

A

DSP
Primer

with Applications to
Digital Audio

and
Computer Music

Ken Steiglitz

Department of Computer Science

Princeton University

Addison-Wesley Publishing Company, Inc.
Menlo Park, California • Reading, Massachusetts

New York • Don Mills, Ontario • Harlow, U.K. • Amsterdam
Bonn • Paris • Milan • Madrid • Sydney • Singapore • Tokyo

Seoul • Taipei • Mexico City • San Juan, Puerto Rico

Acquisitions Editor: Tim Cox
Executive Editor: Dan Joraanstad
Projects Manager: Ray Kanarr
Production Coordinator: Deneen Celecia
Cover Design: Yvo Riezebos Design
Text Design: Arthur Ogawa, TEX Consultants
Copy Editing: Elizabeth Gehrman
Proofreader: Joe Ruddick
Marketing Manager: Mary Tudor
Composition Services: Ken Steiglitz
Manufacturing Coordinator II: Janet Weaver

© 1996 by Ken Steiglitz

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or
any other media embodiments now known or hereafter to become known, without the prior
written permission of the publisher. Printed in the United States of America.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. All such designations are the property of each trademark's owner.

Instructional Material Disclaimer
The examples presented in this book have been included for their instructional value. They have
been tested with care but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations, nor does it accept any liabilities with respect to the pro­
grams or examples.

Library of Congress Cataloging-in-Publication Data
Steiglitz, Ken, 1939-

A digital signal processing primer, with applications to digi­
tal audio and computer music I
Ken Steiglitz. --1st ed.

p. em.
1. Signal processing--digital techniques. 2. Computer sound
processing. 3. Computer music
I. Title.

TK5102.9.S74 1995 95-25182
621.382'2--dc20 CIP

ISBN 0-8053-1684-1

I 2 3 4 5 6 7 8 9 10-VG-99 98 97 96 95

Addison-Wesley Publishing Company
2725 Sand Hill Road
Menlo Park, CA 94025-7092

1 Tuning Forks, Phasors I 1

2 Strings, Pipes, the Wave Equation I 21

3 Sampling and Quantizing I 43

4 Feedforward Filters I 61

5 Feedback Filters I 81

6 Comb and String Filters I 101

7 Periodic Sounds I 125

Contents

8 The Discrete Fourier Transform and FFT I 149

9 The z-Transform and Convolution I 173

1 0 Using the FFT I 197

11 Aliasing and Imaging I 219

12 Designing Feedforward Filters I 241

13 Designing Feedback Filters I 263

14 Audio and Musical Applications I 285

Index I 309

To my mom, Sadie Steiglitz, who will read it
during the commercials

Preface

Using computer technology to store, change, and manufacture sounds and pictures -
digital signal processing - is one of the most significant achievements of the late
twentieth century. This book is an informal, and I hope friendly, introduction to the
field, emphasizing digital audio and applications to computer music. It will tell you
how DSP works, how to use it, and what the intuition is behind its basic ideas.

By keeping the mathematics simple and selecting topics carefully, I hope to reach
a broad audience, including:

• beginning students of signal processing in engineering and computer
science courses;

• composers of computer music and others who work with digital sound;

• World Wide Web and internet practitioners, who will be needing DSP
more and more for multimedia applications;

• general readers with a background in science who want an introduction
to the key ideas of modem digital signal processing.

We'll start with sine waves. They are found everywhere in our world and for a
good reason: they arise in the very simplest vibrating physical systems. We'll see, in
Chapter I, that a sine wave can be viewed as a phasor, a point moving in a circle. This
representation is used throughout the book, and makes it much easier to understand
the frequency response of digital filters, aliasing, and other important frequency­
domain concepts.

In the second chapter we'll see how sine waves also arise very naturally in more
complicated systems - vibrating strings and organ pipes, for example - governed by
the fundamental wave equation. This leads to the cornerstone of signal processing: the
idea that all signals can be expressed as sums of sine waves. From there we take up
sampling and the simplest digital filters, then continue to Fourier series, the FFT algo­
rithm, practical spectrum measurement, the z-transform, and the basics of the most
useful digital filter design algorithms.

The final chapter is a tour of some important applications, including the CD player,
FM synthesis, and the phase vocoder. ·

Preface

At several points I return to ideas to develop them more fully. For example, the
important problem of aliasing is treated first in Chapter 3, then in greater depth in
Chapter II. Similarly, digital filtering is reexamined several times with increasing
sophistication. This is why you should read this book from the beginning to the end.
Not all books are meant to be read that way, but this one definitely is.

Some comments about mechanics: All references to figures and equations refer to
the current chapter unless stated otherwise. Absolutely fundamental results are
enclosed in boxes. Each chapter ends with a Notes section, which includes historical
comments and references to more advanced books and papers, and a set of problems.
Read the problems over, even if you don't work them the first time around. They
aren't drill exercises, but instead mention generalizations, improvements, and wrinkles
you will encounter in practice or in more advanced work. A few problems suggest
computer experiments. If you have access to a practical signal-processing laboratory,
use it. Hearing is believing.

Many people helped me with this book. First I thank my wife Sandy, who supports
me in all that I do, and who helped me immeasurably by just being.

For his generous help, both tangible and intangible, I am indebted to Paul Lansky,
professor of music and composer at Princeton. The course on computer music that we
teach together was the original stimulus for this book.

I am indebted to many others in many ways. Perry Cook, Julius Smith, Tim
Snyder, and Richard Squier read drafts with critical acumen, and their comments
significantly improved the result. And I also thank, for assistance of various flavors,
Steve Beck, Jack Gelfand, Jim Kaiser, Brian Kernighan, Jim McClellan, Gakushi
Nakamura, Matt Norcross, Chris Pirazzi, John Puterbaugh, Jim Roberts, and Dan Wal­
lach.

Ken Steiglitz
Princeton, N.J.

1 Where to begin

CHAPTER 1
Tuning Forks,

Phasors

We've reached the point where sound can be captured and reproduced almost per­
fectly. Furthermore, digital technology makes it possible to preserve what we have
absolutely perfectly. To paraphrase the composer Paul Lansky, we can grab a piece of
sound, play it, and play with it, without having to worry about it crumbling in our
hands. It is simply a matter of having the sound stored in the form of bits, which can
be remembered for eternity.

Perfect preservation is a revolutionary achievement. Film, still the most accurate
medium for storing images, disintegrates in just a few decades. Old sound-storage
media - shellac, vinyl, magnetic wire, magnetic tape - degrade quickly and
significantly with use. But bits are bits. A bit-faithful transfer of a compact disc loses
nothing.

The maturing technology for digitizing sound makes the computer an increasingly
flexible instrument for creating music and speech by both generating and transforming
sound. This opens up exciting possibilities. In theory the computer can produce any
sound it is possible to hear. But to use the instrument with command we must under­
stand the relationship between what happens inside the computer and what we hear.
The main goal of this book is to give you the basic mathematical tools for understand­
ing this relationship.

You should be able to follow everything we do here with first-year calculus and a
bit of physics. I'll assume you know about derivatives, integrals, and infinite series,
but not much more. When we need something more advanced or off the beaten path,
we'll take some time to develop and explain it. This is especially true of the complex
variables we use. Most students, even if they've studied that material at one time,
have not really used it much, and need to review it from scratch. As far as physics

2 Chapter 1 Tuning Forks, Phasors

goes, we'll get an amazing amount of mileage out of Newton's second law:
force = mass X acceleration.

Another goal of mine, besides providing a basis for understanding, is to amaze
you. The mathematical ideas are wonderful! Think of it: Any sound that anyone will
ever hear can be broken down into a sum of sine waves. There is more. Any sound
that anyone will ever hear can be broken down into a file of bits - on/off positions of
switches. That sound can be stored, generated, and manipulated on the computer is a
miraculous technological incarnation of these mathematical principles.

Whenever possible we will approach a subject with simple physical motivation.
We all have a lot of experience with things that make sound, and I want to lean on that
experience as much as possible. So we'll begin with the simplest mechanism I can
think of for making a sound.

2 Simplest vibrations

One of the easiest ways to produce a sound with a clear pitch, one we might call
"musical" (leaving aside singing, which is actually very complicated), is to hit a
metal rod like a tine of a tuning fork. The tine vibrates and sets the air in motion. Why
does the rod vibrate? What waveform is produced?

The answer comes from simple physics. The tine is deformed when it is struck. A
force appears to restore it to its original shape, but it has inertia, overshoots, and is
deformed in the opposite direction. This continues, but each time the tine overshoots a
bit less, and the oscillation eventually dies out. While it's oscillating, it's pushing the
air, and the pressure waves in the air reach our ears. It is the balance between the two
factors - the force that tends to restore the tine to equilibrium, and the inertia that
tends to make it overshoot -that determines the frequency of oscillation. We will
see a mathematical expression of this balance later in this section.

