravitational field of m at the center
of the orbit. In thiscase r = Randr « v =R + v = (0, so that
Eq. (14-1.1) simplifies to

-vf}. (14-3.1)
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R

m
/ WR/c™
» R,
/
/
/
f (’ R \d

Fig. 14.3 Correlation between the retarded quantities 8, R, and v
aund the present-time quantities 6,, R, and v, for a point mass m
moving along a circular orbit.

Equation (14-3.1) expresses the gravitational field in terms of
the retarded position vector and retarded velocity vector of the
mass. We shall now convert Eq. (14-3.1) to present-time
yuantities by resolving the retarded position vector R and the
retarded velocity vector v into their components along the present
position vector R, and the present velocity vector v, (the radius R
of the orbit is, of course, not affected by retardation and need not
be converted). Since the angle between the present position vector
and the retarded position vector is §, — § = wR/c = v/c, where
w is the angular velocity of the mass, we obtain for the two
components of g

2
g, = - Gﬂ{(1—V_)Rcos(v/c)+&sm(v/c)}, (14-3.2)
o R3 CZ Cc

g = - Gﬂ{(l —V_Z)Rsin(v/c) —&cos(v/c)}, (14-3.3)
Yo R3 CZ C
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and for the total field

g = - GRﬂ;{[(l -Z_j)cos(v/c) + %sin(v/c)}R0 (1434
+ [(1 -%)gsin(v/c) - I_jcos (v/c)]vo}.

By supposition, v < c. Therefore, in the calculations that
follow, we shall neglect terms smaller than (v/c)’. Expanding
sin(v/c) and cos(v/c) in Eq. (14-3.4) into power series of v/c and
dropping terms containing v/c to powers higher than 3, we obtain

o aml v _2Rv? )
g = GF{(l 2_c?)R° - vo}. (14-3.5)

The R, component of Eq. (14-3.5) is radially symmetric and
therefore cannot contribute to the torque on a highly symmetrical
mass M at the center of the orbit. Therefore, in the calculations
that follow we only need to consider the v, component of g

2mv?

T (14-3.6)

g, =G

Consider points P, and P, inside a stationary spherical mass
M. Let P, and P, be located symmetrically relative to the line
normal to line connecting the center of M with the point mass m
orbiting around M (Fig. 14.4). Using Eq. (14-3.6), assuming that
the density of M is uniform and assuming that the radius of M is
much smaller than R, we find that the force dF, = g,dM with
which m acts in the direction parallel to the velocity vector v on
the mass element dM at P, is larger than the force dF, = g,dM
with which m acts in the same direction on the mass element dM
at P, (because the distance from m to P, is smaller than the
distance from m to P,). Since the same considerations apply to all
such symmetrically located points within M, the mass M
experiences a torque and is caused to rotate about its center.
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@) v Fig. 14.4 A point mass m
/——m \ moves in a circular orbit
about a spherical mass M of
uniform density p. The force
dF, acting on the mass
element located at P, is
larger than the force dF,
acting on an equal mass
element located at P,
Therefore the mass M
experiences a torque causing
it to rotate.

a. Torque on a ring of uniform density. Let m rotate about a ring
of uniform mass density p and total mass M whose center is at the
center of the orbit and whose plane coincides with the plane of the
orbit of m (Fig. 14.5). Let v satisfy the relation v < ¢ and let the
radius of the ring a satisfy the relation a < R. Although we have
derived Eq. (14-3.6) for the center of the orbit, it is
approximately valid for points close to the center, and since the
radius of our ring is much smaller than the radius of the orbit, we
can use Eq. (14-3.6) for finding an approximate expression for the
torque exerted by m on the ring.

For the torque dT with respect to the center of the ring
¢xerted by m on the mass element pSady contained in the shaded
segment of the ring we then have

dT =pSadp(a x g,) =kpSa’g, sindp =kpSa’g, cospdp,
(14-3.7)
where the angles 8 and ¢ are as shown in Fig. 14.5, g, is the
magnitude of g, at the location of the shaded segment, and k is
a4 unit vector directed into the page. According to Eq. (14-3.6),



248 CHAPTER 14 TORQUE CREATED BY A MOVING MASS

Fig. 14.5 The torque acting on
the ring of mass M located at
the center of the orbit of m is
found by integrating the torque
acting on the shaded segment
of the ring. Note that the force
acting on the shaded sector is
in the direction of the velocity
vector v, of m.

g, - 0521:7_:3, (14-3.8)
C

where R’ is the distance between m and the shaded segment of the
ring and v is the magnitude of the velocity vector v, (which, of
course, is the same as the magnitude of the velocity vector v).
From Fig. 14.5 we see that, since a < R, the distance from m to
the shaded segment element of the ring is approximately

R' = R - acosp, (14-3.9)
and therefore
A1 o _1_(1 + 200590).(14-3-10)
R”? (R - acosp)? R? R

Substituting Eqs. (14-3.8) and (14-3.10) into Eq. (14-3.7), we
have

3
ar = Gkpsa 22 [1 + Moosplospdp. @311

3R%c?
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Integrating Eq. (14-3.11) from O to 27, we obtain for the torque
acting on the ring

3
T ~ ka5a3237;’§”3 , (14-3.12)
C

Replacing p in Eq. (14-3.12) by M/2maS, we obtain the
expression for the torque in terms of the mass M of the ring

Gk%‘:zr_}. (14-3.13)
C

U

b. Torque on a disk of uniform density. We can use Eq. (14-
3.12) for finding the torque acting on a small disk by considering
the ring shown in Fig. 14.5 to be a differential element of the
disk.

Let the thickness of the disk be 7 and let its radius be a.
Replacing S in Eq. (14-3.12) by 7dx, replacing a by x, and
integrating over x from 0 to a, we obtain for the torque acting on
the disk

T~ k2T [ oa (143.14)
C
or
T = Gk%:”:vg. (14-3.15)
C

Replacing p in Eq. (14-3.15) by M/ma’r, we find the torque
acting on the disk in terms of the mass M of the disk

Tzckf‘%f;:ﬁ, (14-3.16)
C

c. Torque on a sphere of uniform density. Since a thin disk may
be regarded as a differential element of a sphere, we can find the
torque acting on a small sphere of radius a by using Eq. (14-
3.15). To do so, we replace a* in Eq. (14-3.15) by (a’ - y%?,
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replace 7 by dy, and integrate over y from —a to +a. The result
is

3 .

T =~ Gk ’;;’3’"’3 J @ - 2a*y? + yhdy, (14-3.17)
C -a

or

T ~ gg8Tema’y’ (14-3.18)
45R3¢?

Replacing p in Eq. (4-3.18) by 3M/47wa’, we find the torque
acting on the sphere in terms of the mass M of the sphere

T = Gk%. (14-3.19)
C

14-4. The Differential Rotation of the Sun

The calculations presented above were for the case of a solid
stationary mass. A very interesting and important effect should
exist, however, if the stationary mass is in a gaseous or liquid
state. In this case the rotation of the stationary mass under the
action of a moving mass will not occur with one single angular
velocity. In particular, the equatorial regions of the stationary
mass (regions close to the plane of the orbit of the moving mass)
will rotate faster than the region closer to the poles, because the
force and the torque exerted by the moving mass on the equatorial
regions are larger than the force and torque exerted on the polar
regions. For the same reason, the outer regions of the mass will
rotate faster than the interior regions.

It is very likely that the non-uniform rotation of the Sun is a
manifestation of this effect. As is known, the equatorial regions
of the Sun rotate faster than the rest of the Sun. The regions of
the Sun near its equator rotate once every 25 days. The Sun’s
rotation rate decreases with increasing latitude, so that its rotation
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rate is slowest near its poles. At its poles the Sun rotates once
cvery 36 days.

Until now the differential rotation of the Sun was one of the
great astronomical puzzles. However, the generalized theory of
gravitation provides a clear and convincing explanation of this
cffect: according to the generalized theory of gravitation, the
faster rotation of the equatorial regions of the Sun is a
consequence of the torque exerted on the Sun by the planets
orbiting around it. Since all of the planets in the Solar system
revolve around the Sun in the same direction, the torque that they
exert on the Sun is also in the same direction, and, as a result, the
Sun, too, rotates in the same direction.

The explanation of the heretofore unexplained differential
rotation of the Sun is a very important result supporting the
validity of the generalized theory of gravitation.

14-5. Discussion

As we have seen, a moving mass does not merely attract or
repel a stationary mass, but also exerts a torque on it and thus
causes it to rotate even if the stationary mass is highly symmetric
and has a uniform mass density. The direction of rotation depends
on the direction of velocity of the moving mass.

In particular, when a point mass, starting from infinity, moves
with constant speed along a straight line past a spherical mass, the
point mass, as it comes closer to the spherical mass, exerts a
torque on the spherical mass causing it to rotate so that the part
of the spherical mass nearest to the point mass moves in the
direction along which the point mass is moving. But then, as the
point mass moves away from the spherical mass, the direction of
the torque is reversed and the spherical mass tends to rotate so
that its part nearest to the point mass moves in the direction
opposite to the direction along which the point mass is moving.
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According to Eq. (14-2.19), the torque is greatest at §, = w/4 and
6, = 37/4, and it is zero at §, = 0, §, = w/2, and §, = .

If a point mass moves along a circular orbit around a
spherical mass located at the center of the orbit, the torque
exerted by the point mass on the spherical mass is always in the
same direction and causes the spherical mass to rotate in the same
sense in which the point mass revolves.

Clearly, the dynamics of the interaction between a moving
point mass and a stationary mass distribution is much more
complicated than previously believed. The torque exerted by the
moving mass on the stationary mass and the subsequent rotation
of the stationary mass are only the initial stages of a very complex
sequence of events. When the stationary mass rotates, it creates
a cogravitational field. In the case of a point mass moving along
a straight line,' the torque acting on the stationary mass is a
function of time and therefore the angular velocity of the
stationary mass is also a function of time. Therefore the mass
current formed by the stationary (now rotating) mass is time
dependent and, hence, creates a gravikinetic field. The
cogravitational field and the gravikinetic field of the stationary
(now rotating) mass acts in turn on the moving point mass and
affects its motion unless the motion is somehow controlled by
external means. This is quite different from the simple attraction
between a moving point mass and a stationary mass according to
Newton’s theory.

The interaction between an orbiting point mass and a spherical
mass at the center of the orbit is even more complex. In principle
such a system can be closed and need not depend on external
forces for its stability. However, because of the torque acting on
the central mass, the stability of the system is not at all certain.
First, because, by Eq. (14-3.19), the torque exerted by the
orbiting point mass is always present, the angular velocity of the
central mass constantly accelerates. Therefore the cogravitational
field resulting from the rotation is also always present and so is
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the gravikinetic field. Clearly, under these conditions the orbiting
mass cannot move with constant speed, and the radius of the orbit
cannot remain the same unless there exists some additional
mechanism that keeps the speed and the radius constant.
Furthermore, there is a problem with the conservation of angular
momentum. In a closed system, the sum of the mechanical angular
momentum and the field angular momentum must remain the same
at all times. This means that the cogravitational field of the
rotating mass, the cogravitational field of the moving point mass,
and the gravitational and gravikinetic fields of the moving and of
the stationary (now rotating) mass at all times maintain a very
precise balance.

In summary then, the interaction between a moving mass and
a stationary mass is an exceedingly complex phenomenon, the
details of which are yet to be determined. However, it is quite
clear that by assuming that the gravitational interaction between
a moving and a stationary mass is merely a Newtonian attraction,
one cannot obtain correct solutions of the problems involving
moving and stationary masses (this is particularly important in
connection with Mercury’s perihelion anomaly; see Chapter 20).

Of course, because of the factor v¥/c? in Eq. (14-2.19) and
v'/c* in Eq. (14-3.19), the torque exerted by a moving mass on a
stationary mass is usually very small. However, taking into
account that the time scale in cosmic systems, and in our Solar
system in particular, is extremely long, the cumulative effect of
the gravitational torque in stellar and planetary systems may be
very significant.

References and Remarks for Chapter 14
1. Because of the interaction between the two masses such a motion

is in general impossible unless the point mass is by some means
constrained to maintain its speed and trajectory. However, if in Eq.



254 CHAPTER 14 TORQUE CREATED BY A MOVING MASS

(14-2.19) M < m, then neither speed nor trajectory of m will be
significantly affected by the force exerted on m by M.

2. Rotational effect similar to those described in this chapter can
also occur in electromagnetic systems. See Oleg D. Jefimenko,
"Torque exerted by a moving electric charge on a stationary electric
charge distribution,” J. Phys. A: Math. Gen. 35, 5305-5314
(2002).



135

MORE ABOUT ORBITAL
MOTION AND ROTATION

In this chapter we shall investigate in greater detail
gravitational and cogravitational fields and interactions of bodies
in the state of orbital and rotational motion. We shall find that the
interaction between such bodies is even more complex than as
explained in the preceding chapter. We shall find that rotating
bodies experience additional forces and experience torques under
the action of external cogravitational fields. We shall find that the
cogravitational field of a rotating central body affects the periods
of revolution of the planets or satellites orbiting the central body.

15-1. Gravitational and Cogravitational Fields Produced by a
Mass Moving Along a Circular Orbit

As we know from Sections 14-1 and 14-3, a point mass m
moving with velocity v along a circular orbit of radius R creates
at the center of the orbit a gravitational field

m v2 R
= - G_{R(l —_)—v_}, 14-3.1
g = =) -v2 (14-3.1)
where R and v are the retarded position radius vector and the
retarded velocity vector. Expressed in terms of the present
position radius vector R, and the present-time velocity vector v,
with terms smaller than (v/c)’ neglected, this field is

255
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_ m v2 2Rv? )
g - - GF{(I-z_CZ)RO— o v (1435

Let us now find the cogravitational field produced by m at the
center of the orbit. Applying Eq. (4-2.10) to the gravitational field
given by Eq. (14-3.1), we obtain

2

K - - cinx{n(l -V_)-vﬁ}, (15-1.1)
Réc c? c

or, sincc R X R =0,

m
cR?

K --G"_[vxR]. (15-1.2)

Although v and R in Eq. (15-1.2) are retarded, their cross
product is not affected by conversion to the present velocity vector
and present position vector of the mass, because the cross product
is the same for all points of the orbit. Therefore the
cogravitational field given by Eq. (15-1.2) is exactly as expected
from the gravitational equivalent of the electromagnetic Biot-
Savart law, Eq. (7-3.19) (note, however, that the cogravitational
field is always counterclockwise relative to the angular velocity
vector of the orbiting mass).

Equations (14-3.1) and (14-3.5) for the gravitational field are
quite unexpected. Intuitively, one would expect the field to be the
Newtonian field (possibly with a factor) directed to the center of
the orbit. Contrary to expectations, the true gravitational field of
a point mass moving with constant speed in a circular orbit is very
different from the Newtonian field. First, the field has a
component parallel to the instantaneous velocity vector, and thus
is not directed to the center of the orbit. Second, the field is not
proportional to 1/7.

As far as the Solar system is concerned, it is clear from the
derivations presented here and throughout the book that Newton’s
gravitational law cannot be used as a rigorous basis for planetary
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dynamics. The problem is that, even if the gravitational field of
the Sun is exactly a Newtonian field, so that the gravitational
force exerted by the Sun on planets is the ordinary 1/7* force, the
gravitational force exerted by the planets on the Sun is, by Egs.
(14-3.4) and (14-3.5), neither radial nor proportional to 1/7* [the
fact that Egs. (14-3.4) and (14-3.5) have been obtained for a
circular rather than for an elliptical orbit cannot possibly change
the essence of the information provided by Eqs. (14-3.4) and (14-
3.5)]. Therefore the dynamics of the Solar system based on
Newton’s gravitational law can at best be only approximately
correct, although the corrections associated with the velocity and
acceleration of the planets are clearly very small.

The most remarkable property of the gravitational field of an
orbiting mass represented by Eq. (14-3.5) is the presence of the
field component in the direction of the instantaneous velocity
vector of the mass, so that the field is not even radial. In our
Solar system, this new component of the gravitational field may
have important consequences both on the motion of the Sun and
on the motion of planets. Although the field given by Eq. (14-3.5)
is for the center of the orbit, this field should be approximately
correct within a certain region of space around the center of the
orbit. As far as the Sun is concerned, the new component of the
gravitational field exerts then a torque on the Sun and causes it to
rotate in the direction of the orbital velocity of the planet (see
Section 14-4). Outer planets should produce a similar effect on the
motion of the inner planets, causing an acceleration (and
deceleration) of their orbital velocities and, what is most
important, causing a secular motion of the large axes of the orbits
of the inner planets in the direction of the orbital velocity of the
outer planets (see Chapter 20).

The cogravitational field created by planets also has an effect
on the dynamics of the solar system. Inner planets moving in the
cogravitational field created by the outer planets experience a
cogravitational force in accordance with Eq. (2-2.6) and an
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additional cogravitational "dipole" force associated with the
rotation of the force-experiencing planet (see Section 15-3).

15-2. Cogravitational Field Produced by a Rotating Body;
Association with Angular Momentum

In Example 3-3.2 we found that a ring of mass m and radius
a rotating with angular velocity w produces a cogravitational field
which at distances r > a from the ring is

2
K-=- sz‘; ;"(2cosﬁr“ +sin6d ), (3-3.23)
c’r

where 0 is the angle between the angular velocity vector w (x axis
in Fig. 3.2) and r. Let us rewrite Eq. (3-3.23) as

K=-_9 cosor,+ 9 sin00,, (15-2.1)
27r? 47r3
where d is the magnitude of the vector
2
d=--g2mma, (15-2.2)

CZ

(the direction of d is opposite to the angular velocity vector w).

