

Jo	Van	Hoey

Beginning	x64	Assembly	Programming
From	Novice	to	AVX	Professional

Jo	Van	Hoey

Hamme,	Belgium

Any	source	code	or	other	supplementary	material	referenced	by	the	author	in
this	book	is	available	to	readers	on	GitHub	via	the	book’s	product	page,
located	at	www.apress.com/9781484250754	.	For	more	detailed	information,
please	visit	www.apress.com/source-code	.

ISBN	978-1-4842-5075-4 e-ISBN	978-1-4842-5076-1

https://doi.org/10.1007/978-1-4842-5076-1

©	Jo	Van	Hoey	2019

This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,
whether	the	whole	or	part	of	the	material	is	concerned,	specifically	the	rights
of	translation,	reprinting,	reuse	of	illustrations,	recitation,	broadcasting,
reproduction	on	microfilms	or	in	any	other	physical	way,	and	transmission	or
information	storage	and	retrieval,	electronic	adaptation,	computer	software,	or
by	similar	or	dissimilar	methodology	now	known	or	hereafter	developed.

Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than
use	a	trademark	symbol	with	every	occurrence	of	a	trademarked	name,	logo,
or	image	we	use	the	names,	logos,	and	images	only	in	an	editorial	fashion	and
to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the
trademark.	The	use	in	this	publication	of	trade	names,	trademarks,	service
marks,	and	similar	terms,	even	if	they	are	not	identified	as	such,	is	not	to	be
taken	as	an	expression	of	opinion	as	to	whether	or	not	they	are	subject	to
proprietary	rights.

While	the	advice	and	information	in	this	book	are	believed	to	be	true	and
accurate	at	the	date	of	publication,	neither	the	authors	nor	the	editors	nor	the
publisher	can	accept	any	legal	responsibility	for	any	errors	or	omissions	that
may	be	made.	The	publisher	makes	no	warranty,	express	or	implied,	with
respect	to	the	material	contained	herein.

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media
New	York,	233	Spring	Street,	6th	Floor,	New	York,	NY	10013.	Phone	1-800-
SPRINGER,	fax	(201)	348-4505,	e-mail	orders-ny@springer-sbm.com,	or
visit	www.springeronline.com.	Apress	Media,	LLC	is	a	California	LLC	and
the	sole	member	(owner)	is	Springer	Science	+	Business	Media	Finance	Inc
(SSBM	Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware	corporation.

http://www.apress.com/9781484250754
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-5076-1

Introduction
Learning	to	program	in	assembly	can	be	frustrating,	not	in	the	least	because	it
is	an	unforgiving	language;	the	computer	will	“yell”	at	you	on	every	possible
occasion.	And	if	it	doesn’t,	you	may	just	have	unknowingly	introduced	a
hidden	bug	that	will	bite	you	later	in	your	program	or	at	execution	time.	On
top	of	that,	the	learning	curve	is	steep,	the	language	is	cryptic,	the	official
Intel	documentation	is	overwhelming,	and	the	available	development	tools
have	their	own	peculiarities.

In	this	book,	you	will	learn	to	program	in	assembly	starting	with	simple
programs	and	moving	all	the	way	up	to	Advanced	Vector	Extensions	(AVX)
programming.	By	the	end	of	this	book,	you	will	be	able	to	write	and	read
assembly	code,	mix	assembly	with	higher-generation	languages,	understand
what	AVX	is,	and	more.	The	purpose	of	this	book	is	to	show	you	how	to	use
assembly	language	instructions.	This	book	is	not	about	programming	style	or
code	performance	optimization.	After	you	have	acquired	basic	knowledge	of
assembly,	you	can	continue	learning	how	to	optimize	your	code.	This	book
should	not	be	the	first	book	you	read	on	programming;	if	you	have	never
programmed	before,	put	this	book	aside	for	a	while	and	learn	some	basics	of
programming	with	a	higher-level	language	such	as	C.

All	the	code	used	in	this	book	can	be	accessed	via	the	Download	Source
Code	link	at	www.apress.com/9781484250754	.	The	code	used	in	this
book	is	kept	as	simple	as	possible,	which	means	no	graphical	user	interfaces
or	bells	and	whistles	or	error	checking.	Adding	all	these	nice	features	would
deviate	our	attention	from	the	purpose:	to	learn	assembly	language.

The	theory	is	kept	to	a	strict	minimum:	a	little	bit	on	binary	numbers,	a
short	presentation	of	logical	operators,	and	some	limited	linear	algebra.	And
we	stay	far	away	from	doing	floating-point	conversions.	If	you	need	to
convert	binary	or	hexadecimal	numbers,	find	a	web	site	that	does	that	for	you.
Don’t	waste	your	time	doing	the	calculations	manually.	Stick	to	the	purpose:
learning	assembly.

The	assembly	code	is	presented	in	complete	programs	so	that	you	can	test
them	on	your	computer,	play	with	them,	change	them,	break	them….

We	will	also	show	you	what	tools	can	be	used,	how	to	use	them,	and	the
potential	problems	in	those	tools.	Having	the	right	tools	is	essential	to
overcoming	the	steep	learning	curve.	At	times	we	will	point	you	to	books,
white	papers,	and	web	sites	that	can	be	useful	or	that	give	more	details.

It	is	not	our	intention	to	give	you	a	comprehensive	course	on	all	of	the

http://www.apress.com/9781484250754

assembly	instructions.	That	is	impossible	in	one	book	(look	at	the	size	of	the
Intel	manuals!).	We	will	give	you	a	taste	of	the	main	items	so	that	you	will
have	an	idea	about	what	is	going	on.	If	you	work	through	this	book,	you	will
acquire	the	knowledge	to	investigate	certain	domains	in	more	detail	on	your
own.	When	you	have	finished	this	book,	you	will	be	able	to	study	the	Intel
manuals	and	(try	to)	make	sense	of	their	content.

The	majority	of	the	book	is	dedicated	to	assembly	on	Linux,	because	it	is
the	easiest	platform	to	learn	assembly	language.	At	the	end,	we	provide	a
number	of	chapters	to	get	you	on	your	way	with	assembly	on	Windows.	You
will	see	that	once	you	have	Linux	assembly	under	your	belt,	it	is	much	easier
to	take	on	Windows	assembly.

There	are	a	number	of	assemblers	available	for	use	with	Intel	processors,
such	as	FASM,	MASM,	GAS,	NASM,	and	YASM	to	name	a	few.	We	will	use
NASM	as	in	this	book,	because	it	is	multiplatform;	it	is	available	on	Linux,
Windows,	and	macOS.	Also,	it	has	a	relatively	large	user	base.	But	don’t
worry,	once	you	know	one	assembler,	it	will	be	easy	to	adopt	another
assembly’s	“dialect.”

We	have	carefully	written	and	tested	the	code	used	in	this	book.	However,
if	there	are	any	typos	in	the	text	or	bugs	in	the	programs,	we	do	not	take	any
responsibility.	We	blame	them	on	our	two	cats,	who	love	to	walk	over	our
keyboard	while	we	are	typing.

The	ideas	and	opinions	we	present	in	this	book	are	our	own	and	don’t
necessarily	represent	IBM’s	positions,	strategies,	or	opinions.

Before	You	Start
You	should	know	some	basic	things	before	you	start	reading	this	book.

You	should	know	how	to	install	and	manage	virtualization	software
(VMware,	VirtualBox,	or	similar)	.	If	you	don’t	have	a	clue	what	that
means,	download	the	free	Oracle	VirtualBox	software	(
https://www.virtualbox.org),	install	it,	and	learn	to	use	it	by
installing,	for	example,	Ubuntu	Desktop	Linux	as	a	guest	operating	system
(OS).	Virtualization	software	allows	you	to	install	different	guest	operating
systems	on	your	main	machine,	and	if	you	mess	things	up	in	the	guest
system,	you	can	delete	that	guest	system	and	reinstall	it.	Or	if	you	have
taken	a	snapshot,	you	can	return	to	a	previous	version	of	your	guest
installation.	In	other	words,	there’s	no	harm	to	your	main	(host)	operating
system	when	experimenting.	There	are	plenty	of	resources	on	the	Internet
explaining	VirtualBox	and	other	virtualization	software	solutions.

You	should	have	basic	knowledge	of	the	Linux	command-line	interface
(CLI)	.	We	will	be	using	Ubuntu	Desktop	here,	and	we	will	use	the	CLI	all
the	time,	starting	in	Chapter	1	.	You	can	use	another	Linux	distribution	if
you	want,	but	make	sure	you	can	install	the	tools	used	in	the	book	(NASM,
GCC	,	GDB	,	SASM,	and	so	on).	The	following	is	the	basic	knowledge	you
need:	how	to	install	the	OS,	how	to	install	additional	software,	how	to	start
a	terminal	with	a	command	prompt,	and	how	to	create,	move,	copy,	and
delete	directories	and	files	at	the	CLI.	You	also	need	to	know	how	to	use
the	tar	utility,	grep	,	find	,	ls	,	time	,	and	so	on.	You	need	to	know
how	to	start	and	use	a	text	editor.	No	advanced	Linux	knowledge	is
required;	you	need	only	a	basic	knowledge	of	these	tasks	to	follow	the
explanations	in	this	book.	If	you	do	not	know	Linux,	play	around	with	it	to
get	used	to	it.	There	are	plenty	of	good,	short,	beginning	tutorials	available
on	the	Internet	(e.g.	https://www.guru99.com/unix-linux-
tutorial.html).	You	will	see	that	after	you	learned	assembly	on	a
Linux	machine,	learning	assembly	on	another	OS	is	not	that	difficult.

You	should	have	some	basic	knowledge	of	the	C	programming
language	.	We	will	use	a	couple	of	C	functions	to	simplify	the	example
assembly	code.	Also,	we	will	show	how	to	interface	with	a	higher-level
language	such	as	C.	If	you	do	not	know	C	and	want	to	fully	enjoy	this
book,	take	a	couple	of	free	introductory	C	courses	at,	for	example,
tutorialspoint.com	.	There’s	no	need	to	do	the	whole	course;	just
take	a	look	at	a	few	programs	in	the	language.	You	can	always	return	later
to	find	out	more	details.

https://www.virtualbox.org
https://www.guru99.com/unix-linux-tutorial.html

Why	Learn	Assembly?
Learning	assembly	has	several	benefits.

You’ll	learn	how	a	CPU	and	memory	works.

You’ll	learn	how	a	computer	and	operating	system	work	together.

You’ll	learn	how	high-level	language	compilers	generate	machine
language,	and	that	knowledge	can	help	you	to	write	more	efficient	code.

You	will	be	better	equipped	to	analyze	bugs	in	your	programs.

It	is	a	lot	of	fun	when	you	eventually	get	your	program	working.

And	the	reason	I	wrote	this	book:	if	you	want	to	investigate	malware,	you
have	only	the	machine	code,	not	the	source	code.	With	an	understanding	of
assembly	language,	you	will	be	able	to	analyze	malware	and	take	necessary
actions	and	precautions.

The	Intel	Manuals
The	Intel	manuals	contain	everything	you	ever	wanted	to	know	about
programming	Intel	processors.	However,	the	information	is	hard	to	swallow
for	a	beginner.	When	you	are	progressing	in	this	book,	you	will	see	that	the
explanations	in	these	Intel	manuals	will	make	gradually	more	sense	to	you.
We	will	refer	often	to	these	massive	volumes	of	information.

You	can	find	the	Intel	manuals	here:
https://software.intel.com/en-us/articles/intel-

sdm

Just	don’t	print	them—think	about	all	the	trees	you	would	be	destroying!
Take	a	short	look	at	the	manuals	to	see	how	comprehensive,	detailed,	and
formal	they	are.	Learning	assembly	from	these	manuals	would	be	very
daunting.	Of	special	interest	to	us	will	be	Volume	2,	where	you	will	find
detailed	explanations	about	the	assembly	programming	instructions.

You	will	find	a	useful	source	here:
https://www.felixcloutier.com/x86/index.html	.	This	site
provides	a	list	of	all	the	instructions	with	a	summary	of	how	to	use	them.	If
the	information	provided	here	is	not	sufficient,	you	can	always	go	back	to	the
Intel	manuals	or	your	friend	Google.

https://software.intel.com/en-us/articles/intel-sdm
https://www.felixcloutier.com/x86/index.html

Table	of	Contents
Chapter	1:	Your	First	Program

Edit,	Assemble,	Link,	and	Run	(or	Debug)
Structure	of	an	Assembly	Program

section	.data
section	.bss
section	.txt

Summary
Chapter	2:	Binary	Numbers,	Hexadecimal	Numbers,	and	Registers

A	Short	Course	on	Binary	Numbers
Integers
Floating-Point	Numbers

A	Short	Course	on	Registers
General-Purpose	Registers
Instruction	Pointer	Register	(rip)
Flag	Register
xmm	and	ymm	Registers

Summary
Chapter	3:	Program	Analysis	with	a	Debugger:	GDB

Start	Debugging
Step	It	Up!
Some	Additional	GDB	Commands
A	Slightly	Improved	Version	of	hello,	world
Summary

Chapter	4:	Your	Next	Program:	Alive	and	Kicking!
Analysis	of	the	Alive	Program
Printing
Summary

Chapter	5:	Assembly	Is	Based	on	Logic
NOT
OR
XOR
AND
Summary

Chapter	6:	Data	Display	Debugger
Working	with	DDD
Summary

Chapter	7:	Jumping	and	Looping
Installing	SimpleASM
Using	SASM
Summary

Chapter	8:	Memory
Exploring	Memory
Summary

Chapter	9:	Integer	Arithmetic
Starting	with	Integer	Arithmetic
Examining	Arithmetic	Instructions
Summary

Chapter	10:	The	Stack
Understanding	the	Stack
Keeping	Track	of	the	Stack
Summary

Chapter	11:	Floating-Point	Arithmetic
Single	vs.	Double	Precision
Coding	with	Floating-Point	Numbers
Summary

Chapter	12:	Functions

Writing	a	Simple	Function
More	Functions
Summary

Chapter	13:	Stack	Alignment	and	Stack	Frame
Stack	Alignment
More	on	Stack	Frames
Summary

Chapter	14:	External	Functions
Building	and	Linking	Functions
Expanding	the	makefile
Summary

Chapter	15:	Calling	Conventions
Function	Arguments
Stack	Layout
Preserving	Registers
Summary

Chapter	16:	Bit	Operations
Basics
Arithmetic
Summary

Chapter	17:	Bit	Manipulations
Other	Ways	to	Modify	Bits
The	bitflags	Variable
Summary

Chapter	18:	Macros
Writing	Macros
Using	objdump
Summary

Chapter	19:	Console	I/O

Working	with	I/O
Dealing	with	Overflows
Summary

Chapter	20:	File	I/O
Using	syscalls
File	Handling
Conditional	Assembly
The	File-Handling	Instructions
Summary

Chapter	21:	Command	Line
Accessing	Command-Line	Arguments
Debugging	the	Command	Line
Summary

Chapter	22:	From	C	to	Assembler
Writing	the	C	Source	File
Writing	the	Assembler	Code
Summary

Chapter	23:	Inline	Assembly
Basic	Inline
Extended	Inline
Summary

Chapter	24:	Strings
Moving	Strings
Comparing	and	Scanning	Strings
Summary

Chapter	25:	Got	Some	ID?
Using	cpuid
Using	the	test	Instruction
Summary

Chapter	26:	SIMD
Scalar	Data	and	Packed	Data
Unaligned	and	Aligned	Data
Summary

Chapter	27:	Watch	Your	MXCSR
Manipulating	the	mxcsr	Bits
Analyzing	the	Program
Summary

Chapter	28:	SSE	Alignment
Unaligned	Example
Aligned	Example
Summary

Chapter	29:	SSE	Packed	Integers
SSE	Instructions	for	Integers
Analyzing	the	Code
Summary

Chapter	30:	SSE	String	Manipulation
The	imm8	Control	Byte
Using	the	imm8	Control	Byte

Bits	0	and	1
Bits	2	and	3
Bits	4	and	5
Bit	6
Bit	7	Reserved

The	Flags
Summary

Chapter	31:	Search	for	a	Character
Determining	the	Length	of	a	String
Searching	in	Strings

Summary
Chapter	32:	Compare	Strings

Implicit	Length
Explicit	Length
Summary

Chapter	33:	Do	the	Shuffle!
A	First	Look	at	Shuffling
Shuffle	Broadcast
Shuffle	Reverse
Shuffle	Rotate
Shuffle	Bytes
Summary

Chapter	34:	SSE	String	Masks
Searching	for	Characters
Searching	for	a	Range	of	Characters
Searching	for	a	Substring
Summary

Chapter	35:	AVX
Test	for	AVX	Support
Example	AVX	Program
Summary

Chapter	36:	AVX	Matrix	Operations
Example	Matrix	Code
Matrix	Print:	printm4x4
Matrix	Multiplication:	multi4x4
Matrix	Inversion:	Inverse4x4

Caley-Hamilton	Theorem
Leverrier	Algorithm
The	Code

Summary
Chapter	37:	Matrix	Transpose

Example	Transposing	Code
The	Unpack	Version
The	Shuffle	Version
Summary

Chapter	38:	Performance	Optimization
Transpose	Computation	Performance
Trace	Computation	Performance
Summary

Chapter	39:	Hello,	Windows	World
Getting	Started
Writing	Some	Code
Debugging
Syscalls
Summary

Chapter	40:	Using	the	Windows	API
Console	Output
Building	Windows
Summary

Chapter	41:	Functions	in	Windows
Using	More	Than	Four	Arguments
Working	with	Floating	Points
Summary

Chapter	42:	Variadic	Functions
Variadic	Functions	in	Windows
Mixing	Values
Summary

Chapter	43:	Windows	Files

Summary
Afterword:	Where	to	Go	from	Here?
Index

About	the	Author	and	About	the	Technical
Reviewer

About	the	Author
Jo	Van	Hoey
has	40	years	of	experience	in	IT,	consisting
of	diverse	functions,	multiple	IT	companies,
and	various	computing	platforms.	He
recently	retired	from	IBM,	where	he	was	a
mainframe	software	account	manager.	He	has
always	been	interested	in	IT	security,	and
knowledge	of	assembly	language	is	an
essential	skill	in	defending	IT	infrastructure
against	attacks	and	malware.

	
About	the	Technical	Reviewer
Paul	Cohen
joined	Intel	Corporation	during	the	very	early	days	of	the	x86	architecture,
starting	with	the	8086,	and	retired	from	Intel	after	26	years	in
sales/marketing/management.	He	is	currently	partnered	with	Douglas
Technology	Group,	focusing	on	the	creation	of	technology	books	on	behalf	of
Intel	and	other	corporations.	Paul	also	teaches	a	class	that	transforms	middle
and	high	school	students	into	real,	confident	entrepreneurs,	in	conjunction
with	the	Young	Entrepreneurs	Academy	(YEA),	and	is	a	traffic	commissioner
for	the	City	of	Beaverton,	Oregon,	and	on	the	board	of	directors	of	multiple
nonprofit	organizations.

	

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_1

1.	Your	First	Program
Jo	Van	Hoey1	

Hamme,	Belgium

	
Generations	of	programmers	have	started	their	programming	careers	by
learning	how	to	display	hello,	world	on	a	computer	screen.	It	is	a
tradition	that	was	started	in	the	seventies	by	Brian	W.	Kernighan	in	the	book
he	wrote	with	Dennis	Ritchie,	The	C	Programming	Language.	Kernighan
developed	the	C	programming	language	at	Bell	Labs.	Since	then,	the	C
language	has	changed	a	lot	but	has	remained	the	language	that	every	self-
respecting	programmer	should	be	familiar	with.	The	majority	of	“modern”
and	“fancy”	programming	languages	have	their	roots	in	C.	C	is	sometimes
called	a	portable	assembly	language,	and	as	an	aspiring	assembly
programmer,	you	should	get	familiar	with	C.	To	honor	the	tradition,	we	will
start	with	an	assembler	program	to	put	hello,	world	on	your	screen.
Listing	1-1	shows	the	source	code	for	an	assembly	language	version	of	the
hello,	world	program	,	which	we	will	analyze	in	this	chapter.

;hello.asm

section	.data

msg				db						“hello,	world”,0

section	.bss

section	.text

global	main

main:

mov				rax,	1							;	1	=	write

mov				rdi,	1							;	1	=	to	stdout

mov				rsi,	msg					;	string	to	display	in	rsi

mov				rdx,	12						;	length	of	the	string,

https://doi.org/10.1007/978-1-4842-5076-1_1

without	0

syscall													;	display	the	string

mov				rax,	60						;	60	=	exit

mov					rdi,	0						;	0	=	success	exit	code

syscall													;	quit
Listing	1-1 hello.asm

Edit,	Assemble,	Link,	and	Run	(or	Debug)
There	are	many	good	text	editors	on	the	market,	both	free	and	commercial.
Look	for	one	that	supports	syntax	highlighting	for	NASM	64-bit.	In	most
cases,	you	will	have	to	download	some	kind	of	plugin	or	package	to	have
syntax	highlighting.

Note In	this	book,	we	will	write	code	for	the	Netwide	Assembler
(NASM).	There	are	other	assemblers	such	as	YASM,	FASM,	GAS,	or
MASM	from	Microsoft.	And	as	with	everything	in	the	computer	world,
there	are	sometimes	heavy	discussions	about	which	assembler	is	the	best.
We	will	use	NASM	in	this	book	because	it	is	available	on	Linux,
Windows,	and	macOS	and	because	there	is	a	large	community	using
NASM.	You	can	find	the	manual	at	www.nasm.us	.

We	use	gedit	with	an	assembler	language	syntax	file	installed.	Gedit	is	a
standard	editor	available	in	Linux;	We	use	Ubuntu	Desktop	18.04.2	LTS.	You
can	find	a	syntax	highlighting	file	at
https://wiki.gnome.org/action/show/Projects/GtkSourceView/LanguageDefinitions
.	Download	the	file	asm-intel.lang,	copy	it	to
/usr/share/gtksourceview*.0/language-specs/,	and	replace
the	asterisk	(*)	with	the	version	installed	on	your	system.	When	you	open
gedit,	you	can	choose	your	programming	language,	here	Assembler	(Intel),	at
the	bottom	of	the	gedit	window.

On	our	gedit	screen,	the	hello.asm	file	shown	in	Listing	1-1	looks	like
Figure	1-1.

http://www.nasm.us
https://wiki.gnome.org/action/show/Projects/GtkSourceView/LanguageDefinitions

Figure	1-1 hello.asm	in	gedit

We	think	you	will	agree	that	syntax	highlighting	makes	the	assembler
code	a	little	bit	easier	to	read.

When	we	write	assembly	programs,	we	have	two	windows	open	on	our
screen—a	window	with	gedit	containing	our	assembler	source	code	and	a
window	with	a	command	prompt	in	the	project	directory—so	that	we	can
easily	switch	between	editing	and	manipulating	the	project	files	(assembling
and	running	the	program,	debugging,	and	so	on).	We	agree	that	for	more
complex	and	larger	projects,	this	is	not	feasible;	you	will	need	an	integrated
development	environment	(IDE).	But	for	now,	working	with	a	simple	text
editor	and	the	command	line	(in	other	words,	the	CLI)	will	do.	This	process
has	the	benefit	that	we	can	concentrate	on	the	assembler	instead	of	the	bells
and	whistles	of	an	IDE.	In	later	chapters,	we	will	discuss	useful	tools	and
utilities,	some	of	them	with	graphical	user	interfaces	and	some	of	them	CLI
oriented.	But	explaining	and	using	IDEs	is	beyond	the	scope	of	this	book.

For	every	exercise	in	this	book,	we	use	a	separate	project	directory
that	will	contain	all	the	files	needed	and	generated	for	the	project.

Of	course,	in	addition	to	a	text	editor,	you	have	to	check	that	you	have	a
number	of	other	tools	installed,	such	as	GCC,	GDB,	make,	and	NASM.	First	we
need	GCC,	the	default	Linux	compiler	linker.

GCC	stands	for	GNU	Compiler	Collection	and	is	the	standard	compiler
and	linker	tool	on	Linux.	(GNU	stands	for	GNU	is	Not	Unix;	it	is	a	recursive
acronym.	Using	recursive	acronyms	for	naming	things	is	an	insider
programmer	joke	that	started	in	the	seventies	by	LISP	programmers.	Yes,	a
lame	old	joke….)

Type	gcc	-v	at	the	CLI.	GCC	will	respond	with	a	number	of	messages
if	it	is	installed.	If	it	is	not	installed,	install	it	by	typing	the	following	at	the
CLI:

sudo	apt	install	gcc

Do	the	same	with	gdb	-v	and	make	-v.	If	you	don’t	understand	these
instructions,	brush	up	on	your	Linux	knowledge	before	continuing.

You	need	to	install	NASM	and	build-essential,	which	contains	a
number	of	tools	we	will	use.	To	do	so	in	Ubuntu	Desktop	18.04,	use	this:

sudo	apt	install	build-essential	nasm

Type	nasm	-v	at	the	CLI,	and	nasm	will	respond	with	a	version	number
if	it	is	properly	installed.	If	you	have	these	programs	installed,	you	are	ready
for	your	first	assembly	program.

Type	the	hello,	world	program	shown	in	Listing	1-1	into	your
favorite	editor	and	save	it	with	the	name	hello.asm.	As	mentioned,	use	a
separate	directory	for	saving	the	files	of	this	first	project.	We	will	explain
every	line	of	code	later	in	this	chapter;	note	the	following	characteristics	of
assembly	source	code	(the	“source	code”	is	the	hello.asm	file	with	the
program	instructions	you	just	typed):

In	your	code,	you	can	use	tabs,	spaces,	and	new	lines	to	make	the	code
more	readable.

Use	one	instruction	per	line.

The	text	following	a	semicolon	is	a	comment,	in	other	words,	an
explanation	for	the	benefit	of	humans.	Computers	happily	ignore
comments.

With	your	text	editor,	create	another	file	containing	the	lines	in	Listing	1-
2.

#makefile	for	hello.asm

hello:	hello.o

gcc	-o	hello	hello.o	-no-pie

hello.o:	hello.asm

nasm	-f	elf64	-g	-F	dwarf	hello.asm	-l
hello.lst

Listing	1-2 makefile	for	hello.asm

Figure	1-2	shows	what	we	have	in	gedit.

Figure	1-2 makefile	in	gedit

Save	this	file	as	makefile	in	the	same	directory	as	hello.asm	and
quit	the	editor.

A	makefile	will	be	used	by	make	to	automate	the	building	of	our
program.	Building	a	program	means	checking	your	source	code	for	errors,
adding	all	necessary	services	from	the	operation	system,	and	converting	your
code	into	a	sequence	of	machine-readable	instructions.	In	this	book,	we	will
use	simple	makefiles.	If	you	want	to	know	more	about	makefiles,	here
is	the	manual:

https://www.gnu.org/software/make/manual/make.html

Here	is	a	tutorial:
https://www.tutorialspoint.com/makefile/

You	read	the	makefile	from	the	bottom	up	to	see	what	it	is	doing.	Here
is	a	simplified	explanation:	the	make	utility	works	with	a	dependency	tree.	It
notes	that	hello	depends	on	hello.o.	It	then	sees	that	hello.o	depends
on	hello.asm	and	that	hello.asm	depends	on	nothing	else.	make
compares	the	last	modification	dates	of	hello.asm	with	hello.o,	and	if
the	date	from	hello.asm	is	more	recent,	make	executes	the	line	after
hello.o,	which	is	hello.asm.	Then	make	restarts	reading	the
makefile	and	finds	that	the	modification	date	of	hello.o	is	more	recent
than	the	date	from	hello.	So,	it	executes	the	line	after	hello,	which	is
hello.o.

In	the	bottom	line	of	our	makefile,	NASM	is	used	as	the	assembler.
The	-f	is	followed	by	the	output	format,	in	our	case	elf64,	which	means
Executable	and	Linkable	Format	for	64-bit	.	The	-g	means	that	we	want	to
include	debug	information	in	a	debug	format	specified	after	the	-F	option.
We	use	the	dwarf	debug	format.	The	software	geeks	who	invented	this
format	seemed	to	like	The	Hobbit	and	Lord	of	the	Rings	written	by	J.J.R.
Tolkien,	so	maybe	that	is	why	they	decided	that	DWARF	would	be	a	nice
complement	to	ELF…just	in	case	you	were	wondering.	Seriously,	DWARF
stands	for	Debug	With	Arbitrary	Record	Format	.

STABS	is	another	debug	format,	which	has	nothing	to	do	with	all	the

https://www.gnu.org/software/make/manual/make.html
https://www.tutorialspoint.com/makefile/

stabbing	in	Tolkien’s	novels;	the	name	comes	from	Symbol	Table	Strings.
We	will	not	use	STABS	here,	so	you	won’t	get	hurt.

The	-l	tells	NASM	to	generate	a	.lst	file.	We	will	use	.lst	files	to
examine	the	result	of	the	assembly.	NASM	will	create	an	object	file	with	an
.o	extension.	That	object	file	will	next	be	used	by	a	linker.

Note Often	it	will	happen	that	NASM	complains	with	a	number	of
cryptic	messages	and	refuses	to	give	you	an	object	file.	Sometimes	NASM
will	complain	so	often	that	it	will	drive	you	almost	insane.	In	those	cases,
it	is	essential	to	keep	calm,	have	another	coffee,	and	review	your	code,
because	you	did	something	wrong.	As	you	program	more	and	more	in
assembly,	you	will	catch	mistakes	faster.

When	you	finally	convinced	NASM	to	give	you	an	object	file,	this	object	file
is	then	linked	with	a	linker.	A	linker	takes	your	object	code	and	searches	the
system	for	other	files	that	are	needed,	typically	system	services	or	other	object
files.	These	files	are	combined	with	your	generated	object	code	by	the	linker,
and	an	executable	file	is	produced.	Of	course,	the	linker	will	take	every
possible	occasion	to	complain	to	you	about	missing	things	and	so	on.	If	that	is
the	case,	have	another	coffee	and	check	your	source	code	and	makefile.

In	our	case,	we	use	the	linking	functionality	of	GCC	(repeated	here	for
reference):

hello:	hello.o

gcc	-o	hello	hello.o	-no-
pie

The	recent	GCC	linker	and	compiler	generate	position-independent
executables	(PIEs)	by	default.	This	is	to	prevent	hackers	from	investigating
how	memory	is	used	by	a	program	and	eventually	interfering	with	program
execution.	At	this	point,	we	will	not	build	position-independent	executables;
it	would	really	complicate	the	analysis	of	our	program	(on	purpose,	for
security	reasons).	So,	we	add	the	parameter	-no-pie	in	the	makefile.

Finally,	you	can	insert	comments	in	your	makefile	by	preceding	them
with	the	pound	symbol,	#.

#makefile	for	hello.asm

We	use	GCC	because	of	the	ease	of	accessing	C	standard	library	functions
from	within	assembler	code.	To	make	life	easy,	we	will	use	C	language
functions	from	time	to	time	to	simplify	the	example	assembly	code.	Just	so

you	know,	another	popular	linker	on	Linux	is	ld,	the	GNU	linker.

If	the	previous	paragraphs	do	not	make	sense	to	you,	do	not	worry—have
a	coffee	and	carry	on;	it	is	just	background	information	and	not	important	at
this	stage.	Just	remember	that	makefile	is	your	friend	and	doing	a	lot	of
work	for	you;	the	only	thing	you	have	to	worry	about	at	this	time	is	making
no	errors.

At	the	command	prompt,	go	to	the	directory	where	you	saved	your
hello.asm	file	and	your	makefile.	Type	make	to	assemble	and	build
the	program	and	then	run	the	program	by	typing	./hello	at	the	command
prompt.	If	you	see	the	message	hello,	world	displayed	in	front	of	the
command	prompt,	then	everything	worked	out	fine.	Otherwise,	you	made
some	typing	or	other	error,	and	you	need	to	review	your	source	code	or
makefile.	Refill	your	cup	of	coffee	and	happy	debugging!

Figure	1-3	shows	an	example	of	the	output	we	have	on	our	screen.

Figure	1-3 hello,	world	output

Structure	of	an	Assembly	Program
This	first	program	illustrates	the	basic	structure	of	an	assembly	program.	The
following	are	the	main	parts	of	an	assembly	program:

section	.data

section	.bss

section	.text

section	.data
In	section	.data	,	initialized	data	is	declared	and	defined,	in	the
following	format:

<variable
name>							<type>							<value>

When	a	variable	is	included	in	section	.data,	memory	is	allocated
for	that	variable	when	the	source	code	is	assembled	and	linked	to	an
executable.	Variable	names	are	symbolic	names,	and	references	to	memory
locations	and	a	variable	can	take	one	or	more	memory	locations.	The	variable
name	refers	to	the	start	address	of	the	variable	in	memory.

Variable	names	start	with	a	letter,	followed	by	letters	or	numbers	or
special	characters.	Table	1-1	lists	the	possible	datatypes.
Table	1-1 	Datatypes

Type Length Name

db 8	bits Byte

dw 16	bits Word

dd 32	bits Double	word

dq 64	bits Quadword

In	the	example	program,	section	.data	contains	one	variable,	msg,
which	is	a	symbolic	name	pointing	to	the	memory	address	of	‘h’,	which	is
the	first	byte	of	the	string	“hello,	world”,0.	So,	msg	points	to	the	letter
‘h’,	msg+1	points	to	the	letter	‘e’,	and	so	on.	This	variable	is	called	a
string,	which	is	a	contiguous	list	of	characters.	A	string	is	a	“list”	or	“array”
of	characters	in	memory.	In	fact,	any	contiguous	list	in	memory	can	be
considered	a	string;	the	characters	can	be	human	readable	or	not,	and	the
string	can	be	meaningful	to	humans	or	not.

It	is	convenient	to	have	a	zero	indicating	the	end	of	a	human-readable
string.	You	can	omit	the	terminating	zero	at	your	own	peril.	The	terminating	0
we	are	referring	to	is	not	an	ASCII	0;	it	is	a	numeric	zero,	and	the	memory
place	at	the	0	contains	eight	0	bits.	If	you	frowned	at	the	acronym	ASCII,	do
some	Googling.	Having	a	grasp	of	what	ASCII	means	is	important	in
programming.	Here	is	the	short	explanation:	characters	for	use	by	humans
have	a	special	code	in	computers.	Capital	A	has	code	65,	B	has	code	66,	and
so	on.	A	line	feed	or	new	line	has	code	10,	and	NULL	has	code	0.	Thus,	we
terminate	a	string	with	NULL.	When	you	type	man	ascii	at	the	CLI,	Linux
will	show	you	an	ASCII	table.

section	.data	can	also	contain	constants,	which	are	values	that
cannot	be	changed	in	the	program.	They	are	declared	in	the	following	format:

<constant
name>						equ						<value>

Here’s	an	example:

pi	equ
3.1416

section	.bss
The	acronym	bss	stands	for	Block	Started	by	Symbol	,	and	its	history	goes
back	to	the	fifties,	when	it	was	part	of	assembly	language	developed	for	the
IBM	704.	In	this	section	go	the	uninitialized	variables.	Space	for	uninitialized
variables	is	declared	in	this	section,	in	the	following	format:

<variable	name>						<type>						<number>

Table	1-2	shows	the	possible	bss	datatypes.
Table	1-2 bss	Datatypes

Type Length Name

resb 8	bits Byte

resw 16	bits Word

resd 32	bits Double	word

resq 64	bits Quadword

For	example,	the	following	declares	space	for	an	array	of	20	double
words:

dArray	resd
20

The	variables	in	section	.bss	do	not	contain	any	values;	the	values
will	be	assigned	later	at	execution	time.	Memory	places	are	not	reserved	at
compile	time	but	at	execution	time.	In	future	examples,	we	will	show	the	use
of	section	.bss.	When	your	program	starts	executing,	the	program	asks
for	the	needed	memory	from	the	operating	system,	allocated	to	variables	in
section	.bss	and	initialized	to	zeros.	If	there	is	not	enough	memory
available	for	the	.bss	variables	at	execution	time,	the	program	will	crash.

section	.txt
section	.txt	is	where	all	the	action	is.	This	section	contains	the	program
code	and	starts	with	the	following:

global
main

main:

The	main:	part	is	called	a	label.	When	you	have	a	label	on	a	line	without
anything	following	it,	the	word	is	best	followed	by	a	colon;	otherwise,	the
assembler	will	send	you	a	warning.	And	you	should	not	ignore	warnings!
When	a	label	is	followed	by	other	instructions,	there	is	no	need	for	a	colon,
but	it	is	best	to	make	it	a	habit	to	end	all	labels	with	a	colon.	Doing	so	will
increase	the	readability	of	your	code.

In	our	hello.asm	code,	after	the	main:	label,	registers	such	as	rdi,
rsi,	and	rax	are	prepared	for	outputting	a	message	on	the	screen.	We	will
see	more	information	about	registers	in	Chapter	2.	Here,	we	will	display	a
string	on	the	screen	using	a	system	call.	That	is,	we	will	ask	the	operating
system	to	do	the	work	for	us.

The	system	call	code	1	is	put	into	the	register	rax,	which	means	“write.”

To	put	some	value	into	a	register,	we	use	the	instruction	mov.	In	reality,
this	instruction	does	not	move	anything;	it	makes	a	copy	from	the	source	to
the	destination.	The	format	is	as	follows:

mov	destination,	source

The	instruction	mov	can	be	used	as	follows:

mov	register,	immediate	value

mov	register,	memory

mov	memory,	register

illegal:	mov	memory,	memory

In	our	code,	the	output	destination	for	writing	is	stored	into	the	register
rdi,	and	1	means	standard	output	(in	this	case,	output	to	your	screen).

The	address	of	the	string	to	be	displayed	is	put	into	register	rsi.

In	register	rdx	,	we	place	the	message	length.	Count	the	characters	of
hello,	world.	Do	not	count	the	quotes	of	the	string	or	the	terminating
0.	If	you	count	the	terminating	0,	the	program	will	try	to	display	a	NULL
byte,	which	is	a	bit	senseless.

Then	the	system	call,	syscall	,	is	executed,	and	the	string,	msg,	will	be

displayed	on	the	standard	output.	A	syscall	is	a	call	to	functionality
provided	by	the	operating	system.

To	avoid	error	messages	when	the	program	finishes,	a	clean	program	exit	is
needed.	We	start	with	writing	60	into	rax,	which	indicates	“exit.”	The
“success”	exit	code	0	goes	into	rdi,	and	then	a	system	call	is	executed.
The	program	exits	without	complaining.

System	calls	are	used	to	ask	the	operating	system	to	do	specific	actions.
Every	operating	system	has	a	different	list	of	system	call	parameters,	and	the
system	calls	for	Linux	are	different	from	Windows	or	macOS.	We	use	the
Linux	system	calls	for	x64	in	this	book;	you	can	find	more	details	at
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
.

Be	aware	that	32-bit	system	calls	differ	from	64-bit	system	calls.	When
you	read	code,	always	verify	if	the	code	is	written	for	32-bit	or	64-bit
systems.

Go	to	the	operating	system	CLI	and	look	for	the	file	hello.lst.	This
file	was	generated	during	assembling,	before	linking,	as	specified	in	the
makefile.	Open	hello.lst	in	your	editor,	and	you	will	see	your
assembly	code	listing;	in	the	leftmost	column,	you’ll	see	the	relative	address
of	your	code,	and	in	the	next	column,	you’ll	see	your	code	translated	into
machine	language	(in	hexadecimal).	Figure	1-4	shows	our	hello.lst.

Figure	1-4 	hello.lst

You	have	a	column	with	the	line	numbers	and	then	a	column	with	eight
digits.	This	column	represents	memory	locations.	When	the	assembler	built
the	object	file,	it	didn’t	know	yet	what	memory	locations	would	be	used.	So,
it	started	at	location	0	for	the	different	sections.	The	section	.bss	part
has	no	memory.

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

We	see	in	the	second	column	the	result	of	the	conversion	of	the	assembly
instruction	into	hexadecimal	code.	For	example,	mov	rax	is	converted	to	B8
and	mov	rdi	to	BF.	These	are	the	hexadecimal	representations	of	the
machine	instructions.	Note	also	the	conversion	of	the	msg	string	to
hexadecimal	ASCII	characters.	Later	you’ll	learn	more	about	hexadecimal
notation.	The	first	instruction	to	be	executed	starts	at	address	00000000	and
takes	five	bytes:	B8	01	00	00	00.	The	double	zeros	are	there	for	padding
and	memory	alignment.	Memory	alignment	is	a	feature	used	by	assemblers
and	compilers	to	optimize	code.	You	can	give	assemblers	and	compilers
different	flags	to	obtain	the	smallest	possible	size	of	the	executable,	the	fastest
code,	or	a	combination.	In	later	chapters,	we	will	discuss	optimization,	with
the	purpose	of	increasing	execution	speed.

The	next	instruction	starts	at	address	00000005,	and	so	on.	The	memory
addresses	have	eight	digits	(that	is,	8	bytes);	each	byte	has	8	bits.	So,	the
addresses	have	64	bits;	indeed,	we	are	using	a	64-bit	assembler.	Look	at	how
msg	is	referenced.	Because	the	memory	location	of	msg	is	not	known	yet,	it
is	referred	to	as	[0000000000000000].

You	will	agree	that	assembler	mnemonics	and	symbolic	names	for
memory	addresses	are	quite	a	bit	easier	to	remember	than	hexadecimal
values,	knowing	that	there	are	hundreds	of	mnemonics,	with	a	multitude	of
operands,	each	resulting	in	even	more	hexadecimal	instructions.	In	the	early
days	of	computers,	programmers	used	machine	language,	the	first-generation
programming	language.	Assembly	language,	with	its	“easier	to	remember”
mnemonics,	is	a	second-generation	programming	language.

Summary
In	this	chapter,	you	learned	about	the	following:

The	basic	structure	of	an	assembly	program,	with	the	different	sections

Memory,	with	symbolic	names	for	addresses

Registers

An	assembly	instruction:	mov

How	to	use	a	syscall

The	difference	between	machine	code	and	assembly	code

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_2

2.	Binary	Numbers,	Hexadecimal	Numbers,
and	Registers
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	current	computers,	bits	are	the	smallest	piece	of	information;	a	bit	can	have
a	value	of	1	or	0.	In	this	chapter,	we	will	investigate	how	bits	are	combined	to
represent	data,	such	as	integers	or	floating-point	values.	The	decimal
representation	of	values,	which	is	so	intuitive	to	humans,	is	not	ideal	for
computers	to	work	with.	When	you	have	a	binary	system,	with	only	two
possible	values	(1	or	0),	it	is	much	more	efficient	to	work	with	powers	of	2.
When	we	talk	about	historical	computer	generations,	you	had	8-bit	CPUs	(23),
16-bit	CPUs	(24),	32-bit	CPUs	(25),	and	currently	mostly	64-bit	CPUs	(26).
However,	for	humans,	dealing	with	long	strings	of	1s	and	0s	is	impractical	or
even	impossible.	In	this	chapter,	we	will	show	how	to	convert	bits	into
decimal	or	hexadecimal	values	that	we	can	more	easily	work	with.	After	that,
we	will	discuss	registers,	data	storage	areas	that	assist	the	processor	in
executing	logical	and	arithmetic	instructions.

A	Short	Course	on	Binary	Numbers
Computers	use	binary	digits	(0s	and	1s)	to	do	the	work.	Eight	binary	digits
grouped	together	are	called	a	byte	.	However,	binary	numbers	are	too	long	for
humans	to	work	with,	let	alone	to	remember.	Hexadecimal	numbers	are	more
user-friendly	(only	slightly),	not	in	the	least	because	every	8-bit	byte	can	be
represented	by	only	two	hexadecimal	numbers.

When	you	want	to	view	a	binary,	decimal,	or	hexadecimal	value	in	a
different	display	format,	you	need	to	use	a	converter.	The	Internet	has	plenty
of	conversion	calculators.	Here	are	some	that	are	easy	to	use:

www.binaryconvert.com

https://www.binaryhexconverter.com

https://doi.org/10.1007/978-1-4842-5076-1_2
http://www.binaryconvert.com
https://www.binaryhexconverter.com

https://babbage.cs.qc.cuny.edu/IEEE-754/

Here	is	the	basic	conversion	table;	it	would	be	helpful	to	memorize	this
table:

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 a 1010

11 b 1011

12 c 1100

13 d 1101

14 e 1110

15 f 1111

Integers
There	are	two	kinds	of	integers,	signed	and	unsigned.	Signed	integers	have
the	leftmost	bit	set	to	1	if	negative	and	0	if	positive.	Unsigned	integers	are	0
or	positive;	there	is	no	room	for	a	sign	bit.	To	be	able	to	do	integer	arithmetic,
negative	integers	are	used	in	what	is	called	a	two’s	complement	representation.
You	obtain	the	binary	representation	of	a	negative	number	as	follows:

1.

Write	the	binary	of	the	absolute	value. 	
2.

https://babbage.cs.qc.cuny.edu/IEEE-754/

Take	the	complement	(change	all	the	1s	to	0s	and	the	0s	to	1s).	
3.

Add	1. 	
Here	is	an	example	using	16-bit	numbers,	instead	of	64-bit	numbers	(to

keep	the	example	manageable):

decimal	number	=					17

binary	number	=						0000				0000				0001				0001

hexadecimal	number	=			0							0							1							1				=	11

decimal	number	=																						-17

binary	number	absolute	value
=								0000				0000				0001				0001

complement
=																										1111				1111				1110				1110

add	1
=																															1111				1111				1110				1111

hexadecimal
=																									f							f							e							f						=
ffef

Verify:				-17							11111111	11101111

add:							+17							00000000	00010001

equals:				0									00000000	00000000

Hexadecimal	numbers	are	normally	preceded	with	0x	in	order	to
distinguish	them	from	decimal	numbers,	so	-17	in	hexadecimal	is	0xffef.
If	you	investigate	a	machine	language	listing,	a	.lst	file,	and	you	see	the
number	0xffef,	you	have	to	find	out	from	the	context	if	it	is	a	signed	or
unsigned	integer.	If	it	is	a	signed	integer,	it	means	-17	in	decimal.	If	it	is	an
unsigned	integer,	it	means	65519.	Of	course,	if	it	is	a	memory	address,	it	is
unsigned	(you	get	that,	right?).	Sometimes	you	will	see	other	notations	in
assembler	code,	such	as	0800h,	which	is	also	a	hexadecimal	number;
10010111b,	a	binary	number;	or	420o,	an	octal	number.	Yes,	indeed,	octal
numbers	can	also	be	used.	We	will	use	octal	numbers	when	we	write	our	code

for	file	I/O.	If	you	need	to	convert	integer	numbers,	don’t	sweat	it;	use	the
previously	mentioned	websites.

Floating-Point	Numbers
Floating-point	numbers	are	written	in	binary	or	hexadecimal	according	to	the
IEEE-754	standard.	The	process	is	even	more	complicated	than	with	integers;
if	you	want	to	know	the	details,	here	is	a	good	place	to	start:

http://mathcenter.oxford.emory.edu/site/cs170/ieee754/

Again,	if	you	need	to	convert	floating-point	numbers,	use	the	previously
mentioned	web	sites;	we	will	not	go	into	further	detail	here.

A	Short	Course	on	Registers
The	CPU,	the	brain	of	the	computer,	executes	the	program	instructions	by
making	extensive	use	of	the	registers	and	memory	of	the	computer,	doing
mathematical	and	logical	operations	on	these	registers	and	memory.
Therefore,	it	is	important	to	have	a	basic	knowledge	of	registers	and	memory
and	how	they	are	used.	Here	we	give	a	short	overview	of	the	registers;	more
details	about	the	usage	of	registers	will	become	clear	in	later	chapters.
Registers	are	storage	locations,	used	by	the	CPU	to	store	data,	instructions,	or
memory	addresses.	There	are	only	a	small	number	of	registers,	but	the	CPU
can	read	and	write	them	extremely	quickly.	You	can	consider	registers	as	sort
of	a	scratchpad	for	the	processor	to	store	temporary	information.	One	rule	to
keep	in	mind	if	speed	is	important	is	that	the	CPU	can	access	registers	much
faster	than	it	can	access	memory.

Do	not	worry	if	this	section	is	above	your	head;	things	will	start	making
sense	when	we	use	registers	in	the	upcoming	chapters.

General-Purpose	Registers
There	are	16	general-purpose	registers,	and	each	register	can	be	used	as	a	64-
bit,	32-bit,	16-bit,	or	8-bit	register.	In	the	following	table,	you	can	see	the
names	of	each	register	in	different	sizes.	Four	registers—rax,	rbx,	rcx,	and
rdx—can	have	two	kinds	of	8-bit	registers:	low	8-bit,	which	is	the	lower	half
of	the	16-bit	register,	and	high	8-bit,	which	is	the	higher	half	of	the	16-bit
register.

64-bit 32-bit 16-bit low	8-bit high	8-bit comment

rax eax ax al ah 	

rbx ebx bx bl bh 	

rcx ecx cx cl ch 	

rdx edx dx dl dh 	

rsi esi si sil - 	

rdi edi di dil - 	

rbp ebp bp bpl - Base	pointer

rsp esp sp spl - Stack	pointer

r8 r8d r8w r8b - 	

r9 r9d r9w r9b - 	

r10 r10d r10w r10b - 	

r11 r11d r11w r11b - 	

r12 r12d r12w r12b - 	

r13 r13d r13w r13b - 	

r14 r14d r14w r14b - 	

r15 r15d r15w r15b - 	

Although	rbp	and	rsp	are	called	general-purpose	registers,	they	should
be	handled	with	care,	as	they	are	used	by	the	processor	during	the	program
execution.	We	will	use	rbp	and	rsp	quite	a	bit	in	the	more	advanced
chapters.

A	64-bit	register	contains	a	set	of	64	bits,	0s	and/or	1s,	that	is,	8	bytes.
When	we	put	60	in	rax	in	our	hello,	world	program,	rax	contained	the
following:

00000000	00000000	00000000	00000000	00000000
00000000	00000000	00111100

This	is	the	binary	representation	of	the	number	60	in	a	64-bit	register.

A	32-bit	register	is	the	set	of	the	32	lower	(rightmost)	bits	of	a	64-bit
register.	Similarly,	a	16-bit	register	and	an	8-bit	register	consist	of	the	lowest
16	and	lowest	8	bits,	respectively,	of	the	64-bit	register.

Remember,	the	“lower”	bits	are	always	the	rightmost	bits.

Bit	number	0	is	the	rightmost	bit;	we	start	counting	from	the	right	and

start	with	index	0,	not	1.	Thus,	the	leftmost	bit	of	a	64-bit	register	has	index
63,	not	64.

So,	when	rax	has	the	value	60,	we	could	also	say	that	eax	now	contains
the	following:

00000000	00000000	00000000
00111100

or	that	ax	contains	the	following:

00000000
00111100

or	that	al	contains	the	following:

0011110
0

Instruction	Pointer	Register	(rip)
The	processor	keeps	track	of	the	next	instruction	to	be	executed	by	storing	the
address	of	the	next	instruction	in	rip	.	You	can	change	the	value	in	rip	to
whatever	you	want	at	your	own	peril;	you	have	been	warned.	A	safer	way	of
changing	the	value	in	rip	is	by	using	jump	instructions.	This	will	be
discussed	in	a	later	chapter.

Flag	Register
Here	is	the	layout	of	rflags	,	the	flag	register.	After	executing	an
instruction,	a	program	can	check	whether	a	certain	flag	is	set	(e.g.,	ZF=1)	and
then	act	accordingly.

Name Symbol Bit Content

Carry CF 0 Previous	instruction	had	a	carry

Parity PF 2 Last	byte	has	even	number	of	1s

Adjust AF 4 BCD	operations

Zero ZF 6 Previous	instruction	resulted	a	zero

Sign SF 8 Previous	instruction	resulted	in	most	significant	bit	equal	to	1

Direction DF 10 Direction	of	string	operations	(increment	or	decrement)

Overflow OF 11 Previous	instruction	resulted	in	overflow

We	will	explain	and	use	flags	quite	a	bit	in	this	book.

There	is	another	flag	register,	called	MXCSR,	that	will	be	used	in	the
single	instruction,	multiple	data	(SIMD)	instruction	chapters;	we	will	explain
MXCSR	there	in	more	detail.

xmm	and	ymm	Registers
These	registers	are	used	for	floating-point	calculations	and	SIMD.	We	will
use	the	xmm	and	corresponding	ymm	registers	extensively	later,	starting	with
the	floating-point	instructions.

In	addition	to	the	previously	explained	registers,	there	are	more	registers,
but	we	will	not	use	the	others	in	this	book.

Put	the	theory	aside	for	now;	it’s	time	for	the	real	work!

Summary
In	this	chapter,	you	learned	the	following:

How	to	display	values	in	decimal,	binary,	and	hexadecimal	formats

How	to	use	registers	and	flags

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_3

3.	Program	Analysis	with	a	Debugger:	GDB
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	this	chapter,	we	will	introduce	you	to	debugging	an	assembly	program.
Debugging	is	an	important	skill,	because	with	a	debugger	you	can	investigate
the	content	of	registers	and	memory	in	hexadecimal,	binary,	or	decimal
representation.	You	already	know	from	the	previous	chapter	that	the	CPU	is
intensively	using	registers	and	memory,	and	a	debugger	allows	you	to	execute
the	instructions	step-by-step,	while	looking	at	how	the	content	of	the	registers,
memory,	and	flag	changes.	Maybe	you	have	experienced	already	your	first
assembly	program	crashing	upon	execution	with	an	unfriendly	message	such
as	“Memory	Segmentation	Fault.”	With	a	debugger	you	can	step	through	your
program	and	find	out	exactly	where	and	why	things	went	wrong.

Start	Debugging
Once	you	have	assembled	and	linked	your	hello,	world	program,
without	errors,	you	obtain	an	executable	file.	With	a	debugger	tool	you	can
load	an	executable	program	into	the	computer	memory	and	execute	it	line	by
line	while	examining	various	registers	and	memory	places.	There	are	several
free	and	commercial	debuggers	available.	In	Linux,	the	mother	of	all
debuggers	is	GDB;	it	is	a	command-line	program,	with	very	cryptic
commands.	So	much	fun!	In	future	chapters,	we	will	use	SASM,	a	tool	with	a
graphical	user	interface,	that	is	based	on	GDB.	But	having	a	basic	knowledge
of	GDB	itself	can	be	useful,	because	not	all	GDB	functionality	is	available	in
SASM.

In	your	further	career	as	an	assembly	programmer,	you	will	certainly	look
at	various	debuggers	with	nice	user	interfaces,	each	one	targeted	at	a	specific
platform,	such	as	Windows,	Mac,	or	Linux.	These	GUI	debuggers	will	help
you	debug	long	and	complex	programs	with	much	more	ease	as	compared	to
a	CLI	debugger.	But	GDB	is	a	comprehensive	and	“quick	and	dirty	way”	to

https://doi.org/10.1007/978-1-4842-5076-1_3

do	Linux	debugging.	GDB	is	installed	on	most	Linux	development	systems,
and	if	not,	it	can	be	easily	installed	for	troubleshooting	without	much
overhead	for	the	system.	We	will	use	GDB	for	now	to	give	you	some
essentials	and	turn	to	other	tools	in	later	chapters.	One	note,	GDB	seems	to	be
developed	for	debugging	higher-level	languages;	some	features	will	not	be	of
any	help	when	debugging	assembly.

Debugging	a	program	with	a	CLI	debugger	can	be	overwhelming	the	first
time.	Do	not	despair	when	reading	this	chapter;	you	will	see	that	things	get
easier	as	we	progress.

To	start	debugging	the	hello	program	,	in	the	CLI	navigate	to	the
directory	where	you	saved	the	hello	program.	At	the	command	prompt,
type	the	following:

gdb
hello

GDB	will	load	the	executable	hello	into	memory	and	answer	with	its
own	prompt	(gdb),	waiting	for	your	instructions.	If	you	type	the	following:

lis
t

GDB	will	show	a	number	of	lines	of	your	code.	Type	list	again	,	and
GDB	will	show	the	next	lines,	and	so	on.	To	list	a	specific	line,	for	example,
the	start	of	your	code,	type	list	1.	Figure	3-1	shows	an	example.

Figure	3-1 GDB	list	output

If	the	output	on	your	screen	is	different	from	our	screen,	containing	lots	of
%	signs,	then	your	GDB	is	configured	to	use	the	AT&T	syntax	flavor.	We	will
use	the	Intel	syntax	flavor,	which	is	more	intuitive	(to	us).	We	will	show	how
to	change	the	flavor	in	a	minute.

If	you	type	the	following:

ru
n

GDB	will	run	your	hello	program,	printing	hello,	world,	and
return	to	its	prompt	(gdb).

Figure	3-2	shows	the	results	on	our	screen.

Figure	3-2 GDB	run	output

To	quit	GDB,	type	quit.

Let’s	do	some	interesting	stuff	with	GDB!

But	first	we	will	change	the	disassembly	flavor;	do	this	only	if	you	had
the	%	signs	in	the	previous	exercise.	Load	the	executable	hello	into	GDB	if
it	is	not	already	there.

Type	the	following:

set	disassembly-flavor
intel

This	will	put	the	disassembled	code	in	a	format	that	is	already	familiar.
You	can	make	Intel	the	default	flavor	for	GDB	by	using	the	appropriate	setting
in	your	Linux	shell	profile.	See	the	documentation	of	your	Linux	distribution.
In	Ubuntu	18.04,	create	a	.gdbinit	file	in	your	home	directory,	containing
the	previous	set	instruction.	Log	out	and	log	in,	and	you	should	be	using	GDB
with	the	Intel	flavor	from	now	on.

Start	GDB	with	hello	to	begin	your	analysis.	As	you	learned	before,	the
hello,	world	program	first	initializes	some	data	in	section.data	and
section.bss	and	then	proceeds	to	the	main	label.	That	is	where	the
action	starts,	so	let’s	begin	our	examination	there.

At	the	(gdb)	prompt,	type	the	following:

disassemble
main

GDB	returns	your	source	code,	more	or	less.	The	returned	source	code	is
not	exactly	the	same	as	the	source	you	wrote	originally.	Strange,	isn’t	it?
What	happened	here?	Some	analysis	is	needed.

Figure	3-3	shows	what	GDB	returned	on	our	computer.

Figure	3-3 GDB	disassemble	output

The	long	numbers	on	the	left,	starting	with	0x00…,	are	memory
addresses;	they	are	the	places	where	the	machine	instructions	of	our	program
are	stored.	As	you	can	see,	from	the	addresses	and	the	<+5>	in	the	second
line,	the	first	instruction,	mov	eax,0x1,	needs	five	bytes	of	memory.	But
wait	a	minute,	in	our	source	code	we	wrote	mov	rax,1.	What	is	the	deal
with	the	eax?

Well,	if	you	look	in	the	register	table	from	Chapter	2,	you	will	see	that
eax	is	the	low	32-bit	part	of	the	rax	register.	The	assembler	is	smart	enough
to	figure	out	that	a	64-bit	register	is	far	too	much	waste	of	resources	for
storing	the	number	1,	so	it	uses	a	32-bit	register.	The	same	is	true	for	the	use
of	edi	and	edx	instead	of	rdi	and	rdx.	The	64-bit	assembler	is	an
extension	of	the	32-bit	assembler,	and	you	will	see	that	whenever	possible	the
assembler	will	use	32-bit	instructions.

The	0x1	is	the	hexadecimal	representation	of	the	decimal	number	1,	0xd
is	decimal	13,	and	0x3c	is	decimal	60.

The	nop	instruction	means	“no	operation”	and	is	inserted	there	by	the
assembler	for	memory	management	reasons.

What	happened	to	our	msg?	The	instruction	mov	rsi,	msg	got
replaced	by	movabs	rsi,0x601030.	Do	not	worry	about	movabs	for
now;	it	is	there	because	of	64-bit	addressing,	and	it	is	used	to	put	an

immediate	(value)	in	a	register.	The	0x601030	is	the	memory	address	where
msg	is	stored	on	our	computer.	This	can	be	a	different	address	in	your	case.

At	the	(gdb)	prompt,	type	the	following:

x/s	0x601030	(or	x/s
‘your_memory_address’)

GDB	answers	with	the	output	shown	in	Figure	3-4.

Figure	3-4 GDB	output

The	x	stands	for	“examine,”	and	the	s	stands	for	“string.”	GDB	answered
that	0x601030	is	the	start	of	the	string	msg	and	tries	to	show	the	whole
string	up	until	a	string-terminating	0.	Now	you	know	one	of	the	reasons	why
we	put	a	terminating	0	after	hello,	world.

You	can	also	type	the	following:

x/c
0x601030

to	get	the	output	shown	in	Figure	3-5.

Figure	3-5 GDB	output

With	c	you	ask	for	a	character.	Here	GDB	returns	the	first	character	of
msg,	preceded	by	the	decimal	ASCII	code	of	that	character.	Do	a	Google
search	for	a	table	of	ASCII	codes	to	verify,	and	keep	that	table	handy	for
future	use;	there’s	no	need	to	memorize	it.	Or	open	an	additional	terminal
window	and	type	man	ascii	at	the	CLI.

Let’s	look	at	some	other	examples.

Use	this	to	show	13	characters	starting	at	a	memory	address	(see	Figure	3-
6):

x/13c

0x601030

Figure	3-6 GDB	output

Use	the	following	to	show	13	characters	starting	at	a	memory	address	in
decimal	representation	(see	Figure	3-7):

x/13d
0x601030

Figure	3-7 GDB	output

Use	the	following	to	show	13	characters	starting	at	a	memory	address	in
hexadecimal	representation	(see	Figure	3-8):

x/13x
0x601030

Figure	3-8 GDB	output

Use	the	following	to	show	msg	(see	Figure	3-9):

x/s
&msg

Figure	3-9 GDB	output

Let’s	return	to	the	disassemble	listing.	Type	the	following:

x/2x
0x004004e0

This	shows	in	hexadecimal	the	content	of	the	two	memory	addresses
starting	at	0x004004e0	(see	Figure	3-10).

Figure	3-10 GDB	output

This	is	our	first	instruction,	mov	eax,0x1	,	in	machine	language.	We
saw	that	same	instruction	when	we	examined	the	hello.lst	file.

Step	It	Up!
Let’s	step	through	the	program	with	the	debugger.	Load	your	program	again
in	GDB	if	it	is	not	there	yet.

First,	we	will	put	a	break	in	the	program,	pausing	the	execution	and
allowing	us	to	examine	a	number	or	things.	Type	the	following:

break
main

In	our	case,	GDB	answers	with	the	output	in	Figure	3-11.

Figure	3-11 GDB	output

Then	type	the	following:

ru
n

Figure	3-12	shows	the	output.

Figure	3-12 GDB	output

The	debugger	stops	at	the	break	and	shows	the	next	instruction	that	will
be	executed.	That	is,	mov	rax,1	is	not	executed	yet.

Type	the	following:

info
registers

GDB	returns	the	output	shown	in	Figure	3-13.

Figure	3-13 GDB	registers	output

The	content	of	the	registers	is	not	important	now,	except	for	rip,	the
instruction	pointer.	Register	rip	has	the	value	0x4004e0,	which	is	the
memory	address	of	the	next	instruction	to	execute.	Check	your	disassemble
listing;	0x4004e0	(in	our	case)	points	to	the	first	instruction,	mov	rax,1.
GDB	stops	just	before	that	instruction	and	waits	for	your	commands.	It	is
important	to	remember	that	the	instruction	pointed	to	by	rip	is	not	yet
executed.

In	your	case,	GDB	may	show	something	different	than	0x4004e0.	That’s
okay;	it	is	the	address	of	that	particular	line	in	memory,	which	may	be
different	depending	on	your	computer	configuration.

Type	the	following	to	advance	one	step:

ste
p

The	type	the	following,	which	is	the	abbreviation	for	info	registers
:

i
r

Figure	3-14	shows	the	output.

Figure	3-14 GDB	registers	output

Indeed,	rax	contains	now	0x1,	and	rip	contains	the	address	of	the	next
instruction	to	execute.