Suppose we think of hitting a tine of a tuning fork. As shown in Fig. 2.1, t we
measure the deformation, or displacement, of the tine with the variable x. To keep
things as simple as possible, assume the force that tends to restore the tine to its origi­
nal position is proportional to the displacement, and of course in the direction opposite
to x. That is, when the tine is pushed in the positive x direction the force acts to pull it
back - in the negative x direction. Therefore, F = - kx, where F is the restoring
force and k is the proportionality constant relating F to the displacement.

Next we take into account Newton's second law of motion: When the restoring
force acts on the tine, it produces an acceleration proportional to that force. This law
is usually expressed as F = ma, where m is the mass of the tine, and a is the accelera­
tion. We decided above that F = -kx, so we now have two expressions for the force,
which must be equal:

F = ma = -kx (2.1)

+ References to figures and equations throughout this book are within the current chapter unless otherwise
stated.

§2 Simplest vibrations

~ H .. ~splacement x
-_. : i-- restoring

: force

Fig. 2.1 Hitting a tine of a tuning fork. Small vibrations are sinusoidal.

3

Our goal is to learn exactly how the tine vibrates, but so far we seem to have
derived only a relationship between its position and its acceleration. This turns out to
be enough, however. Recall that the acceleration is just the second derivative of the
displacement x with respect to the time variable t. Use this to rewrite Eq. 2.1 as

d 2x
- = -(klm)x (2.2)
dt 2

In words, we are looking for a function x(t) that is proportional to its second deriva­
tive. Furthermore, we know that the proportionality constant, - (kim), is a negative
number. The solution is supplied from calculus, where we learn early on that

~~ sin(rot) = rocos(rot) (2.3)

and

~t cos(rot) = -rosin(rot) (2.4)

where ro is the frequency of oscillation of the sine and cosine functions. Applying
these differentiation operations one after the other gives

and

d2
- 2 sin(rot) = -ro2 sin(rot) (2.5)
dt

d2
- 2 cos(rot) = -ro2 cos(rot)
dt

(2.6)

which shows that both sin(rot) and cos(rot) satisfy the equation for the tuning fork
vibration, Eq. 2.2. In fact the functions sin(rot) and cos(rot) are really not much dif­
ferent from each other; the only difference is that one is a delayed version of the other.
It doesn't matter when we consider time to begin, so the relative delay between the
two is immaterial in this context. When it is not important to distinguish between sine
and cosine we use the term sinusoid.

4 Chapter 1 Tuning Forks, Phasors

Equations 2.5 and 2.6 show that the sine and cosine functions have exactly the
right shape to describe the vibration of the tuning fork. They also allow us to deter­
mine the frequency of vibration in terms of the physical constants k and m. Setting the
constant -(kim) equal to the -ro2 term in Eq. 2.5 or 2.6, we get

(2.7)

This sinusoidal vibration of the tuning fork is called simple harmonic motion. It arises
in many contexts as the simplest kind of oscillatory behavior, or as the first approxi­
mation to more complicated oscillatory behavior. We see it in the motion of a pendu­
lum, a stretched string - in any situation where there is a restoring force simply pro­
portional to displacement.

Let's check to see if Eq. 2.7 makes intuitive sense. The variable ro, remember, is
the frequency of oscillation; it tells us how fast the tuning fork vibrates. Every time
the time t changes by 27tlro, the argument rot changes by 27t radians, and the sine or
cosine goes through a complete cycle. Therefore the period of vibration is 27tlro. The
higher the frequency ro, the smaller the period. Recall that the variable m is the mass
of the tuning-fork tine. All else being equal, Eq. 2.7 shows that the larger the mass, the
lower the frequency. This confirms our experience. We all know that more massive
objects vibrate at a slower rate than less massive objects. Larger tuning forks are the
ones calibrated to the lower frequencies. Guitar strings corresponding to the lower
pitches are thicker and heavier than those for the higher pitches.

Equation 2.7 also shows that the larger the restoring-force constant k, the higher
the frequency of vibration. This also makes sense. A large value of k corresponds to a
stiffer tine, which is analogous to a more tightly stretched string. We all know that
tightening a guitar string raises the frequency of vibration. Not only does Eq. 2.7 tell
us which way to expect the variation to go; it also tells us that the frequency of vibra­
tion is proportional not to the kim ratio, but to the square root of that ratio. So, for
example, to halve the frequency of a tuning fork tine we need to make it four times as
massive. This proportionality of frequency of oscillation to the square root of a ratio
between a measure of elasticity and a measure of inertia is a general phenomenon, and
arises in many situations.

Return now to the observation that sin(rot) and cos(rot) are just shifted versions of
each other. That is,

cos (rot) = sin (rot + 1t/2) (2.8)

so sine and cosine differ by the fixed phase angle 7tl2, or a quarter-period. It is not
hard to see that a sine or cosine with any phase angle satisfies Eq. 2.2. Just differen­
tiate the function

x(t) = sin (rot + cp) (2.9)

twice, and you get- ro2 x(t) for any value of cp.
The relative phase angle cp is really arbitrary, and is determined only by the choice

of time origin. To see this, replace t by t + tin sin(rot), resulting in

sin[ro(t + t)] = sin (rot + rot) = sin (rot + cp)

which shows that a fixed time shift oft results in a phase shift of cp = rot.

(2.10)

§3 Adding sinusoids 5

A more mathematical way to express this is to say that the set of all sinusoids at a
fixed frequency is closed under the operation of time shift. In this sense the "shape"
of a sinusoid is the same regardless of when we observe it. Sinusoids at the same fre­
quency are also closed under addition, and we'll see that in the next section.

3 Adding sinusoids

The important closure property we establish next is that adding two sinusoids of the
same frequency, but not necessarily with the same phases or amplitudes, produces
another sinusoid with that frequency.

It's worth taking a minute to think about this claim. It is not as obvious a property
as the invariance of sinusoids under shifting that we just proved. Figure 3.1 shows an
example. It is perhaps obvious that the sum goes up and down with the same fre­
quency, but why is the shape precisely that of a sinusoid? In physical terms it means
this: If we strike two tuning forks tuned to exactly the same frequency, at different
times and with different forces, the resulting sound, which is determined by the sum of
the two vibrational displacements, is in theory indistinguishable from the sound of one
tuning fork.

----- COS(.t•t)
• • · • • · · • • · 2·cos(.t•t +4)
--sum

. ... ···················· ..• \• 1 ' . \ __
.. 0 tr--f-.....o.;.:-•• -. ---;:---""::----:o-"-------t'""""-:.._---"'":", .-.-. ---T-

·. . ·.... --

·2 ··· ··

' ' ' ' ' 0 20 40 60 80 100

time. sec

Fig. 3.1 Adding two sinusoids of the same frequency. The result is a third
sinusoid of the same frequency.

The brute force way to show this would be to start with the sum

a 1 cos (rot + cp 1) + a 2 cos (rot + cp 2) (3.1)

where a 1 and a 2 are arbitrary constants, and do some messy algebra. We would use
the formulas for cosine and sine of sums, namely

6 Chapter 1 Tuning Forks, Phasors

cos(9 + cp) = cos9 coscp - sin9 sincp,

sin(9 + cp) = sin9 coscp + cos9 sincp (3.2)

plus a few other tricks, but when we were done we wouldn't really have gained much
insight. Instead we will develop a better way of thinking about sinusoids, a way based
on the circle.

After all, the first time you're likely to have seen a sinusoid is in trigonometry, and
its definition is in terms of a right triangle. But a right triangle can be considered a
way of projecting a point on a circle to a point on an axis, as shown in Fig. 3.2. We
can therefore think of the cosine as the projection onto the x-axis of a point moving
around the unit circle at a constant speed. Actually, the speed is simply ro radians per
second, and it takes 2x/ro seconds to complete one revolution, or period. In the same
way, the sine wave can be thought of as the projection onto the y-axis. Figure 3.3
illustrates this; notice that I've been careful to start the cosine with the value I at
t = 0 and the sine with the value 0 at that time.

Y-axis

x-axis

Fig. 3.2 Definition of cosine and sine as projections from the unit circle to
the x- and y-axes.

From now on we can always think of a sinusoidal signal as a vector rotating at a
steady speed in the plane, rather than a single-valued signal that goes up and down
with a certain shape. If pressed, we can always point to the projection on the x-axis.
But it's easier to think of a rotating clock-hand than some specially shaped curve. The
position of the vector at the instant t = 0 tells us the relative phase of the sinusoid,
what we called the angle cp, and the length of the vector tells us the size, or magnitude,
of the sinusoid.

Now consider what happens when we add two sinusoids of the same frequency.
This is the same as adding two force vectors in physics: we add the x parts and y parts,
as shown in Fig. 3.4. The sum vector u + v has an x-component that is the sum of the
x-components of the addends u and v, and similarly for they-component. The order of
addition is immaterial, and the two possibilities form a parallelogram. That's why this
law of vector addition is called the parallelogram law. Another way to put it is that
the tail of the second vector is moved to the head of the first.