In electromagnetic theory, an equation analogous to Eq. (15-
2.1) represents the magnetic field of a "magnetic dipole", and the
equation analogous to Eq. (15-2.2) represents the "dipole
moment" of the magnetic dipole. By analogy, we shall call the
field represented by Eq. (15-2.1) and by all equations exhibiting
the same dependence of K on r and 4 the "cogravitational dipole"”
field, and we shall call the coefficient d appearing in these
equations the "cogravitational dipole moment."

There is a simple correlation between the cogravitational
dipole moment and the angular momentum of all axially-
symmetric rotating bodies. Comparing the dipole moment of the
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rotating ring given by Eq. (15-2.2) with the equation for the
angular momentum of the same ring

L =ma’w, (15-2.3)

we see that the cogravitational dipole moment of the ring can be
expressed as

d--G2"L (15-2.4)
C2

and that the dipole field of the ring can therefore be expressed as

K-=- Gicoseru ¢ L sinf g, (15-2.5)
c’r? 2¢?r?

where 6 is the angle between the angular momentum vector L and
r. Observe that in our definition of the cogravitational dipole
moment, vectors d and L are opposite to each other.

In vector notation, Eq. (15-2.1) can be written as

K-_1 [3@d-r)r-rd]. (15-2.6)
4mr’

and Eq. (15-2.5) can then be written as

K--G_L BIL-pr-rij. (15-2.7)
2¢?r’

It is interesting to note that Eqs. (15-2.4), (15-2.5) and (15-
2.7) hold for all axially-symmetric bodies with axially-symmetric
mass density (that is, density that is a function of distance from
the symmetry axis and a function of distance along the axis only).
This follows from the fact that all such bodies can be considered
as consisting of elementary rings for each of which Eqgs. (15-2.4),
(15-2.5) and (15-2.7) are valid, and therefore Egs. (15-2.4), (15-
2.5) and (15-2.7) are valid also for the entire body. Thus, for
example, Egs. (15-2.4), (15-2.5) and (15-2.7) hold for the
spherical shell discussed in Example 13-2.3 and for the sphere
discussed in Example 13-2.7.
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15-3. Cogravitational Force and Torque Experienced by a
Rotating Body

Like all mass distributions, a cogravitational dipole
experiences a gravitational force under the action of any
gravitational field. However, since a cogravitational dipole is a
moving (spinning) mass distribution, and therefore constitutes a
mass current, it also experiences a cogravitational force, but only
when it is located in an inhomogeneous external cogravitational
field. In a homogeneous cogravitational field it does not
experience a net cogravitational force because, due to its
symmetry, the resultant of the cogravitational forces acting on all
its elements is equal to zero.

A cogravitational dipole also experiences a torque when
located in an external cogravitational field, regardless whether the
field is homogeneous or inhomogeneous. The torque causes the
axis of the dipole to precess about the direction of the
cogravitational field.

The force experienced by a cogravitational dipole (in addition
to the ordinary Newtonian attraction) is, by Eq. (7-3.32),

2
F=-_"dvK, 7-3.32
47rG( ) ( )

and the torque is, by Eq. (7-3.33),

2
T=-__dxK. (7-3.33)
47 G

The primes in these equations indicate that the cogravitational
field acting on the dipole is due to external sources.

As a spinning body a cogravitational dipole constitutes a
gyroscope and precesses when a torque is applied to it. The
angular velocity of precession of a cogravitational dipole is'
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. T
Lsinf

where T is the torque acting on the dipole, L is the magnitude of
the angular momentum of the dipole and 6 (0<8<7/2) is the
angle between d and K'. The direction of Q is determined by
ascertaining that the vectors @, L and T, in the order stated, form
a right-handed system ("QLT" rule).

[Note: Eq. (15-3.1) holds rigorously only if 2 is much smaller
than the rotational angular velocity of the body forming the
cogravitational dipole moment; this happens, for example, if L is
relatively large and T is relatively small.]

For an axially-symmetric force-experiencing or torque-
experiencing body it is convenient to express Egs. (7-3.32) and
(7-3.33) in terms of the angular momentum of the body. By Egs.
(15-2.4), (7-3.32) and (7-3.33), we then have

(15-3.1)

F - %(L-V)K’ (153.2)
and

T = %LXK’. (15-3.3)

For practical applications Eq. (15-3.2) should preferably be
expressed in scalar form. Expanding Eq. (15-3.2), we obtain

1{. 0K/  8K! oK/
F = _( +L +L )
o2V ox Y dy ‘0z

oK, oK, OK’)

Y

F=1(A fL2 L

Y2V ox Y 0y ‘0z
/ / /

1( oK! 0K +L6Kz)

(15-3.4)

Z

F =_[L + .
*ox Y dy © 0z

2

There are several important consequences of Egs. (7-3.32),
(7-3.33) and (15-3.1)-(15.3.4). First, because all rotating bodies
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have a cogravitational dipole moment and therefore experience a
force in an inhomogeneous cogravitational field, the weight of a
rotating body (attraction to the central body) depends on the
rotation of the body if the central body is also rotating. In our
Solar system this effect is too small to be measured at this time,
but it has major theoretical implications. Second, because rotating
bodies experience a torque and execute a precessional motion
under the action of a cogravitational field, it is possible to
measure the cogravitational field by observing the precession of
a test body located in this field. (The existence of the
cogravitational field of the Earth will probably be established with
the help of Gravity Probe B, a satellite in a polar orbit carrying
gyroscopes for detecting and measuring the cogravitational effect
of the rotating Earth)?.

v

Example 15-3.1 Two spherical bodies rotate about their diameters.
The angular momentum of the first body is L,, that of the second
is L,. The first body is at the origin of rectangular coordinates. The
second body is on the x axis at a distance x from the first. The
radius of the second body is much smaller than x. Find the
cogravitational force and torque experienced by the second body
under the action of the first body if the angular momenta of the two
bodies are directed along the x axis.

Since the angular momenta of the two bodies are along the x
axis, the only components of their angular momenta are L,, and L,,,
respectively.

The cogravitational field produced by the first body at the
location of the second body is, by Eq. (15-2.5),

gl (15-3.5)

cix3

K

x1

Differentiating Eq. (15-3.5) with respect to x, we have
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0K

X

G3L"l . (15-3.6)
ax c2x4

Substituting Eq. (15-3.6) into the first Eq. (15-3.4) and taking
into account that the angular momentum of the second body has
only the x component, we obtain for the cogravitational force acting
on the second body

F =G%. (15-3.7)
! 2¢x*
Thus the first body repels the second body along the line
joining them.
By Egs. (15-2.5) and (15-3.3), the two bodies do not exert a
torque on each other because the angular momenta of the two
bodies are parallel.

Example 15-3.2 Two spherical bodies rotate about their diameters.
The angular momentum of the first body is L,, that of the second
body is L,. The first body is at the origin of rectangular coordinates
and its angular momentum is directed along the x axis. The second
body is on the x axis at a distance x from the first and its angular
momentum is in the y direction. The radii of the two bodies are
much smaller than x. Find the cogravitational force exerted by the
two bodies upon each other, the torque exerted by the two bodies
upon each other and the angular velocity of precession of each body
resulting from the torque experienced by the body.

Since the angular momentum of the first body is along the x
axis the cogravitational field produced by the first body at the
location of the second body is, by Eq. (15-2.5),

K, =- b (15-3.8)
cix?

Denoting the angular momentum of the second body as L, and
examining Eq. (15-3.4), it appears that the only force that the
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second body could experience under the action of the first body is
due to the second term of the first Eq. (15-3.4),

/
F -1 9% (15-3.9)
2 oy

because this is the only term in Eq. (15-3.4) with x and y subscripts
matching the subscripts of L, and K, in our system of the two
bodies. However, looking at Eq. (15-3.8), it is clear that the
derivative of K|, with respect to y is zero, so that it appears that the
second body experiences no force at all. But a more careful
examination of the system reveals that there is a force on the second
body after all, because the cogravitational field of the first body is
not confined to the x axis. Indeed, if, by using Eq. (15-2.7), we
express K, as a function of the distance r from the location of the
first body (origin of coordinates) in the xy plane, we find that

1 1 - .
K, = = Oz BEPr - Ly = - Goms BAXGE +3) - L)
(15-3.10)

Thus there are two components of K, in the xy plane: the x
component and the y component. Therefore, by Eq. (15-3.4), the
second body, whose angular momentum is in the y direction, can
experience a force if the derivative of at least one of the two
components of K, with respect to y does not vanish on the x axis.
Examining Eq. (15-3.10) we recognize that the derivative of the
x component of K, does vanish on the x axis, but the derivative of
the y component does not.
According to Eq. (15-3.10), the y component of K, is

-G (153.1)
Y 2¢%r?

or, expressing r in the denominator of Eq. (5-3.11) in terms of x
and y,
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-.g. Ly (15-3.12)

Differentiating Eq. (15-3.12) with respect to y, we obtain

aK o G 3L1x[(x2 +y2)5/2 — 5(x2 +y2)3/2y2]

! (15-3.13)
ay 202(x2 +y2)5
which on the x axis becomes
K, _ 3L (15-3.14)
dy 2c2%x4

Substituting Eq. (15-3.14) into the second Eq. (5-3.4), we
obtain for the cogravitational force acting on the second body

3L
F,=-G- zL;. (15-3.15)
CX

Thus the first body pushes the second body downward in the
negative y direction. By the symmetry of the system it is clear that
the second body pushes the first body with the same force upward.

According to Eq. (15-3.3), the torque experienced by the
second body under the action of the first is

T, = 2L %K, (15-3.16)

Since L, is in the y direction and K, is in the negative x direction,

the torque is
2

T, - _;.LzKlk (15-3.17)

or, with Eq. (15-3.8),
T, = G k. (15-3.18)
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Hence the first body tends to rotate the second body in a
counterclockwise direction about an axis parallel to the z axis.

To find the torque experienced by the first body under the
action of the second body, we again use Eq. (15-3.3), but now with
the subscripts reversed:

T, - %L, xK,. (15-3.19)
The angular momentum of the second body is in the y directions.

Therefore the cogravitational field produced by the second body at
the location of the first body is, by Eq. (15-2.7),

K,=G L j. (15-3.20)
2c%?

Since L, is in the x direction, Eqs. (15-3.19) and (15-3.20) yield

- G LILZ

T‘ 4c2x3
CX

k. (15-3.21)

Thus the second body tends to rotate the first body also in a
counterclockwise direction about the z axis (although the torque
acting on the first body is only 1/2 the torque acting on the second
body). This result seems incredulous: it appears that by internal
forces the two bodies create a net torque upon themselves.
However, there is an additional torque in the system: it is caused by
the forces exerted by the two bodies upon each other. The force
exerted by the first body on the second is given by Eq. (15-3.15)
and acts in the negative y direction. By the symmetry of the system,
the force exerted by the second body on the first has the same
magnitude but acts in the positive y direction. Observe that the two
forces are parallel. The distance between their points of application
is x and therefore, by Eq. (15-3.15), they produce a couple

3L 3L
T=-G 2L])ck= -G 2L'k. (15-3.22)
4¢c2%xct 4¢3
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As we can see from Egs. (15-3.18) and (15-3.21), this couple is
equal in magnitude and opposite in direction to the sum of the two
torques exerted by the two bodies on each other. Thus the total
torque generated by the interaction of the two bodies is zero, as it
should be according to the law of conservation of angular
momentum.

Consider now the precession of the two bodies. The precession
angular velocity of the second body is, according to Eqs. (15-3.1)
and (15-3.18)

Q,=2=6___. (15-3.23)
L 2¢%3
According to the QLT rule, the precession angular velocity of the
second body is in the x direction.

The precession angular velocity of the first body is, according
to Eqs. (15-3.1) and (15-3.21)

0 ="1=G62_. 15-3.24

'L 4c’x’? ( .

According to the QLT rule, the precession angular velocity of the
first body is in the negative y direction.

A

15-4. Period of Revolution of a Satellite Orbiting About a
Rotating Central Body

Consider a satellite (or planet) in a circular orbit in the
equatorial plane of a rotating spherical central body of uniform
density. Let the mass of the satellite be m, let the mass of the
central body be M, and let the linear dimensions of the satellite be
much smaller than its distance r from the central body.

To move in a circular orbit, the satellite must be acted on by
a centripetal force
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F-m (15-4.1)

;
where v is the orbital velocity of the satellite. According to
Newton’s theory, this centripetal force is provided by the
gravitational attraction to the central body which, by Eq. (1-1.1)
and considering the satellite to be a point mass (because its linear

dimensions are much smaller than r), is

F=cm (15-4.2)
r

Solving Egs. (15-4.1) and (15-4.2) for v, we obtain
V- (Gﬁ_l)”z_ (15-4.3)
;

From Eq. (15-4.3) we find that the period of revolution of the
satellite is
12

3
T =2 _op T (15-4.4)

~ o

However, according to the generalized theory of gravitation,
the satellite is acted on not merely by the Newtonian force of
attraction, but by the force given by Eq. (2-2.6)

F = Jp(g+vxK)dV. (2-2.6)

where v is the velocity of the satellite and K is the cogravitational
field produced by the rotating central body. Since the satellite can
be considered to be a point mass (because, by supposition, its
linear dimensions are much smaller than its distance from the
central body) Eq. (2-2.6) can be written as

F = mg +mvxK. (15-4.5)

By Eq. (7-3.10), the gravitational field produced by a
spherical central body of uniform density is
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g = - GMr, (15-4.6)
r

and, by Eq. (13-2.45), the cogravitational field produced by such
a body of radius a rotating with angular velocity w is, in the
equatorial plane of the body,

K - gMa
Sric?
By Egs. (15-4.5)-(15-4.7), the centripetal force acting on the
satellite is therefore, according to the generalized theory of
gravitation,

(15-4.7)

G_r G’;’M“Z VX® (15-4.8)
r C

For the satellite in an equatorial orbit, v is perpendicular to w, so
that v X w = £ vor/r, where "+ " applies to the case when v and
w are in the same circular direction ("direct" motion of the
satellite) and " —" applies to the case when v and w are in opposite
directions ("retrograde” motion of the satellite). Thus, because of
the cogravitational field created by the central body, the
centripetal force acting on the satellite is either smaller (direct
motion of the satellite) or larger (retrograde motion of the
satellite) than the ordinary Newtonian attraction.

For the calculations that follow we shall use Eq. (15-4.8) (the
centripetal force equation) in its scalar form

F=cI"M 3 c’;”‘faz . (154.9)
r? r-c

Assuming direct motion of the satellite, we have from Eqgs.
(15-4.1) and (15-4.9)

2 2
mv: _omM _omMa®, (15-4.10)
r r? 5ric?

or
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v+ G M, o GM . (15-4.11)
5ric? r

Solving for v, we obtain, selecting v > 0,

__GMa’w

direct 72 +
10r*c

(GM“Z‘O)Z oM 5412
10r3c? ri

The period of revolution of the satellite is then

_ 2w _ 2wr
direct V. _GMa’e . [( GMazw)z . GM}UZ "(15-4.13)
10rzez - N1orzer) 7

For retrograde motion we similarly have

= ?84‘;220 " [( GM‘*‘")2 + G%}m (15-4.14)
rec

10r*c? r
and
T - 2wr _ 2wr
T Vo GMa*w + [( GMa*w\ R GA_{}]Q (15-4.15)
10r2c? 10r3c? r

As one can see from Egs. (15-4.13) and (15-4.15), the period
of revolution for direct motion of the satellite is longer than for
retrograde motion.

In the Solar system, the cogravitational fields are much
weaker than the gravitational fields. Therefore in Eqgs. (15-4.12)-
(15-4.15) we may neglect cogravitational field terms to the power
higher than one. Doing so and expanding the denominators in
Egs. (15-4.13) and (15-4.15) we obtain

_ _GMa% (GA_d)”z, (15-4.16)
r

direct Torec?
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T- - 21rr3/2 {1 R GI/ZMI/ZaZ(’J), (15_417)
direct Gl/lelz\ 10r3/2c2
12
. GMa’w | (Gﬂ) , (15-4.18)
retro 10)‘26‘2 r

T = 27r3? (1 _ G”ZM”Zazw) (15-4.19)
retro GVIM 17 1013722 ’

An important quantity potentially suitable for experimental
verification is the difference of the two periods 7,,.,— T,,,,- From
Eqs.(15-4.17) and (15-4.19) we have

2ma’w
lerer! - Tre!ra = ?_ . (15—420)
c
[t is convenient to express Eq. (15-4.20) in terms of the angular
momentum L of the central body. Since the moment of inertia of

a sphere of mass M and radius a is 2Ma%/5, Eq. (15-4.20)
becomes then

Tdirecl - Trelro = Mﬂ-fz : (15-4.21)

A remarkable feature of Eqs. (15-4.20) and (15-4.21) is that
the difference of the two periods does not depend on the radius of
the orbit (as long as the radius of the direct orbit is the same as
that of the retrograde orbit), does not depend on the mass of the
satellites and does not depend on the constant of gravitation G.