Step	further	through	the	program	and	notice	how	rsi	receives	the
address	of	msg,	prints	hello,	world	on	the	screen,	and	exits.	Notice	also
how	rip	points	every	time	to	the	next	instruction	to	execute.

Some	Additional	GDB	Commands
break	or	b:	Set	a	breakpoint	as	we	have	done	before.

disable	breakpoint
number

enable	breakpoint	number

delete	breakpoint	number

continue	or	c:	Continue	execution	until	next	breakpoint.
step	or	s:	Step	into	the	current	line,	eventually	jumping	into	the	called

function.

next	or	n:	Step	over	the	current	line	and	stop	at	the	next	line.
help	or	h:	Show	help.
tui	enable:	Enable	a	simple	text	user	interface;	to	disable,	use	tui	disable.
print	or	p:	Print	the	value	of	a	variable,	register,	and	so	on.
Here	are	some	examples:

Print	rax:	p	$rax.

Print	rax	in	binary:	p/t	$rax.

Print	rax	in	hexadecimal:	p/x	$rax.

One	important	remark	about	GDB:	to	properly	use	it,	you	must	insert	a
function	prologue	and	a	function	epilogue	in	your	code.	We	will	show	in	the
next	chapter	how	to	do	that,	and	in	a	later	chapter	we	will	discuss	function
prologues	and	function	epilogues	when	we	talk	about	stack	frames.	For	short
programs	such	as	our	hello,	world	program,	there	is	no	problem.	But
with	longer	programs,	GDB	will	show	unexpected	behavior	if	there	is	no
prologue	or	epilogue.

Play	around	with	GDB,	refer	to	the	online	manual	(type	man	gdb	at	the

CLI),	and	get	familiar	with	GDB,	because	even	when	you	use	a	GUI	debugger,
some	functionality	may	not	be	available.	Or	you	may	not	want	to	install	a
GUI	debugger	on	your	system	at	all.

A	Slightly	Improved	Version	of	hello,	world
You	noticed	that	after	printing	hello,	world,	the	command	prompt
appeared	on	the	same	line.	We	want	to	have	hello,	world	printed	on	its
own	line,	with	the	command	prompt	on	a	new	line.

Listing	3-1	shows	the	code	to	do	that.

;hello2.asm

section	.data

msg				db				“hello,	world”,0

NL					db				0xa		;	ascii	code	for	new	line

section	.bss

section	.text

global	main

main:

mov					rax,	1								;	1	=	write

mov					rdi,	1								;	1	=	to	stdout

mov					rsi,	msg						;	string	to	display

mov					rdx,	12							;	length	of	string,	without
0

syscall															;	display	the	string

mov					rax,	1								;	1	=	write

mov					rdi,	1								;	1	=	to	stdout

mov					rsi,	NL							;	display	new	line

mov					rdx,	1								;	length	of	the	string

syscall															;	display	the	string

mov					rax,	60							;	60	=	exit

mov					rdi,	0								;	0	=	success	exit	code

syscall															;	quit
Listing	3-1 A	Better	Version	of	hello,world

Type	this	code	in	your	editor	and	save	it	as	hello2.asm	in	a	new
directory.	Copy	the	previous	makefile	to	this	new	directory;	in	this
makefile,	change	every	instance	of	hello	into	hello2	and	save	the	file.

We	added	a	variable,	NL,	containing	hexadecimal	0xa,	which	is	the
ASCII	code	for	new	line,	and	print	this	NL	variable	just	after	we	print	msg.
That’s	it!	Go	ahead—assemble	and	run	it	(see	Figure	3-15).

Figure	3-15 A	better	version	of	hello,	world

Another	way	to	accomplish	this	is	by	changing	our	msg	,	as	shown	here:

msg			db						“hello,
world”,10,0

The	10	is	the	decimal	representation	of	a	new	line	(0xa	in	hexadecimal).
Try	it!	Do	not	forget	to	increase	rdx	to	13	for	the	additional	10	character.

Listing	3-2	shows	the	code.	Save	this	as	hello3.asm	in	a	separate
directory,	copy	and	a	modify	a	makefile	appropriately,	and	build	and	run.

;hello3.asm

section	.data

msg						db						“hello,	world”,10,0

section	.bss

section	.text

global	main

main:

mov					rax,	1												;	1	=	write

mov					rdi,	1												;	1	=	to	stdout

mov					rsi,	msg										;	string	to	display

mov					rdx,	13											;	length	of	string,
without	0

syscall																			;	display	the	string

mov					rax,	60											;	60	=	exit

mov					rdi,	0												;	0	=	success	exit	code

syscall																			;	quit
Listing	3-2 Another	Version	of	hello,world

Using	this	version,	however,	means	that	the	new	line	is	part	of	our	string,
and	that	is	not	always	desired,	because	a	new	line	is	a	formatting	instruction
that	you	may	only	intend	to	use	when	displaying	a	string,	not	when	executing
other	string-handling	functions.	On	the	other	hand,	it	makes	your	code
simpler	and	shorter.	It’s	your	decision!

Summary
In	this	chapter,	you	learned	the	following:

How	to	use	GDB,	a	CLI	debugger

How	to	print	a	new	line

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_4

4.	Your	Next	Program:	Alive	and	Kicking!
Jo	Van	Hoey1	

Hamme,	Belgium

	
Now	that	you	have	a	firm	grasp	of	GDB	and	know	what	an	assembly	program
looks	like,	let’s	add	some	complexity.	In	this	chapter,	we	will	show	how	to
obtain	the	length	of	a	string	variable.	We	will	show	how	to	print	integer	and
floating-point	values	using	printf.	And	we	will	expand	your	knowledge	of
GDB	commands.

Listing	4-1	contains	the	example	code	that	we	will	use	to	show	how	we
can	find	the	length	of	a	string	and	how	numeric	values	are	stored	in	memory.

;alive.asm

section	.data

msg1			db				“Hello,	World!”,10,0							;	string
with	NL	and	0

msg1Len						equ				$-msg1-1					;	measure	the
length,	minus	the	0

msg2			db				“Alive	and	Kicking!”,10,0		;	string
with	NL	and	0

msg2Len						equ				$-msg2-1					;	measure	the
length,	minus	the	0

radius	dq				357																	;	no	string,	not
displayable?

pi					dq				3.14																;	no	string,	not
displayable?

section	.bss

section	.text

https://doi.org/10.1007/978-1-4842-5076-1_4

global	main

main:

push											rbp												;	function	prologue

mov												rbp,rsp								;	function	prologue

mov												rax,	1									;	1	=	write

mov												rdi,	1									;	1	=	to	stdout

mov												rsi,	msg1						;	string	to	display

mov												rdx,	msg1Len			;	length	of	the
string

syscall																							;	display	the	string

mov												rax,	1									;	1	=	write

mov												rdi,	1									;	1	=	to	stdout

mov												rsi,	msg2						;	string	to	display

mov												rdx,	msg2Len			;	length	of	the
string

syscall																							;	display	the	string

mov												rsp,rbp								;	function	epilogue

pop												rbp												;	function	epilogue

mov												rax,	60								;	60	=	exit

mov												rdi,	0									;	0	=	success	exit
code

syscall																							;	quit
Listing	4-1 	alive.asm

Type	this	program	into	your	favorite	editor	and	save	it	as	alive.asm.
Create	the	makefile	containing	the	lines	in	Listing	4-2.

#makefile	for	alive.asm

alive:	alive.o

gcc	-o	alive	alive.o	-no-pie

alive.o:	alive.asm

nasm	-f	elf64	-g	-F	dwarf	alive.asm	-l

alive.lst
Listing	4-2 makefile	for	alive.asm

Save	this	file	and	quit	the	editor.

At	the	command	prompt,	type	make	to	assemble	and	build	the	program
and	then	run	the	program	by	typing	./alive	at	the	command	prompt.	If	you
see	the	output	shown	in	Figure	4-1	displayed	at	the	prompt,	then	everything
worked	as	planned;	otherwise,	you	made	some	typo	or	other	error.	Happy
debugging!

Figure	4-1 alive.asm	output

Analysis	of	the	Alive	Program
In	our	first	program,	hello.asm,	we	put	the	length	of	msg,	13	characters,
in	rdx	in	order	to	display	msg.	In	alive.asm,	we	use	a	nice	feature	to
calculate	the	length	of	our	variables,	as	shown	here:

msg1Len	equ	$-msg1-
1

The	$-msg1-1	part	means	this:	take	this	memory	location	($)	and
subtract	the	memory	location	of	msg1.	The	result	is	the	length	of	msg1.	That
length,	-1	(minus	the	string-terminating	zero),	is	stored	in	the	constant
msg1Len.

Note	the	use	of	a	function	prologue	and	function	epilogue	in	the	code.
These	are	needed	for	GDB	to	function	correctly,	as	pointed	out	in	the	previous
chapter.	The	prologue	and	epilogue	code	will	be	explained	in	a	later	chapter.

Let’s	do	some	memory	digging	with	GDB!	Type	the	following:

gdb
alive

Then	at	the	(gdb)	prompt,	type	the	following:

disassemble
main

Figure	4-2	shows	the	output.

Figure	4-2 alive	disassemble

So,	on	our	computer,	it	seems	that	variable	msg1	sits	at	memory	location
0x601030;	you	can	check	that	with	this:

x/s
0x601030

Figure	4-3	shows	the	output.

Figure	4-3 Memory	location	of	msg1

The	\n	stands	for	“new	line.”	Another	way	to	verify	variables	in	GDB	is
as	follows:

x/s	&msg1

Figure	4-4	shows	the	output.

Figure	4-4 Memory	location	of	msg1

How	about	the	numeric	values?

x/dw						&radiu
s

x/xw						&radiu
s

Figure	4-5	shows	the	output.

Figure	4-5 Numeric	values

So,	you	get	the	decimal	and	hexadecimal	values	stored	at	memory
location	radius.

For	a	floating-point	variable,	use	the	following:

x/fg
&pi

x/fx
&pi

Figure	4-6	shows	the	output.

Figure	4-6 Floating-point	values

(Notice	the	floating-point	error?)

There	is	a	subtlety	that	you	should	be	aware	of	here.	To	demonstrate,	open
the	alive.lst	file	that	was	generated.	See	Figure	4-7.

Figure	4-7 alive.lst

Look	at	lines	10	and	11,	where	on	the	left	you	can	find	the	hexadecimal
representation	of	radius	and	pi.	Instead	of	0165,	you	find	6501,	and
instead	of	40091EB851EB851F,	you	find	1F85EB51B81E0940.	So,	the
bytes	(1	byte	is	two	hex	numbers)	are	in	reverse	order!

This	characteristic	is	called	endianness	.	The	big-endian	format	stores
numbers	the	way	we	are	used	to	seeing	them,	with	the	most	significant	digits
starting	at	the	left.	The	little-endian	format	stores	the	least	significant
numbers	starting	at	the	left.	Intel	processors	use	little-endian,	and	that	can	be
very	confusing	when	looking	at	hexadecimal	code.

Why	do	they	have	such	strange	names	like	big-endian	and	little-endian?

In	1726,	Jonathan	Swift	wrote	a	famous	novel,	Gulliver’s	Travels.	In	that
novel	appear	two	fictional	islands,	Lilliput	and	Blefuscu.	Inhabitants	of
Lilliput	are	at	war	with	the	people	of	Blefuscu	about	how	to	break	eggs:	on
the	smaller	end	or	on	the	bigger	end.	Lilliputs	are	little	endians,	preferring	to
break	their	eggs	on	the	smaller	end.	Blefuscus	are	big	endians.	Now	you	see
that	modern	computing	has	traditions	rooted	in	the	distant	past!

Take	the	time	to	single-step	through	the	program	(break	main,	run,
next,	next,	next…).	You	can	see	that	GDB	steps	over	the	function
prologue.	Edit	the	source	code,	delete	the	function	prologue	and	epilogue,	and
re-make	the	program.	Single-step	again	with	GDB.	In	our	case,	GDB	does
refuse	to	single-step	and	completely	executes	the	program.	When	assembling
with	YASM,	another	assembler	based	on	NASM,	we	can	safely	omit	the

prologue	and	epilogue	code	and	step	through	the	code	with	GDB	.	Sometimes
it	is	necessary	to	experiment,	tinker,	and	Google	around!

Printing
Our	alive	program	prints	these	two	strings:

Hello,	World!

Alive	and
Kicking!

However,	there	are	two	other	variables	that	were	not	defined	as	strings:
radius	and	pi.	Printing	these	variables	is	a	bit	more	complex	than	printing
strings.	To	print	these	variables	in	a	similar	way	as	we	did	with	msg1	and
msg2,	we	would	have	to	convert	the	values	radius	and	pi	into	strings.	It	is
perfectly	doable	to	add	code	for	this	conversion	into	our	program,	but	it
would	make	our	small	program	too	complicated	at	this	point	in	time,	so	we
are	going	to	cheat	a	little	bit.	We	will	borrow	printf	,	a	common	function,
from	the	program	language	C	and	include	it	in	our	program.	If	this	is
upsetting	you,	have	patience.	When	you	become	a	more	advanced	assembler
programmer,	you	can	write	your	own	function	for	converting/printing
numbers.	Or	you	could	conclude	that	writing	you	own	printf	function	is
too	much	waste	of	time….

To	introduce	printf	in	assembler,	we	will	start	with	a	simple	program.
Modify	the	first	program,	hello.asm,	as	shown	in	Listing	4-3.

;	hello4.asm

extern						printf					;	declare	the	function	as
external

section	.data

msg				db			“Hello,	World!”,0

fmtstr	db			“This	is	our	string:	%s”,10,0	;
printformat

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

mov			rdi,	fmtstr						;	first	argument	for	printf

mov			rsi,	msg									;	second	argument	for
printf

mov			rax,	0											;	no	xmm	registers	involved

call		printf											;	call	the	function

mov			rsp,rbp

pop			rbp

mov			rax,	60										;	60	=	exit

mov			rdi,	0											;	0	=	success	exit	code

syscall																;	quit
Listing	4-3 hello4.asm

So,	we	start	by	telling	the	assembler	(and	the	linker)	that	we	are	going	to
use	an	external	function	called	printf.	We	created	a	string	for	formatting
how	printf	will	display	msg.	The	syntax	for	the	format	string	is	similar	to
the	syntax	in	C;	if	you	have	any	experience	with	C,	you	will	certainly
recognize	the	format	string.	%s	is	a	placeholder	for	the	string	to	be	printed.

Do	not	forget	the	function	prologue	and	epilogue.	Move	the	address	of
msg	into	rsi,	and	move	the	address	of	the	fmtstr	into	rdi.	Clear	rax,
which	in	this	case	means	there	are	no	floating-point	numbers	in	the	xmm
registers	to	be	printed.	Floating-point	numbers	and	xmm	registers
will	be	explained	later	in	Chapter	11.

Listing	4-4	shows	the	makefile.

#makefile	for	hello4.asm

hello4:	hello4.o

gcc	-o	hello4	hello4.o	-no-pie

hello4.o:	hello4.asm

nasm	-f	elf64	-g	-F	dwarf	hello4.asm	-l
hello4.lst

Listing	4-4 makefile	for	hello4.asm

Make	sure	the	-no-pie	flag	is	added	in	the	makefile;	otherwise,	the
use	of	printf	will	cause	an	error.	Remember	from	Chapter	1	that	the
current	gcc	compiler	generates	position-independent	executable	(pie)	code	to
make	it	more	hacker-safe.	One	of	the	consequences	is	that	we	cannot	simply
use	external	functions	anymore.	To	avoid	this	complication,	we	use	the	flag	-
no-pie.

Build	and	run	the	program.	Google	the	C	printf	function	to	get	an	idea
of	the	possible	formats.	As	you	will	see,	with	printf	we	have	the	flexibility
of	formatting	the	output	as	print	integers,	floating-point	values,	strings,
hexadecimal	data,	and	so	on.	The	printf	function	requires	that	a	string	is
terminated	with	0	(NULL).	If	you	omit	the	0,	printf	will	display	everything
until	it	finds	a	0.	Terminating	a	string	with	a	0	is	not	a	requirement	in
assembly,	but	it	is	necessary	with	printf,	GDB,	and	also	some	SIMD
instructions	(SIMD	will	be	covered	in	Chapter	26).

Figure	4-8	shows	the	output.

Figure	4-8 alive.lst

Back	to	our	alive	program!	With	printf	we	can	now	print	the	variables
radius	and	pi	.	Listing	4-5	shows	the	source	code.	By	now	you	know	what
to	do:	create	the	source	code,	copy	or	create/modify	a	makefile,	and	there
you	go.

;	alive2.asm

section	.data

msg1								db				“Hello,	World!”,0

msg2								db				“Alive	and	Kicking!”,0

radius						dd				357

pi										dq				3.14

fmtstr						db				”%s”,10,0	;format	for	printing	a
string

fmtflt						db				”%lf”,10,0	;format	for	a	float

fmtint						db				”%d”,10,0	;format	for	an	integer

section	.bss

section	.text

extern					printf

global	main

main:

push			rbp

mov				rbp,rsp

;	print	msg1

mov				rax,	0												;	no	floating	point

mov				rdi,	fmtstr

mov				rsi,	msg1

call			printf

;	print	msg2

mov				rax,	0												;	no	floating	point

mov				rdi,	fmtstr

mov				rsi,	msg2

call			printf

;	print	radius

mov				rax,	0												;	no	floating	point

mov				rdi,	fmtint

mov				rsi,	[radius]

call			printf

;	print	pi

mov				rax,	1												;	1	xmm	register	used

movq			xmm0,	[pi]

mov				rdi,	fmtflt

call			printf

mov				rsp,rbp

pop				rbp

ret
Listing	4-5 makefile	for	alive2.asm

We	added	three	strings	for	formatting	the	printout.	Put	the	format	string	in
rdi,	point	rsi	to	the	item	to	be	printed,	put	0	into	rax	to	indicate	that	no
floating-point	numbers	are	involved,	and	then	call	printf.	For	printing	a
floating-point	number,	move	the	floating-point	value	to	be	displayed	in	xmm0,
with	the	instruction	movq	.	We	use	one	xmm	register,	so	we	put	1	into
rax.	In	later	chapters,	we	will	talk	more	about	XMM	registers	for
floating-point	calculations	and	about	SIMD	instructions.

Note	the	square	brackets,	[],	around	radius	and	pi.

mov	rsi,
[radius]

This	means:	take	the	content	at	address	radius	and	put	it	in	rsi.	The
function	printf	wants	a	memory	address	for	strings,	but	for	numbers	it
expects	a	value,	not	a	memory	address.	Keep	that	in	mind.

The	exit	of	our	program	is	something	new.	Instead	of	the	familiar	code
shown	here:

mov		rax,	60				;	60	=	exit

mov		rdi,	0					;	0	=	success	exit
code

syscall									;	quit

we	use	the	equivalent:

re
t

A	warning	about	printf:	printf	takes	a	format	string,	and	that	format
string	can	take	different	forms	and	can	convert	the	nature	of	values	printed
(integer,	double,	float,	etc.).	Sometimes	this	conversion	is	unintentional	and
can	be	confusing.	If	you	really	want	to	know	the	value	of	a	register	or
variable	(memory	location)	in	your	program,	use	a	debugger	and	examine	the
register	or	memory	location.

Figure	4-9	shows	the	output	of	the	alive2	program.

Figure	4-9 alive2	output

Summary
In	this	chapter,	you	learned	about	the	following:

Additional	GDB	functionality

Function	prologue	and	epilogue

Big	endian	versus	small	endian

Using	the	C	library	function	printf	for	printing	strings,	integers,	and
floating-point	numbers

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_5

5.	Assembly	Is	Based	on	Logic
Jo	Van	Hoey1	

Hamme,	Belgium

	
It’s	time	to	rehearse	some	logic	theory.	Don’t	panic,	because	we	will	look	at
only	what	we	need:	NOT,	OR,	XOR,	and	AND.

In	this	chapter,	0	means	false,	and	1	means	true.

NOT
A 0 1

NOT	A 1 0

Convert	every	0	into	1	and	every	1	into	0.

Here’s	an	example:

A	=								11001011

NOT	A	=				00110100

OR
A 0 1 0 1

B 0 0 1 1

A	OR	B 0 1 1 1

If	there	is	a	1	in	A	or	B	or	in	both,	the	outcome	is	a	1.

Here’s	an	example:

A	=								11001011

https://doi.org/10.1007/978-1-4842-5076-1_5

B	=								00011000

A	OR	B	=			11011011

XOR
A 0 1 0 1

B 0 0 1 1

A	XOR	B 0 1 1 0

Exclusive	OR:	If	there	is	a	1	in	A	or	B,	the	outcome	is	a	1.	If	A	and	B	are
both	1	or	0,	the	outcome	is	0.

Here’s	an	example:

A	=									11001011

B	=									00011000

A	XOR	B	=			11010011

XOR	as	an	assembly	instruction	that	can	be	used	to	clear	a	register.

A	=									11001011

A	=									11001011

A	XOR	A	=			00000000

Hence,	xor	rax,	rax	is	the	same	is	mov	rax,0.	But	xor	executes
faster	than	mov.

You	can	also	use	xor	to	modify	the	sign	of	a	floating-point	number.

Here’s	a	32-bit	floating-point	example:

A												=	17.0		=	0x41880000	=	01000001
10001000	00000000	00000000

B												=	-0.0		=	0x80000000	=	10000000
00000000	00000000	00000000

A	XOR	B						=	-17.0	=	0xC1880000	=	11000001
10001000	00000000	00000000

Use	the	tool	at	www.binaryconvert.com/result_float.html

http://www.binaryconvert.com/result_float.html

to	verify	this.

Note	that	if	you	want	to	change	the	sign	of	an	integer,	subtract	it	from
zero	or	use	the	neg	instruction	.

AND
A 0 1 0 1

B 0 0 1 1

A	AND	B 0 0 0 1

If	there	is	a	1	in	A	and	in	B,	the	outcome	is	a	1;	otherwise,	it’s	0.

Here’s	an	example:

A	=									11001011

B	=									00011000

A	AND	B	=			00001000

The	AND	instruction	can	be	used	as	a	mask	to	select	and	investigate	bits.

In	this	example,	B	is	used	as	a	mask	to	select	bits	3	and	6	from	A	(the
lowest,	rightmost	bit	has	index	0):

A	=									11000011

B	=									01001000

A	AND	B	=			01000000

Here	we	conclude	that	bit	6	is	set	and	bit	3	is	not	set.	I’ll	talk	more	about
that	later.

The	AND	instruction	can	also	be	used	to	round	down	numbers,	and	it	is
especially	useful	to	round	down	addresses	on	a	16-byte	boundary.	We	will	use
this	later	to	align	stacks.

16	and	multiples	of	16	in	hexadecimal	all	end	with	0	or	0000	in	binary.

address	=				0x42444213	=
01000010010001000100001000010011

mask	=							0xfffffff0	=
11111111111111111111111111110000

rounded	=				0x42444210	=
01000010010001000100001000010000

Here	we	rounded	down	the	lowest	byte	of	the	address.	If	the	address
already	ends	in	a	zero	byte,	the	and	instruction	would	not	change	anything.
Verify	that	the	rounded	address	is	divisible	by	16.	Use	an	online	utility	to	do
the	conversion	(e.g.,
www.binaryconvert.com/convert_unsigned_int.html).

Summary
In	this	chapter,	you	learned	about	the	following:

Logical	operators

How	to	use	logical	operators	as	assembly	instructions

http://www.binaryconvert.com/convert_unsigned_int.html

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_6

6.	Data	Display	Debugger
Jo	Van	Hoey1	

Hamme,	Belgium

	
Data	Display	Debugger	(DDD)	is	a	debugging	tool	with	a	graphical	user
interface	for	Linux.	Install	it	now	(using	sudo	apt	install	ddd)
because	we	will	use	it	later	in	this	chapter.	The	program	we	will	write	in	this
chapter	has	no	output;	we	will	be	investigating	the	code	execution	and
register	the	content	with	DDD.

Working	with	DDD
Listing	6-1	shows	the	sample	code.

;	move.asm

section	.data

bNum		db				123

wNum		dw				12345

dNum		dd				1234567890

qNum1	dq				1234567890123456789

qNum2	dq				123456

qNum3	dq				3.14

section	.bss

section	.text

global	main

main:

push		rbp

https://doi.org/10.1007/978-1-4842-5076-1_6

mov			rbp,rsp

mov	rax,	-1											;	fill	rax	with	1s

mov	al,	byte	[bNum]			;	does	NOT	clear	upper	bits
of	rax

xor	rax,rax											;	clear	rax

mov	al,	byte	[bNum]			;	now	rax	has	the	correct
value

mov	rax,	-1											;	fill	rax	with	1s

mov	ax,	word	[wNum]			;	does	NOT	clear	upper	bits
of	rax

xor	rax,rax											;	clear	rax

mov	ax,	word	[wNum]			;	now	rax	has	the	correct
value

mov	rax,	-1											;	fill	rax	with	1s

mov	eax,	dword	[dNum]	;	does	clear	upper	bits	of
rax

mov	rax,	-1											;	fill	rax	with	1s

mov	rax,	qword	[qNum1]	;	does	clear	upper	bits	of
rax

mov	qword	[qNum2],	rax	;	one	operand	always	a
register

mov	rax,	123456							;	source	operand	an
immediate	value

movq	xmm0,	[qNum3]				;	instruction	for	floating
point

mov	rsp,rbp

pop	rbp

ret
Listing	6-1 	move.asm

Save	the	source	file	as	move.asm,	and	build	and	run	it	to	see	if	works.	It
should	not	display	anything	when	you	run	it.	At	the	command	prompt,	type
the	following:

ddd
move

You	will	see	a	GUI	with	a	rather	dated	layout	(see	Figure	6-1).	DDD	is	an
old	open	source	tool,	and	apparently	nobody	is	willing	to	adapt	it	to	the	GUI
standards	we	are	used	to	today.

You	have	a	window	with	your	source	code	displayed	and	a	window	where
you	can	type	GDB	commands	.	There	is	also	a	floating	panel	where	you	can
click	Run,	Step,	Stepi,	and	so	on.	Click	Source	in	the	menu	and	choose	to
display	line	numbers.	In	that	same	menu,	you	can	choose	to	have	a	window
with	the	assembled	code.

Figure	6-1 DDD	screen

Place	the	cursor	in	front	of	main:,	right-click	and	choose	Break,	or
choose	the	Stop	icon	on	the	top	menu.	Click	Run	on	the	floating	panel,	and
the	debugging	starts.	Click	Status	in	the	menu	bar	at	the	top	and	choose
Registers.	Click	Step	to	execute	the	instruction.	Now	you	can	follow	how	the
registers	change	when	you	step	through	the	program.	If	you	want	to	examine
memory	addresses	such	as	qNum1	or	bNum,	you	can	use	the	Data	menu	item
on	the	top.	First	go	to	View	to	make	a	data	window	visible.	Then	click
Memory	under	the	Data	menu	item.	Refer	to	Figure	6-2	for	an	example	of

how	to	investigate	memory.	Since	the	interface	of	DDD	is	arcane,	using	the
GDB	input	window	is	sometimes	much	faster	than	using	the	menus.

DDD	is	built	on	top	of	GDB	,	so	we	need	to	use	a	function	prologue	and
epilogue	in	order	to	avoid	problems.	Note	that	when	stepping	through	the
program,	DDD	just	ignores	the	prologue.

Figure	6-2 Investigating	memory	with	DDD

The	purpose	of	the	code	is	to	show	you	what	happens	with	the	content	of
the	registers	when	you	use	the	mov	command	.	Open	the	Registers	window	in
DDD	(select	Status	➤	Registers).	Note	that	initially	rax	contains	-1;	this
means	that	all	bits	in	rax	are	1.	Go	back	to	the	chapter	on	binary	numbers	if
you	do	not	understand	why.	You	will	see	that	if	we	move	a	number	into	al	or
ax,	the	upper	bits	in	rax	are	not	cleared	to	0,	and	as	a	result,	the	rax
register	does	not	contain	the	same	value	as	al	or	ax.	In	our	example,	if	rax
contains	0xffffffffffffff7b,	this	is	large	negative	number.	But	al
contains	0x7b,	123	in	decimal,	as	we	expected.	This	may	or	may	not	be	your
intention.	If	you	mistakenly	used	rax	instead	of	al	in	a	calculation,	the
result	would	be	very	wrong!	However,	as	you	continue	to	step	through	the
code,	you	will	see	that	when	you	move	a	32-bit	value	to	a	64-bit	register,	the
higher	bits	in	the	64-bit	register	will	be	cleared.	When	you	move	a	value	into
eax,	then	the	upper	bits	of	rax	are	cleared.	This	is	important	to
remember!

To	conclude	the	exercise,	we	move	a	value	from	a	register	to	qNum2.
Note	the	square	brackets	to	tell	the	assembler	that	qNum2	is	an	address	in

memory.	Finally,	we	put	an	“immediate	value”	into	a	register.

Summary
In	this	chapter,	you	learned	the	following:

DDD,	although	outdated,	can	be	used	as	a	debugger	and	is	based	on	GDB.

Copying	a	value	in	an	8-bit	or	16-bit	register	does	not	clear	the	higher	part
of	a	64-bit	register.

However,	copying	a	value	in	a	32-bit	register	does	clear	the	higher	part	of	a
64-bit	register.

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_7

7.	Jumping	and	Looping
Jo	Van	Hoey1	

Hamme,	Belgium

	
You	will	agree	that	a	visual	debugger	such	as	DDD	is	quite	useful,	especially
for	investigating	large	programs.	In	this	chapter,	we	will	introduce	SASM	(for
SimpleASM).	It	is	an	open	source,	cross-platform	integrated	development
environment	(IDE).	It	features	syntax	highlighting	and	graphical	debugging.
It’s	a	fantastic	tool	for	an	assembler	programmer!

Installing	SimpleASM
Go	to	https://dman95.github.io/SASM/english.html	,	select
the	version	for	your	OS,	and	install	it.	For	Ubuntu	18.04,	go	into	the	directory
xUbuntu_18.04/amd64/	and	download	and	install	the
sasm_3.10.1_amd64.deb	package	with	the	following	command:

sudo	dpkg	-i	sasm_3.10.1_amd64.deb

If	you	get	an	error	message	about	dependency	problems,	install	the
missing	packages	and	retry	the	installation	of	SASM.	You	can	also	try	the
following:

sudo	apt	—fix-broken	install

This	will	normally	install	all	the	required	missing	packages.

Using	SASM
Start	SASM	by	typing	sasm	at	the	CLI	and	choose	your	language.	SASM
starts,	and	if	you	see	an	error	on	the	CLI	such	as	Failed	to	load
module	“canberra-gtk-module”,	install	the	following	packages:

https://doi.org/10.1007/978-1-4842-5076-1_7
https://dman95.github.io/SASM/english.html

sudo	apt	install	libcanberra-
gtk*

A	bunch	of	files	will	be	installed,	and	you	won’t	see	the	error	anymore.

In	SASM,	go	to	the	Settings	dialog,	as	shown	in	Figure	7-1.	On	the
Common	tab,	select	Yes	for	“Show	all	registers	in	debug.”

Figure	7-1 SASM	Settings	dialog,	Common	tab

On	the	Build	tab,	modify	the	settings	as	shown	in	Figure	7-2.

Figure	7-2 SASM	Settings	dialog,	Build	tab

Be	very	careful	here,	because	the	settings	have	to	be	exactly	as	shown	in
the	figure;	one	space	too	many,	even	hidden	at	the	end	of	a	line,	and	SASM
will	not	do	what	you	want.	When	you	are	ready,	click	the	OK	button	and
restart	SASM.

When	you	start	a	new	project	with	SASM,	you	will	find	some	default
code	already	in	the	editor	window.	We	will	not	use	that	code,	so	you	can
delete	it.	At	the	CLI,	type	the	following:

sasm
jump.asm

If	jump.asm	does	not	exist,	SASM	will	start	with	a	new	editor	window;
just	delete	the	default	code.	If	the	file	exists,	it	will	open	in	the	editor	window.

Listing	7-1	shows	the	code	for	jump.asm.

;	jump.asm

extern	printf

section	.data

number1				dq				42

number2				dq				41

fmt1		db			“NUMBER1	>	=	NUMBER2”,10,0

fmt2		db			“NUMBER1	<	NUMBER2”,10,0

section	.bss

section	.text

global					main

main:

push		rbp

mov			rbp,rsp

mov			rax,	[number1]			;	move	the	numbers	into
registers

mov			rbx,	[number2]

cmp			rax,rbx				;	compare	rax	and	rbx

jge			greater				;	rax	greater	or	equal	go	to
greater:

mov			rdi,fmt2									;	rax	is	smaller,	continue
here

mov			rax,0												;	no	xmm	involved

call		printf					;	display	fmt2

jmp			exit							;	jump	to	label	exit:

greater:

mov			rdi,fmt1			;	rax	is	greater

mov			rax,0						;	no	xmm	involved

call		printf					;	display	fmt1

exit:

mov			rsp,rbp

pop			rbp

ret
Listing	7-1 jump.asm

Copy	the	code	into	the	SASM	editor	window;	by	default	SASM	will	use
syntax	highlighting.	When	you	are	finished	typing,	hit	the	green	triangle	icon
at	the	top,	which	means	“run.”	If	everything	goes	correctly,	you	will	see	your
output	in	the	Output	area,	as	shown	in	Figure	7-3.

Figure	7-3 SASM	output

When	you	save	a	file	in	SASM,	the	source	code	will	be	saved.	If	you	want

to	save	the	executable,	you	need	to	choose	Save.exe	in	the	File	menu.

To	start	debugging,	click	in	the	numbered	left	margin	to	the	left	of	the
main:	label.	This	will	put	a	red	circle	between	the	main:	label	and	its	line
number.	This	is	a	breakpoint.	Then	at	the	top	click	the	green	triangle	with	the
bug	on	it.	In	the	top	menu,	choose	Debug	and	select	Show	Registers	and
Show	Memory.	A	number	of	additional	windows	will	appear	on	your	screen:
Registers,	Memory,	and	also	a	GDB	command-line	widget.

With	the	Step	icons,	you	can	now	walk	through	the	code	and	see	how	the
register	values	change.	To	investigate	how	a	variable	changes,	right-click	the
variable	declaration	in	section	.data	and	choose	Watch.	The	variable
will	be	added	in	the	Memory	window,	and	SASM	tries	to	guess	the	type.	If
the	value	displayed	by	SASM	is	not	as	expected,	change	the	type	manually	to
the	proper	format.	When	debugging	with	SASM,	the	following	line	of	code	is
added	for	correct	debugging:

mov	rbp,	rsp;	for	correct	debugging

This	line	can	confuse	other	debuggers	such	as	GDB,	so	make	sure	to
remove	it	from	the	code	before	you	run	GDB	separately	from	the	CLI.

In	the	SASM	menu	Settings	➤	Common,	make	sure	to	select	Yes	for
“Show	all	registers	in	debug.”	When	debugging	in	SASM,	scroll	down	in	the
register	window.	At	the	bottom	you	will	see	16	ymm	registers,	each	with	two
values	between	parentheses.	The	first	value	is	the	corresponding	xmm
register.	We	will	explain	these	registers	in	more	detail	when	we	talk	about
SIMD.

By	the	way,	Figure	7-4	shows	the	output	on	the	screen	after	building	and
running	the	program	as	we	did	before.

Figure	7-4 Output	from	jump.asm

In	the	program	we	use	a	compare	instruction	cmp	and	two	jump
instructions,	jge	and	jmp.	The	cmp	instruction	is	what	is	called	a
conditional	instruction.	Here	cmp	compares	two	operands,	in	this	case	two
registers.	One	of	the	two	operands	can	also	be	a	memory	operand,	and	the
second	operand	can	be	an	immediate	value.	In	any	case,	the	size	of	the	two

operands	must	be	the	same	(byte,	word,	and	so	on).	The	cmp	instruction	will
set	or	clear	flags	in	the	flag	register.

The	flags	are	bits	located	in	the	rflags	register	that	can	be	set	to	1	or
cleared	to	0,	depending	on	a	number	of	conditions.	Important	in	our	case	are
the	zero	flag	(ZF),	the	overflow	flag	(OF),	and	the	sign	flag	(SF).	You	can	use
your	debugger	to	examine	these	and	other	flags.	With	SASM	you	can	easily
see	what	is	happing	to	all	the	registers,	including	the	flag	register,	called
eflags	in	SASM.	Different	values	in	the	cmp	operands	will	result	in
different	flags	being	set	or	cleared.	Experiment	a	little	bit	with	the	values	to
see	what	is	happening	with	the	flags.

If	you	want	to	use	the	flags,	you	have	to	evaluate	them	immediately	after
the	cmp	instruction.	If	you	execute	other	instructions	before	you	evaluate
rflags,	the	flags	may	have	been	changed.	In	our	program	we	evaluate	the
flags	with	jge	,	meaning	“jump	if	greater	than	or	equal.”	If	the	condition	is
met,	the	execution	jumps	to	the	label	following	the	jge	instruction.	If	the
condition	is	not	met,	execution	continues	with	the	instruction	just	after	the
jge	instruction.	Table	7-1	lists	some	of	the	usual	conditions,	but	you	can
hunt	for	more	details	in	the	Intel	manuals.
Table	7-1 	Jump	Instructions	and	Flags

Instruction Flags Meaning Use

je ZF=1 Jump	if	equal Signed,	unsigned

jne ZF=0 Jump	if	not	equal Signed,	unsigned

jg ((SF	XOR	OF)	OR	ZF)	=	0 Jump	if	greater Signed

jge (SF	XOR	OF)	=	0 Jump	if	greater	or	equal Signed

jl (SF	XOR	OF)	=	1 Jump	if	lower Signed

jle ((SF	XOR	OF)	OR	ZF)	=	1 Jump	if	lower	or	equal Signed

ja (CF	OR	ZF)	=	0 Jump	if	above Unsigned

jae CF=0 Jump	if	above	or	equal Unsigned

jb CF=1 Jump	if	lesser Unsigned

jbe (CF	OR	ZF)	=	1 Jump	if	lesser	or	equal Unsigned

In	our	program	we	have	also	an	unconditional	jump	instruction,	jmp	.	If
the	program	execution	hits	this	instruction,	the	program	jumps	to	the	label
specified	after	jmp,	regardless	of	flags	or	conditions.

A	more	complicated	form	of	jumping	is	looping	,	which	means	repeating	a
set	of	instructions	until	a	condition	is	met	(or	is	not	met).	Listing	7-2	shows
an	example.

;	jumploop.asm

extern	printf

section	.data

number						dq				5

fmt									db				“The	sum	from	0	to	%ld	is
%ld”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,	rsp

mov			rbx,0												;	counter

mov			rax,0												;	sum	will	be	in	rax

jloop:

add			rax,	rbx

inc			rbx

cmp			rbx,[number]					;	number	already	reached?

jle			jloop												;	number	not	reached	yet,
loop

;	number	reached,	continue	here

mov			rdi,fmt										;	prepare	for	displaying

mov			rsi,	[number]

mov			rdx,rax

mov			rax,0

call		printf

mov			rsp,rbp

pop			rbp

ret
Listing	7-2 	jumploop.asm

The	program	adds	all	the	numbers	from	0	to	the	value	in	number.	We	use
rbx	as	a	counter	and	rax	to	keep	track	of	the	sum.	We	created	a	loop,	which
is	the	code	between	jloop:	and	jle	jloop.	In	the	loop,	we	add	the	value
in	rbx	to	rax,	increase	rbx	with	1,	and	then	compare	if	we	have	reached
the	end	(number).	If	we	have	in	rbx	a	value	lower	than	or	equal	to
number,	we	restart	the	loop;	otherwise,	we	continue	with	the	instruction
after	the	loop	and	get	ready	to	print	the	result.	We	used	an	arithmetic
instruction,	inc,	to	increase	rbx.	We	will	discuss	arithmetic	instructions	in
later	chapters.

Listing	7-3	shows	another	way	to	write	a	loop.

;	betterloop

extern	printf

section	.data

number						dq				5

fmt									db				“The	sum	from	0	to	%ld	is
%ld”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

mov			rcx,[number]				;	initialize	rcx	with	number

mov			rax,	0

bloop:

add			rax,rcx									;	add	rcx	to	sum

loop		bloop											;	loop	while	decreasing	rcx
with	1

;	until	rcx	=	0

mov			rdi,fmt									;	rcx	=	0,	continue	here

mov			rsi,	[number]			;	sum	to	be	displayed

mov			rdx,	rax

mov			rax,0											;	no	floating	point

call		printf										;	display

mov			rsp,rbp

pop			rbp

ret
Listing	7-3 	betterloop.asm

Here	you	see	that	there	is	a	special	loop	instruction	that	uses	rcx	as	a
decreasing	loop	counter.	With	every	pass	through	the	loop,	rcx	is	decreased
automatically,	and	as	long	as	rcx	is	not	equal	to	0,	the	loop	is	executed
again.	That’s	less	code	to	type.

An	interesting	experiment	is	to	put	1000000000	(a	one	and	nine	zeros)
in	number	and	then	rebuild	and	run	the	two	previous	programs.	You	can
time	the	speed	with	the	Linux	time	command,	as	shown	here:

time	./jumploop

time
./betterloop

Note	that	betterloop	is	slower	than	jumploop	(see	Figure	7-5)!
Using	the	loop	instruction	is	convenient	but	comes	at	a	price	in	terms	of
execution	performance.	We	used	the	Linux	time	instruction	to	measure	the
performance;	later	we	will	show	more	appropriate	ways	to	investigate	and
tune	program	code.

Figure	7-5 Looping	versus	jumping

You	may	wonder	why	we	bothered	to	use	DDD	when	there	is	a	tool	such
as	SASM.	Well,	you	will	see	Iater	that	in	SASM	you	cannot	investigate	the
stack,	but	you	can	with	DDD.	We	will	return	to	DDD	later.

Summary
In	this	chapter,	you	learned	the	following:

How	to	use	SASM

How	to	use	jump	instructions

How	to	use	the	cmp	instruction

How	to	use	the	loop	instruction

How	to	evaluate	flags

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_8

8.	Memory
Jo	Van	Hoey1	

Hamme,	Belgium

	
Memory	is	used	by	the	processor	as	a	storage	room	for	data	and	instructions.
We	have	already	discussed	registers,	which	are	high-speed	access	storage
places.	Accessing	memory	is	a	lot	slower	than	accessing	registers.	But	the
number	of	registers	is	limited.	The	memory	size	has	a	theoretical	limit	of	264
addresses,	which	is	18,446,744,073,709,551,616,	or	16	exabytes.	You	cannot
use	that	much	memory	because	of	practical	design	issues!	It	is	time	to
investigate	memory	in	more	detail.

Exploring	Memory
Listing	8-1	shows	an	example	we	will	use	during	our	discussion	of	memory.

;	memory.asm

section	.data

bNum								db				123

wNum								dw				12345

warray						times								5	dw	0						;	array	of	5
words

;	containing	0

dNum								dd				12345

qNum1							dq				12345

text1							db				“abc”,0

qNum2							dq				3.141592654

text2							db				“cde”,0

https://doi.org/10.1007/978-1-4842-5076-1_8

section	.bss

bvar		resb		1

dvar		resd		1

wvar		resw		10

qvar		resq		3

section	.text

global	main

main:

push			rbp

mov			rbp,	rsp

lea			rax,	[bNum]						;load	address	of	bNum	in
rax

mov			rax,	bNum								;load	address	of	bNum	in
rax

mov			rax,	[bNum]						;load	value	at	bNum	in	rax

mov			[bvar],	rax						;load	from	rax	at	address
bvar

lea			rax,	[bvar]						;load	address	of	bvar	in
rax

lea			rax,	[wNum]						;load	address	of	wNum	in
rax

mov			rax,	[wNum]						;load	content	of	wNum	in
rax

lea			rax,	[text1]					;load	address	of	text1	in
rax

mov			rax,	text1							;load	address	of	text1	in
rax

mov			rax,	text1+1					;load	second	character	in
rax

lea			rax,	[text1+1]			;load	second	character	in
rax

mov			rax,	[text1]					;load	starting	at	text1	in
rax

mov			rax,	[text1+1]			;load	starting	at	text1+1
in	rax

mov			rsp,rbp

pop			rbp

ret
Listing	8-1 	memory.asm

Make	this	program.	There	is	no	output	for	this	program;	use	a	debugger	to
step	through	each	instruction.	SASM	is	helpful	here.

We	defined	some	variables	of	different	sizes,	including	an	array	of	five
double	words	filled	with	zeros.	We	also	defined	some	items	in	section
.bss.	Look	in	your	debugger	for	rsp,	the	stack	pointer;	it	is	a	very	high
value.	The	stack	pointer	refers	to	an	address	in	high	memory.	The	stack	is	an
area	in	memory	used	for	temporarily	storing	data.	The	stack	will	grow	as
more	data	is	stored	in	it,	and	it	will	grow	in	the	downward	direction,	from
higher	addresses	to	lower	addresses.	The	stack	pointer	rsp	will	decrease
every	time	you	put	data	on	the	stack.	We	will	discuss	the	stack	in	a	separate
chapter,	but	remember	already	that	the	stack	is	a	place	somewhere	in	high
memory.	See	Figure	8-1.

Figure	8-1 rsp	contains	an	address	in	high	memory

We	used	the	lea	instruction	,	which	means	“load	effective	address,”	to
load	the	memory	address	of	bNum	into	rax.	We	can	obtain	the	same	result
with	mov,	without	the	square	brackets	around	bNum.	If	we	use	the	square
brackets,	[],	with	the	mov	instruction	,	we	are	loading	the	value,	not	the

address	at	bNum	into	rax.	But	we	are	not	loading	only	bNum	into	rax.
Because	rax	is	a	64-bit	(or	8-byte)	register,	more	bytes	are	loaded	into	rax.
Our	bNum	is	the	rightmost	byte	in	rax	(little	endian);	here	we	are	only
interested	in	the	register	al.	When	you	require	rax	to	contain	only	the	value
123,	you	would	first	have	to	clear	rax,	as	shown	here:

xor	rax,
rax

Then	instead	of	this:

mov	rax,
[bNum]

use	this:

mov	al,
[bNum]

Be	careful	about	the	sizes	of	data	you	are	moving	to	and	from	memory.
Look,	for	instance,	at	the	following:

mov
[bvar],rax

With	this	instruction,	you	are	moving	the	8	bytes	in	rax	to	the	address
bvar	.	If	you	only	intended	to	write	123	to	bvar,	you	can	check	with	your
debugger	that	you	overwrite	another	7	bytes	in	memory	(choose	type	d	for
bvar	in	the	SASM	memory	window)!	This	can	introduce	nasty	bugs	in	your
program.	To	avoid	that,	replace	the	instruction	with	the	following:

mov
[bvar],al

When	loading	content	from	memory	address	text1	into	rax,	note	how
the	value	in	rax	is	in	little-endian	notation.	Step	through	the	program	to
investigate	the	different	instructions,	and	change	values	and	sizes	to	see	what
happens.

There	are	two	ways	to	load	a	memory	address:	mov	and	lea.	Using	lea
can	make	your	code	more	readable,	as	everybody	can	immediately	see	that
you	are	handling	addresses	here.	You	can	also	use	lea	to	speed	up

calculations,	but	we	will	not	use	lea	for	that	purpose	here.

Start	gdb	memory	and	then	disass	main	and	look	at	the	left	column
with	memory	addresses	(Figure	8-2).	Do	not	forget	to	first	delete	the	line
added	by	SASM	for	correct	debugging,	as	we	explained	in	the	previous
chapter.	In	our	case,	the	first	instruction	is	located	at	address	0x4004a0.

Figure	8-2 GDB	disassemble	main

Now	we	will	use	readelf	at	the	command	line.	Remember	that	we
asked	NASM	to	assemble	using	the	ELF	format	(see	the	makefile).
readelf	is	a	CLI	tool	used	to	obtain	more	information	about	the
executable	file.	If	you	feel	the	irresistible	urge	to	know	more	about	linkers,
here	is	an	interesting	source	of	information:

Linkers	and	Loaders,	John	R.	Levine,	1999,	The	Morgan	Kaufmann	Series
in	Software	Engineering	and	Programming

Here	is	a	shorter	treatment	of	the	ELF	format:

https://linux-audit.com/elf-binaries-on-linux-
understanding-and-analysis/

or
https://www.cirosantilli.com/elf-hello-world/

As	you	probably	guessed,	at	the	CLI	you	can	also	type	the	following:

man	elf

For	our	purposes,	at	the	CLI	type	the	following:

readelf	—file-header
./memory

You	will	get	some	general	information	about	our	executable	memory.
Look	at	Entry	point	address:	0x4003b0.	That	is	the	memory
location	of	the	start	of	our	program.	So,	between	the	program	entry	and	the
start	of	the	code,	as	shown	in	GDB	(0x4004a0),	there	is	some	overhead.	The
header	provides	us	with	additional	information	about	the	OS	and	the
executable	code.	See	Figure	8-3.

Figure	8-3 	readelf	header

readelf	is	convenient	for	exploring	a	binary	executable.	Figure	8-4
shows	some	more	examples.

https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://www.cirosantilli.com/elf-hello-world/

Figure	8-4 	readelf	symbols

With	grep	we	specify	that	we	are	looking	for	all	lines	with	the	word
main	in	it.	Here	you	see	that	the	main	function	starts	at	0x4004a0,	as	we
saw	in	GDB.	In	the	following	example,	we	look	in	the	symbols	table	for	every
occurrence	of	the	label	start.	We	see	the	start	addresses	of	section
.data,	section	.bss,	and	the	start	of	the	program	itself.	See	Figure	8-5.

Figure	8-5 	readelf	symbols

Let’s	see	what	we	have	in	memory	with	the	instruction,	as	shown	here:

readelf	—symbols	./memory	|tail	+10|sort	-k	2
-r

The	tail	instruction	ignores	some	lines	that	are	not	interesting	to	us
right	now.	We	sort	on	the	second	column	(the	memory	addresses)	in	reverse
order.	As	you	see,	some	basic	knowledge	of	Linux	commands	comes	in
handy!

The	start	of	the	program	is	at	some	low	address,	and	the	start	of	main	is
at	0x004004a0.	Look	for	the	start	of	section	.data,
(0x00601018),	with	the	addresses	of	all	its	variables	and	the	start	of
section	.bss,	(0x00601051),	with	the	addresses	reserved	for	its
variables.

Let’s	summarize	our	findings:	we	found	at	the	beginning	of	this	chapter
that	the	stack	is	in	high	memory	(see	rsp).	With	readelf,	we	found	that
the	executable	code	is	at	the	lower	side	of	memory.	On	top	of	the	executable
code,	we	have	section	.data	and	on	top	of	that	section	.bss.	The
stack	in	high	memory	can	grow;	it	grows	in	the	downward	direction	toward
section	.bss.	The	available	free	memory	between	the	stack	and	the	other

sections	is	called	the	heap.
The	memory	in	section	.bss	is	assigned	at	runtime;	you	can	easily

check	that.	Take	note	of	the	size	of	the	executable,	and	then	change,	for
example,	the	following:

qvar							resq						
3

to	the	following:

qvar						resq						3000
0

Rebuild	the	program	and	look	again	at	the	size	of	the	executable.	The	size
will	be	the	same,	so	no	additional	memory	is	reserved	at	assembly/link	time.
See	Figure	8-6.

Figure	8-6 Output	of	readelf	—symbols	./memory	|tail	+10|sort	-k	2	-r

To	summarize,	Figure	8-7	shows	how	the	memory	looks	when	an
executable	is	loaded.

Figure	8-7 Memory	map

Why	is	it	important	to	know	about	memory	structure?	It	is	important	to
know	that	the	stack	grows	in	the	downward	direction.	When	we	exploit	the
stack	later	in	this	book,	you	will	need	this	knowledge.	Also,	if	you	are	into
forensics	or	malware	investigation,	being	able	to	analyze	memory	is	an
essential	skill.	We	only	touched	on	some	basics	here;	if	you	want	to	know
more,	refer	to	the	previously	mentioned	sources.

Summary
In	this	chapter,	you	learned	about	the	following:

The	structure	of	the	process	memory

How	to	avoid	overwriting	memory	unintentionally

How	to	use	readelf	to	analyze	binary	code

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_9

9.	Integer	Arithmetic
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	this	chapter,	you’ll	see	a	number	of	arithmetic	instructions	for	integers.
Floating-point	arithmetic	will	be	covered	in	a	later	chapter.	Now	is	a	good
time	to	quickly	review	Chapter	2	on	binary	numbers.

Starting	with	Integer	Arithmetic
Listing	9-1	shows	the	example	code	we	will	analyze.

;	icalc.asm

extern	printf

section	.data

number1				dq				128			;	the	numbers	to	be	used	to

number2				dq				19				;	show	the	arithmetic

neg_num				dq				-12			;	to	show	sign	extension

fmt								db				“The	numbers	are	%ld	and
%ld”,10,0

fmtint					db				”%s	%ld”,10,0

sumi		db			“The	sum	is”,0

difi		db			“The	difference	is”,0

inci		db			“Number	1	Incremented:”,0

deci		db			“Number	1	Decremented:”,0

sali		db			“Number	1	Shift	left	2	(x4):”,0

sari		db			“Number	1	Shift	right	2	(/4):”,0

https://doi.org/10.1007/978-1-4842-5076-1_9

sariex	db		“Number	1	Shift	right	2	(/4)	with	“

db			“sign	extension:”,0

multi	db			“The	product	is”,0

divi		db			“The	integer	quotient	is”,0

remi		db			“The	modulo	is”,0

section	.bss

resulti		resq		1

modulo			resq		1

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	displaying	the	numbers

mov			rdi,	fmt

mov			rsi,	[number1]

mov			rdx,	[number2]

mov			rax,	0

call	printf

;	adding––––––––––––––––––––

mov			rax,	[number1]

add			rax,	[number2]												;	add	number2	to
rax

mov			[resulti],	rax												;	move	sum	to
result

;	displaying	the	result

mov			rdi,	fmtint

mov			rsi,	sumi

mov			rdx,	[resulti]

mov			rax,	0

call	printf

;	substracting––––––––––––––––––

mov			rax,	[number1]

sub			rax,	[number2]												;	subtract	number2
from	rax

mov			[resulti],	rax

;	displaying	the	result

mov			rdi,	fmtint

mov			rsi,	difi

mov			rdx,	[resulti]

mov			rax,	0

call	printf

;	incrementing––––––––––––––––––

mov			rax,	[number1]

inc			rax															;	increment	rax	with	1

mov			[resulti],	rax

;	displaying	the	result

mov			rdi,	fmtint

mov			rsi,	inci

mov			rdx,	[resulti]

mov			rax,	0

call	printf

;	decrementing––––––––––––––––––

mov			rax,	[number1]

dec			rax															;	decrement	rax	with	1

mov	[resulti],	rax

;	displaying	the	result

mov			rdi,	fmtint

mov			rsi,	deci

mov			rdx,	[resulti]

mov			rax,	0

call	printf

;	shift	arithmetic	left–––––––––––––––

mov			rax,	[number1]

sal			rax,	2																		;	multiply	rax	by	4

mov			[resulti],	rax

;	displaying	the	result

mov			rdi,	fmtint

mov			rsi,	sali

mov			rdx,	[resulti]

mov			rax,	0

call	printf

;	shift	arithmetic	right––––––––––––––—

mov			rax,	[number1]

sar			rax,	2																		;	divide	rax	by	4

mov			[resulti],	rax

;	displaying	the	result

mov			rdi,	fmtint

mov			rsi,	sari

mov			rdx,	[resulti]

mov			rax,	0

call		printf

;	shift	arithmetic	right	with	sign	extension	–––––––
—

mov			rax,	[neg_num]

sar			rax,	2																		;	divide	rax	by	4

mov			[resulti],	rax

;	displaying	the	result

mov			rdi,	fmtint

mov			rsi,	sariex

mov			rdx,	[resulti]

mov			rax,	0

call		printf

;	multiply–––––––––––––––––––-

mov									rax,	[number1]

imul		qword	[number2]									;	multiply	rax	with
number2

mov									[resulti],	rax

;	displaying	the	result

mov			rdi,	fmtint

mov			rsi,	multi

mov			rdx,	[resulti]

mov			rax,	0

call		printf

;	divide––––––––––––––––––––

mov									rax,	[number1]

mov					rdx,	0																;	rdx	needs	to	be	0
before	idiv

idiv		qword	[number2]									;	divide	rax	by
number2,	modulo	in	rdx

mov									[resulti],	rax

mov					[modulo],	rdx			;	rdx	to	modulo

;	displaying	the	result

mov	rdi,	fmtint

mov			rsi,	divi

mov			rdx,	[resulti]

mov			rax,	0

call		printf

mov			rdi,	fmtint

mov			rsi,	remi

mov			rdx,	[modulo]

mov			rax,	0

call		printf

mov	rsp,rbp

pop	rbp

ret
Listing	9-1 	icalc.asm

Figure	9-1	shows	the	output.

Figure	9-1 Integer	arithmetic

Examining	Arithmetic	Instructions
Many	arithmetic	instructions	are	available;	we	are	going	to	show	a	selection
of	them,	and	the	others	are	similar	to	what	you’ll	learn	here.	Before	we
investigate	the	arithmetic	instructions,	note	that	we	use	printf	with	more
than	two	arguments,	so	we	need	an	additional	register:	the	first	argument	goes
into	rdi,	the	second	into	rsi,	and	the	third	into	rdx.	That	is	how	printf
expects	us	to	provide	the	arguments	in	Linux.	You’ll	learn	more	about	that
later,	when	we	talk	about	calling	conventions.

Here	are	some	arithmetic	instructions:

The	first	instruction	is	add	,	which	can	be	used	to	add	signed	or	unsigned
integers.	The	second	operand	(source)	is	added	to	the	first	operand
(destination),	and	the	result	is	placed	in	the	first	operand	(destination).	The
destination	operand	can	be	a	register	or	a	memory	location.	The	source	can

be	an	immediate	value,	a	register,	or	a	memory	location.	The	source	and
destination	cannot	be	a	memory	location	in	the	same	instruction.	When	the
resulting	sum	is	too	large	to	fit	in	the	destination,	the	CF	flag	is	set	for
signed	integers.	For	unsigned	integers,	the	OF	flag	is	then	set.	When	the
result	is	0,	the	ZF	flag	is	set	to	1,	and	when	the	result	is	negative,	the	SF
flag	is	set.

The	subtraction	with	sub	is	similar	to	the	add	instruction.

To	increment	a	register	or	value	in	a	memory	location	with	1,	use	the	inc
instruction	.	Similarly,	dec	can	be	used	to	decrement	a	register	or	value	in
a	memory	location	with	1.

The	arithmetic	shift	instructions	are	a	special	breed.	The	shift	left,	sal	,	is
in	fact	multiplying;	if	you	shift	left	one	position,	you	are	multiplying	by	2.
Every	bit	is	shifted	one	place	to	the	left,	and	a	0	is	added	to	the	right.	Take
the	binary	number	1.	Shift	left	one	place,	and	you	obtain	binary	10	or	2	in
decimal	representation.	Shift	left	one	place	again,	and	you	have	binary	100
or	4	in	decimal	representation.	If	you	shift	left	two	positions,	you	multiply
by	4.	What	if	you	want	to	multiply	by	6?	You	shift	left	two	times	and	then
the	add	two	times	the	original	source,	in	that	order.

Shift	right,	sar	,	is	similar	to	shift	left,	but	it	means	dividing	by	2.	Every
bit	is	shifted	one	place	to	the	right,	and	an	additional	bit	is	added	to	the	left.
Here	there	is	a	complication,	however:	if	the	original	value	was	negative,
the	leftmost	bit	would	be	1;	if	the	shift	instruction	added	a	0	bit	at	the	left,
the	value	would	become	positive,	and	the	result	would	be	wrong.	So,	in	the
case	of	a	negative	value,	a	sar	will	add	a	1	bit	to	the	left,	and	in	the	case
of	a	positive	value,	0	bits	will	be	added	to	the	left.	This	is	called	sign
extension.	By	the	way,	a	quick	way	to	see	if	a	hexadecimal	number	is
negative	is	to	look	at	byte	7	(the	leftmost	byte,	counting	from	byte	0,	which
is	the	rightmost	byte).	The	number	is	negative	if	byte	7	starts	with	an	8,	9,
A,	B,	C,	D,	E,	or	F.	But	you	need	to	take	into	account	all	8	bytes.	For
example,	0xd12	is	still	a	positive	number	because	the	leftmost	byte,	which
is	not	shown,	is	a	0.

There	are	also	nonarithmetic	shift	instructions;	they	will	be	discussed	in
Chapter	16.

Next,	we	multiply	integers.	For	multiplying	unsigned	integers,	you	can	use
mul	for	unsigned	multiplication	and	imul	for	signed	multiplication.	We
will	use	imul,	signed	multiplication,	which	offers	more	flexibility:	imul
can	take	one,	two,	or	three	operands.	In	our	example,	we	use	one	operand;
the	operand	following	the	imul	instruction	is	multiplied	with	the	value	in

rax.	You	may	expect	that	the	resulting	product	is	stored	in	rax,	but	that	is
not	entirely	correct.	Let’s	illustrate	with	an	example:	you	can	verify	that
when	you	multiply,	for	example,	a	two-digit	number	with	a	three-digit
number,	the	product	has	four	or	five	digits.	When	you	multiply	a	48-bit
digit	with	a	30-bit	digit,	you	will	obtain	a	77-bit	digit	or	a	78-bit	digit,	and
that	value	does	not	fit	in	a	64-bit	register.	To	cope	with	this,	the	instruction
imul	will	store	the	lower	64	bits	of	the	resulting	product	in	rax	and	the
upper	64	bits	in	rdx.	And	this	can	be	very	deceptive!

Let’s	experiment	a	little	bit:	go	back	to	the	source	code	in	SASM.
Modify	number1	so	that	it	contains	12345678901234567	and	modify
number2	so	that	it	contains	100.	The	product	will	just	fit	in	rax;	you	can
check	that	in	SASM	debug	mode.	Put	a	break	before	the	imul	instruction.
Restart	debugging	mode	and	step	through	the	program.	The	result	of	the
multiplication	will	be	1234567890123456700,	as	you	can	see	in	rax
after	the	imul	instruction	is	executed.	Now	modify	number2	into
10000.	Restart	debugging.	Look	at	rax	after	executing	imul.	You	see
that	the	product	is	a	large	negative	number!	That	is	because	the	most
significant	bit	in	rax	is	a	1	and	SASM	concludes	that	this	must	be	a
negative	number.	Also,	printf	thinks	that	rax	contains	a	negative
number	because	rax	contains	a	1	bit	in	the	leftmost	position,	so	it	is
assumed	to	be	negative.	So,	be	careful	with	printf!

We	will	dig	somewhat	deeper:	as	soon	as	the	imul	instruction	is
executed,	rax	contains	0xb14e9f812f364970.	In	binary,	this	is
101100010100111010011111100000010010111100110110010010010
with	a	1	in	the	most	significant	position	and	hence	is	negative.

And	rdx	contains	0x6.	That	is
00110
with	a	0	in	the	most	significant	position	and	hence	is	positive.

The	actual	product	is	0x6b14e9f812f364970	and	can	be	found	by
combining	rdx	and	rax,	in	this	order:	rdx:rax.	If	you	convert	this
hexadecimal	number	to	decimal,	you	will	find	the	product	you	expect:
123456789012345670000.	See	Figure	9-2.

On	the	Internet	you	can	find	hexadecimal	to	decimal	conversion	apps;
see	https://www.rapidtables.com/convert/number/hex-
to-decimal.html

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Figure	9-2 Content	of	rax	and	rdx

Let’s	continue	with	integer	division,	idiv	.	This	is	in	fact	the	reverse	of
multiplication	(well,	what	did	you	expect?).	Divide	the	dividend	in
rdx:rax	by	the	divisor	in	the	source	operand	and	store	the	integer	result
in	rax.	The	modulo	can	be	found	in	rdx.	It’s	important	and	easy	to
forget:	make	sure	to	set	rdx	to	zero	every	time	before	you	use	idiv	or	the
resulting	quotient	may	be	wrong.