§3 Adding sinusoids

Y -axis projection, sine wave

Fig. 3.3 Cosine and sine waves considered as projections of a point mov­
ing around the unit circle at a constant speed.

7

Now we need to take into account the fact that the vectors representing sinusoids
are actually rotating. But if the frequencies of the sinusoids are the same, the vectors
rotate at the same speed, so the entire picture rotates as one piece. It is as if the vectors
were made out of steel and the joints of the parallelogram were welded together. The
result is that the parallelogram, together with the sum vector, also rotates at the same
fixed speed, which shows that adding two sinusoids of the same frequency results in a
third sinusoid of that frequency. Look again at Fig. 3.1. This shows projections onto
the x-axis of the two components and the sum. Now maybe it doesn't seem so much of
a miracle that the two special curves always add up to a third with exactly the same
shape.

V+U

x-axis

Fig. 3.4 Adding sinusoids by adding vectors.

8 Chapter 1 Tuning Forks, Phasors

4 Newton's second law

Our new view of sinusoids as projections of rotating vectors makes it even easier to
see why they satisfy the simple equation governing the motion of the ideal tuning-fork
tine, F = ma = - kx. Figure 4.1 tells the story geometrically.

Fig. 4.1 Simple proof that sinusoids obey the equation of motion of the
ideal tuning fork, Eq. 2.2.

The first derivative, or velocity, of a steadily rotating position vector is just another
vector that is always at right angles to the rotating vector; in other words, it is tangent
to the circle described by the rotating vector. This may sound mysterious at first, but
it's really obvious. How does a rotating vector change when the timet increases by a
small amount tlt? The vector's tip moves at right angles to the vector itself, so the new
vector minus the old vector is tangent to the circle that the tip is tracing out. Put
another way, the velocity vector points in the direction in which the tip of the rotating
vector is moving, and is tangent to the circle it's tracing out.

The second derivative vector, or acceleration, has the same relationship to the
velocity vector: it is always at right angles to it. Therefore, the acceleration vector is
turned 180° with respect to the position vector. But this is just another way of saying
that x, the position vector, and a, the acceleration vector, maintain themselves in oppo­
site directions, which is also what ma = - kx says.

5 Complex numbers

Complex numbers provide an elegant system for manipulating rotating vectors. The
system will allow us to represent the geometric effects of common signal processing
operations, like filtering, in algebraic form. The starting point is very simple. We
represent the vector with x-axis component x and y-axis component y by the complex
number x + jy. All complex numbers can always be broken down into this form; the
part without the j factor is called the real part, and the part with the j factor the ima­
ginary part. From now on we will call the x- andy-axes the real- and imaginary-axes,
respectively. t

t Mathematicians use i, but electrical engineers use j to avoid confusion with the symbol for electrical
current. Another vestigial trace of electrical engineering culture is the use of DC to mean zero frequency.

§6 Multiplying complex numbers 9

We can think of the j as meaning "rotate + 90°" (counterclockwise). That is, we
can think of multiplication by j as an operation of rotation in the plane. Two succes­
sive rotations by + 90° brings us to the negative real axis, so/ = - I. When viewed
as a number, j of course plays the role of Ff. The geometrical viewpoint makes it
clear that there's nothing mystical or imaginary about what might seem to be an
impossible thing - a number whose square is - I.

Return now to our representation of sinusoids using rotating vectors. In terms of
complex numbers, a complex sinusoid is simply

cos(rot) + jsin(rot) (5.1)

This is just an algebraic way of representing Fig. 3.3.
If we were going to combine vectors only by adding them, the complex represen­

tation wouldn't give us any extra power. When we add complex numbers, we add the
real parts and the imaginary parts, just as we add the x and y parts of force vectors.
The extra zip we get from the complex-number representation comes when we multi­
ply vectors. We will interpret any complex number as a rotation operator, just as we
interpretj as the special operator that rotates by +90°. The next section is devoted to
multiplication of complex numbers. That will put us in position to derive one of the
most amazing formulas in all of mathematics.

6 Multiplying complex numbers

Let's pretend we've just invented complex numbers. How should we agree to multi­
ply them? Obviously, we don't want to be arbitrary about it- we'd like multiplica­
tion to behave in the ways we're used to for real numbers. In particular, we want com­
plex numbers with zero imaginary parts to behave just like real numbers. We also
want multiplication to obey the usual commutative and associative rules.

Note that there is more than one way to define multiplication of two-component
vectors. If you've studied mechanics you've seen the cross product. The cross product
of vectors 1 and Y, denoted by 1 x Y, is another two-dimensional vector, but it is in
fact at right angles to the plane of 1 and y ! To make matters more bizarre, the cross
product is not commutative; that is, in general, 1 x y ::t- y x 1. We don't have any use
for this multiplication now.

The way we'll define multiplication is to follow the rules of algebra blindly, using
the usual distributive and commutative laws, and replacing j 2 by - I whenever we
want to. For example, to multiply the two complex numbers x + jy and v + jw:

(x + jy) · (v + jw) = (xv - yw) + j(xw + yv) (6.1)

The- yw term appears whenj 2 is replaced by- I. This definition results in a complex
multiplication operation that inherits the commutative and distributive properties of
ordinary real multiplication.

Some computer scientists end their pictures of linked lists with the symbol for an electrical ground. One of
my favorite vestigial symbols is the d for pence in English money - which is left over from the denarius of
ancient Rome.

10 Chapter 1 Tuning Forks, Phasors

The real beauty of this definition is revealed when we think of complex numbers
as vectors in polar form; that is, as vectors described by their lengths and angles. The
length of the complex number z = x + jy, conventionally called its magnitude and
written I z I, is just its Euclidean length in the plane, interpreting x and y as coordi­
nates:

(6.2)

The angle it makes with the real axis, often called its argument or arg, or simply its
angle, and written ARG(z), is just

9 = ARG(z) = arctan(y/x) (6.3)

We write the complex number z itself as RLO. (Read this to yourself as "Rat an angle
9.") The complex number (I +Oj) is lL0°; the complex number (0+ lj) is lL90°.

To go back and forth between the x + jy representation and the polar form RLO is
easy. The complex number x + jy is a point on the circle of radius R, and from Fig.
3.2 we see that

x = RcosO (6.4)

and

y = RsinO (6.5)

In the other direction,

(6.6)

and

9 = arctan(y/x) (6.7)

Now consider what multiplication should do in terms of the polar form. To be
consistent with usual multiplication of real numbers, we want

(6.8)

This suggests that in general the magnitude of the product of any two complex
numbers should be equal to the product of the two magnitudes.

Consider next the angle of a product of complex numbers. We've already said that
we want to interpret the complex number j as rotation by 90°. This means we want
multiplication by j = lL90° to add 90° to the angle of any complex number, but to
leave the magnitude unchanged. This suggests that multiplication in general should
result in adding the angles of the two complex numbers involved.

We have just given at teast a plausibility argument for the following property of
complex multiplication: Multiply the magnitudes and add the angles. That is, the pro­
duct of R1L01 and RzLOz is R1RzL(01 +Oz).

We now should verify this fact, given that we define multiplication as in Eq. 6.1.
Verification is just a matter of checking the algebra. Let x + jy = R 1 L0 1 and
v + jw = R2L0 2 • Replacing x by R 1cos91> y by R 1 sinO~> and so forth in Eq. 6.1
gives the product (x + jy) · (v + jw) as

§7 Euler's formula

(R 1cos9 1R2cos9 2 - R 1sin9 1R2 sin92) +
j(R 1sin9 1R2cos9 2 + R 1cos9 1R2 sin9 2)

II

(6.9)

The expressions in parentheses are familiar from Eq. 3.2. We circumvented them ear­
lier to avoid some messy algebra, but now they come in handy, allowing us to rewrite
this as

(6.10)

which is just R 1 R 2L(9 1 + 92), exactly what we wanted to show. Multiplication does
have the property that the magnitude of the product is the product of magnitudes, and
the angle of the product is the sum of the angles.

We are now ready for Euler's formula, about which I can't say enough good
things.

7 Euler's formula

The key fact we're looking for is that the rotating vector that represents a sinusoid is
just a single fixed complex number raised to progressively higher and higher powers.
That is, there's some fixed complex number, say W, that represents the rotating vector
frozen at some angle; W2 represents the vector at twice that angle, W3 at three times
that angle, and so forth. Not only that, but the vector WP will represent a continuously
rotating vector, where p is allowed to vary continuously over all possible real values,
not just over integer values.