[t is possible that Eq. (15-4.21) will be verified experimentally
by the Gravity Probe C (a proposed experiment involving two
satellites in the same equatorial orbit around the Earth, one in the
direct motion, the other in the retrograde motion).

15-5. Cogravitational Equivalent of Larmor Precession

Larmor precession refers to the precession of the orbits of
electrons in atoms around the direction of an external magnetic
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field. Because of the rapid motion of an electron along its orbit,
the orbit can be treated as a current-carrying rigid circle, and the
orbit can then be treated as a magnetic dipole. The external
magnetic field exerts a torque on this dipole and causes its axis
(the symmetry axis of the orbit) to precess about the direction of
the field.?

Although planets and satellites do not move very fast, the time
scale in the Solar system is extremely long. Therefore the orbit of
a planet or satellite can likewise be treated as a rotating rigid
circle forming a mass current m/t, where m is the mass of the
planet or satellite and ¢ is the period of revolution of the planet or
satellite under consideration. If the orbital angular velocity of the
planet (satellite) is w and the radius of the orbit is r, the angular
momentum of the rigid orbit is, by Eq. (15-2.3),

L, =mriw, (15-5.1)

and, by Eq. (15-2.4), the dipole moment of the orbit is

d --G¥"L. (15-5.2)
o CZ

In the presence of an external cogravitational field K', the
orbit then experiences a torque, which, by Eq. (15-3.3), is

T, - %LoxK’, (15-5.3)

and, by Eq. (15-3.1), the orbit precesses about the direction of K’
with angular velocity
_ To
= om0’ (15-5.4)
where § is the angle between L, and K'. Since w = 2/t, and
since T, = (1/2)|L, x K'| = (1/2)L,K'sin 8, the precession
angular velocity of the orbit is
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o - K (15-5.5)

° 2
regardless of the angle between the direction of the cogravitational
field and the axis of the orbit.

The cogravitational field K’ responsible for the precession of
the orbit of a satellite or planet can be produced by the rotating
central body, by other rotating bodies, by other orbiting satellites
or planets, and by the rotating galaxy. Thus, for example, if a
satellite revolves around a rotating central body, and the
cogravitational field created by the central body at the points of
the satellite’s orbit is K', the orbit of the satellite will precess in
accordance with Eq. (15-5.5). For a satellite in direct orbit, the
precession will be, by the QLT rule, in the retrograde direction.

References and Remarks for Chapter 15

1. See, forexample, A. P. French, Newtonian Mechanics (Norton,
New York, 1971) pp. 680, 681.

2. Actually, the purpose of Gravity Probe B is to measure the
"gravimagnetic field" of the Earth. The gravimagnetic field is a
concept of the general relativity theory associated with rotating
bodies and differs from the cogravitational field of a rotating body
in the generalized theory of gravitation by a factor of 4 (it is
presumably four times larger than the cogravitational field; see
Chapter 20 for details). Qualitatively, however, the two fields are
the same.

3. See, for example, R. A. Becker, Introduction to Theoretical
Mechanics (McGraw-Hill, New York, 1954) pp. 304, 305.
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TRANSFORMATION

OF ENERGY AND MOMENTUM
IN GRAVITATIONAL AND
COGRAVITATIONAL
INTERACTIONS

As we know from Chapters 2 and 8, gravitational and
cogravitational fields are repositories of energy and momentum.
A very important aspect of gravitational and cogravitational
interactions is the exchange of energy and momentum between
gravitational and cogravitational fields and bodies located in these
fields. In this chapter we shall analyze the mechanism of this
exchange. We shall learn how this mechanism affects the kinetic
energy of bodies moving in the presence of gravitational fields.
And we shall discover the actual physical nature of gravitational
and cogravitational forces.

16-1. Energy Exchange Between a Gravitational Field and
Bodies Moving in It

One of the most eloquent examples of the effectiveness of the
generalized theory of gravitation is its ability to explain the details
of the process responsible for the variation of kinetic energy of

274
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bodies moving under the action of gravitational fields. As is
known, the motion of stellar bodies and the fall of bodies under
the action of the gravitational field is associated with conversion
of potential energy into kinetic energy and vice versa. In
particular, when a body is falling under the action of the
gravitational field of the Earth, its potential energy diminishes and
its kinetic energy increases. But how, exactly, does this come
about? How is this energy exchange actually accomplished? In the
past this phenomenon was simply interpreted as a result of the
energy conservation, but the process, or mechanisms, of the
energy exchange remained unknown. As we shall now see, the
generalized theory of gravitation explains this heretofore hidden
process with perfect clarity.

Let a body of mass m fall under the action of the Earth’s
gravitational field g (Fig. 16.1). Note that the magnitude of g is
equal to the acceleration of gravity g. Let the velocity of the body
at the moment of observation be v. Like all moving masses, the
falling body creates around itself a cogravitational field K left-
handed relative to the velocity vector of the body. Therefore,
according to Eq. (2-2.9) (gravitational Poynting vector equation)

p-_¢
4G
there is a flow of gravitational energy U, at the surface of the
falling body directed into the body. The rate at which the
gravitational energy enters the body is
dau

g - LKxg)dS = S $(axK)-ds. (16-1.1
- S & xg) a8, = L @xK)-ds, (161D

Kxg, (2-2.9)

where dS,, is a surface element vector of the falling body directed
into the body, and dS is a surface element vector directed, as
usually accepted in vector analysis, from the body into the
surrounding space; the integration is over the entire surface of the
falling body. Transposing in the integrand the cross and the dot
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Fig. 16.1 The generalized
theory of gravitation
provides a clear expla-
nation of the mechanism of
energy exchange involved
in  gravitational inter-
actions: the increase of
the kinetic energy of a
body moving under the
action of a gravitational
field occurs as a conse-
quence of the influx of
gravitational field energy
into the body via the
gravitational Poynting
vector.

and factoring out the constant vector g together with the dot from
under the integral sign, we have
au 2 2
Do . C_r}lg K xdS)=__g- }K xdS. (16-1.2)
da 471G 4G
Converting now the last surface integral into the volume integral
by using vector identity (V-21), we obtain

dU 2
_sr=-C_g.]v><Kdv. (16-1.3)
dt 4G

By Eq. (7-1.4), since g is not a function of time,

VxK=-3Cpy (16-1.4)
c

Therefore Eq. (16-1.3) reduces to
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au
g dv. (16-1.5)
di g JPV

Factoring out the constant vector v from under the integral sign,
we obtain

dau
& -v[ dv. (16-1.6)
a g (4

Thus, since g and v are parallel, and since the last integral in
Eq. (16-1.6) represents the mass of the falling body, we find that
when the body is falling, there is an influx of the gravitational
field energy (potential energy) into the body at the rate

du

& —geym = ) (16-1.7)
5 ~8rvm=myg

Let us now consider the kinetic energy. The kinetic energy of
a falling body increases at the rate

W _ d(mvz) av (16-1.8)
2

= =mv_ =mvg,
dt dt dt

where g is the acceleration of the falling body. However, as was
mentioned above, g in Eq. (16-1.7) is the same acceleration, and
therefore the rate at which the kinetic energy of the falling body
increases is equal to the rate of influx of the gravitational field
energy into the body.'

Thus the generalized theory of gravitation provides a clear
explanation of the mechanism of the energy exchange involved in
gravitational interactions: the increase of the kinetic energy of the
body moving under the action of a gravitational field occurs as a
consequence of the gravitational field energy influx into the body
via the gravitational Poynting vector. Essentially the same
considerations apply to the case when a body moves against the
gravitational field, in which case its kinetic energy diminishes due
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to an outflow of energy from the body into the surrounding space
again via the gravitational Poynting vector.

The simplicity of the above calculations tends to hide the
utmost significance of the obtained results. The fact is that no
gravitational theory can be considered definitive if it cannot
provide a clear explanation of the mechanism of conversion of
"gravitational potential energy" into the kinetic energy of falling
bodies. Therefore, in spite of their simplicity, the above
calculations constitute an exceptionally important proof of the
validity of the generalized theory of gravitation and, at the same
time, reveal the true nature of the "gravitational potential energy."

16-2. The Physical Nature of Gravitational and Cogravitational
Forces

Gravitational interaction of celestial bodies is a very
mysterious phenomenon. It is traditionally attributed (without any
further explanation) to the action of forces of "universal
gravitation." But where are the threads, the ropes, the chains or
the springs that pull celestial bodies one to the other? How does
the Earth "know" that it needs to revolve around the Sun? How
does it "feel” where the Sun is located? As far as we know, there
exists no material connection between celestial bodies. But if there
is no material connection, does it not mean that gravitational
interactions are not a manifestation of the action of forces, but a
manifestation of the existence of some heretofore overlooked agent
or mechanism? The generalized theory of gravitation answers this
question with perfect clarity.

According to the generalized theory of gravitation,
gravitational and cogravitational fields are repositories of not only
energy but also of momentum G [see Eq. (2-2.11)], and a direct
exchange (transformation) of momentum can occur between a
gravitational-cogravitational field and a body (mass) located in this
field. As a result of such an exchange, a momentum is transferred
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from the field to the body (or vice versa), increasing (or
decreasing) the mechanical momentum G,, of the body. The
momentum exchange takes place in accordance with Eq. (2-2.12),

dG,, 1 l

0
—Y=-__ | Z(KXxg)dV
dt 47 G ot (2-2.12)

. Z%[%i; (g2 +c?K?)dS - 45 g(g - dS) -c2§5 K(K - dS)] :

If dG,,/dt in this equation is positive, a momentum is transferred
from the field to the body; if dG,,/dt is negative, a momentum is
transferred from the body to the field (for simplicity, we shall
consider in the discussion that follows the case of the positive
dG,,/dt only).

The first integral (the volume integral) in Eq. (2-2.12) is
evaluated over the region of the gravitational-cogravitational field
containing the body under consideration and represents the rate of
change of the gravitational-cogravitational field momentum in this
region. The remaining integrals (surface integrals) are evaluated
over the boundary surface of the region over which the first
integral is evaluated and represent the flux of
gravitational-cogravitational field momentum through this surface.

Thus, the increase of the mechanical momentum of the body
occurs at the expense of the field momentum lost by the region in
which the body is located, as well as at the expense of the field
momentum entering the region from the surrounding space. The
total momentum of the field and the body always remains the
same (compare Chapter 8). It should be noted that the transfer of
gravitational-cogravitational field momentum into mechanical
momentum (and vice versa) is closely connected with the transfer
of field energy into kinetic energy of the body (and vice versa)
discussed in Section 16.1 (clearly, there cannot be an exchange of
mechanical energy without a simultaneous exchange of
momentum, because both the kinetic energy of a body and the
momentum of the body depend on the velocity of the body).
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Since the effect of a force cannot be distinguished from that
of a change of mechanical momentum, and since force is a much
more familiar concept than momentum, we naturally see "force
actions” in gravitational and cogravitational interactions, although
what happens in reality is a straightforward momentum exchange
(transformation) between the gravitational-cogravitational field and
the body (mass) located in this field. Thus we must conclude that
"force" in gravitational systems is a convenient and important
mathematical device, but not the physical effect, entity, or agent
responsible for gravitational interactions.

It is important to note that although forces (in the conventional
sense of the word "force") do not play a role in gravitational
interactions, this does not at all diminish the practical significance
of Eq. (2-2.6) and of all other force equations agreeing with Eq.
(2-2.6). In Example 16-2.2 we shall show that Eq. (2-2.6) is a
direct consequence of Eq. (2-2.12). Therefore the results obtained
with the help of force equations are indistinguishable from those
obtained from Eq. (2-2.12), but force equations are much simpler
and much more convenient to use than Eq. (2-2.12).?

Let us now illustrate the details of gravitational momentum
transfer into mechanical momentum by means of the following
example.

v

Example 16-2.1 A long cylinder of mass m, length / and radius a,
with [ > a, falls along its axis under the action of the Earth’s
gravitational field g, (Fig. 16.2). The velocity of the cylinder at the
time of observation is v. Analyze momentum transfer in the system.

Let us find the gravitational self-field created by the cylinder
outside itself. Since / > a, we can neglect the end effects of the
cylinder. The gravitational field of the cylinder is then, according
to Gauss’s theorem of vector analysis [see Eq. (7-1.5); see also
EMS89, 90],
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Fig. 16.2 A cylinder of mass m falls under the action of the Earth’s
gravitational field g,. On the right is the end view of the cylinder
showing its gravitational self-field g. and its cogravitational field
self-field K.

g =-G2_mr

) v (16-2.1)
Ir

where r, is a unit vector at right angles to the axis of the cylinder
directed from the axis into the surrounding space.

The total gravitational field outside the cylinder is the sum of
the cylinder’s self-field g, and of the external field g, in which the
cylinder moves:

g-g +8,- —Gzl_mru+ge. (16-2.2)
r

The falling cylinder also creates a cogravitational field K . As

we shall see, the magnitude of this field does not matter in the
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present case — only its direction is important. According to Eq. (7-
1.8), K. is a circular field directed clockwise as seen from below
the cylinder (as was explained in Section 7-1, the cogravitational
field is left-handed relative to the mass current by which it is
created). Since there is no other cogravitational field in the system
under consideration, K, is the total cogravitational field K of the
system.

Let us now construct a cylindrical surface enclosing the
cylinder just outside the cylinder, and let us apply the first integral
of Eq. (2-2.12) to the enclosed volume and apply the remaining
integrals to the surface enclosing the cylinder. Since the
gravitational and cogravitational fields inside the cylinder are not
functions of time, and since we neglect the end effects of the
cylinder, the first integral in Eq. (2-2.12) (volume integral)
vanishes, and Eq. (2-2.12) reduces to

4Gy, 1 [1f o, 2 13 ) _21; . }
5 m[if(g +c’K»)dS -9 g(g - dS) -c*PK(K-dS)|.
(16-2.3)
The first integral in this equation vanishes by symmetry [to
every dS at a point of the cylindrical surface there corresponds an
equal but opposite dS at a diametrically opposite point, while g’ and
K? are the same at both points; and on the two flat ends of the
cylinder dS’s are also in opposite directions, while g” and K? are
the same at both ends]. The last integral vanishes because on the
cylindrical surface K is perpendicular to dS, so that K - dS = 0,
and on the two flat ends of the cylinder dS’s are in opposite
directions, while K is the same at both ends. Thus only the second
integral survives in Eq. (16-2.3) so that

dG

m__ 1 . 16-2.4)
oM 1 as). (
di 47rc;#g(g )

Substituting Eq. (16-2.2) into Eq. (16-2.4) and taking into
account that at the surface of the cylinder r = a, we obtain
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daG,, 1 ( 2m I( 2m ) ]
M=~ _®-GZr +g ||I-G=Zr +g |-dS| (16-2.5)
dr 471G la Tut 8 la fu™8

On the cylindrical surface, g, is perpendicular to dS, so that
g.°dS = 0, and on the flat ends of the cylinder dS’s are in opposite
directions, while g, is the same at both ends. Hence Eq. (16-2.5)
reduces to

O 1 (-622r, e )G@r -ds. (16-2.6)
da 47G la * 7 la *

Factoring out the constants and taking into account that r, is
parallel to dS on the cylindrical surface (so that r, * dS = dS) and
perpendicular to dS on the flat ends (so that the flat ends make no
contribution to the integral), we obtain

Buom [[-2Me gas,  a627)
ar 27la la

where the integration is now over the cylindrical surface. Since to
every r, at a point of the cylindrical surface there corresponds an
equal but opposite r, at a diametrically opposite point, the first term
in the integrand makes no contribution to the integral, and we have

G, m

- jg as. (16-2.8)
d 2rmlal) "¢

Factoring out g, and integrating, we obtain the final result:

dG
Dow. Mg as -T2y g, (162.9)
dr 27wla”¢ 27la
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And so we have arrived at the well-known expression mg,
which is customarily considered to represent the force with which
the Earth’s gravitational field acts on falling bodies. However,
according to our calculations, mg, is not a force, but the rate of
change of the momentum of m (mass of the cylinder). Thus our
calculations have clearly shown that what appears to us to be the
force acting on a mass in a gravitational field is in reality the
invisible process of direct momentum transfer from the gravitational
(or cogravitational) field to the body located in this field.

Example 16-2.2 Show that the basic gravitational and
cogravitational force equation, Eq. (2-2.6), is a direct consequence
of the momentum equation, Eq. (2-2.12).