64-bit	integer	multiplication	and	division	have	some	subtleties	for	which
you	can	find	more	details	in	the	Intel	manuals.	Here	we	just	gave	an	overview
that	serves	as	a	general	introduction	to	integer	arithmetic.	In	the	Intel
manuals,	not	only	will	you	find	more	details	about	the	instructions,	but	you
will	find	a	large	number	of	other	arithmetic	instructions	that	can	be	used	in
specific	situations.

Summary
In	this	chapter,	you	learned	the	following:

How	to	do	integer	arithmetic.

How	to	do	arithmetic	shift	left	and	shift	right.

Multiplication	uses	rax	and	rdx	for	storing	the	product.

Division	uses	rax	and	rdx	for	the	dividend.

Be	careful	when	using	printf	when	printing	values.

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_10

10.	The	Stack
Jo	Van	Hoey1	

Hamme,	Belgium

	
We	have	already	discussed	registers,	the	type	of	fast	temporary	storage	that
can	be	used	to	store	values	or	addresses	to	be	used	during	execution	of
instructions.	There	is	also	the	slower	storage,	memory,	where	the	processor
can	store	values	for	a	longer	time.	Then	there	is	the	stack,	a	contiguous	array
of	memory	locations.

Understanding	the	Stack
As	discussed	in	Chapter	8,	the	stack	segment	starts	in	high	memory,	and	when
it	grows,	it	grows	in	the	downward	direction,	like	an	icicle	grows	downward
when	it	grows	larger.	Items	are	placed	on	the	stack	with	the	push	instruction
and	removed	from	the	stack	with	the	pop	instruction	.	Every	time	you	push,
the	stack	grows;	every	time	you	pop,	the	stack	shrinks.	You	can	verify	this
stack	behavior	by	monitoring	rsp,	the	stack	pointer,	which	points	to	the	top
(thus	actually	the	bottom,	because	it	grows	downward)	of	the	stack.

The	stack	can	be	used	as	temporary	storage	to	save	values	in	registers	and
call	them	back	later	or,	more	importantly,	to	transfer	values	to	functions.
Functions	or	procedures	will	be	treated	in	detail	later.

In	the	example	code	in	Listing	10-1,	we	will	use	the	stack	to	reverse	a
string.

;	stack.asm

extern	printf

section	.data

strng							db				“ABCDE”,0

strngLen				equ			$	-	strng-1	;	stringlength

https://doi.org/10.1007/978-1-4842-5076-1_10

without	0

fmt1								db				“The	original	string:	%s”,10,0

fmt2								db				“The	reversed	string:	%s”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	Print	the	original	string

mov				rdi,	fmt1

mov				rsi,	strng

mov				rax,	0

call			printf

;push	the	string	char	per	char	on	the	stack

xor			rax,	rax

mov			rbx,	strng	;	address	of	strng	in	rbx

mov			rcx,	strngLen			;	length	in	rcx	counter

mov			r12,	0										;	use	r12	as	pointer

pushLoop:

mov			al,	byte	[rbx+r12]	;	move	char	into	rax

push		rax								;push	rax	on	the	stack

inc			r12								;	increase	char	pointer	with	1

loop		pushLoop			;	continue	loop

;pop	the	string	char	per	char	from	the	stack

;this	will	reverse	the	original	string

mov			rbx,	strng	;	address	of	strng	in	rbx

mov			rcx,	strngLen			;	length	in	rcx	counter

mov			r12,	0										;	use	r12	as	pointer

popLoop:

pop			rax								;	pop	a	char	from	the	stack

mov			byte	[rbx+r12],	al		;move	the	char	into
strng

inc			r12								;	increase	char	pointer	with	1

loop		popLoop															;	continue	loop

mov			byte	[rbx+r12],0	;	terminate	string	with	0

;	Print	the	reversed	string

mov				rdi,	fmt2

mov				rsi,	strng

mov				rax,	0

call			printf

mov			rsp,rbp

pop			rbp

ret
Listing	10-1 	stack.asm

Figure	10-1	shows	the	output.

Figure	10-1 Reversing	a	string

First,	note	that	to	calculate	the	string	length,	we	decreased	the	length	of
the	string	by	1,	ignoring	the	terminating	0.	Otherwise,	the	reversed	string
would	start	with	a	0.	Then	the	original	string	is	displayed	followed	by	a	new
line.	We	will	use	rax	to	push	the	characters,	so	let’s	first	initialize	rax	with
zeros	using	xor.	The	address	of	the	string	goes	into	rbx,	and	we	will	use	a
loop	instruction	,	so	we	set	rcx	to	the	string	length.	Then	a	loop	is	used	to
push	character	after	character	on	the	stack,	starting	with	the	first	character.	We
move	a	character	(byte)	into	al.	Then	we	push	rax	onto	the	stack.	Every
time	you	use	push,	8	bytes	are	moved	to	the	stack.	If	we	did	not	initialize	rax

before,	it	might	well	be	that	rax	contains	values	in	the	upper	bytes,	and
pushing	these	values	to	the	stack	may	not	be	what	we	want.	After	that,	the
stack	contains	the	pushed	character	plus	the	additional	0	bits	in	the	bits	above
al.

When	the	loop	is	finished,	the	last	character	is	at	the	“top”	of	the	stack,
which	is	in	fact	at	the	lowest	address	of	the	icicle	because	the	stack	grows	in
the	downward	direction.	Another	loop	is	started	that	pops	character	after
character	from	the	stack	and	stores	them	in	memory	in	the	original	string,	one
after	another.	Note	that	we	only	want	1	byte,	so	we	pop	to	rax	and	only	use
al.

Here	is	an	overview	of	what	is	happening	(see	Figure	10-2):	the	original
string	is	at	the	right,	and	the	characters	are	pushed,	sent	one	by	one	to	the
stack,	where	they	are	appended	to	the	previous	stack	content.	After	that	the
characters	are	popped	and	sent	back	to	the	memory	address	of	the	string,	and
because	of	the	“last	in	first	out”	working	of	the	stack,	the	string	is	reversed.

Figure	10-2 Schema	of	reversing	a	string

Somehow	you	have	to	keep	track	of	what	you	pushed	on	the	stack	and	in
what	order.	For	example,	when	you	use	the	stack	to	temporarily	store
registers,	be	sure	to	pop	the	registers	in	the	reverse	correct	order;	otherwise,
your	program	will	be	wrong	or	in	the	worst	case	will	probably	crash.	That	is,
when	you	push	the	following	sequence:

push
rax

push
rbx

push
rcx

then	you	have	to	pop	as	follows,	according	to	the	“last	in	first	out”
principle:

pop
rcx

pop
rbx

pop
rax

In	addition	to	registers,	you	can	push	memory	and	immediate	values.	You
can	pop	to	a	register	or	a	memory	location	but	not	to	an	immediate	value,
which	is	quite	evident.

That’s	good	to	know,	but	we	will	not	use	this	here.	If	you	want	to	push
and	pop	the	flag	register	to	the	stack,	you	can	use	the	instructions	pushf	and
use	popf.

Keeping	Track	of	the	Stack
So,	keeping	track	of	the	stack	is	important,	and	our	old	friend	DDD	has	some
easy	features	to	do	that.	First	open	your	editor	to	the	source	and	delete	the
debug	line	that	SASM	added;	then	save	the	file	and	quit.	At	the	CLI,	make	the
program	and	then	type	the	following:

ddd
stack

Select	Data	➤	Status	Displays	in	the	menu,	and	scroll	down	until	you	find
“Backtrace	of	the	stack”	and	enable	it.	Set	a	breakpoint	at,	for	example,
main:	and	then	click	Run	in	the	floating	panel.	Now	start	debugging	and
step	through	the	program	with	the	Next	button	(you	do	not	want	to	step	line
per	line	through	the	printf	function).	See	how	the	stack	is	displayed	and
updated	in	the	upper	window.	Do	not	worry	about	the	initial	stuff	that	is
displayed.	When	you	arrive	at	the	instruction	after	the	push	instruction,	you
will	see	that	characters	are	pushed	onto	the	stack	in	ASCII	decimal
representation	(41,	42,	etc.).	Watch	how	the	stack	decreases	during	the	second
loop.	That	is	an	easy	way	to	see	what	is	on	the	stack	and	in	what	order.

Figure	10-3	shows	how	it	looks.

Figure	10-3 The	stack	in	DDD

As	we	said	before,	DDD	is	open	source	and	outdated.	There	is	no
guarantee	that	it	will	continue	working	as	expected	in	the	future,	but	for	now
it	is	not	very	elegant,	but	it	will	do.

In	all	fairness,	you	could	force	SASM	to	show	the	stack	also,	but	that
requires	more	manual	work.	Here	is	how	it	works:	remember	that	you	can
show	memory	variables	during	debugging	in	SASM,	and	the	stack	is	just	a
list	of	memory	locations,	with	rsp	pointing	to	the	lowest	location.	Thus,	we
have	to	convince	SASM	to	show	us	what	is	at	address	rsp	and	at	the
memory	locations	above.	Figure	10-4	shows	an	example	memory	window	in
SASM	showing	the	stack.

Figure	10-4 The	stack	in	SASM

We	referred	to	rsp	as	$rsp.	We	increase	the	stack	address	every	time
with	8	($rsp	+	8),	because	at	every	push,	8	bytes	are	sent	to	the	stack.
As	Type,	we	specified	Char,	bytes,	8	bytes,	and	Address.	We	chose	Characters

because	we	are	pushing	a	string	and	then	it	is	easy	to	read	for	us,	and	we
chose	bytes,	because	we	are	interested	in	byte	values	(al	contains	1	byte
every	time),	so	8	bytes	are	pushed	every	time.	And	rsp	contains	an	Address.
Step	through	the	program	and	see	how	the	stack	changes.

It	works,	but	you	have	to	detail	every	stack	memory	place	manually,
which	can	be	a	burden	if	you	are	using	a	large	stack	and/or	have	a	lot	of
additional	memory	variables	you	want	to	keep	track	of.

Summary
In	this	chapter,	you	learned	the	following:

The	stack	starts	at	an	address	in	high	memory	and	grows	to	lower
addresses.

Push	decreases	the	stack	pointer	(rsp).

Pop	increases	the	stack	pointer	(rsp).

Push	and	pop	work	in	reverse	order.

How	to	use	DDD	to	examine	the	stack.

How	to	use	SASM	to	examine	the	stack.

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_11

11.	Floating-Point	Arithmetic
Jo	Van	Hoey1	

Hamme,	Belgium

	
You	already	know	about	integer	arithmetic;	now	we	will	introduce	some
floating-point	computations.	There	is	nothing	difficult	here;	a	floating-point
value	has	a	decimal	point	in	it	and	zero	or	more	decimals.	We	have	two	kinds
of	floating-point	numbers:	single	precision	and	double	precision.	Double
precision	is	more	accurate	because	it	can	handle	more	significant	digits.	With
that	information,	you	now	know	enough	to	run	and	analyze	the	sample
program	in	this	chapter.

Single	vs.	Double	Precision
For	those	more	curious,	here	is	the	story.

A	single-precision	number	is	stored	in	32	bits:	1	sign	bit,	8	exponent	bits,
and	23	fraction	bits.

S						EEEEEEEE						FFFFFFFFFFFFFFFFFFFFFFF

0						1						8						9																					31

A	double-precision	number	is	stored	in	64	bits:	1	sign	bit,	11	exponent
bits,	and	52	fraction	bits.

S						EEEEEEEEEEE						FFFFFFFFFFFFF……FFFFFFFFFF

0						1									11					12																										63

The	sign	bit	is	simple.	When	the	number	is	positive,	it	is	0;	when	the
number	is	negative,	the	sign	bit	is	1.

The	exponent	bits	are	more	complicated.	Let’s	look	at	a	decimal	example.

200	=	2.0	×	102

https://doi.org/10.1007/978-1-4842-5076-1_11

5000.30	=	5.0003	×	103

Here	is	a	binary	example:

1101010.01011	=	1.0101001011	x	26	(we	moved	the	point	six	places	to	the
left)

However,	the	exponent	can	be	positive,	negative,	or	zero.	To	make	that
distinction	clear,	in	the	case	of	single	precision,	127	is	added	to	a	positive
exponent	before	storing	it.	That	means	a	zero	exponent	would	be	stored	as
127.	That	127	is	called	a	bias.	With	double-precision	values,	the	bias	is	1023.

In	the	example	above,	the	1.0101001011	is	called	the	significand	or
mantissa.	The	first	bit	of	the	significand	is	a	1	by	assumption	(it	is
‘normalized’),	so	it	is	not	stored.

Here	is	a	simple	example	to	show	how	it	works.	Use,	for	example,
https://babbage.cs.qc.cuny.edu/IEEE-754/	to	verify	and
experiment:

Single	precision,	decimal	number	10:

Decimal	10	is	1010	as	a	binary	integer.

Sign	bit	0,	because	the	number	is	positive.

Obtain	a	number	in	the	format	b.bbbb.	1.010	is	the	significand	with	a
leading	1	as	required.	The	leading	1	will	not	be	stored.

Hence,	the	exponent	is	3	because	we	moved	the	point	three	places.	We	add
127	because	the	exponent	is	positive,	so	we	obtain	130,	which	in	binary	is
10000010.

Thus,	the	decimal	single-precision	number	10	will	be	stored	as:

0	10000010							01000000000000000000000

S	EEEEEEEE							FFFFFFFFFFFFFFFFFFFFFFF

or	41200000	in	hexadecimal.

Note	that	the	hexadecimal	representation	of	the	same	value	is	different	in
single	precision	than	in	double	precision.	Why	not	always	use	double
precision	and	benefit	from	the	higher	precision?	Double-precision
calculations	are	slower	than	single-precision	calculations,	and	the	operands
use	more	memory.

If	you	think	this	is	complicated,	you	are	right.	Find	an	appropriate	tool	on
the	Internet	to	do	or	at	least	verify	the	conversions.

https://babbage.cs.qc.cuny.edu/IEEE-754/

You	can	encounter	80-bit	floating-point	numbers	in	older	programs,	and
these	numbers	have	their	own	instructions,	called	FPU	instructions.	This
functionality	is	a	legacy	from	the	past	and	should	not	be	used	in	new
developments.	But	you	will	find	FPU	instructions	in	articles	on	the	Internet
from	time	to	time.

Let’s	do	some	interesting	things.

Coding	with	Floating-Point	Numbers
Listing	11-1	shows	the	example	program.

;	fcalc.asm

extern	printf

section	.data

number1						dq				9.0

number2						dq				73.0

fmt										db				“The	numbers	are	%f	and
%f”,10,0

fmtfloat					db				”%s	%f”,10,0

f_sum								db				“The	float	sum	of	%f	and	%f	is
%f”,10,0

f_dif								db				“The	float	difference	of	%f	and
%f	is	%f”,10,0

f_mul								db				“The	float	product	of	%f	and	%f
is	%f”,10,0

f_div								db				“The	float	division	of	%f	by	%f
is	%f”,10,0

f_sqrt							db				“The	float	squareroot	of	%f	is
%f”,10,0

section	.bss

section	.text

global	main

main:

push				rbp

mov					rbp,rsp

;	print	the	numbers

movsd							xmm0,	[number1]

movsd							xmm1,	[number2]

mov			rdi,fmt

mov			rax,2						;	two	floats

call		printf

;	sum

movsd			xmm2,	[number1]			;	double	precision	float
into	xmm

addsd			xmm2,	[number2]			;	add	doube	precision	to
xmm

;	print	the	result

movsd	xmm0,	[number1]

movsd	xmm1,	[number2]

mov			rdi,f_sum

mov			rax,3	;	three	floats

call		printf

;	difference

movsd			xmm2,	[number1]						;	double	precision
float	into	xmm

subsd			xmm2,	[number2]						;	subtract	from	xmm

;	print	the	result

movsd	xmm0,	[number1]

movsd	xmm1,	[number2]

mov			rdi,f_dif

mov			rax,3	;	three	floats

call		printf

;	multiplication

movsd			xmm2,	[number1]						;	double	precision

float	into	xmm

mulsd			xmm2,	[number2]						;	multiply	with	xmm

;	print	the	result

mov			rdi,f_mul

movsd	xmm0,	[number1]

movsd	xmm1,	[number2]

mov			rax,3	;	three	floats

call		printf

;	division

movsd			xmm2,	[number1]						;	double	precision
float	into	xmm

divsd			xmm2,	[number2]						;	divide	xmm0

;	print	the	result

mov			rdi,f_div

movsd	xmm0,	[number1]

movsd	xmm1,	[number2]

mov			rax,1	;	one	float

call		printf

;	squareroot

sqrtsd		xmm1,	[number1]						;	squareroot	double
precision	in	xmm

;	print	the	result

mov			rdi,f_sqrt

movsd	xmm0,	[number1]

mov			rax,2	;	two	floats

call		printf

;	exit

mov			rsp,	rbp

pop			rbp												;	undo	the	push	at	the
beginning

ret
Listing	11-1 fcalc.asm

This	is	a	simple	program;	in	fact,	the	printing	takes	more	effort	than	the
floating-point	calculations.

Use	a	debugger	to	step	through	the	program	and	investigate	the	registers
and	memory.	Note,	for	example,	how	9.0	and	73.0	are	stored	in	memory
addresses	number1	and	number2;	these	are	the	double-precision	floating-
point	values.

Remember	that	when	debugging	in	SASM,	the	xmm	registers	are	at	the
bottom	of	the	register	window,	in	the	leftmost	part	of	the	ymm	registers.

movsd	means	“move	a	double	precision-floating	point	value.”	There	is
also	movss	for	single	precision.	Similarly,	there	are	addss	,	subss	,
mulss	,	divss	,	and	sqrtss	instructions.

The	rest	should	be	pretty	straightforward	by	now!	Figure	11-1	shows	the
output.

Figure	11-1 fcalc.asm	output

Now	that	you	know	about	the	stack,	try	this:	comment	out	push	rbp	at
the	beginning	and	pop	rbp	at	the	end.	Make	and	run	the	program	and	see
what	happens:	program	crash!	The	cause	for	the	crash	will	become	clear	later,
but	it	has	to	do	with	stack	alignment.

Summary
In	this	chapter,	you	learned	the	following:

The	basic	use	of	xmm	registers	for	floating-point	calculations

The	difference	between	single	precision	and	double	precision

The	instructions	movsd,	addsd,	subsd,	mulsd,	divsd,	and	sqrtsd

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_12

12.	Functions
Jo	Van	Hoey1	

Hamme,	Belgium

	
Assembler	is	not	a	“structured	language.”	Look	at	the	multitude	of	jmp
instructions	and	labels	that	allow	the	program	execution	to	jump	around	and
back	and	forth.	Modern	high-level	programming	languages	have	structures
such	as	do…while,	while…do,	case,	and	so	on.	This	is	not	so	with
assembly	language.

But	similar	to	modern	program	languages,	assembly	language	has
functions	and	procedures	to	help	you	give	your	code	more	structure.	A	little
bit	of	nit-picking:	a	function	executes	instructions	and	returns	a	value.	A
procedure	executes	instructions	and	does	not	return	a	value.

In	this	book,	we	have	already	used	functions;	that	is,	we	used	an	external
function	called	printf	,	which	is	a	C	library	function.	In	this	chapter,	we
will	introduce	simple	functions;	in	later	chapters,	we	will	cover	important
aspects	of	functions	such	as	stack	alignment,	external	functions,	and	calling
conventions.

Writing	a	Simple	Function
Listing	12-1	shows	an	example	of	an	assembler	program	with	a	simple
function	to	calculate	the	area	of	a	circle.

;	function.asm

extern	printf

section	.data

radius						dq				10.0

pi										dq				3.14

fmt									db				“The	area	of	the	circle	is

https://doi.org/10.1007/978-1-4842-5076-1_12

%.2f”,10,0

section	.bss

section	.text

global	main

;–––––––––––––––-

main:

push		rbp

mov			rbp,	rsp

call		area														;	call	the	function

mov			rdi,fmt											;	print	format

movsd	xmm1,	[radius]				;	move	float	to	xmm1

mov			rax,1													;	area	in	xmm0

call		printf

leave

ret

;–––––––––––––––-

area:

push		rbp

mov			rbp,	rsp

movsd	xmm0,	[radius]				;	move	float	to	xmm0

mulsd	xmm0,	[radius]				;	multiply	xmm0	by	float

mulsd	xmm0,	[pi]								;	multiply	xmm0	by	float

leave

ret
Listing	12-1 function.asm

Figure	12-1	shows	the	output.

Figure	12-1 	function.asm	output

There	is	a	main	part,	identified	as	before	with	the	label	main,	and	then
there	is	a	function,	identified	with	the	label	area.	In	main,	the	function
area	is	called,	which	calculates	the	area	of	a	circle	using	radius	and	pi,
which	are	variables	stored	in	a	location	in	memory.	As	you	can	see,	functions
must	have	a	prologue	and	an	epilogue,	similar	to	main.

The	computed	area	is	stored	in	xmm0.	Returning	from	the	function	to
main,	printf	is	called	with	rax	containing	the	value	1,	meaning	there	is
one	xmm	register	that	needs	to	be	printed.	We	introduce	a	new	instruction
here:	leave.	This	instruction	does	the	same	as	mov	rsp,	rbp,	and	pop
rbp	(the	epilogue).

If	you	return	a	value	from	a	function,	you	use	xmm0	for	floating-point
values	and	use	rax	for	other	values,	such	as	integers	or	addresses.	The
function	arguments,	pi	and	radius,	are	located	in	memory.	That	is	okay	for
now,	but	it	is	better	to	use	registers	and	the	stack	to	store	function	arguments.
Using	memory	variables	to	pass	on	values	to	functions	can	create	naming
conflicts	between	values	used	in	main	and	in	functions	and	can	make	your
code	less	“portable.”

More	Functions
Let’s	discuss	some	more	characteristics	of	functions	using	another	example
(see	Listing	12-2).

;	function2.asm

extern	printf

section	.data

radius						dq				10.0

section	.bss

section	.text

;–––––––––––––––-

area:

section	.data

.pi		dq				3.141592654						;	local	to	area

section	.text

push		rbp

mov			rbp,	rsp

movsd						xmm0,	[radius]

mulsd						xmm0,	[radius]

mulsd						xmm0,	[.pi]

leave

ret

;–––––––––––––––-

circum:

section	.data

.pi		dq					3.14								;	local	to	circum

section	.text

push		rbp

mov			rbp,	rsp

movsd							xmm0,	[radius]

addsd							xmm0,	[radius]

mulsd							xmm0,	[.pi]

leave

ret

;–––––––––––––––-

circle:

section	.data

.fmt_area		db				“The	area	is	%f”,10,0

.fmt_circum						db				“The	circumference	is
%f”,10,0

section	.text

push		rbp

mov			rbp,	rsp

call		area

mov			rdi,.fmt_area

mov			rax,1												;	area	in	xmm0

call		printf

call		circum

mov			rdi,.fmt_circum

mov			rax,1												;	circumference	in	xmm0

call		printf

leave

ret

;–––––––––––––––-

global	main

main:

push		rbp

mov			rbp,	rsp

call		circle

leave

ret
Listing	12-2 function2.asm

Here,	we	have	main	calling	the	function	circle,	which	in	turn	calls	the
functions	area	and	circum.	So,	functions	can	call	other	functions.	In	fact,
main	is	just	a	function	calling	other	functions.	But	beware	that	functions
cannot	be	nested,	which	means	functions	cannot	contain	the	code	for	other
functions.

Also,	functions	can	have	their	own	sections,	such	as	.data,	.bss,	and
.text.	What	about	the	period	before	pi	and	the	fmt	variables?	The	period
indicates	a	local	variable,	which	means	that	the	variable	is	known	only	inside
the	function	where	it	is	declared.	In	the	function	area,	we	used	a	value	for
pi	that	is	different	from	the	pi	used	in	the	function	circum.	The	variable

radius,	declared	in	section	.data	of	main,	is	known	in	every
function	in	this	source	code	listing,	including	main.	It	is	always	advisable	to
use	local	variables	whenever	possible;	this	reduces	the	risk	of	conflicting
variable	names.

Figure	12-2	shows	the	output	for	the	program.

Figure	12-2 	function2.asm	output

Summary
In	this	chapter,	you	learned	the	following:

How	to	use	functions.

Functions	can	have	their	own	section	.data	and	section	.bss.

Functions	cannot	be	nested.

Functions	can	call	other	functions.

main	is	just	another	function.

How	to	use	local	variables.

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_13

13.	Stack	Alignment	and	Stack	Frame
Jo	Van	Hoey1	

Hamme,	Belgium

	
When	your	main	program	calls	a	function,	it	will	push	an	8-byte	return
address	on	the	stack.	That	8-byte	address	is	the	address	of	the	instruction	to	be
executed	after	the	function.	So,	when	the	function	ends,	the	program
execution	will	find	the	return	address	from	the	stack	and	continue	operation
after	the	function	call.	Inside	the	function,	we	can	also	use	the	stack	for
different	purposes.	Every	time	you	push	something	on	the	stack,	the	stack
pointer	will	decrease	by	8	bytes,	and	every	time	you	pop	something	from	the
stack,	the	stack	pointer	will	increase	by	8	bytes.	So,	we	have	to	make	sure	to
“restore”	the	stack	to	the	appropriate	value	before	we	leave	the	function.
Otherwise,	the	executing	program	would	have	a	wrong	address	for	the
instruction	to	be	executed	after	the	function	call.

Stack	Alignment
In	the	Intel	manuals,	you	will	find	mention	of	a	requirement	that	the	stack
has	to	have	a	16-byte	alignment	when	you	call	a	function.	This	may	sound	a
bit	weird,	as	the	stack	is	built	in	8-byte	(or	64-bit)	memory.	The	reason	is	that
there	are	SIMD	instructions	that	perform	parallel	operations	on	larger	blocks
of	data,	and	these	SIMD	instructions	may	require	that	these	data	are	located	in
memory	on	addresses	that	are	multiples	of	16	bytes.	In	previous	examples,
when	we	used	printf	with	xmm	registers,	we	aligned	the	stack	on	16	bytes,
without	explicitly	telling	you.	Go	back	to	Chapter	11	on	floating-point
arithmetic,	where	we	crashed	the	program	by	commenting	out	push	rbp
and	pop	rbp.	The	program	crashed	because	deleting	these	instructions
caused	the	stack	to	be	not	aligned.	If	you	use	printf	without	xmm	registers,
you	can	get	away	without	stack	alignment,	but	if	you	do	that,	bugs	are	going
to	bite	you	someday.

We	will	discuss	SIMD	and	alignment	in	later	chapters,	so	don’t	worry	if

https://doi.org/10.1007/978-1-4842-5076-1_13

the	previous	explanation	does	not	make	sense	to	you.	For	now,	keep	in	mind
that	when	you	call	a	function,	you	need	to	align	the	stack	on	an	address	that	is
a	multiple	of	16	bytes.

As	far	as	the	processor	is	concerned,	main	is	just	another	function.
Before	your	program	starts	execution,	the	stack	is	aligned.	Just	before	main
starts,	an	8-byte	return	address	is	pushed	onto	the	stack,	which	means	the
stack	is	not	aligned	upon	the	start	of	main.	If	the	stack	is	not	touched
between	the	start	of	main	and	the	call	of	a	function,	the	stack	pointer	rsp	is
not	16-byte	aligned.	You	can	verify	that	by	looking	at	rsp:	if	rsp	ends	with
0,	it	is	16-bit	aligned.	To	make	it	zero,	you	push	something	onto	the	stack	so
that	it	becomes	16-bit	aligned.	Of	course,	do	not	forget	the	corresponding
pop	instruction	later.

This	alignment	requirement	is	one	of	the	reasons	for	using	a	prologue	and
an	epilogue.	The	first	instruction	in	main	and	in	a	function	should	push
something	onto	the	stack	to	align	it.	That’s	the	reason	for	the	prologue
instruction	push	rbp.	The	rbp	register	is	also	called	the	base	pointer	.

Why	are	we	using	rbp?	In	the	prologue,	when	using	stack	frames
(explained	later),	rbp	is	modified,	so	before	rbp	is	used	in	a	stack	frame,	it
is	pushed	onto	the	stack	to	preserve	it	when	returning.	Even	when	not
building	a	stack	frame,	rbp	is	the	ideal	candidate	to	align	the	stack	because	it
is	not	used	for	argument	passing	to	a	function.	Argument	passing	will	be
discussed	later	in	the	chapter.	In	the	prologue,	we	also	use	the	instruction	mov
rbp,rsp.	This	instruction	preserves	rsp,	which	is	our	stack	pointer
containing	the	return	address.	The	prologue	instructions	are	reversed	in	the
epilogue;	needless	to	say,	it	is	best	to	not	meddle	with	rbp!	In	future
chapters,	you	will	see	a	number	of	other	methods	to	align	the	stack.

Listing	13-1	shows	some	source	code	to	play	with.	Keep	an	eye	on	rsp
when	debugging	and	stepping	through	the	program	with	SASM.	Comment
out	push	rbp	and	pop	rbp	and	see	what	happens.	If	the	program
execution	arrives	at	printf	with	an	unaligned	stack,	the	program	will	crash.
That	is	because	printf	definitely	requires	alignment.

In	this	program,	we	do	not	use	complete	prologues	and	epilogues;	that	is,
we	do	not	build	stack	frames.	We	only	use	push	and	pop	to	illustrate
alignment.

;	aligned.asm

extern	printf

section	.data

fmt		db					“2	times	pi	equals
%.14f”,10,0

pi			dq					3.14159265358979

section	.bss

section	.text

;–––––––––––––––—

func3:

push		rbp

movsd							xmm0,	[pi]

addsd							xmm0,	[pi]

mov			rdi,fmt

mov			rax,1

call		printf					;	print	a	float

pop			rbp

ret

;–––––––––––––––—

func2:

push		rbp

call		func3	;	call	the	third	function

pop			rbp

ret

;–––––––––––––––—

func1:

push		rbp

call		func2	;	call	the	second	function

pop			rbp

ret

;–––––––––––––––—

global	main

main:

push		rbp

call		func1	;	call	the	first	function

pop			rbp

ret
Listing	13-1 aligned.asm

Note	that	if	you	do	a	certain	number	of	calls	(even	or	odd,	depending	how
you	start),	the	stack	will	be	16-byte	aligned	even	if	you	do	not	push/pop	to
align,	and	the	program	will	not	crash.	Pure	luck!

More	on	Stack	Frames
You	can	distinguish	two	types	of	functions:	branch	functions	and	leaf
functions.	Branch	functions	contain	calls	to	other	functions,	while	leaf
functions	execute	some	commands	and	then	return	to	the	parent	function
without	calling	any	other	function.

In	principle,	every	time	you	call	a	function,	you	need	to	build	a	stack
frame.	This	is	done	as	follows:	in	the	called	function,	you	first	align	the	stack
on	a	16-byte	border,	that	is,	push	rbp.	Then	you	save	stack	pointer	rsp
into	rbp.	When	leaving	the	function,	restore	rsp	and	pop	rbp	to	restore
rbp.	That	is	the	role	of	the	function	prologue	and	epilogue.	Inside	the
function,	register	rbp	now	serves	as	an	anchor	point	to	the	original	stack
location.	Every	time	a	function	calls	another	function,	the	new	function
should	build	its	own	stack	frame.

Inside	a	leaf	function,	you	can	in	general	ignore	stack	frame	and	stack
alignment;	it	is	not	necessary	as	long	as	you	don’t	mess	with	the	stack.	Note
that	when	you	call,	for	example,	printf	in	your	function,	your	function	is
not	a	leaf	function.	Similarly,	if	your	function	does	not	use	SIMD	instructions,
you	do	not	need	to	care	about	alignment.

Compilers	have	optimizing	functionality,	and	sometimes	when	you	look	at
code	generated	by	compilers,	you	will	find	that	there	was	no	stack	frame
used.	That	happens	when	the	compilers	noticed	during	optimizing	that	a	stack
frame	is	not	needed.

Anyway,	it	is	a	good	habit	to	always	include	a	stack	frame	and	check	the
stack	alignment;	it	can	save	you	a	lot	of	trouble	later.	A	good	reason	to
include	a	stack	frame	is	the	fact	that	GDB	and	GDB-based	debuggers	(such	as

DDD	and	SASM)	expect	to	find	a	stack	frame.	If	there	is	no	stack	frame	in
your	code,	the	debugger	will	behave	unpredictably,	such	as	ignoring
breakpoints	or	jumping	over	instructions.	Take	some	code	from	a	previous
chapter	(e.g.,	alife.asm),	comment	away	the	function	prologue	and
epilogue,	and	then	start	GDB	and	see	what	happens.

As	an	additional	exercise,	look	at	the	code	from	the	previous	chapter
(function2.asm)	with	SASM	or	GDB	and	see	how	the	stack	remains
aligned	during	the	execution.

Here	is	an	additional	shortcut:	you	can	substitute	the	function	prologue	for
the	instruction	enter	0,0	and	the	function	epilogue	for	the	instruction
leave.	However,	enter	has	poor	performance,	so	you	can	just	continue	to
use	push	rbp	and	mov	rbp,	rsp	if	you	think	performance	is	an	issue.
The	instruction	leave	has	no	such	performance	problem.

Summary
In	this	chapter,	you	learned	about	the	following:

Stack	alignment

Using	stack	frames

Using	SASM	to	check	the	stack	pointer

Entering	and	leaving	instructions

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_14

14.	External	Functions
Jo	Van	Hoey1	

Hamme,	Belgium

	
We	already	know	how	to	create	and	use	functions	in	our	source	code.	But	the
functions	do	not	have	to	reside	in	the	same	file	as	our	main	program.	We	can
write	and	assemble	these	functions	in	a	separate	file	and	link	them	in	when
building	the	program.	The	function	printf,	which	we	already	used	several
times,	is	an	example	of	an	external	function.	In	the	source	file	where	you	plan
to	use	the	external	function,	you	declare	it	with	the	keyword	extern	,	and
the	assembler	knows	it	does	not	have	to	look	for	the	source	of	the	function.
The	assembler	will	assume	that	the	function	is	already	assembled	in	an	object
file.	The	external	function	will	be	inserted	by	the	linker,	provided	it	can	find	it
in	an	object	file.

Similar	to	using	C	functions	such	as	printf,	you	can	build	your	own	set
of	functions	and	link	them	when	you	need	them.

Building	and	Linking	Functions
Listing	14-1	shows	an	example	program,	with	three	source	files,	to	be	saved
as	separate	files:	function4.asm,	circle.asm,	and	rect.asm.	There
is	also	a	new	makefile.	Study	it	carefully.

;	function4.asm

extern	printf

extern	c_area

extern	c_circum

extern	r_area

extern	r_circum

global	pi

https://doi.org/10.1007/978-1-4842-5076-1_14

section	.data

pi									dq				3.141592654

radius					dq				10.0

side1						dq				4

side2						dq				5

fmtf		db			”%s	%f”,10,0

fmti		db			”%s	%d”,10,0

ca				db			“The	circle	area	is	“,0

cc				db			“The	circle	circumference	is	“,0

ra				db			“The	rectangle	area	is	“,0

rc				db			“The	rectangle	circumference	is	“,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	circle	area

movsd		xmm0,	qword	[radius]				;	radius	xmm0
argument

call			c_area																		;	area	returned	in
xmm0

;	print	the	circle	area

mov			rdi,	fmtf

mov			rsi,	ca

mov			rax,	1

call		printf

;	circle	circumference

movsd						xmm0,	qword	[radius]	;	radius	xmm0
argument

call		c_circum																		;	circumference	in
xmm0

;	print	the	circle	circumference

mov			rdi,	fmtf

mov			rsi,	cc

mov			rax,	1

call		printf

;	rectangle	area

mov			rdi,	[side1]

mov			rsi,	[side2]

call		r_area															;	area	returned	in	rax

;	print	the	rectangle	area

mov			rdi,	fmti

mov			rsi,	ra

mov			rdx,	rax

mov			rax,	0

call		printf

;	rectangle	circumference

mov			rdi,		[side1]

mov			rsi,		[side2]

call		r_circum													;	circumference	in	rax

;	print	the	rectangle	circumference

mov			rdi,	fmti

mov			rsi,	rc

mov			rdx,	rax

mov			rax,	0

call		printf

mov	rsp,rbp

pop	rbp

ret

Listing	14-1 	function4.asm

In	the	above	source,	we	declared	a	number	of	functions	as	external	,
as	we	already	did	several	times	before	when	using	printf	.	There’s	nothing
new	here.	But	we	also	declared	the	variable	pi	to	be	global	.	That	means
this	variable	will	also	be	available	to	external	functions.

Listing	14-2	and	Listing	14-3	show	separate	files	that	contain	only
functions.

;	circle.asm

extern	pi

section	.data

section	.bss

section	.text

;––––––––––––––––

global	c_area

c_area:

section	.text

push	rbp

mov	rbp,rsp

movsd	xmm1,	qword	[pi]

mulsd	xmm0,	xmm0							;radius	in
xmm0

mulsd	xmm0,	xmm1

mov	rsp,rbp

pop	rbp

ret

;––––––––––––––––

global	c_circum

c_circum:

section	.text

push	rbp

mov	rbp,rsp

movsd	xmm1,	qword	[pi]

addsd	xmm0,	xmm0								;radius	in
xmm0

mulsd	xmm0,	xmm1

mov	rsp,rbp

pop	rbp

ret
Listing	14-2 	circle.asm

;	rect.asm

section	.data

section	.bss

section	.text

;––––––––––––––––

global	r_area

r_area:

section	.text

push	rbp

mov	rbp,rsp

mov			rax,	rsi

imul		rax,	rdi

mov			rsp,rbp

pop	rbp

ret

;––––––––––––––––

global	r_circum

r_circum:

section	.text

push	rbp

mov	rbp,rsp

mov			rax,	rsi

add			rax,	rdi

add			rax,	rax

mov	rsp,rbp

pop	rbp

ret
Listing	14-3 rect.asm

In	circle.asm	we	want	to	use	the	variable	pi	declared	in	the	main
source	file	as	global,	which	is	by	the	way	not	a	good	idea,	but	we	are	doing
it	here	for	demonstration	purposes.	Global	variables	such	as	pi	are	difficult
to	keep	track	of	and	could	even	lead	to	conflicting	variables	with	the	same
names.	It	is	best	practice	to	use	registers	to	pass	values	to	a	function.	Here,	we
have	to	specify	that	pi	is	external.	circle.asm	and	rect.asm	each
have	two	functions,	one	for	computing	the	circumference	and	one	for
computing	the	area.	We	have	to	indicate	that	these	functions	are	global,
similar	to	the	main	program.	When	these	functions	are	assembled,	the
necessary	“overhead”	is	added,	enabling	the	linker	to	add	these	functions	to
other	object	code.

Expanding	the	makefile
To	make	all	this	work,	we	need	an	expanded	makefile	,	as	shown	in
Listing	14-4.

#	makefile	for	function4,	circle	and	rect.

function4:	function4.o	circle.o	rect.o

gcc	-g	-o	function4	function4.o	circle.o	rect.o	-
no-pie

function4.o:	function4.asm

nasm	-f	elf64	-g	-F	dwarf	function4.asm	-l
function4.lst

circle.o:	circle.asm

nasm	-f	elf64	-g	-F	dwarf	circle.asm	-l	circle.lst

rect.o:	rect.asm

nasm	-f	elf64	-g	-F	dwarf	rect.asm	-l	rect.lst
Listing	14-4 makefile

You	read	the	makefile	from	the	bottom	up:	first	the	different	assembly
source	files	are	assembled	into	object	files,	and	then	the	object	files	are	linked
together	in	function4,	the	executable.	You	can	see	here	the	power	of	using
make.	When	you	modify	one	of	the	source	files,	make	knows,	thanks	to	the
tree	structure,	which	files	to	re-assemble	and	link.	Of	course,	if	your	functions
are	stable	and	will	not	change	anymore,	there	is	no	need	to	try	to	re-assemble
them	in	every	makefile.	Just	store	the	object	file	somewhere	in	a
convenient	directory	and	refer	to	that	object	file	with	its	complete	path	in	the
gcc	line	of	the	makefile.	An	object	file	is	the	result	of	assembling	or
compiling	source	code.	It	contains	machine	code	and	also	information	for	a
linker	about	which	global	variables	and	external	functions	are	needed	in	order
to	produce	a	valid	executable.	In	our	case,	the	object	files	all	reside	in	the
same	directory	as	our	main	source,	so	no	paths	were	specified	here.

What	about	the	printf	function?	Why	is	no	reference	made	to	printf
in	the	makefile?	Well,	gcc	is	smart	enough	to	also	check	C	libraries	for
functions	that	are	referenced	in	the	source	code.	This	means	you	should	not
use	the	names	of	C	functions	for	naming	your	own	functions!	That	will
confuse	everybody,	not	to	mention	your	linker.

In	the	code,	we	used	registers	to	transfer	values	from	the	main	program	to
the	functions,	and	vice	versa,	and	that	is	best	practice.	For	example,	before
calling	r_area,	we	moved	side1	to	rdi	and	side2	to	rsi.	Then	we
returned	the	computed	area	in	rax.	To	return	the	result,	we	could	have	used	a
global	variable,	similar	to	pi	in	the	section	.data	section	of	main.
But	as	we	said	before,	that	should	be	avoided.	In	the	next	chapter	on	calling
conventions,	we	will	discuss	this	more	in	detail.

Figure	14-1	shows	the	output	of	this	program.

Figure	14-1 Output	of	function4

When	using	this	example	in	SASM,	you	have	to	assemble	the	external
functions	first	to	obtain	object	files.	Then	on	the	SASM	Settings	dialog’s
Build	tab,	you	need	to	add	the	location	of	these	object	files	in	the	Linking
Options	line.	The	Linking	Options	line	would	look	like	the	following	in	this
case	(be	careful	not	to	introduce	unwanted	spaces	in	this	line!):

$PROGRAM.OBJ$	-g	-o	$PROGRAM$	circle.o	rect.o	-no-
pie

Summary
In	this	chapter,	you	learned	the	following:

How	to	use	external	functions

How	to	global	variables

How	to	use	the	makefile	and	external	functions

How	to	transfer	values	to	and	from	functions

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_15

15.	Calling	Conventions
Jo	Van	Hoey1	

Hamme,	Belgium

	
Calling	conventions	describe	how	you	transfer	variables	to	and	from
functions.	If	you	will	be	using	only	functions	that	you	have	built	yourself,	you
do	not	have	to	care	about	calling	conventions.	But	when	you	are	using	C
functions	from	the	C	library,	you	need	to	know	in	which	registers	you	have	to
put	the	values	to	be	used	by	that	function.	Also,	if	you	write	assembly
functions	for	building	a	library	that	will	be	used	by	other	developers,	you’d
better	follow	some	convention	for	which	registers	to	use	for	which	function
arguments.	Otherwise,	you	will	have	lots	of	conflicts	with	arguments.

You	already	noticed	that	with	the	function	printf,	we	put	an	argument
in	rdi,	another	in	rsi,	and	yet	another	argument	in	xmm0.	We	were	using	a
calling	convention.

To	avoid	conflicts	and	the	resulting	crashes,	smart	developers	designed
calling	conventions,	a	standardized	way	to	call	functions.	It	is	a	nice	idea,	but
as	you	may	expect,	not	everybody	agrees	with	everybody	else,	so	there	are
several	different	calling	conventions.	Up	until	now	in	this	book	we	have	used
the	System	V	AMD64	ABI	calling	convention,	which	is	the	standard	on
Linux	platforms.	But	there	is	also	another	calling	convention	worth	knowing:
the	Microsoft	x64	calling	convention	to	be	used	in	Windows	programming.

These	calling	conventions	allow	you	to	use	external	functions	built	with
assembly,	as	well	as	functions	compiled	from	languages	such	as	C,	without
having	access	to	the	source	code.	Just	put	the	correct	arguments	in	the
registers	specified	in	the	calling	convention.

You	can	find	out	more	about	the	System	V	AMD64	ABI	calling
convention	at
https://software.intel.com/sites/default/files/article/402129/mpx-
linux64-abi.pdf	.	This	Intel	document	has	an	overwhelming	amount	of
detailed	information	about	the	System	V	application	binary	interface.	In	this

https://doi.org/10.1007/978-1-4842-5076-1_15
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

chapter,	we	will	show	what	you	have	to	know	to	start	calling	functions	in	the
standard	way.

Function	Arguments
Look	back	at	the	previous	source	files:	for	the	circle	calculations,	we	used
xmm0	to	transfer	floating-point	values	from	the	main	program	to	the
circle	function,	and	we	used	xmm0	to	return	the	floating-point	result	of	the
function	to	the	main	program.	For	the	rectangle	calculation,	we	used	rdi
and	rsi	to	transfer	integer	values	to	the	function,	and	the	integer	result	was
returned	in	rax.	This	way	of	passing	arguments	and	results	is	dictated	by	the
calling	convention.

Non-floating-point	arguments,	such	as	integers	and	addresses,	are	passed
as	follows:

The	1st	argument	goes	into	rdi.

The	2nd	argument	goes	into	rsi.

The	3rd	argument	goes	into	rdx.

The	4th	argument	goes	into	rcx.

The	5th	argument	goes	into	r8.

The	6th	argument	goes	into	r9.

Additional	arguments	are	passed	via	the	stack	and	in	reverse	order	so	that
we	can	pop	off	in	the	right	order.	For	instance,	with	10	arguments,	we	have
this:

The	10th	argument	is	pushed	first.

Then	the	9th	argument	is	pushed.

Then	the	8th	argument	is	pushed.

The	7th	argument	is	pushed.

Once	you	are	in	the	function,	it	is	just	a	matter	of	getting	the	values	from
the	registers.	When	popping	the	values	from	the	stack,	you	have	to	be	careful;
remember	that	when	a	function	is	called,	the	return	address	is	pushed	on	the
stack,	just	after	the	arguments.

When	you	push	the	10th	argument,	you	decrease	the	stack	pointer	rsp	by
8	bytes.

When	you	push	the	9th	argument,	rsp	decreases	by	8	bytes.

When	you	push	the	8th	argument,	rsp	decreases	by	8	bytes.

With	the	7th	argument,	rsp	decreases	by	8	bytes.

Then	the	function	is	called;	rip	is	pushed	on	the	stack,	and	rsp	decreases
by	8	bytes.

Then	rbp	is	pushed	at	the	beginning	of	the	function;	as	part	of	the
prologue,	rsp	decreases	by	8	bytes.

Then	align	the	stack	on	a	16-byte	boundary,	so	maybe	another	push	is
needed	to	decrease	rsp	by	8	bytes.

Thus,	after	we	pushed	the	function’s	arguments,	at	least	two	additional
registers	are	pushed	on	the	stack,	i.e.,	16	additional	bytes.	So,	when	you	are	in
the	function,	to	access	the	arguments,	you	have	to	skip	the	first	16	bytes	on
the	stack,	maybe	more	if	you	had	to	align	the	stack.

Floating-point	arguments	are	passed	via	xmm	registers	as	follows:

The	1st	argument	goes	into	xmm0.

The	2nd	argument	goes	into	xmm1.

The	3rd	argument	goes	into	xmm2.

The	4th	argument	goes	into	xmm3.

The	5th	argument	goes	into	xmm4.

The	6th	argument	goes	into	xmm5.

The	7th	argument	goes	into	xmm6.

The	8th	argument	goes	into	xmm7.

Additional	arguments	are	passed	via	the	stack;	this	is	not	accomplished
with	a	push	instruction	as	you	might	expect.	We	will	show	later	how	to	do
that,	in	the	more	advanced	SIMD	chapters.

A	function	returns	a	floating-point	result	in	xmm0,	and	an	integer	number
or	address	is	returned	in	rax.

Complicated?	Listing	15-1	shows	an	example	that	prints	a	number	of
arguments	with	printf.

;	function5.asm

extern	printf

section	.data

first						db				“A”,0

second					db				“B”,0

third						db				“C”,0

fourth					db				“D”,0

fifth						db				“E”,0

sixth						db				“F”,0

seventh				db				“G”,0

eighth					db				“H”,0

ninth						db				“I”,0

tenth						db				“J”,0

fmt1		db			“The	string	is:
%s%s%s%s%s%s%s%s%s%s”,10,0

fmt2							db				“PI	=	%f”,10,0

pi									dq				3.14

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

mov			rdi,fmt1			;first	use	the	registers

mov			rsi,	first

mov			rdx,	second

mov			rcx,	third

mov			r8,	fourth

mov			r9,	fifth

push		tenth						;	now	start	pushing	in

push		ninth						;	reverse	order

push		eighth

push		seventh

push		sixth

mov			rax,	0

call		printf

and			rsp,	0xfffffffffffffff0	;	16-byte	align	the
stack

movsd							xmm0,[pi]	;	now	print	a	floating-point

mov			rax,	1											;	1	float	to	print

mov			rdi,	fmt2

call		printf

leave

ret
Listing	15-1 function5.asm

In	this	example,	we	pass	all	arguments	in	the	correct	order	to	printf.
Note	the	reverse	order	of	pushing	the	arguments.

Use	your	debugger	to	check	rsp	just	before	the	call	printf.	The
stack	is	not	16-byte	aligned!	The	program	did	not	crash	because	we	did	not
ask	printf	to	print	a	floating-point	number.	But	the	next	printf	does
exactly	that.	Thus,	before	using	printf,	we	have	to	align	the	stack,	so	we
use	the	following	instruction:

and						rsp,
0xfffffffffffffff0

This	instruction	leaves	all	the	bytes	in	rsp	intact,	except	the	last	one:	the
last	four	bits	in	rsp	are	changed	to	0,	thus	decreasing	the	number	in	rsp	and
aligning	rsp	on	a	16-byte	boundary.	If	the	stack	had	been	aligned	to	start
with,	the	and	instruction	would	do	nothing.	Be	careful,	though.	If	you	want
to	pop	values	from	the	stack	after	this	and	instruction,	you	have	a	problem:
you	have	to	find	out	if	the	and	instruction	changed	rsp	and	eventually	adjust
rsp	again	to	its	value	before	the	execution	of	the	and	instruction.

Figure	15-1	shows	the	output.

Figure	15-1 Output	of	function5

Stack	Layout
Let’s	look	at	an	example	where	we	can	see	what	happens	on	the	stack	when
we	push	function	arguments.	Listing	15-2	shows	a	program	that	uses	a
function	to	build	a	string,	and	when	the	function	returns,	the	string	is	printed.

;	function6.asm

extern	printf

section	.data

first						db				“A”

second					db				“B”

third						db				“C”

fourth					db				“D”

fifth						db				“E”

sixth						db				“F”

seventh				db				“G”

eighth					db				“H”

ninth						db				“I”

tenth						db				“J”

fmt								db				“The	string	is:	%s”,10,0

section	.bss

flist						resb	11				;length	of	string	+
terminating	0

section	.text

global	main

main:

push		rbp

mov			rbp,	rsp

mov			rdi,	flist						;	length

mov			rsi,	first						;	fill	the	registers

mov			rdx,	second

mov			rcx,	third

mov			r8,	fourth

mov			r9,	fifth

push		tenth						;	now	start	pushing	in

push		ninth						;	reverse	order

push		eighth

push		seventh

push		sixth

call		lfunc											;call	the	function

;	print	the	result

mov			rdi,	fmt

mov			rsi,	flist

mov			rax,	0

call		printf

leave

ret

;–––––––––––––––—

lfunc:

push		rbp

mov			rbp,rsp

xor			rax,rax				;clear	rax	(especially	higher
bits)

mov			al,byte[rsi]					;	move	content	1st	argument
to	al

mov			[rdi],	al								;	store	al	to	memory

mov			al,	byte[rdx]				;	move	content	2nd	argument
to	al

mov			[rdi+1],	al						;	store	al	to	memory

mov			al,	byte[rcx]				;	etc	for	the	other
arguments

mov			[rdi+2],	al

mov			al,	byte[r8]

mov			[rdi+3],	al

mov			al,	byte[r9]

mov			[rdi+4],	al

;	now	fetch	the	arguments	from	the	stack

push		rbx														;	callee	saved

xor			rbx,rbx

mov			rax,	qword	[rbp+16]			;	first	value:	initial
stack

;	+	rip	+	rbp

mov			bl,	byte[rax]									;	extract	the
character

mov			[rdi+5],	bl					;	store	the	character	to
memory

mov			rax,	qword	[rbp+24]			;	continue	with	next
value

mov			bl,	byte[rax]

mov			[rdi+6],	bl

mov			rax,	qword	[rbp+32]

mov			bl,	byte[rax]

mov			[rdi+7],	bl

mov			rax,	qword	[rbp+40]

mov			bl,	byte[rax]

mov			[rdi+8],	bl

mov			rax,	qword	[rbp+48]

mov			bl,	byte[rax]

mov			[rdi+9],	bl

mov			bl,0

mov			[rdi+10],	bl

pop			rbx																			;	callee	saved

mov			rsp,rbp

pop			rbp

ret
Listing	15-2 function6.asm

Here,	instead	of	printing	with	printf	immediately	after	we	provide	all
the	arguments,	as	we	did	in	the	previous	section,	we	call	the	function	lfunc.
This	function	takes	all	the	arguments	and	builds	a	string	in	memory	(flist);
that	string	will	be	printed	after	returning	to	main.

Look	at	the	lfunc	function.	We	take	only	the	lower	byte	of	the	argument
registers,	which	is	where	the	characters	are,	using	an	instruction	such	as	the
following:

mov							al,byte[rsi
]

We	store	these	characters	one	by	one	in	memory,	starting	at	the	address	in
rdi,	which	is	the	address	of	flist,	with	the	instruction:	mov	[rdi],	al.
Using	the	byte	keyword	is	not	necessary,	but	it	improves	the	readability	of
the	code.

It	gets	interesting	when	we	start	popping	values	from	the	stack.	At	the
start	of	lfunc,	the	value	of	rsp,	which	is	the	stack	address,	is	saved	into
rbp.	However,	between	this	instruction	and	the	end	of	pushing	the	values	in
main,	rsp	was	modified	twice.	First,	when	lfunc	was	called,	the	return
address	was	pushed	onto	the	stack.	Then	we	pushed	rbp	as	part	of	the
prologue.	In	total,	rsp	was	decreased	by	16	bytes.	To	access	our	pushed
values,	we	have	to	augment	the	value	of	the	addresses	by	16	bytes.	That	is
why	we	used	this	to	access	the	variable	sixth:

mov	rax,	qword
[rbp+16]

The	other	variables	are	each	8	bytes	higher	than	the	previous	one.	We
used	rbx	as	a	temporary	register	for	building	the	string	in	flist.	Before
using	rbx,	we	saved	the	content	of	rbx	to	the	stack.	You	never	know	if	rbx
is	used	in	main	for	other	purposes,	so	we	preserve	rbx	and	restore	it	before
leaving	the	function.

Figure	15-2	shows	the	output.

Figure	15-2 Output	of	function6

Preserving	Registers
We	will	now	explain	the	instructions.

push						rbx																		;	callee	saved

and

pop							rbx																		;	callee	saved

It	should	be	clear	that	you	have	to	keep	track	of	with	happens	with	the
registers	during	a	function	call.	Some	registers	will	be	altered	during	the
execution	of	a	function,	and	some	will	be	kept	intact.	You	need	to	take
precautions	in	order	to	avoid	unexpected	results	caused	by	functions
modifying	registers	you	are	using	in	the	main	(calling)	program.

Table	15-1	shows	an	overview	of	what	is	specified	in	the	calling
convention.
Table	15-1 Calling	Conventions

Register Usage Save

rax Return	value Caller

rbx Callee	saved Callee

rcx 4th	argument Caller

rdx 3rd	argument Caller

rsi 2nd	argument Caller

rdi 1st	argument Caller

rbp Callee	saved Callee

rsp Stack	pointer Callee

r8 5th	argument Caller

r9 6th	argument Caller

r10 Temporary Caller

r11 Temporary Caller

r12 Callee	saved Callee

r13 Callee	saved Callee

r14 Callee	saved Callee

r15 Callee	saved Callee

xmm0 First	arg	and	return Caller

xmm1 Second	arg	and	return Caller

xmm2-7 Arguments Caller

xmm8-15 Temporary Caller

The	function	called	is	the	callee.	When	a	function	uses	a	callee-saved
register,	the	function	needs	to	push	that	register	on	the	stack	before	using	it
and	pop	it	in	the	right	order	afterward.	The	caller	expects	that	a	callee-saved
register	should	remain	intact	after	the	function	call.	The	argument	registers
can	be	changed	during	execution	of	a	function,	so	it	is	the	responsibility	of	the
caller	to	push/pop	them	if	they	have	to	be	preserved.	Similarly,	the	temporary
registers	can	be	changed	in	the	function,	so	they	need	to	be	pushed/popped	by
the	caller	if	needed.	Needless	to	say,	rax,	the	returning	value,	needs	to	be
pushed/popped	by	the	caller!

Problems	can	start	popping	up	when	you	modify	an	existing	function	and
start	using	a	caller-saved	register.	If	you	do	not	add	a	push/pop	of	that	register
in	the	caller,	you	will	have	unexpected	results.

Registers	that	are	callee	saved	are	also	called	nonvolatile.	Registers	that
the	caller	has	to	save	are	also	called	volatile.

The	xmm	registers	can	all	be	changed	by	a	function;	the	caller	will	be
responsible	for	preserving	them	if	necessary.

Of	course,	if	you	are	sure	you	are	not	going	to	use	the	changed	registers,
you	can	skip	the	saving	of	these	registers.	However,	if	you	change	the	code	in
the	future,	you	may	get	in	trouble	if	you	start	using	these	registers	without
saving	them.	Believe	it	or	not,	after	a	couple	of	weeks	or	months,	assembly
code	is	difficult	to	read,	even	if	you	coded	everything	yourself.

One	last	note:	syscall	is	also	a	function	and	will	modify	registers,	so
keep	an	eye	on	what	a	syscall	is	doing.

Summary
In	this	chapter,	you	learned	about	the	following:

Calling	conventions

Stack	alignment

Callee/caller-saved	registers

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_16

16.	Bit	Operations
Jo	Van	Hoey1	

Hamme,	Belgium

	
We	have	already	done	bit	operations	in	Chapter	9	on	integer	arithmetic:	shift
arithmetic	sar	and	sal	are	bit	operations,	shifting	bits	right	or	left.	Also,	the
and	instruction	for	aligning	the	stack	covered	in	the	previous	chapter	is	a	bit
operation.

Basics
In	the	following	example	program,	we	are	building	a	custom	C	function
called	printb	to	print	a	string	of	bits.	For	convenience,	it	separates	the
string	of	64	bits	into	8	bytes,	with	8	bits	each.	As	an	exercise,	after	you	finish
this	chapter,	take	a	look	at	the	C	code,	and	you	should	be	able	to	write	an
assembler	program	to	build	a	string	of	bits.

Listing	16-1,	Listing	16-2,	and	Listing	16-3	show	the	example	code	for
the	bit	operations	in	assembly,	the	C	printb	program,	and	the	makefile,
respectively.

;	bits1.asm

extern	printb

extern	printf

section	.data

msgn1	db				“Number	1”,10,0

msgn2	db				“Number	2”,10,0

msg1		db				“XOR”,10,0

msg2		db				“OR”,10,0

msg3		db				“AND”,10,0

https://doi.org/10.1007/978-1-4842-5076-1_16

msg4		db				“NOT	number	1”,10,0

msg5		db				“SHL	2	lower	byte	of	number	1”,10,0

msg6		db				“SHR	2	lower	byte	of	number	1”,10,0

msg7		db				“SAL	2	lower	byte	of	number	1”,10,0

msg8		db				“SAR	2	lower	byte	of	number	1”,10,0

msg9		db				“ROL	2	lower	byte	of	number	1”,10,0

msg10	db				“ROL	2	lower	byte	of	number	2”,10,0

msg11	db				“ROR	2	lower	byte	of	number	1”,10,0

msg12	db				“ROR	2	lower	byte	of	number	2”,10,0

number1					dq				-72

number2					dq				1064

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	print	number1

mov			rsi,	msgn1

call		printmsg

mov			rdi,	[number1]

call		printb

;	print	number2

mov			rsi,	msgn2

call		printmsg

mov			rdi,	[number2]

call		printb

;	print	XOR	(exclusive	OR)––––––––

mov			rsi,	msg1

call		printmsg

;	xor	and	print

mov			rax,[number1]

xor			rax,[number2]

mov			rdi,	rax

call		printb

;	print	OR	–––––––––––––

mov			rsi,	msg2

call		printmsg

;	or	and	print

mov			rax,[number1]

or				rax,[number2]

mov			rdi,	rax

call		printb

;	print	AND		–––––––––––––

mov			rsi,	msg3

call		printmsg

;	and	and	print

mov			rax,[number1]

and			rax,[number2]

mov			rdi,	rax

call		printb

;	print	NOT		–––––––––––––

mov			rsi,	msg4

call		printmsg

;	not	and	print

mov			rax,[number1]

not			rax

mov			rdi,	rax

call		printb

;	print	SHL		(shift	left–––––––––-

mov			rsi,	msg5

call		printmsg

;	shl	and	print

mov			rax,[number1]

shl			al,2

mov			rdi,	rax

call		printb

;	print	SHR		(shift	right)––––––––—

mov			rsi,	msg6

call		printmsg

;shr	and	print

mov			rax,[number1]

shr			al,2

mov			rdi,	rax

call		printb

;	print	SAL		(shift	arithmetic	left)–––––-

mov			rsi,	msg7

call		printmsg

;	sal	and	print

mov			rax,[number1]

sal			al,2

mov			rdi,	rax

call		printb

;	print	SAR		(shift	arithmetic	right)–––––-

mov			rsi,	msg8

call		printmsg

;	sar	and	print

mov			rax,[number1]

sar			al,2

mov			rdi,	rax

call		printb

;	print	ROL		(rotate	left)–––––––––

mov			rsi,	msg9

call		printmsg

;	rol	and	print

mov			rax,[number1]

rol			al,2

mov			rdi,	rax

call		printb

mov			rsi,	msg10

call		printmsg

mov			rax,[number2]

rol			al,2

mov			rdi,	rax

call		printb

;	print	ROR		(rotate	right)–––––––––

mov			rsi,	msg11

call		printmsg

;	ror	and	print

mov			rax,[number1]

ror			al,2

mov			rdi,	rax

call		printb

mov			rsi,	msg12

call		printmsg

mov			rax,[number2]

ror			al,2

mov			rdi,	rax

call		printb

leave

ret

;–––––––––––––––––—

printmsg:				;	print	the	heading	for	every	bit
operation

section	.data

.fmtstr												db						”%s”,0

section	.text

mov			rdi,.fmtstr

mov			rax,0

call		printf

ret
Listing	16-1 	bits1.asm

//	printb.c

#include	<stdio.h>

void	printb(long	long	n){

long	long	s,c;

for	(c	=	63;	c	>=	0;	c—)

{

s	=	n	>>	c;

//	space	after	every	8th	bit

if	((c+1)	%	8	==	0)	printf(”
“);

if	(s	&	1)

printf(“1”);

else

printf(“0”);

}

printf(“\n”);

}
Listing	16-2 	printb.c

#	makefile	for	bits1	and	printb

bits1:	bits1.o	printb.o

gcc	-g	-o	bits1	bits1.o	printb.o	-no-pie

bits1.o:	bits1.asm

nasm	-f	elf64	-g	-F	dwarf	bits1.asm	-l
bits1.lst

printb:	printb.c

gcc	-c	printb.c
Listing	16-3 makefile	for	bits1	and	printb

Build	and	run	the	program	and	study	the	output.	If	you	are	using	SASM,
do	not	forget	to	compile	the	printb.c	file	first	and	then	add	the	object	file
in	the	Linking	Options,	as	mentioned	when	discussing	external	functions	in
Chapter	14.

This	is	quite	a	long	program.	Fortunately,	the	code	is	not	complicated.
We’ll	show	how	the	different	bit	operation	instructions	work.	Use	the	output
shown	in	Figure	16-1	to	guide	you	through	the	code.

Figure	16-1 bits1.asm	output

First	note	the	binary	representation	of	number1	(-72);	the	1	in	the	most
significant	bit	indicates	a	negative	number.