We concentrate our attention on a rotating vector of unit magnitude. More pre­
cisely we consider the function

£(9) = cos9 + jsin9 = IL9

which represents the vector at some arbitrary angle 9.
derivative of £(9) with respect to 9 directly,

d£(9) . 9 . 9 ----;j9 = -Sin +]COS

(7.1)

From this we can find the

(7.2)

Notice next that the effect of the differentiation was simply to multiply cos9 + jsin9
by j. In other words, we have derived the following simple property of £(9):

d£(9) = j£(9) (7.3)
d9

We know that only the exponential function obeys this simple law. In general, the
derivative of the function eaa with respect to 9 is a times the function, no matter what
the value of a. This must be true even if a is complex, as it is in this case. In fact,
a = j and the function we are looking for is

£(9) = eia (7.4)

12 Chapter 1 Tuning Forks, Phasors

This relation, written out in full,

cos9 + jsin9 = ei9 (7.5)

is called Euler's formula, after the Swiss mathematician Leonhard Euler (1707-1783).
It is one of the most remarkable formulas in all of mathematics. It fulfills the promise
above that the rotating vector arising from simple harmonic motion can be represented
as a fixed complex number raised to higher and higher powers, and tells what raising a
number to a complex power must mean. We will use it continually as we learn more
about complicated signals and how to manipulate them.

Euler's formula ties together, in one compact embrace, the five best numbers in the
universe, namely 0, I, 1t, e, andj. To see this, just set 9 = 1t in Eq. 7.5 and rearrange
slightly (for aesthetic effect):

ei11 + I = 0 (7.6)

Not only that, but Eq. 7.6 uses, also exactly once each, the three basic operations of
addition, multiplication, and exponentiation - and the equality relation. One of
everything!

Euler's formula gives us a satisfying interpretation of the rule for multiplying com­
plex numbers that we derived in the previous section. A complex number z with mag­
nitude Rand angle 9, RL9, can also be written Rei9 • The real part is Rcos9 and the
imaginary part is Rsin9. Multiplying two complex numbers z 1 = R 1 L9 1 and
Zz = R2L9 2 can then be expressed as

(7.7)

using the rule from the previous section: multiply their magnitudes and add their
angles. This is an example of a general property that we expect from exponents, and
that we'll use for complex numbers z, a, and b without further comment:

(7.8)

We' II also use the property

(7.9)

Here's a very important bit of notation that we'll use over and over again. Given
any complex number z = Rei9 , its complex conjugate is defined to be

z* = Re-i9 (7.10)

That is, z * has the same magnitude as z, but appears in the complex plane at the nega­
tive of its angle. You can also look at it as an operation: to take the complex conjugate
of a complex number, just replace j by - j everywhere. Therefore, if z = x + jy in
terms of real and imaginary parts, its conjugate is z * = x - jy. Geometrically, this
means that z * is the reflection of z in the real axis - it's as if that axis were a mirror.
Points above the real axis are reflected below, and vice versa.

§8 Tine as phasor 13

It's now easy to see that if we add a number and its complex conjugate, the ima­
ginary parts cancel out, and the real parts add up. So if z = x + jy,

z + z • = 2x = 2 ~a({ z } (7 .I I)

where we'll use the notation ~a(to indicate the real part of a complex number. Simi­
larly, if we subtract the conjugate of z from z, the real parts cancel, and

z- z* = 2jy = 2}Imag{z} (7.12)

where Imag indicates the imaginary part.
What happens if we multiply a number times its conjugate? Euler's formula and

Eq. 7.8 tell us that if z = Rei9 ,

(7.13)

This is a very convenient way to get the squared magnitude of a complex quantity.
By the way, the rotating vector derived earlier can now be written

(7.14)

We call such a signal a phasor, and regard it as a solution to the differential equation
describing the vibrating tine of the tuning fork, Eq. 2.2. As discussed earlier, it is
complex-valued, but if we want to use it to describe a real sound wave, we can always
consider just the real part.

8 Tine as phasor

I can't resist taking a moment to point out that the piece of metal we've been hitting,
the tuning-fork tine, can be made to vibrate as a phasor quite literally; that is, in a real
circle. We can do this by striking it first in the x direction, and then in they direction,
perpendicular to the x direction.

To make this work we have to be careful to do it just right. First, we take care to
strike the tine in both directions with equal intensity. Second, we strike it in the y
direction precisely at the time when it has moved farthest in the positive x direction.
Finally, we need to construct the tine so that its stiffness constant k is the same when
moving in either the x or y direction.

Observing these precautions, suppose we first hit the tine in the positive x direction
at the time corresponding to rot = -'Tt/2. This means we get sinusoidal motion that
has zero displacement at that time. The tine therefore vibrates in the x direction, and
its displacement is described by

x(t) = cos(rot) (8.1)

We hit the tine a quarter-period early so that it will be farthest in the x direction at
t = 0. We assume here for simplicity that we adjust the intensity of the strike so the
amplitude of the oscillation is unity.

14

9 Beats

Chapter 1 Tuning Forks, Phasors

Next, strike the tine in the positive y direction at the time t = 0; that is, as planned,
a quarter-period later, when the tine is fully deflected in the positive x direction. The
vibration in the y direction is independent of that in the x direction, and is described by

y(t) = sin(cot) (8.2)

If we look at the tine from above it moves precisely in a circle, one revolution every
2x/co seconds. This is illustrated in Fig. 8.1. We have created a real phasor.

(--- >l
' :

Fig. 8.1 Hitting a tine of a tuning fork twice, to start vibration first in the x
direction and then in the y direction. As a result the tip of the tine moves in
a circle.

Superpositions of oscillations in more than one direction, of which this is a simple
example, can result in intricate patterns, especially if the oscillations have different
frequencies. These patterns are called Lissajous figures, after the French physicist
Jules Antoine Lissajous (1822-80). They make impressive pictures on oscilloscopes,
and you can see them in older science-fiction films, for example at the beginning of
THX 1138, a 1970 film directed and co-written by George Lucas.

We will conclude this chapter with an analysis of beats, a phenomenon familiar to
anyone who experiments with sounds. Not only are beats interesting in themselves,
but the analysis demonstrates quickly how useful our phasor representation is.

Suppose we strike two tuning forks that have frequencies of vibration that are
close, but not identical. We know intuitively that the sinusoids from the two tuning
forks shift in and out of phase with each other, first reenforcing, then destructively
interfering with each other, as illustrated in Fig. 9.1. How do we represent this
mathematically?

Cl)
:::1

~
iii
r::
.2'

2-

., 0

-2.,
0

.
250

§9 Beats

. . .
500 750 1000

time, sec

Fig. 9.1 Two sinusoids beating against each other. The exact function
shown is sin(rot) + 0.7*sin((ro + o)t), where ro = 0.3157 radians per sec,
and o = 0.02 radians per sec.

We could write the two sinusoids in the following way

a 1 COS(rot) + a2cos((ro + 0) t)

15

(9.1)

where the frequencies differ by o, which we assume is positive for the purposes of
illustration. This does not show the beating phenomenon, and it takes a fair amount of
messy algebra to put it in a form that does. But if we use phasors we can see what
happens easily. Write the sum of two phasors as

(9.2)

Notice that Eq. 9.1 is just the real part of this. Now think of these phasors rotating in
the complex plane. The second rotates at a rate o faster than the first. The first vector
begins in phase with the second, perfectly aligned, so the sum vector starts with length
I a 1 + a 2 1. As time progresses, the first vector drifts farther and farther behind the
second, until it is 180 ° behind it and cancels it out, so that the sum vector shrinks in
length to I a 1 - a 2 1. The two phasors then gradually move back into phase, and so
forth. The time that it takes for the two phasors to go through one such complete cycle
is determined by the frequency o. For example, if o = 27t radians per sec (which
corresponds to the frequency of I Hz), it takes one second to go from one relative null
to the next. Figure 9.2 illustrates the relative motion of the two phasors in the com­
plex plane.

An even more illuminating picture can be drawn in terms of phasors if we examine
the expression for the magnitude of the sum phasor in Eq. 9.2. To do this, first factor
out the common eiwt in that equation, yielding

16 Chapter 1 Tuning Forks, Phasors

Fig. 9.2 Two phasors with different frequencies. They alternately line up
and cancel out.

(9.3)

Next, take the magnitude of this expression, remembering that the magnitude of a pro­
duct is the product of magnitudes, and that the magnitude of ej.,, is always one. The
result is

(9.4)

This quantity is the magnitude of the vector that results from adding the constant real
vector a 1 to the phasor with magnitude a 2 and frequency i>, as shown in Fig. 9.3.
Remember that we removed the effect of the factor ej.,, in Eq. 9.3 when we took the
magnitude. That step canceled rotation of the entire configuration in Fig. 9.3 at a rate
of +ro radians per sec, which, of course, doesn't affect the magnitude of the resultant
sum vector. In effect, Fig. 9.3 shows motion relative to the rotating frame of reference
determined by the original phasor at frequency ro.

Fig 9.3 The complex vector representing the envelope of a beat signal,
shown with a dashed line and labeled "SUM."