Let us modify vector identity (V-22) by setting init B = A. We
then obtain a new vector identity which we shall call (V-22m):

%cfAst - 1>A(A - dS) = [[Ax(VxA) - AV - A)laV,
(V-22m)
where A is an arbitrary vector field. Applying now vector identity
(V-22m) to the surface integrals in Eq. (2-2.12). We obtain

dG
J:Ljﬂ(g x K)dV
d 4nGJ ot
-4_10[ [(V - @)g +c(V - K)K -g X (V X g) - 2K X (V XK)] dV.
K (16-2.10)
Now, by Egs. (7-1.1)-(7-1.4),
V-g=-47Gp, V-K=0,
(6-2.11)
VXg=—a_lS, VxK=—4LGJ+l%.
ot c? c? ot

Substituting these expressions into Eq. (16-2.10), we have
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aG,, 1 j
o L [ Y@ xK)av
-~ Irc) 38 %K) (16-2.12)
- _I_GJ 41Gpg +g X 2_1( -K x( 47GJ +_(3_§)]dv.
Since
_(g x K) = ag XK + gx "gt( (16-2.13)
and
%y Kk--Kx%8, (16-2.14)
ot ot

the expressions containing the time derivatives cancel, and we are
left with

Gy _ ] (og-K x J)av = J (og +J x K)dV = j p(g +v x K)dV,

at
(16-2.15)
which is the same as Eq. (2-2.6), except that instead of the usual
force on the left side of the equation we have the rate of change of
the mechanical momentum G,, of the mass caused by the action of
the fields g and K.
In connection with the above derivation, it may be noted that
for time-independent systems Eq. (2-2.12) reduces to Eqgs. (7-3.30)
and (7-3.36), which are the gravitational and cogravitational
equivalents of electromagnetic Maxwell’s stress integrals® (with the
rate of change of mechanical momentum in place of the usual
force):

dGM ]. & 2 2 1 C2
Pow_ 1 KZdS—___tf -dS —_<}>K K -dS).
e (g"+c’K?) prre g(g-dsS) G ( )

ar
(16-2.14)
A
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17

PHYSICAL LINK BETWEEN
GRAVITATIONAL AND
ELECTROMAGNETIC FIELDS

Gravitational fields attract photons. As a result, light beams
are deflected by gravitational fields from the paths that they would
have in field-free space. On the other hand, according to
Maxwellian  electromagnetic  theory, light consists of
electromagnetic waves, and the propagation of all electromagnetic
waves is governed by the laws of electromagnetism. Hence, at
least to some extent, gravitation and electromagnetism are
physically linked together. In this chapter we shall explore some
aspects of this link.

17-1. Coupling of Gravitational and Electromagnetic Fields

Consider a light ray propagating with velocity ¢ in a region
free from a gravitational field. Let it strike at a grazing incidence
a thin transparent boundary between the field-free region and a
region where the gravitational field is g (Fig. 17.1) (such a
configuration of gravitational fields can be created with the help
of "gravitational parallel-plate capacitors” discussed in Example
13-1.7). Upon entering the region where g # 0, the ray is
deflected, because the photons in the ray are attracted by the

287
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AV
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Fig. 17.1 A light ray propagating with velocity c in a region free
Jfrom gravitational field strikes at a grazing incidence a boundary
between the field-free region and a region where the gravitational
field is g. Upon entering the region where g # 0, the ray is
deflected, because the photons in the ray are attracted by the
gravitational field.

gravitational field. Let us find the angle 8 between the deflected
ray and the boundary, assuming that the ray is only slightly
deflected from its original path.

Acting on an individual photon in the ray, the gravitational
field creates a component of the photon’s mechanical momentum
normal to the boundary, G,,,, in accordance with the formula

Mn =mg, (17-1.1)

where m is the photon’s mass. Immediately after crossing the
boundary, the trajectory of the photon is still a straight line and
its velocity is still essentially c.' Therefore we can replace dr in
Eq. (17-1.1) by dl/c, where dl is the distance travelled by the
photon during the time dt. We then obtain from Eq. (17-1.1) and
Fig. 17.1
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dG,, = -j"8al. (17-1.2)
c

As is known, the mechanical momentum of the photon in a field-
free space is G,, = mc. Since the velocity of the photon
immediately after crossing the boundary is still essentially ¢, we
can assume that the tangential (with respect to the boundary)
component of the photon’s mechanical momentum over the
distance dl is the same as in the original ray, that is G,, = mci.
Consequently, taking into account that, by supposition, the
deflection of the ray is small and using Eq. (17-1.2), we have for
the angle 8 between the deflected light ray and the boundary

4Gy, _ mgdl _ gdl (17-1.3)
G, cmc c?

sin@ = tan8 =

Furthermore, according to Fig. 17.1, dl = ds/tan8 = ds/sing,
so that, using Eq. (17-1.3), we can write

sin?g ~ 8% (17-1.4)
C
or,
cos’B = 1 - 845 (17-1.5)
CZ

We can simplify Eq. (17-1.5) by noticing that, by Eq. (7-
3.15), gds is the difference of gravitational scalar potentials ¢,
and ¢, between the points @ and b shown in Fig. 17.1. Setting ¢,
= 0 (that is, using the potential at the boundary as the reference
potential), we then have gds = — ¢,, or, simply, gds = — o.
Eq. (17-1.5) then becomes

cos?B=1+2 (17-1.6)
C2

(observe that ¢ is negative).



290 CHAPTER 17 LINK WITH ELECTROMAGNETISM

Now, by Snell’s law,?

sina;,  sinq,

i = = (17-1.7)
sina,  cos@

’

where n is the index of refraction in the space where the refracted
ray is located. Since in the present case oy = w/2, the index of
refraction in the space below the boundary is, by Eq. (17-1.7),

1
~ , (17-1.8)
4 cos@
or, with Eq. (17-1.6),
1 (17-1.9)

n~=___ .
(1 +@lcd)?

Taking into account that n = c/v, where v is the velocity of
the refracted ray,” our calculations show that the velocity of light
in a region of space where the gravitational potential is ¢ is

v=c(l+plch)? = c( +pl2c?, (17-1.10)

and, since ¢ is negative, is smaller that the velocity of light in a
field-free region.?

According to the Maxwellian electromagnetic theory, the
index of refraction of a medium is determined by the relative
permittivity ¢ and the relative permeability u of the medium in
accordance with the formula?

n = (ep)'”. (17-1.11)

Therefore we must conclude that the gravitational field, as far as
electromagnetic phenomena are concerned, constitutes a medium
whose ¢ and p are, by Eqgs. (7-1.9) and (17-1.11)

ep~ L ~1-glc?. (17-1.11)
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The consequences of this result may be very considerable. All
electromagnetic forces and interactions depend on ¢ and p. Larger
€ results in smaller electric fields and smaller electric forces,
larger p results in larger magnetic fields and stronger magnetic
forces. Insofar as the interatomic forces are basically electric
forces, atomic energy levels should shift towards lower energy
levels by gravitational fields and therefore the radiation by atoms
and molecules located in a gravitational field should be shifted
towards the "red" end of the spectrum. For the same reason,
electric and atomic clocks should slow down in the presence of
gravitational fields (see also Section 17-3). Many other similar
effects are clearly possible. Of course, all such effects are very
small except, possibly, in very strong gravitational fields. It
should be noted, however, that our calculations apply to relatively
weak gravitational fields.

17-2. The Bending of Light Under the Action of a
Gravitational Field

Consider a light beam passing across a gravitational field. The
gravitational field attracts the photons in the beam and deflects the
beam from its original direction. Let the beam pass near a large
mass, such as the Sun. The gravitational field of the Sun attracts
the photons in the beam and causes the beam to bend. To
determine the exact shape of the beam and its deflection from the
original direction one needs to treat the Sun’s gravitational field
as a spherical lens whose index of refraction depends on the
distance (potential) from the Sun in accordance with Eq. (17-1.9)
(if the Sun’s field is "weak"). This is a difficult problem and we
shall not attempt to solve it here. There is, however, a simpler
way to obtain an approximate solution of the problem. We do not
expect the beam to be bent very much and therefore we can
assume that the angle o (see Fig. 17.2) between the final and the
original direction of the beam is small. Let us find this angle.
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Fig. 17.2 Light ray passing close to the Sun is bent by the Sun’s
gravitational field.

Acting on an individual photon in the beam, the component of
the Sun’s gravitational field normal to the beam creates a
component of the photon’s mechanical momentum normal to the
beam, G, in accordance with the formula
aGy, =mg , (17-2.1)
dt "
where m is the photon’s mass and g, is the normal component of
the Sun’s gravitational field. Let the mass of the Sun be M,, let
the Sun be at the origin of rectangular coordinates and let the light
beam be originally parallel to the x axis at a distance y above the
axis. The component of the Sun’s gravitational field normal to the
beam is then, by Eq. (7-3.10) or (7-3.9), (as is known, the
external gravitational field of a uniformly distributed spherical
mass is the same as if the entire mass was at the center of the
sphere)

M.
g” =g = - G "yJ, (17-22)
y r3
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where r is the distance between the sun and the photon under
consideration. The momentum component G,,, acquired by the
photon during its flight past the Sun is therefore

. mM
G, --j JG__TJydt. (17-2.3)
r

Assuming that the speed of the photon remains essentially
constant and equal to ¢ during its flight past the Sun, we can
replace dt in Eq. (17-2.3) by dx/c. Expressing then r in terms of
x and y, we can write Eq. (17-2.3) as

dx, (17-2.4)

GmM_( F

- s Y

Gy, = -J [_p 2 4 y2)32
C I(x +y)

where —P, and P, are the starting and the ending x coordinate of
the photon’s trajectory, respectively. Since the mass of photons is
small, the light beam does not bend very much, and its distance,
y, from the x axis remains essential constant. Integrating Eq. (17-
2.4) while keeping y constant, we obtain

. GmMs X P:
G,,=-j . — (17-2.5)
C yHxt+yH)Ei-n
and, assuming that P, = P, > y,
.2GmM
G,, =-] . (17-2.6)
cy

As is known, the mechanical momentum of the photon in a
field-free space is G,, = mc and the direction of the momentum
is the same as the direction of the photon’s velocity. Assuming
that the point P, is essentially in a field-free space, the original
mechanical momentum of the photon under consideration is G,, =
mci. By symmetry, the x component of the photon’s velocity at
the point P, is the same as at the point P,. Therefore its
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mechanical momentum along the x axis at the point P, is again
G,, = mci. Consequently, the angle between the final and the
original direction of the light beam passing the Sun (see Fig. 17.2)
is given by the formula

Gy, 2GmM,
G, mccy

or, taking into account that, by our suppositions, G,, < G,,

sina = 17-2.7)

>

2GM,
cy
For light grazing the surface of the Sun, Eq. (17-2.8) becomes

a = (17-2.8)

o~ 20M (17-2.9)

R
where R is the radius of the Sun.

It should be noted that the actual deflection of a light beam by
the Sun is larger than as shown by Eq. (17-2.9) because the space
in the vicinity of the Sum is not a vacuum. The Sun is actually
surrounded by a material medium - solar corona, zodiacal cloud,
solar wind, etc., all of which make the index of refraction in the
space near the Sun larger than one. Also, one should remember
that our solution is only approximately correct because, as
mentioned at the beginning of this section, to find the actual
deflection of the beam, the Sun’s gravitational field should be
treated as a complex spherical lens.

17-3. Gravitational Shift of Spectral Lines

Consider a body moving in a gravitational field. According to
Egs. (16-1.7) and (16-1.8), as a result of the energy exchange
between the gravitational field and the body, the kinetic energy of
the body increases or decreases at the rate
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=+mg-v, (17-3.1)

where "+" applies when the body moves in the direction of the
gravitational field, and "—" applies when the body moves in the
opposite direction. Let us express v as ds/dt, where ds is the
distance traveled by the body during the time interval dt. From
Eq. (17-3.1) we then have

du, ds
Z =% . — 17-3.2
da "8 dt ( )
or
du,, =+ mg-ds. (17-3.3)

By Eq. (17-3.3) (omitting the subscript kin for simplicity), if the
body travels from a point r; to a point r,, its kinetic energy
changes by

r.

U,-U,=+m| g-ds, (17-3.4)

where U, and U, denote the kinetic energy of the body at points
r, and r,, respectively. By Eq. (7-3.15), equation (17-3.4) can be
written as

U -U =m(p, -¢,), (17-3.5)

where ¢, and ¢, are the gravitational potentials at points r; and r,,
respectively.

Let us now assume that the body under consideration is a
photon and let us assume that it moves from a region of stronger
gravitational field (point r,, smaller ¢ - remember that in general
the gravitational potential is a negative quantity) to a region of
weaker gravitational field (point r,, larger ¢). As is known, the
mass of a photon is m = E/c? and its frequency is v = E/h, where
E is the energy of the photon, ¢ is the velocity of light and h is
Planck’s constant. In this case, according to Eq. (17-3.5), as the
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photon moves from r, to r,, its energy, and therefore its
frequency, diminishes. From Eq. (17-3.5) we then have for the
change of the photon’s frequency ("frequency shift")

- E
v, -y = % = F(% -9, (17-3.6)

where v, and v, are the frequencies of the photon at points r, and
r;, respectively, and E is the average energy of the photon during
its motion from r, to r,.

Let us further assume that the frequency shift is small
compared with »,, so that photon’s mass, m = E/c* = hv/c’
remains essentially the same as it was at the point r,. In this case
we can replace in Eq. (17-3.6) the average energy of the photon
by Av,, obtaining

v,-v = i(gol -9,). (17-3.7)

CZ

For the ratio of the frequency shift to the initial frequency we then
have

Th A (17-3.8)
v, c?

If the source of the photon is within a gravitational field and
the observer is at a field-free point (¢, = 0), the shift is toward
smaller frequencies ("red shift" of the spectral lines in the
spectrum of the source). If the source of the photon is at a field-
free point (¢, = 0) and the observer is in a gravitational field, the
shift is toward larger frequencies ("violet shift" of the spectral
lines in the spectrum of the source).

In particular, the gravitational red shift for light emitted by
atoms on the surface of the Sun, as observed far from the Sun, is,
according to Eqs. (17-3.8) and (7-3.12) [or (7-3.13)],
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Ay _ GMS

= . 17-3.9
R ( )

If the energy of the photon experiences a large change under
the action of the gravitational field, the calculations of the
frequency shift are difficult. Clearly, however, the essential result
of the calculations will not differ significantly for the results
presented above.

It may be noted that Eq. (17-3.9) applies also to the frequency
shift of atomic clocks and, assuming that the frequency shift is
small, can be written as

Av _ GM
- =", 17-3.10

v Rc? ¢ )
where M the mass of the spherical body, R is the distance from its

center, and v is the frequency of the clock in a field-free space.

References and Remarks for Chapter 17
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Magnetism, 2nd ed., (Electret Scientific, Star City, 1989) pp. 535-
539.

3. Although Eq. (17-1.10) has been derived specifically for the
velocity of light, it clearly applies to any electromagnetic radiation,
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GRAVITATIONAL AND
COGRAVITATIONAL WAVES

In the broadest sense of the word, a wave is any
"disturbance" that propagates in space. In the very narrow sense,
a wave is a "disturbance" of sinusoidal shape. Gravitational and
cogravitational fields can exist as waves. In this chapter we shall
derive equations describing basic properties of gravitational and
cogravitational waves and we shall learn how such waves can be
generated.

18-1. The Existence of Gravitational and Cogravitational
Waves

As we know, the similarity of Eqs. (7-1.1)-(7-1.4) with
Maxwell’s electromagnetic equations suggests that many
electromagnetic phenomena have their gravitational and
cogravitational counterparts. In particular it may be expected that
there should exist gravitational and cogravitational waves similar
to the electromagnetic waves. We shall now show by direct
calculations how Egs. (7-1.1)-(7-1.4) predict the existence of
gravitational and cogravitational waves.

We start with Eq. (7-1.3)

3K

VxXxg = - ___. 7-1.3
g o ( )

298
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Taking the curl of this equation, we obtain

VXVxg = - (%VXK, (18-1.1)
Substituting Eq. (7-1.4),
VxK = - 3Gy, 138 (1-1.4)
c? c? or
into Eq. (18-1.1), we obtain
Vxvxg - 41G _ 108 (18-1.2)
¢t ot %o’
or 5
VxVxg+ L 08 _ 41G ) (18-1.3)

2 6[2 C2 6[

Similarly, taking the curl of Eq. (7-1.4), we have

- 4Gy g+ LOVXE (1814
c? c? ot

VXVXK =

and, substituting Eq. (7-1.3) into Eq. (18-1.4), we obtain

2
VxVxK = - 20pxy - L 0K (1815
c? c? or?
or
2
VXVxK + iﬂ . _‘“'_GVxJ (18-1.6)
c? or? c?

Equations (18-1.3) and (18-1.6) are mathematical expressions
for waves propagating in space with velocity ¢. In the present case
they represent waves carrying with themselves the gravitational
field g and the cogravitational field K, respectively.

If in the region under consideration there are no mass
currents, Eqgs. (18-1.3) and (18-1.6) reduce to

1 d’g
VxVxg+ ___85 =90 (18-1.7)
g c? o
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and
2
VXVXK + 1% 0. (18-1.8)
c? or?

Now, by vector identity (V-16)

VxVxg =V(V-g) - Vg (18-1.9)
and
VXVxK = V(V-K) - VK. (18-1.10)

Furthermore, by Eq. (7-1.2), V - K = 0, and, by Eq. (7-1.1), in
a mass-free region of space also V - g = 0. Therefore in a region
of space where there are no masses and no mass currents, Egs.
(18-1.3) and (18-1.6) become the more familiar "wave equations”

1 o’g
vig - 108 _ (18-1.11)
8 c? ar?
and
vig - LOK _ (18-1.12)
c? or?

To demonstrate that Eqs. (18-1.11) and (18-1.12) do indeed
represent waves, let us assume that the fields g and K in Eqs. (18-
1.11) and (18-1.12) depend only on one coordinate in a
rectangular system of coordinates (the wavefront of such waves is
a plane and therefore such waves are called plane waves). Let us
assume that g and K in Eqgs. (18-1.11) and (18-1.12) depend only
on the z coordinate. In this case dg/dx = dg/dy = 0 and dK/dx
= 0K/0y = 0, so that Eqs. (18-1.11) and (18-1.12) become

g 108 _ (18-1.13)
072 c? or?

and
K _ 13K _ g (18-1.14)

8z2  c? a2
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The solution of each of these equations is the sum of the two
arbitrary vector functions

f,(t-2/c) + £,(t +2/c) (18-1.15)

as can be verified by direct substitution.