The	instructions	xor,	or,	and,	and	not	are	pretty	simple;	they	work	as
explained	in	Chapter	5.	Experiment	with	different	values	to	see	how	it	works.

For	shl	,	shr	,	sal	,	and	sar	,	we	use	the	lower	byte	of	rax	to
illustrate	what	is	going	on.	With	shl,	bits	are	shifted	to	the	left	and	zeros	are
added	to	the	right	of	al;	the	bits	are	moved	to	the	left,	and	the	bits	that	move

to	the	left	of	the	8th	bit	are	simply	discarded.	With	shr,	bits	are	shifted	to	the
right	and	zeros	are	added	to	the	left	of	al.	All	bits	are	moved	to	the	right,	and
bits	that	move	to	the	right	of	the	least	significant	bit	are	dropped.	When	you
are	stepping	through	the	program,	keep	an	eye	on	the	flag	registers,	especially
the	sign	register	and	the	overflow	register.

The	arithmetic	left	shift,	sal,	is	exactly	the	same	as	shl;	it	multiplies	the
value.	The	arithmetic	shift	right,	sar,	division,	is	different	from	shr.	Here
we	have	what	is	called	sign	extension.	If	the	leftmost	bit	in	al	is	a	1,	al
contains	a	negative	value.	To	do	the	arithmetic	correctly,	when	shifting	right,
1s	instead	of	0s	are	added	to	the	left	in	case	of	a	negative	value.	This	is	called
sign	extension.

Rotate	left,	rol	,	removes	the	leftmost	bit,	shifts	left,	and	adds	the
removed	bits	to	the	right.	Rotate	right,	ror	,	works	in	a	similar	way.

Arithmetic
Let’s	do	some	deep	dive	into	shifting	arithmetic.	Why	are	there	two	types	of
shift	left	and	two	types	of	shift	right?	When	doing	arithmetic	with	negative
values,	shift	instructions	can	give	you	wrong	results,	because	sign	extension
needs	to	be	taken	into	account.	That	is	why	there	are	arithmetic	shift
instructions	and	logical	shift	instructions.

Study	the	example	in	Listing	16-4.

;	bits2.asm

extern	printf

section	.data

msgn1	db				“Number	1	is	=	%d”,0

msgn2	db				“Number	2	is	=	%d”,0

msg1		db				“SHL	2	=	OK	multiply	by	4”,0

msg2		db				“SHR	2	=	WRONG	divide	by	4”,0

msg3		db				“SAL	2	=	correctly	multiply	by
4”,0

msg4		db				“SAR	2	=	correctly	divide	by	4”,0

msg5		db				“SHR	2	=	OK	divide	by	4”,0

number1					dq				8

number2					dq				-8

result						dq				0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;SHL––––––––––––––––-

;positive	number

mov			rsi,	msg1

call		printmsg									;print	heading

mov			rsi,	[number1]

call		printnbr									;print	number1

mov			rax,[number1]

shl			rax,2						;multiply	by	4	(logic)

mov			rsi,	rax

call		printres

;negative	number

mov			rsi,	msg1

call		printmsg									;print	heading

mov			rsi,	[number2]

call		printnbr									;print	number2

mov			rax,[number2]

shl			rax,2						;multiply	by	4	(logic)

mov			rsi,	rax

call		printres

;SAL––––––––––––––––-

;positive	number

mov			rsi,	msg3

call		printmsg									;print	heading

mov			rsi,	[number1]

call		printnbr									;print	number1

mov			rax,[number1]

sal			rax,2						;multiply	by	4	(arithmetic)

mov			rsi,	rax

call		printres

;negative	number

mov			rsi,	msg3

call		printmsg									;print	heading

mov			rsi,	[number2]

call		printnbr									;print	number2

mov			rax,[number2]

sal			rax,2						;multiply	by	4	(arithmetic)

mov			rsi,	rax

call		printres

;SHR––––––––––––––––-

;positive	number

mov			rsi,	msg5

call		printmsg									;print	heading

mov			rsi,	[number1]

call		printnbr									;print	number1

mov			rax,[number1]

shr			rax,2						;divide	by	4	(logic)

mov			rsi,	rax

call		printres

;negative	number

mov			rsi,	msg2

call		printmsg									;print	heading

mov			rsi,	[number2]

call		printnbr									;print	number2

mov			rax,[number2]

shr			rax,2						;divide	by	4	(logic)

mov			[result],	rax

mov			rsi,	rax

call		printres

;SAR––––––––––––––––-

;positive	number

mov			rsi,	msg4

call		printmsg									;print	heading

mov			rsi,	[number1]

call		printnbr									;print	number1

mov			rax,[number1]

sar			rax,2						;divide	by	4	(arithmetic)

mov			rsi,	rax

call		printres

;negative	number

mov			rsi,	msg4

call		printmsg									;print	heading

mov			rsi,	[number2]

call		printnbr									;print	number2

mov			rax,[number2]

sar			rax,2						;divide	by	4	(arithmetic)

mov			rsi,	rax

call		printres

leave

ret

;–––––––––––—

printmsg:														;print	the	title

section	.data

.fmtstr	db	10,”%s”,10,0	;format	for	a	string

section	.text

mov			rdi,.fmtstr

mov			rax,0

call		printf

ret

;–––––––––––—

printnbr:														;print	the	number

section	.data

.fmtstr	db	“The	original	number	is	%lld”,10,0

section	.text

mov			rdi,.fmtstr

mov			rax,0

call		printf

ret

;–––––––––––—

printres:														;print	the	result

section	.data

.fmtstr	db	“The	resulting	number	is
%lld”,10,0

section	.text

mov			rdi,.fmtstr

mov			rax,0

call		printf

ret
Listing	16-4 bits2.asm

Use	the	output	shown	in	Figure	16-2	to	analyze	the	code.

Figure	16-2 bits2.asm	output

Notice	that	shl	and	sal	give	the	same	results,	also	with	negative
numbers.	But	be	careful;	if	shl	would	put	a	1	in	the	leftmost	bit	instead	of	a
0,	the	result	would	become	negative	and	wrong.

The	instructions	shr	and	sar	give	the	same	result	only	when	the

numbers	are	positive.	The	arithmetic	result	when	using	shr	with	negative
numbers	is	simply	wrong;	that	is	because	there	is	no	sign	extension	with	shr.

Conclusion:	when	you	are	doing	arithmetic,	use	sal	and	sar.

Why	would	you	need	shifting	when	there	are	straightforward	instructions
such	as	multiply	and	divide?	It	turns	out	the	shifting	is	much	faster	than	the
multiplying	or	dividing	instructions.	In	general,	bit	instructions	are	very	fast;
for	example,	xor	rax,	rax	is	faster	than	mov	rax,0.

Summary
In	this	chapter,	you	learned	about	the	following:

Assembly	instructions	for	bit	operations

Difference	between	logical	and	arithmetic	shift	instructions

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_17

17.	Bit	Manipulations
Jo	Van	Hoey1	

Hamme,	Belgium

	
You	already	know	that	you	can	set	or	clear	bits	using	bit	operations	such	as
and,	xor,	or,	and	not.	But	there	are	other	ways	to	modify	individual	bits:
bts	for	setting	bits	to	1,	btr	for	resetting	bits	to	0,	and	bt	for	testing	if	a
bit	is	set	to	1.

Other	Ways	to	Modify	Bits
Listing	17-1	shows	the	example	code.

;	bits3.asm

extern	printb

extern	printf

section	.data

msg1		db			“No	bits	are	set:”,10,0

msg2		db			10,“Set	bit	#4,	that	is	the	5th
bit:”,10,0

msg3		db			10,“Set	bit	#7,	that	is	the	8th
bit:”,10,0

msg4		db			10,“Set	bit	#8,	that	is	the	9th
bit:”,10,0

msg5		db			10,“Set	bit	#61,	that	is	the	62nd
bit:”,10,0

msg6		db			10,“Clear	bit	#8,	that	is	the	9th
bit:”,10,0

msg7		db			10,“Test	bit	#61,	and	display	rdi”,10,0

https://doi.org/10.1007/978-1-4842-5076-1_17

bitflags			dq						0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;print	title

mov			rdi,	msg1

xor			rax,rax

call		printf

;print	bitflags

mov			rdi,	[bitflags]

call		printb

;set	bit	4	(=5th	bit)

;print	title

mov			rdi,	msg2

xor			rax,rax

call		printf

bts			qword	[bitflags],4				;	set	bit	4

;print	bitflags

mov			rdi,	[bitflags]

call		printb

;set	bit	7	(=8th	bit)

;print	title

mov			rdi,	msg3

xor			rax,rax

call		printf

bts			qword	[bitflags],7				;	set	bit	7

;print	bitflags

mov			rdi,	[bitflags]

call		printb

;set	bit	8	(=9th	bit)

;print	title

mov			rdi,	msg4

xor			rax,rax

call		printf

bts			qword	[bitflags],8				;	set	bit	8

;print	bitflags

mov			rdi,	[bitflags]

call		printb

;set	bit	61	(=62nd	bit)

;print	title

mov			rdi,	msg5

xor			rax,rax

call		printf

bts			qword	[bitflags],61			;	set	bit	61

;print	bitflags

mov			rdi,	[bitflags]

call		printb

;clear	bit	8	(=9th	bit)

;print	title

mov			rdi,	msg6

xor			rax,	rax

call		printf

btr			qword	[bitflags],8				;	bit	reset	8

;print	bitflags

mov			rdi,	[bitflags]

call		printb

;	test	bit	61	(will	set	carry	flag	CF	if	1)

;print	title

mov			rdi,	msg7

xor			rax,	rax

call		printf

xor			rdi,rdi

mov			rax,61														;	bit	61	to	be	tested

xor			rdi,rdi													;	make	sure	all	bits	are
0

bt				[bitflags],rax						;	bit	test

setc		dil																	;	set	dil	(=low	rdi)	to
1	if	CF	is	set

call		printb														;	display	rdi

leave

ret
Listing	17-1 bits3.asm

We	again	use	the	printb.c	program	here;	make	sure	to	adapt	your
makefile	or	SASM	build	settings	accordingly.

The	variable	bitflags	is	the	object	of	study	here;	we	will	be
manipulating	bits	in	this	variable.

The	bitflags	Variable
Remember	that	the	bit	count	(the	index)	starts	at	0.	This	means	that	in	a	byte,
which	has	8	bits,	the	first	bit	is	at	position	0,	and	the	last	bit	is	at	position	7.
Setting	bits	to	1	with	the	instruction	bts	and	resetting	bits	to	0	with	btr	is
simple:	just	specify	the	index	of	the	bit	to	be	changed	as	the	second	operand.

Testing	a	bit	is	a	bit	more	complicated.	Put	the	index	of	the	bit	to	be	tested
in	rax	and	use	the	instruction	bt.	If	the	bit	is	1,	the	carry	flag,	CF,	will	be	set
to	1;	otherwise,	CF	will	be	0.	Based	on	the	value	of	the	flag,	you	can	direct
your	program	to	execute	certain	instructions	or	not.	In	this	case,	we	use	a
special	instruction	setc,	a	conditional	set.	In	this	case,	the	instruction	sets

dil	to	1	if	the	carry	flag	is	1.	dil	is	the	lower	part	of	rdi;	be	careful	to	set
rdi	to	0	before	using	setc	to	set	dil.	It	might	well	be	that	the	higher	bits
of	rdx	are	set	during	the	execution	of	a	previous	instruction.

The	setc	instruction	is	an	example	of	setCC.	setCC	sets	a	byte	in	the
operand	if	the	condition	in	CC	is	met,	where	CC	is	a	flag,	such	as	CF
(abbreviated	as	c),	ZF	CF	(abbreviated	as	z),	SF	CF	(abbreviated	as	s),	and
so	on.	Take	a	look	in	the	Intel	manuals	for	more	details.

Figure	17-1	shows	the	output	of	the	program.

Figure	17-1 	bits3.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

Setting	bits,	resetting	bits,	and	examining	bits,	with	btr,	bts,	and	bt

The	setCC	instruction

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_18

18.	Macros
Jo	Van	Hoey1	

Hamme,	Belgium

	
When	you	use	the	same	set	of	instructions	several	times	in	a	program,	you	can
create	a	function	and	call	that	function	every	time	you	need	to	execute	the
instructions.	However,	there	is	a	performance	penalty	with	functions:	every
time	you	call	a	function,	the	execution	jumps	to	the	function	at	some	place	in
memory	and,	when	finished,	jumps	back	to	the	calling	program.	Calling	and
returning	from	a	function	takes	time.

To	avoid	this	performance	issue,	you	can	work	with	macros.	Similar	to
functions,	macros	are	a	sequence	of	instructions.	You	assign	a	name	to	the
macro,	and	when	you	need	to	execute	the	macro	in	your	code,	you	just
specify	the	macro	name,	eventually	accompanied	by	arguments.

Here	is	the	difference:	at	assembly	time,	everywhere	in	the	code	where
you	“call”	the	macro,	NASM	substitutes	the	macro	name	with	the	instructions
in	the	definition	of	the	macro.	At	execution	time,	there	is	no	jumping	back
and	forth;	NASM	has	already	inserted	the	machine	code	where	it	is	needed.

Macros	are	not	a	functionality	in	the	Intel	assembly	language	but	a
functionality	provided	by	NASM	(or	another	version	of	assembler).	Macros
are	created	using	preprocessor	directives,	and	NASM	uses	a	macro	processor
to	convert	macros	to	machine	language	and	insert	the	machine	languages	at
the	appropriate	places	in	the	code.

Macros	will	improve	the	execution	speed	of	your	code	but	also	will
increase	the	size	of	your	code,	because	at	assembly	time	the	instructions	in
the	macro	will	be	inserted	every	place	where	you	use	the	macro.

For	more	information	about	NASM	macros,	look	in	the	NASM	manual,	in
Chapter	4,	“The	NASM	Preprocessor”	(for	NASM	version	2.14.02).

Writing	Macros

https://doi.org/10.1007/978-1-4842-5076-1_18

Listing	18-1	shows	some	examples	of	macros.

;	macro.asm

extern	printf

%define					double_it(r)				sal	r,	1				;	single
line	macro

%macro						prntf	2				;	multiline	macro	with	2
arguments

section	.data

%%arg1				db				%1,0												;	first	argument

%%fmtint		db				”%s	%ld”,10,0			;	formatstring

section	.text																				;	the	printf
arguments

mov			rdi,%%fmtint

mov			rsi,%%arg1

mov			rdx,[%2]							;	second	argument

mov			rax,0										;	no	floating	point

call		printf

%endmacro

section	.data

number						dq				15

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

prntf						“The	number	is”,	number

mov								rax,	[number]

double_it(rax)

mov								[number],rax

prntf						“The	number	times	2	is”,	number

leave

ret
Listing	18-1 macro.asm

There	are	two	kinds	of	macros:	single-line	macros	and	multiline	macros.
A	single-line	macro	starts	with	%define.	A	multiline	macro	is	enclosed
between	the	keywords	%macro	and	%endmacro.	The	keywords	%define,
%macro,	and	%endmacro	are	called	assembler	preprocessor	directives.

A	single-line	macro	is	quite	simple:	at	assembly	time	the	instruction
double_it(rax)	is	substituted	for	the	machine	code	for	sal	r,	1,
where	r	is	the	value	in	rax.

A	multiline	macro	is	somewhat	more	complicated;	prntf	is	called	with
two	arguments.	You	can	see	that	in	the	macro	definition,	prntf	is	followed
by	the	number	2	to	indicate	the	number	of	arguments.	To	use	the	arguments
inside	the	macro,	they	are	indicated	with	%1	for	the	first	argument,	%2	for	the
second,	and	so	on.	Note	how	we	can	use	%1	for	using	a	string	but	[%2]	(with
brackets)	for	a	numeric	value,	similar	to	what	would	be	required	without
using	a	macro.

You	can	use	variables	inside	macros,	and	it	is	best	to	precede	the	names
with	%%	as	in	%%arg1	and	in	%%fmtint.	If	you	omit	%%,	NASM	would
happily	create	the	macro	variables	on	the	first	call	of	prntf	but	would	throw
an	assembly	error	at	the	second	call	of	prntf,	complaining	that	you	try	to
redefine	arg1	and	fmtint.	The	%%	tells	NASM	to	create	new	instances	of
variables	for	every	call	of	the	macro.	(Do	the	exercise:	delete	the	%%	and	try
to	assemble.)

There	is	one	big	problem	with	assembler	macros:	they	complicate
debugging!	Try	to	debug	your	program	with	GDB	or	a	GDB-based	debugger
such	as	SASM	to	see	the	behavior.

Figure	18-1	shows	the	output.

Figure	18-1 macro.asm	output

Using	objdump
Let’s	verify	that	the	assembled	macro	code	is	inserted	at	the	appropriate
places	in	the	executable	every	time	the	macro	is	used.	To	do	that	we	will	use	a
CLI	tool	called	objdump.	If	you	installed	the	development	tools	as
recommended	at	the	beginning	of	this	book,	objdump	is	already	installed.	At
the	CLI,	type	the	following:

objdump	-M	intel	-d
macro

The	flag	-M	intel	will	give	us	the	code	in	Intel	syntax,	and	-d
macro	will	disassemble	our	macro	executable.	Scroll	in	the	code	toward	the
<main>	section.

As	you	can	see	in	Figure	18-2,	the	code	for	prntf	is	inserted	in	main
from	memory	address	4004f4	to	400515	and	from	40052d	to	40054e.
The	code	for	double_it	is	at	address	400522.	The	assembler	took	the
liberty	to	change	the	sal	instruction	into	shl,	and	that	is	for	performance
reasons.	As	you	remember	from	Chapter	16	on	shifting	instructions,	this	can
be	done	without	any	problem	in	most	cases.	While	you	are	at	it,	change	the
sal	instruction	into	sar.	You	will	see	that	the	assembler	will	not	change
sar	into	shr,	avoiding	problems.

The	CLI	tool	objdump	is	useful	to	investigate	code,	even	code	that	you
did	not	write	yourself.	You	can	find	a	lot	of	information	about	an	executable
using	objdump,	but	we	will	not	go	into	detail	in	this	book.	If	you	want	to
know	more,	type	man	objdump	at	the	CLI	or	search	the	Internet.

Figure	18-2 objdump	-M	intel	-d	macro

Summary
In	this	chapter,	you	learned	about	the	following:

When	to	use	macros	and	when	to	use	functions

Single-line	macros

Multiline	macros

Passing	arguments	to	multiline	macros

GDB’s	problems	with	assembly	macros

objdump

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_19

19.	Console	I/O
Jo	Van	Hoey1	

Hamme,	Belgium

	
We	already	know	how	to	do	console	output	using	system	calls	or	using
printf.	In	this	chapter,	we	will	again	use	system	calls,	not	only	for	display
on	the	screen	but	also	for	accepting	input	from	the	keyboard.

Working	with	I/O
We	could	easily	borrow	functions	from	the	C	library,	but	that	would	spoil	the
assembly	fun!	So,	Listing	19-1	shows	the	example	source	code.

;	console1.asm

section	.data

msg1							db				“Hello,	World!”,10,0

msg1len				equ			$-msg1

msg2							db				“Your	turn:	“,0

msg2len				equ			$-msg2

msg3							db				“You	answered:	“,0

msg3len				equ			$-msg3

inputlen	equ					10			;length	of	inputbuffer

section	.bss

input	resb	inputlen+1	;provide	space	for	ending
0

section	.text

global	main

https://doi.org/10.1007/978-1-4842-5076-1_19

main:

push		rbp

mov			rbp,rsp

mov			rsi,	msg1							;	print	first	string

mov			rdx,	msg1len

call		prints

mov			rsi,	msg2							;	print	second	string,	no
NL

mov			rdx,	msg2len

call		prints

mov			rsi,	input						;	address	of	inputbuffer

mov			rdx,	inputlen			;	length	of	inputbuffer

call		reads											;	wait	for	input

mov			rsi,	msg3							;	print	third	string

mov			rdx,	msg3len

call		prints

mov			rsi,	input						;	print	the	inputbuffer

mov			rdx,	inputlen			;	length	of	inputbuffer

call		prints

leave

ret

;–––––––––––––––––-

prints:

push		rbp

mov			rbp,	rsp

;	rsi	contains	address	of	string

;	rdx	contains	length	of	string

mov			rax,	1										;	1	=	write

mov			rdi,	1										;	1	=	stdout

syscall

leave

ret

;–––––––––––––––––-

reads:

push		rbp

mov			rbp,	rsp

;	rsi	contains	address	of	the	inputbuffer

;	rdi	contains	length	of	the	inputbuffer

mov			rax,	0									;	0	=	read

mov			rdi,	1									;	1	=	stdin

syscall

leave

ret
Listing	19-1 	console1.asm

This	is	not	very	complicated;	we	provide	an	input	buffer	called	input	to
store	the	characters	from	the	input.	We	also	specify	the	length	of	the	buffer	in
inputlen.	After	displaying	some	welcome	messages,	we	call	the	function
reads,	which	accepts	all	the	characters	from	the	keyboard	and	returns	them
to	the	caller	when	the	Enter	key	is	pressed.	The	calling	program	then	uses	the
function	prints	to	display	the	characters	that	were	entered.	Figure	19-1
shows	the	output.

Figure	19-1 console1.asm	output

There	are	some	issues,	however!	We	reserved	10	bytes	for	the	input
buffer.	What	happens	if	the	input	is	longer	than	10	characters?	Figure	19-2
shows	our	result.

Figure	19-2 console1.asm	with	too	many	characters

The	program	accepted	only	ten	characters	and	doesn’t	know	what	to	do
with	the	surplus	characters,	so	it	throws	them	back	to	the	operating	system.
The	operating	system	tries	to	figure	out	and	interpret	the	characters	as	CLI
commands	but	cannot	find	corresponding	commands.	Errors!

That’s	not	nice,	but	it’s	even	worse	than	at	first	glance.	This	way	of
handling	input	can	cause	a	security	breach,	where	a	hacker	can	break	out	of	a
program	and	gets	access	to	the	operating	system!

Dealing	with	Overflows
Listing	19-2	shows	another	version,	where	we	count	the	characters	and	just
ignore	surplus	characters.	As	an	additional	tweak,	we	only	allow	lowercase
alphabetic	characters,	a	to	z.

;	console2.asm

section	.data

msg1		db				“Hello,	World!”,10,0

msg2		db				“Your	turn	(only	a-z):	“,0

msg3		db				“You	answered:	“,0

inputlen				equ			10			;length	of	inputbuffer

NL				db				0xa

section	.bss

input	resb	inputlen+1					;provide	space	for

ending	0

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

mov			rdi,	msg1			;	print	first	string

call		prints

mov			rdi,	msg2			;	print	second	string,	no	NL

call		prints

mov			rdi,	input							;	address	of	inputbuffer

mov			rsi,	inputlen				;	length	of	inputbuffer

call		reads												;	wait	for	input

mov			rdi,	msg3								;	print	third	string	and
add	the	input	string

call		prints

mov			rdi,	input							;	print	the	inputbuffer

call		prints

mov			rdi,NL											;	print	NL

call		prints

leave

ret

;–––––––––––––––––––-

prints:

push		rbp

mov			rbp,	rsp

push		r12						;	callee	saved

;	Count	characters

xor			rdx,	rdx				;	length	in	rdx

mov			r12,	rdi

.lengthloop:

cmp			byte	[r12],	0

je				.lengthfound

inc			rdx

inc			r12

jmp			.lengthloop

.lengthfound:											;	print	the	string,	length
in	rdx

cmp			rdx,	0						;	no	string	(0	length)

je				.done

mov			rsi,rdi					;	rdi	contains	address	of	string

mov			rax,	1						;	1	=	write

mov			rdi,	1						;	1	=	stdout

syscall

.done:

pop	r12

leave

ret

;–––––––––––––––––––-

reads:

section	.data

section	.bss

.inputchar							resb							1

section	.text

push		rbp

mov			rbp,	rsp

push		r12														;	callee	saved

push		r13														;	callee	saved

push		r14														;	callee	saved

mov			r12,	rdi				;	address	of	inputbuffer

mov			r13,	rsi				;	max	length	in	r13

xor			r14,	r14				;	character	counter

.readc:

mov			rax,	0											;	read

mov			rdi,	1											;	stdin

lea			rsi,	[.inputchar]					;	address	of	input

mov			rdx,	1											;	#	of	characters	to	read

syscall

mov			al,	[.inputchar]						;	char	is	NL?

cmp			al,	byte[NL]

je				.done												;	NL	end

cmp			al,	97											;	lower	than	a?

jl				.readc											;	ignore	it

cmp			al,	122										;	higher	than	z?

jg				.readc											;	ignore	it

inc			r14																				;	inc	counter

cmp			r14,	r13

ja				.readc											;	buffer	max	reached,
ignore

mov			byte	[r12],	al			;	safe	the	char	in	the
buffer

inc			r12														;	point	to	next	char	in
buffer

jmp			.readc

.done:

inc			r12

mov			byte	[r12],0					;	add	end	0	to	inputbuffer

pop			r14														;	callee	saved

pop			r13														;	callee	saved

pop			r12														;	callee	saved

leave

ret
Listing	19-2 console2.asm

We	modified	the	prints	function	so	that	it	first	counts	the	number	of
characters	to	display;	that	is,	it	counts	until	it	finds	a	0	byte.	When	the	length
is	determined,	prints	displays	the	string	with	a	syscall.

The	reads	function	waits	for	one	input	character	and	checks	whether	it
is	a	new	line.	If	it’s	a	new	line,	the	character	reading	from	the	keyboard	stops.
Register	r14	holds	the	count	of	the	input	characters.	The	function	checks
whether	the	number	of	characters	is	larger	than	inputlen;	if	not,	the
character	is	added	to	the	buffer	input.	If	inputlen	is	exceeded,	the
character	is	ignored,	but	the	reading	from	the	keyboard	continues.	We	require
the	ASCII	code	of	the	character	to	be	97	or	higher	and	122	or	lower.	This	will
guarantee	that	only	lowercase	alphabetic	characters	are	accepted.	Note	that
we	saved	and	restored	the	callee-saved	registers;	we	used	r12	in	both
functions,	prints	and	reads.	In	this	case,	not	saving	the	callee-saved
register	would	not	be	a	problem,	but	you	can	imagine	that	if	one	function	calls
another	and	that	one	calls	yet	another,	problems	could	arise.

Figure	19-3	shows	the	output.

Figure	19-3 console2.asm

Debugging	console	input	with	SASM	is	complicated	because	we	are
providing	input	via	a	syscall.	SASM	provides	its	own	functionality	for
I/O,	but	we	didn’t	want	to	use	it	because	we	wanted	to	show	how	assembly
and	machine	language	work	without	hiding	the	details.	If	you	get	stuck	with
debugging	in	SASM,	go	back	to	our	good	old	friend	GDB.

Summary
In	this	chapter,	you	learned	about	the	following:

Keyboard	input	using	syscall

Validating	keyboard	input

Debugging	with	keyboard	input,	which	can	be	complicated

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_20

20.	File	I/O
Jo	Van	Hoey1	

Hamme,	Belgium

	
File	manipulation	can	be	complex	in	software	development.	Different
operating	systems	have	different	methods	for	file	management,	each	with	a
list	of	different	options.	In	this	chapter,	we	will	discuss	file	I/O	for	Linux
systems;	you	will	see	in	Chapter	43	that	file	I/O	in	Windows	is	entirely
different.

In	Linux,	file	management	is	complex	and	involves	creating	and	opening
a	file	for	read-only	or	read/write,	writing	to	a	new	file	or	appending	to	a	file,
and	deleting	files…not	to	mention	the	security	settings	for	‘user’,	‘group’,
and	‘other’.	Brush	up	your	admin	skills	on	the	Linux	filesystem	if	necessary,
and	dust	off	your	Linux	system	administration	manual	to	refresh	your
memory.	In	the	code,	we	specified	only	the	flags	for	the	current	‘user’,	but
you	can	also	add	flags	for	‘group’	and	‘other’.	If	you	have	no	clue	what	we
are	talking	about,	it	is	time	to	study	a	bit	about	basic	Linux	file	management.

Using	syscalls
Files	are	created,	opened,	closed,	and	so	on,	via	a	syscall	.	In	this	chapter,
we	will	use	a	lot	of	syscalls,	so	we	are	going	to	simplify	things	a	bit.	At
the	beginning	of	our	code,	we	will	define	constants	that	are	easier	to	refer	to
than	syscall	numbers.	You	can	recognize	the	syscall	constants	in	the
following	code	because	they	start	with	NR_.	Using	these	NR_syscall
constants	makes	the	code	more	readable.	You	can	find	a	list	of	syscall
symbol	names	in	the	following	file	on	your	system:

/usr/include/asm/unistd_64.h

We	will	use	the	same	names	in	our	program.	Note	that	there	is	also	a	file
named	unistd_32h	for	32-bit	legacy	compatibility.

https://doi.org/10.1007/978-1-4842-5076-1_20

We	also	created	symbolic	constants	for	create	flags,	status	flags,	and
access	mode	flags.	These	flags	indicate	if	a	file	is	to	be	created	or	appended,
read-only,	write-only,	and	so	on.	You	can	find	a	list	and	description	of	these
flags	in	the	file	on	your	system.

/usr/include/asm-generic/fcntl.h

There	these	flags	are	given	in	octal	notation	(e.g.,	O_CREAT	=
00000100).	A	value	that	starts	with	0x	is	a	hexadecimal	value,	and	a	value
that	starts	with	0	without	an	x	is	an	octal	value.	For	readability,	you	can
append	the	character	q	to	an	octal	number.

When	creating	a	file,	the	file	permission	will	have	to	be	specified.
Remember	in	Linux,	you	have	read,	write,	and	execute	permissions	for	user,
group,	and	other.	You	can	get	an	overview	and	find	out	a	lot	of	subtleties	with
the	following	CLI	command:

man	2
open

The	file	permissions	are	also	given	in	octal	notation	and	are	familiar	to	a
Linux	system	administrator.	For	the	sake	of	consistency,	we	will	borrow	the
symbolic	names	used	in	these	files.

The	example	program	is	quite	lengthy,	but	we	will	analyze	it	step-by-step,
which	can	be	accomplished	using	conditional	assembly.	This	gives	you	a
chance	to	analyze	the	program	piece	by	piece.

File	Handling
In	the	program,	we	do	the	following:

1.

Create	a	file	and	then	write	data	in	the	file. 	
2.

Overwrite	part	of	the	content	of	the	file. 	
3.

Append	data	to	the	file. 	

4.

Write	data	at	a	certain	position	in	the	file.
	

5.

Read	data	from	the	file. 	
6.

Read	data	from	a	certain	position	in	the	file.	
7.

Delete	the	file. 	
Listing	20-1	shows	the	code.

;	file.asm

section	.data

;	expressions	used	for	conditional	assembly

CREATE					equ			1

OVERWRITE		equ			1

APPEND					equ			1

O_WRITE				equ			1

READ							equ			1

O_READ					equ			1

DELETE					equ			1

;	syscall	symbols

NR_read				equ			0

NR_write			equ			1

NR_open				equ			2

NR_close			equ			3

NR_lseek			equ			8

NR_create		equ			85

NR_unlink		equ			87

;	creation	and	status	flags

O_CREAT				equ			00000100q

O_APPEND			equ			00002000q

;	access	mode

O_RDONLY			equ			000000q

O_WRONLY			equ			000001q

O_RDWR					equ			000002q

;	create	mode	(permissions)

S_IRUSR				equ			00400q						;user	read	permission

S_IWUSR				equ			00200q						;user	write
permission

NL									equ			0xa

bufferlen								equ			64

fileName			db				“testfile.txt”,0

FD									dq				0				;	file	descriptor

text1	db			“1.	Hello…to	everyone!”,NL,0

len1		dq			$-text1-1							;remove	0

text2	db			“2.	Here	I	am!”,NL,0

len2		dq			$-text2-1							;remove	0

text3	db			“3.	Alife	and	kicking!”,NL,0

len3		dq			$-text3-1							;remove	0

text4	db			“Adios	!!!”,NL,0

len4				dq			$-text4-1

error_Create	db	“error	creating	file”,NL,0

error_Close		db	“error	closing	file”,NL,0

error_Write		db	“error	writing	to	file”,NL,0

error_Open			db	“error	opening	file”,NL,0

error_Append	db	“error	appending	to	file”,NL,0

error_Delete	db	“error	deleting	file”,NL,0

error_Read			db	“error	reading	file”,NL,0

error_Print		db	“error	printing	string”,NL,0

error_Position	db	“error	positioning	in	file”,NL,0

success_Create				db	“File	created	and
opened”,NL,0

success_Close					db	“File	closed”,NL,NL,0

success_Write					db	“Written	to	file”,NL,0

success_Open						db	“File	opened	for	R/W”,NL,0

success_Append				db	“File	opened	for
appending”,NL,0

success_Delete				db	“File	deleted”,NL,0

success_Read						db	“Reading	file”,NL,0

success_Position		db	“Positioned	in	file”,NL,0

section	.bss

buffer	resb	bufferlen

section	.text

global	main

main:

push	rbp

mov		rbp,rsp

%IF	CREATE

;CREATE	AND	OPEN	A	FILE,	THEN	CLOSE	––––––—

;	create	and	open	file

mov			rdi,	fileName

call		createFile

mov			qword	[FD],	rax	;	save	descriptor

;	write	to	file	#1

mov			rdi,	qword	[FD]

mov			rsi,	text1

mov			rdx,	qword	[len1]

call		writeFile

;	close	file

mov			rdi,	qword	[FD]

call		closeFile

%ENDIF

%IF	OVERWRITE

;OPEN	AND	OVERWRITE	A	FILE,	THEN	CLOSE	–––––—

;	open	file

mov			rdi,	fileName

call		openFile

mov			qword	[FD],	rax	;	save	file	descriptor

;	write	to	file	#2	OVERWRITE!

mov			rdi,	qword	[FD]

mov			rsi,	text2

mov			rdx,	qword	[len2]

call		writeFile

;	close	file

mov			rdi,	qword	[FD]

call		closeFile

%ENDIF

%IF	APPEND

;OPEN	AND	APPEND	TO	A	FILE,	THEN	CLOSE	–––––-

;	open	file	to	append

mov			rdi,	fileName

call		appendFile

mov			qword	[FD],	rax	;	save	file	descriptor

;	write	to	file	#3	APPEND!

mov			rdi,	qword	[FD]

mov			rsi,	text3

mov			rdx,	qword	[len3]

call		writeFile

;	close	file

mov			rdi,	qword	[FD]

call		closeFile

%ENDIF

%IF	O_WRITE

;OPEN	AND	OVERWRITE	AT	AN	OFFSET	IN	A	FILE,	THEN
CLOSE	–-

;	open	file	to	write

mov			rdi,	fileName

call		openFile

mov			qword	[FD],	rax	;	save	file	descriptor

;	position	file	at	offset

mov			rdi,	qword[FD]

mov			rsi,	qword[len2]	;offset	at	this	location

mov			rdx,	0

call		positionFile

;	write	to	file	at	offset

mov			rdi,	qword[FD]

mov			rsi,	text4

mov			rdx,	qword	[len4]

call		writeFile

;	close	file

mov			rdi,	qword	[FD]

call		closeFile

%ENDIF

%IF	READ

;OPEN	AND	READ	FROM	A	FILE,	THEN	CLOSE	–––––-

;	open	file	to	read

mov			rdi,	fileName

call		openFile

mov		qword	[FD],	rax	;	save	file	descriptor

;	read	from	file

mov			rdi,	qword	[FD]

mov			rsi,	buffer

mov			rdx,	bufferlen

call		readFile

mov			rdi,rax

call		printString

;	close	file

mov		rdi,	qword	[FD]

call		closeFile

%ENDIF

%IF	O_READ

;OPEN	AND	READ	AT	AN	OFFSET	FROM	A	FILE,	THEN	CLOSE
–—

;	open	file	to	read

mov			rdi,	fileName

call		openFile

mov			qword	[FD],	rax	;	save	file	descriptor

;	position	file	at	offset

mov			rdi,	qword[FD]

mov			rsi,	qword[len2]						;skip	the	first	line

mov			rdx,	0

call		positionFile

;	read	from	file

mov			rdi,	qword	[FD]

mov			rsi,	buffer

mov			rdx,	10				;number	of	characters	to	read

call		readFile

mov			rdi,rax

call		printString

;	close	file

mov			rdi,	qword	[FD]

call		closeFile

%ENDIF

%IF	DELETE

;DELETE	A	FILE	–––––––––––-

;	delete	file			UNCOMMENT	NEXT	LINES	TO	USE

mov			rdi,	fileName

call		deleteFile

%ENDIF

leave

ret

;	FILE	MANIPULATION	FUNCTIONS––––––—

;––––––––––––––––

global	readFile

readFile:

mov			rax,	NR_read

syscall						;	rax	contains	#	of	characters	read

cmp			rax,	0

jl				readerror

mov			byte	[rsi+rax],0	;	add	a	terminating	zero

mov			rax,	rsi

mov			rdi,	success_Read

push		rax								;	caller	saved

call		printString

pop			rax								;	caller	saved

ret

readerror:

mov			rdi,	error_Read

call		printString

ret

;––––––––––––––––—

global	deleteFile

deleteFile:

mov			rax,	NR_unlink

syscall

cmp			rax,	0

jl				deleteerror

mov			rdi,	success_Delete

call		printString

ret

deleteerror:

mov			rdi,	error_Delete

call		printString

ret

;––––––––––––––––-

global	appendFile

appendFile:

mov			rax,	NR_open

mov			rsi,		O_RDWR|O_APPEND

syscall

cmp			rax,	0

jl				appenderror

mov			rdi,	success_Append

push		rax								;	caller	saved

call		printString

pop			rax								;	caller	saved

ret

appenderror:

mov			rdi,	error_Append

call		printString

ret

;––––––––––––––––

global	openFile

openFile:

mov			rax,	NR_open

mov			rsi,	O_RDWR

syscall

cmp			rax,	0

jl				openerror

mov			rdi,	success_Open

push		rax								;	caller	saved

call		printString

pop			rax								;	caller	saved

ret

openerror:

mov			rdi,	error_Open

call		printString

ret

;–––––––––––––––-

global	writeFile

writeFile:

mov			rax,	NR_write

syscall

cmp			rax,	0

jl				writeerror

mov			rdi,	success_Write

call		printString

ret

writeerror:

mov			rdi,	error_Write

call		printString

ret

;–––––––––––––––

global	positionFile

positionFile:

mov			rax,	NR_lseek

syscall

cmp			rax,	0

jl				positionerror

mov			rdi,	success_Position

call		printString

ret

positionerror:

mov			rdi,	error_Position

call		printString

ret

;–––––––––––––––

global	closeFile

closeFile:

mov			rax,	NR_close

syscall

cmp			rax,	0

jl				closeerror

mov			rdi,	success_Close

call		printString

ret

closeerror:

mov			rdi,	error_Close

call		printString

ret

;––––––––––––––––

global	createFile

createFile:

mov			rax,	NR_create

mov			rsi,	S_IRUSR	|S_IWUSR

syscall

cmp			rax,	0																	;	file	descriptor	in
rax

jl				createerror

mov			rdi,	success_Create

push		rax								;	caller	saved

call		printString

pop			rax								;	caller	saved

ret

createerror:

mov			rdi,	error_Create

call		printString

ret

;	PRINT	FEEDBACK

;–––––––––––––––—

global	printString

printString:

;	Count	characters

mov			r12,	rdi

mov			rdx,	0

strLoop:

cmp			byte	[r12],	0

je				strDone

inc			rdx																				;length	in	rdx

inc			r12

jmp			strLoop

strDone:

cmp			rdx,	0																	;	no	string	(0
length)

je				prtDone

mov			rsi,rdi

mov			rax,	1

mov			rdi,	1

syscall

prtDone:

ret
Listing	20-1 file.asm

Conditional	Assembly
Because	this	is	quite	a	long	program,	to	make	it	easier	to	analyze,	we	use
conditional	assembly.	We	created	different	constants	such	as	CREATE,
WRITE,	APPEND,	and	so	on.	If	you	set	such	a	variable	to	1,	then	certain	code,
enclosed	by	%IF	‘variable’	and	%ENDIF,	will	be	assembled.	If	that
variable	is	set	to	0,	the	assembler	will	ignore	the	code.	The	%IF	and	%ENDIF
parts	are	called	assembler	preprocessor	directives.	Start	with	the	variable
CREATE	equ	1,	and	set	the	other	variables	equal	to	0,	assemble,	run,	and
analyze	the	program.	Gradually	work	your	way	down.	Continue	with
CREATE	equ	1	and	OVERWRITE	equ	1	and	set	the	other	variables	equal
to	0	on	the	second	build,	and	so	on.

NASM	gives	you	a	considerable	collection	of	preprocessor	directives;
here	we	use	conditional	assembly.	To	define	macros,	as	we	explained	before,
we	also	used	preprocessor	directives.	In	Chapter	4	of	the	NASM	manual,	you
will	find	a	complete	description	of	preprocessor	directives.

The	File-Handling	Instructions
Let’s	begin	with	creating	a	file.	Move	the	file	name	into	rdi,	and	call
createFile.	In	createFile,	put	the	symbolic	variable	NR_create
into	rax,	and	specify	in	rsi	the	flags	for	creating	the	file.	In	this	case,	the
user	gets	read	and	write	permissions	and	then	does	a	syscall.

When	for	some	reason	the	file	cannot	be	created,	createFile	returns	a
negative	value	in	rax,	and	in	this	case	we	want	an	error	message	to	be
displayed.	If	you	want	more	detail,	the	negative	value	in	rax	indicates	what
kind	of	error	occurred.	If	the	file	is	created,	the	function	returns	a	file
descriptor	in	rax.	In	the	calling	program,	we	save	the	file	descriptor	to	the
variable	FD	for	further	file	manipulations.	You	can	see	that	we	have	to	be
careful	to	preserve	the	content	of	rax	before	calling	the	printString
function	.	A	call	to	printString	will	destroy	the	content	of	rax,	so	we
push	rax	to	the	stack	before	calling.	According	to	the	calling	conventions,
rax	is	a	caller-saved	register.

Next	in	the	code,	some	text	is	written	to	the	file,	and	then	the	file	is
closed.	Note	that	when	you	create	a	file,	a	new	file	will	be	created;	if	a	file
exists	with	the	same	name,	it	will	be	deleted.

Build	and	run	the	program	with	CREATE	equ	1;	the	other	conditional
assembly	variables	equal	0.	Then	go	to	the	command	prompt	and	verify	that	a
testfile.txt	file	is	created	and	that	it	has	the	message	in	it.	If	you	want
to	see	the	content	of	the	file	in	hexadecimal,	which	is	sometimes	useful,	use
xxd	testfile.txt	at	the	CLI	prompt.

Continue	by	gradually	putting	the	conditional	assembly	variables	to	1,	one
at	the	time,	and	check	in	testfile.txt	what	happens.

Note	that	in	this	case	we	created	and	used	functions	without	a	function
prologue	and	epilogue.	Figure	20-1	shows	the	output,	with	all	the	conditional
assembly	variables	set	to	1.

Figure	20-1 file.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

File	creation,	opening,	closing,	deleting

Writing	to	a	file,	appending	to	a	file,	and	writing	to	a	file	at	a	specific

position

Reading	from	a	file

The	different	parameters	for	file	handling

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_21

21.	Command	Line
Jo	Van	Hoey1	

Hamme,	Belgium

	
Sometimes	you	want	to	start	a	program	at	the	command	line	using	arguments
that	will	be	used	by	that	program.	This	can	be	useful	when	developing	your
own	CLI	tools.	System	administrators	use	CLI	tools	all	the	time,	because	as	a
rule,	CLI	tools	work	faster	for	a	knowledgeable	user.

Accessing	Command-Line	Arguments
In	the	example	program	in	Listing	21-1,	we	show	how	you	can	access
command-line	arguments	within	your	assembly	program.	We	keep	it	simple;
we	just	find	the	arguments	and	print	them.

;cmdline.asm

extern	printf

section	.data

msg			db						“The	command	and	arguments:	“,10,0

fmt			db						”%s”,10,0

section	.bss

section	.text

global	main

main:

push	rbp

mov		rbp,rsp

mov			r12,	rdi					;	number	of	arguments

mov			r13,	rsi					;	address	of	arguments	array

https://doi.org/10.1007/978-1-4842-5076-1_21

;print	the	title

mov			rdi,	msg

call		printf

mov			r14,	0

;print	the	command	and	arguments

.ploop:															;	loop	through	the	array	and
print

mov			rdi,	fmt

mov			rsi,	qword	[r13+r14*8]

call		printf

inc			r14

cmp			r14,	r12			;	number	of	arguments	reached?

jl				.ploop

leave

ret
Listing	21-1 	cmdline.asm

When	executing	this	program,	the	number	of	arguments,	including	the
program	name	itself,	is	stored	in	rdi.	The	register	rsi	contains	the	address
of	an	array	in	memory,	containing	the	addresses	of	the	command-line
arguments,	with	the	first	argument	being	the	program	itself.	The	use	of	rdi
and	rsi	agrees	with	the	calling	conventions.	Remember	that	we	are	working
here	on	Linux	and	using	the	System	V	AMD64	ABI	calling	conventions;	on
other	platforms,	such	as	Windows,	other	calling	conventions	are	used.	We
copy	this	information	because	rdi	and	rsi	will	be	used	later	for	printf.

The	code	loops	through	the	argument	array	until	the	total	number	of
arguments	is	reached.	In	the	loop	.ploop,	r13	points	to	the	array	of
arguments.	The	register	r14	is	used	as	an	argument	counter.	In	every	loop,
the	address	of	the	next	argument	is	calculated	and	stored	in	rsi.	The	8	in
qword	[r13+r14*8]	refers	to	the	length	of	the	addresses	pointed	to:	8
bytes	×	8	bits	=	64-bit	address.	The	register	r14	is	compared	in	every	loop
with	r12,	containing	the	number	of	arguments.

Figure	21-1	shows	the	output	with	some	random	arguments.

Figure	21-1 cmdln.asm	output

Debugging	the	Command	Line
Currently,	SASM	cannot	be	used	for	debugging	programs	with	command-line
arguments;	you	will	have	to	use	GDB.	The	following	is	one	way	to	do	that:

gdb	—args	./cmdline	arg1	arg2	abc	5

break	main

run

info	registers	rdi	rsi	rsp

You	can	verify	with	the	previous	instructions	that	rdi	contains	the
number	of	arguments	(including	the	command	itself)	and	that	rsi	points	to
an	address	in	high	memory,	even	higher	than	the	stack,	as	already	hinted	at	in
Chapter	8	(see	Figure	8-7).	Figure	21-2	shows	the	output	of	GDB.

Figure	21-2 gdb	cmdline	output

In	Figure	21-2	the	array	with	the	addresses	of	the	arguments	starts	at
0x7fffffffde58.	Let’s	dig	down	more	for	the	actual	arguments.	The
address	of	the	first	arguments	can	be	found	with	the	following:

x/1xg
0x7fffffffde58

Here	we	are	asking	for	one	giant	word	(8	bytes)	in	hexadecimal	at	address
0x7fffffffde58.	Figure	21-3	shows	the	answer.

Figure	21-3 GDB	address	of	the	first	argument

Now	let’s	find	out	what	sits	at	that	address	(Figure	21-4).

x/s	0x7fffffffe204

Figure	21-4 GDB,	the	first	argument

This	is	indeed	our	first	argument,	the	command	itself.	To	find	the	second
argument,	augment	0x7fffffffde58	with	8	bytes	to
0x7fffffffde60,	find	the	address	of	the	second	argument,	and	so	on.
Figure	21-5	shows	the	result.

Figure	21-5 GDB,	the	second	argument

This	is	how	you	can	debug	and	verify	command-line	arguments.

Summary
In	this	chapter,	you	learned	about	the	following:

How	to	access	command-line	arguments

How	to	use	registers	for	command-line	arguments

How	to	debug	with	command-line	arguments

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_22

22.	From	C	to	Assembler
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	the	previous	chapters,	we	used	C	functions	from	time	to	time	for
convenience,	such	as	the	standard	printf	function	or	the	version	we
developed,	printb.	In	this	chapter,	we	will	show	how	to	use	assembler
functions	in	the	programming	language	C.	The	value	of	the	calling
conventions	will	become	immediately	evident.	In	this	chapter,	we	use	the
System	V	AMD64	ABI	calling	conventions,	because	we	are	working	on	a
Linux	operating	system.	Windows	has	different	calling	conventions.	If	you
have	worked	your	way	through	the	previous	chapters	and	example	code,	this
chapter	will	be	an	easy	one.

Writing	the	C	Source	File
Most	of	the	assembler	code	should	be	familiar	to	you	from	previous	chapters.
Just	the	C	program	is	new.	We	compute	the	area	and	circumference	of	a
rectangle	and	a	circle.	Then	we	take	a	string	and	reverse	it,	and	finally	we
take	the	sum	of	the	elements	of	an	array,	double	the	elements	of	the	array,	and
take	the	sum	of	the	elements	of	the	doubled	array.	Let’s	look	at	the	different
source	files.

Let’s	start	with	the	C	source	file;	see	Listing	22-1.

//	fromc.c

#include	<stdio.h>

#include	<string.h>

extern	int	rarea(int,	int);

extern	int	rcircum(int,	int);

extern	double	carea(double);

https://doi.org/10.1007/978-1-4842-5076-1_22

extern	double	ccircum(double);

extern	void	sreverse(char	*,	int);

extern	void	adouble(double	[],	int);

extern	double	asum(double	[],	int);

int	main()

{

char	rstring[64];

int	side1,	side2,	r_area,	r_circum;

double	radius,	c_area,	c_circum;

double	darray[]	=	{70.0,	83.2,	91.5,	72.1,	55.5};

long	int	len;

double	sum;

//	call	an	assembly	function	with	int	arguments

printf(“Compute	area	and	circumference	of	a
rectangle\n”);

printf(“Enter	the	length	of	one	side	:	\n”);

scanf(“%d”,	&side1);

printf(“Enter	the	length	of	the	other	side	:	\n”);

scanf(“%d”,	&side2);

r_area	=	rarea(side1,	side2);

r_circum	=	rcircum(side1,	side2);

printf(“The	area	of	the	rectangle	=	%d\n”,
r_area);

printf(“The	circumference	of	the	rectangle	=
%d\n\n”,	r_circum);

//	call	an	assembly	function	with	double	(float)
argument

printf(“Compute	area	and	circumference	of	a
circle\n”);

printf(“Enter	the	radius	:	\n”);

scanf(“%lf”,	&radius);

c_area	=	carea(radius);

c_circum	=	ccircum(radius);

printf(“The	area	of	the	circle	=	%lf\n”,	c_area);

printf(“The	circumference	of	the	circle	=
%lf\n\n”,	c_circum);

//	call	an	assembly	function	with	string	argument

printf(“Reverse	a	string\n”);

printf(“Enter	the	string	:	\n”);

scanf(“%s”,	rstring);

printf(“The	string	is	=	%s\n”,	rstring);

sreverse(rstring,strlen(rstring));

printf(“The	reversed	string	is	=	%s\n\n”,
rstring);

//	call	an	assembly	function	with	array	argument

printf(“Some	array	manipulations\n”);

len	=	sizeof	(darray)	/	sizeof	(double);

printf(“The	array	has	%lu	elements\n”,len);

printf(“The	elements	of	the	array	are:	\n”);

for	(int	i=0;i<len;i++){

printf(“Element	%d	=	%lf\n”,i,	darray[i]);

}

sum	=	asum(darray,len);

printf(“The	sum	of	the	elements	of	this	array	=
%lf\n”,	sum);

adouble(darray,len);

printf(“The	elements	of	the	doubled	array	are:
\n”);

for	(int	i=0;i<len;i++){

printf(“Element	%d	=	%lf\n”,i,	darray[i]);

}

sum	=	asum(darray,len);

printf(“The	sum	of	the	elements	of	this	doubled
array	=	%lf\n”,	sum);

return	0;

}
Listing	22-1 fromc.c.asm

Writing	the	Assembler	Code
We	start	with	the	function	declarations	for	the	assembler	functions.	These	are
external	functions,	and	we	declare	the	datatypes	of	the	return	values	and
arguments.

The	program	will	prompt	the	user	for	most	of	the	data	to	be	used,	except
for	the	array,	where	we	provide	some	values	for	convenience.

Listing	22-2	through	Listing	22-7	show	the	assembly	functions.

;rect.asm

section	.data

section	.bss

section	.text

global	rarea

rarea:

section	.text

push		rbp

mov			rbp,
rsp

mov			rax,
rdi

imul		rsi

leave

ret

global	rcircum

rcircum:

section	.text

push		rbp

mov			rbp,
rsp

mov			rax,
rdi

add			rax,
rsi

imul		rax,	2

leave

ret
Listing	22-2 	rect.asm

;circle.asm

section	.data

pi			dq				3.141592654

section	.bss

section	.text

global	carea

carea:

section	.text

push		rbp

mov			rbp,	rsp

movsd	xmm1,	qword	[pi]

mulsd	xmm0,xmm0							;radius	in
xmm0

mulsd	xmm0,	xmm1

leave

ret

global	ccircum

ccircum:

section	.text

push		rbp

mov			rbp,	rsp

movsd	xmm1,	qword	[pi]

addsd	xmm0,xmm0							;radius	in
xmm0

mulsd	xmm0,	xmm1

leave

ret
Listing	22-3 	circle.asm

;sreverse.asm

section	.data

section	.bss

section	.text

global	sreverse

sreverse:

push		rbp

mov			rbp,	rsp

pushing:

mov	rcx,	rsi

mov	rbx,	rdi

mov	r12,	0

pushLoop:

mov	rax,	qword
[rbx+r12]

push	rax

inc	r12

loop	pushLoop

popping:

mov	rcx,	rsi

mov	rbx,	rdi

mov	r12,	0

popLoop:

pop	rax

mov	byte	[rbx+r12],	al

inc	r12

loop	popLoop

mov	rax,	rdi

leave

ret
Listing	22-4 	sreverse.asm

;	asum.asm

section	.data

section	.bss

section	.text

global	asum

asum:

section	.text

;calculate	the	sum

mov			rcx,	rsi			;array	length

mov			rbx,	rdi			;address	of
array

mov			r12,	0

movsd	xmm0,	qword	[rbx+r12*8]

dec	rcx				;	one	loop	less,
first

;	element	already	in	xmm0

sloop:

inc	r12

addsd	xmm0,	qword	[rbx+r12*8]

loop	sloop

ret									;	return	sum	in	xmm0
Listing	22-5 	asum.asm

;	adouble.asm

section	.data

section	.bss

section	.text

global	adouble

adouble:

section	.text

;double	the	elements

mov			rcx,	rsi					;array	length

mov			rbx,	rdi					;address	of	array

mov			r12,	0

aloop:

movsd	xmm0,	qword	[rbx+r12*8]						;take	an

addsd	xmm0,xmm0																				;	double	it

movsd	qword	[rbx+r12*8],	xmm0						;move	it	to
array

inc	r12

loop	aloop

ret
Listing	22-6 	adouble.asm

fromc:	fromc.c	rect.o	circle.o	sreverse.o	adouble.o
asum.o

gcc	-o	fromc	fromc.c	rect.o	circle.o	sreverse.o	\

adouble.o	asum.o	-no-pie

rect.o:	rect.asm

nasm	-f	elf64	-g	-F	dwarf	rect.asm	-l	rect.lst

circle.o:	circle.asm

nasm	-f	elf64	-g	-F	dwarf	circle.asm	-l	circle.lst

sreverse.o:	sreverse.asm

nasm	-f	elf64	-g	-F	dwarf	sreverse.asm	-l
sreverse.lst

adouble.o:	adouble.asm

nasm	-f	elf64	-g	-F	dwarf	adouble.asm	-l
adouble.lst

asum.o:	asum.asm

nasm	-f	elf64	-g	-F	dwarf	asum.asm	-l	asum.lst
Listing	22-7 	makefile

In	the	assembly	code,	there	is	nothing	special;	just	be	careful	about	the
datatypes	of	the	variables	received	from	the	calling	C	program.	The	assembly
functions	take	the	arguments	from	the	calling	program	and	store	them	in	the
registers	according	to	the	calling	conventions.	Results	are	returned	to	the
caller	in	rax	(integer	value)	or	xmm0	(floating-point	value).	Now	you	can
develop	your	own	libraries	of	functions	to	use	in	assembler	or	C,	and	because
of	the	calling	conventions,	you	do	not	have	to	worry	about	how	to	pass
arguments.	Just	be	careful	about	using	the	correct	datatypes.

Note	how	we	used	a	backslash	(\)	in	the	makefile	for	splitting	a	long
line,	and	we	used	tabs	to	align	the	instructions.

Figure	22-1	shows	the	output.

Figure	22-1 fromc.c	output

Summary
In	this	chapter,	you	learned	about	the	following:
Calling	an	assembly	function	from	within	a	higher	language	source,	in	this
case	from	within	C

The	value	of	a	calling	convention

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_23

23.	Inline	Assembly
Jo	Van	Hoey1	

Hamme,	Belgium

	
We	will	use	the	C	programming	language	in	this	chapter	to	explain	inline
assembler.	It	is	possible	to	write	assembly	instructions	in	your	C	program.
Most	of	the	time	this	is	not	advisable,	because	the	C	compilers	of	today	are	so
well-designed	that	you	need	to	be	a	very	skilled	assembly	programmer	to
improve	upon	the	performance	of	C	code.	In	fact,	using	inline	assembly
makes	it	more	difficult	for	a	C	or	C++	compiler	to	optimize	the	code
containing	your	inline	assembly.

Also,	the	C	compiler	will	not	do	any	error	checking	on	your	assembly
instructions;	you	have	to	find	out	everything	yourself.	Furthermore,	accessing
memory	and	registers	that	are	in	use	by	the	C	program	may	bring	its	own
risks.	However,	in	many	Internet	articles,	C	with	inline	assembly	is	used	to
explain	low-level	functionality,	so	knowing	how	to	read	that	code	can	be
useful.

There	are	two	kinds	of	inline	assembly:	basic	and	extended.

Basic	Inline
Let’s	start	with	an	example	of	basic	inline	assembly.	See	Listing	23-1	and
Listing	23-2.

//	inline1.c

#include	<stdio.h>

int	x=11,	y=12,	sum,	prod;

int	subtract(void);

void	multiply(void);

int	main(void)

https://doi.org/10.1007/978-1-4842-5076-1_23

{

printf(“The	numbers	are	%d	and	%d\n”,x,y);

__asm__(

“.intel_syntax	noprefix;”

“mov	rax,x;”

“add	rax,y;”

“mov	sum,rax”

);

printf(“The	sum	is	%d.\n”,sum);

printf(“The	difference	is	%d.\n”,subtract());

multiply();

printf(“The	product	is	%d.\n”,prod);

}

int	subtract(void)

{

__asm__(

“.intel_syntax	noprefix;”

“mov	rax,x;”

“sub	rax,y”																//	return	value	in
rax

);

}

void	multiply(void)

{

__asm__(

“.intel_syntax	noprefix;”

“mov	rax,x;”

“imul	rax,y;”

“mov	prod,rax”			//no	return	value,	result	in
prod

);

}
Listing	23-1 inline1.c

#	makefile	inline1.c

inline1:	inline1.c

gcc	-o	inline1	inline1.c	-masm=intel	-no-
pie
Listing	23-2 	makefile

Note	the	additional	parameter	in	the	makefile,	in	other	words,	-
masm=intel.	This	parameter	is	necessary	when	using	inline	assembly.

The	previous	example	shows	what	is	called	a	basic	inline	assembly
program.	In	the	main	program,	two	variables	are	added;	then	a	function	is
called	to	subtract	two	variables,	and	then	another	function	is	called	to
multiply	two	variables.	If	you	want	to	access	the	variables	in	a	basic	inline
assembly	program,	you	need	to	declare	them	as	global,	that	is,	declare	them
outside	any	function.	If	the	variables	are	not	global,	gcc	will	complain	that	it
cannot	find	them.	But	global	variables	are	prone	to	errors,	such	as	naming
conflicts.	Also,	when	you	modify	registers	in	the	assembly	code,	you	may
have	to	save	them	before	calling	the	inline	assembly	and	restore	them	to	the
original	values	upon	leaving	the	inline	assembly	or	you	risk	crashing	the
program.	Registers	that	are	modified	by	inline	assembly	are	called	clobbered
registers	.

In	the	assembly	part,	which	is	enclosed	in	__asm__(…),	the	first
statement	indicates	that	we	want	to	use	Intel	syntax,	without	prefixes.
(Remember	the	discussion	on	Intel	syntax	and	the	AT&T	syntax	flavor	in
Chapter	3.)	Then	we	use	assembly	instructions	like	usual,	terminated	by	a	;
or	\n.	The	last	assembly	does	not	have	to	be	terminated	with	a	;	or	\n.	Take
note	of	the	use	of	the	global	variables.	We	are	lucky,	because	clobbering	the
registers	does	not	crash	the	program.	To	avoid	this	clobbering	of	the	registers
and	the	use	of	global	variables,	you	need	to	use	extended	inline	assembly,	as
shown	in	the	next	section.

Figure	23-1	shows	the	output.

Figure	23-1 inline1.c	output

Extended	Inline
Listing	23-3	and	Listing	23-4	show	an	example	of	extended	inline	assembly.

//	inline2.c

#include	<stdio.h>

int	a=12;				//	global	variables

int	b=13;

int	bsum;

int	main(void)

{

printf(“The	global	variables	are	%d	and	%d\n”,a,b);

__asm__(

“.intel_syntax	noprefix\n”

“mov	rax,a	\n”

“add	rax,b	\n”

“mov	bsum,rax	\n”

:::“rax”

);

printf(“The	extended	inline	sum	of	global
variables	is	%d.\n\n”,	bsum);

int	x=14,y=16,	esum,	eproduct,	edif;			//	local
variables

printf(“The	local	variables	are	%d	and	%d\n”,x,y);

__asm__(

“.intel_syntax	noprefix;”

“mov	rax,rdx;”

“add	rax,rcx;”

:”=a”(esum)

:“d”(x),	“c”(y)

);

printf(“The	extended	inline	sum	is	%d.\n”,	esum);

__asm__(

“.intel_syntax	noprefix;”

“mov	rbx,rdx;”

“imul	rbx,rcx;”

“mov	rax,rbx;”

:”=a”(eproduct)

:“d”(x),	“c”(y)

:“rbx”

);

printf(“The	extended	inline	product	is	%d.\n”,
eproduct);

__asm__(

“.intel_syntax	noprefix;”

“mov	rax,rdx;”

“sub	rax,rcx;”

:”=a”(edif)

:“d”(x),	“c”(y)

);

printf(“The	extended	inline	asm	difference	is
%d.\n”,	edif);

}
Listing	23-3 inline2.c

#	makefile	inline2.c

inline2:	inline2.c

gcc	-o	inline2	inline2.c	-masm=intel	-no-
pie
Listing	23-4 	makefile

The	assembler	instructions	look	different;	specifically,	a	template	is	used,
as	shown	here:

asm	(

assembler	code

:	output	operands																		/*	optional
*/

:	input	operands																			/*	optional
*/

:	list	of	clobbered	registers						/*	optional
*/

);

After	the	assembler	code,	additional	and	optional	information	is	used.
Take	the	inline	product	in	the	above	code	as	an	example	(repeated	here):

__asm__(

“.intel_syntax	noprefix;”

“mov	rbx,rdx;”

“imul	rbx,rcx;”

“mov	rax,rbx;”

:”=a”(eproduct)

:“d”(x),	“c”(y)

:“rbx”

);

printf(“The	extended	inline	product	is	%d.\n”,
eproduct);

Each	optional	line	starts	with	a	colon	(:),	and	you	must	respect	the	order

of	the	instructions.	The	a,	d,	and	c	are	called	register	constraints	,	and	they
map	to	the	registers	rax,	rdx,	and	rcx,	respectively.	Here	is	how	the
register	constraints	map	to	the	registers:

a	->	rax,	eax,	ax,
al

b	->	rbx,	ebx,	bx,
bl

c	->	rcx,	ecx,	cx,
cl

d	->	rdx,	edx,	dx,
dl

S	->	rsi,	esi,	si

D	->	rdi,	edi,	di

r	->	any	register

The	:”=a”(eproduct)	in	the	first	optional	line	means	that	the	output
will	be	in	rax,	and	rax	will	refer	to	the	variable	eproduct.	Register	rdx
refers	to	x,	and	rcx	refers	to	y,	which	are	the	input	variables.