Notes

Notes 17

Figure 9.3 shows that the magnitude of the sum phasor is precisely the length of
the link that connects the origin to the rim of the rotating wheel of radius a 2 centered
at a 1• This link is much like the cam that drives a locomotive wheel. If we think of
the sum of the two phasors as a complex vector that rotates with varying length and
speed, we can define its varying length to be the envelope of the sum signal, and its
varying angular speed to be its frequency. To emphasize the fact that this envelope
and frequency are varying with time, we sometimes use the terms instantaneous
envelope and instantaneous frequency (see Problems 9-13).

If you're an engineering or computer science student, I hope this book will whet your
appetite for more, and that you'll go on to an upper-level course in digital signal pro­
cessing, such as typically taught from the classic ''Oppenheim & Schafer'':

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, N.J., 1975.

A generation of students have learned digital signal processing from this source.
If you're a composer of computer music, you will want to add F. R. Moore's

comprehensive book to your bookshelf:

F. R. Moore, Elements of Computer Music, Prentice-Hall, Englewood
Cliffs, N.J., 1990.

Moore describes in detail many of the tools used by composers, and provides practical
and musical insights. The present volume should make Moore's book more accessible
to you.

My experience is that, in general, colleges and universities teach calculus, but not
algebra with complex numbers. Many of my students, even the best ones, tell me they
haven't seen complex numbers since grammar school. That's why I start by going
over complex arithmetic in some detail, but use first-year calculus freely throughout
the book. My guess is that the calculus will be easier and more familiar to you, espe­
cially if you are a technical student. In most cases I try to provide the intuition behind
what's going on, and I don't dwell on mathematical niceties. In fact some of the
derivations are deceptively simple and shamefully unrigorous. What I'm after, and
what is most useful to beginners, is intuition.

Turning to the material in the first chapter and confirming what I just said: Tuning
forks aren't as simple as may be suggested by the analysis in Section 2; I just wanted
to get started with simple harmonic motion as quickly as possible. First of all, there
are two tines joined at the middle, so the fork is more like a full bar held at the center.
The two tines interact. You can show this easily by touching one with your hand while
the tuning fork is producing a tone. Both tines will stop vibrating. Second, the tines
can vibrate in more complicated ways than suggested by the analysis. The picture we
have for the simple harmonic motion is that the entire tine is swaying back and forth.
But it can also be that the tip of the tine is moving one way while the middle part is

18

Problems

Chapter 1 Tuning Forks, Phasors

moving the other. This mode of vibration results in what is called the clang tone, and
can be excited by hitting a fork lightly with a metal object. More about modes of
vibration in the next chapter.

If you want to learn more about the production and perception of musical sounds,
the following book by the great master Hermann Helmholtz (1821-1894) is required
reading:

H. L. F. Helmholtz, On the Sensations of Tone as a Physiological Basis
for the Theory of Music, Second English edition, A. J. Ellis, translator,
Dover, New York, N.Y., 1954. (The first edition was published in Ger­
man, 1863.)

It isn't the last word, but in many cases it's the first. Helmholtz is particularly well
known to musicians for his contribution to the understanding of combination tones -
the notes perceived when two sinusoids are sounded together. His key insight is the
observation that slight nonlinearities in a musical instrument or in our ears explain
why we hear sum and difference tones (see Problem 18).

Helmholtz had a special genius for making profound scientific observations with
little or no apparatus. He worked wonders with a little dab of wax here, or a feather
there. In connection with the beating of two sinusoids close in frequency, he observed
in Sensations, "A little fluctuation in the pitch of the beating tone may then be
remarked." This is the basis for Problem 13, which is solved in Helmholtz's Appen­
dix XIV.

1. If we were mathematicians, we might want to state the closure-under-shift property
of sinusoids with some precision. We might say that the class of functions

5., = {Asin(rot + cp)}

for a fixed frequency ro and all real constants A and cp, is closed under the operation of
time shift. This is a fancy way of saying that if we time-shift any member of the class,
we get another member of the class. Find another class of time functions besides 5.,
that is closed under the time-shift operation. Be precise in your definition of the class.

2. Is it true that the product of two members of the class 5., is also a member of 5.,?
That is, is the class 5., closed under multiplication? Is it closed under division?

3. We demonstrated in Section 3 that the class 5., is closed under addition. That is, we
showed that adding two members of the class produces a third member of the class.
Prove that adding any finite number of members of the class produces another
member of the class. (That is, that the class is closed under finite addition.)

4. Is the class 5., closed under addition of a countably infinite number of members?
Think about this question. It will be answered in Chapter 3.

5. Suppose you simultaneously hit two tuning forks marked as being tuned to the same
pitch. Name a couple of reasons you might in practice be able to distinguish the

Problems 19

resulting sound from that of a single tuning fork, even though theory predicts that you
wouldn't be able to.

6. Find two tuning forks that are marked as being tuned to the same pitch, digitize the
sound of each being struck separately, and add the two notes on a computer. Do you
get a single sinusoid?

7. Strike a tuning fork and hold it upright beside your ear. Then rotate it about its
vertical axis. Explain why the loudness varies. Observe the angles at which the sound
is softest and loudest.

8. Write a program that displays the Lissajous figures corresponding to vibrations in
the x and y directions with different frequencies. Look especially at the patterns when
the two frequencies are exactly, and then nearly, in the ratio of small integers. This
used to be fun to do with an oscilloscope and a couple of signal generators, and if you
have that equipment it's still an easy way to get the pictures and see them move as the
two components drift in phase with respect to each other.

9. A student in a computer-music course decided he would generate a "chirp" signal
-one that swept in frequency from ro 1 to ro 2 during the time interval t = 0 to t = T.
To do this he generated the signal sin(rot), where

t
ro = ro 1 + T(ro2 - ro 1)

The frequency variable ro does start at ro 1 and increases linearly to ro 2 as t increases
from Oto T.

Repeat his experiment and listen to the result. Does it have the expected pitch
range? If you have a tuning fork, you can check the synthesized pitch by sweeping the
frequency of the synthesized tone from a frequency below that of the tuning fork to
one above it, and comparing the synthesized sound with that of the tuning fork. You
can also measure its spectrum with a computer and a spectrum-analyzing program
(about which more later).

Try to explain any discrepancy between the observed and the intended pitches.
What will the signal sound like if we continue it at the fixed frequency ro 2 for t > T?

10. Derive an algebraic expression (in terms of real variables) for the envelope of the
sum of two sinusoids, Eq. 9.1, in two ways. First, using the geometry in Fig. 9.3 (use
the law of cosines); and second, using algebra and Eq. 9.4.

11. Prove that the actual waveform, Eq. 9.1, touches this envelope.

12. Find an equation of the form g('t) = 0 whose solutions are the points 't where the
waveform touches the envelope. Try to solve it.

13. As mentioned at the end of Section 9, the instantaneous frequency of a complex
signal is defined to be the rate of change of its angle. That is, if the angle of a signal is
E>(t), its instantaneous frequency is dE>(t)ldt. Consider the case of the phasor ei.,,,
for example. Its magnitude is I and therefore its envelope is I. Its angle is rot, so its
instantaneous frequency is ro, as we want.

20 Chapter 1 Tuning Forks, Phasors

Work out the instantaneous frequency of the sum of two sinusoids, Eq. 9.1. That
is, derive as simple an algebraic expression as you can in terms of the real parameters
a 1 , a 2 , ro, and o. What are the smallest and largest values that the instantaneous fre­
quency achieves? Are there values for the parameters for which you think you will be
able to hear the variation in frequency? Synthesize the beat signal for these parame­
ters and listen to it. Do you hear the predicted change in frequency?

14. Write a program that converts complex numbers from the form x + jy to the polar
form RL9. Write another that does the conversion in the opposite direction. Use
degree as the unit of angle.

15. Derive Euler's formula using power series.

16. Get a tuning fork and measure the frequency of the tone it's meant to produce,
let's say its nominal frequency. Then measure the frequency of the clang tone men­
tioned in the Notes. Is the clang-tone frequency an integral multiple of the nominal
frequency? Does the clang tone die out faster or more slowly than the nominal fre­
quency?

17. The beat signal shown in Fig. 9.1 is the result of adding two sinusoids that differ in
frequency by o = 0. 02 radians per second. What period does this correspond to in
seconds? Check by measuring the figure.

18. A signal is produced by adding two sinusoids of frequencies ro 1 and ro 2, and
squaring the sum. What frequency components are present in the result, and in what
proportion?

CHAPTER 2

Strings, Pipes,
the Wave Equation

1 A distributed vibrating system

In the first chapter we considered the simplest kind of vibrating system, exemplified
by a struck tine of a tuning fork, and showed how to describe its vibration mathemati­
cally. This led to phasors, a representation for sinusoids in the complex plane. I
wanted to show you that sinusoids come up in the real world very naturally. In fact,
we'll find out in this chapter that sinusoids are really fundamental building blocks out
of which all sounds are composed. To see this we'll study the next simplest kinds of
vibrating systems, beginning with the vibrating string.