The function f,(f — z/c) is an expression for a wave
propagating with speed c in the positive direction of the z axis.
This can be seen from the fact that, since the argument of the
function is ¢ — z/c, the value of the function at the time 7, and
point z, is the same as at a later time ¢, and a further point z,,
provided that

(t, -z,/c) = (t, - z,/0). (18-1.16)

Solving Eq. (18-1.16) for ¢, we have

c="%, (18-1.17)
17

But 7z, — z, is the distance traveled by the wave during the time
1, — t,. Therefore c is the velocity with which the wave
propagates.

Similarly, the function fi(f + 2z/c) is a mathematical
expression for a wave propagating with velocity ¢ in the negative
direction of the z axis.

Although we usually associate waves with a sinusoidal shape,
in physics a wave is actually a "disturbance" of any shape that
propagates in space in accordance with Eq. (18-1.15) or in
accordance of a similar equation not restricted to the z axis only.

18-2. Direction of Gravitational and Cogravitational Field
Vectors in Plane Waves

For a plane wave which is a function of z and ¢ only, all
partial derivatives with respect to x and y vanish. Since, by Eq.
(7-1.2),
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vek - KL L% Ly as2
0x dy 0z
we then have 0K /dz = 0. Therefore the cogravitational field in a
plane wave has no varying component along the direction of the
propagation of the wave. Similarly, by Eq. (7-1.1), in a mass-free
space (we are considering mass-free space),

98, , 08, % _ (18-2.2)
0x dy 0z
and therefore dg,/dz = 0, so that the gravitational field in a plane
wave has no varying component along the direction of the
propagation. This means that the wave is transverse - that is, the
gravitational and cogravitational field vectors of the wave are
perpendicular to the direction of the propagation of the wave.
We can obtain a more complete picture of the orientation of
field vectors in a plane wave as follows. According to the
preceding section, the field vectors in a plane wave propagating
in the positive z direction are functions of ¢+ — z/c. By vector
identity (V-13), we then have

V.g:

_ og k og
Vxg =V(it-zlc)x ——5 __ =-"2x__"8_  (18-2.3)
8 =VU-d X s~ T N a0
where k is a unit vector in the z direction. Also, we have

9K _ K (18-2.4)

ot a(t-zlc)
But according to Eq. (7-1.3),

Vxg = -%. (7-1.3)
Therefore

k08 __ 0K (18-2.5)
c 0(t-2o) o(t-z/c)

Integrating this equation, we obtain
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K-lkxg. (18-2.6)
(o

Since the wave is transverse, so that, k 1 g, Eq. (18-2.6)
shows that, in a plane wave, the cogravitational field vector, the
unit vector in the direction of propagation, and the gravitational
field vector are mutually perpendicular and form a right-handed
system in the order stated.

18-3. Energy Relations in Plane Gravitational and
Cogravitational Waves

By the energy law Eq. (2-2.7), the energy density in a plane
gravitational-cogravitational wave propagating through free space
is . .

U =- g - —_cXkK%. 18-3.1
* 7T 86® T wc’ (18-3.1)

By Eq. (18-2.6), considering only the magnitudes of K and g,
K = g (18-3.2)

Therefore
L e-_1 ok 18-3.3
grGS  8rG (183.3)
so that the energy of the wave is divided equally between the
gravitational and the cogravitaional fields.

Let us now calculate the gravitational Poynting’s vector
associated with a plane gravitational-cogravitational wave. Using
Eq. (2-2.9) and Eq. (18-2.6), we have

CZ

P - Kxg=_ (kxg) xg. -
yPre g 47rG( g xXg (18-3.4)

Transposing in the last expression k X g and g and using vector
identity (V-3), we have
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P=_"gk-g -_S k(- g), 18-3.5
47rGg( g2 yPre (g -8 ( )

and since k is perpendicular to g, we obtain

P--_° gk 3.
41rGg (18-3.6)
or, with Eq. (18-3.3),
3
P--_° Kk 3.
PEee (18-3.7)

Dividing Eqgs. (18-3.6) and (18-3.7) by 2, adding them, using
Eq. (18-3.1), and using ck = ¢, we can express P as

P-Ugc, (18-3.8)

where U, is the energy density, and c is the velocity vector of the
wave. Thus gravitational-cogravitational field energy is propagated
by the gravitational-cogravitational wave with speed ¢ in the
direction in which the wave propagates.

Note, however, that U, is negative. An important consequence
of the negative U, in gravitational-cogravitational waves is that,
in contrast to the electromagnetic waves, a gravitational-
cogravitational wave striking a body pulls the body toward the
wave, that is, exerts a negative rather than a positive pressure on
the body.!

18-4. Generation of Sinusoidal Gravitational-Cogravitational
Waves

Consider a ring whose mass is distributed along its
circumference with uniform line density N\ (Fig. 18.1). Let it
oscillate about its symmetry axis with angular velocity w
according to the formula

o = qsinwt, (18-4.1)
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: Vad \ Fig. 18.1 Gravitational-
& 0, cogravitational waves can

be generated by an
oscillating ring. The unit
vector ¢, is directed into
o= osin@!? the page.

where o is the amplitude of the oscillations. The linear velocity
u of the ring is given by the formula

u = a%?ga" = aqw(coswhe,, (18-4.2)

where a is the radius of the ring and ¢, is the circular (azimuthal)
unit vector directed along the velocity vector u of the ring.
The gravitational field of the ring is given by the Eq. (2-2.1),

ool o S o

Since the mass density in the ring is constant, the first integral in
Eq. (2-2.1) makes no contribution to the emission of waves.
Therefore, in the calculations that follow, we shall only be
concerned with the last integral of Eq. (2-2.1). Substituting Eq.
(18-4.2) into this integral and factoring out the constants, we
obtain

g-9%,

a%wGI l[a(pcoswt)]dvz C_p 306 I [sinwr] o)
c? r ot “ooc? r .
(18-4.3)
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Just as in Eq. (2-2.1), the brackets in Eq. (18-4.3) signify
retardation and indicate that the present time ¢ in the expressions
between the brackets must be replaced by the past time, the
"retarded time" t' = t - r/c. Substituting ¢’ in Eq. (18-4.3) and
removing the brackets we obtain

acw'G J’ psinw(t - r/c) av’

8= 0 — -

(18-4.4)

Note that the product pdV’ is equal to the mass element dm
contained in the volume element dV' of the ring. However, the
same mass element can be represented by the product \dl’, where
\ is the linear density of the mass of the ring, A = m/2ma, and
where dl' is an element of the length (circumference) of the ring.
Replacing pdV' in Eq. (18-4.4) by Adl’, factoring out N (which is
a constant) from under the integral sign, placing ¢, under the
integral sign, and replacing the product ¢,dl’ by the length
element vector dl’ of the ring, we obtain

__ao@’NG ‘f sinw(t - r/c) g/

18-4.5
c? r ( )

where the integration is over the circumference of the ring.
Using vector identity (V-18), we transform the contour
integral in Eq. (18-4.5) into the surface integral:

o-- a%‘*’Z)\G(J; sinw(t - rlc) o

c r (18-4.6)
__aqw\G I as’ x ySine@ - ric).
c? r

where the integration is over the surface area of the ring.
Computing the gradient in the integrand, we get
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ysinw( -rlc) _ _{

icosw(t -ric) + isinw(t - r/c)}r",
r r?

rc

(18-4.7)
where r, is a unit vector directed from an element of the surface
area of the ring to the point where the gravitational field g is
being observed.

When considering emissions of waves, one is usually
interested in waves far from the emitter. In this case we can
neglect the term with 1/ in Eq. (18-4.7). Substituting the
remaining expression into Eq. (18-4.6) and transposing dS’ and
r,, we obtain

g:

_ aq,w\G I cosw(t - r/c)l_ % dS'

" (18-4.8)

C3
Far from the emitter r > a and therefore the distance from all the
points of the ring to the point of observation is practically the
same. Hence, in this case, the integral in Eq. (18-4.8) reduces
simply to the product of the integrand and the area of the ring
ma*. Replacing N by m/2ma, taking into account that the
magnitude of the vector product r, X dS’ is ma’sind (see Fig.
18.1), and taking into account that the direction of this vector
product is against the azimuthal unit vector ¢,, we finally obtain

for the gravitational field g emitted by the ring:

ma a’wcosw(t - ric) .
g=G—= - (sinf) ¢, . (18-4.9)
2rc
A similar expression can be derived for the cogravitational
field K emitted by the ring (for brevity we shall give it here
without derivation):

moa’wcosw(t - ric) .
K=-G_0 — (sind) @, (18-4.10)

where 6, is the polar unit vector.
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Equations (18-4.9 and (18-4.10) represent spherical sinusoidal
waves propagating in space with velocity ¢ in the direction of
increasing r.

With the help of the gravitational Poynting vector we can
calculate the radiation power W of the gravitational emission of
the oscillating ring.? For the average power emitted during one
complete oscillation of the ring we obtain

2
W = - GM. (18-4.11)
“ 12¢°
An important characteristic of Eq. (18-4.11) is the negative sign
in front of it. It indicates that the gravitational waves carry
negative energy, and that the oscillating ring absorbs energy from
the surrounding space.

It may be noted that the magnitude of the gravitational and
cogravitational radiation fields is much too small to be measured
in a laboratory at this time. For example, according to Eqgs. (18-
4.9)-(18-4.11), a ring of mass 1 kg and radius 1 m oscillating
with an amplitude of 1 rad and circular frequency 1 sec™' would
produce at a distance of 10 m from itself a gravitational and
cogravitational wave of amplitude g = 1.2-107% m/sec?, K =
4-107% sec™!, and average power flow of W,, = — 2.3-107%
watts.

References and Remarks for Chapter 18

1. The calculations of the negative pressure by gravitational-
cogravitational waves are similar to the corresponding calculations
of the positive pressure by electromagnetic waves. For the latter
calculations see Oleg D. Jefimenko, Electricity and Magnetism, 2nd
ed., (Electret Scientific, Star City, 1989) pp. 513-514.

2. See also Oleg. D. Jefimenko, Causality, Electromagnetic
Induction, and Gravitation, 2nd ed., (Electret Scientific, Star City,
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dipole antenna. See Ref. 1, pp. 562-565.



19

GRAVITATION AND
ANTIGRAVITATION

According to Einstein’s mass-energy relation, any energy
has a certain mass. But mass is the source of gravitation.
Therefore any energy, including gravitational energy, should be
a source of gravitation. In this chapter we shall complete our
development and generalization of Newtonian gravitational theory
by investigating how gravitational fields are affected by the
gravitational energy contained in them. For simplicity, we shall
discuss time-independent fields only.'

19-1. Gravitational Energy as a Source of Gravitation

As explained in Section 1-1, the basic equations of Newton’s
theory of gravitation are, in modern formulation, the field laws

Vxg =0, (1-1.3)

and
Vg = - 471Gp. (1-1.4)
As stated in Section 2-2 and elaborated in Chapter 8, gravitational
fields are repositories of energy. By Eq. (2-2.7), the density of
gravitational field energy contained in a gravitational field is (for

simplicity of presentation we shall not consider the cogravitational
field energy in the discussion that follows)

310
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u-=-_8_ (19-1.1)

However, according to Einstein’s mass-energy relation
U = mcz, (19‘12)

any energy has a mass given by m=U/c?, where c is the velocity
of light. Hence we must conclude that the gravitational energy
density given by Eq. (19-1.1) has a mass density
i} g’
p,=-_5__. 19-1.3
& 81Gc? ¢ )
But then the source of gravitation should be not just the ordinary
mass density p but the sum of p and p,, in which case Eq. (1-1.4)
should be replaced by 2*
2

Vg = -4rGp + B_. (19-1.4)
2c?

From now on, we shall assume that the divergence law of
gravitation is given not by Eq. (1-1.4) but by Eq. (19-1.4)
instead. Observe that the last term in this equation contains the
total gravitational field g. This means that the equation takes into
account the effect of the gravitational energy upon itself.

Note that the mass density of the gravitational field, P is
negative. Thus Eq. (19-1.4) indicates that there may exist not only
ordinary attractive gravitational fields but also repulsive, or
antigravitational, fields. It also indicates that the field outside a
uniform spherical mass distribution depends not only on the
magnitude of this distribution but also on its internal field, so that
such a mass distribution cannot be replaced by an equal point
mass at its center, as can be done in the conventional Newtonian
theory. Finally, Eq. (19-1.4) gives us at least a partial explanation
for the behavior of gravitational field lines in gravitational fields.
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It is well known that the electric field lines in electrostatic fields
always have a beginning (on positive charges) and an end (on
negative charges). But, according to Eq. (1-1.4), the gravitational
field lines have no beginning, they just end on mass elements. A
clue to the mystery of their beginning is now given by Eq. (19-
1.4): at least some gravitational field lines begin on p, in the
space around and within mass distributions.

The basic field equations of Newtonian gravitational theory,
Egs. (1-1.3) and (1-1.4), are usually solved by means of the
gravitational potential ¢, defined by

g = - Vo. (1-1.9)
By combining Eqgs. (1-1.9) and (1-1.4), one obtains

V2o = 471Gp, (1-1.10)

which, subject to appropriate boundary conditions, can be solved
for a variety of mass distributions. The field g can then be found
from ¢ by means of Eq. (1-1.9). In the Newtonian theory one can
also use integral methods for finding g. Any of the following
expressions can be used for finding g given by Eqs. (1-1.3) and
(1-1.4)¢

g=-G|Lrav, (1-1.7)
r2
g-c[Tlav, (19-1.5)
r
or
0= - c]ﬂdva (1-1.11)
r

Unfortunately, none of the above techniques or equations can
be employed for finding gravitational fields given by Eqgs. (1-1.3)
and (19-1.4), since Eq. (19-1.4) is nonlinear in g. Thus, when the
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effect of the gravitational energy on the gravitational field is taken
into account, one cannot in general find the gravitational field g
from a given mass distribution p. There is, however, a way out
of this difficulty: one can postulate a certain field g satisfying Eq.
(1-1.3) and then from Eq. (19-1.4) one can find the mass
distribution

2

Vg, 8

i (19-1.6)

b =-

producing this field. Examples of such calculations are given in
the next section. One can also obtain approximate solutions for
nonlinear gravitational fields by assuming that gravitational energy
is entirely due to the true mass, thus ignoring the effect of the
gravitational energy upon itself (the true mass is the mass as such,
excluding the associated gravitational energy mass).

19-2. Examples of Nonlinear Gravitational Fields

We shall now present illustrative examples demonstrating
basic properties of nonlinear gravitational fields. All fields in
these examples are spherically symmetric and are in a radial
direction. Hence they automatically have a zero curl and thus
satisfy Eq. (1-1.3).> Of course, even if a field satisfies Egs. (1-
1.3) and (19-1.4), it still may be physically meaningless.
Therefore we shall restrict our choice of fields to those that satisfy
the following validity conditions:

(a) the energy of the field must be finite,

(b) the field must be finite at r=0,

(c) the true mass density p must be either positive or zero,
(d) the field must be everywhere continuous.
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v
Example 19-2.1 Find the mass distribution producing the field

g=-Glr for r<a, (19-2.1)
a
and
m
g=-Gor, for r>a. (19-2.2)
r

Note that in the conventional Newtonian theory this field is
produced by a sphere of radius a, mass m, and uniform density
p=3ml4ma’.

Substituting Egs. (19-2.1) and (19-2.2) into Eq. (19-1.6) and
differentiating, we obtain

2
p=_" (3 +c M ) for r < a, (19-2.3)
4ma’ 2c%a’

and
2

p =G for r > a. (19-2.4)

8wclrt

An important consequence of this solution is that a 1/r* field is
produced not by a sphere, but by a mass distribution extending all
the way to infinity (although the greatest mass density is within the
sphere; see Fig. 19.1). Another important consequence is that m in
Eqs. (19-2.1) and (19-2.2) is not the true mass of the sphere. The
true mass of the sphere, obtained by integrating Eq. (19-2.3), is

(19-2.5)

i)

m, = m(l +G M
10c’a

so that
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Fig. 19.1 (a) According to Newton's theory, the gravitational field
shown in this figure is produced by a mass of uniform density
confined to a sphere. (b) According to the nonlinear theory of
gravitation, the same field is produced by a mass of variable density
occupying all space. (The scale for the field is twice as large as the
scale for the mass density.)

2 12
m = 50(;“[(1 + 052”:0 ) - 1]. (19-2.6)
ca

If 2Gm, /5c%a < 1, which is usually the case, Eq. (19-2.6) can be

written as
m

m = m0<1 -G ) (19-2.7)

10c?a

The true mass external to the sphere, obtained by integrating Eq.
(19-2.4), is

2
m
m =G

, 19-2.8)
2c%a (

and the total true mass as seen from r=oo, m=my+m,, is
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m, = m(1 .+ g3m ) (19-2.9)
5c%a

Example 19-2.2 Find the mass distribution that produces the field
given by Eq. (19-2.1) for r<a and produces the field

2
2y for r > a, (19-2.10)

- -G CH
& 2c?r? - Gur “

where

. 2'ma (19-2.11)
2c2%a + Gm

Note that this expression for u makes g continuous at r=a.