Finally,	note	that	rbx	is	considered	clobbered	in	the	code	and	will	be
restored	to	its	original	value,	because	it	was	declared	in	the	list	of	clobbered
registers.	In	this	case,	leaving	it	clobbered	does	not	crash	the	program;	it	is
there	just	for	illustrating	the	use.	There	is	a	lot	more	information	to	be	found
on	the	Internet	about	inline	assembly,	but	as	mentioned,	you	need	to	use	inline
assembly	only	in	specific	cases.	Keep	in	mind	that	using	inline	assembly	will
make	your	C	code	less	portable.	See	Figure	23-2.

Figure	23-2 inline2.c	output

In	later	chapters,	we	will	explain	how	to	use	assembly	in	Windows.	It’s
good	to	know	that	inline	assembly	is	not	supported	on	x64	processors	in

Visual	Studio;	it	is	only	supported	on	x86	processors.	However,	gcc	does	not
have	that	limitation.

Summary
In	this	chapter,	you	learned	about	the	following:

Basic	inline	assembly

Extended	inline	assembly

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_24

24.	Strings
Jo	Van	Hoey1	

Hamme,	Belgium

	
When	we	think	about	strings,	we	humans	normally	assume	that	strings	are	a
series	of	characters	that	form	words	or	phrases	that	we	can	understand.	But	in
assembly	language,	any	list	or	array	of	contiguous	memory	places	is
considered	a	string,	whether	it’s	human-understandable	or	not.	Assembly
provides	us	with	a	number	of	powerful	instructions	for	manipulating	these
blocks	of	data	in	an	efficient	way.	In	our	examples,	we	will	use	readable
characters,	but	keep	in	mind	that	in	reality	assembly	does	not	care	if	the
characters	are	readable.	We	will	show	how	to	move	strings	around,	how	to
scan	them,	and	how	to	compare	strings.

As	powerful	as	these	instructions	may	be,	we	will	propose	even	better
functionality	when	we	discuss	SIMD	instructions	in	later	chapters.	But	let’s
start	with	the	basic	instructions	here.

Moving	Strings
Listing	24-1	shows	the	example	code.

;	move_strings.asm

%macro	prnt	2

mov					rax,	1							;	1	=	write

mov					rdi,	1							;	1	=	to	stdout

mov					rsi,	%1

mov					rdx,	%2

syscall

mov	rax,	1

https://doi.org/10.1007/978-1-4842-5076-1_24

mov	rdi,	1

mov	rsi,	NL

mov	rdx,	1

syscall

%endmacro

section	.data

length							equ	95

NL	db	0xa

string1	db	“my_string	of	ASCII:”

string2	db	10,“my_string	of	zeros:”

string3	db	10,“my_string	of	ones:”

string4	db	10,“again	my_string	of	ASCII:”

string5	db	10,“copy	my_string	to	other_string:”

string6	db	10,“reverse	copy	my_string	to
other_string:”

section	.bss

my_string		resb		length

other_string	resb	length

section	.text

global	main

main:

push	rbp

mov		rbp,	rsp

;––––––––––––––––—

;fill	the	string	with	printable	ascii	characters

prnt	string1,18

mov	rax,32

mov	rdi,my_string

mov	rcx,	length

str_loop1:	mov	byte[rdi],	al										;	the	simple

method

inc	rdi

inc	al

loop	str_loop1

prnt	my_string,length

;––––––––––––––––—

;fill	the	string	with	ascii	0’s

prnt	string2,20

mov	rax,48

mov	rdi,my_string

mov	rcx,	length

str_loop2:	stosb																		;	no	inc	rdi
needed	anymore

loop	str_loop2

prnt	my_string,length

;––––––––––––––––—

;fill	the	string	with	ascii	1’s

prnt	string3,19

mov	rax,	49

mov	rdi,my_string

mov	rcx,	length

rep	stosb		;	no	inc	rdi	and	no	loop	needed	anymore

prnt	my_string,length

;––––––––––––––––—

;fill	the	string	again	with	printable	ascii
characters

prnt	string4,26

mov	rax,32

mov	rdi,my_string

mov	rcx,	length

str_loop3:		mov	byte[rdi],	al									;	the	simple
method

inc	rdi

inc	al

loop	str_loop3

prnt	my_string,length

;––––––––––––––––—

;copy	my_string	to	other_string

prnt	string5,32

mov	rsi,my_string									;rsi	source

mov	rdi,other_string						;rdi	destination

mov	rcx,	length

rep	movsb

prnt	other_string,length

;––––––––––––––––—

;reverse	copy	my_string	to	other_string

prnt	string6,40

mov	rax,	48															;clear	other_string

mov	rdi,other_string

mov	rcx,	length

rep	stosb

lea	rsi,[my_string+length-4]

lea	rdi,[other_string+length]

mov	rcx,	27											;copy	only	27-1	characters

std																			;std	sets	DF,	cld	clears	DF

rep	movsb

prnt	other_string,length

leave

ret
Listing	24-1 move_strings.asm

In	this	program,	we	use	a	macro	(for	more	details	on	macros,	see	Chapter
18)	to	do	the	printing,	but	we	could	as	well	have	used	the	C	printf
function,	as	we	have	done	already	so	many	times.

We	start	with	creating	a	string	with	the	95	printable	characters	in	the
ASCII	table,	the	first	being	32	(the	space)	and	the	last	being	126	(the	tilde,	or
~).	There’s	nothing	special	here.	We	first	print	a	title,	and	then	we	put	the	first
ASCII	code	in	rax,	letting	rdi	point	to	the	address	of	my_string	in
memory.	Then	we	put	the	length	of	the	string	in	rcx	to	use	in	a	loop.	In	the
loop,	we	copy	one	ASCII	code	from	al	to	my_string,	take	the	next	code
and	write	it	to	the	next	memory	address	in	my_string,	and	so	on.	Finally,
we	print	the	string.	Again,	there’s	nothing	new	here.

In	the	next	part,	we	modify	the	content	of	my_string	to	all	0s	(ASCII
48).	To	do	that,	we	put	the	string	length	again	in	rcx	for	building	a	loop.
Then	we	use	the	instruction	stosb	to	store	the	1s	(ASCII	49)	to
my_string.	The	instruction	stosb	only	needs	the	start	address	of	the
string	in	rdi	and	the	character	to	write	in	rax,	and	stosb	steps	to	the	next
memory	address	in	each	repeat	of	the	loop.	We	do	not	have	to	care	about
increasing	rdi	anymore.

In	the	next	part	of	the	program,	we	go	one	step	further	and	get	rid	of	the
rcx	loop.	We	use	the	instruction	rep	stosb	for	repeating	the	stosb	a
number	of	times.	The	number	of	repetitions	is	stored	in	rcx.	This	is	a	highly
efficient	method	of	initializing	memory.

Next,	we	continue	moving	around	memory	content.	Strictly	speaking,	we
will	be	copying	memory	blocks,	not	moving	copy	content.	First,	we	initialize
our	string	again	with	the	readable	ASCII	codes.	We	could	optimize	this	code
by	using	a	macro	or	a	function	for	that,	instead	of	just	repeating	the	code.
Then	we	start	the	copying	of	the	string/memory	block:	from	my_string	to
other_string.	The	address	of	the	source	string	goes	into	rsi,	and	the
address	of	the	destination	string	goes	in	rdi.	This	is	easy	to	remember,
because	the	s	in	rsi	stands	for	source	and	the	d	in	rdi	stands	for
destination.	Then	use	rep	movsb,	and	we	are	done!	The	rep	copying
stops	when	rcx	becomes	0.

In	the	last	part	of	the	program,	we	will	reverse	move	memory	content.	The
concept	can	be	a	little	bit	confusing;	we	go	in	some	detail	here.	When	using
movsb	,	the	content	of	DF	(the	direction	flag)	is	taken	into	account.	When
DF=0,	rsi	and	rdi	are	increased	by	1,	pointing	to	the	next	higher	memory
address.	When	DF=1,	rsi	and	rdi	are	decreased	by	1,	pointing	to	the	next

lower	memory	address.	This	means	that	in	our	example	with	DF=1,	rsi
needs	to	point	to	the	address	of	the	highest	memory	address	to	be	copied	and
decrease	from	there.	In	addition,	rdi	needs	to	point	to	the	highest	destination
address	and	decrease	from	there.	The	intention	is	to	“walk	backward”	when
copying,	that	is,	decreasing	rsi	and	rdi	with	every	loop.	Be	careful:	rsi
and	rdi	both	are	decreased;	you	cannot	use	the	DF	to	increase	one	register
and	decrease	another	(reversing	the	string).	In	our	example,	we	do	not	copy
the	whole	string,	but	only	the	lowercase	alphabet,	and	we	put	them	at	the
higher	memory	places	at	the	destination.	The	instruction	lea	rsi,
[my_string+length-4]	loads	the	effective	address	of	my_string	in
rsi	and	skips	four	characters	that	are	not	part	of	the	alphabet.	The	DF	flag
can	be	set	to	1	with	std	and	set	to	0	with	cld.	Then	we	invoke	the	powerful
rep	movsb,	and	we	are	done.

Why	do	we	put	27	in	rcx	when	there	are	only	26	characters?	It	turns	out
that	rep	decreases	rcx	by	1	before	anything	else	in	the	loop.	You	can	verify
that	with	a	debugger	such	as	SASM.	Comment	out	all	references	to	the	prnt
macro	to	avoid	problems.	You	will	see	that	SASM	lets	you	step	into	the	rep
loop	and	verify	the	memory	and	registers.	You	can,	of	course,	also	look	in	the
Intel	manuals	for	information	on	rep;	you	will	find	something	like	the
following	under	“Operation”:

IF	AddressSize	=	16

THEN

Use	CX	for	CountReg;

Implicit	Source/Dest	operand	for	memory	use	of
SI/DI;

ELSE	IF	AddressSize	=	64

THEN	Use	RCX	for	CountReg;

Implicit	Source/Dest	operand	for	memory	use	of
RSI/RDI;

ELSE

Use	ECX	for	CountReg;

Implicit	Source/Dest	operand	for	memory	use	of
ESI/EDI;

FI;

WHILE	CountReg	=/	0

DO

Service	pending	interrupts	(if	any);

Execute	associated	string	instruction;

CountReg	←	(CountReg	–	1);

IF	CountReg	=	0

THEN	exit	WHILE	loop;	FI;

IF	(Repeat	prefix	is	REPZ	or	REPE)	and	(ZF	=	0)

or	(Repeat	prefix	is	REPNZ	or	REPNE)	and	(ZF	=	1)

THEN	exit	WHILE	loop;	FI;

OD;

Here	CountReg	←	(CountReg	–	1);	tells	us	that	the	counter	will
be	decreased	first.	Studying	the	operation	of	instructions	can	be	useful	for
understanding	the	behavior	of	an	instruction.	As	a	final	note,	stosb	and
movsb	work	with	bytes;	there	are	also	stosw	,	movsw	,	stosd	,	and
movsd	to	work	with	words	and	double	words,	and	rsi	and	rdi	are
accordingly	incremented	or	decremented	with	1	for	bytes,	2	for	words,	and	4
for	double	words.

Figure	24-1	shows	the	output	of	our	example	program.

Figure	24-1 move_strings.asm	output

Comparing	and	Scanning	Strings

Moving	and	copying	strings	is	important,	but	so	is	the	ability	to	analyze
strings.	In	the	example	code	shown	in	Listing	24-2,	we	use	the	instruction
cmpsb	to	compare	two	strings,	and	we	use	scasb	to	find	a	specific
character	in	a	string.

;	strings.asm

extern	printf

section	.data

string1				db	“This	is	the	1st	string.”,10,0

string2				db	“This	is	the	2nd	string.”,10,0

strlen2				equ	$-string2-2

string21			db	“Comparing	strings:	The	strings	do	not
differ.”,10,0

string22			db	“Comparing	strings:	The	strings	differ,	“

db	“starting	at	position:	%d.”,10,0

string3				db	“The	quick	brown	fox	jumps	over	the	lazy
dog.”,0

strlen3				equ	$-string3-2

string33			db	“Now	look	at	this	string:	%s”,10,0

string4				db	“z”,0

string44			db	“The	character	‘%s’	was	found	at	position:
%d.”,10,0

string45			db	“The	character	‘%s’	was	not	found.”,10,0

string46			db	“Scanning	for	the	character	‘%s’.”,10,0

section	.bss

section	.text

global	main

main:

push			rbp

mov				rbp,rsp

;	print	the	2	strings

xor				rax,rax

mov				rdi,	string1

call			printf

mov				rdi,	string2

call			printf

;	compare	2	strings	–––––––––––––––—

lea				rdi,[string1]

lea				rsi,[string2]

mov				rdx,	strlen2

call			compare1

cmp				rax,0

jnz				not_equal1

;strings	are	equal,	print

mov				rdi,	string21

call			printf

jmp				otherversion

;strings	are	not	equal,	print

not_equal1:

mov				rdi,	string22

mov				rsi,	rax

xor				rax,rax

call			printf

;	compare	2	strings,	other	verstion	––––––––––

otherversion:

lea				rdi,[string1]

lea				rsi,[string2]

mov				rdx,	strlen2

call			compare2

cmp				rax,0

jnz				not_equal2

;strings	are	equal,	print

mov				rdi,	string21

call			printf

jmp				scanning

;strings	are	not	equal,	print

not_equal2:

mov				rdi,	string22

mov				rsi,	rax

xor				rax,rax

call			printf

;	scan	for	a	character	in	a	string	––––––––––-

;	first	print	the	string

mov				rdi,string33

mov				rsi,string3

xor				rax,rax

call			printf

;	then	print	the	search	argument,	can	only	be	1	character

mov				rdi,string46

mov				rsi,string4

xor				rax,rax

call			printf

scanning:

lea				rdi,[string3]					;						string

lea				rsi,[string4]					;						search	argument

mov				rdx,	strlen3

call			cscan

cmp				rax,0

jz					char_not_found

;character	found,	print

mov				rdi,string44

mov				rsi,string4

mov				rdx,rax

xor				rax,rax

call			printf

jmp				exit

;character	not	found,	print

char_not_found:

mov				rdi,string45

mov				rsi,string4

xor				rax,rax

call			printf

exit:

leave

ret

;	FUNCTIONS
===

;	function	compare	2	strings	––––––––––––

compare1:				mov				rcx,	rdx

cld

cmpr:								cmpsb

jne				notequal

loop			cmpr

xor				rax,rax

ret

notequal:				mov				rax,	strlen2

dec				rcx											;compute	position

sub				rax,rcx							;compute	position

ret

xor				rax,rax

ret

;–––––––––––––––––––––-

;	function	compare	2	strings	––––––––––––

compare2:				mov				rcx,	rdx

cld

repe			cmpsb

je					equal2

mov				rax,	strlen2

sub				rax,rcx							;compute	position

ret

equal2:						xor				rax,rax

ret

;–––––––––––––––––––––-

;function	scan	a	string	for	a	character

cscan:							mov				rcx,	rdx

lodsb

cld

repne		scasb

jne				char_notfound

mov				rax,	strlen3

sub				rax,rcx							;compute	position

ret

char_notfound:						xor	rax,rax

ret
Listing	24-2 	strings.asm

For	the	comparison,	we	will	discuss	two	versions.	As	before,	we	put	the
address	of	the	first	(source)	string	in	rsi,	the	address	of	the	second	string
(destination)	in	rdi,	and	the	string	length	in	rcx.	Just	to	be	sure,	we	clear
the	direction	flag,	DF,	with	cld.	So,	we	walk	forward	in	the	strings.

The	instruction	cmpsb	compares	two	bytes	and	sets	the	status	flag	ZF	to

1	if	the	two	compared	bytes	are	equal	or	to	0	if	the	2	bytes	are	not	equal.

Using	the	ZF	flag	can	be	confusing.	If	ZF=1,	this	means	the	outcome	of
the	instruction	just	executed	was	0	(bytes	equal).	If	ZF=0,	this	means	the
outcome	of	the	instruction	just	executed	was	not	0	(bytes	not	equal).	Thus,	we
have	to	find	out	whether	and	when	ZF	becomes	0.	For	testing	ZF	and
continuing	the	execution	based	on	the	test	result,	we	have	a	number	of	jump
instructions,	as	shown	here:

jz	:	Jump	if	zero	(ZF=1)

The	equivalent	je:	Jump	if	equal	(ZF=1)	(bytes	equal)

jnz	:	Jump	if	not	zero	(ZF=0)

The	equivalent	jne:	Jump	if	not	equal	(ZF=0)	(bytes	not	equal)

The	registers	rsi	and	rdi	are	increased	by	cmpsb	when	DF	is	not	set
and	decreased	when	DF	is	set.	We	create	a	loop	that	executes	cmpsb,	until
ZF	becomes	0.	When	ZF	becomes	0,	the	execution	jumps	out	of	the	loop	and
starts	calculating	the	position	of	the	differing	character	based	on	the	value	in
rcx.	However,	rcx	is	adjusted	only	at	the	end	of	a	loop,	which	was	never
completed,	so	we	have	to	adjust	rcx	(decrease	it	with	1).	The	resulting
position	is	returned	to	main	in	rax.

In	the	second	version	for	comparing,	we	will	use	repe,	a	version	of	rep,
meaning	“repeat	while	equal.”	As	before,	cmpsb	sets	ZF	according	to	the
comparison,	and	ZF=1	means	the	bytes	are	equal.	As	soon	as	cmpsb	sets	ZF
equal	to	0,	the	repe	loop	is	ended,	and	rcx	can	be	used	to	compute	the
position	where	the	differing	character	appeared.	If	the	strings	are	completely
the	same,	then	rcx	will	be	0	and	ZF	will	be	1.	After	repe,	the	instruction
je	tests	if	ZF	equals	1.	If	ZF	is	1,	the	strings	are	equal;	if	0,	the	strings	are
not	equal.	We	use	rcx	to	calculate	the	differing	position,	so	there’s	no	need	to
adjust	rcx,	because	repe	decreases	rcx	first	in	every	loop.

The	scanning	works	similarly,	but	with	repne	,	“repeat	while	not	equal,”
instead	of	repe.	We	also	use	lodsb	and	load	the	byte	at	address	rsi	into
rax.	The	instruction	scasb	compares	the	byte	in	al	(the	low	byte	in	rax)
with	the	byte	pointed	to	by	rdi	and	sets	(1=equal)	or	resets	(0=not	equal)	the
ZF	flag	accordingly.	The	instruction	repne	looks	at	the	status	flag	and
continues	if	ZF	=	0;	that	is,	the	2	bytes	are	not	equal.	If	the	2	bytes	are
equal,	scasb	sets	ZF	to	1,	the	repne	loop	stops,	and	rcx	can	be	used	to
compute	the	position	of	the	byte	in	the	string.

The	scanning	works	with	only	one	character	as	a	search	argument;	if	you
are	wondering	how	to	use	a	string	as	search	argument,	you	will	have	to	scan
character	by	character.	Or	better	yet,	wait	for	the	chapters	on	SIMD.

Figure	24-2	shows	the	output.

Figure	24-2 strings.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

Moving	and	copying	memory	blocks	in	an	extremely	efficient	way

Using	movsb	and	rep

Comparing	and	scanning	memory	blocks

Using	cmpsb,	scasb,	repe,	and	repne

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_25

25.	Got	Some	ID?
Jo	Van	Hoey1	

Hamme,	Belgium

	
Sometimes	it	is	necessary	to	find	out	the	functionality	available	in	a
processor.	In	your	program,	you	can,	for	example,	look	for	the	presence	or
absence	of	a	certain	version	of	SSE.	In	the	next	chapter,	we	will	use	programs
with	SSE	instructions,	so	we	need	to	find	out	first	which	version	of	SSE	is
supported	by	our	processor.	There	is	an	instruction	for	checking	the	CPU
characteristics:	cpuid.

Using	cpuid
You	first	put	a	specific	parameter	in	eax,	then	execute	the	instruction
cpuid,	and	finally	check	the	returned	value	in	ecx	and	edx.	Indeed,	cpuid
uses	32-bit	registers.

The	amount	of	information	you	can	find	out	with	cpuid	is	staggering.
Go	to	the	Intel	manuals	(
https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf)	and	look	up	the	cpuid	instruction	in
Volume	2A.	You	will	find	several	tables	that	show	what	is	returned	in	ecx
when	you	start	cpuid	with	certain	value	in	eax.	This	is	only	part	of	the
information	you	can	retrieve;	another	table	shows	the	information	returned	in
edx.	Browse	the	Intel	manual	to	see	the	possibilities.

Let’s	see	an	example	of	looking	for	SSE	functionality	that	we	will	need	in
the	next	chapter.	In	the	Intel	manual,	you	find	that	you	can	use	ecx	bits	0,	19,
and	20	and	ecx	bits	25	and	26	to	find	out	which	version	of	SSE	is
implemented	in	a	processor.

Listing	25-1	shows	the	example	program.

;	cpu.asm

https://doi.org/10.1007/978-1-4842-5076-1_25
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

extern	printf

section	.data

fmt_no_sse	db	“This	cpu	does	not	support	SSE”,10,0

fmt_sse42	db	“This	cpu	supports	SSE	4.2”,10,0

fmt_sse41	db	“This	cpu	supports	SSE	4.1”,10,0

fmt_ssse3	db	“This	cpu	supports	SSSE	3”,10,0

fmt_sse3	db	“This	cpu	supports	SSE	3”,10,0

fmt_sse2	db	“This	cpu	supports	SSE	2”,10,0

fmt_sse	db	“This	cpu	supports	SSE”,10,0

section	.bss

section	.text

global	main

main:

push	rbp

mov			rbp,rsp

call	cpu_sse				;returns	1	in	rax	if	sse	support,
otherwise	0

leave

ret

cpu_sse:

push	rbp

mov	rbp,rsp

xor	r12,r12									;flag	SSE	available

mov	eax,1											;request	CPU	feature	flags

cpuid

;test	for	SSE

test	edx,2000000h											;test	bit	25	(SSE)

jz	sse2																					;SSE	available

mov	r12,1

xor	rax,rax

mov	rdi,fmt_sse

push	rcx																				;modified	by	printf

push	rdx																				;preserve	result	of
cpuid

call	printf

pop	rdx

pop	rcx

sse2:

test	edx,4000000h											;test	bit	26	(SSE	2)

jz	sse3																					;SSE	2	available

mov	r12,1

xor	rax,rax

mov	rdi,fmt_sse2

push	rcx																				;modified	by	printf

push	rdx																				;preserve	result	of
cpuid

call	printf

pop	rdx

pop	rcx

sse3:

test	ecx,1																		;test	bit	0	(SSE	3)

jz	ssse3																				;SSE	3	available

mov	r12,1

xor	rax,rax

mov	rdi,fmt_sse3

push	rcx																				;modified	by	printf

call	printf

pop	rcx

ssse3:

test	ecx,9h																	;test	bit	0	(SSE	3)

jz	sse41																				;SSE	3	available

mov	r12,1

xor	rax,rax

mov	rdi,fmt_ssse3

push	rcx																				;modified	by	printf

call	printf

pop	rcx

sse41:

test	ecx,80000h													;test	bit	19	(SSE	4.1)

jz	sse42																				;SSE	4.1	available

mov	r12,1

xor	rax,rax

mov	rdi,fmt_sse41

push	rcx																				;modified	by	printf

call	printf

pop	rcx

sse42:

test	ecx,100000h													;test	bit	20	(SSE
4.2)

jz	wrapup																				;SSE	4.2	available

mov	r12,1

xor	rax,rax

mov	rdi,fmt_sse42

push	rcx																					;modified	by	printf

call	printf

pop	rcx

wrapup:

cmp	r12,1

je	sse_ok

mov	rdi,fmt_no_sse

xor	rax,rax

call	printf																	;displays	message	if
SSE	not	available

jmp	the_exit

sse_ok:

mov	rax,r12																	;returns	1,	sse
supported

the_exit:

leave

ret
Listing	25-1 cpu.asm

The	main	program	calls	only	one	function,	cpu_sse,	and	if	the	return
value	is	1,	the	processor	supports	some	version	of	SSE.	If	the	return	value	is
0,	you	can	forget	about	using	SSE	on	that	computer.	In	the	function
cpu_sse,	we	find	out	which	SSE	versions	are	supported.	Put	1	in	eax	and
execute	the	instruction	cupid;	as	mentioned,	the	results	will	be	returned	in
ecx	and	edx.

Using	the	test	Instruction
The	ecx	and	edx	registers	will	be	evaluated	with	a	test	instruction,	which
is	a	bit-wise	logical	and	of	the	two	operands.	We	could	have	used	the	cmp
instruction,	but	test	has	a	performance	advantage.	Of	course,	you	can	also
use	the	instruction	bt	(see	Chapter	17).

The	test	instruction	sets	the	flags	SF,	ZF,	and	PF	according	to	the	test
result.	In	the	Intel	manual,	you	will	find	the	operation	of	the	test	instruction,
as	follows:

TEMP	←	SRC1	AND	SRC2;

SF	←	MSB(TEMP);

IF	TEMP	=	0

THEN	ZF	←	1;

ELSE	ZF	←	0;

FI:

PF	←	BitwiseXNOR(TEMP[0:7]);

CF	←	0;

OF	←	0;

(∗	AF	is	undefined	*)

The	important	flag	in	our	case	is	ZF.	If	ZF=0,	then	the	result	is	nonzero;
the	SSE	bit	is	1,	and	the	CPU	supports	that	version	of	SSE.	The	instruction
jz	evaluates	if	ZF=1,	and	if	so,	the	SSE	version	is	not	supported,	and	the
execution	jumps	to	the	next	part.	Otherwise,	the	program	prints	a
confirmation	message.

In	our	example,	after	cpuid	is	executed,	we	test	edx.	The	register	edx
has	32	bits,	and	we	want	to	know	if	bit	25	is	set,	meaning	that	the	CPU
supports	SSE	(version	1).	So,	we	need	the	second	operand	in	the	test
instruction	to	have	1	in	bit	25,	with	the	other	bits	all	0.	Remember	that	the
lowest	bit	has	index	0,	and	the	highest	has	index	31.	In	binary,	it	looks	like
this:

0000	0010	0000	0000	0000	0000	0000	0000

In	hexadecimal,	it	looks	like	this:

2000000

Remember,	you	can	find	plenty	of	binary	to	hexadecimal	conversion	tools
on	the	Internet.

The	execution	“cascades”	through	the	program,	and	if	no	SSE	is
supported,	r12	will	remain	0.	We	did	not	use	the	return	value,	but	you	could
check	rax,	the	return	value,	to	conclude	whether	any	SSE	is	supported.	Or
you	could	modify	the	program	to	return	the	highest	version	of	SSE.

Figure	25-1	shows	the	output.

Figure	25-1 cpu_sse.asm	output

You	could	build	a	similar	function	to	find	out	other	CPU	information	and,
depending	on	the	returned	result,	choose	to	use	certain	functionality	on	this
CPU	and	other	functionality	on	another	CPU.

In	a	later	chapter,	when	we	discuss	AVX,	we	will	again	have	to	find	out
whether	the	CPU	supports	AVX.

Summary
In	this	chapter,	you	learned	about	the	following:

How	to	find	out	what	functionality	is	supported	by	the	CPU	with	cpuid

How	to	use	bits	with	the	test	instruction

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_26

26.	SIMD
Jo	Van	Hoey1	

Hamme,	Belgium

	
SIMD	is	the	abbreviation	for	Single	Instruction	Stream,	Multiple	Data	.
SIMD	is	a	term	proposed	by	Michael	J.	Flynn	and	refers	to	the	functionality
that	allows	you	to	execute	one	instruction	on	multiple	data	“streams.”	SIMD
can	potentially	improve	the	performance	of	your	programs.	SIMD	is	a	form	of
parallel	computing;	however,	in	some	cases,	the	execution	on	the	different
data	streams	can	happen	sequentially,	depending	on	the	hardware
functionality	and	the	instructions	to	be	executed.	You	can	find	more	about	the
Flynn	taxonomy	here:
https://ieeexplore.ieee.org/document/5009071/

and	here:
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

The	first	implementation	of	SIMD	was	MMX,	and	nobody	seems	to	know
the	exact	meaning	of	MMX.	It	could	mean	Multi	Media	Extension	or
Multiple	Math	Extension	or	Matrix	Math	Extension.	Anyway,	MMX	was
superseded	by	Streaming	SIMD	Extension	(SSE).	Later	SSE	was	extended	by
Advanced	Vector	Extension	(AVX).	Here	we	will	give	an	introduction	on	SSE
as	a	base	to	start,	and	in	a	later	chapter	we	will	give	an	introduction	on	AVX.

Scalar	Data	and	Packed	Data
A	processor	that	supports	SSE	functionality	has	16	additional	128-bit	registers
(xmm0	to	xmm15)	and	a	control	register,	mxcsr.	We	already	used	the	xmm
registers	to	do	floating-point	calculations,	but	we	can	do	more	with	these
advanced	registers.	The	xmm	registers	can	contain	scalar	data	or	packed
data.

With	scalar	data,	we	mean	just	one	value.	When	we	put	3.141592654	in

https://doi.org/10.1007/978-1-4842-5076-1_26
https://ieeexplore.ieee.org/document/5009071/
https://en.wikipedia.org/wiki/Flynn%2527s_taxonomy

xmm0,	then	xmm0	contains	a	scalar	value.	We	can	also	store	multiple	values
in	xmm0;	these	values	are	referred	to	as	packed	data.	Here	are	the	possibilities
of	storing	values	in	an	xmm	register	:

Two	64-bit	double-precision	floating-point	numbers

Four	32-bit	single-precision	floating-point	numbers

Two	64-bit	integers	(quadwords)

Four	32-bit	integers	(double	words)

Eight	16-bit	short	integers	(words)

Sixteen	8-bit	bytes	or	characters

Schematically,	it	looks	like	Figure	26-1.

Figure	26-1 Content	of	an	xmm	register

There	are	distinct	assembly	instructions	for	scalar	numbers	and	packed
numbers.	In	the	Intel	manuals,	you	can	see	that	there	are	a	huge	number	of
SSE	instructions	available.	We	will	just	use	a	couple	of	examples	in	this	and
the	following	chapters	as	an	introduction	to	get	you	going.

In	later	chapters,	we	will	use	AVX	functionality.	AVX	registers	are	double
the	size	of	xmm.	The	AVX	registers	are	called	ymm	registers	and	have	256
bits.	There	is	also	AVX-512,	which	provides	for	AVX-512	registers	that	have
512	bits	and	are	called	zmm	registers.

Because	of	the	potential	for	parallel	computing,	SIMD	can	be	used	to
speed	up	computations	in	a	wide	area	of	applications	such	as	image

https://en.wikipedia.org/wiki/Double-precision

processing,	audio	processing,	signal	processing,	vector	and	matrix
manipulations,	and	so	on.	In	later	chapters,	we	will	use	SIMD	for	doing
matrix	manipulations,	but	don’t	worry;	we	will	limit	the	mathematics	to	basic
matrix	operations.	The	purpose	is	to	learn	SIMD,	not	linear	algebra.

Unaligned	and	Aligned	Data
Data	in	memory	can	be	unaligned	or	aligned	on	certain	addresses	that	are
multiples	of	16,	32,	and	so	on.	Aligning	data	in	memory	can	drastically
improve	the	performance	of	a	program.	Here	is	the	reason	why:	aligned
packed	SSE	instructions	want	to	fetch	memory	chunks	of	16	bytes	at	the	time;
see	the	left	side	of	Figure	26-2.	When	data	in	memory	is	not	aligned,	the	CPU
has	to	do	more	than	one	fetch	to	get	the	needed	16-byte	data,	and	that	slows
down	the	execution.	We	have	two	types	of	SSE	instructions:	aligned	packed
instructions	and	unaligned	packed	instructions.	Unaligned	packed	instructions
can	deal	with	unaligned	memory,	but	in	general	there	is	a	performance
disadvantage.

Figure	26-2 Data	alignment

When	using	SSE,	alignment	means	that	data	in	section	.data	and	in
section	.bss	should	be	aligned	on	a	16-byte	border.	In	NASM	you	can
use	the	assembly	directives	align	16	and	alignb	16	in	front	of	the	data
to	be	aligned.	In	the	upcoming	chapters,	you	will	see	examples	of	this.	For
AVX,	data	should	be	aligned	on	a	32-byte	border,	and	for	AVX-512,	data
needs	to	be	aligned	on	a	64-bit	border.

Summary
In	this	chapter,	you	learned	the	following:

SSE	provides	you	with	16	additional	128-bit	registers.

You	know	the	difference	between	scalar	data	and	packed	data.

You	know	the	importance	of	data	alignment.

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_27

27.	Watch	Your	MXCSR
Jo	Van	Hoey1	

Hamme,	Belgium

	
Before	diving	into	SSE	programming,	you	need	to	understand	the	SSE	control
and	status	register	for	floating-point	operations,	called	mxcsr.	It	is	a	32-bit
register,	of	which	only	the	lower	16	bits	are	used.	Here	is	the	layout:

Bit Mnemonic Meaning

0 IE Invalid	operation	error

1 DE Denormal	error

2 ZE Divide-by-zero	error

3 OE Overflow	error

4 UE Underflow	error

5 PE Precision	error

6 DAZ Denormals	are	zeros

7 IM Invalid	operation	mask

8 DM Denormal	operation	mask

9 ZM Divide-by-zero	mask

10 OM Overflow	mask

11 UM Underflow	mask

12 PM Precision	mask

13 RC Rounding	control

14 RC Rounding	control

15 FZ Flush	to	zero

https://doi.org/10.1007/978-1-4842-5076-1_27

Bits	0	to	5	indicate	when	a	floating-point	exception	has	been	detected,
such	as	a	divide	by	zero,	or	when	because	of	a	floating-point	operation,	a
value	loses	some	precision.	Bits	7	to	12	are	masks,	controlling	the	behavior
when	a	floating-point	operation	sets	a	flag	in	bits	0	to	5.	If,	for	example,	a
divide-by-zero	happens,	normally	a	program	would	throw	an	error	and
possibly	crash.	When	you	set	the	divide-by-zero	mask	flag	to	1,	the	program
will	not	crash,	and	you	can	execute	a	certain	instruction	to	mitigate	the	crash.
The	masks	are	by	default	set	to	1	so	that	no	SIMD	floating-point	exceptions
will	be	raised.	Two	bits	(bits	13	and	14)	control	the	rounding,	as	shown	here:

Bits Meaning

00 Round	to	nearest

01 Round	down

10 Round	up

11 Truncate

We	will	not	discuss	all	the	status	and	mask	details	of	the	mxcsr	register;
refer	to	the	Intel	manuals	for	all	details.

Manipulating	the	mxcsr	Bits
The	bits	in	the	mxcsr	register	can	be	manipulated	with	the	ldmxcsr	and
stmxcsr	instructions.	The	default	mxcsr	state	is	00001F80,	or	0001
1111	1000	0000.	All	the	mask	bits	are	set,	and	rounding	is	set	to	nearest.

Listing	27-1	through	Listing	27-4	show	an	example	of	what	can	be	done
with	mxcsr.

;	mxcsr.asm

extern	printf

extern	print_mxcsr

extern	print_hex

section	.data

eleven						dq				11.0

two									dq				2.0

three							dq				3.0

ten									dq				10.0

zero								dq				0.0

hex									db				“0x”,0

fmt1								db				10,“Divide,	default	mxcsr:”,10,0

fmt2								db				10,“Divide	by	zero,	default
mxcsr:”,10,0

fmt4								db				10,“Divide,	round	up:”,10,0

fmt5								db				10,“Divide,	round	down:”,10,0

fmt6								db				10,“Divide,	truncate:”,10,0

f_div							db				”%.1f	divided	by	%.1f	is	%.16f,
in	hex:	“,0

f_before				db				10,“mxcsr	before:”,9,0

f_after					db				“mxcsr	after:”,9,0

;mxcsr	values

default_mxcsr					dd	0001111110000000b

round_nearest					dd	0001111110000000b

round_down								dd	0011111110000000b

round_up										dd	0101111110000000b

truncate										dd	0111111110000000b

section	.bss

mxcsr_before				resd		1

mxcsr_after					resd		1

xmm													resq		1

section	.text

global	main

main:

push	rbp

mov		rbp,rsp

;division

;default	mxcsr

mov			rdi,fmt1

mov			rsi,ten

mov			rdx,two

mov			ecx,	[default_mxcsr]

call		apply_mxcsr

;–––––––––––––––-

;division	with	precision	error

;default	mxcsr

mov			rdi,fmt1

mov			rsi,ten

mov			rdx,three

mov			ecx,	[default_mxcsr]

call		apply_mxcsr

;divide	by	zero

;default	mxcsr

mov			rdi,fmt2

mov			rsi,ten

mov			rdx,zero

mov			ecx,	[default_mxcsr]

call		apply_mxcsr

;division	with	precision	error

;round	up

mov			rdi,fmt4

mov			rsi,ten

mov			rdx,three

mov			ecx,	[round_up]

call		apply_mxcsr

;division	with	precision	error

;round	up

mov			rdi,fmt5

mov			rsi,ten

mov			rdx,three

mov			ecx,	[round_down]

call		apply_mxcsr

;division	with	precision	error

;truncate

mov			rdi,fmt6

mov			rsi,ten

mov			rdx,three

mov			ecx,	[truncate]

call		apply_mxcsr

;–––––––––––––––-

;division	with	precision	error

;default	mxcsr

mov			rdi,fmt1

mov			rsi,eleven

mov			rdx,three

mov			ecx,	[default_mxcsr]

call		apply_mxcsr;division	with	precision	error

;round	up

mov			rdi,fmt4

mov			rsi,eleven

mov			rdx,three

mov			ecx,	[round_up]

call		apply_mxcsr

;division	with	precision	error

;round	up

mov			rdi,fmt5

mov			rsi,eleven

mov			rdx,three

mov			ecx,	[round_down]

call		apply_mxcsr

;division	with	precision	error

;truncate

mov			rdi,fmt6

mov			rsi,eleven

mov			rdx,three

mov			ecx,	[truncate]

call		apply_mxcsr

leave

ret

;function	––––––––––––––—

apply_mxcsr:

push		rbp

mov			rbp,rsp

push	rsi

push		rdx

push		rcx

push		rbp												;	one	more	for	stack
alignment

call		printf

pop			rbp

pop			rcx

pop			rdx

pop			rsi

mov									[mxcsr_before],ecx

ldmxcsr					[mxcsr_before]

movsd							xmm2,	[rsi]	;	double	precision	float
into	xmm2

divsd							xmm2,	[rdx]					;	divide	xmm2

stmxcsr					[mxcsr_after]			;	save	mxcsr	to	memory

movsd							[xmm],xmm2						;	for	use	in	print_xmm

mov									rdi,f_div

movsd							xmm0,	[rsi]

movsd							xmm1,	[rdx]

call								printf

call								print_xmm

;print	mxcsr

mov									rdi,f_before

call								printf

mov									rdi,	[mxcsr_before]

call								print_mxcsr

mov									rdi,f_after

call								printf

mov									rdi,	[mxcsr_after]

call								print_mxcsr

leave

ret

;function	––––––––––––––—

print_xmm:

push	rbp

mov		rbp,rsp

mov			rdi,	hex				;print	0x

call		printf

mov			rcx,8

.loop:

xor			rdi,rdi

mov			dil,[xmm+rcx-1]

push		rcx

call		print_hex

pop			rcx

loop		.loop

leave

ret
Listing	27-1 mxcsr.asm

//	print_hex.c

#include	<stdio.h>

void	print_hex(unsigned	char	n){

if	(n	<	16)	printf(“0”);

printf(“%x”,n);

}
Listing	27-2 print_hex.c

//	print_mxcsr.c

#include	<stdio.h>

void	print_mxcsr(long	long	n){

long	long	s,c;

for	(c	=	15;	c	>=	0;	c—)

{

s	=	n	>>	c;

//	space	after	every	8th	bit

if	((c+1)	%	4	==	0)	printf(”
“);

if	(s	&	1)

printf(“1”);

else

printf(“0”);

}

printf(“\n”);

}
Listing	27-3 print_mxcsr.c

mxcsr:	mxcsr.o	print_mxcsr.o	print_hex.o

gcc	-o	mxcsr	mxcsr.o	print_mxcsr.o	print_hex.o	-
no-pie

mxcsr.o:	mxcsr.asm

nasm	-f	elf64	-g	-F	dwarf	mxcsr.asm	-l	mxcsr.lst

print_mxcsr:	print_mxcsr.c

gcc	-c	print_mxcsr.c

print_hex:	print_hex.c

gcc	-c	print_hex.c
Listing	27-4 makefile

In	this	program,	we	show	different	rounding	modes	and	a	masked	zero
division.	The	default	rounding	is	rounding	to	nearest.	For	example,	in
decimal,	computing	a	positive	number	ending	with	a	.5	or	higher	would	be
rounded	to	the	higher	number,	and	a	negative	number	ending	with	a	.5	or
higher	would	be	rounded	to	the	lower	(more	negative)	number.	However,	here
we	are	rounding	in	hexadecimal,	not	decimal,	and	that	does	not	always	give
the	same	result	as	rounding	in	decimal!

Figure	27-1	shows	the	output.

Figure	27-1 	mxcsr.asm	output

Analyzing	the	Program
Let’s	analyze	the	program.	We	have	a	number	of	divisions	where	we	apply
rounding.	The	divisions	are	done	in	the	function	apply_mxcsr.	Before

calling	this	function,	we	put	the	address	of	the	print	title	in	rdi,	the	dividend
in	rdi,	and	the	divisor	in	rdx.	Then	we	copy	the	desired	mxcsr	value	from
memory	to	ecx;	for	the	first	call,	it’s	the	default	mxcsr	value.	Then	we	call
apply_mxcsr.	In	this	function,	we	print	the	title,	without	forgetting	to	first
preserve	the	necessary	registers	and	align	the	stack.	We	then	store	the	value	in
ecx	to	mxcsr_before	and	load	mxcsr	with	the	value	stored	in
mxcsr_before	with	the	instruction	ldmxcsr.	The	instruction	ldmxcsr
takes	a	32-bit	memory	variable	(double	word)	as	the	operand.	The	instruction
divsd	takes	an	xmm	register	as	a	first	argument	and	an	xmm	register	or	64-
bit	variable	as	a	second	operand.	After	the	division	is	done,	the	content	of	the
mxcsr	register	is	stored	in	memory	in	the	variable	mxcsr_after	with	the
instruction	stmxcsr	.	We	copy	the	quotient	in	xmm2	to	memory	in	the
variable	xmm	in	order	to	print	it.

We	first	print	the	quotient	in	decimal	and	then	want	to	print	it	in
hexadecimal	on	the	same	line.	We	cannot	print	a	hexadecimal	value	with
printf	from	within	assembly	(at	least	not	in	the	version	in	use	here);	we
have	to	create	a	function	for	doing	that.	So,	we	created	the	function
print_xmm	.	This	function	takes	the	memory	variable	xmm	and	loads
bytes	into	dil	one	by	one	in	a	loop.	In	the	same	loop,	the	custom-built	C
function	print_hex	is	called	for	every	byte.	By	using	the	decreasing	loop
counter	rcx	in	the	address,	we	also	take	care	of	little-endianness:	the
floating-point	value	is	stored	in	memory	in	little-endian	format!

Finally,	mxcsr_before	and	mxcsr_after	are	displayed	so	that	we
can	compare	them.	The	function	print_mxcsr	is	used	to	print	the	bits	in
mxcsr	and	is	similar	to	the	bit	printing	functions	we	used	in	previous
chapters.

Some	readers	may	find	this	complex;	just	step	through	the	program	with	a
debugger	and	observe	the	memory	and	registers.

Let’s	analyze	the	output:	you	can	see	that	mxcsr	does	not	change	when
we	divide	10	by	2.	When	we	divide	10	by	3,	we	have	3.333.	Here	mxcsr
signals	a	precision	error	in	bit	5.	The	default	rounding,	rounding	to	nearest,
increases	the	last	hexadecimal	from	a	to	b.	In	decimal,	the	rounding	would	be
a	rounding	down;	however,	in	hexadecimal,	an	a,	which	is	higher	than	8,	will
be	rounded	up	to	b.

We	continue	with	a	zero	division:	mxcsr	signals	a	zero	division	in	bit	2,
but	the	program	does	not	crash	because	the	zero-division	mask	ZE	is	set.	The
result	is	inf	or	0x7ff0000000000000.

The	next	division	and	round-up	has	the	same	result	as	rounding	to	nearest.
The	next	two	divisions	with	round-down	and	truncate	result	in	a	number	with
a	last	hexadecimal	digit	of	a.

To	show	the	difference	in	rounding,	we	do	the	same	exercise	with	11
divided	by	3.	This	division	results	in	a	quotient	with	a	low	final	hexadecimal
digit.	You	can	compare	the	rounding	behavior.

As	an	exercise,	clear	the	zero-division	mask	bit	and	rerun	the	program.
You	will	see	that	the	program	will	crash.	The	zero-division	mask	and	the
other	masks	allow	you	to	catch	errors	and	jump	to	some	error	procedure.

Summary
In	this	chapter,	you	learned	about	the	following:

The	layout	and	purpose	of	the	mxcsr	register

How	to	manipulate	the	mxcsr	register

How	to	round	subtleties

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_28

28.	SSE	Alignment
Jo	Van	Hoey1	

Hamme,	Belgium

	
It’s	time	to	start	the	real	SSE	work!	Although	we	have	had	a	number	of
chapters	on	SSE,	we	only	scratched	the	surface	of	the	subject.	There	are
hundreds	of	SIMD	instructions	(MMX,	SSE,	AVX),	and	investigating	them
in-depth	would	require	another	book	or	even	a	series	of	books.	In	this	chapter,
we	will	give	a	number	of	examples	so	that	you	know	where	to	start.	The
purpose	of	these	examples	is	to	enable	you	to	find	your	way	in	the	multitude
of	SIMD	instructions	in	the	Intel	manuals.	In	this	chapter,	we	will	discuss
alignment,	which	we	already	covered	briefly	in	Chapter	26.

Unaligned	Example
Listing	28-1	shows	how	to	add	vectors	using	data	that	is	unaligned	in
memory.

;	sse_unaligned.asm

extern	printf

section	.data

;single	precision

spvector1		dd			1.1

dd			2.2

dd			3.3

dd			4.4

spvector2		dd			1.1

dd			2.2

dd			3.3

https://doi.org/10.1007/978-1-4842-5076-1_28

dd			4.4

;double	precision

dpvector1		dq			1.1

dq			2.2

dpvector2		dq			3.3

dq			4.4

fmt1	db	“Single	Precision	Vector	1:	%f,	%f,	%f,
%f”,10,0

fmt2	db	“Single	Precision	Vector	2:	%f,	%f,	%f,
%f”,10,0

fmt3	db	“Sum	of	Single	Precision	Vector	1	and
Vector	2:”

db	”	%f,	%f,	%f,	%f”,10,0

fmt4	db	“Double	Precision	Vector	1:	%f,	%f”,10,0

fmt5	db	“Double	Precision	Vector	2:	%f,	%f”,10,0

fmt6	db	“Sum	of	Double	Precision	Vector	1	and
Vector	2:”

db	”	%f,	%f”,10,0

section	.bss

spvector_res	resd	4

dpvector_res	resq	4

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	add	2	single	precision	floating	point	vectors

mov			rsi,spvector1

mov			rdi,fmt1

call		printspfp

mov			rsi,spvector2

mov			rdi,fmt2

call		printspfp

movups					xmm0,	[spvector1]

movups					xmm1,	[spvector2]

addps						xmm0,xmm1

movups					[spvector_res],	xmm0

mov								rsi,spvector_res

mov								rdi,fmt3

call							printspfp

;	add	2	double	precision	floating	point	vectors

mov			rsi,dpvector1

mov			rdi,fmt4

call		printdpfp

mov			rsi,dpvector2

mov			rdi,fmt5

call		printdpfp

movupd					xmm0,	[dpvector1]

movupd					xmm1,	[dpvector2]

addpd						xmm0,xmm1

movupd					[dpvector_res],	xmm0

mov								rsi,dpvector_res

mov								rdi,fmt6

call							printdpfp

leave

ret

printspfp:

push		rbp

mov			rbp,rsp

movss						xmm0,	[rsi]

cvtss2sd			xmm0,xmm0

movss						xmm1,	[rsi+4]

cvtss2sd			xmm1,xmm1

movss						xmm2,	[rsi+8]

cvtss2sd			xmm2,xmm2

movss						xmm3,	[rsi+12]

cvtss2sd			xmm3,xmm3

mov								rax,4;	four	floats

call							printf

leave

ret

printdpfp:

push		rbp

mov			rbp,rsp

movsd						xmm0,	[rsi]

movsd						xmm1,	[rsi+8]

mov								rax,2;	four	floats

call							printf

leave

ret
Listing	28-1 sse_unaligned.asm

The	first	SSE	instruction	is	movups	(which	means	“move	unaligned
packed	single	precision”),	which	copies	data	from	memory	into	xmm0	and
xmm1.	As	a	result,	xmm0	contains	one	vector	with	four	single-precision
values,	and	xmm1	contains	one	vector	with	four	single-precision	values.	Then
we	use	addps	(which	means	“add	packed	single	precision”)	to	add	the	two
vectors;	the	resultant	vector	goes	into	xmm0	and	is	then	transferred	to
memory.	Then	we	print	the	result	with	the	function	printspfp.	In	the
printspfp	function,	we	copy	every	value	from	memory	into	xmm	registers
using	movss	(which	means	“move	scalar	single	precision”).	Because

printf	expects	double-precision	floating-point	arguments,	we	convert	the
single-precision	floating-point	numbers	to	double	precision	with	the
instruction	cvtss2sd	(which	means	“convert	scalar	single	to	scalar
double”).

Next,	we	add	two	double-precision	values.	The	process	is	similar	to
adding	single-precision	numbers,	but	we	use	movupd	and	addpd	for
double	precision.	The	printdpfp	function	for	printing	double-precision	is	a
bit	simpler.	We	have	only	a	two-element	vector,	and	because	we	are	already
using	double	precision,	we	do	not	have	to	convert	the	vectors.

Figure	28-1	shows	the	output.

Figure	28-1 sse_unaligned.asm	output

Aligned	Example
Listing	28-2	shows	how	to	add	two	vectors.

;	sse_aligned.asm

extern	printf

section	.data

dummy			db						13

align	16

spvector1	dd				1.1

dd				2.2

dd				3.3

dd				4.4

spvector2	dd				1.1

dd				2.2

dd				3.3

dd				4.4

dpvector1	dq				1.1

dq				2.2

dpvector2	dq				3.3

dq				4.4

fmt1	db	“Single	Precision	Vector	1:	%f,	%f,	%f,
%f”,10,0

fmt2	db	“Single	Precision	Vector	2:	%f,	%f,	%f,
%f”,10,0

fmt3	db	“Sum	of	Single	Precision	Vector	1	and
Vector	2:”

db	”	%f,	%f,	%f,	%f”,10,0

fmt4	db	“Double	Precision	Vector	1:	%f,	%f”,10,0

fmt5	db	“Double	Precision	Vector	2:	%f,	%f”,10,0

fmt6	db	“Sum	of	Double	Precision	Vector	1	and
Vector	2:”

db	”	%f,	%f”,10,0

section	.bss

alignb	16

spvector_res	resd	4

dpvector_res	resq	4

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	add	2	single	precision	floating	point	vectors

mov			rsi,spvector1

mov			rdi,fmt1

call		printspfp

mov			rsi,spvector2

mov			rdi,fmt2

call		printspfp

movaps					xmm0,	[spvector1]

addps						xmm0,	[spvector2]

movaps					[spvector_res],	xmm0

mov								rsi,spvector_res

mov								rdi,fmt3

call							printspfp

;	add	2	double	precision	floating	point	vectors

mov								rsi,dpvector1

mov								rdi,fmt4

call							printdpfp

mov								rsi,dpvector2

mov								rdi,fmt5

call							printdpfp

movapd					xmm0,	[dpvector1]

addpd						xmm0,	[dpvector2]

movapd					[dpvector_res],	xmm0

mov								rsi,dpvector_res

mov								rdi,fmt6

call							printdpfp

;	exit

mov			rsp,rbp

pop			rbp								;	undo	the	push	at	the	beginning

ret

printspfp:

push		rbp

mov			rbp,rsp

movss						xmm0,	[rsi]

cvtss2sd			xmm0,xmm0		;printf	expects	double
precision	argument

movss						xmm1,	[rsi+4]

cvtss2sd			xmm1,xmm1

movss						xmm2,	[rsi+8]

cvtss2sd			xmm2,xmm2

movss						xmm3,	[rsi+12]

cvtss2sd			xmm3,xmm3

mov								rax,4;	four	floats

call	printf

leave

ret

printdpfp:

push		rbp

mov			rbp,rsp

movsd						xmm0,	[rsi]

movsd						xmm1,	[rsi+8]

mov								rax,2;	two	floats

call	printf

leave

ret
Listing	28-2 sse_aligned.asm

Here	we	create	a	dummy	variable	to	make	sure	the	memory	is	not	16-byte
aligned.	Then	we	use	the	NASM	assembler	directive	align	16	in
section	.data	and	the	directive	alignb	16	in	section	.bss.	You
need	to	add	these	assembler	directives	before	each	data	block	that	needs	to	be
aligned.

The	SSE	instructions	are	slightly	different	from	the	unaligned	version.	We
use	movaps	(which	means	“move	aligned	packed	single	precision”)	to	copy
data	from	memory	into	xmm0.	Then	we	can	immediately	add	the	packed

numbers	from	memory	to	the	values	in	xmm0.	This	is	different	from	the
unaligned	version,	where	we	had	to	put	the	two	values	in	an	xmm	register
first.	If	we	add	the	dummy	variable	to	the	unaligned	example	and	try	to	use
movaps	instead	of	movups	with	a	memory	variable	as	a	second	operand,	we
risk	having	a	runtime	segmentation	fault.	Try	it!

The	register	xmm0	contains	the	resulting	sum	vector	with	four	single-
precision	values.	Then	we	print	the	result	with	the	function	printspfp.	In
the	printspfp	function	,	we	call	every	value	from	memory	and	put	them
into	xmm	registers.	Because	printf	expects	double-precision	floating-point
arguments,	we	convert	the	single-precision	floating-point	numbers	to	double
precision	with	the	instruction	cvtss2sd	(“convert	scalar	single	to	scalar
double”).

Next,	we	use	double-precision	values.	The	process	is	similar	to	using
single	precision,	but	we	use	movapd	and	addpd	for	double-precision
values.

Figure	28-2	shows	the	output	for	the	aligned	example.

Figure	28-2 sse_aligned.asm	output

Figure	28-3	shows	the	unaligned	example,	with	the	dummy	variable	added
as	the	second	operand	of	movaps.

Figure	28-3 sse_unaligned.asm	segmentation	fault

Summary

In	this	chapter,	you	learned	about	the	following:

Scalar	data	and	packed	data

Aligned	and	unaligned	data

How	to	align	data

Data	movement	and	arithmetic	instructions	on	packed	data

How	to	convert	between	single-precision	and	double-precision	data

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_29

29.	SSE	Packed	Integers
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	the	previous	chapter,	we	used	floating-point	values	and	instructions.	SSE
also	provides	a	long	list	of	instructions	for	manipulating	integers,	and	just	as
in	the	previous	chapter,	we	are	going	to	show	a	couple	of	instructions	to	get
you	going.

SSE	Instructions	for	Integers
Listing	29-1	shows	an	example	program.

;	sse_integer.asm

extern	printf

section	.data

dummy			db						13

align	16

pdivector1	dd				1

dd				2

dd				3

dd				4

pdivector2	dd				5

dd				6

dd				7

dd				8

fmt1	db	“Packed	Integer	Vector	1:	%d,	%d,	%d,

https://doi.org/10.1007/978-1-4842-5076-1_29

%d”,10,0

fmt2	db	“Packed	Integer	Vector	2:	%d,	%d,	%d,
%d”,10,0

fmt3	db	“Sum	Vector:	%d,	%d,	%d,	%d”,10,0

fmt4	db	“Reverse	of	Sum	Vector:	%d,	%d,	%d,
%d”,10,0

section	.bss

alignb	16

pdivector_res			resd	4

pdivector_other	resd	4

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	print	vector	1

mov			rsi,pdivector1

mov			rdi,fmt1

call		printpdi

;	print	vector	2

mov			rsi,pdivector2

mov			rdi,fmt2

call		printpdi

;	add	2	aligned	double	int	vectors

movdqa					xmm0,	[pdivector1]

paddd						xmm0,	[pdivector2]

;	store	the	result	in	memory

movdqa					[pdivector_res],	xmm0

;	print	the	vector	in	memory

mov			rsi,pdivector_res

mov			rdi,fmt3

call		printpdi

;	copy	the	memory	vector	to	xmm3

movdqa	xmm3,[pdivector_res]

;	extract	the	packed	values	from	xmm3

pextrd	eax,	xmm3,	0

pextrd	ebx,	xmm3,	1

pextrd	ecx,	xmm3,	2

pextrd	edx,	xmm3,	3

;	insert	in	xmm0	in	reverse	order

pinsrd	xmm0,	eax,	3

pinsrd	xmm0,	ebx,	2

pinsrd	xmm0,	ecx,	1

pinsrd	xmm0,	edx,	0

;	print	the	reversed	vector

movdqa	[pdivector_other],	xmm0

mov			rsi,pdivector_other

mov			rdi,fmt4

call		printpdi

;	exit

mov			rsp,rbp

pop			rbp

ret

;print	function–––––––––––––—

printpdi:

push		rbp

mov			rbp,rsp

movdqa	xmm0,	[rsi]

;	extract	the	packed	values	from	xmm0

pextrd	esi,	xmm0,0

pextrd	edx,	xmm0,1

pextrd	ecx,	xmm0,2

pextrd	r8d,	xmm0,3

mov			rax,0;	no	floats

call		printf

leave

ret
Listing	29-1 sse_integer.asm

Analyzing	the	Code
Here	again	we	have	two	vectors,	this	time	with	integer	values.	We	use	the
instruction	movdqa	to	copy	values	into	an	xmm	register.	This	instruction	is
for	use	with	aligned	data.	Then	paddd	adds	the	values	in	the	registers
together	and	puts	the	result	in	xmm0.	To	use	printf,	we	need	to	extract	the
integer	values	from	the	xmm	registers	and	put	them	in	the	“regular”	registers.
Remember	from	the	calling	conventions	that	printf	considers	an	xmm
register	to	be	a	floating	register.	If	we	do	not	extract	the	integer	values,
printf	will	consider	the	values	in	an	xmm	register	to	be	floating-point
values	and	print	the	wrong	values.	For	extracting	and	inserting	packed
integers,	we	use	pinsrd	and	pextrd.	We	also	reverse	a	vector	to	show
how	to	insert	values	into	a	vector	in	an	xmm	register.

There	are	versions	of	movd,	padd,	pinsr,	and	pextr	for	bytes,	words,
double	words,	and	quadwords,	respectively.

Figure	29-1	shows	the	output.

Figure	29-1 sse_integer.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

Integer	packed	data

Instructions	for	inserting	and	extracting	packed	integers

Instructions	for	copying	and	adding	packed	integers

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_30

30.	SSE	String	Manipulation
Jo	Van	Hoey1	

Hamme,	Belgium

	
With	SSE	version	4.2,	four	compare-string	instructions	were	introduced:	two
instructions	for	strings	with	implicit	lengths	and	two	instructions	for	strings
with	explicit	lengths.	Two	of	these	four	instructions	use	masks.

A	string	with	an	implicit	length	is	a	string	with	a	terminating	0.	For	a
string	with	an	explicit	length,	the	length	has	to	be	specified	by	some	other
means.

In	this	chapter,	we	will	spend	some	time	with	SSE	strings,	because	the
compare	instructions	are	a	bit	complicated	and	unusual,	especially	when	using
masks.	Here	are	the	instructions:

String Instruction arg1 arg2 arg3 Output

implicit pcmpistri xmm xmm/m128 imm8 Index	in	ecx

implicit pcmpistrm xmm xmm/m128 imm8 Mask	in	xmm0

explicit pcmpestri xmm xmm/m128 imm8 Index	in	ecx

explicit pcmpestrm xmm xmm/m128 imm8 Mask	in	xmm0

Here	is	what	the	instructions	mean:

pcmpistri:	Packed	compare	implicit	length	strings,	return	index

pcmpistrm:	Packed	compare	implicit	length	strings,	return	mask

pcmpestri:	Packed	compare	explicit	length	strings,	return	index

pcmpestrm:	Packed	compare	explicit	length	strings,	return	mask

These	compare	instructions	take	three	arguments.	Argument	1	is	always
an	xmm	register,	argument	2	can	be	an	xmm	register	or	a	memory	location,
and	argument	3	is	an	“immediate,”	which	is	a	control	byte	(imm8	in	the	Intel

https://doi.org/10.1007/978-1-4842-5076-1_30

manuals)	that	specifies	how	the	instruction	executes.	The	control	byte	has	an
important	role,	so	we	will	spend	some	time	explaining	the	details.

The	imm8	Control	Byte
Table	30-1	shows	the	layout	of	the	control	byte.
Table	30-1 imm8	Control	Byte

Options Bit
Position

Bit
Value

Operation Meaning

	 7 0 Reserved Reserved

Output
Format

6 0 Bit	mask xmm0	contains	IntRes2	as	a	bit	mask

	 	 1 Byte	mask xmm0	contains	IntRes2	as	a	byte
mask

	 	 0 Least	significant
index

Least	significant	index	found	in	ecx

	 	 1 Most	significant	index Most	significant	index	found	in	ecx

Polarity 5,4 00 + IntRes2	=	IntRes1

	 	 01 - IntRes2	=	~IntRes1

	 	 10 Masked	+ IntRes2	=	IntRes1

	 	 11 Masked	- IntRes2	=	~IntRes1

Aggregation 3,2 00 Equal	any Match	characters

and 	 01 Equal	range Match	characters	in	range

Comparison 	 10 Equal	each String	compare

	 	 11 Equal	ordered Substring	search

Data	Format 1,0 00 Packed	unsigned
bytes

	

	 	 01 Packed	unsigned
words

	

	 	 10 Packed	signed	bytes 	

	 	 11 Packed	signed	words 	

The	compare	instructions	take	the	input	data	(the	format	is	specified	in
bits	1	and	0),	execute	aggregation	and	comparison	actions	(bits	2	and	3),

which	give	an	intermediate	result	(a	match	between	arg1	and	arg2).	This
result	is	called	IntRes1	in	the	Intel	manuals.	The	polarity	is	applied	on
IntRes1	to	give	IntRes2	.	IntRes2	is	then	used	to	output	a	result	in
the	required	format.	Negative	polarity	(~IntRes1)	means	take	the	ones’
complement	of	IntRes1	and	put	the	result	in	IntRes2.	That	is,	convert
every	1	bit	to	a	0	bit	and	convert	every	0	bit	to	a	1	bit.	It’s	a	logical	NOT,	in
other	words.	The	result	in	IntRes2	can	be	stored	as	a	mask	in	xmm0	for	the
mask	instructions	pcmpistrm	and	pcmpestrm	or	as	an	index	in	ecx	for
pcmpistri	and	pcmpestri.	Some	examples	will	be	helpful	here.