The main difference between simple harmonic motion and the motion of a
stretched string is that the string is distributed in space. That is, we no longer consider
the motion of only one point, the tip of the tuning-fork tine, but we consider the
motion of infinitely many points along the string. We will be looking for a description
of the motion of the string as a function of two variables: the time, as before, but also
position along the string. Let's denote that function by y(x, t), where xis longitudinal
position along the string, and y is the transverse displacement of the string with
respect to its resting position. Figure 1.1 shows such a string; the x-axis represents the
equilibrium position of the string, the flat line y = 0.

We're headed for an equation analogous to the differential equation in Eq. 2.2 of
Chapter 1:

d 2x
- = -(klm)x
dt 2

(1.1)

except now we have two variables to contend with. The displacement y of the string
depends both on the position x along string, and the timet, and that's why we'll write
it as y(x, t). The derivatives in this more complicated situation are called partial
derivatives, and the equation we will derive is called a partial differential equation.

22 Chapter 2 Strings, Pipes, the Wave Equation

y

X

Fig. 1.1 A string stretched between two points, vibrating. The displace­
ment y is a function of position x along the string and time t. Shown is a
snapshot at a particular time.

There's really nothing very mysterious about this. It's just that we need to distinguish
between the changes in the displacement y caused by variations in x and those due to
changes in t. If we vary x but force t to remain constant, the resulting partial derivative
is denoted by iJyliJx . This represents the rate of change of y with respect to x, just as
in the case of ordinary derivatives, except that we are being explicit about holding t
fixed at some given value. Similarly, if we vary t but hold x constant, the result is
iJy!iJt.

As a simple example consider the function

Then

and

y(x, t) = ea'sin(rox)

iJy = roe a' cos(rox)
dX

iJy = aeat sin(rox)
dt

(1.2)

(1.3)

(1.4)

The particular partial differential equation we are about to derive is called the
wave equation, and is one of the most fundamental in all of physics. It describes not
only the motion of a vibrating string, but also a vast number of other situations,
including the vibration of the air that enables sound to reach our ears.

2 The wave equation

The basic method of deriving the wave equation is straightforward. We consider a
typical segment of the string, calculate the force on it, and apply Newton's second
law. We then take the limit as the length of the segment goes to zero, and that's where
we have to be careful in dealing with the partial derivatives.

Figure 2.1 shows a small piece of a vibrating stretched string, of length Ax. We
assume that the tension on the string is P, and that the deformation of the string is
small enough that we can ignore the change in tension in this segment caused by its
deformation. We also assume that the string has uniform density p units of mass per
unit length, so that the mass of the segment is pAx.

§2 The wave equation 23

ljl right

X

tension P

Fig. 2.1 An infinitesimal segment of a vibrating stretched string.

As shown, the string segment makes an angle 'V with the x-axis at the particular
time and position x considered. The component of the tension in the vertical direction
is Psinljl. Here's the tricky part. The angle 'Vis not exactly the same at the two ends of
the segment, because the string is curved. Therefore there is a difference in the verti­
cal component at the two ends, given by

Psin'VIeft- Psinljl right (2.1)

where 'V!eft and 'V right are the angles 'Vat the left and right ends respectively. Write this
as

(2.2)

where we use the notation ~ x (sin 'V) to denote the change in sin 'V as a result of chang­
ingx.

The next step, as mentioned, is to apply Newton's second law: the difference in the
y components of the forces at the two ends must equal the mass of the segment times
the acceleration in they direction. The mass is p~x. and the acceleration is ()2 ylot2•

This gives

azy
p~x ot2 = P~x(sinw)

Rearrange this by dividing by p~x. yielding.

azy ~<(sinljl)
-=(Pip)-· --
ot2 ~x

(2.3)

(2.4)

We're now going to make the important assumption that the string displacement y,
and hence the angle ljl, are very small. This is certainly true in the real world -a gui­
tar string doesn't deviate much from its rest position to make sound. (The vertical
scales in our figures are very exaggerated.) Mathematically, the assumption of smallw
means that sinljl ::: tanw ::: oy/ox.

24 Chapter 2 Strings, Pipes, the Wave Equation

We now take the limit as L\x goes to zero. The expression .:1 x (·)I L\x approaches
o(.)lox, by definition - it's just the change of whatever is inside the parentheses
divided by L\x, as L\x ~ 0, keeping the timet constant. What's inside the parentheses
approaches oylox, by the assumption in the preceding paragraph that 'II is small. The
result is that the equation of motion of the string becomes

a2y = (Pip) a2y (2.5)
ot2 ox2

Notice that the proportionality constant (P lp) is analogous to the constant (kim)
in the equation for simple harmonic motion, Eq. 1.1. The tension P is analogous to the
stiffness constant k, being a measure of how resistant the string is to being displaced.
The mass density p is directly analogous to the mass of the tuning-fork tine.

We can now get an important hint about the meaning of the proportionality con­
stant (Pip). It must have the dimensions distance-squared over time-squared, as you
can see easily from Eq. 2.5: formally replace y and x by distance, and t by time. So if
we rewrite Eq. 2.5 as

(2.6)

the constant c has the dimensions distance over time, or velocity. As we see in the
next section, c really is a velocity. This is the wave equation, which, as we mentioned
before, explains an enormous variety of wavelike phenomena in the physical universe.

The wave equation has an immediate intuitive interpretation. The right-hand side
is proportional to the curvature of the string at any point x, and the left-hand side is
proportional to how fast the string at that point is accelerating. If the curvature is posi­
tive, the string is U -shaped, and is accelerating upward (positive acceleration). If the

curvature is negative, it is n -shaped and accelerating downward (negative accelera­
tion). The sharper the bend of the string, the faster it is accelerating. If the string has
zero curvature - that is, if it's in the shape of a straight line - its acceleration is
zero, and it's therefore moving with constant velocity.

3 Motion of a vibrating string

We know from experience that if we suddenly shake the end of a string a wave will be
generated that travels down the string. That's how a whip works. We see next that
this is predicted by the wave equation. In fact, the result falls out of the wave equa­
tion immediately, with almost no effort.

Suppose then that we have shaken the end of the string, and produced a "bump"
traveling to the right, as shown in Fig. 3.1. If the bump were in fact moving to the
right, the deflection y(x, t) of the string would be expressed mathematically by

y(x, t) = f(t - x/c) (3.1)

§3 Motion of a vibrating string

y

' '
X

Fig. 3.1 A bump moving to the right on a string. The point at position A
bobs up and then down as the bump passes.

25

where f(·) is a completely arbitrary function of one variable that represents the shape
of the bump. To see this, just notice that if we increase t by !J.t and x by ~x. the right­
hand side of Eq. 3.1 remains unchanged, provided that c!J.t = ~x. This means that the
left-hand side, the deflection y, is the same at the later timet + ~t. provided we move
to position x + ~x. where ~xl !J.t = c. This is just another way of saying the shape of
string moves to the right with speed c.

It is now easy to see that Eq. 3.1 always satisfies the wave equation, no matter
what shape f(·) is. If we differentiate twice with respect to x, we get
(l/c 2)f" (t - xlc). If we differentiate twice with respect tot we getf"(t - xlc), c 2

times the first result. This is exactly what the wave equation, Eq. 2.5, says.
If the wave is moving in the negative x direction, the deflection is of the form

y(x, t) = g(t + x/c), where g(·) is again any function of a single argument. The
same procedure shows that this also satisfies the wave equation. In fact, any solution
of the form

y(x, t) = f(t - x/c) + g(t + xlc) (3.2)

will work, where the wave shapes f(·) and g(·) are completely arbitrary. This
represents one wave moving to the right, superimposed on any other wave moving to
the left.

Next we should check that this solution is at least intuitively consistent with the
interpretation of the wave equation given at the end of the previous section: that the
acceleration is proportional to the curvature. Take the case of a single bump moving to
the right. Consider the motion of a single point at position A on the string (Fig. 3.1) as
the bump passes by. The point slowly starts to move in the positive y direction,
accelerates for a while, slows down, reaches its maximum deflection, and then rev­
erses this process. This is analogous to a floating cork bobbing up and down as an
ocean wave passes by.

Next consider the curvature of the bump as it passes by. It begins by growing
slightly positive, then grows more positive, reaches a peak, flattens out to zero curva­
ture, goes negative, reaches a negative peak (when the peak of the bump passes by),
and finally reverses the process to return to zero. This is perfectly coordinated with its
acceleration, which shows that the point's motion is at least consistent with the wave
equation. The same argument works with the bump moving to the left. But this argu­
ment is neither precise nor very convincing: It doesn't predict the speed of the wave
motion, and it doesn't predict that the shape of the bump will be preserved precisely.