Since the field for r<a is the same as in Example 19-2.1, the
mass density p for r<a is the same as that given by Eq. (19-2.3).
Substituting Eq. (19-2.10) into Eq. (19-1.6) and differentiating, we
obtain for the mass density in the remaining space

0 =0, r>a. (19-2.12)

Thus the field under consideration is produced by a mass confined
to a sphere of radius a.

Let us investigate this field in some detail. If in Eq. (19-2.10)
Gu/2c*r<1, then the equation can be written as

g=-G u r o= _Gp.(l +Gp./2c2r)r
(1-Gul2c’ryr? “ r? “
or
2
g = - Gﬂzr“ - Gzz”’2 T, (19-2.13)
r cr

The first term in this equation is the simple Newtonian gravitational
field of a sphere. However, the mass u in this equation is not the
true, or "naked,"” mass of the sphere. To find the true mass, we



SECTION 192 NONLINEAR GRAVITATIONAL FIELDS 317

need to solve Eq. (19-2.11) for m and then substitute the result into
Eq. (19-2.5). This gives for the true mass of the sphere

my=__* _l1+G Lt . (19-2.14)
1-Gul2c’a 10c?’a(1 - Gu/2c?a)

The true mass my is larger than u, which was to be expected, since
p is the sum of the true mass and the negative mass of the
gravitational energy. Of course, the mass responsible for the
observable gravitational field outside the sphere is not m, but pu.

Let us now assume that the sphere producing the field under
consideration is the Sun, and let us change the designation of the
mass in Eq. (19-2.13) from u to the more familiar m. We then have
for the gravitational field of the Sun

m2

g=~-GIr -G?

r . (19-2.15
r2 " 2c2r )

3 u

Consider now a planet in an orbit around the Sun. Let us
designate the mass of the planet as m'. The gravitational force
acting on the planet is then m' multiplied by the right side of Eq.
(19-2.15). For a nearly circular orbit, the gravitational force acting
on the planet is equal to the centripetal force applied to the planet:
Gmm' /= m'V*/r, where v is the velocity of the planet. Introducing
v into Eq. (19-2.15), we therefore can write for the force exerted
by the Sun on the planet

F=-G™'y -GMMYr  (192.16)
r’ 2¢°r?

As we shall see in the next chapter, the last term in this
equation has a very special significance for the dynamics of our
Solar system: it causes a perihelion advance of planetary orbits and
it affects the accuracy of our determination of planetary masses and
of the mass of the Sun.
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Example 19-2.3 Find the mass distribution producing the field
g = - G_”lz(Ze“”"- Hr, for a<r<2a. (19-2.17)
a

Note that this field becomes antigravitational for r>(In2+1)a.
Substituting Eq. (19-2.17) into Eq. (19-1.6) and differentiating,
we obtain

. m
4ma

m

0
2c%a

2(r/a_1)el—r/a+_2_a(2el-r/a_l)+G (2e|-r/n_1)2 .
r

3

(19-2.18)
A

19-3. Properties of Gravitational Fields in Free Space

The most interesting aspect of the effect of gravitational
energy on gravitational fields is the possibility of the existence of
mass distributions creating antigravitational fields in free space.
Naturally, if such mass distributions are to be stable under
gravitational forces alone, the internal gravitational field of the
mass distributions must be attractive everywhere within the
distributions. The question arises therefore: can there exist a mass
distribution producing an attractive field at all points within itself,
but a repulsive field outside?

To answer this question, we shall consider the most general
expression for a spherically symmetric field,

g = Afinr,, (19-3.1)

where A is a constant and f{r) is any function of r, and shall
determine f{(r) for p=0.

Substituting Eq. (19-3.1) into Eq. (19-1.6) and setting p=0,
we have
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__V-g g _ 1 { A 2fz(r)}
=- = - AV: , (19-3.2
4rG * 87Gc? 4nG U 2c? ( )

which upon differentiation and simplification gives

d L 2 A L ~
Ef(r) 7]‘(’) ?f (n =0. (19-3.3)

The general solution of this equation is

2¢?

n=_—__,
R Ar +2Bc?r?

(19-3.4)

where B is an arbitrary constant.

Thus, by Egs. (19-3.1) and (19-3.4), the most general
expression for a spherically symmetric gravitational field in the
region where p=0 is

2Ac?

8 Ar +2Bc*r? fo (1935
where 4 and B are to be determined from the boundary conditions
[Condition (d) of Section 19-2].

For this field to be repulsive (g>0) outside some "critical"
radius r,, and attractive (g<0) within r,, we must have g=0 at
r=r, or

A + 2Bc’r, = o, (19-3.6)

which is impossible for a finite r.. Hence there can be no
spherically symmetric antigravitational field outside a mass
distribution if the field within the distribution is everywhere
attractive. Consequently, a spherical antigravitational body must
be held together by some nongravitational forces in addition to the
gravitational ones.

Several other important conclusions concerning gravitational
fields in mass-free space can be made from Eq. (19-3.5).
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First, let us note that for r~o, Eq. (19-3.5) reduces to

A M
=2r =+GZr,, (19-3.7)
g Br2 u r2 u

where we have set A/B= + GM. Therefore in the limit r-oo, the
field of a spherical mass my is just a point-mass field of an
"effective” positive or negative mass M (M must be determined
from boundary conditions at the surface of my).

Next, let us consider the possible values of the arbitrary
constants in Eq. (19-3.5). To do so, we shall rewrite Eq. (19-3.5)
as

g - _ 2% (19-3.8)
r+2B'cr? *

where we have set B'=B/A. Let us now assume that the
gravitational field represented by Eq. (19-3.8) is created by a
spherical mass of radius r,, and that the field at the surface of the
mass is g,. Substituting r, and g, into Eq. (19-3.8) and solving it
for B', we obtain

_ 2c* - g,

B (19-3.9)

2.2
28,07y

Assuming that B' in Eq. (19-3.8) is arbitrary, we can have B'=0,
B'<0, or B'>0. Let us consider these cases in some detail.

B'=0. Substituting Eq. (19-3.8) with B'=0 into Eq. (7-3.37)
(the energy equation) and integrating over all space external to r,
we obtain U= — oo, in violation of Condition (a) of Section 19-2.
Thus B'=0 is impossible, unless the range of validity of Eq. (19-
3.8) is limited to a finite region of space, such as a spherical
cavity within a spherical mass distribution.

B'<0. This is the condition for the normal (attractive)
Newtonian gravitational field. However, there may exist a
"critical” distance r.=—1/2B'c* for which Eq. (19-3.8) gives
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g=to0 (g>0for r<r, and g<O0 for r>r). In this case, the field
violates Condition (a) as well as Condition (d). Therefore B’ <0
with r,<r, is also impossible, except, of course, when the region
under consideration is a spherical cavity whose radius is smaller
than r, (the field in the cavity is then antigravitational). If ry=r_,
we have the case of a sphere representing a "black hole"® of the
general relativity theory. However, the resulting field violates
Condition (a) and, which is even more important, if g,= — ocor, is
substituted in Eq. (19-1.6), and Eq. (19-1.6) is integrated over the
volume of the sphere (radius r,), one obtains for the true mass of
the sphere my> oo, which cannot be. Thus, according to our
theory, black holes (and therefore "gravitational collapse"’) are
impossible (at least for spherically symmetric mass distributions).

B’'>0. This is the condition for a purely antigravitational
field. For this field, Eq. (19-3.9) imposes an important condition
on g, and r, :

8, < 2c’. (19-3.10)

The significance of this condition will be apparent from the
example that follows.

v

Example 19-3.1 Construct an antigravitational mass distribution by
combining mass distributions given by Eqgs. (19-2.3) and (19-2.18).

According to Examples 19-2.1 and 19-2.3, the fields associated
with the two mass distributions are

IA

g = - GLnir for r
a

a (19-2.1)

and

g = - Gﬁi@e“”“—l)ru for a<r<2a.(19-2.17)
a
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The combined field is continuous at r=a and becomes anti-
gravitational when r>(In2+1)a.

For the field to be antigravitational everywhere outside r=2a,
the condition given by Eq. (19-3.10) must be satisfied. This can be
achieved by imposing an appropriate restriction on m. If we
substitute g given by Eq. (19-2.17) for g, in Eq. (19-3.10) and set
r=ry,=2a, we find that the restriction is

2

< ca ] (19-3.11)
G( -2/e)
Let us make
m=_ 3a (19-3.12)
4G(1 -2/e)

The field outside of the mass distribution is given by Eq. (19-
3.8). To determine the value for B’ appearing in this equation, we
use Eqs. (19-3.9) and (19-2.17) with r=r,=2a. After elementary
calculation we find that

g -_L1 (19-3.13)
12c%a

Substituting this B’ into Eq. (19-3.8) and eliminating ¢* by means
of Eq. (19-3.12), we finally obtain for our antigravitational field

m 16(1 -2/e)

= o ol for r = 2a. (19-3.14)
a? 6ria +(rla

g=G

A graphical representation of this field and of the corresponding
mass distribution (true mass) is given in Fig. 19.2. Starting at
infinity and proceeding toward the origin, we find that from r= oo
to r=1.69a the field is antigravitational (repulsive) with a maximum
at r=2a. At r=1.69a the field becomes zero. From there on the

field is an ordinary gravitational (attractive) field with a minimum
at r=a and diminishing to zero at r=0.
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Fig. 19.2 An example of an antigravitational field and of the
corresponding mass distribution. (The scale for the field is twice as
large as the scale for the mass density.)

Of course, the mass distribution shown in Fig. 19.2 cannot be
maintained by gravitational forces alone because, unless the
distribution is kept together by some other forces, all the mass
located at > 1.69a would be ejected by antigravitational repulsion,
until the radius of the distribution decreases to r=1.69a. The
external gravitational (or antigravitational) field of the remaining
distribution would then completely disappear, and the distribution
would become a "hidden mass" that neither exerts nor experiences
any gravitational forces on or from the surrounding bodies.

Observe that m appearing in Eqs. (19-2.1), (19-2.17), and (19-
3.14) is not the true mass of the spherical distribution under
consideration; it is a quantity associated with the true mass of the
central part (r <a) of the distribution through Eqgs. (19-2.5) and (19-
2.6). By Egs. (19-2.5) and (19-3.14), the true mass of the central
part is my=1.3m.
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As can be seen from Fig. 19.2, the maximum density of the
true mass occurs at r=a. Since, by Eq. (19-3.12), m=2.48c%a/G,
the radius of the central part of the mass distribution is
a=Gm/2.48¢*. By Eq. (19-2.3), we then have for the maximum
mass density of the distribution

p = ¢ (19-3.15)

max G3m2
Equation (19-3.15) shows that for a very large mass, the density of
an antigravitational mass distribution can be very small. This may
be an important factor for the stability of the galaxies in the

Universe.
A

19-4. Discussion

For almost a century now, Newton’s theory of gravitation has
been abandoned in theoretical physics (but not in practical space
exploration) in favor of Einstein’s general relativity theory. Some
authors even insist that the general relativity theory is the
definitive theory of gravitation. However, the generalized
Newtonian theory of gravitation outlined in this book points out
a path for an unquestionably viable new inquiry into the nature
and properties of gravitational fields and interactions. The
generalized Newtonian theory is based to a large extent on the
idea that the gravitational-cogravitational field is a seat of
momentum and energy. One of the consequences of this idea is
the supposition, discussed in this chapter, that gravitation is
caused not only by a true mass but also by the equivalent mass of
the gravitational field energy. Plausible as it is, this supposition
is contrary to the general relativity theory. Moreover, even the
existence of gravitational field energy is contrary to the general
relativity theory. It is important therefore to clarify the reasons
why general relativity theory denies the existence of gravitational
field energy and it is important to examine the validity of these reasons.
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The basic gravitational equation of the general relativity

theory is Einstein’s gravitational field equation

R, = 5Rg, = - G%Tik. (19-4.1)
The sources of gravitation appear in this equation in the form of
the energy-momentum tensor T;. This tensor includes all types of
mass densities and all types of energy densities (electric,
magnetic, thermal, etc.) except for the energy density of the
gravitational field itself. The determining reason for this is quite
simple: in spite of many efforts, no energy-momentum tensor has
been found for the gravitational energy (only a "pseudotensor” has
been obtained). Various plausibility arguments have therefore been
suggested to justify the absence of gravitational energy as a source
of gravitation in Einstein’s field equation.® Since it would be
difficult (if not impossible) to accept the existence of gravitational
field energy without accepting this energy as a source of
gravitation, these arguments are also the arguments against the
presence of gravitational energy in the gravitational field.

The two strongest plausibility arguments for excluding
gravitational energy as a source of gravitation are:

(1) Predictions of the general relativity theory obtained with
the aid of Einstein’s field equation without gravitational energy as
a source of gravitation have been found to agree with
observations.

(2) Einstein’s "equivalence principle” forbids gravitational
energy to be a source of gravitation.

However, a careful examination of these arguments shows that
neither of them is truly convincing or compelling.

The first argument is easily refuted by the fact that all
presently verifiable predictions of the general relativity theory are
in the domain of weak fields, where, as follows from the material
presented in this chapter, the effects of gravitational energy are
hardly prominent.’
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The second argument appears to be much stronger than the
first. What it means is that since, according to Einstein, a
gravitational field is equivalent to a certain accelerated frame of
reference, and since there apparently is no special energy in the
space defined by the accelerated frame of reference, no energy
should be present in the space containing the gravitational field
(this is known as the "nonlocalizability” of gravitational
energy).®'® An analysis of this argument shows, however, that it
is based on an unprovable premise and that it can be refuted by
reversing it. Indeed, let us suppose that a gravitational field is a
seat of gravitational energy. The equivalence principle demands
then that a certain energy density would appear in the space
defined by the equivalent reference frame. But how will this
energy manifest itself? The only presently known way in which it
could be detected is by its gravitational effects. However, since
the equivalent reference frame is flat and boundless, the
"equivalent” energy density, as seen in this frame, must be
uniform and must occupy all space. But, as is well known, a
uniformly distributed mass (energy) occupying all space produces
no gravitational effects [see Eq. (19-1.5); if Vp=0 or Vp,=0
everywhere, g=0, too]. Hence the "equivalent” energy is not
detectable, or, as an observer in the equivalent reference frame
would say, is "absent."

Thus the absence of space energy in an accelerated reference
frame does not prove the nonexistence or nonlocalizability of
gravitational field energy, and hence the equivalence principle
does not forbid its appearance as a source term in Einstein’s
gravitational field equation. Therefore the exclusion of the
gravitational energy as a source of gravitation in the general
relativity theory is merely a matter of practical necessity (since no
tensor has been found for it). Hence all presently known results
of the general relativity theory based on Einstein’s field equation
cannot be considered as reliable when these results involve
gravitational fields whose gravitational-energy mass is comparable
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with the true mass of the system (see the next chapter for a
further discussion of questionable aspects and ambiguities of the
general relativity theory). And therefore the fact that the results
obtained in this chapter are in conflict with the general relativity
theory does in no way indicate that these results are wrong. The
conflict cannot be resolved by plausibility arguments. Only
reliable observational data can truly resolve it ."

Let us now summarize what our theory of nonlinear
gravitational fields has indicated:

1. The gravitational force acting on a body in a gravitational
field is determined not only by the mass of the field-producing
body, but also by the gravitational field energy of the field-
producing body.

2. Antigravitational bodies can exist in the Universe.

3. The mass of the Universe, of a galaxy, or of a stellar object
can be much larger than the present astrophysical measurements
indicate, since there can exist objects of negative or of zero
apparent mass. The latter objects would constitute "hidden"
masses insofar as they do not produce or experience gravitational
effects.

4. Spherical "black holes" cannot exist, and "gravitational
collapse” is impossible. Indeed, according to the general relativity
theory, a sphere creates an "unescapable” gravitational field and
becomes a "black hole" after its radius becomes smaller than the
"gravitational radius" 2

ro=G2". (19-4.2)

But the radius of the central mass of the mass distribution shown
in Fig. 19.2 is smaller than the gravitational radius, yet the field
at this radius is zero rather than immensely strong, as is required
for black holes.

5. Since "gravitational collapse” is impossible, and since
antigravitational mass formations are possible, the normal state of
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the Universe appears to be an alternating expansion and
contraction.

6. Since a "hidden" mass is an object whose overall rest mass
is zero, such a mass could conceivably move with a velocity equal
to (or even larger than) the velocity of light.

These are fascinating and intriguing conclusions. Are they true
or are they false? Only time will tell.
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20

MERCURY’S PERIHELION
PRECESSION AND ANALYSIS OF
RELATED CALCULATIONS

One of the most important consequences of the
generalized theory of gravitation is that in time-dependent systems
gravitational interactions involve not only the usual Newtonian
attraction but also additional forces associated with the motion of
interacting bodies. This effect is particularly significant because
of its relevance for explaining certain discrepancies between
observed and calculated properties of planetary motion. The best
known such discrepancy is in the precession of the perihelion of
Mercury. In this chapter we shall see how the generalized theory
of gravitation resolves this discrepancy and shall analyze the
resolution suggested by the general relativity theory.