Here	are	some	control	byte	examples:

00001000	or	0x08:

00	-	packed	unsigned	bytes,

10	-	equal	each,

00	-	positive	polarity,

00	-	lowest	significant	index	into
ecx

01000100	or	0x44:

00	-	packed	unsigned	bytes,

01	-	equal	range,

00	-	positive	polarity,

01	-	xmm0	contains	byte	mask

Using	the	imm8	Control	Byte
In	this	section	we	show	how	we	can	set	the	bits	in	the	imm8	control	byte	in
order	to	control	the	behavior	of	the	packed	string	instructions.	We	added
examples	to	illustrate	the	effect	of	the	different	settings.	

Bits	0	and	1
Bits	0	and	1	indicate	the	data	source	format;	the	data	source	can	be	a	packed
byte	or	a	packed	word,	unsigned	or	signed.

Bits	2	and	3
Bits	2	and	3	indicate	the	aggregation	to	be	applied.	The	result	is	called

IntRes1	(intermediate	result	1).	A	block	of	16	bytes	is	taken	from	the
second	operand	and	compared	with	the	content	in	the	first	operand.

The	aggregation	can	be	as	follows:

equal	any	(00)	or	find	characters	from	a	set:	This	means	search	operand
1	and	look	for	any	characters	in	operand	2.	When	you	find	a	match,	set	the
corresponding	bit	to	1	in	IntRes1.	Here’s	an	example:

operand	1:	“this	is	a	joke!!”

operand	2:	“i!”

IntRes1:				0010010000000011

equal	range	(01)	or	find	characters	from	a	range:	This	means	search
operand	1	and	look	for	any	characters	in	the	range	given	in	operand	2.
When	you	find	a	match,	set	the	corresponding	bit	to	1	in	IntRes1.	Here’s
an	example:

operand	1:	“this	is	a	joke!!”

operand	2:	“aj”

IntRes1:				0010010010100100

equal	each	(10)	or	string	compare:	This	means	compare	any	character	in
operand	1	to	the	corresponding	character	in	operand	2.	When	you	find	a
match,	set	the	corresponding	bit	in	IntRes1	to	1.	Here’s	an	example:

operand	1:	“this	is	a	joke!!”

operand	2:	“this	is	no	joke!”

IntRes1:				1111111100000000

equal	ordered	(11)	or	substring	search:	This	means	search	operand	1	for
the	string	in	operand	2.	When	you	find	a	match,	set	the	corresponding	bit	in
IntRes1	to	1.	Here’s	an	example:

operand	1:	“this	is	a	joke!!”

operand	2:	“is”

IntRes1:				0010010000000000

Bits	4	and	5

Bits	4	and	5	apply	the	polarity	and	store	the	result	in	IntRes2.

Positive	polarity	(00)	and	(10):	IntRes2	will	be	identical	to	IntRes1.
Here’s	an	example:

IntRes1:	0010010000000011

IntRes2:	0010010000000011

Negative	polarity	(01)	and	(11):	IntRes2	will	be	the	ones’	complement,
or	the	logical	negation	of	IntRes1.	Here’s	an	example:

IntRes1:	0010010000000011

IntRes2:	1101101111111100

Bit	6
Bit	6	sets	the	output	format,	with	two	cases.

Not	using	a	mask:
0:	The	index	returned	in	ecx	is	the	least	significant	bit	set	in	IntRes2.
Here’s	an	example:

IntRes2:	0010010011000000

ecx	=	6

In	IntRes2,	the	first	1	bit	is	found	at	index	6
(counting	starts	at	0	and	from	the	right).

1:	The	index	returned	in	ecx	is	the	most	significant	bit	set	in	IntRes2.
Here’s	an	example:

IntRes2:	0010010010100100

ecx	=	13

In	IntRes2,	the	last	1	bit	is	found	at	index	13
(counting	starts	at	0	and	from	the	right).

Using	a	mask:
0:	IntRes2	is	returned	as	a	mask	in	the	least	significant	bits	of	xmm0
(zero	extension	to	128	bits).	Here’s	an	example:

Search	for	all	characters	‘a’	and	‘e’	in	the

string	=	‘qdacdekkfijlmdoz’

then

xmm0:	024h

or	in	binary	0000000000100100

Note	that	the	mask	is	reversed	in	xmm0.

1:	IntRes2	is	expanded	into	a	byte/word	mask	into	xmm0.	Here’s	an
example:

Search	for	all	characters	‘a’	and	‘e’	in	the
string	=	‘qdacdekkfijlmdoz’

then

xmm0:		00000000000000000000ff0000ff0000

Note	that	the	mask	is	reversed	in	xmm0.

Bit	7	Reserved
Bit	7	is	reserved.

The	Flags
For	the	implicit	length	instructions,	the	flags	are	used	in	a	way	that	is	different
from	what	you	have	seen	in	previous	chapters	(see	the	Intel	manuals).

CF	–	Reset	if	IntRes2	is	equal	to	zero,	set
otherwise

ZF	–	Set	if	any	byte/word	of	xmm2/mem128	is	null,
reset	otherwise

SF	–	Set	if	any	byte/word	of	xmm1	is	null,	reset
otherwise

OF	–	IntRes2[0]

AF	–	Reset

PF	–	Reset

For	the	explicit	length	instructions,	the	flags	are	also	used	in	different
ways,	as	follows	(see	the	Intel	manuals):

CF	–	Reset	if	IntRes2	is	equal	to	zero,	set
otherwise

ZF	–	Set	if	absolute-value	of	EDX	is	<	16	(8),	reset
otherwise

SF	–	Set	if	absolute-value	of	EAX	is	<	16	(8),	reset
otherwise

OF	–	IntRes2[0]

AF	–	Reset

PF	–	Reset

In	the	examples	in	the	following	chapter,	we	will	use	the	CF	flag	to	see
whether	there	was	any	result	and	ZF	to	detect	the	end	of	a	string.

This	theory	might	sound	complicated;	indeed,	it’s	time	for	some	practice.

Summary
In	this	chapter,	you	learned	about	the	following:

SSE	string	manipulation	instructions

The	layout	and	use	of	the	imm8	control	byte

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_31

31.	Search	for	a	Character
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	this	chapter,	we	will	start	using	the	control	byte	to	help	us	find	a	specific
character	in	a	string.

Determining	the	Length	of	a	String
In	the	first	example,	we	will	determine	the	length	of	a	string	by	looking	for	a
terminating	0.

Listing	31-1	shows	the	code.

;	sse_string_length.asm

extern	printf

section	.data

;template												0123456789abcdef0123456789abcdef0123456789abcd		e

;template												1234567890123456789012345678901234567890123456		7

string1	db				“The	quick	brown	fox	jumps	over	the	lazy	river.”,0

fmt1	db							“This	is	our	string:	%s	“,10,0

fmt2	db							“Our	string	is	%d	characters	long.”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

https://doi.org/10.1007/978-1-4842-5076-1_31

mov			rdi,	fmt1

mov			rsi,	string1

xor			rax,rax

call		printf

mov			rdi,	string1

call		pstrlen

mov			rdi,	fmt2

mov			rsi,	rax

xor			rax,rax

call		printf

leave

ret

;function	to	compute	string	length––––––––-

pstrlen:

push		rbp

mov			rbp,rsp

mov			rax,				-16									;	avoid	changing	later

pxor		xmm0,		xmm0									;	0	(end	of	string)

.not_found:

add										rax,	16						;	avoid	changing	ZF	later

;	after	pcmpistri

pcmpistri				xmm0,	[rdi	+	rax],	00001000b					;‘equal	each’

jnz										.not_found			;	0	found?

add										rax,	rcx					;	rcx	contains	the	index	of	the	0

inc										rax										;	correct	for	index	0	at	start

leave

ret
Listing	31-1 sse_string_length.asm

At	the	beginning	of	the	program,	we	added	two	templates	in	comments	to

make	the	character	counting	easier	for	us.	One	template	uses	decimal
numbering,	starting	at	1,	and	the	other	template	uses	hexadecimal	numbering,
starting	at	index	0.

;template					1234567890123456789012345678901234567890123456		7

;template					0123456789abcdef0123456789abcdef0123456789abcd		e

string1	db			“The	quick	brown	fox	jumps	over	the	lazy	river.”,0

First,	as	usual,	we	print	the	strings.	Then	we	call	the	custom-built	search
function	pstrlen.	Our	function	pstrlen	scans	for	the	first	occurrence	of
a	zero	byte.	The	instruction	pcmpistri	analyzes	blocks	of	16	bytes	at	a
time;	we	use	rax	as	a	block	counter.	If	pcmpistri	detects	a	zero	byte	in
the	current	block,	ZF	will	be	set	and	used	to	decide	whether	to	jump.	We	have
to	avoid	that	incrementing	rax	will	impact	the	ZF	flag	just	before	the	jump	is
evaluated,	so	we	have	to	increment	the	ZF	flag	before	pcmpistri.	That	is
why	we	start	with	-16	in	rax;	now	we	can	increase	rax	before	using
pcmpistri.	Note	the	pxor	instruction	;	it	is	the	logical	or	instruction	for
xmm	registers.	SIMD	has	its	own	logical	instructions!

The	immediate	control	byte	contains	00001000,	which	means	the
following:

00	Packed	unsigned	bytes

10	Equal	each

00	Positive	Polarity

0	Least	significant	index

0	Reserved

You	might	expect	that	we	use	“equal	any”	to	find	any	0.	But	instead,	we
are	using	“equal	each”!	Why	is	that?

You	have	to	know	that	pcmpistri	initializes	rcx	to	contain	the	value
16,	which	is	the	number	of	bytes	in	a	block.	If	a	matching	byte	is	found,
pcmpistri	will	copy	the	index	of	the	matching	byte	in	rcx.	If	there	is	no
match	found,	rcx	will	contain	16.

Look	in	the	Intel	manuals,	specifically,	in	Volume	2B.	Section	4.1.6,
“Valid/Invalid	Override	of	Comparisons,”	explains	what	happens	when	a
block	has	“invalid”	bytes,	or	bytes	past	the	end	of	a	string.

We	can	use	this	table	to	interpret	our	situation:

xmm0 Memory Equal	any Equal	each

Invalid Invalid Force	false Force	true

Invalid Valid Force	false Force	false

We	have	xmm0	invalid	because	we	initialized	it	to	contain	0	bytes.	When
we	have	a	16-byte	block	containing	a	0	byte,	in	the	case	of	“equal	any,”
pcmpistri	detects	that	one	of	the	16	bytes	contains	0.	At	that	moment,	we
have	xmm0	invalid	and	memory	invalid.	However,	pcmpistri	is	designed
to	“force	false”	in	the	case	of	“equal	any.”	So,	pcmpistri	thinks	there	is	no
match	and	returns	16	in	rcx,	so	the	calculated	string	length	will	not	be
correct.

But	when	we	use	“equal	each,”	xmm0	is	invalid	like	before,	and	as	soon
as	pcmpistri	reads	the	terminating	0	byte	in	the	block,	it	is	designed	to
“force	true.”	The	index	of	the	0	byte	is	recorded	in	ecx.	And	that	value	in
ecx	can	be	used	to	correctly	calculate	the	end	of	the	string.

One	caveat:	the	program	reads	in	blocks	of	16	bytes.	That	is	okay	as	long
as	the	place	where	the	data	is	found	is	within	a	memory	space	allocated	to	the
program.	If	it	tries	reading	beyond	the	allowed	memory	border,	the	program
will	crash.	You	can	avoid	this	by	keeping	track	of	where	you	are	in	the
memory	page	(in	most	cases,	pages	are	chunks	of	4K	bytes),	and	if	you	come
close	to	the	page	border,	start	reading	byte	per	byte.	That	way	you	will	never
accidentally	try	to	cross	over	from	an	allowed	memory	page	to	a	memory
page	of	another	process.	We	did	not	implement	this	feature	to	complicate	the
explanation	and	the	example	program.	But	be	warned	that	such	a	situation	can
happen.

Figure	31-1	shows	the	output.	As	you	can	see,	the	string	length	includes
the	terminating	null.

Figure	31-1 sse_string_length.asm	output

Searching	in	Strings
Now	that	we	know	how	to	determine	the	length	of	a	string,	let’s	do	some
searching	in	strings	(see	Listing	31-2).

;	sse_string_search.asm

extern	printf

section	.data

;template					123456789012345678901234567890123456789012345		6

;template					0123456789abcdef0123456789abcdef0123456789abc		d

string1	db			“the	quick	brown	fox	jumps	over	the	lazy	river”,0

string2						db				“e”,0

fmt1									db				“This	is	our	string:	%s	“,10,0

fmt2									db				“The	first	‘%s’	is	at	position	%d.”,10,0

fmt3									db				“The	last	‘%s’	is	at	position	%d.”,10,0

fmt4									db				“The	character	‘%s’	didn’t	show	up!.”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

mov			rdi,	fmt1

mov			rsi,	string1

xor			rax,rax

call		printf

;	find	the	first	occurrence		

mov			rdi,	string1

mov			rsi,	string2

call		pstrscan_f

cmp			rax,0

je				no_show

mov			rdi,	fmt2

mov			rsi,	string2

mov			rdx,	rax

xor			rax,rax

call		printf

;	find	the	last	occurrence		

mov			rdi,	string1

mov			rsi,	string2

call		pstrscan_l

mov			rdi,	fmt3

mov			rsi,	string2

mov			rdx,	rax

xor			rax,rax

call		printf

jmp			exit

no_show:

mov			rdi,	fmt4

mov			rsi,	string2

xor			rax,	rax

call		printf

exit:

leave

ret

;––	find	the	first	occurrence	–––––––-

pstrscan_f:

push		rbp

mov			rbp,rsp

xor				rax,	rax

pxor			xmm0,	xmm0

pinsrb	xmm0,	[rsi],0

.block_loop:

pcmpistri		xmm0,	[rdi	+	rax],	00000000b

jc				.found

jz				.none

add			rax,	16

jmp			.block_loop

.found:

add			rax,	rcx												;	rcx	contains	the	position	of	the
char

inc			rax																	;	start	counting	from	1	instead	of
0

leave

ret

.none:

xor			rax,rax													;	nothing	found,	return	0

leave

ret

;––	find	the	last	occurrence	–––––––-

pstrscan_l:

push		rbp

mov			rbp,rsp

push		rbx																	;	callee	saved

push		r12																	;	callee	saved

xor				rax,	rax

pxor			xmm0,	xmm0

pinsrb	xmm0,	[rsi],0

xor				r12,r12

.block_loop:

pcmpistri		xmm0,	[rdi	+	rax],	01000000b

setz			bl

jc					.found

jz					.done

add				rax,	16

jmp				.block_loop

.found:

mov				r12,	rax

add				r12,	rcx				;	rcx	contains	the	position	of	the	char

inc				r12

cmp				bl,1

je					.done

add				rax,16

jmp				.block_loop

pop	r12																		;	callee	saved

pop	rbx																		;	callee	saved

leave

ret

.done:

mov				rax,r12

pop	r12																		;	callee	saved

pop	rbx																		;	callee	saved

leave

ret
Listing	31-2 sse_string_search.asm

At	the	beginning	of	the	program,	we	added	two	templates	in	comments	to
make	the	character	counting	easier	for	us.

Here,	string1	contains	the	string,	and	string2	contains	the	search
argument.	We	will	be	searching	for	the	first	and	last	occurrences	of	the	search
argument.	First,	we	print	the	strings;	then	we	call	the	custom-built	functions.
We	have	separate	functions	for	finding	the	first	occurrence	of	the	character
and	the	last	occurrence.	The	function	pstrscan_f	scans	for	the	first
occurrence	of	the	search	argument.	The	instruction	pcmpistri	treats	blocks
of	16	bytes	at	a	time;	we	use	rax	as	a	block	counter.	We	clear	xmm0	with	the

pxor	instruction.	With	pinsrb	,	we	put	the	search	argument	in	the	low	byte
of	xmm0	(byte	0).	We	use	“equal	any”	to	find	the	occurrences,	and	as	soon	as
an	occurrence	is	found,	rcx	indicates	the	index	of	the	matching	byte	in	the
current	16-byte	block.	If	no	occurrence	is	found	in	the	current	block,	the	value
16	is	put	into	rcx.	With	jc,	we	check	if	CF=1.	If	so,	we	find	a	match;	rcx
is	added	to	rax,	which	contains	the	number	of	bytes	already	screened	in
previous	blocks,	and	then	rax	is	returned,	corrected	for	the	counting	to	start
at	1	instead	of	0.

If	CF=0,	we	check	with	jz	to	see	if	we	have	reached	the	last	block.
pcmpistri	sets	ZF=1	when	a	null	byte	is	detected,	and	rax	is	cleared,
because	no	match	was	found.	And	the	function	returns	with	0.

Of	course,	we	did	not	do	any	error	checking;	if	the	string	is	not	null
terminated,	you	may	get	erroneous	results.	Try	to	delete	the	0	at	the	end	of	the
string	and	watch	the	result.

The	function	pstrscan_l	scans	for	the	last	match	of	the	search
argument.	This	is	more	complicated	than	just	looking	for	the	first	match	and
exiting.	We	have	to	read	all	16-byte	blocks	and	keep	track	of	the	last
occurrence	in	a	block.	So	even	when	we	find	an	occurrence,	we	have	to
continue	the	loop	until	we	find	a	terminating	zero.	To	keep	an	eye	on	the
terminating	zero,	we	set	register	bl	to	1	as	soon	as	we	detect	the	zero.	The
register	r12	is	used	to	record	the	index	of	the	most	recent	match.	See	Figure
31-2.

Figure	31-2 sse_string_search.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

Using	pcmpistri	to	scan	for	characters	and	string	length

Interpreting	the	outcome	of	pcmpistri	with	different	control	bytes

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_32

32.	Compare	Strings
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	the	previous	chapter,	we	used	strings	with	implicit	lengths,	which	means
that	these	strings	are	terminated	by	a	null	byte.	In	this	chapter,	we	will
compare	strings	with	implicit	lengths	and	strings	with	explicit	lengths.

Implicit	Length
Instead	of	matching	characters,	we	will	look	for	characters	that	differ.	Listing
32-1	shows	the	example	code	we	will	discuss.

;	sse_string2_imp.asm

;	compare	strings	implicit	length

extern	printf

section	.data

string1				db				“the	quick	brown	fox	jumps	over
the	lazy”

db				”	river”,10,0

string2				db				“the	quick	brown	fox	jumps	over
the	lazy”

db				”	river”,10,0

string3				db				“the	quick	brown	fox	jumps	over
the	lazy

”	dog”,10,0

fmt1			db	“Strings	1	and	2	are	equal.”,10,0

fmt11		db	“Strings	1	and	2	differ	at	position

https://doi.org/10.1007/978-1-4842-5076-1_32

%i.”,10,0

fmt2			db	“Strings	2	and	3	are	equal.”,10,0

fmt22		db	“Strings	2	and	3	differ	at	position
%i.”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;first	print	the	strings

mov			rdi,	string1

xor			rax,rax

call		printf

mov			rdi,	string2

xor			rax,rax

call		printf

mov			rdi,	string3

xor			rax,rax

call		printf

;	compare	string	1	and	2

mov			rdi,	string1

mov			rsi,	string2

call		pstrcmp

mov			rdi,fmt1

cmp			rax,0

je				eql1										;the	strings	are	equal

mov			rdi,fmt11					;the	strings	are	unequal

	eql1:

mov			rsi,	rax

xor			rax,rax

call		printf

	;	compare	string	2	and	3

mov			rdi,	string2

mov			rsi,	string3

call		pstrcmp

mov			rdi,fmt2

cmp			rax,0

je				eql2										;the	strings	are	equal

mov			rdi,fmt22					;the	strings	are	unequal

	eql2:

mov			rsi,	rax

xor			rax,rax

call		printf

;	exit

leave

ret

;string	compare–––––––––––––––-

pstrcmp:

push		rbp

mov			rbp,rsp

xor				rax,	rax												;

xor				rbx,	rbx												;

.loop:	movdqu				xmm1,	[rdi	+	rbx]

pcmpistri		xmm1,	[rsi	+	rbx],	0x18	;	equal	each	|
neg	polarity

jc									.differ

jz									.equal

add								rbx,	16

jmp								.loop

.differ:

mov	rax,rbx

add	rax,rcx				;the	position	of	the	differing
character

inc	rax								;because	the	index	starts	at	0

.equal:

leave

ret
Listing	32-1 sse_string2_imp.asm

As	usual,	we	first	print	the	strings;	we	then	call	a	function,	pstrcmp	,	to
compare	the	strings.	The	essential	information	is	in	the	function	pstrcmp.
The	control	byte	is	0x18	or	00011000,	that	is,	from	right	to	left:	packed
integer	bytes,	equal	each,	negative	polarity,	and	ecx,	which	contains	the
index	to	the	first	occurrence.	The	instruction	pcmpistri	makes	use	of	the
flags;	you	can	find	the	following	in	the	Intel	manuals:

CFlag:	Reset	if	IntRes2	is	equal	to	zero;	set	otherwise.

ZFlag:	Set	if	any	byte/word	of	xmm2/mem128	is	null;	reset	otherwise.

SFlag:	Set	if	any	byte/word	of	xmm1	is	null;	reset	otherwise.

OFlag:	IntRes2[0].

AFlag:	Reset.

PFlag:	Reset.

In	the	example,	pcmpistri	puts	a	1	for	every	match	into	the
corresponding	position	in	IntRes1.	When	a	differing	byte	is	found,	a	zero	is
written	in	the	corresponding	position	in	IntRes1.	Then	IntRes2	is	formed
and	applies	negative	polarity	to	IntRes1.	IntRes2	will	contain	a	1	at	the
differing	index	(negative	polarity),	so	IntRes2	will	not	be	zero,	and	CF	will
be	set	to	1.	The	loop	will	then	be	interrupted,	and	pstrcmp	will	return	with
the	position	of	the	differing	character	in	rax.	If	CF	is	not	set	but
pcmpistri	detects	the	terminating	zero,	the	function	will	return	with	0	in
rax.

Figure	32-1	shows	the	output.

Figure	32-1 sse_string2_imp.asm	output

Explicit	Length
Most	of	the	time	we	use	strings	with	implicit	lengths,	but	Listing	32-2	shows
an	example	of	strings	with	explicit	lengths.

;	sse_string3_exp.asm

;	compare	strings	explicit	length

extern	printf

section	.data

string1						db						“the	quick	brown	fox	jumps
over	the	“

db						“lazy	river”

string1Len	equ	$	-	string1

string2						db						“the	quick	brown	fox	jumps
over	the	“

db						“lazy	river”

string2Len	equ	$	-	string2

dummy		db	“confuse	the	world”

string3						db						“the	quick	brown	fox	jumps
over	the	“

db						“lazy	dog”

string3Len	equ	$	-	string3

fmt1		db	“Strings	1	and	2	are	equal.”,10,0

fmt11	db	“Strings	1	and	2	differ	at	position
%i.”,10,0

fmt2		db	“Strings	2	and	3	are	equal.”,10,0

fmt22	db	“Strings	2	and	3	differ	at	position

%i.”,10,0

section	.bss

buffer	resb	64

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	compare	string	1	and	2

mov						rdi,	string1

mov						rsi,	string2

mov						rdx,	string1Len

mov						rcx,	string2Len

call					pstrcmp

push					rax				;push	result	on	stack	for	later
use

;	print	the	string1	and	2	and	the	result

;––––––––––––––––––––-

;	first	build	the	string	with	newline	and
terminating	0

;	string1

mov						rsi,string1

mov						rdi,buffer

mov						rcx,string1Len

rep						movsb

mov						byte[rdi],10	;	add	NL	to	buffer

inc						rdi										;	add	terminating	0	to
buffer

mov						byte[rdi],0

;print

mov						rdi,	buffer

xor						rax,rax

call					printf

;	string2

mov						rsi,string2

mov						rdi,buffer

mov						rcx,string2Len

rep						movsb

mov						byte[rdi],10	;	add	NL	to	buffer

inc						rdi										;	add	terminating	0	to
buffer

mov						byte[rdi],0

;print

mov						rdi,	buffer

xor						rax,rax

call					printf

;––––––––––––––––––––-

;	now	print	the	result	of	the	comparison

pop						rax					;recall	the	return	value

mov						rdi,fmt1

cmp						rax,0

je							eql1

mov						rdi,fmt11

	eql1:

mov						rsi,	rax

xor						rax,rax

call					printf

;––––––––––––––––––––-

;––––––––––––––––––––-

;	compare	string	2	and	3

mov						rdi,	string2

mov						rsi,	string3

mov						rdx,	string2Len

mov						rcx,	string3Len

call					pstrcmp

push					rax

;	print	the	string3	and	the	result

;––––––––––––––––––––-

;	first	build	the	string	with	newline	and
terminating	0

;	string3

mov						rsi,string3

mov						rdi,buffer

mov						rcx,string3Len

rep						movsb

mov						byte[rdi],10	;	add	NL	to	buffer

inc						rdi										;	add	terminating	0	to
buffer

mov						byte[rdi],0

;print

mov						rdi,	buffer

xor						rax,rax

call					printf

;––––––––––––––––––––-

;	now	print	the	result	of	the	comparison

pop						rax																		;	recall	the	return
value

mov						rdi,fmt2

cmp						rax,0

je							eql2

mov						rdi,fmt22

eql2:

mov						rsi,	rax

xor						rax,rax

call					printf

;	exit

leave

ret

;––––––––––––––––––––-

pstrcmp:

push			rbp

mov				rbp,rsp

xor					rbx,	rbx

mov					rax,rdx									;rax	contains	length	of
1st	string

mov					rdx,rcx									;rdx	contains	length	of
2nd	string

xor					rcx,rcx									;rcx	as	index

.loop:

movdqu						xmm1,	[rdi	+	rbx]

pcmpestri	xmm1,	[rsi	+	rbx],	0x18	;	equal
each|neg.	polarity

jc					.differ

jz					.equal

add				rbx,	16

sub				rax,16

sub				rdx,16

jmp				.loop

.differ:

mov				rax,rbx

add				rax,rcx					;	rcx	contains	the	differing
position

inc				rax									;	because	the	counter	starts	at
0

jmp				exit

.equal:

xor				rax,rax

exit:

leave

ret
Listing	32-2 sse_string3_exp.asm.

As	you	can	see,	using	explicit	length	can	sometimes	complicate	things.
Then	why	use	it?	Many	communication	protocols	use	it,	or	your	application
may	require	that	you	use	0s	in	your	data.	One	way	or	another	we	have	to
provide	the	length	of	the	strings.	In	our	case,	we	computed	the	length	of	the
strings	from	the	memory	locations	in	section.	data.	However,	printf
expects	zero-terminated	strings.	So,	after	we	demonstrate	how	to	compare
strings	with	explicit	lengths,	we	rebuild	the	strings	in	a	buffer,	add	a	newline
and	a	terminating	null	in	the	buffer,	and	hand	over	the	buffer	to	printf.

Now	take	a	look	at	pstrcmp,	the	compare	function.	The	length	of	the
first	string	goes	into	rax,	and	the	length	of	the	second	string	goes	into	rdx.
Then	we	start	a	loop:	we	load	the	address	of	the	16-byte	block	into	an	xmm1
register	and	call	pcmpestri,	with	control	byte	0x18	as	before.	Next,	let’s
at	the	flags;	you	can	find	the	following	in	the	Intel	manuals:

CFlag:	Reset	if	IntRes2	is	equal	to	zero;	set	otherwise.

ZFlag:	Set	if	absolute	value	of	EDX	is	less	than	16	(8);	reset	otherwise.

SFlag:	Set	if	absolute	value	of	EAX	is	less	than	16	(8);	reset	otherwise.

OFlag:	IntRes2[0].

AFlag:	Reset.

PFlag:	Reset.

Note	that	pcmpestri	and	pcmpistri	use	ZF	and	SF	differently.
Instead	of	ZF	signaling	a	terminating	null,	at	every	loop	we	decrease	rax	and
rdx,	and	when	one	of	them	goes	below	16,	the	loop	is	terminated.

Figure	32-2	shows	the	output.

Figure	32-2 sse_string3_exp.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

Implicit	and	explicit	string	lengths

Negative	polarity

Using	flags

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_33

33.	Do	the	Shuffle!
Jo	Van	Hoey1	

Hamme,	Belgium

	
With	the	unmasked	string	instructions,	we	have	a	few	options.	We	can	find	a
first	or	last	occurrence	of	a	character,	but	finding	all	occurrences	is	more
challenging.	We	can	compare	strings	and	find	a	difference,	but	finding	all
differences	is	more	complicated.	Luckily,	we	also	have	string	instructions	that
use	masks,	which	makes	them	much	more	powerful.	But	before	diving	into
mask	instructions,	we	need	to	look	at	shuffling.

A	First	Look	at	Shuffling
Shuffling	means	moving	around	packed	values.	The	moving	can	be	within	the
same	xmm	register	or	from	one	xmm	register	to	another	xmm	register,	or	it
can	be	from	a	128-bit	memory	location	to	an	xmm	register.

Listing	33-1	shows	the	example	code.

;	shuffle.asm

extern	printf

section	.data

fmt0		db	“These	are	the	numbers	in	memory:	“,10,0

fmt00	db	“This	is	xmm0:	“,10,0

fmt1		db	“%d	“,0

fmt2		db	“Shuffle-broadcast	double	word	%i:”,10,0

fmt3		db	“%d	%d	%d	%d”,10,0

fmt4		db	“Shuffle-reverse	double	words:”,10,0

fmt5		db	“Shuffle-reverse	packed	bytes	in
xmm0:”,10,0

https://doi.org/10.1007/978-1-4842-5076-1_33

fmt6		db	“Shuffle-rotate	left:”,10,0

fmt7		db	“Shuffle-rotate	right:”,10,0

fmt8		db	“%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c”,10,0

fmt9		db	“Packed	bytes	in	xmm0:”,10,0

NL				db	10,0

number1					dd	1

number2					dd	2

number3					dd	3

number4					dd	4

char		db	“abcdefghijklmnop”

bytereverse	db
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

sub		rsp,32					;stackspace	for	the	original	xmm0

;and	for	the	modified	xmm0

;	SHUFFLING	DOUBLE	WORDS

;	first	print	the	numbers	in	reverse

mov			rdi,	fmt0

call		printf

mov			rdi,	fmt1

mov			rsi,	[number4]

xor			rax,rax

call		printf

mov			rdi,	fmt1

mov			rsi,	[number3]

xor			rax,rax

call		printf

mov			rdi,	fmt1

mov			rsi,	[number2]

xor			rax,rax

call		printf

mov			rdi,	fmt1

mov			rsi,	[number1]

xor			rax,rax

call		printf

mov			rdi,	NL

call		printf

;	build	xmm0	with	the	numbers

pxor						xmm0,xmm0

pinsrd				xmm0,	dword[number1],0

pinsrd				xmm0,	dword[number2],1

pinsrd				xmm0,	dword[number3],2

pinsrd				xmm0,	dword[number4],3

movdqu				[rbp-16],xmm0			;save	xmm0	for	later	use

mov							rdi,	fmt00

call						printf										;print	title

movdqu				xmm0,[rbp-16]			;restore	xmm0	after
printf

call						print_xmm0d					;print	xmm0

movdqu				xmm0,[rbp-16]			;restore	xmm0	after
printf

;	SHUFFLE-BROADCAST

;	shuffle:	broadcast	least	significant	dword	(index
0)

movdqu				xmm0,[rbp-16]									;restore	xmm0

pshufd				xmm0,xmm0,00000000b			;shuffle

mov							rdi,fmt2

mov							rsi,	0																;print	title

movdqu				[rbp-32],xmm0									;printf	destroys
xmm0

call						printf

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

call						print_xmm0d						;print	the	content	of
xmm0

;	shuffle:	broadcast	dword	index	1

movdqu				xmm0,[rbp-16]									;restore	xmm0

pshufd				xmm0,xmm0,01010101b			;shuffle

mov							rdi,fmt2

mov							rsi,	1																;print	title

movdqu				[rbp-32],xmm0									;printf	destroys
xmm0

call						printf

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

call						print_xmm0d						;print	the	content	of
xmm0

;	shuffle:	broadcast	dword	index	2

movdqu				xmm0,[rbp-16]									;restore	xmm0

pshufd				xmm0,xmm0,10101010b			;shuffle

mov							rdi,fmt2

mov							rsi,	2																;print	title

movdqu				[rbp-32],xmm0									;printf	destroys
xmm0

call						printf

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

call						print_xmm0d						;print	the	content	of
xmm0

;	shuffle:	broadcast	dword	index	3

movdqu				xmm0,[rbp-16]									;restore	xmm0

pshufd				xmm0,xmm0,11111111b			;shuffle

mov							rdi,fmt2

mov							rsi,	3																;print	title

movdqu				[rbp-32],xmm0									;printf	destroys
xmm0

call						printf

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

call						print_xmm0d						;print	the	content	of
xmm0

;	SHUFFLE-REVERSE

;	reverse	double	words

movdqu				xmm0,[rbp-16]									;restore	xmm0

pshufd				xmm0,xmm0,00011011b			;shuffle

mov							rdi,fmt4														;print	title

movdqu				[rbp-32],xmm0									;printf	destroys
xmm0

call						printf

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

call						print_xmm0d						;print	the	content	of
xmm0

;	SHUFFLE-ROTATE

;	rotate	left

movdqu				xmm0,[rbp-16]									;restore	xmm0

pshufd				xmm0,xmm0,10010011b			;shuffle

mov							rdi,fmt6														;print	title

movdqu				[rbp-32],xmm0									;printf	destroys
xmm0

call						printf

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

call						print_xmm0d						;print	the	content	of
xmm0

;	rotate	right

movdqu				xmm0,[rbp-16]									;restore	xmm0

pshufd				xmm0,xmm0,00111001b			;shuffle

mov							rdi,fmt7														;print	title

movdqu				[rbp-32],xmm0									;printf	destroys
xmm0

call						printf

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

call						print_xmm0d						;print	the	content	of
xmm0

;SHUFFLING	BYTES

mov							rdi,	fmt9

call						printf											;print	title

movdqu				xmm0,[char]						;load	the	character	in
xmm0

movdqu				[rbp-32],xmm0				;printf	destroys	xmm0

call						print_xmm0b						;print	the	bytes	in
xmm0

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

movdqu				xmm1,[bytereverse]				;load	the	mask

pshufb				xmm0,xmm1													;shuffle	bytes

mov							rdi,fmt5														;print	title

movdqu				[rbp-32],xmm0									;printf	destroys

xmm0

call						printf

movdqu				xmm0,[rbp-32]				;restore	xmm0	after
printf

call						print_xmm0b						;print	the	content	of
xmm0

leave

ret

;function	to	print	double	words––––––—

print_xmm0d:

push		rbp

mov			rbp,rsp

mov							rdi,	fmt3

xor							rax,rax

pextrd				esi,	xmm0,3				;extract	the	double	words

pextrd				edx,	xmm0,2				;in	reverse,	little
endian

pextrd				ecx,	xmm0,1

pextrd				r8d,	xmm0,0

call						printf

leave

ret

;function	to	print	bytes–––––––––

print_xmm0b:

push		rbp

mov			rbp,rsp

mov							rdi,	fmt8

xor							rax,rax

pextrb				esi,	xmm0,0				;in	reverse,	little
endian

pextrb				edx,	xmm0,1				;use	registers	first	and

pextrb				ecx,	xmm0,2				;then	the	stack

pextrb				r8d,	xmm0,3

pextrb				r9d,	xmm0,4

pextrb				eax,	xmm0,15

push		rax

pextrb				eax,	xmm0,14

push		rax

pextrb				eax,	xmm0,13

push		rax

pextrb				eax,	xmm0,12

push		rax

pextrb				eax,	xmm0,11

push		rax

pextrb				eax,	xmm0,10

push		rax

pextrb				eax,	xmm0,9

push		rax

pextrb				eax,	xmm0,8

push		rax

pextrb				eax,	xmm0,7

push		rax

pextrb				eax,	xmm0,6

push		rax

pextrb				eax,	xmm0,5

push		rax

xor							rax,rax

call		printf

leave

ret
Listing	33-1 shuffle.asm

First,	we	reserve	space	on	the	stack	for	variables	of	128	bytes.	We	need
this	space	for	“pushing”	xmm	registers	on	the	stack.	We	cannot	use	the
standard	push/pop	instructions	with	xmm	registers;	we	must	use	memory
addressing	to	copy	them	to	and	from	the	stack.	We	use	rbp,	the	base	pointer,
as	a	point	of	reference.

We	print	the	numbers	we	will	use	as	packed	values.	Then	we	load	the
numbers	as	double	words	into	xmm0	with	the	instruction	pinsrd	(which
means	“packed	insert	double”).	We	save	(push)	xmm0	as	a	local	stack	variable
with	the	instruction	movdqu	[rbp-16],xmm0.	(We	reserved	space	for
this	local	variable	at	the	start	of	the	program.)	Every	time	we	execute
printf,	xmm0	will	be	modified,	intentionally	or	not.	So,	we	have	to
preserve	and	restore	the	original	value	of	xmm0	if	needed.	The	instruction
movdqu	is	used	to	move	unaligned	packed	integer	values.	To	help	visualize
the	results	of	the	shuffling,	we	take	into	account	little-endian	formatting	when
printing.	Doing	so	will	show	you	xmm0,	as	you	can	see	in	a	debugger	such	as
SASM.

To	shuffle,	we	need	a	destination	operand,	a	source	operand,	and	a	shuffle
mask.	The	mask	is	an	8-bit	immediate.	We	will	discuss	some	useful	examples
of	shuffling	and	the	respective	masks	in	the	following	sections.

Shuffle	broadcast

Shuffle	reverse

Shuffle	rotate

Shuffle	Broadcast
A	picture	can	make	everything	more	understandable.	Figure	33-1	shows	four
examples	of	shuffle	broadcast.

Figure	33-1 Shuffle	broadcast

In	the	figure,	the	source	and	target	are	both	xmm0.	The	lowest	significant
double	word,	d0,	is	specified	in	the	mask	as	00b.	The	second	lowest,	d1,	is

specified	as	01b.	The	third,	d2,	is	specified	as	10b.	The	fourth,	d3,	is
specified	as	11b.	The	binary	mask	10101010b,	or	aah	in	hexadecimal,
works	as	follows:	put	d2	(10b)	in	the	four	target	packed	double-word
positions.	Similarly,	the	mask	11111111b	would	place	d3	(11b)	in	the	four
target	packed	double	word	positions.

When	you	study	the	code,	you	will	see	the	following	simple	shuffle
instruction:

pshufd
xmm0,xmm0,10101010b

We	accomplish	a	broadcast	of	the	third-lowest	element	in	xmm0.	Because
the	function	printf	modifies	xmm0,	we	need	to	save	the	content	of	xmm0	by
storing	it	to	memory	before	calling	printf.	In	fact,	we	need	to	do	more	work	to
protect	the	content	of	xmm0	than	to	do	the	shuffling	itself.	

Of	course,	you	are	not	limited	to	the	four	masks	we	presented	here;	you
can	create	any	8-bit	mask	and	mix	and	shuffle	as	you	like.

Shuffle	Reverse
Figure	33-2	shows	the	schematic	overview	of	a	shuffle	reverse.

Figure	33-2 Shuffle	reverse

The	mask	is	00011011b	or	1bh,	and	that	translates	to	the	following:

11	(value	in	d3)	goes	into	position	0

01	(value	in	d2)	goes	into	position	1

10	(value	in	d1)	goes	into	position	2

00	(value	in	d0)	goes	into	position	3

As	you	can	see	in	the	example	code,	this	is	simple	to	code	in	assembly
language,	as	shown	here:

pshufd
xmm0,xmm0,1bh

Shuffle	Rotate
There	are	two	versions	of	shuffle	rotate:	rotate	left	and	rotate	right.	It	just	a
matter	of	providing	the	correct	mask	as	the	last	argument	of	the	shuffle
instruction.	Figure	33-3	shows	the	schematic	overview.

Figure	33-3 Shuffle	rotate

Here	it	is	in	assembly	language:

pshufd
xmm0,xmm0,93h

pshufd
xmm0,xmm0,39h

Shuffle	Bytes
You	can	shuffle	double	words	with	pshufd	and	words	with	pshufw.	You
can	also	shuffle	high	words	and	low	words	with	pshufhw	and	pshuflw,
respectively.	You	can	find	all	the	details	in	the	Intel	manuals.	All	these
instructions	use	a	source	operand,	a	target	operand,	and	a	mask	specified	with
an	immediate.	Providing	an	immediate	as	a	mask	has	its	limitations:	it	is
inflexible,	and	you	have	to	provide	the	mask	at	assembly	time,	not	at	runtime.

But	there	is	a	solution:	shuffle	bytes.

You	can	shuffle	bytes	with	pshufb.	This	instruction	takes	only	two
operands:	a	target	xmm	register	operand	and	a	mask	stored	in	an	xmm	register
or	128-bit	memory	location.	In	the	previous	code,	we	reversed	the	string
‘char’	with	pshufb.	We	provide	a	mask	at	memory	location
bytereverse	in	section	.data;	the	mask	demands	that	we	put	byte
15	in	position	0,	byte	14	in	position	1,	and	so	on.	We	copy	the	string	to	be
shuffled	in	xmm0	and	the	mask	in	xmm1,	so	the	shuffle	instruction	is	then	as
follows:

pshufb	xmm0,
xmm1

Then	the	magic	happens.	Remember,	the	mask	goes	in	the	second
operand;	the	source	is	the	same	as	the	destination	and	goes	in	the	first
operand.

The	nice	thing	here	is	that	we	do	not	have	to	provide	the	mask	at	assemble
time	as	an	immediate.	The	mask	can	be	built	in	xmm1	as	a	result	of	a
computation	at	runtime.

Finally,	Figure	33-4	shows	the	output	of	the	example	code.

Figure	33-4 shuffle.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

Shuffle	instructions

Shuffle	masks

Runtime	masks

How	to	use	the	stack	with	xmm	registers

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_34

34.	SSE	String	Masks
Jo	Van	Hoey1	

Hamme,	Belgium

	
Now	that	we	know	how	to	shuffle,	we	can	discuss	string	masks.

Remember	that	SSE	provides	two	string	manipulation	instructions	that	use
a	mask:	pcmpistrm	and	pcmpestrm.	We	will	be	using	implicit	length
instructions.	At	first,	using	masks	looks	complicated,	but	once	you	get	the
hang	of	it,	you	will	see	how	powerful	masking	can	be.

Searching	for	Characters
Listing	34-1,	Listing	34-4,	and	Listing	34-3	show	the	example.

;	sse_string4.asm

;	find	a	character

extern	print16b

extern	printf

section	.data

string1						db				“qdacdekkfijlmdoza”

db				“becdfgdklkmdddaf”

db				“fffffffdedeee”,10,0

string2						db				“e”,0

string3						db				“a”,0

fmt										db				“Find	all	the	characters	‘%s’	“

db				“and	‘%s’	in:”,10,0

fmt_oc							db				“I	found	%ld	characters	‘%s’”

https://doi.org/10.1007/978-1-4842-5076-1_34

db				“and	‘%s’”,10,0

NL											db				10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;print	the	search	characters

mov				rdi,	fmt

mov				rsi,	string2

mov				rdx,	string3

xor				rax,rax

call			printf

;print	the	target	string

mov				rdi,	string1

xor				rax,rax

call			printf

;	search	the	string	and	print	mask

mov				rdi,	string1

mov				rsi,	string2

mov				rdx,	string3

call			pcharsrch

;print	the	number	of	occurences	of	string2				

mov				rdi,	fmt_oc

mov				rsi,	rax

mov				rdx,	string2

mov				rcx,	string3

call			printf

;	exit

leave

ret

;––––––––––––––––––––-

;function	searching	for	and	printing	the	mask

pcharsrch:											;packed	character	search

push		rbp

mov			rbp,rsp

sub				rsp,16						;provide	stack	space	for
pushing	xmm1

xor				r12,r12					;for	the	running	total	of
occurrences

xor				rcx,rcx					;for	signaling	the	end

xor				rbx,rbx					;for	address	calculation

mov				rax,-16					;for	counting	bytes,	avoid	flag
setting

;build	xmm1,	load	the	search	character

pxor			xmm1,xmm1				;	clear	xmm1

pinsrb							xmm1,byte[rsi],0				;	first	char	at
index	0

pinsrb							xmm1,byte[rdx],1				;second	char	at
index	1

.loop:

add										rax,16							;avoid	ZF	flag	setting

mov										rsi,16							;if	no	terminating	0,
print	16	bytes

movdqu							xmm2,[rdi+rbx]						;load	16	bytes	of
the	string	in	xmm2

pcmpistrm	xmm1,xmm2,40h			;‘equal	each’	and	‘byte
mask	in	xmm0’

setz			cl																	;if	terminating	0
detected

;if	terminating	0	found,	determine	position

cmp				cl,0

je					.gotoprint				;no	terminating	0	found

;terminating	null	found

;less	than	16	bytes	left

;rdi	contains	address	of	string

;rbx	contains	#bytes	in	blocks	handled	so	far

add				rdi,rbx												;address	of	remaining
part	of	string

push			rcx																;caller	saved	(cl	in
use)

call			pstrlen												;rax	returns	the	length

pop				rcx																;caller	saved

dec				rax																;length	without	0

mov				rsi,rax												;length	of	remaining
mask	bytes

;print	the	mask

.gotoprint:

call	print_mask

;keep	running	total	of	matches

popcnt								r13d,r13d			;count	the	number	of	1
bits

add											r12d,r13d			;keep	the	number	of
occurences	in	r12d

or												cl,cl							;	terminating	0
detected?

jnz											.exit

add											rbx,16						;preprare	for	the	next
16	bytes

jmp											.loop

.exit:

mov				rdi,	NL								;add	a	newline

call			printf

mov				rax,r12								;number	of	occurences

leave

ret

;––––––––––––––––––––-

;function	for	finding	the	terminating	0

pstrlen:

push		rbp

mov			rbp,rsp

sub											rsp,16								;for	saving	xmm0

movdqu								[rbp-16],xmm0	;push	xmm0

mov											rax,	-16						;avoid	flag	setting
later

pxor										xmm0,	xmm0				;search	for	0	(end	of
string)

.loop:		add		rax,	16														;avoid	setting	ZF

pcmpistri					xmm0,	[rdi	+	rax],	0x08	;‘equal
each’

jnz											.loop									;0	found?

add											rax,	rcx						;rax	=	bytes	already
handled

;rcx	=	bytes	handled	in	terminating	loop

movdqu								xmm0,[rbp-16]	;pop	xmm0

leave

ret

;––––––––––––––––––––-

;function	for	printing	the	mask

;xmm0	contains	the	mask

;rsi	contains	the	number	of	bits	to	print	(16	or
less)

print_mask:

push		rbp

mov			rbp,rsp

sub				rsp,16																;for	saving	xmm0

call			reverse_xmm0	;little	endian

pmovmskb						r13d,xmm0					;mov	byte	mask	to	r13d

movdqu								[rbp-16],xmm1	;push	xmm1	because	of
printf

push			rdi									;rdi	contains	string1

mov				edi,r13d				;contains	mask	to	be	printed

push			rdx									;contains	the	mask

push			rcx									;contains	end	of	string	flag

call			print16b

pop				rcx

pop				rdx

pop				rdi

movdqu	xmm1,[rbp-16]	;pop	xmm1

leave

ret

;––––––––––––––––––––-

;function	for	reversing,	shuffling	xmm0

reverse_xmm0:

section	.data

;mask	for	reversing

.bytereverse	db
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

section	.text

push		rbp

mov			rbp,rsp

sub					rsp,16

movdqu	[rbp-16],xmm2

movdqu	xmm2,[.bytereverse]								;load	the	mask
in	xmm2

pshufb	xmm0,xmm2																		;do	the	shuffle

movdqu	xmm2,[rbp-16]														;pop	xmm2

leave																													;returns	the
shuffled	xmm0

ret
Listing	34-1 string4.asm

//	print16b.c

#include	<stdio.h>

#include	<string.h>

void	print16b(long	long	n,	int	length){

long	long	s,c;

int	i=0;

for	(c	=	15;	c	>=	16-length;	c—)

{

s	=	n	>>	c;

if	(s	&	1)

printf(“1”);

else

printf(“0”);

}

}
Listing	34-2 print16b.c

sse_string4:	sse_string4.o	print16b.o

gcc	-o	sse_string4	sse_string4.o	print16b.o	-no-
pie

sse_string4.o:	sse_string4.asm

nasm	-f	elf64	-g	-F	dwarf	sse_string4.asm	-l
sse_string4.lst

printb:	print16b.c

gcc	-c	print16b.c
Listing	34-3 makefile

The	main	part	of	the	program	is	quite	simple,	but	as	with	the	previous
examples,	the	program	is	complicated	by	the	fact	that	we	want	to	print	some
result	on	the	screen.	We	could	have	avoided	the	printing	parts	and	used	a
debugger	to	study	the	results	in	the	registers	and	memory.	But	coping	with	the
challenges	of	printing	is	fun,	right?

Figure	34-1	shows	the	output.

Figure	34-1 sse_string4.asm	output

In	our	example	program,	we	are	going	to	search	for	two	characters	in	a
string.	We	provide	a	string,	aptly	called	string1,	and	we	look	for	the
character	‘e’,	which	we	stored	in	string2,	and	the	character	‘a’,	stored
in	string3.

We	use	a	number	of	functions.	Let’s	first	discuss	the	function
reverse_xmm0	.	This	function	takes	xmm0	as	an	argument	and	reverses	the
order	of	the	bytes	using	a	shuffle.	By	doing	so,	we	will	be	able	to	print	xmm0
starting	with	the	least	significant	bytes	first	and	thus	print	in	little-endian
format.	That	is	why	we	presented	shuffling	in	the	previous	chapter.

We	also	have	a	function	to	measure	the	length	of	a	string:	pstrln	.	We
need	this	because	we	will	be	reading	16-byte	blocks.	The	last	block	will
probably	not	contain	16-bytes,	so	for	the	last	block,	we	need	to	determine	the
position	of	the	terminating	0.	This	will	help	us	to	print	a	mask	that	has	the
same	length	as	the	string.

Our	custom	function	pcharsrch,	which	takes	the	three	strings	as
arguments,	is	where	the	action	takes	place.	In	the	function	we	first	do	some
housekeeping	such	as	initializing	registers.	Register	xmm1	will	be	used	as	a
mask;	we	store	the	characters	to	search	for	in	xmm1	with	the	instruction
pinsrb	(packed	insert	bytes).	Then	we	start	looping,	copying	each	time	16

bytes	of	string1	in	xmm2,	in	search	of	our	character,	or	the	terminating
null.	We	use	the	masking	instruction	pcmpistrm	(packed	compare	implicit
length	string	with	a	mask).	The	pcmpistrm	instruction	takes	as	a	third
operand	an	immediate	control	byte	specifying	what	to	do,	in	this	case	“equal
any”	and	a	“byte	mask	in	xmm0.”	So,	we	will	be	looking	for	“any”	character
that	“equals”	our	search	strings.	For	every	matching	character	in	xmm2,	the
bit	in	xmm0	that	corresponds	to	the	position	of	the	matching	character	in
xmm2	will	be	set	to	1.	The	pcmpistrm	instruction	does	not	have	xmm0	as
an	operand,	but	it	is	used	implicitly.	The	return	mask	will	always	be	kept	in
xmm0.

The	difference	with	pcmistri	is	that	pcmistri	would	return	an	index
of	1,	matching	the	position	in	ecx.	But	pcmpistrm	will	return	all	matching
positions	in	xmm0	for	the	16-byte	block.	That	allows	you	to	drastically	cut
down	on	the	number	of	steps	to	execute	in	order	to	find	all	matches.

You	can	use	a	bit	mask	or	a	byte	mask	for	xmm0	(set	or	clear	bit	6	in	the
control	byte).	We	used	a	byte	mask	so	that	you	can	read	the	xmm0	register
more	easily	with	a	debugger,	two	ffs	in	xmm0	indicate	a	byte	with	all	the	bits
set	to	1.

After	the	first	16-byte	block	is	investigated,	we	verify	whether	we	have
found	a	terminating	0	and	store	the	result	of	the	verification	in	cl	for	later
use.	We	want	to	print	the	mask	stored	in	xmm0	with	the	function
print_mask.	In	the	debugger,	notice	that	the	byte	mask	is	reversed	in
xmm0,	because	of	the	little-endian	format.	So,	before	printing,	we	have	to
reverse	it;	that	is	what	we	do	in	our	function	reverse_xmm0.	Then	we	call
our	C	function	print16b	to	print	the	reversed	mask.	However,	we	cannot
provide	xmm0	as	an	argument	to	print16b,	because	under	the	covers
print16b	is	using	printf,	and	printf	will	interpret	xmm0	as	a	floating-
point	value,	not	a	byte	mask.	So,	before	calling	print16b,	we	transfer	the
bit	mask	in	xmm0	to	r13d,	with	the	instruction	pmovmksb	(which	means
“move	byte	mask”).	We	will	use	r13d	later	for	counting;	for	printing	we
copy	it	to	edi.	We	store	xmm1	on	the	stack	for	later	use.

We	call	the	C	function	print16b	to	print	the	mask.	This	function	takes
edi	(the	mask)	and	rsi	(length,	passed	from	the	caller)	as	arguments.

Upon	returning	to	pcharsrch,	we	count	the	number	of	1s	in	r13d	with
the	instruction	popcnt	and	update	the	counter	in	r12d.	We	also	determine
whether	we	have	to	exit	the	loop	because	a	terminating	null	was	detected	in
the	block	of	bytes.

Before	calling	print_mask,	when	a	terminating	0	is	found,	the	relevant
length	of	the	last	block	is	determined	with	the	function	pstrlen.	The	start
address	of	that	block	is	determined	by	adding	rbx,	containing	the	already
screened	bytes	from	previous	blocks,	to	rdi,	the	address	of	string1.	The
string	length,	returned	in	rax,	is	used	to	compute	the	number	of	remaining
mask	bytes	in	xmm0	that	are	passed	in	rsi	to	print.

Isn’t	printing	a	lot	of	fun?

Don’t	be	overwhelmed	by	the	printing	stuff.	Concentrate	first	on	how
masks	work,	which	is	the	main	purpose	of	this	chapter.

What	can	we	do	with	a	mask	returned	by	pcmpistrm?	Well,	the
resulting	mask	can	be	used,	for	example,	to	count	all	the	occurrences	of	a
search	argument	or	to	find	all	occurrences	and	replace	them	with	something
else,	creating	your	own	find-and-replace	functionality.

Now	let’s	look	at	another	search.

Searching	for	a	Range	of	Characters
A	range	can	be	any	number	of	characters	to	search	for,	e.g.,	all	uppercase
characters,	all	characters	between	a	and	k,	all	characters	that	represent	digits,
and	so	on.

Listing	34-4	shows	how	to	search	a	string	for	uppercase	characters.

;	sse_string5.asm

;	find	a	range	of	characters

extern	print16b

extern	printf

section	.data

string1						db				“eeAecdkkFijlmeoZa”

db				“bcefgeKlkmeDad”

db				“fdsafadfaseeE”,10,0

startrange			db				“A”,10,0						;look	for
uppercase

stoprange				db				“Z”,10,0

NL											db				10,0

fmt										db				“Find	the	uppercase	letters
in:”,10,0

fmt_oc							db				“I	found	%ld	uppercase
letters”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;first	print	the		string

mov				rdi,	fmt								;title

xor				rax,rax

call			printf

mov				rdi,	string1				;string

xor				rax,rax

call			printf

;	search	the	string

mov				rdi,	string1

mov				rsi,	startrange

mov				rdx,	stoprange

call			prangesrch

;	print	the	number	of	occurences

mov				rdi,	fmt_oc

mov				rsi,	rax

xor				rax,			rax

call			printf

leave

ret

;––––––––––––––––––––-

;function	searching	for	and	printing	the	mask

prangesrch:													;packed	range	search

push		rbp

mov			rbp,rsp

sub				rsp,16					;room	for	pushing	xmm1

xor				r12,r12				;for	the	number	of	occurences

xor				rcx,rcx				;for	signaling	the	end

xor				rbx,rbx				;for	address	calculation

mov				rax,-16				;avoid	ZF	flag	setting

;build	xmm1

pxor									xmm1,xmm1		;	make	sure	everything	is
cleared

pinsrb							xmm1,byte[rsi],0	;startrange	at	index
0

pinsrb							xmm1,byte[rdx],1	;stoprange	at	index
1

.loop:

add										rax,16

mov										rsi,16	;if	no	terminating	0,	print	16
bytes

movdqu							xmm2,[rdi+rbx]

pcmpistrm				xmm1,xmm2,01000100b	;	equal	each|byte
mask	in	xmm0

setz									cl								;terminating	0	detected

;if	terminating	0	found,	determine	position

cmp				cl,0

je					.gotoprint				;no	terminating	0	found

;terminating	null	found

;less	than	16	bytes	left

;rdi	contains	address	of	string

;rbx	contains	#bytes	in	blocks	handled	so	far

add				rdi,rbx												;take	only	the	tail	of
the	string

push			rcx																;caller	saved	(cl	in
use)

call			pstrlen												;determine	the	position
of	the	0

pop				rcx																;caller	saved

dec				rax																;length	without	0

mov				rsi,rax												;bytes	in	tail

;print	the	mask

.gotoprint:

call	print_mask

;keep	running	total	of	matches

popcnt	r13d,	r13d				;count	the	number	of	1	bits

add				r12d,	r13d				;keep	the	number	of
occurences	in	r12

or					cl,cl									;terminating	0	detected?

jnz				.exit

add				rbx,16								;prepare	for	next	block

jmp			.loop

.exit:

mov				rdi,	NL

call			printf

mov				rax,	r12	;return	the	number	of	occurences

leave

ret

;––––––––––––––––––––-

pstrlen:

push		rbp

mov			rbp,rsp

sub											rsp,16								;for	pushing	xmm0

movdqu								[rbp-16],xmm0	;push	xmm0

mov							rax,	-16										;avoid	ZF	flag	setting
later

pxor						xmm0,	xmm0								;search	for	0	(end	of
string)

.loop:

add				rax,	16						;	avoid	setting	ZF	when	rax	=
0	after	pcmpistri

pcmpistri					xmm0,	[rdi	+	rax],	0x08	;‘equal
each’

jnz											.loop								;0	found?

add								rax,	rcx								;rax	=	bytes	already
handled

;rcx	=	bytes	handled	in	terminating	loop

movdqu									xmm0,[rbp-16]						;pop	xmm0

leave

ret

;––––––––––––––––––––-

;function	for	printing	the	mask

;xmm0	contains	the	mask

;rsi	contains	the	number	of	bits	to	print	(16	or
less)

print_mask:

push		rbp

mov			rbp,rsp

sub										rsp,16													;for	saving	xmm0

call									reverse_xmm0							;little	endian

pmovmskb					r13d,xmm0										;mov	byte	mask	to
r13d

movdqu							[rbp-16],xmm1						;push	xmm1	because
of	printf

push									rdi																;rdi	contains
string1

mov										edi,	r13d										;contains	mask	to
be	printed

push									rdx																;contains	the	mask

push									rcx																;contains	end	of
string	flag

call									print16b

pop										rcx

pop										rdx

pop										rdi

movdqu							xmm1,[rbp-16]	;pop	xmm1

leave

ret

;––––––––––––––––––––-

;function	for	reversing,	shuffling	xmm0

reverse_xmm0:

section	.data

;mask	for	reversing

.bytereverse	db
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

section	.text

push		rbp

mov			rbp,rsp

sub					rsp,16

movdqu	[rbp-16],xmm2

movdqu	xmm2,[.bytereverse]								;load	the	mask
in	xmm2

pshufb	xmm0,xmm2																		;do	the	shuffle

movdqu	xmm2,[rbp-16]														;pop	xmm2

leave																														;returns	the

shuffled	xmm0

ret
Listing	34-4 string5.asm

This	program	is	almost	entirely	the	same	as	the	previous	one;	we	just	gave
string2	and	string3	more	meaningful	names.	Most	important,	we
changed	the	control	byte	that	is	handed	to	pcmpistrm	to	01000100b,
which	means	“equal	range”	and	“mask	byte	in	xmm0.”

The	print	handling	is	the	same	as	in	the	previous	section.

Figure	34-2	shows	the	output.

Figure	34-2 sse_string5.asm	output

Let’s	see	one	more	example.

Searching	for	a	Substring
Listing	34-5	shows	the	code.

;	sse_string6.asm

;	find	a	substring

extern	print16b

extern	printf

section	.data

string1						db				“a	quick	pink	dinosour	jumps
over	the	“

db				“lazy	river	and	the	lazy	dinosour	“

db				“doesn’t	mind”,10,0

string2						db				“dinosour”,0

NL											db				10,0

fmt										db				“Find	the	substring	‘%s’

in:”,10,0

fmt_oc							db				“I	found	%ld	%ss”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;first	print	the	strings

mov				rdi,	fmt

mov				rsi,	string2

xor				rax,rax

call			printf

mov				rdi,	string1

xor				rax,rax

call			printf

;	search	the	string

mov				rdi,	string1

mov				rsi,	string2

call			psubstringsrch

;print	the	number	of	occurences	of	the	substring

mov				rdi,	fmt_oc

mov				rsi,	rax

mov				rdx,	string2

call			printf

leave

ret

;––––––––––––––––––––-

;function	searching	substringand	printing	the	mask

psubstringsrch:									;packed	substring	search

push		rbp

mov			rbp,rsp

sub				rsp,16					;room	for	saving	xmm1

xor				r12,r12				;running	total	of	occurences

xor				rcx,rcx				;for	signaling	the	end

xor				rbx,rbx				;for	address	calculation

mov				rax,-16				;avoid	ZF	flag	setting

;build	xmm1,	load	substring

pxor			xmm1,xmm1

movdqu	xmm1,[rsi]

.loop:

add				rax,16				;	avoid	ZF	flag	setting

mov				rsi,16				;if	no	0,	print	16	bytes

movdqu	xmm2,[rdi+rbx]

pcmpistrm	xmm1,xmm2,01001100b	;‘equal
ordered’|‘byte	mask	in	xmm0’

setz			cl			;	terminating	0	detected

;if	terminating	0	found,	determine	position

cmp				cl,0

je					.gotoprint				;	no	terminating	0	found

;terminating	null	found

;less	than	16	bytes	left

;rdi	contains	address	of	string

;rbx	contains	#bytes	in	blocks	handled	so	far

add				rdi,rbx												;take	only	the	tail	of
the	string

push			rcx																;caller	saved	(cl	in
use)

call			pstrlen												;rax	returns	the

position	of	the	0

push			rcx																;caller	saved	(cl	in
use)

dec				rax																;length	without	0

mov				rsi,rax												;length	of	remaining
bytes

;print	the	mask

.gotoprint:

call	print_mask

;keep	running	total	of	matches

popcnt	r13d,r13d				;count	the	number	of	1	bits

add				r12d,r13d				;keep	the	number	of	occurences
in	r12

or					cl,cl								;terminating	0	detected?

jnz				.exit

add				rbx,16							;prepare	for	next	block

jmp				.loop

.exit:

mov				rdi,	NL

call			printf

mov				rax,	r12	;return	the	number	of	occurences

leave

ret

;––––––––––––––––––––-

pstrlen:

push		rbp

mov			rbp,rsp

sub				rsp,16								;for	pushing	xmm0

movdqu	[rbp-16],xmm0	;push	xmm0

mov				rax,	-16												;avoid	ZF	flag	setting

later

pxor			xmm0,	xmm0				;search	for	0	(end	of	string)

.loop:

add				rax,	16							;	avoid	setting	ZF	when	rax	=
0	after	pcmpistri

pcmpistri				xmm0,	[rdi	+	rax],	0x08	;‘equal	each’

jnz				.loop									;0	found?

add				rax,	rcx						;rax	=	bytes	already	handled

;rcx	=	bytes	handled	in	terminating	loop

movdqu	xmm0,[rbp-16]	;pop	xmm0

leave

ret

;––––––––––––––––––––-

;function	for	printing	the	mask

;xmm0	contains	the	mask

;rsi	contains	the	number	of	bits	to	print	(16	or
less)

print_mask:

push		rbp

mov			rbp,rsp

sub										rsp,16								;for	saving	xmm0

call									reverse_xmm0		;little	endian

pmovmskb					r13d,xmm0					;mov	byte	mask	to	edx

movdqu							[rbp-16],xmm1	;push	xmm1	because	of
printf

push									rdi											;rdi	contains	string1

mov										edi,r13d						;contains	mask	to	be
printed

push									rdx											;contains	the	mask

push									rcx											;contains	end	of	string
flag

call									print16b

pop										rcx

pop										rdx

pop										rdi

movdqu							xmm1,[rbp-16]	;pop	xmm1

leave

ret

;––––––––––––––––––––-

;function	for	reversing,	shuffling	xmm0

reverse_xmm0:

section	.data

;mask	for	reversing

.bytereverse	db
15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

section	.text

push		rbp

mov			rbp,rsp

sub					rsp,16

movdqu	[rbp-16],xmm2

movdqu	xmm2,[.bytereverse]	;load	the	mask	in	xmm2

pshufb	xmm0,xmm2											;do	the	shuffle

movdqu	xmm2,[rbp-16]							;pop	xmm2

leave																												;returns	the
shuffled	xmm0

ret
Listing	34-5 string6.asm

We	used	almost	the	same	code	as	before;	we	only	changed	the	strings,	and
the	control	byte	contains	“equal	ordered”	and	“byte	mask	in	xmm0.”	Pretty
easy,	isn’t	it?