26 Chapter 2 Strings, Pipes, the Wave Equation

Those results fall in our laps when we differentiate; sometimes we forget how much
power is wrapped up so succinctly in our mathematical notation.

Up to now we haven't constrained the string in any way. It is infinitely long, not
tied down at any point. We've seen that such a string can move in very general ways
- the superposition of any two waves whatsoever moving in opposite directions. In
particular, there's nothing about the form of Eq. 3.2 that predicts any particular pitch
or periodic vibration. For this we must tie down the string at a couple of points, like a
guitar string.

4 Reflection from a fixed end

Suppose next we fix the string at x = 0, so that it can't move at that point. This means
that if we let x = 0 in the general solution Eq. 3.2, the deflection y must be zero,
which yields the condition:

y(O, t) = j(t) + g(t) = 0 (4.1)

This must be true for every value oft, from which it follows that

f(t) = - g(t) (4.2)

The general solution therefore becomes

y(x, t) = f(t - xlc) - f(t + xlc) (4.3)

It's obvious that this automatically becomes zero when x = 0 for every t.
Equation 4.3 has a very interesting physical interpretation, illustrated in Fig. 4.1.

Suppose we start a wave in the positive x region of the string, traveling left. This can
be represented by the deflection function y = f(t + x/c). We already know that if the
string is to be fixed at x = 0 this cannot describe the entire deflection of the string. In
fact, in order for the point of the string fixed at x = 0 to remain stationary when the
bump arrives, there must be a component - f(t - x/c) traveling to the right, which
arrives at the origin at just the right time to cancel out any possible deflection at
x = 0. This wave keeps traveling to the right, and the net effect is for the original
wave to be reflected from the fixed origin with a reversal in sign, as shown in Fig. 4.1

As you might imagine, reflection of waves is a very important and general
phenomenon in the study of sound. Next we will see how it allows us to understand
the vibration of a string fixed at two points, and later, the vibration of air in tubes like
organ pipes.

5 Vibration of a string fixed at two points

Suppose now we consider a string tied down at the point x = L, as well as x = 0.
Mathematically this condition means that the displacement y is zero at the point
x = L. Substituting this in Eq. 4.3 we get

y(L, t) = f(t - Lie) - f(t + Lie) = 0 (5.1)

§5 String fixed at two points

y

X

X

X

Fig. 4.1 A string fixed at x = 0; a wave traveling to the left is reflected with
inversion. This is mathematically equivalent to its meeting a right-moving
wave of opposite sign.

27

Since this is true for every value oft, it's permissible to add Lie to the arguments on
both sides, yielding:

f(t) = f(t + 2Lic) (5.2)

This tells us something quite significant: the displacement function f(·) is periodic
with a period equal to 2Lic seconds. This period is the time that it takes for a wave to
travel from one end of the string to the other and then back again - in other words,
the round-trip time at velocity c.

This is a good time to mention a simple matter that sometimes causes confusion. If
a waveform repeats itself every T seconds we say its period is T sec; its frequency is
fo = liT Hz (the reciprocal of its period). The unit Hertz, named after the German
physicist Heinrich R. Hertz (1857-1894), can also be thought of as cycles per sec.
Since there are 27t radians in a cycle, we also use radian frequency
co0 = 27tfo = 27t/T radians per sec, which is convenient when we are discussing a
sinusoid. For example, sin(27tf0 t) repeats with the frequency fo Hz. So instead of
writing the 27t all the time, we just use sin(co0 t). In our case, T = 2L/c sec,
fo = c/(2L) Hz, and co0 = 1tc/L radians per sec.

We are now going to make an educated guess at what a solution as a function of
both t and x might be. We want to be sure that the deflection y vanishes at the end­
points x = 0 and x = L, but we know that the variation as a function of t is periodic
with period 2L/c, and has no such constraint. Therefore let's try a solution of the form

28 Chapter 2 Strings, Pipes, the Wave Equation

(5.3)

where we have used ro 0 = xc/L, the radian frequency corresponding to the period
2L/c, as discussed above. This is a phasor of the correct frequency multiplied by some
as yet undetermined function of x. We now want to see if we can satisfy the wave
equation with a function of this form, so we calculate the left- and right-hand sides of
the wave equation, Eq. 2.6:

(5.4)

and

C 2 d2y 2 jro.,r d 2 Y(x)
= c e

dX 2 dx 2
(5.5)

For the wave equation to be satisfied, then, the right-hand sides of these last two equa­
tions must be equal:

2 jro.,r Y() 2 jro.,r d2 Y(x)
-ro0 e x = c e dx 2 (5.6)

The phasor factor due to the time variation cancels out, and the constant simplifies to
yield

d2 Y(x) = - (x/L)2 Y(x)
dx2

(5.7)

This should look familiar- it's exactly the same equation we used to describe the
motion of a struck tuning-fork tine in Chapter I, Eq. 2.2, and the result is simple har­
monic motion. That is, the solution is

Y(x) = sin(xx/L + cp) (5.8)

where the phase angle cp is yet to be determined.
Our guess has paid off. We've just verified that there is in fact a solution to the

wave equation of the conjectured form, and that the function Y(x), which determines
the way the maximum deflection amplitude depends on x, is sinusoidal. But we still
need to determine the angle cp, which establishes how the sinusoid is shifted relative to
the beginning and end of the string.

Here's where we get to impose our condition that the deflection must be zero at the
two ends of the string. It means that Y(x)=O at x=O and x=L, which implies from
Eq. 5.8 that

sincp = 0 and sin(x + cp) = 0 (5.9)

This in tum implies that both cp and cp + x must be integer multiples of x. It doesn't
matter which multiple of x we choose, so for simplicity we'll choose cp = 0. Putting
the two parts of y(x, t) back together, we end up with

y(x, t) = ejro.,r sin(xx/L) (5.10)

A comment: Don't worry about this being a complex function. This didn't bother
us in Chapter I and shouldn't bother us now. We'll just agree to take the real part if

§5 String fixed at two points 29

we want to have a real number for the displacement. For this reason we can also con­
sider the solution obtained to be

y(x, t) = cos(ro0 t)sin(7tx/L) (5.11)

This solution has the following meaning: A point on the string at position x vibrates
sinusoidally at the radian frequency ro 0 = 1tc/L, with an amplitude that is greatest at
the center of the string and decreases to zero at the end points. Note that this fre­
quency varies inversely with the length of the string for a fixed wave velocity c. All
else being equal, this predicts that the shorter the string, the higher the frequency of
vibration, as we expect.

It's interesting to rewrite Eq. 5.10 in the form

ejro,(t-x/c)

2j 2j
(5.12)

where we have used the identity sine = [ej9 - e-j9]/(2j}, easily derived from
Euler's equation. This verifies that the solution is in fact of the form used in Eq. 5.1,
the difference between right- and left-traveling waves. When two traveling waves
combine to produce a wave that appears stationary, we say that a standing wave is
produced.

Next, notice that when we suggested a solution of the form used in Eq. 5.3, a pha­
sor of frequency f 0 , we could equally well have used a phasor of frequency 2f0 , 3f0 ,

or any integer multiple k of f 0 • All these repeat every lifo seconds; in fact, a phasor
with frequency kfo repeats k times in that period. The same procedure as above then
leads to solutions

y(x, t) = ejkro,r sin(k1tx/L} (5.13)

for any integer k.
The solutions in Eq. 5.13 represent different modes in which the string can vibrate.

The solution for k = I, as described above, vibrates with greatest amplitude at the
center of the string and with smaller and smaller amplitude as we go from the center
to the endpoints. This is shown as the first mode in Fig. 5.1. Consider next the second
mode, for k = 2. The solution is

y(x, t) = ej2"'" 1 sin(27tx/L) (5.14)

Each point on the string vibrates twice as fast as a point on the mode-l string. Further­
more, the center of the string doesn't move at all! The largest amplitudes can be found
at the midpoints of the two halves, the points at x = L/4 and x = 3L/4. Similarly, the
solution corresponding to any k has k - I places besides the end points that aren't
moving, and k places of maximum amplitude. All of these 2k - I points are equally
spaced along the string at intervals L/(2k). The first couple of higher modes are illus­
trated in Fig. 5.1 along with the first mode, which is called the fundamental mode of
vibration. The points on the string that don't move are called nodes.

30 Chapter 2 Strings, Pipes, the Wave Equation

mode 1

·········· ·········· ·····································
~
c ··········· ~ ······· ·······

I o~
~ •••• • ••• (!-... ..

Fig. 5.1 The first three modes of a vibrating finite string. In mode 1 every
point of the string moves in the same direction at any given time. In mode
2, the left half moves up when the right half moves down, and so forth. At
the nodes, the string doesn't move at all.