20-1. Mercury’s Anomaly

In the middle of the 19th century, Urbain Le Verrier found
that Newton’s gravitational law was incapable of explaining
certain discrepancies between the observed and calculated
parameters of planetary motion. In particular, he computed the
secular perturbations of the motion of Mercury under the action
of other planets and found that there was an inexplicable
"residual” precession of Mercury’s perihelion. According to the

330
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presently accepted data, the precession of Mercury’s perihelion
as observed relative to the Earth’s equinox reference line is 5600
arc seconds of arc per century of which 5025 arc seconds are
attributed to the precession of the equinoxes. In the heliocentral
system the precession of Mercury’s perihelion is therefore
approximately 575 seconds of arc per century, of which 532
seconds can be attributed to Newtonian attraction between
Mercury and other planets, while about 43 seconds cannot be
explained on the basis of Newton’s gravitational law.

For more than 150 years now, physicists, mathematicians and
astronomers have been attempting to explain the residual
precession of Mercury’s perihelion, and it is now generally
accepted that no theory of gravitation can be regarded as correct
or complete if it cannot provide a convincing explanation for
Mercury’s residual precession. How is Mercury’s residual
precession explained by the generalized theory of gravitation?

First of all, according to the generalized theory of gravitation,
we do not really know the exact value of Mercury’s residual
precession. Clearly, the value of 43 seconds of arc per century
obtained exclusively on the basis of Newton’s gravitational law is
highly questionable. Newton’s gravitational law is truly accurate
for interactions between stationary bodies only. As has been
shown throughout this book, gravitational interactions between
moving bodies involve not only the usual Newtonian attraction but
also many additional forces associated with the motion of the
interacting bodies. Therefore, according to the generalized theory
of gravitation, the calculation of the main precession of Mercury’s
perihelion based only on Newtonian attraction cannot be accurate,
and hence the residual precession obtained on the basis of such
calculations cannot be accurate either. Here is a short (but by no
means complete) list of omissions resulting in errors in
calculations based on Newtonian attraction only:

(1) Retardation in the propagation of gravitation is not taken
into account; in particular (and this is extremely important), the
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fact that an outer planet, according to Section 15-1, exerts not
only a radial force on the inner planets, but also a force in the
direction of the velocity of the outer planet.

(2) Cogravitational fields are not taken into account. In this
connection it should be noticed that there are several sources of
cogravitational fields affecting the motion of Mercury including:
(a) the orbital motion of outer planets (Section 15-1), (b) the
rotation of outer planets [Section 15-2 and Eq. (13-2.46)], (c) the
rotation of the central body (Section 15-2), and (d) the rotation of
the Galaxy (galactic cogravitational field) (Section 15-2).

(3) Gravikinetic fields are not taken into account (Chapters
11, 12).

(4) Nonlinearity of the gravitational field is not taken into
account (Section 19-2).

(5) Possible errors in the determination of the masses of the
Sun and planets because of the effect of the gravitational field
energy of the Sun (negative "shielding" mass of the field energy)
is not taken into account (Section 19-2).

(6) The fact that large masses may accelerate faster than small
masses is not taken into account (Example 13-2.8).

(7) The fact that, since the residual precession is a second
order effect, calculation of forces between outer planets and
Mercury must be done in accordance with the special relativity
theory (observe that the mass of an orbiting planet is the
transverse mass of relativistic mechanics, and that a mass of a
planet subjected to a force in the direction of the motion of the
planet is the longitudinal mass).'

Clearly, not all omissions listed above may lead to serious
errors in the calculation of the main precession of Mercury’s
perihelion, and some of them are obviously insignificant. But the
fact remains that unless all the possible forces and interactions that
can potentially affect the main perihelion precession of Mercury
are taken into account, the true value of the residual perihelion
precession of Mercury (if it exists at all) remains unknown.
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20-2. Mercury’s Residual Precession According to the
Generalized Theory of Gravitation

Let us assume that even after all the effects mentioned in the
preceding section are taken into account there still remains some
residual precession of Mercury’s perihelion. What, then, may be
the cause of the residual precession?

From the viewpoint of the generalized theory of gravitation
there are two most likely causes: the existence of the negative
mass-energy (mass of the gravitational field energy) near the Sun
and the failure to use the force equation of the special relativity
theory while calculating the effect of the Sun on the motion of
Mercury. The need to use the negative gravitational mass-energy
follows from Chapter 19. The need to use the relativistic force
equation follows from the fact that, as was shown by various
authors in the 19th century, in order to explain the residual
precession of Mercury, terms involving 1/c? need to be taken into
account.” Let us therefore calculate the contribution of these
effects to the precession of Mercury’s perihelion.?

According to the special theory of relativity, the acceleration
a of a body subjected to the action of a force F is determined by
the equation’

a - F-F-vvic> _[F _(F-v)vic’

—v2/c2)12 _
A —viey”?  |m e |(1-ve?)™, (20-2.1)

where v is the velocity of the body and v = (1 - V¥/c?)'2. With
terms smaller than v*/c* omitted, Eq. (20-2.1) becomes

. 2
a-= E(l —v2/2c2)-(_F_leC_.
m m

(20-2.2)
If F is in a radial direction, Eq. (20-2.2) can be written as

a = L e -vied) - (- vyvicy. (20-2.3)
rm
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Using in Eq. (19-2.16) M for the mass of the Sun and m for the
mass of Mercury and introducing F from Eq. (19-2.16) into Eq.
(20-2.3), we have

a=- g[r(l -v22c?) - (r » v)v/cH(1 +v2/2c?), (20-2.4)
r

and once again omitting terms smaller than v/c?,

_GM_  GM (20-2.5)
r? ric?

a =

The first term on the right side of this equation represents the
acceleration of Mercury due to the usual Newtonian attraction, the
second term is an additional acceleration due to the negative
gravitational mass-energy together with the relativistic correction
of the Newtonian force. Observe that this term is in the direction
of the orbital velocity of Mercury. Let us write it as

a’ = M oc0say | (20-2.6)
ric?
where « is the angle between the radius vector of Mercury in its
orbit and Mercury’s orbital velocity vector v, and v, is a unit
vector along v. It is the acceleration a’ that should be responsible
for the residual precession.
We can calculate the effect of a’ on Mercury’s orbital motion
by using Lagrange’s perturbed orbit equation® for the argument of
perihelion w of a planet

% __COSP op (2 + ecosp)sing r2s.  (20-2.7)
00  GMe GMa(1 - e)e

where ¢ is the polar angle ("true anomaly") of the planet, e is the
eccentricity of the orbit, r is the distance between the Sun and the
planet, R is the radial component of the acceleration of the planet
(due to perturbing force), a is the semimajor axis of the orbit,
and § is the component of the planet’s acceleration perpendicular
to the radial component (due to perturbing force).
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The component of a’' along the radius vector is

_ GMv?

r2C2

R cos’a (20-2.8)

and the component in the direction perpendicular to the radius
vector is

_ GMv?
r2c2

S sinacosa (20-2.9)

For an elliptic orbit, sin a and cos o are given by

sing = ___1 *€C0sP (20-2.10)
(1 +e? +2ecosp)'?
cosa = esing (20-2.11)

(1 +e? +2ecosp)?

Since a’ is small compared with a, we can assume that the orbital
velocity of Mercury is not affected by a’ and can be found from
the usual equation for unperturbed Keplerian motion:

2= GM(1 +e? +2ecosyp)

20-2.12
a(l -¢e? ( )

Combining Egs. (20-2.8)-(20-2.12) and simplifying, we obtain

2,2
riR = %sinch (20-2.13)
and
2
ris = (G’C”Z) €sing. (20-2.14)

Substituting Egs. (20-2.13) and (20-2.14) into Eq. (20-2.7), we
have

0w _ _  GMe sincosg + GM(2 + ecosy)

= sinfp  (20-2.15)
) cla(l -e?) cla(l -e?)
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or

o 26M ;o) (20-2.16)
¢ cla(l -e?)

Integrating over ¢ from O to 27, we finally obtain for the
perihelion advance

[7_2M ginpap- 27U (20-2.17)
0 cla(l -e?) c’a(l -e?)

Substituting the values G = 6.67x10"'m’kg's?, M =
1.99x10%g, ¢ = 2.99%10°ms"!, a = 5.77x10°m, and e =
0.206 in Eq. (20-2.17), we find for the residual precession of
Mercury’s perihelion

Aw =1.69x 1077 rad per revolution,

or, taking into account that Mercury revolves 415 times per
century,
Aw = 14 arc sec per century.

Qualitatively this result is in accord with observations, but
quantitatively it is about 1/3 of the presently accepted value of 43
arc seconds per century. However, according to the generalized
theory of gravitation, this apparent discrepancy actually speaks in
favor of the theory, because, as has been explained in the
preceding section, the residual precession of 43 seconds per
century was obtained by taking into account only the Newtonian
attraction between Mercury and outer planets. In reality,
according to the generalized theory of gravitation, Mercury is
subjected to a very complex system of forces, so that it is most
unlikely that the calculations based on Newtonian attraction alone
(and without using the relativistic force equation at that) could
yield correct results for the residual precession.
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20-3. Einstein’s Formula for Mercury’s Residual Precession

By the end of the 19th century it was well know that Gerber’s
formula’

._67GM (20-3.1)

c%a(l -¢e?)

where all the symbols are as in Eq. (20-2.17), yielded the 43 arc
seconds residual precession of Mercury. It was the greatest
triumph of Einstein’s general relativity theory when in 1916, on
the basis of this theory, Einstein obtained the same formula. In
fact, to this day most of the credibility of the general relativity
theory is directly attributable to Einstein’s derivation of Eq. (20-
3.1) and to the amazing accuracy with which the general relativity
theory has explained Mercury’s residual perihelion precession.
And yet, from the viewpoint of the generalized theory of
gravitation presented in this book, and according to Section 20-1
in particular, it is the very accuracy of Einstein’s result that makes
the validity of his explanation of Mercury’s residual precession
highly questionable. Let us therefore discuss in some detail
Einstein’s explanation of Mercury’s precession.

We now know from Einstein’s correspondence with his
friends and collaborators that in developing the general relativity
theory he hoped from the very start to provide an explanation of
Mercury’s anomaly.® The inescapable conclusion is that, to the
extent possible, he constructed the theory so that it would yield
Eq. (20-3.1).

Einstein himself, while first presenting Eq. (20-3.1),” pointed
out that this equation did not follow uniquely from his theory.
And, what is especially important as far as his explanation of
Mercury’s residual precession is concerned, we now know that the
theory does not yield an unambiguous expression for the velocity
of gravitation and for the relation between the velocity of
gravitation and the velocity of light.
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The problem with the velocity of light starts at the very
beginning of the mathematical formulation of the general relativity
theory, when the velocity of light is expressed in terms of the so-
called "geometrized units," according to which ¢ = G = 1 (that
is, the velocity of light and the universal constant of gravitation
are assumed to be pure numbers equal to "one").® Setting ¢ = 1
actually excludes the velocity of light from the formulation of the
theory and makes the velocity of light irrelevant for the theory.

As a physical quantity, the velocity of light ¢ is first
introduced into the general relativity theory when the theory, in
its limiting case, is made compatible with Poisson’s equation of
the Newtonian theory of gravitation, at which time Einstein’s
gravitational field equation (the basic equation of the general
relativity theory)

1 8
Ry - 5Re, = - GlT (19-4.1)

is finally obtained. However, since the velocity of light as a
physical quantity is ignored in the main process of the formulation
of the theory, ¢ in Eq. (19-4.1) is basically undetermined.
Moreover, it is not at all clear whether ¢ in Eq. (19-4.1) and
therefore in Einstein’s version of Eq. (20-3.1) stands for the
velocity of light, the velocity of gravitation or for some other
velocity.

In this connection let us refer to Einstein’s explanation of
"Mach’s principle." Explaining Mach’s principle on the basis of
the general relativity theory, Einstein gave a quantitative
formulation of this principle in the form of an equation closely
resembling the electromagnetic equation for the force acting on a
moving charged particle of magnitude "one" in the presence of an
electric and a magnetic field:®

_[(1 + Bl = VG + %_A _ux(VxA)] (20-3.2)
with
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G- _G_zlédv’ (20-3.3)

and ¢
A-%C ]"_rvdv', (20-3.4)

[

where u and v are the velocities, respectively, of the force-
experiencing and force-producing mass, c is the velocity of light,
and where the remaining symbols are as elsewhere in this book.
Clearly, the right side of Eq. (20-3.2) is similar to the right
side of our gravitational force equation, Eq. (2-2.6), combined
with Egs. (3-3.4), (3-3.1), (3-3.7), and (3-3.6), except for two
major differences: First, ¢ in our Eq. (3-3.6) [which corresponds
to Einstein’s Eq. (20-3.4)] is very clearly the velocity of
gravitation rather than the velocity of light. Second, Einstein’s Eq.
(20-3.4) contains the factor "4" which is absent in our Eq. (3-
3.6). Einstein’s factor is counterintuitive and very puzzling, since
it implies that the mass current produced by a moving mass
distribution of density p is J = 4pv rather than J = pv as follows
from our derivations in Section 3-1 and as would be expected on
the basis of general considerations of the mass-current concept.
The problem with the velocity of light and with Einstein’s
factor "4" becomes fully apparent in connection with the
determination of the velocity of gravitation on the basis of the
general relativity theory. As is known, the weak-field linearized
form of general relativity theory splits gravitation into a
gravitational field proper and a second field analogous to our
cogravitational field. From Einstein’s Eq. (19-4.1) the following
equations for g and K (using our notation) are then obtained'®

V-g = - 47Gp, (20-3.5)

VOK = O, (20‘3.6)
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dK
vxg = - 9K (20-3.7)
& ot
and
VxK - - 437Gy , 41 %8 (20-3.8)
c? c? ot

These equations are similar to our Egs. (7-1.1)-(7-1.4) except for
the extra factor "4" on the right of Eq. (20-3.8). One can easily
see by repeating the calculations presented in Section 18-1 and
using Eq. (20-3.8) instead of Eq. (7-1.4) that the factor "4" in Eq.
(20.3.8) results in the velocity of gravitation equal to ¢/2.

A slightly different linearization of Einstein’s Eq. (19-4.1)
yields equations similar to Egs. (20-3.5)-(20-3.8), except that
instead of Eq. (20-3.7) the following equation is obtained"

wxg - - K (20-3.9)
ot
resulting in the velocity of gravitation equal to c/V/2.

Finally, according to yet another calculation based on
linearization of Einstein’s Eq. (19-4.1) in combination with
Lorentz transformation equations for time and space,'>" the
following equations are obtained (again, we write these equation
in our notation)

V.g = 47Gp, (20-3.10)

VK =0, (20-3.11)

vxg = - £0K (20-3.12)
cat

and

(20-3.13)
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where ¢ is an undetermined parameter. According to Eqs. (20-
3.10)-(20-3.13), the velocity of gravitation is now c/e.

In view of all these conflicting results we are forced to
conclude that there is no real evidence that c in the general
relativity theory represents either the velocity of light (as generally
believed) or the velocity of gravitation. We are also forced to
conclude that if ¢ represents the velocity of light, then, according
to Eqgs. (20-3.5)-(20-3.13), the velocity of gravitation, contrary to
the general perception, is not equal to the velocity of light.

As far as the Mercury’s anomaly is concerned, the uncertainty
of the meaning of ¢ in Einstein’s version of Eq. (20-3.1)
combined with the non-uniqueness of Einstein’s derivation of this
equation makes the significance of the numerical value obtained
by Einstein for Mercury’s residual precession questionable.

We shall close our discussion of Mercury’s residual
precession by mentioning yet another problem with the general-
relativistic explanation of the precession. As has been pointed out
in the literature on various occasions,'* an important inconsistency
of the general-relativistic treatment of Mercury’s perihelion
precession is that only the residual precession is explained, and it
is explained under the assumption that Mercury’s main perihelion
precession has been correctly calculated on the basis of Newton’s
theory of gravitation. The question arises: why not compute
Mercury’s entire precession on the basis of the general relativity
theory and see whether or not the general relativity theory can
correctly account for the entire precession? The answer is very
simple: the general relativity theory provides no methods for
calculating gravitational effects of bodies in translational or orbital
motion and for calculating gravitational effects of moving outer
planets in particular. In fact, in contrast to the generalized
Newtonian theory of gravitation presented in this book, the
general relativity theory is only pertinent to gravitational fields
created by stationary masses.
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VECTOR IDENTITIES

In the vector identities listed below ¢ and U are scalar point
functions; A, B, and C are vector point functions; X is a scalar or
vector point function of primed coordinates and incorporates an
appropriate multiplication sign (dot or cross for vectors).