Figure	34-3	shows	the	output.

Figure	34-3 sse_string6.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

Using	string	masks

Searching	for	characters,	ranges,	and	substrings

Printing	masks	from	xmm	registers

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_35

35.	AVX
Jo	Van	Hoey1	

Hamme,	Belgium

	
Advanced	Vector	Extensions	(AVX)	is	an	extension	of	SSE.	Whereas	SSE
provides	16	xmm	registers,	each	128	bits	wide,	AVX	offers	16	ymm	registers,
each	256	bits	wide.	The	lower	half	of	each	ymm	register	is	in	fact	the
corresponding	xmm	register.	The	xmm	registers	are	aliases	of	the	ymm
registers.	AVX-512	is	a	further	extension	offering	32	zmm	registers,	each	512
bits	wide.

In	addition	to	these	registers,	AVX	extends	the	SSE	instructions	and
provides	a	whole	range	of	additional	new	instructions.	After	you	work	your
way	through	the	SSE	chapters	in	this	book,	you	will	not	find	it	too	difficult	to
navigate	the	large	number	of	SSE	and	AVX	instructions.

In	this	chapter,	we	will	first	explain	which	AVX	version	is	supported	by
the	processor,	and	then	we	will	show	an	example	program.

Test	for	AVX	Support
Listing	35-1	shows	a	program	to	find	out	whether	your	CPU	supports	AVX.

;	cpu_avx.asm

extern	printf

section	.data

fmt_noavx				db						“This	cpu	does	not	support
AVX.”,10,0

fmt_avx						db						“This	cpu	supports	AVX.”,10,0

fmt_noavx2			db						“This	cpu	does	not	support
AVX2.”,10,0

fmt_avx2					db						“This	cpu	supports

https://doi.org/10.1007/978-1-4842-5076-1_35

AVX2.”,10,0

fmt_noavx512	db						“This	cpu	does	not	support
AVX-512.”,10,0

fmt_avx512			db						“This	cpu	supports	AVX-
512.”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

call			cpu_sse							;	returns	1	in	rax	if	AVX
supported,	otherwise	0

leave

ret

cpu_sse:

push		rbp

mov			rbp,rsp

;test	for	avx

mov				eax,1									;	request	CPU	feature	flags

cpuid

mov				eax,28								;	test	bit	28	in	ecx

bt					ecx,eax

jnc				no_avx

xor				rax,rax

mov				rdi,fmt_avx

call			printf

;test	for	avx2

mov				eax,7									;	request	CPU	feature	flags

mov				ecx,0

cpuid

mov				eax,5									;	test	bit	5	in	ebx

bt					ebx,eax

jnc				the_exit

xor				rax,rax

mov				rdi,fmt_avx2

call			printf

;test	for	avx512	foundation

mov				eax,7									;	request	CPU	feature	flags

mov				ecx,0

cpuid

mov				eax,16								;	test	bit	16	in	ebx

bt					ebx,eax

jnc				no_avx512

xor				rax,rax

mov				rdi,fmt_avx512

call			printf

jmp				the_exit

no_avx:

mov				rdi,fmt_noavx

xor				rax,rax

call			printf								;	displays	message	if	AVX	not
available

xor				rax,rax							;	returns	0,	no	AVX

jmp				the_exit						;	and	exits

no_avx2:

mov				rdi,fmt_noavx2

xor				rax,rax

call			printf								;	displays	message	if	AVX	not
available

xor				rax,rax							;	returns	0,	no	AVX

jmp				the_exit						;	and	exits

no_avx512:

mov				rdi,fmt_noavx512

xor				rax,rax

call			printf								;	displays	message	if	AVX	not
available

xor				rax,rax							;	returns	0,	no	AVX

jmp				the_exit													;	and	exits

the_exit:

leave

ret
Listing	35-1 cpu_avx.asm

This	program	is	similar	to	the	program	we	used	to	test	for	SSE	support,
but	we	have	to	look	for	AVX	flags	now.	So,	there	is	nothing	special	here;	you
can	find	more	details	of	which	registers	to	use	and	what	information	can	be
retrieved	in	the	Intel	manual,	Volume	2,	in	the	section	on	cpuid.

Figure	35-1	shows	the	output.

Figure	35-1 cpu_avx.asm	output

Example	AVX	Program
Listing	35-2	is	adapted	from	the	SSE	unaligned	example	in	Chapter	28.

;	avx_unaligned.asm

extern	printf

section	.data

spvector1					dd				1.1

dd				2.1

dd				3.1

dd				4.1

dd				5.1

dd				6.1

dd				7.1

dd				8.1

spvector2					dd				1.2

dd				1.2

dd				3.2

dd				4.2

dd				5.2

dd				6.2

dd				7.2

dd				8.2

dpvector1					dq				1.1

dq				2.2

dq				3.3

dq				4.4

dpvector2					dq				5.5

dq				6.6

dq				7.7

dq				8.8

fmt1			db					“Single	Precision	Vector	1:”,10,0

fmt2			db					10,“Single	Precision	Vector	2:”,10,0

fmt3			db					10,“Sum	of	Single	Precision	Vector	1
and	Vector	2:”,10,0

fmt4			db					10,“Double	Precision	Vector	1:”,10,0

fmt5			db					10,“Double	Precision	Vector	2:”,10,0

fmt6			db					10,“Sum	of	Double	Precision	Vector	1
and	Vector	2:”,10,0

section	.bss

spvector_res		resd			8

dpvector_res		resq			4

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;SINGLE	PRECISION	FLOATING	POINT	VECTORS

;load	vector1	in	the	register	ymm0

vmovups							ymm0,	[spvector1]

;extract	ymm0

vextractf128		xmm2,ymm0,0				;first	part	of	ymm0

vextractf128		xmm2,ymm0,1				;second	part	of	ymm0

;load	vector2	in	the	register	ymm1

vmovups							ymm1,	[spvector2]

;extract	ymm1

vextractf128		xmm2,ymm1,0

vextractf128		xmm2,ymm1,1

;add	2	single	precision	floating	point	vectors

vaddps								ymm2,ymm0,ymm1

vmovups	[spvector_res],ymm2

;print	the	vectors

mov				rdi,fmt1

call			printf

mov				rsi,spvector1

call			printspfpv

mov				rdi,fmt2

call			printf

mov				rsi,spvector2

call			printspfpv

mov				rdi,fmt3

call			printf

mov				rsi,spvector_res

call			printspfpv

;DOUBLE	PRECISION	FLOATING	POINT	VECTORS

;load	vector1	in	the	register	ymm0

vmovups							ymm0,	[dpvector1]

;extract	ymm0

vextractf128		xmm2,ymm0,0				;first	part	of	ymm0

vextractf128		xmm2,ymm0,1				;second	part	of	ymm0

;load	vector2	in	the	register	ymm1

vmovups							ymm1,	[dpvector2]

;extract	ymm1

vextractf128		xmm2,ymm1,0

vextractf128		xmm2,ymm1,1

;	add	2	double	precision	floating	point	vectors

vaddpd								ymm2,ymm0,ymm1

vmovupd							[dpvector_res],ymm2

;print	the	vectors

mov				rdi,fmt4

call			printf

mov				rsi,dpvector1

call			printdpfpv

mov				rdi,fmt5

call			printf

mov				rsi,dpvector2

call			printdpfpv

mov				rdi,fmt6

call			printf

mov				rsi,dpvector_res

call			printdpfpv

leave

ret

printspfpv:

section	.data

.NL			db				10,0

.fmt1							db				”%.1f,		”,0

section	.text

push			rbp

mov				rbp,rsp

push							rcx

push							rbx

mov								rcx,8

mov								rbx,0

mov								rax,1

.loop:

movss						xmm0,[rsi+rbx]

cvtss2sd			xmm0,xmm0

mov								rdi,.fmt1

push							rsi

push							rcx

call							printf

pop								rcx

pop								rsi

add								rbx,4

loop							.loop

xor								rax,rax

mov								rdi,.NL

call							printf

pop								rbx

pop								rcx

leave

ret

printdpfpv:

section	.data

.NL		db				10,0

.fmt	db				”%.1f,		%.1f,		%.1f,		%.1f”,0

section	.text

push			rbp

mov				rbp,rsp

mov				rdi,.fmt

mov				rax,4		;	four	floats

call			printf

mov				rdi,.NL

call			printf

leave

ret
Listing	35-2 avx_unaligned.asm

In	this	program,	we	use	the	256-bit	ymm	registers	and	some	new
instructions.	For	example,	we	use	vmovups	to	put	unaligned	data	in	a	ymm
register.	We	use	SASM	to	view	the	registers.	After	the	vmovups	instructions,
ymm0	contains	the	following:

{0x4083333340466666400666663f8ccccd,0x4101999a40e3333340c3333340a33333}

Here	is	what	it	looks	like	converted	to	decimal:

{4.1		3.1		2.1		1.1		,			8.1		7.1		6.1		5.1}

Look	at	where	the	values	are	stored,	which	can	be	confusing.

Just	for	the	sake	of	the	demo,	we	extract	data	from	a	ymm	register,	and	we
use	vextractf128	to	put	packed	floating-point	values	from	ymm0	to
xmm2,	128	bits	at	a	time.	You	could	use	extractps	to	further	extract
floating-point	values	and	store	them	in	general-purpose	registers.

New	are	instructions	with	three	operands,	as	shown	here:

vaddps
ymm2,ymm0,ymm1

Add	ymm1	to	ymm0	and	store	the	result	in	ymm2.

The	print	functions	simply	load	the	values	from	memory	into	an	xmm
register,	convert	single	precision	to	double	precision	where	needed,	and	then
call	printf.

Figure	35-2	shows	the	output.

Figure	35-2 avx_unaligned.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

How	to	determine	CPU	support	for	AVX

That	AVX	uses	16	256-bit	ymm	registers

That	the	128-bit	xmm	registers	are	aliased	ymm	registers

How	to	extract	values	from	ymm	registers

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_36

36.	AVX	Matrix	Operations
Jo	Van	Hoey1	

Hamme,	Belgium

	
Instead	of	summing	up	a	number	of	possibly	interesting	AVX	instructions,
let’s	look	at	some	matrix	operations	using	AVX.	This	is	a	long	chapter	with
several	pages	of	code;	a	lot	will	be	familiar,	but	we	will	introduce	several	new
instructions	here.

We	will	show	matrix	multiplication	and	matrix	inversion.	In	the	next
chapter,	we	will	show	how	to	transpose	a	matrix.

Example	Matrix	Code
Listing	36-1	shows	the	example	code.

;	matrix4x4.asm

extern	printf

section	.data

fmt0			db				10,“4x4	DOUBLE	PRECISION	FLOATING	POINT
MATRICES”,10,0

fmt1			db				10,“This	is	matrixA:”,10,0

fmt2			db				10,“This	is	matrixB:”,10,0

fmt3			db				10,“This	is	matrixA	x	matrixB:”,10,0

fmt4			db				10,“This	is	matrixC:”,10,0

fmt5			db				10,“This	is	the	inverse	of	matrixC:”,10,0

fmt6			db				10,“Proof:	matrixC	x	inverse	=”,10,0

fmt7			db				10,“This	is	matrixS:”,10,0

fmt8			db				10,“This	is	the	inverse	of	matrixS:”,10,0

https://doi.org/10.1007/978-1-4842-5076-1_36

fmt9			db				10,“Proof:	matrixS	x	inverse	=”,10,0

fmt10		db				10,“This	matrix	is	singular!”,10,10,0

align	32

matrixA					dq					1.,		3.,		5.,		7.

dq					9.,	11.,	13.,	15.

dq				17.,	19.,	21.,	23.

dq				25.,	27.,	29.,	31.

matrixB					dq					2.,		4.,		6.,		8.

dq				10.,	12.,	14.,	16.

dq				18.,	20.,	22.,	24.

dq				26.,	28.,	30.,	32.

matrixC					dq					2.,										11.,								21.,						3
7.

dq					3.,										13.,								23.,						41.

dq					5.,										17.,								29.,						43.

dq					7.,										19.,								31.,						47.

matrixS					dq						1.,						2.,						3.,									4.

dq						5.,						6.,						7.,									8.

dq						9.,					10.,					11.,								12.

dq					13.,					14.,					15.,								16.

section	.bss

alignb	32

product	resq	16

inverse	resq	16

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	print	title

mov				rdi,	fmt0

call			printf

;	print	matrixA

mov				rdi,fmt1

call			printf

mov				rsi,matrixA

call			printm4x4

;	print	matrixB

mov				rdi,fmt2

call			printf

mov				rsi,matrixB

call			printm4x4

;	compute	the	product	matrixA	x	matrixB

mov				rdi,matrixA

mov				rsi,matrixB

mov				rdx,product

call			multi4x4

;	print	the	product

mov				rdi,fmt3

call			printf

mov				rsi,product

call			printm4x4

;	print	matrixC

mov				rdi,fmt4

call			printf

mov				rsi,matrixC

call			printm4x4

;	compute	the	inverse	of	matrixC

mov				rdi,matrixC

mov				rsi,inverse

call			inverse4x4

cmp				rax,1

je					singular

;	print	the	inverse

mov				rdi,fmt5

call			printf

mov				rsi,inverse

call			printm4x4

;	proof	multiply	matrixC	and	inverse

mov				rsi,matrixC

mov				rdi,inverse

mov				rdx,product

call			multi4x4

;	print	the	proof

mov				rdi,fmt6

call			printf

mov				rsi,product

call			printm4x4

;	Singular	matrix

;	print	matrixS

mov				rdi,fmt7

call			printf

mov				rsi,matrixS

call			printm4x4

;	compute	the	inverse	of	matrixS

mov				rdi,matrixS

mov				rsi,inverse

call			inverse4x4

cmp				rax,1

je					singular

;	print	the	inverse

mov				rdi,fmt8

call			printf

mov				rsi,inverse

call			printm4x4

;	proof	multiply	matrixS	and	inverse

mov				rsi,matrixS

mov				rdi,inverse

mov				rdx,product

call			multi4x4

;	print	the	proof

mov				rdi,fmt9

call			printf

mov				rsi,product

call			printm4x4

jmp				exit

singular:

;	print	error

mov				rdi,fmt10

call	printf

exit:

leave

ret

inverse4x4:

section	.data

align	32

.identity				dq							1.,	0.,	0.,	0.

dq							0.,	1.,	0.,	0.

dq							0.,	0.,	1.,	0.

dq							0.,	0.,	0.,	1.

.minus_mask		dq						8000000000000000h

.size								dq						4																	;4	x	4	matrices

.one									dq						1.0

.two									dq						2.0

.three							dq						3.0

.four								dq						4.0

section	.bss

alignb	32

.matrix1	resq	16										;intermediate	matrix

.matrix2	resq	16										;intermediate	matrix

.matrix3	resq	16										;intermediate	matrix

.matrix4	resq	16										;intermediate	matrix

.matrixI	resq	16

.mxcsr	resd	1						;used	for	checking	zero	division

section	.text

push		rbp

mov			rbp,rsp

push			rsi									;save	address	of	inverse	matrix

vzeroall											;clear	all	ymm	registers

;	compute	the	intermediate	matrices

;	compute	the	intermediate	matrix2

;	rdi	contains	address	of	the	original	matrix

mov				rsi,rdi

mov				rdx,.matrix2

push			rdi

call			multi4x4

pop				rdi

;	compute	the	intermediate	matrix3

mov				rsi,.matrix2

mov				rdx,.matrix3

push			rdi

call			multi4x4

pop				rdi

;	compute	the	intermediate	matrix4

mov				rsi,.matrix3

mov				rdx,.matrix4

push			rdi

call			multi4x4

pop				rdi

;compute	the	traces

;compute	trace1

mov				rsi,[.size]

call			vtrace

movsd		xmm8,xmm0				;trace	1	in	xmm8

;compute	trace2

push			rdi												;	save	address	of	the	original
matrix

mov				rdi,.matrix2

mov				rsi,[.size]

call			vtrace

movsd	xmm9,xmm0			;trace	2	in	xmm9

;compute	trace3

mov				rdi,.matrix3

mov				rsi,[.size]

call			vtrace

movsd		xmm10,xmm0			;trace	3	in	xmm10

;compute	trace4

mov				rdi,.matrix4

mov				rsi,[.size]

call			vtrace

movsd		xmm11,xmm0			;trace	4	in	xmm11

;	compute	the	coefficients

;	compute	coefficient	p1

;	p1	=	-s1

vxorpd								xmm12,xmm8,[.minus_mask]	;p1	in	xmm12

;	compute	coefficient	p2

;	p2	=	-1/2	*	(p1	*	s1	+	s2)

movsd									xmm13,xmm12			;copy	p1	to	xmm13

vfmadd213sd			xmm13,xmm8,xmm9	;xmm13=xmm13*xmm8+xmm9

vxorpd								xmm13,xmm13,[.minus_mask]

divsd									xmm13,[.two]	;divide	by	2	and	p2	in	xmm13

;	compute	coefficient	p3

;	p3	=	-1/3	*	(p2	*	s1	+	p1	*	s2	+	s3)

movsd									xmm14,xmm12															;copy	p1	to
xmm14

vfmadd213sd			xmm14,xmm9,xmm10
;p1*s2+s3;xmm14=xmm14*xmm9+xmm10

vfmadd231sd			xmm14,xmm13,xmm8
;xmm14+p2*s1;xmm14=xmm14+xmm13*xmm8

vxorpd								xmm14,xmm14,[.minus_mask]

divsd									xmm14,[.three]													;p3	in	xmm14

;	compute	coefficient	p4

;	p4	=	-1/4	*	(p3	*	s1	+	p2	*	s2	+	p1	*	s3	+	s4)

movsd									xmm15,xmm12			;copy	p1	to	xmm15

vfmadd213sd			xmm15,xmm10,xmm11
;p1*s3+s4;xmm15=xmm15*xmm10+xmm11

vfmadd231sd			xmm15,xmm13,xmm9
;xmm15+p2*s2;xmm15=xmm15+xmm13*xmm9

vfmadd231sd			xmm15,xmm14,xmm8
;xmm15+p3*s1;xmm15=xmm15+xmm14*xmm8

vxorpd								xmm15,xmm15,[.minus_mask]

divsd									xmm15,[.four]				;p4	in	xmm15

;multiply	matrices	with	proper	coefficient

mov										rcx,[.size]

xor										rax,rax

vbroadcastsd							ymm1,xmm12	;	p1

vbroadcastsd							ymm2,xmm13	;	p2

vbroadcastsd							ymm3,xmm14	;	p3

pop	rdi					;	restore	the	address	of	the	original
matrix

.loop1:

vmovapd												ymm0,[rdi+rax]

vmulpd													ymm0,ymm0,ymm2

vmovapd												[.matrix1+rax],ymm0

vmovapd												ymm0,[.matrix2+rax]

vmulpd													ymm0,ymm0,ymm1

vmovapd												[.matrix2+rax],ymm0

vmovapd												ymm0,[.identity+rax]

vmulpd													ymm0,ymm0,ymm3

vmovapd												[.matrixI+rax],ymm0

add																rax,32

loop															.loop1

;add	the	four	matrices	and	multiply	by	-1/p4

mov											rcx,[.size]

xor											rax,rax

	;compute	-1/p4

movsd									xmm0,	[.one]

vdivsd								xmm0,xmm0,xmm15				;1/p4

	;check	for	zero	division

stmxcsr							[.mxcsr]

and										dword[.mxcsr],4

jnz											.singular

;	no	zero	division

pop										rsi									;recall	address	of	inverse
matrix

vxorpd							xmm0,xmm0,[.minus_mask]		;-1/p4

vbroadcastsd	ymm2,xmm0

	;loop	through	the	rows

.loop2:

;add	the	rows

vmovapd						ymm0,[.matrix1+rax]

vaddpd							ymm0,	ymm0,	[.matrix2+rax]

vaddpd							ymm0,	ymm0,	[.matrix3+rax]

vaddpd							ymm0,	ymm0,	[.matrixI+rax]

vmulpd							ymm0,ymm0,ymm2												;multiply	the
row	with	-1/p4

vmovapd						[rsi+rax],ymm0

add										rax,32

loop									.loop2

xor										rax,rax					;return	0,	no	error

leave

ret

.singular:

mov										rax,1							;return	1,	singular	matrix

leave

ret

;––––––––––––––––––

;	trace	computation

vtrace:

push		rbp

mov			rbp,rsp

;build	the	matrix	in	memory

vmovapd						ymm0,	[rdi]

vmovapd						ymm1,	[rdi+32]

vmovapd						ymm2,	[rdi+64]

vmovapd						ymm3,	[rdi+96]

vblendpd					ymm0,ymm0,ymm1,0010b

vblendpd					ymm0,ymm0,ymm2,0100b

vblendpd					ymm0,ymm0,ymm3,1000b

vhaddpd						ymm0,ymm0,ymm0

vpermpd						ymm0,ymm0,00100111b

haddpd							xmm0,xmm0

leave

ret

;––––––––––––––––––

printm4x4:

section	.data

.fmt	db						”%f”,9,”%f”,9,	“%f”,9,”%f”,10,0

section	.text

push		rbp

mov			rbp,rsp

push	rbx											;callee	saved

push	r15											;callee	saved

mov	rdi,.fmt

mov	rcx,4

xor	rbx,rbx									;row	counter

.loop:

movsd		xmm0,	[rsi+rbx]

movsd		xmm1,	[rsi+rbx+8]

movsd		xmm2,	[rsi+rbx+16]

movsd		xmm3,	[rsi+rbx+24]

mov				rax,4								;four	floats

push			rcx																	;caller	saved

push			rsi																	;caller	saved

push			rdi																	;caller	saved

;align	stack	if	needed

xor	r15,r15

test	rsp,0xf								;last	byte	is	8	(not	aligned)?

setnz	r15b										;set	if	not	aligned

shl	r15,3											;multiply	by	8

sub	rsp,r15									;substract	0	or	8

call			printf

add	rsp,r15									;add	0	or	8	to	restore	rsp

pop				rdi

pop				rsi

pop				rcx

add				rbx,32						;next	row

loop			.loop

pop	r15

pop	rbx

leave

ret

;––––––––––––––––––

multi4x4:

push		rbp

mov			rbp,rsp

xor	rax,rax

mov	rcx,4

vzeroall												;zero	all	ymm

.loop:

vmovapd						ymm0,	[rsi]

vbroadcastsd	ymm1,[rdi+rax]

vfmadd231pd		ymm12,ymm1,ymm0

vbroadcastsd	ymm1,[rdi+32+rax]

vfmadd231pd		ymm13,ymm1,ymm0

vbroadcastsd	ymm1,[rdi+64+rax]

vfmadd231pd		ymm14,ymm1,ymm0

vbroadcastsdymm1,[rdi+96+rax]

vfmadd231pd		ymm15,ymm1,ymm0

add	rax,8				;one	element	has	8	bytes,	64	bits

add	rsi,32			;every	row	has	32	bytes,	256	bits

loop	.loop

;move	the	result	to	memory,	row	per	row

vmovapd						[rdx],	ymm12

vmovapd						[rdx+32],	ymm13

vmovapd						[rdx+64],	ymm14

vmovapd						[rdx+96],	ymm15

xor										rax,rax			;return	value

leave

ret
Listing	36-1 matrix4x4.asm

The	interesting	parts	of	this	code	are	in	the	functions.	The	main	function
is	for	initializing	the	program,	calling	functions,	and	printing.	The	matrices
we	use	in	this	example	are	4×4	double-precision	floating-point	matrices.	Note

the	32-byte	alignment	of	the	matrices;	in	AVX	we	use	ymm	registers,	with	a
size	of	32	bytes.	We	will	analyze	the	program	function	by	function.

Matrix	Print:	printm4x4
We	read	the	matrix	one	row	at	a	time	into	four	xmm	registers,	and	then	we
push	a	number	of	registers	onto	the	stack.	These	registers	will	be	modified	by
printf,	so	we	have	to	preserve	them.	Then	we	align	the	stack	on	a	16-byte
boundary.	Because	of	normal	operation,	rsp	will	be	aligned	on	an	8-byte
boundary.	To	align	the	stack	on	a	16-byte	boundary,	we	cannot	use	the	trick
with	the	and	instruction	from	Chapter	16.	This	is	because	with	the	and
instruction,	we	do	not	know	whether	rsp	will	be	changed	or	not.	And	we
need	the	correct	stack	pointer	because	we	pop	the	pushed	registers	after
printf.	If	rsp	was	changed,	we	need	to	return	it	to	its	previous	value
before	popping;	otherwise,	the	wrong	values	will	be	popped	from	the	stack.	If
rsp	was	not	changed,	we	do	not	need	to	adjust	it.

We	will	use	the	test	instruction	and	0xf	to	verify	the	alignment	of	the
stack.	If	the	last	hexadecimal	digit	of	rsp	is	a	0,	then	rsp	is	16-byte	aligned.
If	the	last	digit	contains	anything	other	than	0,	then	the	last	half-byte	will	have
at	least	one	of	its	bits	set	to	1.	The	test	instruction	is	similar	to	an	and
instruction.	If	the	last	half-byte	of	rsp	has	one	or	more	bits	set	to	1,	the	result
of	the	comparison	will	be	nonzero,	and	the	zero-flag	ZF	will	be	cleared.	The
setnz	(set-if-non-zero)	instruction	reads	the	zero	flag	(ZF),	and	if	the	ZF	is
not	set,	setnz	will	put	0000	0001	into	r15b.	If	that	happens,	it	means
that	rsp	is	not	16-byte	aligned,	and	we	will	subtract	8	to	put	it	on	a	16-byte
boundary.	We	left-shift	r15b	three	times	to	obtain	the	decimal	value	8	and	do
the	subtraction.	After	the	execution	of	printf,	we	restore	the	correct	stack
address	by	adding	r15	back	to	rsp,	that	is,	adding	8	if	we	had	to	align	or
adding	0	if	we	did	not	have	to	align.	The	stack	is	then	where	it	was	before	our
alignment,	and	we	can	pop	the	registers.

Matrix	Multiplication:	multi4x4
In	the	sample	code	and	in	the	following	explanation,	we	use	the	following
two	matrices:

     

If	you	studied	some	linear	algebra,	you	probably	learned	to	multiply
matrices	as	follows:	to	obtain	element	c11	of	matrix	C	=	AB,	you	compute	the
following:

With	our	example,	it	looks	like	this:

1x2	+	3x10	+	5x18	+	7x26	=
304

As	another	example,	element	c32	would	be	computed	as	follows:

With	our	example,	it	looks	like	this:

17x4	+	19x12	+	21x20	+	23x28	=
1360

This	is	efficient	for	manual	computation;	however,	we	are	going	to	use	a
method	that	is	more	appropriate	for	a	computer.	We	will	use	the	ymm
registers	for	keeping	running	totals	and	for	updating	the	totals	in	subsequent
loops.	Here	we	make	use	of	the	power	of	AVX	instructions.

First,	we	clear	all	the	ymm	registers	with	vzeroall.	Then	we	go	into	a
loop	four	times,	once	for	every	row	in	matrixB.	A	row	of	four	double-
precision	values	from	matrixB	is	loaded	in	ymm0.	Then	a	value	from	a
sequentially	selected	column	of	matrixA	is	broadcasted	into	ymm1.	The
register	rax	serves	as	a	column	counter,	and	the	column	values	are	at	offset
0,	32,	64,	and	96.	Broadcasting	means	that	all	four	quadwords	(8	bytes	each)
will	contain	that	value.	Then	the	values	in	ymm1	are	multiplied	with	the
values	in	ymm0	and	added	to	ymm12.	The	multiplying	and	adding	are	done
with	one	instruction	called	vfmadd231pd,	which	means	“vector	fused
multiply	add	packed	double.”	The	231	indicates	how	the	registers	are	used.
There	are	multiple	variants	of	vfmadd	(132,	213,	231),	and	there	are	variants
for	double	precision	and	single	precision.	We	used	231,	which	means	multiply

the	second	operand	with	the	third	operand,	add	to	the	first	operand,	and	put
the	result	in	the	first	operand.	This	is	done	for	every	column	value	of	the
matrixA	column,	and	then	the	iteration	continues;	the	next	row	of
matrixB	is	loaded,	and	the	computation	restarts.

Walk	through	the	program	with	your	favorite	debugger.	Look	at	how	the
registers	ymm12,	ymm13,	ymm14,	and	ymm15	keep	the	running	totals,	and
finally	give	the	product.	Your	debugger	probably	will	give	the	values	in	the
ymm	registers	in	hexadecimal	and	little-endian	format.	To	make	it	easy,	here
are	the	details	of	what	is	happening	at	every	step:

rdi rsi

32	bytes 32	bytes

	 8	bytes 8	bytes 8	bytes 8	bytes 	 8	bytes 8	bytes 8	bytes 8	bytes

0–31 1 3 5 7 0–31 2 4 6 8

32–63 9 11 13 15 32–63 10 12 14 16

64–95 17 19 21 23 64–95 18 20 22 24

96–127 25 27 29 31 96–127 26 28 30 32

Here	is	the	first	loop:

vmovapd	ymm0,	[rsi] ymm0 2 4 6 8

vbroadcastsd	ymm1,[rdi+0] ymm1 1 1 1 1

vfmadd231pd	ymm12,ymm1,ymm0 ymm12 2 4 6 8

vbroadcastsd	ymm1,[rdi+32+0] ymm1 9 9 9 9

vfmadd231pd	ymm13,ymm1,ymm0 ymm13 18 36 54 72

vbroadcastsd	ymm1,[rdi+64+0] ymm1 17 17 17 17

vfmadd231pd	ymm14,ymm1,ymm0 ymm14 34 68 102 136

vbroadcastsd	ymm1,[rdi+96+0] ymm1 25 25 25 25

vfmadd231pd	ymm15,ymm1,ymm0 ymm15 50 100 150 200

Here	is	the	second	loop:

vmovapd	ymm0,	[rsi+32] ymm0 10 12 14 16

vbroadcastsd	ymm1,[rdi+8] ymm1 3 3 3 3

vfmadd231pd	ymm12,ymm1,ymm0 ymm12 32 40 48 56

vbroadcastsd	ymm1,[rdi+32+8] ymm1 11 11 11 11

vfmadd231pd	ymm13,ymm1,ymm0 ymm13 128 168 208 248

vbroadcastsd	ymm1,[rdi+64+8] ymm1 19 19 19 19

vfmadd231pd	ymm14,ymm1,ymm0 ymm14 224 296 368 440

vbroadcastsd	ymm1,[rdi+96+8] ymm1 27 27 27 27

vfmadd231pd	ymm15,ymm1,ymm0 ymm15 320 424 528 632

Here	is	the	third	loop:

vmovapd	ymm0,	[rsi+32+32] ymm0 18 20 22 24

vbroadcastsd	ymm1,[rdi+8+8] ymm1 5 5 5 5

vfmadd231pd	ymm12,ymm1,ymm0 ymm12 122 140 158 176

vbroadcastsd	ymm1,[rdi+32+8+8] ymm1 13 13 13 13

vfmadd231pd	ymm13,ymm1,ymm0 ymm13 362 428 494 560

vbroadcastsd	ymm1,[rdi+64+8+8] ymm1 21 21 21 21

vfmadd231pd	ymm14,ymm1,ymm0 ymm14 602 716 830 944

vbroadcastsd	ymm1,[rdi+96+8+8] ymm1 29 29 29 29

vfmadd231pd	ymm15,ymm1,ymm0 ymm15 842 1004 1166 1328

Here	is	the	fourth	and	last	loop:

vmovapd	ymm0,	[rsi+32+32+32] ymm0 26 28 30 32

vbroadcastsd	ymm1,[rdi+8+8+8] ymm1 7 7 7 7

vfmadd231pd	ymm12,ymm1,ymm0 ymm12 304 336 368 400

vbroadcastsd	ymm1,[rdi+32+8+8+8] ymm1 15 15 15 15

vfmadd231pd	ymm13,ymm1,ymm0 ymm13 752 848 944 1040

vbroadcastsd	ymm1,[rdi+64+8+8+8] ymm1 23 23 23 23

vfmadd231pd	ymm14,ymm1,ymm0 ymm14 1200 1360 1520 1680

vbroadcastsd	ymm1,[rdi+96+8+8+8] ymm1 31 31 31 31

vfmadd231pd	ymm15,ymm1,ymm0 ymm15 1648 1872 2096 2320

Matrix	Inversion:	Inverse4x4

Mathematicians	have	developed	a	range	of	algorithms	to	efficiently	compute
the	inverse	of	a	matrix.	It	is	not	our	intent	to	provide	you	with	an	inversion
program	with	all	the	bells	and	whistles;	we	just	want	to	show	how	to	use
AVX.

We	will	use	a	method	based	on	the	Cayley-Hamilton	theorem	about
characteristic	polynomials.	Here	is	an	interesting	site	with	more	information
on	characteristic	polynomials:
http://www.mcs.csueastbay.edu/~malek/Class/Characteristic.pdf
.

Caley-Hamilton	Theorem
From	the	Cayley-Hamilton	theorem,	we	have	the	following	for	matrix	A:

where	An	is	A	to	the	power	of	n.	For	example,	A3	is	AAA,	the	matrix	A
three	times	multiplied	with	itself.	The	p’s	are	coefficients	to	be	determined,	I
is	the	identity	matrix,	and	0	is	the	zero	matrix.

Multiply	the	previous	equation	by	A−1,	divide	by	-pn,	rearrange	the	terms,
and	you	obtain	a	formula	for	the	inverse,	as	shown	here:

So,	to	find	the	inverse	of	matrix	A,	we	need	to	do	a	number	of	matrix
multiplications,	and	we	need	a	method	to	find	the	p’s.

For	a	4×4	matrix	A,	we	have	the	following:

Leverrier	Algorithm
To	compute	the	p	coefficients,	we	use	the	Leverrier	algorithm	,	also	covered
at
http://www.mcs.csueastbay.edu/~malek/Class/Characteristic.pdf
.	First,	we	find	the	traces	of	the	matrices,	that	is,	the	sum	of	the	elements	on
the	diagonal	from	the	upper	left	to	the	lower	right.	Let’s	call	sn	the	trace	of	the
matrix	An.

For	a	4×4	matrix	A,	we	compute	the	traces	of	the	power	matrices	of	A,	as

http://www.mcs.csueastbay.edu/%257Emalek/Class/Characteristic.pdf
http://www.mcs.csueastbay.edu/%257Emalek/Class/Characteristic.pdf

shown	here:

s1	for	A

s2	for	AA

s3	for	AAA

s4	for	AAAA

Leverrier	gives	us	the	following	then:

Pretty	simple,	right?	Apart	from	some	elaborate	matrix	multiplications	to
obtain	the	traces,	of	course.

The	Code
In	our	function	inverse4x4,	we	have	a	separate	section	.data,	where
we	put	our	identity	matrix	and	some	variables	we	will	use	later.	First,	we
compute	the	power	matrices	and	store	them	in	matrix2,	matrix3,	and
matrix4.	We	will	not	use	matrix1	yet.	Then	we	call	the	function
vtrace	for	every	matrix	to	compute	the	traces.	In	the	vtrace	function	,	we
first	build	our	matrix	in	the	ymm	registers	(ymm0,	ymm1,	ymm2,	ymm3),	each
containing	a	row.	Then	we	use	the	instruction	vblendpd,	which	has	four
operands:	two	source	operands,	one	destination	operand,	and	a	control	mask.
We	want	to	extract	the	diagonal	elements	in	rows	2,	3,	and	4	and	put	them	as
packed	values	in	ymm0,	at	locations	index	1,	2,	and	3.	At	location	0,	we	keep
the	trace	element	of	ymm0.

The	mask	determines	which	packed	values	are	selected	from	the	source
operands.	A	1	in	the	mask	means	at	this	location,	select	the	value	from	the
second	source	operand.	A	0	in	the	mask	means	at	this	location,	select	the
value	from	the	first	source	operand.	See	Figure	36-1	for	a	schematic

overview,	but	note	that	in	the	figure	we	display	the	values	in	the	registers	in
such	a	way	that	they	correspond	with	the	bit	mask	indexes.	In	your	debugger,
you	will	see	that	the	positions	in	ymm0	are	a1,	a0,	a3,	a2.

Figure	36-1 	Blend	mask

In	the	first	trace	computation,	after	the	blending,	the	ymm0	register

contains	the	trace	elements	2,	13,	29,	47.	You	can	check	this	with	SASM.
Don’t	be	fooled	by	the	order	of	the	values	of	ymm0	as	represented:	13,	2,	47,
29.	We	now	have	to	sum	these	values.	This	can	easily	be	done	by	extracting
and	simply	adding,	but	for	the	sake	of	the	demo,	we	will	use	AVX
instructions.	We	apply	the	horizontal	add	instruction	vhaddpd.	ymm0	then
contains	15,	15,	76,	76,	which	are	the	sum	of	the	two	lower	values	and	the
sum	of	the	two	higher	values.	Then	we	execute	a	permutation	vpermpd	with
mask	00100111.	Each	two-bit	value	selects	a	value	in	the	source	operand;	see
Figure	36-2	for	an	explanation.	Now	the	lower	half	of	ymm0,	which	is	xmm0,
contains	two	values,	so	we	have	to	add	these	to	obtain	the	trace.	We	execute	a
horizontal	add	on	xmm0	with	haddpd.	We	store	the	traces	in	xmm8,	xmm9,
xmm10,	and	xmm11	for	later	use.

It’s	a	bit	overkill	to	obtain	the	trace,	don’t	you	think?	We	did	it	this	way
just	to	show	a	couple	of	AVX	instructions	and	how	to	use	masks.

Figure	36-2 	Permutation	mask

When	we	have	all	the	traces,	we	can	compute	the	p-coefficients.	See	how
we	change	the	sign	of	a	value	by	applying	a	minus	mask	and	the	instruction
vxorpd.	We	use	the	vfmadd213sd	and	vfmadd231sd	to	do	additions
and	multiplications	in	one	instruction.	The	instruction	vfmadd213sd	means
multiply	the	first	and	second	operands,	add	a	third	operand,	and	put	the	result
in	the	first	operand.	The	instruction	vfmadd231sd	means	multiply	the
second	and	third	operands,	add	the	first	operand,	and	put	the	result	in	the	first
operand.	There	is	a	list	of	similar	instructions	in	the	Intel	manual.	Study	them
carefully.

When	we	have	all	the	coefficients,	we	scalar-multiply	matrix,
matrix2,	matrix3,	and	matrixI	with	the	coefficients,	according	to	the

previous	formulae.	The	result	of	multiplication	with	matrix	is	put	into
matrix1.	We	do	not	need	matrix4	anymore,	so	to	save	memory,	we	could
have	used	the	space	for	inverse	as	temporary	memory	instead	of
matrix4.

We	have	to	divide	by	coefficient	p4,	so	we	have	to	check	that	p4	is
nonzero.	In	this	case,	we	could	have	done	this	simple	operation	after
computing	p4	earlier,	but	we	wanted	to	show	how	to	use	the	mxcsr	register.
We	set	the	zero-division	mask	bit	in	mxcsr	and	do	the	division	with	the
instruction	vdivsd.	If	after	division	the	third	bit	(index	2)	in	the	mxcsr
register	is	set,	then	we	had	a	zero	division,	and	the	matrix	is	singular	and
cannot	be	inversed.	In	the	and	instruction,	we	used	decimal	4,	which	is
0000	0100	in	binary,	so	we	are	checking	the	third	bit	indeed.	If	we	had	a
zero	division,	we	head	for	the	exit	with	1	in	rax	to	signal	the	error	to	the
caller.

When	a	matrix	is	singular,	the	program	will	not	crash	because	zero
division	is	masked	by	default	in	the	mxcsr	register.	After	you	finish	the
analysis	of	this	code,	comment	out	the	part	that	checks	for	zero	division	and
see	what	happens.

If	p4	is	nonzero,	we	add	the	four	matrices	and	scalar-multiply	the	result
with	-1/p4.	We	do	the	addition	and	multiplication	in	the	same	loop.	When
everything	goes	fine,	we	have	the	inverse,	and	we	return	to	the	caller	with	0	in
rax.

Figure	36-3	shows	the	output.

Figure	36-3 matrix4x4.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

AVX	matrix	operations

AVX	instruction	with	three	operands

AVX	fuse	operations

Use	of	masks	for	blending	and	permutations

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_37

37.	Matrix	Transpose
Jo	Van	Hoey1	

Hamme,	Belgium

	
Let’s	do	one	last	matrix	operation	that	is	useful:	transposing.	We	have	coded
two	versions,	one	using	unpacking	and	one	using	shuffling.

Example	Transposing	Code
Listing	37-1	shows	the	code.

;	transpose4x4.asm

extern	printf

section	.data

fmt0			db						“4x4	DOUBLE	PRECISION	FLOATING
POINT	MATRIX	TRANSPOSE”,10,0

fmt1			db						10,“This	is	the	matrix:”,10,0

fmt2			db						10,“This	is	the	transpose
(unpack):”,10,0

fmt3			db						10,“This	is	the	transpose
(shuffle):”,10,0

align		32

matrix	dq							1.,					2.,					3.,					4.

dq							5.,					6.,					7.,					8.

dq							9.,				10.,				11.,				12.

dq						13.,				14.,				15.,				16.

section	.bss

https://doi.org/10.1007/978-1-4842-5076-1_37

alignb							32

transpose				resd			16

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	print	title

mov				rdi,	fmt1

call			printf

;	print	matrix

mov				rdi,fmt1

call			printf

mov				rsi,matrix

call			printm4x4

;	compute	transpose	unpack

mov				rdi,	matrix

mov				rsi,	transpose

call			transpose_unpack_4x4

;print	the	result

mov				rdi,	fmt2

xor				rax,rax

call			printf

mov				rsi,	transpose

call			printm4x4

;	compute	transpose	shuffle

mov				rdi,	matrix

mov				rsi,	transpose

call			transpose_shuffle_4x4

;print	the	result

mov				rdi,	fmt3

xor				rax,rax

call			printf

mov				rsi,	transpose

call			printm4x4

leave

ret

;––––––––––––––––––—

transpose_unpack_4x4:

push		rbp

mov			rbp,rsp

;load	matrix	into	the	registers

vmovapd							ymm0,[rdi]				;		1			2			3			4

vmovapd							ymm1,[rdi+32]	;		5			6			7			8

vmovapd							ymm2,[rdi+64]	;		9		10		11		12

vmovapd							ymm3,[rdi+96]	;	13		14		15		16

;unpack

vunpcklpd	ymm12,ymm0,ymm1									;		1			5			3			7

vunpckhpd	ymm13,ymm0,ymm1									;		2			6			4			8

vunpcklpd	ymm14,ymm2,ymm3									;		9		13		11		15

vunpckhpd	ymm15,ymm2,ymm3									;	10		14		12		16

;permutate

vperm2f128	ymm0,ymm12,ymm14,	00100000b				;
1			5			9		13

vperm2f128	ymm1,ymm13,ymm15,	00100000b				;
2			6		10		14

vperm2f128	ymm2,ymm12,ymm14,	00110001b				;
3			7		11		15

vperm2f128	ymm3,ymm13,ymm15,	00110001b				;

4			8		12		16

;write	to	memory

vmovapd							[rsi],			ymm0

vmovapd							[rsi+32],ymm1

vmovapd							[rsi+64],ymm2

vmovapd							[rsi+96],ymm3

leave

ret

;––––––––––––––––––—

transpose_shuffle_4x4:

push		rbp

mov			rbp,rsp

;load	matrix	into	the	registers

vmovapd							ymm0,[rdi]				;		1			2			3			4

vmovapd							ymm1,[rdi+32]	;		5			6			7			8

vmovapd							ymm2,[rdi+64]	;		9		10		11		12

vmovapd							ymm3,[rdi+96]	;	13		14		15		16

;shuffle

vshufpd							ymm12,ymm0,ymm1,
0000b				;		1			5			3			7

vshufpd							ymm13,ymm0,ymm1,
1111b				;		2			6			4			8

vshufpd							ymm14,ymm2,ymm3,
0000b				;		9		13		11		15

vshufpd							ymm15,ymm2,ymm3,	1111b				;
10		14		12		16

;permutate

vperm2f128	ymm0,ymm12,ymm14,	00100000b				;
1			5			9		13

vperm2f128	ymm1,ymm13,ymm15,	00100000b				;
2			6		10		14

vperm2f128	ymm2,ymm12,ymm14,	00110001b				;
3			7		11		15

vperm2f128	ymm3,ymm13,ymm15,	00110001b				;
4			8		12		16

;write	to	memory

vmovapd							[rsi],			ymm0

vmovapd							[rsi+32],ymm1

vmovapd							[rsi+64],ymm2

vmovapd							[rsi+96],ymm3

leave

ret

;––––––––––––––––––—

printm4x4:

section	.data

.fmt			db					”%.f”,9,”%.f”,9,	“%.f”,9,”%.f”,10,0

section	.text

push		rbp

mov			rbp,rsp

push		rbx																	;callee	saved

push		r15																	;callee	saved

mov				rdi,.fmt

mov				rcx,4

xor				rbx,rbx						;row	counter

.loop:

movsd		xmm0,	[rsi+rbx]

movsd		xmm1,	[rsi+rbx+8]

movsd		xmm2,	[rsi+rbx+16]

movsd		xmm3,	[rsi+rbx+24]

mov										rax,4		;four	floats

push	rcx										;caller	saved

push	rsi										;caller	saved

push	rdi										;caller	saved

;align	stack	if	needed

xor		r15,r15

test	rsp,0fh						;last	byte	is	8	(not	aligned)?

setnz							r15b									;set	if	not	aligned

shl		r15,3								;multiply	by	8

sub		rsp,r15						;substract	0	or	8

call			printf

add		rsp,r15						;add	0	or	8

pop		rdi

pop		rsi

pop		rcx

add		rbx,32							;next	row

loop	.loop

pop	r15

pop	rbx

leave

ret
Listing	37-1 transpose4x4.asm

Figure	37-1	shows	the	output.

Figure	37-1 transpose4x4.asm

The	Unpack	Version
First	a	remark	about	little-endian	and	packed	ymm	values.	When	in	the
example	we	have	the	rows	1,	2,	3,	4,	then	the	little-endian	format	would	be	4,
3,	2,	1.	However,	because	ymm	stores	packed	values	in	our	example,	ymm	in
SASM	would	look	like	this:	2,	1,	4,	3.	You	can	verify	this	with	your	debugger.
This	can	be	confusing	when	debugging	your	program.	In	what	follows	we
will	use	the	little-endian	format	of	4,	3,	2,	1,	and	we	will	not	use	the	2,	1,	4,	3,
format.

With	the	previous	remarks	in	mind,	when	the	matrix	is	loaded	in	the	ymm
registers,	these	registers	have	the	following	layout	(the	example	values	in
parentheses):

ymm0 high	qword2	(4) low	qword2	(3) high	qword1	(2) low	qword1	(1)

ymm1 high	qword4	(8) low	qword4	(7) high	qword3	(6) low	qword3	(5)

… 	 	 	 	

The	vunpcklpd	instruction	in	the	following:

vunpcklpd
ymm12,ymm0,ymm1

takes	the	first	low	quadword	from	operands	2	and	3	and	stores	them	in
operand	1	and	then	takes	the	second-lowest	quadwords	in	a	similar	way	to

produce	the	following:

ymm12 low	qword4	(7) low	qword2	(3) low	qword3	(5) low	qword1	(1)

Similarly,	the	instruction	vunpckhpd	takes	the	high	quadwords	from
operands	2	and	3	and	stores	them	in	operand	1	in	a	similar	fashion.

vunpckhpd
ymm13,ymm0,ymm1

ymm13 high	qword4	(8) high	qword2	(4) high	qword3	(6) high	qword1	(2)

The	purpose	of	this	method	of	unpacking	is	to	change	column	pairs	to	row
pairs.	For	example,	 	becomes	[1 5].

After	the	unpacking,	the	ymm	registers	look	as	follows	in	little-endian
format:

ymm12 7 3 5 1

ymm13 8 4 6 2

ymm14 15 11 13 9

ymm15 16 12 14 10

In	human-readable	format,	instead	of	little-endian	format,	we	have	the
following:

1 5 3 7

2 6 4 8

9 13 11 15

10 14 12 16

Now	we	have	to	permutate	values	between	the	rows	to	get	the	values	in
the	correct	order.	In	little-endian	format,	we	need	to	obtain	the	following:

13 9 5 1

14 10 6 2

15 11 7 3

16 12 8 4

You	may	notice	that	the	two	lower	values	of	ymm12	and	ymm13	are	in	the
correct	place.	Similarly,	the	two	upper	values	of	ymm14	and	ymm15	are	in	the
correct	position.

We	have	to	move	the	two	lower	values	of	ymm14	to	the	upper	values	of
ymm12	and	the	two	lower	values	of	ymm15	to	the	upper	values	of	ymm13.

The	two	upper	values	from	ymm12	have	to	go	to	the	lower	values	of
ymm14,	and	we	want	the	two	upper	values	of	ymm13	to	go	into	the	lower
positions	of	ymm15.

The	operation	for	doing	that	is	called	permutation	.	With	vperm2f128,
we	can	permutate	pairs	of	two	values	(128	bits).	We	use	a	mask	to	control	the
permutation:	for	example,	mask	00110001	means	starts	at	the	low
bits.	Remember	in	the	following	explanation	that	indexing	starts	at	0.

01:	Take	the	128-byte	high	field	from	source	1	and	put	it	at	destination
position	0.

00:	This	has	a	special	meaning;	see	the	following	explanation.
11:	Take	the	128-byte	high	field	from	source	2	and	put	it	at	destination
position	128.

00:	This	has	a	special	meaning;	see	the	following	explanation.
Here	again	we	use	little-endian	format	(4,	3,	2,	1)	and	do	not	consider	the

order	in	which	these	values	are	stored	in	the	ymm	registers.

So,	in	fact,	the	two	128-bit	fields	of	the	two	sources	are	numbered
sequentially.

Source	1	low	field	=	00

Source	1	high	field	=	01

Source	2	low	field	=	10

Source	2	high	field	=	11

Special	meaning	means	if	you	set	the	third	bit	(index	3)	in	the	mask,	the
destination	low	field	will	be	zeroed,	and	if	you	set	the	seventh	bit	(index	7)	in
the	mask,	the	destination	high	field	will	be	zeroed.

The	second,	third,	sixth,	and	seventh	bits	are	not	used	here.	In	most	cases,
you	can	read	a	mask	such	as	00110001	as	follows:	00110001.

This	is	what	happens	in	the	program:

vperm2f128				ymm0,	ymm12,	ymm14,

00100000b

We	have	00100000	here.

The	lower	00	means	take	the	ymm12	low	field	(5,	1)	and	put	it	in	the	low
field	of	ymm0.

The	higher	10	means	take	the	ymm14	low	field	(13,	9)	and	put	it	in	the	high
field	of	ymm0.

ymm12 7 3 5 1

ymm14 15 11 13 9

ymm0 13 9 5 1

Now	ymm0	contains	a	row	that	is	finished.	Next	comes	the	next	row.

vperm2f128				ymm1,	ymm13,	ymm15,	00100000b

We	have	00100000	here.

The	lower	00	means	take	the	ymm13	low	field	(6,	2)	and	put	it	in	the	low
field	of	ymm1.

The	higher	10	means	take	the	ymm15	low	field	(14,	10)	and	put	it	in	the
high	field	of	ymm1.

ymm13 8 4 6 2

ymm15 16 12 14 10

ymm1 14 10 6 2

Now	ymm1	contains	a	row	that	is	finished.	Here’s	the	next	one:

vperm2f128				ymm2,	ymm12,	ymm14,	00110001b

We	have	00110001	here:

The	lower	01	means	take	the	ymm13	high	field	(7,	3)	and	put	it	in	the	low
field	of	ymm2.

The	higher	11	means	take	the	ymm15	high	field	(15,	11)	and	put	it	in	the
high	field	of	ymm2.

ymm12 7 3 5 1

ymm14 15 11 13 9

ymm2 15 11 7 3

Now	ymm2	contains	a	row	that	is	finished.	Last	one!

vperm2f128				ymm3,	ymm13,	ymm15,	00110001b

We	have	00110001	here.

The	lower	01	means	take	the	ymm13	high	field	(8,4)	and	put	it	in	the	low
field	of	ymm3.

The	higher	11	means	take	the	ymm15	high	field	(16,12)	and	put	it	in	the
high	field	of	ymm3.

ymm13 8 4 6 2

ymm15 16 12 14 10

ymm3 16 12 8 4

And	we	are	done	permutating.	All	that’s	left	is	to	copy	the	rows	from	the
ymm	registers	into	the	correct	order	in	memory.

The	Shuffle	Version
We	already	used	a	shuffle	instruction	called	pshufd	in	Chapter	33.	Here	we
use	the	instruction	vshufpd,	which	also	uses	a	mask	to	control	the	shuffle.
Don’t	get	confused;	the	instruction	pshufd	uses	an	8-bit	mask.	The	masks
we	will	be	using	here	count	as	only	4	bits.

Again,	we	are	using	little-endian	format	(remember	4,	3,	2,	1)	and	do	not
care	how	the	packed	values	are	stored	in	the	ymm	registers.	That	is	the
processor’s	business.

Refer	to	the	following	table	and	the	examples	that	follow	this	explanation.
The	two	lower	bits	in	the	mask	control	which	packed	values	go	into	the
destination’s	two	lower	positions;	the	two	upper	bits	in	the	mask	control
which	packed	values	go	into	the	destination’s	two	upper	positions.	Bits	0	and
2	specify	which	value	to	take	from	source	1,	and	bits	1	and	3	specify	which
value	to	take	from	source	2.

Select	from	upper	two
values	in	source	2.

Select	from	upper	two
values	in	source	1.

Select	from	lower	two
values	in	source	2.

Select	from	lower	two
values	in	source	1.

0	=	lower	value	of
source	2

0	=	lower	value	of
source	1

0	=	lower	value	of
source	2

0	=	lower	value	of
source	1

1	=	higher	value	of
source	2

1	=	higher	value	of
source	1

1	=	higher	value	of
source	2

1	=	higher	value	of
source	1

The	two	lower	values	in	each	of	the	sources	can	never	end	up	in	the
higher	positions	at	the	destinations,	and	the	two	higher	values	in	each	of	the
source	can	never	end	up	in	the	lower	positions	of	the	destination.	See	Figure
37-2	for	a	schematic	overview	of	a	few	example	masks.

Figure	37-2 Shuffle	mask	examples

Here	is	how	it	works	in	our	program:

vshufpd				ymm12,ymm0,ymm1,
0000b

ymm0 4 3 2 1

ymm1 8 7 6 5

ymm12 Low	upper	ymm1

7

Low	upper	ymm0

3

Low	lower	ymm1

5

Low	lower	ymm0

1

vshufpd				ymm13,ymm0,ymm1,
1111b

ymm0 4 3 2 1

ymm1 8 7 6 5

ymm13 High	upper	ymm1

8

High	upper	ymm0

4

High	lower	ymm1

6

High	lower	ymm0

2

vshufpd				ymm14,ymm2,ymm3,
0000b				

ymm2 12 11 10 9

ymm3 16 15 14 13

ymm14 Low	upper	ymm3

15

Low	upper	ymm2

11

Low	lower	ymm3

13

Low	lower	ymm2

9

Finally,	here’s	the	last	example:

vshufpd				ymm15,ymm2,ymm3,	1111b

ymm2 12 11 10 9

ymm3 16 15 14 13

ymm15 High	upper	ymm3

16

High	upper	ymm2

12

High	lower	ymm3

14

High	lower	ymm2

10

After	applying	the	shuffle	mask,	we	have	eight	pairs	of	values	in	the	ymm
registers.	We	chose	the	registers	so	that	we	obtained	the	same	intermediate
result	as	in	the	unpacked	version.	Now	the	pairs	need	to	be	rearranged	in	the
right	places	to	form	the	transpose.	We	do	that	in	exactly	the	same	way	as	in
the	unpack	section	by	permutating	fields	(blocks)	of	128	bits	with

vperm2f128.

Summary
In	this	chapter,	you	learned	about	the	following:

That	there	are	two	ways	to	transpose	a	matrix

How	to	use	shuffle,	unpack,	and	permutate	instructions

That	there	are	different	masks	for	shuffle,	unpack,	and	permutate

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_38

38.	Performance	Optimization
Jo	Van	Hoey1	

Hamme,	Belgium

	
You	will	agree	that	a	lot	of	the	AVX	instructions	are	far	from	intuitive,
especially	the	different	mask	layouts	that	make	the	code	difficult	to	read	and
understand.	Moreover,	the	bit	masks	are	sometimes	written	in	hexadecimal
notation,	so	you	have	to	convert	them	first	to	binary	notation	to	see	what	they
do.

In	this	chapter,	we	will	demonstrate	that	using	AVX	instructions	can
dramatically	improve	performance,	and	the	effort	of	using	AVX	pays	off	in	a
number	of	cases.	You	can	find	an	interesting	white	paper	on	benchmarking
code	at
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/ia-32-ia-64-benchmark-code-execution-
paper.pdf	.

In	our	examples,	we	will	use	the	measuring	method	presented	in	this
white	paper.

Transpose	Computation	Performance
In	the	example	code	shown	in	Listing	38-1,	we	have	two	methods	of
computing	the	transpose	matrix,	one	using	“classic”	assembler	instructions
and	another	using	AVX	instructions.	We	added	code	to	measure	the	execution
times	of	both	algorithms.

;	transpose.asm

extern	printf

section	.data

fmt0			db				“4x4	DOUBLE	PRECISION	FLOATING	POINT
MATRIX	TRANSPOSE”,10,0

https://doi.org/10.1007/978-1-4842-5076-1_38
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

fmt1			db				10,“This	is	the	matrix:”,10,0

fmt2			db				10,“This	is	the	transpose	(sequential
version):	“,10,0

fmt3			db				10,“This	is	the	transpose	(AVX
version):	“,10,0

fmt4			db				10,“Number	of	loops:	%d”,10,0

fmt5			db				“Sequential	version	elapsed	cycles:
%d”,10,0

fmt6			db				“AVX	Shuffle	version	elapsed	cycles:
%d”,10,0

align		32

matrix							dq					1.,					2.,					3.,					4.

dq					5.,					6.,					7.,					8.

dq					9.,				10.,				11.,				12.

dq				13.,				14.,				15.,				16.

loops		dq				10000

section	.bss

alignb							32

transpose				resq								16

bahi_cy						resq			1		;timers	for	avx	version

balo_cy						resq			1

eahi_cy						resq			1

ealo_cy						resq			1

bshi_cy						resq			1		;timers	for	sequential
version

bslo_cy						resq			1

eshi_cy						resq			1

eslo_cy						resq			1

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	print	title

mov			rdi,	fmt0

call		printf

;	print	matrix

mov			rdi,fmt1

call		printf

mov			rsi,matrix

call		printm4x4

;	SEQUENTIAL	VERSION

;	compute	transpose

mov			rdi,	matrix

mov			rsi,	transpose

mov			rdx,	[loops]

;start	measuring	the	cycles

cpuid

rdtsc

mov			[bshi_cy],edx

mov			[bslo_cy],eax

call	seq_transpose

;stop	measuring	the	cycles

rdtscp

mov			[eshi_cy],edx

mov			[eslo_cy],eax

cpuid

;print	the	result

mov			rdi,fmt2

call		printf

mov			rsi,transpose

call		printm4x4

;	AVX	VERSION

;	compute	transpose

mov			rdi,	matrix

mov			rsi,	transpose

mov			rdx,	[loops]

;start	measuring	the	cycles

cpuid

rdtsc

mov			[bahi_cy],edx

mov			[balo_cy],eax

call	AVX_transpose

;stop	measuring	the	cycles

rdtscp

mov			[eahi_cy],edx

mov			[ealo_cy],eax

cpuid

;print	the	result

mov			rdi,fmt3

call		printf

mov			rsi,transpose

call		printm4x4

;print	the	loops

mov			rdi,fmt4

mov			rsi,[loops]

call		printf

;print	the	cycles

;cycles	sequential	version

mov			rdx,[eslo_cy]

mov			rsi,[eshi_cy]

shl			rsi,32

or				rsi,rdx									;rsi	contains	end	time

mov			r8,[bslo_cy]

mov			r9,[bshi_cy]

shl			r9,32

or				r9,r8											;r9	contains	start	time

sub			rsi,r9										;rsi	contains	elapsed

;print	the	timing	result

mov			rdi,fmt5

call		printf

;cycles	AVX	blend	version

mov			rdx,[ealo_cy]

mov			rsi,[eahi_cy]

shl			rsi,32

or				rsi,rdx										;rsi	contains	end	time

mov			r8,[balo_cy]

mov			r9,[bahi_cy]

shl			r9,32

or				r9,r8												;r9	contains	start	time

sub			rsi,r9											;rsi	contains	elapsed

;print	the	timing	result

mov			rdi,fmt6

call		printf

leave

ret

;–––––––––––––––––—

seq_transpose:

push		rbp

mov			rbp,rsp

.loopx:																					;	the	number	of	loops

pxor					xmm0,xmm0

xor						r10,r10

xor						rax,rax

mov						r12,4

.loopo:

push		rcx

mov			r13,4

.loopi:

movsd		xmm0,	[rdi+r10]

movsd		[rsi+rax],	xmm0

add											r10,8

add											rax,32

dec											r13

jnz				.loopi

add				rax,8

xor				rax,10000000b				;rax	-	128

inc				rbx

dec				r12

jnz				.loopo

dec	rdx

jnz	.loopx

leave

ret

;–––––––––––––––––––––

AVX_transpose:

push		rbp

mov			rbp,rsp

.loopx:																				;	the	number	of	loops

;load	matrix	into	the	registers

vmovapd							ymm0,[rdi]				;		1			2			3			4

vmovapd							ymm1,[rdi+32]	;		5			6			7			8

vmovapd							ymm2,[rdi+64]	;		9		10		11		12

vmovapd							ymm3,[rdi+96]	;	13		14		15		16

;shuffle

vshufpd							ymm12,ymm0,ymm1,
0000b					;		1			5			3			7

vshufpd							ymm13,ymm0,ymm1,
1111b					;		2			6			4			8

vshufpd							ymm14,ymm2,ymm3,
0000b					;		9		13		11		15

vshufpd							ymm15,ymm2,ymm3,	1111b					;
10		14		12		16

;permutate

vperm2f128				ymm0,ymm12,ymm14,					00100000b				;
1			5			9		13

vperm2f128				ymm1,ymm13,ymm15,					00100000b				;
2			6		10		14

vperm2f128				ymm2,ymm12,ymm14,					00110001b				;
3			7		11		15

vperm2f128				ymm3,ymm13,ymm15,					00110001b				;
4			8		12		16

;write	to	memory

vmovapd							[rsi],			ymm0

vmovapd							[rsi+32],ymm1

vmovapd							[rsi+64],ymm2

vmovapd							[rsi+96],ymm3

dec	rdx

jnz	.loopx

leave

ret

;–––––––––––––––––––––

printm4x4:

section	.data

.fmt			db					”%f”,9,”%f”,9,	“%f”,9,”%f”,10,0

section	.text

push		rbp

mov			rbp,rsp

push			rbx															;callee	saved

push			r15									;callee	saved

mov											rdi,.fmt

mov											rcx,4

xor											rbx,rbx					;row	counter

.loop:

movsd		xmm0,	[rsi+rbx]

movsd		xmm1,	[rsi+rbx+8]

movsd		xmm2,	[rsi+rbx+16]

movsd		xmm3,	[rsi+rbx+24]

mov										rax,4								;	four	floats

push							rcx				;caller	saved

push							rsi				;caller	saved

push							rdi				;caller	saved

;align	stack	if	needed

xor		r15,r15

test	rsp,0fh							;last	byte	is	8	(not	aligned)?

setnz						r15b												;set	if	not	aligned

shl		r15,3														;multiply	by	8

sub		rsp,r15						;substract	0	or	8

call			printf

add		rsp,r15								;add	0	or	8

pop		rdi

pop		rsi

pop		rcx

add		rbx,32						;next	row

loop	.loop

pop	r15

pop	rbx

leave

ret
Listing	38-1 	transpose.asm

Before	we	call	the	transpose	function,	we	start	the	timing	process.	Modern
processors	support	out-of-order	execution	code,	which	could	result	in
instructions	being	executed	at	the	wrong	moment,	before	we	start	the	timing
or	after	we	stop	the	timing.	To	avoid	that,	we	need	to	use	“serializing”
instructions,	which	are	instructions	that	guarantee	that	our	timing	instructions
measure	only	what	we	want	to	measure.	See	the	previous	white	paper	for	a
more	detailed	explanation.	One	such	instruction	that	can	be	used	for
serializing	is	cpuid.	Before	starting	the	timer	with	rdtsc	,	we	execute
cpuid.	We	use	rdtsc	to	write	the	beginning	timestamp	counter	“low
cycles”	in	register	eax	and	“high	cycles”	in	edx;	these	values	are	stored	in
memory.	The	instruction	rdtsc	uses	these	two	registers	for	historical
reasons:	in	32-bit	processors,	one	register	would	be	too	small	to	hold	the
timer	counts.	One	32-bit	register	is	used	for	the	lower	part	of	the	timer
counter	value,	and	another	register	is	used	for	the	higher	part.	After	recording
the	beginning	timer	counter	values,	we	execute	the	code	we	want	to	measure
and	use	the	rdtscp	instruction	to	stop	the	measurement.	The	ending	“high
cycles”	and	“low	cycles”	counters	are	stored	again	in	memory,	and	cpuid	is
executed	once	again	to	make	sure	that	no	execution	of	instructions	is
postponed	by	the	processor.