Box product
(V-1) A-(BxXC) =B-(CxA) = C-(AXB)
(V-2) A-BXC) = (AxXB):C = - (BxA)-C

"BAC CAB" expansion

(V-3) AXBxC) = BA-C) - C(A-B)

"Do nothing" identity

(V-4) AV)r=-A-Vr =A

Identities for the calculation of gradient
(V-5) Vpl) = VU + UVp
(V-6) V(A-B)=(A-V)B+A X (VX B)+(B-V)A+B X (VXA)

n

9
V-7) Vo(U,---U) = Y %VU,.
i=1 i

Identities for the calculation of divergence

(V-8) V-(pA) = pV-A + A-Vp

(V-9) V-(AXB) =B-V XA - A-VxB

(V-10) v-A@U,--U) = Y vu- A
in1

17]
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Identities for the calculation of curl
(V-11) VX (pA) = pVXA + Vo XA

(V-12) VX(AXB)=(B:V)A+A(V'B)-(A-V)B-B(V-A)

0A

i v =YV
(V-13) x A(U,---U) Z U 517

Repeated application of V

(V-14) V-(VXA) =0
(V-15) VXVU =0
(V-16) VX(VxA) = V(V-A) - V’A

Identities for the calculation of line and surface integrals
(V-17) <]gA-dl = IV X A-dS (Stokes’s theorem)
(V-18) fua - [asxvu

Identities for the calculation of surface and volume integrals
(V-19) *A-ds = JV'AdV (Gauss’s theorem)
(V-20) f#; UdS = lVUdV

v-21) ff;Ade - - leAdV
fa(A-B)ds - faB(A-dS) . <]gA(B-dS)

(V-22)
- l[Ax(VxB) +BX(VXA) -A(V-B) - B(V-A)]aV

(V-23) <]gA(B°dS) - ][(v ‘B)A + (B - V)A]dV
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Helmholtz’s (Poisson’s) theorem

(V-24) V = -

1 I VI(V-V) - VX (V' XV)
4_7l' All space r

Operations with V in Helmholtz's (Poisson’s) integrals

v VX X

(V-25)

r r “or?
(V-26) v - r, (Xz)
r r
V/
(V-27) X .y X X
r r r
Retarded (causal) integrals
2
[V/(V/-V)—V/ x (¥ xV)-L a_‘z']
(v-28) Vv=-_L oy
47 Jan space r
[V/2V - iaz_v]
1 c? or?
i v--1f av’
(V 29) 41 J space r
2
[v'-(v'U)-iza_Lz’]
v30 U=-_L T oy
41 Jan space r
Operations with V in retarded (causal) integrals
r, [X]
- VIX] = [V/X] + 222
(V-31) (X] = [V'X] + ——
r, 9[X]
R VIX] = - 222
(V-32) [X] T

(V-33) [V'X] = VIX] + V'[X]
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V'X] . g [X] | g [X]

(V-34)
r r r
X1 _ _ rdXl _rfox
(v-35) e b
aX] _ [9X]
(V-36) 7] ar

DIMENSIONS OF GRAVITATIONAL AND
COGRAVITATIONAL QUANTITIES

According to a convention, to indicate that only the dimensions of
a quantity are being considered, the symbol designating the quantity
is placed between square brackets.

[length] = [L]
[mass] = [M]
[time] = [T]

[G] = [U’M'T?]

[g] =I[LTY
K] = [T

M = [MT]
0] = MLT]
[A] = [LT]
[p] = [L°T7]
[A] = [L'T?
[p] = [LT']
[P] = [MT?]
[G] = [LMT"]

[d = [L’T'}
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4-vector electric current, 160
4-vector mass current, 160

Aberration, gravitational, 65, 118
Acceleration, 151
additional, 232
dependends on mass, 231, 232
of gravity, 231, 275
of falling body, 232, 277
of orbital velocities, 257
of Mercury, 334
Accuracy of equations, 92
Action and reaction, 7, 142, 143,
144, 147
Adler, C. G., 162
Alternative equations, 26
Analogy, gravitational and
electromagnetic, 65, 121, 137,
148, 339
Angular momentum, 191, 262
of axially-symmetric body, 258,
261
of central body, 271
of cogravitational dipole, 261
of gravitational field, 137
of rigid orbit, 272
of rotating body, 262-264
of rotating disk, 200
of rotating ring, 259
of rotating spherical shell, 221
Antigravitational,
bodies, 327
field, 311, 318, 321-323
mass distribution, 321, 163
repulsion, 323
Apparent,
length, 79
volume, 79, 80
Archimedes’s principle, 213
Argument of perihelion, 334
Asymmetry of gravitational field,
237
Atomic clocks, 291
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Atomic energy levels, 291
Axially-symmetric bodies, 259

Balance of forces, 253

Basic laws, 6

Basic gravitational laws in
present-time form, 131

Basic gravitational-cogravitgational
laws, 13-17, 131

Basic field equations, 13

Basic force equation, 16, 284

Beam of charged particles, 218

Beam of mass particles, 218

Becker, R. A., 273

Bedford, D., 286

Bending of light, 291

Biot-Savart law, 256

Black hole, 321, 327

Bogorodsky, A. F., 342

Braginsky, V. B., 342, 343

Brillouin, L., 328

Buoyant force, 212, 213

Causal relations, 6
Causal equations, 6, 8
Causality, 3
Causative sources, 14
Caves, C. M., 343
Celestial bodies, 278
Celestial mechanics, 231, 342
Central body, 244-253, 262, 268
Centripetal force, 267, 268
acting on satellite, 269
acting on planet, 317
Characteristic time, 15
Charge, electric, 121, 129, 159
Clocks, atomic, 291
Cogravitational dipole, 42, 134,
178, 220, 221, 225, 226,
228-230, 258, 260
moment of, 129, 134, 220,
258, 261, 262
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Cogravitational energy,
in terms of vector potential, 136
of mass current, 136
Cogravitational field, 9, 19, 22,24,

25, 28, 30, 36, 38, 41,
50, 129, 142, 155, 157-159,
180-183, 186, 188, 228, 237,
252, 262, 272, 299, 332, 339

created by central body, 269

created by planets, 257

emitted by oscillating ring, 307

energy of, 136, 328

external, 172, 272

definition of, 12

direction of, 121

homogeneous, 260

inhomogeneous, 260, 262

inside cylinder, 181

in terms of current

inhomogeneities, 133

in terms of scalar potential, 134

in terms of vector potential, 133

instantaneous, 113

left-handed, 20, 121

measurement of, 262

of accelerating point mass, 88,
90

of current distribution, 133

of falling body, 275

of falling cylinder, 281, 282

of moving line mass, 117, 118

of moving mass disribution, 44,
157, 158

of moving point mass, 57, 90,
133, 253

of moving ribbon, 100

of orbiting mass, 256

of particles beam, 218, 219

of planets, 257

of point mass in arbitrary
motion, 87

of rotating body, 252, 258, 262,
264

INDEX

of rotating central body, 268,
269
of rotating disk, 34, 35
of rotating Earth, 262
of rotating mass, 253
of rotating ring, 19, 40, 258
of rotating spherical shell, 220
of uniformly moving
mass, 60, 68, 69, 89, 107
line mass, 70, 76
vector, 160, 177
in plane wave, 303
Cogravitational force, 12,
on cogravitational dipole, 135,
260
Cogravitational scalar potential, 37,
38, 177, 178, 180
Cogravitational vector potential,
37, 38, 39, 40, 41, 172-176,
179,
Cogravitational repulsion, 122, 219
Conservation,
of angular momentum, 267
of energy, 13, 17, 139-141, 274-
278
of mass, 15
of momentum, 3, 7, 17, 141-
147, 278-284
Constant of gravitation, 271
Continuity law, 15, 124
Conversion,
electromagnetic to gravitational
equations 129, 130, 208, 217
potential energy to kinetic
energy 275
table of symbols and constants
129
to present time, 95, 96, 107
Correlations between gravitational
and cogravitational field, 55
Corresponding equations, 128, 129
Coulomb’s law, 163



Couple, due to rotating bodies,
266, 267

Coupling of gravitational and
electromagnetic fields, 287

Covariant,
formulation, 159, 164
gravitational equations, 161
theory of electromagnetism, 160
theory of gravitation, 148, 159,

160

Critical,
distance, 320
radius, 319

Current-carrying wire, 192

Current, electric, 129

Cylinder,
accelerating 194, 198
current-carrying, 193

Deflection of light, 294
Density
of antigravitational mass, 324
of field energy, 16
of field momentum, 16
of mass, 4
of mass-curent, 27, 44, 69
of true mass, 324
Determination of mass,
of planets, 317
of the Sun, 317
Differential rotation of the Sun,
250, 251
Differential equations for fields,
119
Dimensional homogeneity, 342
Dimensional constants, 342
Dipole,
field, 42
moment, magnetic, 258
moment of rigid orbit, 272
Direct motion of satellite, 269
Disk, rotating, 34-36
Disks, coaxial, 203
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Earman, J., 343
Earth, 278
gravitational field of, 275, 280,
281, 284
Eccentricity of orbit, 334
Edwards, M. R., 25
Eganova, 1. A., 25
Einstein, A., 342, 343
correspondence, 337
formula for Mercury’s
precession, 337
gravitational field equation, 325,
338
mass-energy relation, 152, 310,
311
Electric field, 121, 338
direction of, 121
lines of, 312
of disk, 208
of electrostatic dipole, 226
Electric force between ring and
rod, 209
Electrokinetic field, 197
Electrokinetic force, 197
Electromagnetic,
analogy, 119
equations, 130, 160
field, 159, 312
field tensor, 160
forces in gravitational fields, 291
induction, 122, 138, 197, 203
quantities, 192
radiation, 297
theory, 192
waves, 287
Electrostatic,
energy of spherical shell, 211
potential of spherical charge,
210
problems, 207
Emission of
gravitational-cogravitational
waves, 305, 307
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Emitter, of

gravitational-cogravitational
waves, 307

End effects, 175, 194, 280, 282
Energy (see also Kinetic energy),

conservation of, 13, 17, 139-
141, 275

exchange of, 274, 275, 279,
286, 294

effect on gravitational fields,
311, 313

flow of, 16, 139, 275

in accelerated reference frame,
326 326

in cogravitational field, 141

in gravitational field, 16, 136,
139-141, 152, 217, 274-278,
303, 304, 310, 311, 317, 324,
325, 332

in gravitational-cogravitational
waves, 137, 303, 304, 329

levels, atomic, 291

mass of, 313

mechanical, 13, 141

negative, 25, 308

of mass distribution in external
field, 136

of point mass in external field,
136

of photon, 295, 296

of system of point masses, 136

transformation of, 13, 17, 139-

in calculation of Mercury’s
precession, 332

Equinox reference line of, 331
External sources, 131

Falling body, 231, 275-277, 284

Falling cylinder, 280, 281

Field, (see also Cogravitational
field, Electric field,

Gravikinetic  field,

Gravitational field,

Magnetic field)
acceleration-dependent, 85, 89
acceleration-independent, 82
antigravitational, 318, 321, 322
asymmetry of, 238
calculation from potential, 113
energy of, 13, 16, 141, 274
momentum of, 17, 142, 274,

278, 279
repulsive, 319

Field map, dynamic, 232, 233, 236

Field point, 4, 112
coordinates 32, 113, 115, 123,

124, 127

Field signal, 15, 45, 46, 71, 209

Flux density field, 220

Flux of gravitational-cogravitational
field momentum, 17, 279

Flux of gravitational field energy,
276, 277

Fomalont, E. B., 164

141, 274, 275, 279, 286, 294
Energy-momentum tensor, 325
Equations, how accurate, 92
Equivalence principle, 325, 326
Equivalent energy density 326
Equivalent mass of gravitational as mathematical device, 280

field energy 324, 328 between cylinder and point
Errors, mass, 167
in determining masses of between hemispheres, 168
planets, 332 between line mass and sheet of
in determining mass of Sun, 332 mass, 172

Force (see also cogravitational
force, electric force,
gravikinetic force,
gravitational force),

actions, interpretation of, 280



Force (continued),
between point mass and disk,
170
between ring and rod, 209
calclation from potentials, 165,
179
calclation from energy, 216, 217
conversion of, 129
dragging, 183
due to accelerating mass, 231
due to fast moving mass, 236
due to moving mass, 239
due to moving point mass, 231
due to moving rotating ring,
227,228
due to moving rotating sphere,
229, 230
due to orbiting mass, 247
due to rotating ring, 228
equations for, 280
in direction of velocity, 332
in generalized Newtonian theory,
23
in gravitational field, 284
of gravity, 231
on disk, 170
on mass distribution, 16
on mass particle in a beam, 218,
219
on rotating body, 260-266
on rotating planet, 257, 258,
relativistic equations for, 333
rotation-dependent, 229
velocity-dependent, 229
Frame of reference, accelerated,
326
French, A. P., 273
Frequency shift, 296
Fundamental,
gravitational filed equations, 13,
154
gravitational and cogravitational
laws, 13-17, 156, 158

357

Galactic cogravitational field, 332
Galaxies, stability of, 324
Gauge calibration, 191
Gauss’s theorem, 280, 348
Gauss’s law, 214
Gaussian surface, 218
General relativity theory, 321, 324,
273, 329, 330, 341
ambiguities of, 327
basic gravitational equation of,
325, 338
credibility of, 337
limitations of, 341
mathematical formulation of,
338
non-uniqueness of solutions of,
341
Generalized Newtonian theory of
gravitation, see generalized
theory of gravitation
Generalized theory of gravitation,
9, 11, 13, 21, 37, 121, 142,
157, 159, 165, 180, 182, 207,
237, 269, 273, 251, 274-2717,
324, 329-331, 333, 337
basic equations of, 13-18
conceptual content of, 11-13
mathematical apparatus of, 18
validity of, 278
Generation of sinusoidal
gravitational-cogravitational
waves, 304
Geometrized units, 338
Gerber, P., 342
Gerber’s formula, 337
Graphical representations of
gravitational fields, 66, 233-236
Gravikinetic field, 42, 182-184,
188, 189-196, 198, 199, 201,
202, 225, 228, 237, 273, 332,
339
definition of, 182-184
force effects of, 197
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Gravikinetic field (continued),
in system with orbiting mass,
253
of accelerating rod, 192
of accelerating cylinder, 193
of moving mass, 253
of rotating mass, 252
Gravikinetic force, 180, 183,
189-191, 197-200, 202, 231,
232
circular, 191
on ring, 198
Gravikinetic impulse, 184, 185
Gravikinetic torque,
on cylinder, 198, 199
on disk, 200
on ring, 202
Gravimagnetic field, 273
Gravitation, 3
speed of, 13, 24, 45, 151,152,
164, 219, 238, 239, 338-340
sources of, 12, 14, 310, 311
Gravitation and electromagnetism,
physically linked, 287
Gravitational aberration, 65
Gravitational and cogravitational
forces, 21-24
Gravitational and cogravitational
potentials, 36-42
Gravitational and electromagnetic
analogy, 138
Gravitational attraction, 21, 177,
183, 239, 247, 253, 268, 331,
341
Gravitational-cogravitational,
field momentum and energy, 12,
324, 325, 326
field tensor, 160
induction, 122
interactions, 17
mechanics, 152
momentum transfer, 280
system, closed, 139, 141, 142

Gravitational,
collapse, 321, 327
dipole field, 221, 224, 225, 228,
229, 230
drag, 232
energy, see Energy,
Gravitational field, 30, 37, 45, 50,
118, 121, 129, 132, 142, 159,
169, 179, 187, 214, 215, 221,
228, 87, 299, 312, 326, 339,
341
action, 275
angular momentum, 137
between plates, 216
contour curves, 234, 235
definition of, 11
direction, 4, 121, 257, 301-303
emitted by oscillating ring, 307
energy, 16, 136, 139-141,152,
217, 274-278, 303, 304, 310,
311, 317, 324, 325, 329, 332
mass, 313
effect on gravitational field,
313
exchange of, 286
of spherical shell, 211
explosion, 235
external, 180, 237
in free space, 318, 319
in plane wave, 303
in spherical cavity, 320
in terms of mass
inhomogeneities, 132
in terms of scalar potential, 132,
134, 136
in terms of vector potential, 133,
138, 236
instantaneous, 113
lines, 311, 312
maps, 66, 232-236
momentum, 16, 17, 137, 141,
142, 146, 147, 278-284
of accelerating point mass, 238



Gravitational field (continued),
of central body, 268
of falling cylinder, 280
of gravitational dipole, 226
of mass distribution, 132, 152
of moving cylinder, 114, 116
of moving line mass, 70-76,
117, 118
of moving mass, 44, 56, 106,
154, 232
of moving point mass, 57, 59,
60, 65, 77, 87, 153, 237
of moving ribbon, 100
of moving ring, 99
of moving rotating ring, 228
of orbiting mass, 244, 255-257
of oscillating ring, 305
of particles beam, 218
of plates, 214, 216
of point mass, 132, 153, 238
of rotating disk, 34, 35, 208,
209
of rotating ring, 19, 40, 42
of spherical mass, 292, 311, 317
of stationary disk, 208, 209
of the Sun, 257
of uniformly moving mass, 107
permittivity and permeability of,
290
repulsive, 311
vector, 4, 66, 160, 233, 235,
301-303
Gravitational force (see also
Force), 183, 318, 323, 327
acting on planet, 317
basic equation for, 16, 284,285,
339
between plates, 213, 214, 216
between ring and rod, 209
exerted by planets on the Sun,
257
exerted by the Sun on planets,
257
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field, 163
in terms of energy, 216
in terms of scalar potential 165-
169
in terms of vector potential, 134,
169-172, 236
law, 3
on mass distribution, 134
on particle inside cylinder, 211
on plate, 217
Gravitational frequency shift of
clocks, 297
Gravitational induction, 122, 138,
197-203
Gravitational interactions, 21-24,
152, 180, 237, 253, 274, 278,
280, 330-332
Gravitational Lenz’s law, 203
Gravitational Maxwell’s stress
integral, 216
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