We	use	a	64-bit	processor	environment,	so	we	shift	left	32	the	higher
timestamp	values	and	then	xor	the	higher	timestamp	value	with	the	lower
timestamp	value	to	obtain	the	complete	timestamps	in	a	64-bit	register.	The
difference	between	the	beginning	counter	values	and	the	ending	counter

values	gives	the	number	of	cycles	used.

The	function	seq_transpose	uses	“classic”	instructions,	and	the
function	AVX_transpose	is	the	transpose_shuffle4x4	function
from	the	previous	chapter.	The	functions	are	executed	a	large	number	of	times
as	specified	in	the	variable	loops.

Figure	38-1	shows	the	output.

Figure	38-1 transpose.asm	output

You	can	see	that	using	AVX	instructions	spectacularly	speeds	up	the
processing.

Intel	has	a	volume	dedicated	to	code	optimization:
https://software.intel.com/sites/default/files/managed/9e/bc/64-

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

ia-32-architectures-optimization-manual.pdf	.

This	manual	has	a	lot	of	interesting	information	on	improving	the
performance	of	assembly	code.	Search	for	handling	port	5	pressure	(currently
covered	in	Chapter	14).	In	that	section,	you	will	find	several	versions	of	a
transpose	algorithm	for	8×8	matrices	as	well	as	the	performance	impact	of
different	instructions.	In	the	previous	chapter,	we	demonstrated	two	ways	of
transposing	a	matrix,	using	unpacking	and	using	shuffle.	The	Intel	manuals	go
much	deeper	into	the	details	of	this	subject;	if	performance	is	important	to
you,	there	are	treasures	to	be	found	there.

Trace	Computation	Performance
Here	is	an	example	showing	that	AVX	instructions	are	not	always	faster	than
“classic”	assembly	instructions.	This	example	computes	the	trace	of	an	8×8
matrix:

;	trace.asm

extern	printf

section	.data

fmt0			db						“8x8	SINGLE	PRECISION	FLOATING	POINT	MATRIX	TRACE”,10,0

fmt1			db						10,“This	is	the	matrix:”,10,0

fmt2			db						10,“This	is	the	trace	(sequential	version):	%f”,10,0

fmt5			db						“This	is	the	trace	(AVX	blend	version):	%f”,10,0

fmt6			db						10,“This	is	the	tranpose:	“,10,0

fmt30		db						“Sequential	version	elapsed	cycles:	%u”,10,0

fmt31		db						“AVX	blend		version	elapsed	cycles:	%d”,10,10,0

fmt4			db						10,“Number	of	loops:	%d”,10,0

align		32

matrix	dd	1.,					2.,					3.,					4.,					5.,					6.,					7.,					8.

dd	9.,					10.,				11.,				12.,				13.,				14.,				15.,				16.

dd	17.,				18.,				19.,				20.,				21.,				22.,				23.,				24.

dd	25.,				26.,				27.,				28.,				29.,				30.,				31.,				32.

dd	33.,				34.,				35.,				36.,				37.,				38.,				39.,				40.

dd	41.,				42.,				43.,				44.,				45.,				46.,				47.,				48.

dd	49.,				50.,				51.,				52.,				53.,				54.,				55.,				56.

dd	57.,				58.,				59.,				60.,				61.,				62.,				63.,				64.

loops		dq				1000

permps	dd				0,1,4,5,2,3,6,7		;mask	for	permutation	sp	values	in	ymm

section	.bss

alignb							32

transpose				resq			16

trace								resq			1

bbhi_cy						resq			1

bblo_cy						resq			1

ebhi_cy						resq			1

eblo_cy						resq			1

bshi_cy						resq			1

bslo_cy						resq			1

eshi_cy						resq			1

eslo_cy						resq			1

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	print	title

mov				rdi,	fmt0

call			printf

;	print	matrix

mov				rdi,fmt1

call			printf

mov				rsi,matrix

call			printm8x8

;	SEQUENTIAL	VERSION

;	compute	trace

mov				rdi,	matrix

mov				rsi,	[loops]

;start	measuring	the	cycles

cpuid

rdtsc

mov				[bshi_cy],edx

mov				[bslo_cy],eax

call			seq_trace

;stop	measuring	the	cycles

rdtscp

mov				[eshi_cy],edx

mov				[eslo_cy],eax

cpuid

;print	the	result

mov				rdi,	fmt2

mov				rax,1

call			printf

;	BLEND	VERSION

;	compute	trace

mov				rdi,	matrix

mov				rsi,	[loops]

;start	measuring	the	cycles

cpuid

rdtsc

mov				[bbhi_cy],edx

mov				[bblo_cy],eax

call			blend_trace

;stop	measuring	the	cycles

rdtscp

mov				[ebhi_cy],edx

mov				[eblo_cy],eax

cpuid

;print	the	result

mov				rdi,	fmt5

mov				rax,1

call			printf

;print	the	loops

mov				rdi,fmt4

mov				rsi,[loops]

call			printf

;print	the	cycles

;cycles	sequential	version

mov				rdx,[eslo_cy]

mov				rsi,[eshi_cy]

shl				rsi,32

or					rsi,rdx

mov				r8,[bslo_cy]

mov				r9,[bshi_cy]

shl				r9,32

or					r9,r8

sub				rsi,r9								;rsi	contains	elapsed

;print

mov				rdi,fmt30

call	printf

;cycles	AVX	blend	version

mov			rdx,[eblo_cy]

mov			rsi,[ebhi_cy]

shl			rsi,32

or				rsi,rdx

mov			r8,[bblo_cy]

mov			r9,[bbhi_cy]

shl			r9,32

or				r9,r8

sub			rsi,r9

;print

mov			rdi,fmt31

call		printf

leave

ret

;––––––––––––––––––––—

seq_trace:

push		rbp

mov			rbp,rsp

.loop0:

pxor		xmm0,xmm0

mov			rcx,8

xor			rax,rax

xor			rbx,rbx

.loop:

addss	xmm0,	[rdi+rax]

add			rax,36			;each	row	32	bytes

loop		.loop

cvtss2sd					xmm0,xmm0

dec										rsi

jnz										.loop0

leave

ret

;––––––––––––––––––––—

blend_trace:

push			rbp

mov					rbp,rsp

.loop:

;build	the	matrix	in	memory

vmovaps							ymm0,	[rdi]

vmovaps							ymm1,	[rdi+32]

vmovaps							ymm2,	[rdi+64]

vmovaps							ymm3,	[rdi+96]

vmovaps							ymm4,	[rdi+128]

vmovaps							ymm5,	[rdi+160]

vmovaps							ymm6,	[rdi+192]

vmovaps							ymm7,	[rdi+224]

vblendps						ymm0,ymm0,ymm1,00000010b

vblendps						ymm0,ymm0,ymm2,00000100b

vblendps						ymm0,ymm0,ymm3,00001000b

vblendps						ymm0,ymm0,ymm4,00010000b

vblendps						ymm0,ymm0,ymm5,00100000b

vblendps						ymm0,ymm0,ymm6,01000000b

vblendps						ymm0,ymm0,ymm7,10000000b

vhaddps							ymm0,ymm0,ymm0

vmovdqu							ymm1,[permps]

vpermps							ymm0,ymm1,ymm0

haddps								xmm0,xmm0

vextractps				r8d,xmm0,0

vextractps				r9d,xmm0,1

vmovd									xmm0,r8d

vmovd									xmm1,r9d

vaddss								xmm0,xmm0,xmm1

dec											rsi

jnz											.loop

cvtss2sd	xmm0,xmm0

leave

ret

printm8x8:

section	.data

.fmt
db						”%.f,”,9,”%.f,”,9,”%.f,”,9,”%.f,”,9,”%.f,”,9,”%.f,”,9,”%.f,”,9,”%.f”,10,0

section	.text

push		rbp

mov			rbp,rsp

push			rbx												;callee	saved

mov				rdi,.fmt

mov				rcx,8

xor				rbx,rbx				;row	counter

vzeroall

.loop:

movss									xmm0,	dword[rsi+rbx]

cvtss2sd				xmm0,xmm0

movss									xmm1,	[rsi+rbx+4]

cvtss2sd				xmm1,xmm1

movss									xmm2,	[rsi+rbx+8]

cvtss2sd				xmm2,xmm2

movss									xmm3,	[rsi+rbx+12]

cvtss2sd				xmm3,xmm3

movss									xmm4,	[rsi+rbx+16]

cvtss2sd				xmm4,xmm4

movss									xmm5,	[rsi+rbx+20]

cvtss2sd				xmm5,xmm5

movss									xmm6,	[rsi+rbx+24]

cvtss2sd				xmm6,xmm6

movss									xmm7,	[rsi+rbx+28]

cvtss2sd				xmm7,xmm7

mov					rax,8	;	8	floats

push				rcx								;caller	saved

push				rsi								;caller	saved

push				rdi								;caller	saved

;align	stack	if	needed

xor					r15,r15

test				rsp,0fh												;last	byte	is	8	(not	aligned)?

setnz			r15b															;set	if	not	aligned

shl					r15,3										;multiply	by	8

sub					rsp,r15								;substract	0	or	8

call				printf

add					rsp,r15								;add	0	or	8

pop					rdi

pop					rsi

pop					rcx

add					rbx,32					;next	row

loop				.loop

pop	rbx					;callee	saved

leave

ret

The	function	blend_trace	is	an	extension	from	4×4	to	8×8	of	the	trace
function	we	used	in	Chapter	36,	in	our	matrix	inversion	code,	with	AVX

instructions.	The	function	seq_trace	walks	sequentially	through	the
matrix,	finds	the	trace	elements,	and	adds	them.	When	running	this	code,	you
will	see	that	seq_trace	is	much	faster	than	blend_trace.

Figure	38-2	shows	the	output.

Figure	38-2 trace.asm	output

If	you	want	to	know	more	about	optimization,	use	the	previously
mentioned	Intel	manual.	Here	is	another	excellent	source:
https://www.agner.org	.

Summary
In	this	chapter,	you	learned	about	the	following:

Measuring	and	computing	elapsed	cycles

That	AVX	can	speed	up	processing	drastically

That	AVX	is	not	suited	for	every	situation

https://www.agner.org

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_39

39.	Hello,	Windows	World
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	this	and	the	following	chapter,	we	will	start	assembly	coding	in	Windows.
As	with	Linux,	it	is	best	to	install	a	Windows	virtual	machine.	You	can
download	a	license	for	a	90-day	Windows	10	trial	here:
https://www.microsoft.com/en-us/evalcenter/evaluate-
windows-10-enterprise	.	Install	the	trial	version	of	Windows	10,	and
do	the	updates,	which	can	take	a	while.

Getting	Started
Microsoft	has	developed	its	own	assembler,	called	MASM	,	and	it	is	included
in	Visual	Studio.	Being	able	to	use	Visual	Studio	is	certainly	an	advantage,
because	it	is	a	comprehensive	development	tool.	The	assembler	instructions
used	in	MASM	are	the	same	as	those	in	NASM,	but	the	assembler	directives
are	very	different.	Configuring	and	learning	to	work	with	Visual	Studio	has	a
learning	curve,	depending	on	your	previous	experience	as	a	Windows
developer.

To	soften	the	culture	shock,	in	this	book	we	will	use	NASM	on	Windows
and	use	the	CLI.	We	already	know	NASM	on	Linux	from	the	previous
chapters,	which	gives	us	a	head	start.	However,	making	the	switch	to	MASM
should	not	be	too	difficult	to	do	on	your	own.

If	you	want	to	develop	for	Windows,	learning	to	use	Visual	Studio	is
worth	the	effort.	On	the	Internet	you	can	even	find	how	to	use	NASM	with
Visual	Studio.

Find	NASM	for	Windows	on	the	Internet	and	install	it	(currently:	
https://www.nasm.us/pub/nasm/releasebuilds/2.14.03rc2/win64/
).	Make	sure	your	Windows	environment	path	variable	has	an	entry	that
points	to	the	folder	where	you	installed	NASM.	See	Figure	39-1.	You	can

https://doi.org/10.1007/978-1-4842-5076-1_39
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-10-enterprise
https://www.nasm.us/pub/nasm/releasebuilds/2.14.03rc2/win64/

verify	the	NASM	installation	with	nasm	-v	at	the	CLI.

Figure	39-1 Windows	10	environment	path	variable

We	will	also	use	a	version	of	MinGW	(Minimalist	GNU	for	Windows)	,
which	is	a	set	of	Linux	development	tools	ported	to	Windows.	MinGW	will
allow	us	to	use	the	tools	make	and	GCC,	which	we	have	used	often	in	the
previous	chapters	of	the	book.	The	version	you	have	to	install	is	MinGW-
w64.	Before	you	start	downloading	and	installing,	if	you	plan	to	use	SASM
on	Windows,	be	aware	that	SASM	installs	NASM	and	some	MinGW-w64
tools	in	its	own	subdirectories	(except	make).	If	you	manually	install	SASM
and	MingGW-w64,	you	will	end	up	with	double	installations.	In	the	SASM
settings,	you	can	configure	SASM	to	use	your	installed	versions	of	NASM
and	GCC	instead	of	the	older	versions	that	come	with	SASM.

Currently	you	will	find	the	download	files	for	MinGW-w64	here:
http://mingw-w64.org/doku.php/download	.	Choose	MingW-

http://mingw-w64.org/doku.php/download

W64-builds,	download	and	install	it,	and	choose	x86_64	in	the	installation
window.

Go	to	the	Windows	environment	variables,	and	add	the	path	to	the
MinGW-W64	bin	folder	to	the	environment	variable	path,	shown	in	Figure
39-1.	The	bin	folder	contains	GCC.	After	updating	the	path	variable,	go	to
the	PowerShell	CLI	and	type	gcc	-v	to	verify	the	installation.

Download	the	win64	version	of	SASM	(
https://dman95.github.io/SASM/english.html),	and	if	you
want	SASM	to	use	the	new	versions	of	NASM	and	GCC,	modify	the	build
settings	to	your	freshly	installed	NASM	and	GCC.	Do	not	forget	to	update	the
Windows	environment	path	variable	with	an	entry	for	SASM.

If	you	do	not	have	a	preferred	text	editor	on	Windows,	install	Notepad++.
It	is	simple	and	provides	syntax	highlighting	for	a	large	number	of
programming	languages,	including	assembly.	And	you	can	easily	set	the
encoding	to	UTF-8,	UTF-16,	and	so	on.	You	can	find	the	assembly	language
setting	on	the	menu	bar	under	Language.

It	is	annoying	that	MinGW-w64	does	not	have	a	make	command	but
provides	only	ming32-make.exe,	which	is	a	long	command	to	use.	To
solve	this,	create	a	make.bat	file	with	Notepad++	(run	as	Administrator)
containing	this	line:

mingw32-make.exe

Save	the	file	in	UTF-8	format	in	the	MinGW-W64	bin	folder.

Here	are	some	hints	if	you	struggle	with	Windows:

To	open	an	application	as	administrator,	right-click	the	application	icon,
and	choose	the	option	Run	as	administrator.
It	is	always	handy	to	have	easy	access	to	PowerShell,	the	Windows	CLI.	To
open	it,	type	PowerShell	in	the	search	field	on	the	taskbar	at	the	bottom
and	then	click	Open.	A	PowerShell	icon	will	appear	on	the	taskbar;	right-
click	this	icon	and	choose	Pin	to	taskbar.
In	a	window	that	shows	icons	for	files	or	directories,	press	Shift	and	right-
click	at	the	same	time,	and	on	the	menu	that	pops	up,	you	can	select	Open
PowerShell	window	here.
To	show	hidden	files	and	directories,	click	the	File	Explorer	icon	on	the
taskbar.	Open	the	View	menu	item	and	select	Hidden	items.
To	find	the	environment	variables,	type	environment	variables	in	the

https://dman95.github.io/SASM/english.html

search	field	on	the	taskbar.

Writing	Some	Code
Now	you	are	ready	to	start	coding.	Listing	39-1	and	Listing	39-2	show	our
first	program.

;	hello.asm

extern	printf

section	.data

msg			db	‘Hello,	Windows
World!’,0

fmt			db	“Windows	10	says:
%s”,10,0

section	.text

global	main

main:

push	rbp

mov	rbp,rsp

mov			rcx,	fmt

mov			rdx,	msg

sub			rsp,32

call		printf

add			rsp,32

leave

ret
Listing	39-1 hello.asm

hello.exe:	hello.obj

gcc	-o	hello.exe	hello.obj

hello.obj:	hello.asm

nasm	-f	win64		-g	-F	cv8	hello.asm	-l
hello.lst

Listing	39-2 makefile

There	is	nothing	spectacular	here,	right?	Or	is	there?

Well,	first	there	is	sub	rsp,32	,	which	in	Linux	we	used	to	create	stack
variables.	With	this	instruction,	we	create	shadow	space	on	the	stack	before
calling	a	function.	More	on	that	later.	After	the	printf	function	executes,
we	restore	the	stack	with	add	rsp,32,	which	in	this	case	is	not	strictly
necessary	because	the	stack	will	be	restored	by	the	leave	instruction.	The
registers	we	use	to	pass	arguments	to	printf	are	different	from	the	ones
used	in	Linux.	That	is	because	the	calling	conventions	in	Windows	are
different	from	the	calling	conventions	in	Linux.	Windows	requires	you	to	use
the	Microsoft	x64	calling	convention,	while	Linux	wants	you	to	use	System	V
Application	Binary	Interface,	also	called	System	V	ABI.

You	can	find	an	overview	of	the	Microsoft	calling	convention	here:
https://docs.microsoft.com/en-us/cpp/build/x64-
calling-convention?view=vs-2019	.	This	page	tends	to	move	from
time	to	time;	if	you	can’t	find	it,	search	on	the	Microsoft	site	for	the	x64
calling	convention.	Here	is	the	short	version:

Integer	arguments	are	passed	in	rcx,	rdx,	r8,	and	r9,	in	that	order.

If	you	want	to	pass	more	arguments,	you	push	them	onto	the	stack.

Floating-point	arguments	are	passed	in	the	xmm0-xmm3	registers;	further
arguments	are	passed	using	the	stack.

Registers	rcx,	rdx,	r8,	r9,	and,	additionally,	rax,	r10,	r11,	xmm4,
and	xmm5	are	volatile,	meaning	that	the	caller	has	to	save	them	if	needed.
The	other	registers	are	callee	saved.

The	caller	needs	to	provide	a	32-byte	space	on	the	stack	(shadow	space)	for
four	function	arguments	to	be	passed	to	the	callee,	even	if	the	callee	does
not	take	that	many	arguments.

As	in	Linux,	the	stack	must	be	16-byte	aligned.

Figure	39-2	shows	the	output	of	our	first	program.

Figure	39-2 hello.asm	output

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention%253Fview%253Dvs-2019

Debugging
If	you	launch	GDB	to	debug	our	first	program,	you	are	in	for	a	surprise.	You
can	execute	a	number	of	commands,	but	stepping	through	your	code	will	not
work.	You	will	see	the	following	message:

Single	stepping	until	exit	from	function	main,

which	has	no	line	number	information.

0x0000000000402a60	in	printf	()

This	means	that	GDB	is	of	limited	use	here!	However,	SASM	comes	to	the
rescue.	SASM	does	not	seem	to	have	this	problem.	In	our	makefile	we	still
include	the	debug	flags;	maybe	in	a	future	version	of	GDB	this	will	be	solved.
In	the	makefile	we	specify	cv8	(Microsoft	CodeView	8)	as	the	debugging
format.

Syscalls
In	our	example	code,	we	used	printf	instead	of	a	syscall	as	we	did	with
our	first	Linux	assembly	program.	There	is	a	reason	for	that:	you	do	not	use
syscalls	in	Windows.	Windows	has	syscalls,	but	they	are	for	“internal”	use
only.	You	need	to	use	the	Windows	API	when	you	want	to	access	system
resources.	Of	course,	you	can	dig	around	in	the	Windows	code	or	on	the
Internet	to	find	out	what	the	Windows	syscalls	are,	but	know	that	newer
versions	of	Windows	can	change	the	use	of	syscalls,	and	that	can	break	your
code	if	you	use	them.

Summary
In	this	chapter,	you	learned	about	the	following:

How	to	install	and	use	NASM,	SASM,	and	Linux	development	tools	in
Windows

That	calling	conventions	in	Windows	are	different	from	those	in	Linux

That	it’s	better	not	use	syscalls

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_40

40.	Using	the	Windows	API
Jo	Van	Hoey1	

Hamme,	Belgium

	
The	Windows	application	programming	interface	(API)	is	a	set	of	functions
that	can	be	used	by	a	developer	to	interact	with	the	operating	system.	As
mentioned	in	the	previous	chapter,	syscalls	are	not	a	reliable	way	to
communicate	with	the	operating	system,	but	Microsoft	provides	a	large	set	of
APIs	to	accomplish	just	about	everything	you	could	think	of.	The	Windows
API	is	written	with	the	C	programming	language	in	mind,	but	if	we	comply
with	the	calling	conventions,	we	can	easily	use	the	Windows	API	in	our
assembler	programs.	The	description	of	the	Windows	API	can	be	found	here
(at	the	time	of	this	writing):	https://docs.microsoft.com/en-
us/windows/win32/api/	.

Console	Output
Listing	40-1	shows	a	version	of	a	“Hello,	World”	program	that	makes	use	of
the	Windows	API	to	display	a	message	on	the	screen.

;	helloc.asm

%include	“win32n.inc”

extern	WriteFile

extern	WriteConsoleA

extern	GetStdHandle

section	.data

msg												db							‘Hello,	World!!’,10,0

msglen		EQU				$-msg-1												;	leave	off	the	NULL

section	.bss

https://doi.org/10.1007/978-1-4842-5076-1_40
https://docs.microsoft.com/en-us/windows/win32/api/

hFile																			resq						1						;	handle	to
file

lpNumberOfBytesWritten		resq						1

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

;	get	a	handle	to	stdout

;HANDLE	WINAPI	GetStdHandle(

;		_In_	DWORD	nStdHandle

;);

mov			rcx,	STD_OUTPUT_HANDLE

sub			rsp,32															;shadowspace

call		GetStdHandle									;returns
INVALID_HANDLE_VALUE	if	no	success

add			rsp,32

mov			qword[hFile],rax					;save	received	handle	to
memory

;BOOL	WINAPI	WriteConsole(

;		_In_																				HANDLE						hConsoleOutput,

;		_In_						const	VOID				*lpBuffer,

;		_In_												DWORD			nNumberOfCharsToWrite,

;		_Out_											LPDWORD								lpNumberOfCharsWritten,

;		_Reserved_						LPVOID									lpReserved

;);

sub			rsp,	8																;align	the	stack

mov			rcx,	qword[hFile]

lea			rdx,	[msg]												;lpBuffer

mov			r8,	msglen												;nNumberOfBytesToWrite

lea			r9,	[lpNumberOfBytesWritten]

push		NULL																		;lpReserved

sub			rsp,	32

call		WriteConsoleA									;returns	nonzero	if	success

add			rsp,32+8

;	BOOL	WriteFile(

;												HANDLE							hFile,

;												LPCVOID						lpBuffer,

;												DWORD								nNumberOfBytesToWrite,

;						LPDWORD					lpNumberOfBytesWritten,

;						LPOVERLAPPED				lpOverlapped

;);

mov			rcx,	qword[hFile]				;	file	handle

lea			rdx,	[msg]											;lpBuffer

mov			r8,	msglen											;nNumberOfBytesToWrite

lea			r9,	[lpNumberOfBytesWritten]

push		NULL																	;lpOverlapped

sub			rsp,32

call		WriteFile												;returns	nonzero	of	success

leave

ret
Listing	40-1 helloc.asm

The	Windows	API	documentation	uses	thousands	and	thousands	of
symbolic	constants.	This	makes	the	code	more	readable	and	makes	it	easier	to
use	the	Windows	API,	so	we	include	the	file	win32n.inc	at	the	beginning
of	our	program.	This	is	a	list	of	all	symbolic	constants	and	their	values.	The
win32n.inc	file	can	be	found	here:
http://rs1.szif.hu/~tomcat/win32/	.	However,	be	aware	that
including	this	file	in	your	source	will	make	the	executable	much	larger	than	it
needs	to	be.	If	space	is	important,	just	include	only	the	constants	you	need	in
your	program.	If	you	use	SASM,	find	the	folder	where	SASM	is	installed	and
manually	copy	the	file	into	the	SASM	include	directory	on	your	system.

http://rs1.szif.hu/%257Etomcat/win32/

In	the	code	we	copy	the	structure	of	the	Windows	function	calls	in
comments	so	that	it	is	easy	to	follow	what	is	happening.	We	put	the
arguments	in	registers	according	to	the	calling	convention,	provide	shadow
space	on	the	stack,	call	the	function,	and	then	restore	the	stack	pointer.

The	function	GetStdHandle	returns	a	handle	if	everything	goes	well;
otherwise,	it	returns	INVALID_HANDLE_VALUE.	To	keep	it	simple,	we	do
no	error	checking,	but	in	real	production	programs,	you	are	advised	to
implement	comprehensive	error	checking	in	your	programs.	Failure	to	do	so
can	crash	your	program	or,	worse,	can	be	the	cause	of	security	breaches.

When	we	have	a	handle,	we	continue	to	WriteConsoleA,	passing	the
handle,	the	string	to	write,	the	length	of	the	string,	a	placeholder	for	the
number	of	bytes	written,	and	NULL	for	a	reserved	argument.	The	first	four
arguments	are	passed	in	the	registers,	and	the	fifth	argument	is	pushed	onto
the	stack.	This	push	will	cause	the	stack	to	be	unaligned;	we	have	to
anticipate	this	before	we	push	the	argument	to	the	stack.	If	we	aligned	after
the	push,	the	function	called	would	not	find	the	argument	on	the	stack.	Just
before	we	do	the	call,	we	create	the	shadow	space	on	the	stack.

Our	program	uses	two	methods	to	write	to	the	console;	one	uses
WriteConsoleA,	and	the	other	uses	WriteFile.	The	WriteFile	uses
the	same	handle	and	considers	the	console	as	just	another	file	to	write	to.
After	WriteConsoleA,	we	restore	the	stack	for	the	shadow	space	and	the
alignment.	After	WriteFile,	we	do	not	restore	the	stack,	because	that	will
be	done	by	the	leave	instruction.

If	you	do	not	find	WriteConsoleA	in	the	Windows	API
documentation,	look	for	WriteConsole	.	The	documentation	explains	that
there	are	two	versions,	WriteConsoleA	for	writing	ANSI	and
WriteConsoleW	for	writing	Unicode.

When	you	run	this	code	in	SASM,	you	will	see	that	the	first	method	with
WriteConsoleA	does	not	work.	The	function	returns	0	in	rax,	hinting
that	something	went	wrong.	That	is	because	we	are	interfering	with	the
SASM	console	itself.	The	method	using	WriteFile	works	fine.

Figure	40-1	shows	the	output.

Figure	40-1 helloc.asm	output

Building	Windows
Instead	of	using	the	console,	we	will	now	use	the	Windows	GUI.	We	will	not
provide	a	full-fledged	Windows	program;	we	want	to	show	you	how	to
display	a	window.	If	you	want	to	do	more,	you	will	have	to	dive	into	the
Windows	API	documentation.	Once	you	have	seen	how	it	works,	it	is	just	a
matter	of	finding	the	right	function	in	the	Windows	API	documentation	and
passing	the	arguments	in	the	registers	and	stack.

Listing	40-2	shows	the	example	code.

;	hellow.asm

%include	“win32n.inc”

extern	ExitProcess

extern	MessageBoxA

section	.data

msg				db	‘Welcome	to	Windows	World!’,0

cap				db	“Windows	10	says:”,0

section	.text

global	main

main:

push				rbp

mov					rbp,rsp

;int	MessageBoxA(

;								HWND	hWnd,													owner	window

;								LPCSTR	lpText,									text	to	display

;								LPCSTR	lpCaption,						window	caption

;								UINT				uType										window	behaviour

;)

mov					rcx,0														;	no	window	owner

lea					rdx,[msg]										;	lpText

lea					r8,[cap]											;	lpCaption

mov					r9d,MB_OK										;	window	with	OK	button

sub					rsp,32													;	shadowspace

call				MessageBoxA								;	returns	IDOK=1	if	OK
button	selected

add					rsp,32

leave

ret
Listing	40-2 	hellow.asm

Figure	40-2	shows	the	output.

Figure	40-2 hellow.asm	output

Of	course,	you	can	question	if	assembly	is	the	right	programming
language	to	build	a	GUI	for	your	Windows	program.	It	is	much	easier	to	use
C	or	C++	for	that	purpose	and	call	in	assembly	for	the	computation-intensive
parts.

Anyway,	you	can	take	any	good	book	on	Windows	programming	in	C	or
C++,	where	the	Windows	API	is	explained,	and	translate	all	the	function	calls
into	assembly	by	providing	the	correct	registers	and	then	calling	the	function
as	demonstrated.	Of	course,	complicated	functionality	such	as	error	checking
is	needed,	and	that	is	just	so	much	easier	to	develop	in	a	higher-level
language.

Summary
In	this	chapter,	you	learned	about	the	following:

How	to	use	the	Windows	API

How	to	write	a	message	to	the	Windows	CLI	(PowerShell)

How	to	use	the	instructions	GetStdHandle,	WriteConsole,	and
WriteFile

How	to	create	a	window	with	a	button

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_41

41.	Functions	in	Windows
Jo	Van	Hoey1	

Hamme,	Belgium

	
Passing	argument	to	functions	is	simple	when	you	have	four	or	fewer	non-
floating-point	arguments.	You	use	rcx,	rdx,	r8,	and	r9	and	provide	shadow
space	on	the	stack	before	calling	the	function.	After	the	call,	you	re-adjust	the
stack	for	the	shadow	space,	and	everything	is	fine.	If	you	have	more	than	four
arguments,	things	are	more	complicated.

Using	More	Than	Four	Arguments
Let’s	first	see	why	things	get	complicated	with	more	than	four	non-floating-
point	arguments,	as	shown	in	Listing	41-1.

;	arguments1.asm

extern	printf

section	.data

first						db				“A”,0

second					db				“B”,0

third						db				“C”,0

fourth					db				“D”,0

fifth						db				“E”,0

sixth						db				“F”,0

seventh				db				“G”,0

eighth					db				“H”,0

ninth						db				“I”,0

tenth						db				“J”,0

https://doi.org/10.1007/978-1-4842-5076-1_41

fmt			db			“The	string	is:
%s%s%s%s%s%s%s%s%s%s”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

sub			rsp,8

mov			rcx,	fmt

mov			rdx,	first

mov			r8,	second

mov			r9,	third

push		tenth									;	now	start	pushing	in

push		ninth									;	reverse	order

push		eighth

push		seventh

push		sixth

push		fifth

push		fourth

sub			rsp,32								;	shadow	space

call		printf

add			rsp,32+8						;	restore	stack

leave

ret
Listing	41-1 arguments1.asm

Look	at	the	instruction	sub	rsp,8;	it	is	there	because	when	we	call
printf,	the	stack	needs	to	be	16-byte	aligned.	Why	not	just	use	one
instruction,	such	as	sub	rsp,40	just	before	the	call?	Well,	the	stack	would
be	16-byte	aligned,	but	printf	is	likely	to	fail.	If	we	decrease	the	stack	by

40	instead	of	32	just	before	the	call,	the	arguments	on	the	stack	are	not	where
printf	expects	them	to	be,	just	above	the	shadow	space.	So,	we	need	to
align	the	stack	before	we	start	pushing	the	arguments.	Note	that	we	need	to
push	the	arguments	in	reverse	order.	After	the	call,	we	restore	the	stack	for	the
alignment	and	for	the	shadow	space.

Figure	41-1	shows	the	output.

Figure	41-1 	arguments1.asm	output

You	can	also	build	the	stack	in	another	way.	Listing	41-2	shows	how	it
works.

;arguments2.asm

extern	printf

section	.data

first									db				“A”,0

second								db				“B”,0

third									db				“C”,0

fourth								db				“D”,0

fifth									db				“E”,0

sixth									db				“F”,0

seventh							db				“G”,0

eighth								db				“H”,0

ninth									db				“I”,0

tenth									db				“J”,0

fmt					db				“The	string	is:
%s%s%s%s%s%s%s%s%s%s”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

sub			rsp,32+56+8				;shadow	space	+	7	arguments
on	stack	+	alignment

mov			rcx,	fmt

mov			rdx,	first

mov			r8,	second

mov			r9,	third

mov			qword[rsp+32],fourth

mov			qword[rsp+40],fifth

mov			qword[rsp+48],sixth

mov			qword[rsp+56],seventh

mov			qword[rsp+64],eighth

mov			qword[rsp+72],ninth

mov			qword[rsp+80],tenth

call		printf

add			rsp,	32+56+8									;not	needed	before
leave

leave

ret
Listing	41-2 arguments2.asm

First	use	sub	rsp,32+56+8	to	adjust	the	stack.

32	bytes	for	shadow	space

7	arguments	to	be	pushed	times	8	bytes,	for	a	total	of	56	bytes

Then	you	start	building	the	stack,	and	when	you	see	that	you	have	to	align
the	stack,	another	8	bytes	have	to	be	subtracted	from	the	stack	pointer.

Now	at	the	bottom	of	the	stack,	you	have	32	bytes	for	the	shadow	space,

and	just	above	that	you	have	the	fourth	argument,	above	the	fifth,	and	so	on.
The	stack	that	you	build	here	looks	the	same	as	the	one	in	the	previous
program.	It	is	up	to	you	to	decide	what	you	prefer.

Figure	41-2	shows	the	output.

Figure	41-2 	arguments2.asm	output

How	does	this	work	in	the	called	function?	Listing	41-3	shows	some
example	code	that	uses	the	function	lfunc	to	build	a	string	buffer	to	be
printed	by	printf.

;	stack.asm

extern	printf

section	.data

first								db				“A”

second							db				“B”

third								db				“C”

fourth							db				“D”

fifth								db				“E”

sixth								db				“F”

seventh						db				“G”

eighth							db				“H”

ninth								db				“I”

tenth								db				“J”

fmt									db				“The	string	is:	%s”,10,0

section	.bss

flist		resb		14										;length	of	string	plus

end	0

section	.text

global	main

main:

push	rbp

mov	rbp,rsp

sub	rsp,	8

mov	rcx,	flist

mov	rdx,	first

mov	r8,	second

mov	r9,	third

push	tenth												;	now	start	pushing	in

push	ninth												;	reverse	order

push	eighth

push	seventh

push	sixth

push	fifth

push	fourth

sub	rsp,32						;	shadow

call	lfunc

add	rsp,32+8

;	print	the	result

mov	rcx,	fmt

mov	rdx,	flist

sub	rsp,32+8

call	printf

add	rsp,32+8

leave

ret

;––––––––––––––––––––––––-

lfunc:

push		rbp

mov			rbp,rsp

xor	rax,rax													;clear	rax	(especially
higher	bits)

;arguments	in	registers

mov	al,byte[rdx]											;	move	content	argument
to	al

mov	[rcx],	al														;	store	al	to	memory

mov	al,	byte[r8]

mov	[rcx+1],	al

mov	al,	byte[r9]

mov	[rcx+2],	al

;arguments	on	stack

xor	rbx,rbx

mov	rax,	qword	[rbp+8+8+32]	;	rsp	+	rbp	+	return
address	+	shadow

mov	bl,[rax]

mov	[rcx+3],	bl

mov	rax,	qword	[rbp+48+8]

mov	bl,[rax]

mov	[rcx+4],	bl

mov	rax,	qword	[rbp+48+16]

mov	bl,[rax]

mov	[rcx+5],	bl

mov	rax,	qword	[rbp+48+24]

mov	bl,[rax]

mov	[rcx+6],	bl

mov	rax,	qword	[rbp+48+32]

mov	bl,[rax]

mov	[rcx+7],	bl

mov	rax,	qword	[rbp+48+40]

mov	bl,[rax]

mov	[rcx+8],	bl

mov	rax,	qword	[rbp+48+48]

mov	bl,[rax]

mov	[rcx+9],	bl

mov	bl,0																;	terminating	zero

mov	[rcx+10],	bl

leave

ret
Listing	41-3 stack.asm

The	main	function	is	the	same	as	in	arguments1.asm;	however,	the
function	called	is	lfunc	instead	of	printf,	which	is	called	later	in	the
code.

In	lfunc,	look	at	the	instruction	mov	rax,	qword
[rbp+8+8+32],	which	loads	the	fourth	argument	from	the	stack	into	rax.
The	register	rbp	contains	a	copy	of	the	stack	pointer.	The	first	8-byte	value
on	the	stack	is	the	rbp	we	pushed	in	the	prologue	of	lfunc.	The	8-byte
value	higher	up	is	the	return	address	to	main,	which	was	automatically
pushed	on	the	stack	when	lfunc	was	called.	Then	we	have	shadow	space
with	32	bytes.	Finally,	we	arrive	at	the	pushed	arguments.	Hence,	the	fourth
and	other	arguments	can	be	found	at	rbp+48	and	higher.

When	we	return	to	main,	the	stack	is	aligned	again,	and	printf	is
called.

Figure	41-3	shows	the	output,	which	is	of	course	the	same	as	before.

Figure	41-3 	stack.asm	output

Working	with	Floating	Points
Floating	points	are	another	story.	Listing	41-4	shows	some	example	code.

;	stack_float.asm

extern	printf

section	.data

zero			dq				0.0								;0x00000000000000
00

one				dq				1.0								;0x3FF00000000000
00

two				dq				2.0								;0x40000000000000
00

three		dq				3.0								;0x40080000000000
00

four			dq				4.0								;0x40100000000000
00

five			dq				5.0								;0x40140000000000
00

six				dq				6.0								;0x40180000000000
00

seven		dq				7.0								;0x401C0000000000
00

eight		dq				8.0								;0x40200000000000
00

nine			dq				9.0								;0x40220000000000
00

section	.bss

section	.text

global	main

main:

push	rbp

mov	rbp,rsp

movq		xmm0,	[zero]

movq		xmm1,	[one]

movq		xmm2,	[two]

movq		xmm3,	[three]

movq		xmm4,	[nine]

sub			rsp,	8

movq		[rsp],	xmm4

movq		xmm4,	[eight]

sub			rsp,	8

movq		[rsp],	xmm4

movq		xmm4,	[seven]

sub			rsp,	8

movq		[rsp],	xmm4

movq		xmm4,	[six]

sub			rsp,	8

movq		[rsp],	xmm4

movq		xmm4,	[five]

sub			rsp,	8

movq		[rsp],	xmm4

movq		xmm4,	[four]

sub			rsp,	8

movq		[rsp],	xmm4

sub			rsp,32						;	shadow

call		lfunc

add			rsp,32

leave

ret

;––––––––––––––––

lfunc:

push		rbp

mov			rbp,rsp

movsd	xmm4,[rbp+8+8+32]

movsd	xmm5,[rbp+8+8+32+8]

movsd	xmm6,[rbp+8+8+32+16]

movsd	xmm7,[rbp+8+8+32+24]

movsd	xmm8,[rbp+8+8+32+32]

movsd	xmm9,[rbp+8+8+32+40]

leave

ret
Listing	41-4 stack_float.asm

There	is	no	output	for	this	little	program	because	there	is	an	oddity	that
we	will	explain	in	the	next	chapter.	You	will	have	to	use	a	debugger	to	look	at
the	xmm	registers.	For	your	convenience,	we	have	provided	the	floating-point
values	in	hexadecimal	in	the	comments.	The	first	four	values	are	passed	to	the
function	in	the	xmm0	to	xmm3	registers.	The	remaining	arguments	will	be
stored	on	the	stack.	Remember	that	the	xmm	registers	can	contain	one	scalar
double-precision	value,	two	packed	double-precision	values,	or	four	packed
single-precision	values.	In	this	case,	we	use	one	scalar	double-precision	value,
and	for	the	sake	of	the	demonstration	we	stored	the	values	on	the	stack
without	using	a	push	instruction.	This	would	be	the	way	to	store	packed
values	on	the	stack,	adjusting	rsp	every	time	with	the	appropriate	amount.	A
more	efficient	way	would	be	to	push	the	scalar	value	directly	from	memory	to
the	stack,	as	shown	here:

push		qword[nine
]

In	the	function,	we	have	to	copy	the	values	from	the	stack	into	the	xmm
registers,	where	we	can	process	them	further.

Summary
In	this	chapter,	you	learned	about	the	following:

How	to	pass	arguments	to	functions	in	registers	and	the	stack

How	to	use	shadow	space	on	the	stack

How	to	access	arguments	on	the	stack

How	to	store	floating-point	values	on	the	stack

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_42

42.	Variadic	Functions
Jo	Van	Hoey1	

Hamme,	Belgium

	
A	variadic	function	is	a	function	that	takes	a	variable	number	of	arguments.	A
good	example	is	printf.	Remember,	in	Linux	assembly,	when	we	use
printf	with	xmm	registers,	the	convention	is	that	rax	contains	the	number
of	xmm	registers	that	printf	has	to	use.	This	number	can	also	be	retrieved
from	the	printf	format	instruction,	so	often	you	can	get	away	without	using
rax.	For	example,	the	following	format	indicates	that	we	want	to	print	four
floating-point	values,	each	with	nine	decimals:

fmt					db				”%.f”,9,”%.f”,9,
“%.f”,9,”%.f”,10,0

Even	if	we	do	not	comply	with	the	convention	to	specify	the	number	of
floating-point	values	in	rax,	printf	would	print	the	four	values	anyway.

Variadic	Functions	in	Windows
In	Windows,	the	process	is	different.	If	you	have	xmm	registers	in	the	first
four	arguments,	you	have	to	copy	them	in	the	respective	argument	register.
Listing	42-1	shows	an	example.

;	variadic1.asm

extern	printf

section	.data

one				dq				1.0

two				dq				2.0

three		dq				3.0

https://doi.org/10.1007/978-1-4842-5076-1_42

fmt				dq				“The	values	are:	%.1f	%.1f	%.1f”,10,0

section	.bss

section	.text

global	main

main:

push		rbp

mov			rbp,rsp

sub			rsp,32																			;shadow	space

mov			rcx,	fmt

movq		xmm0,	[one]

movq		rdx,xmm0

movq		xmm1,	[two]

movq		r8,xmm1

movq		xmm2,	[three]

movq		r9,xmm2

call		printf

add			rsp,	32																		;not	needed	before
leave

leave

ret
Listing	42-1 variadic1.asm

When	you	create	shadow	space	before	calling	a	function,	it	is	a	good	habit
to	delete	the	shadow	space	after	you	execute	the	function.	In	our	example,
add	rsp,32	is	not	necessary	because	it	immediately	precedes	the	leave
instruction,	which	will	restore	the	stack	pointer	anyway.	In	this	case,	we
called	just	one	function	(printf),	but	if	you	call	several	functions	in	your
program,	be	sure	to	create	the	needed	shadow	space	and	do	not	forget	to
delete	the	shadows	space	every	time	you	continue	after	a	function.

Here	you	can	see	that	we	copy	the	floating-point	values	to	xmm	registers
and	to	an	argument	general-purpose	register.	This	a	Windows	requirement.
The	explanation	is	beyond	the	scope	of	this	book,	but	it	is	a	requirement	when
using	unprototyped	or	variadic	C	functions.	If	you	commented	out	the	copy	of

the	general-purpose	registers,	printf	would	not	print	the	correct	values.

Figure	42-1	shows	the	output.

Figure	42-1 variadic1.asm	output

Figure	42-2	shows	the	output	without	using	the	general-purpose	registers.

Figure	42-2 variadiac1.asm	erroneous	output

Mixing	Values
Listing	42-2	shows	an	example	with	a	mix	of	floating-point	and	other	values.

;	variadic2.asm

extern	printf

section	.data

fmt				db				”%.1f	%s	%.1f	%s	%.1f	%s	%.1f	%s	%.1f
%s”,10,0

one				dq				1.0

two				dq				2.0

three		dq				3.0

four			dq				4.0

five			dq				5.0

A						db				“A”,0

B						db				“B”,0

C						db				“C”,0

D						db				“D”,0

E						db				“E”,0

section	.bss

section	.text

global	main

main:

push	rbp

mov	rbp,rsp

sub			rsp,8															;align	the	stack	first

mov			rcx,fmt													;first	argument

movq		xmm0,[one]										;second	argument

movq		rdx,xmm0

mov			r8,A																;third	argument

movq		xmm1,[two]										;fourth	argument

movq		r9,xmm1

;	now	push	to	the	stack	in	reverse

push		E																			;11th	argument

push		qword[five]									;10th	argument

push		D																			;9th	argument

push		qword[four]									;8th	argument

push		C																			;7th	argument

push		qword[three]								;6th	argument

push		B																			;5th	argument

;	print

sub	rsp,32

call	printf

add	rsp,32

leave

ret
Listing	42-2 variadic1.asm

As	you	can	see,	it	is	just	a	matter	of	respecting	the	order	of	the	arguments,
copying	the	xmm	registers	to	general-purpose	registers	when	needed,	and
pushing	the	remaining	arguments	in	reverse	order	to	the	stack.

Figure	42-3	shows	the	output.

Figure	42-3 variadiac2.asm	output

Summary
In	this	chapter,	you	learned	the	following:

Floating-point	values	in	xmm	registers	in	the	first	four	arguments	need	to
be	copied	to	the	corresponding	general-purpose	registers.

If	there	are	more	than	four	floating-point	or	other	arguments,	they	have	to
be	stored	on	the	stack	in	reverse	order.

(1)

©	Jo	Van	Hoey	2019

J.	Van	Hoey,	Beginning	x64	Assembly	Programming
https://doi.org/10.1007/978-1-4842-5076-1_43

43.	Windows	Files
Jo	Van	Hoey1	

Hamme,	Belgium

	
In	Linux,	we	used	syscalls	to	manipulate	files.	In	Windows,	we	have	to	follow
other	rules.	As	mentioned	in	previous	chapters,	we	use	the	Windows	API.

Listing	43-1	shows	the	example	code.

%include	“win32n.inc”

extern	printf

extern	CreateFileA

extern	WriteFile

extern	SetFilePointer

extern	ReadFile

extern	CloseHandle

section	.data

msg						db	‘Hello,	Windows	World!’,0

nNumberOfBytesToWrite	equ	$-msg

filename	db		‘mytext.txt’,0

nNumberOfBytesToRead		equ	30

fmt						db	“The	result	of	reading	the	file:
%s”,10,0

section	.bss

fHandle																resq	1

lpNumberOfBytesWritten	resq	1

lpNumberOfBytesRead				resq	1

https://doi.org/10.1007/978-1-4842-5076-1_43

readbuffer													resb	64

section	.text

global	main

main:

push			rbp

mov				rbp,rsp

;HANDLE	CreateFileA(

;		LPCSTR																lpFileName,

;		DWORD																	dwDesiredAccess,

;		DWORD																	dwShareMode,

;		LPSECURITY_ATTRIBUTES	lpSecurityAttributes,

;		DWORD																	dwCreationDisposition,

;		DWORD																	dwFlagsAndAttributes,

;		HANDLE																hTemplateFile

;);

sub										rsp,8

lea				rcx,[filename]																			;filename

mov				rdx,	GENERIC_READ|GENERIC_WRITE		;desired
access

mov				r8,0																													;no
sharing

mov				r9,0																													;default
security

;	push	in	reverse	order

push			NULL																											;no	template

push			FILE_ATTRIBUTE_NORMAL										;flags	and
attributes

push			CREATE_ALWAYS																		;disposition

sub				rsp,32																				;shadow

call			CreateFileA

add				rsp,32+8

mov				[fHandle],rax

;BOOL	WriteFile(

;		HANDLE							hFile,

;		LPCVOID						lpBuffer,

;		DWORD								nNumberOfBytesToWrite,

;		LPDWORD						lpNumberOfBytesWritten,

;		LPOVERLAPPED	lpOverlapped

;);

mov				rcx,[fHandle]																		;handle

lea				rdx,[msg]																						;msg	to
write

mov				r8,nNumberOfBytesToWrite							;#	bytes	to
write

mov				r9,[lpNumberOfBytesWritten]				;returns	#
bytes	written

push			NULL

sub				rsp,32																									;shadow

call			WriteFile

add				rsp,32

;DWORD	SetFilePointer(

;		HANDLE	hFile,

;		LONG			lDistanceToMove,

;		PLONG		lpDistanceToMoveHigh,

;		DWORD		dwMoveMethod

;);

mov				rcx,[fHandle]														;handle

mov				rdx,	7																					;low	bits	of
position

mov				r8,0																							;no	high	order
bits	in	position

mov				r9,FILE_BEGIN														;start	from
beginning

call			SetFilePointer

;BOOL	ReadFile(

;		HANDLE							hFile,

;		LPCVOID						lpBuffer,

;		DWORD								nNumberOfBytesToRead,

;		LPDWORD						lpNumberOfBytesRead,

;		LPOVERLAPPED

;);

sub				rsp,8																						;align

mov				rcx,[fHandle]														;handle

lea				rdx,[readbuffer]											;buffer	to	read
into

mov				r8,nNumberOfBytesToRead				;#	bytes	to	read

mov				r9,[lpNumberOfBytesRead]			;#	bytes	read

push			NULL

sub				rsp,32																					;shadow

call			ReadFile

add				rsp,32+8

;print	result	of	ReadFile

mov				rcx,	fmt

mov				rdx,	readbuffer

sub				rsp,32+8

call			printf

add				rsp,32+8

;BOOL	WINAPI	CloseHandle(

;		_In_	HANDLE	hObject

;);

mov				rcx,[fHandle]

sub				rsp,32+8

call			CloseHandle

add				rsp,32+8

leave

ret
Listing	43-1 files.asm

As	before,	we	just	use	the	C	template	of	the	Windows	API	function	to
build	our	assembly	calls.	To	create	the	file,	we	just	used	the	basic	settings	for
access	and	security.	When	the	creation	succeeds,	CreateFileA	returns	a
handle	to	the	created	file.	Note	the	parameters.	You	can	read	the	Microsoft
documentation	to	learn	about	the	different	parameters;	there	are	quite	a	few
possibilities	that	can	help	you	in	fine-tuning	your	file	management.

The	file	handle	will	be	used	in	WriteFile	to	write	some	text	to	the	file.
We	already	used	WriteFile	before	to	display	a	message	on	the	console	in
Chapter	40.

After	we	have	written	the	text	to	the	file,	we	want	to	read	the	text	back
into	memory,	starting	at	location	7,	where	the	first	byte	has	index	0.	With
SetFilePointer,	we	move	a	pointer	to	the	location	where	we	want	to
start	reading.	If	lpDistanceToMoveHigh	is	NULL,	then
lDistancetomove	is	a	32-bit	value	specifying	the	number	of	bytes	to
move.	Otherwise,	lpDistanceToMoveHigh	and	lDistancetomove
together	form	a	64-value	for	the	number	of	bytes	to	move.	In	r9,	we	indicate
from	where	the	move	should	start;	the	possibilities	are	FILE_BEGIN,
FILE_CURRENT,	and	FILE_END.

When	the	pointer	is	set	to	a	valid	location,	ReadFile	will	be	used	to
start	reading	at	that	location.	The	bytes	read	are	stored	in	a	buffer	and	then
printed.	Finally,	we	close	the	file.	Check	your	working	directory,	and	you	will
see	that	the	text	file	has	been	created.

Figure	43-1	shows	the	output.

Figure	43-1 files.asm	output

Summary
In	this	chapter,	you	learned	about	the	following:

Windows	file	manipulation

That	there	are	plenty	of	parameters	to	help	fine-tune	the	file	handling

Afterword:	Where	to	Go	from	Here?
After	you	have	worked	your	way	through	this	book,	you	have	mastered	the
basics	of	modern	assembly	programming.	The	next	step	depends	on	your
needs.	This	afterword	contains	some	ideas.

Security	analysts	can	use	the	acquired	knowledge	to	study	malware,
viruses,	and	other	ways	to	break	into	computers	or	networks.	Malware,	in
binary	format,	tries	to	get	into	computers	and	networks.	You	can	take	this
binary	code,	reverse	engineer	it,	and	try	to	figure	out	what	the	code	is	doing.
You	would,	of	course,	do	that	in	an	isolated	lab	system.	Study	how	to	reverse
engineer	and	acquire	the	necessary	tooling.	You	should	consider	learning
ARM	assembly	for	analyzing	code	on	smartphones.

As	a	higher-level	language	programmer	,	you	may	consider	building	your
own	library	of	high-speed	functions	to	be	linked	with	your	code.	Study	how
you	can	optimize	code;	the	code	in	this	book	was	not	written	for	high
performance	but	for	illustration	purposes.	In	the	book,	we	referred	to	a	couple
of	texts	that	can	help	you	write	optimized	code.

If	you	want	a	thorough	understanding	of	the	Intel	processors,	download
the	Intel	manuals	and	study	them.	There	is	a	lot	of	interesting	information	to
digest,	and	knowing	how	the	hardware	and	software	works	together	will	give
you	an	edge	in	developing	system	software	or	diagnosing	system	crashes.

As	a	higher-level	language	programmer	with	a	grasp	of	assembly
language,	you	are	now	better	equipped	to	debug	your	code.	Analyze	your
.obj	and	.lst	files	and	reverse	engineer	your	code	to	see	what	happens.
See	how	your	compiler	converts	your	code	into	machine	language.	Maybe
using	other	instructions	are	more	efficient?

Index
A
add	instructions

addpd

addps

addsd

addss

adouble.asm

Advanced	Vector	Extension	(AVX)

Aggregation

align	the	stack

Alive	program

Alive	program	printing

alive.asm

AND	instruction

arguments1.asm	output

arguments2.asm	output

Arithmetic	bit	operation

ASCII

Assembler	functions

Assembler	preprocessor	directives

Assembly	instructions

asum.asm

AVX	instruction

AVX	matrix	multiplication

AVX	matrix	operations

AVX	program

AVX_transpose	function

avx2

avx512

B
Base	pointer

betterloop.asm

Binary	numbers

bitflags	variable

Bit	operations

Blend	mask

blend_trace	function

Block	Started	by	Symbol	(bss)

Branch	functions

break	or	b	command

bt

btr

bts

C
C	functions

C	programming	language

callee-saved	register

Calling	convention,	nonvolatile

Calling	convention,	16-byte	aligned

Calling	convention,	volatile

Calling	conventions

Cayley-Hamilton	theorem

circle.asm

CLI	debugger

Clobbered	registers

cmp

cmpsb

coefficient

Command	line

Command	line,	debugging

Compare	and	scan	strings

Comparison

Conditional	assembly

Console	I/O

continue	or	c	command

Conversion	calculators

CountReg

CPU

cpuid

CreateFileA

cvtss2sd

D
Data	Display	Debugger	(DDD)

Datatypes

Debugging,	break	program

Debug	With	Arbitrary	Record	Format	(DWARF)

dec

DF	flag

direction	flag

divsd

divss

E
eflags

ELF	format

Endianness,	big-endian

Endianness,	little-endian

Environment	path	variable

Environment	variables

epilogue

Equal	any

Equal	each

Equal	range

Executable	and	Linkable	Format	for	64-bit	(elf64)

Expanded	makefile

Explicit	length

Extended	inline	assembly

extern

External	function

F
File	handling

File	I/O

Flag	register

Floating-point	arguments

Floating-point	numbers

FPU	instructions

function.asm	output

function2.asm	output

function4.asm

G
GDB

GDB	commands

GDB,	debugging

gdbinit	file

gdb	memory

Gedit

General-purpose	register

global

GNU	compiler	collection	(GCC)

GUI	debuggers

H
haddpd

Hello	Windows	world

hello,	world,	better	version

hello,	world	program

High	cycles

Higher-level	language	programmer

I
icalc.asm

idiv	instructions

IEEE-754

imm8

imm8	control	byte

Implicit	length

imul	instructions

inc	instructions

info	registers

Inline	assembly

Instruction	Pointer	Register	(rip)

Integer	arithmetic	instructions

Integers

Integrated	development	environment	(IDE)

Intel	syntax	flavor

IntRes1

IntRes2

J,	K
jge

jmp	instructions

jne

jnz

jump	instructions	and	flags

jump.asm

jumploop.asm

jz

L
ldmxcsr

Leaf	functions

lea	instruction

Length	of	string

Leverrier	algorithm

Linking	Options	line

little-endian

lodsb

Looping

Looping	vs.	jumping
loop	instruction

Low	cycles

M
Machine	language

Macros

makefile

mask

MASM

Match	characters

Match	characters	in	range

Matrix	inversion

Matrix	Math	Extension	(MMX)

matrix	multiplication

Matrix	print

Matrix	transpose

Memory

Memory	alignment

memory.asm

Memory	investigation,	DDD

Memory	page

MinGW-w64

Minimalist	GNU	for	Windows	(MinGW)

minus_mask

mov

movaps

movdqa

movdqu

move.asm

Moving	strings

movq

movsb

movsd

movss

movsw

movupd

movups

mul

mulsd

mulss

Multiline	macros

MXCSR

mxcsr	bits

N
NASM

nasm-v

neg	instruction

Netwide	Assembler	(NASM)

next	or	n	command

Non-floating-point	arguments

nop	instruction

NOT

O
Octal	notation

Octal	number

Optimization

OR

Out-of-order	execution

Overflows,	data

P,	Q
Packed	data

paddd

pcmpestri

pcmpestrm

pcmpistri

pcmpistrm

Permutation

Permutation	mask

pextrd

pinsrd

Polarity

pop	instruction

Portable	assembly	language

port	5	pressure

Position-independent	executables	(PIEs)

PowerShell

printb

printdpfp

printf

print_hex.c

print_mxcsr.c

print	or	p	command

printspfp

printString

print_xmm

prologue

pshufd

pstrcmp

pstrlen

pstrln

pstrscan_l	function

push

pxor

R
radius,	pi	variables

rax

rbx	counter

rdtsc

rdtscp

rdx

readelf

reads	function

rect.asm

Register	constraints

Registers

rep

repe

repne

reverse	string

reverse_xmm0	function

rflags

rip	register

rol

ror

Round	down

Round	to	nearest

Round	up

Runtime	masks

S
sal

sar

Scalar	data

scasb

Search,	characters

Search	in	string

Search,	range	of	characters

Search,	range	of	uppercase

Search,	substring

section	.bss

section	.data

section	.txt

Security	analysts

seq_trace	function

seq_transpose	function

serializing

setc

setnz

Settings	dialog,	SASM

Shadow	space

shift

shl

shr

Shuffle	broadcast

Shuffle	masks

Shuffle	reverse

Shuffle	rotate

Shuffle	version,	matrix

Shuffling

Sign	extension

Significand/mantissa

SimpleASM	(SASM)

Simple	function

Single	vs.	double	precision
Single	instruction,	multiple	data	(SIMD)

Single-line	macros

singular

sqrtsd

sqrtss

sreverse.asm

SSE,	aligned	data

SSE	packed	integers,	instruction

SSE	string	manipulation

SSE,	unaligned	data

SSE	unaligned	example

STABS

Stack	alignment,	16	byte

stack.asm

Stack	frames

Stack	layout

Stack	pointer

step	or	s	command

stmxcsr

stosb

stosd

stosw

Streaming	SIMD	Extension	(SSE)

String	compare

Strings,	explicit	length

Strings,	implicit	length

sub

subsd

subss

Substring	search

syscall

System	V	AMD64	ABI

T
test

testfile.txt	file

test	instruction

time	instruction

timestamp

trace

Trace	computation

Transpose	computation

Truncate

tui	enable	command

U
Unaligned/aligned	data

unpack	version

V
vaddpd

vaddps

variadic	function

vblendpd

vbroadcastsd

vdivsd

vextractf128

vfmadd213sd

vfmadd231pd

vfmadd231sd

vhaddpd

Visual	Studio

vmovapd

vmovupd

vmovups

vmulpd

vpermpd

vperm2f128

vshufpd

vtrace	function

vunpckhpd

vunpcklpd

vxorpd

vzeroall

W
Windows

Windows	API

Windows	API,	Console	Output

WriteConsole

WriteFile

X
x64	calling	convention

x86	processors

xmm	registers

XOR	instruction

Y
ymm	register

Z
ZF	flag

	Front Matter
	1. Your First Program
	2. Binary Numbers, Hexadecimal Numbers, and Registers
	3. Program Analysis with a Debugger: GDB
	4. Your Next Program: Alive and Kicking!
	5. Assembly Is Based on Logic
	6. Data Display Debugger
	7. Jumping and Looping
	8. Memory
	9. Integer Arithmetic
	10. The Stack
	11. Floating-Point Arithmetic
	12. Functions
	13. Stack Alignment and Stack Frame
	14. External Functions
	15. Calling Conventions
	16. Bit Operations
	17. Bit Manipulations
	18. Macros
	19. Console I/O
	20. File I/O
	21. Command Line
	22. From C to Assembler
	23. Inline Assembly
	24. Strings
	25. Got Some ID?
	26. SIMD
	27. Watch Your MXCSR
	28. SSE Alignment
	29. SSE Packed Integers
	30. SSE String Manipulation
	31. Search for a Character
	32. Compare Strings
	33. Do the Shuffle!
	34. SSE String Masks
	35. AVX
	36. AVX Matrix Operations
	37. Matrix Transpose
	38. Performance Optimization
	39. Hello, Windows World
	40. Using the Windows API
	41. Functions in Windows
	42. Variadic Functions
	43. Windows Files
	Back Matter