We have now found a whole family of solutions to the wave equation, each
member of which is zero at x = 0 and x = L, the ends of the string. We can now
generate very general solutions by combining these in a simple way. To see how to do
this we need two observations. First, notice that we can always multiply a solution to
the wave equation by a constant factor without changing the fact that it's a solution.
The constant factor will appear on both sides and cancel out. Second, if we have two
solutions to the wave equation, the sum of the two solutions will also be a solution.
This can be verified by substituting the sum of two solutions into the wave equation.
The claim follows because the derivative of a sum is the sum of derivatives.

These two observations show that we can now find new solutions that are
weighted sums of any modes we care to use. In general, therefore, we can use the
grand combination

~

y(x, t) = L ckejkm.,rsin(k7tx/L)
k=l

(5.15)

where we have weighted the kth mode by the constant c k. It turns out that this
includes all the solutions that can possibly exist. To describe the precise pattern of
vibration of any particular string, set into motion in any particular way, all we have to
do is choose appropriate values for the constants c k· If any mode is missing, the
corresponding c k is zero.

To sum up what we have learned about the vibrating finite string: Vibrations can
exist only in a number of discrete modes, corresponding to integers k, one more than

§6 Vibrating column of air 31

the number of nodes on the string (not counting the endpoints). The string vibrates at a
frequency kfo in mode k, where the period 1//0 is the round-trip time of a wave at the
natural wave speed c determined by the tension and mass density of the string.

You should realize that the string cannot have a fundamental frequency of vibra­
tion until we specify a boundary condition at two points. In this case we prevent it
from moving at two points. At that point we have defined a length, which defines a
round-trip time, which in tum defines a frequency of vibration. In other words there is
no way that an infinitely long string that is not tied down, or that is tied down at only
one point, can vibrate periodically. Standing waves form on the string between the
two enforced nodes. We will see the same general phenomenon later in this chapter in
the case of a vibrating column of air.

We are on the verge of discovering some truly marvelous properties of series like
the one in Eq. 5.15. But the French geometrician Jean Baptiste Joseph Fourier
(1768-1830) beat us to it by a couple hundred years, and so they are called Fourier
series. We will return to them at the end of this chapter and study them in more detail
later on. They will give us great insight into the way sounds are composed of fre­
quency components. Before that I want to discuss another common kind of physical
system that is used to generate musical sounds - a column of air vibrating in a tube.

6 The vibrating column of air

We are all familiar with a vibrating column of air making a sound, in an organ or a
clarinet, for example. We'll now derive the basic equation that governs this sort of
vibration. But first a word of caution. The analysis of air movement we will carry out
here is highly simplified, much more simplified than the corresponding analysis for a
string. This is because the motion of a gas is often complicated by the formation of
turbulence - eddies and curlicues of all sorts and sizes - that are very difficult to
characterize with simple equations. These effects are often very important in the pro­
duction of sound, so don't think that the present analysis is the final word.

That said, I hope you'll delight in the fact that the basic equation of motion for a
column of air is the same wave equation we've been studying. This is despite the fact
that sound production in a pipe and by a string differ in important ways. True, both
kinds of oscillations occur because of the balance between elastic restoring forces and
inertial forces that tend to make the restoring motion overshoot. But there the similar­
ity ends; the motion of air involves longitudinal compression instead of lateral dis­
placement.

To get a picture of how waves move in air, first remember that air is composed of
molecules in constant motion. The higher the temperature the faster the average
motion. At any temperature and at any point in space there is an average pressure,
which we'll denote by p 0 • Suppose we push suddenly on a plane in contact with the
air, say with a loudspeaker. As shown in Fig. 6.1, the air in front of the plane becomes
temporarily compressed because the molecules in front of the plane have been pushed.
This region of compression then travels outward from the plane at a characteristic
speed, the speed of sound. As the wavefront passes, molecules are suddenly pushed
forward by the molecules behind them, and then return to their average position. This

32 Chapter 2 Strings, Pipes, the Wave Equation

should all be visualized as motion relative to average position of the air molecules. In
fact the air molecules are in constant random motion.

-+I
I
I

initial
pulse

later

still later

X

Fig. 6.1 Creation of a wavefront in air by sudden motion of a plane, and
motion of the wavefront away from the plane.

The motion of the wavefront in air is analogous to the motion of a bump of lateral
displacement along a stretched string, but the physics is different. In the first case the
points on the string are moving up and down as the bump passes, at right angles to the
direction of the wave motion. In the case of waves in air the individual molecules of
air are moving randomly, and become locally displaced on the average as the wave­
front passes, along the same axis as the wave motion. It is the deviation from a
particle's average position that records the passage of the disturbance. We will meas­
ure this deviation from average position with the variable ~(x), where x is distance
measured from the source of sound (see Fig. 6.1). I hope this isn't confusing; ~(x) is
the local deviation from average position of a typical air molecule at position x. When
there is no sound, ~(x) = 0 for all x.

As I've pointed out in the cases of a tuning fork and stretched string, waves occur
by a give and take between forces generated by elasticity and inertia. Our plan has the
same general outline as before. We will first characterize the elasticity of air, which
determines the force produced when we try to compress it. Then we will use Newton's
second law to express the fact that air has inertia, and putting the two factors together
will give us a differential equation of motion.

Visualize the air in a long cylindrical tube, sliced into very thin disks, as illustrated
in Fig. 6.2.t A typical disk is bounded by two planes, the left plane at x + ~(x), and
the right plane at x + ~x + ~(x+~x). Remember that the variable ~(x) represents
the deviation from the average position of the air molecules at position x. When no
sound vibrations are present, ~(x) = 0, and the thickness of the disk is ~x. When the
air is vibrating, the thickness at any moment is

t The following derivation is classical, but I have leaned most on [Morse, 1948] (see the Notes at the end of
this chapter).

§6 Vibrating column of air 33

dX + ~(X + dX) - ~(X) = dX + ~; dX (6.1)

The last expression is the first-order approximation for the change in ~ with respect to
x, which we are justified in using because dx is infinitesimally small. We use the par­
tial derivative because~ is a function of both x and t, a fact we've ignored up to now
to keep the notation simple.

Area 1------..:...L-0~]]
~ (x) ~ (x+l!x}

Fig. 6.2 Air in a long cylindrical tube, showing a typical infinitesimally thin
slice (a disk).

We are next going to use the fact that the molecules in the space between the two
faces of the slice always stay between the two faces. This is really just a way of say­
ing that matter is conserved. If therefore the left face moves faster to the right than
the right face, the air between becomes compressed; and if, conversely, the left face
moves to the right more slowly than the right face, the air between becomes rarefied.
Let p0 be the density of the air at rest, with no vibration, and let the surface area of a
face of the disk be S, as shown in Fig. 6.2. Then what we're saying is that the mass in
the cylindrical slice is always the same. That is

p0 Sdx = pSdx(I + ~;) (6.2)

where p is the density of the slice at any moment. This equation allows us to express
the ratio p/p 0 in terms of the derivative of~ with respect to x. Specifically, the Sdx
cancels and we get

...£....= Po (6.3)

The next step is to consider the pressure of the air at the faces of the slice. This
will then allow us to find the difference in pressure at the two faces, and that will
represent a force on the slice of air. There is first of all some steady ambient pressure
p 0 , which is immaterial. Only the changes in pressure matter, just as only the changes
in position x of the molecules matter. Let us call the pressure change at any place and
time p, so the total pressure is p 0 + p. Then the physical properties of gasses imply
that the fractional change in pressure p/p0 is proportional to the fractional change in
density. That is,

..f!._=Y[P-Po]
Po Po (6.4)

34 Chapter 2 Strings, Pipes, the Wave Equation

where y is some constant determined by the physical characteristics of the gas in ques­
tion -air in this case - and is called a coefficient of elasticity. Intuitively this is sim­
ple enough: it says that a sudden compression of the slice by a certain fraction results
in a proportionate increase in pressure. Actually, this relation is based on an assump­
tion that the vibrations of the air are fast enough that the heat developed in a slice
upon compression does not have enough time to flow away from the slice before it
becomes decompressed again. This is called adiabatic compression and decompres­
sion.t

It's important to keep in mind that when sound propagates in air the relative
changes of everything we're dealing with- pressure, density, position- are all very
small. That is, we're dealing with very small excursions from equilibrium values.
We're going to use this fact now to simplify Eq. 6.3, the expression for p/p 0 in terms
of the spatial derivative of~- The right-hand side of Eq. 6.3 is of the form 1/(I + z).
Expand this in a power series

I + z = I - z + z2 - z3 + · · · (6.5)

When z is very small we can ignore the terms beyond the linear, yielding the approxi-
mation

Applying this to Eq. 6.3, we get

I + z
::: I - z

....e._ = I - E.S_
Po ox

(6.6)

(6.7)

using the fact that z = o~/ox is very small. Substituting this approximation in Eq. 6.4
yields

a~ p = -ypo-ox (6.8)

Now we get to apply Newton's second law. Consider the difference in pressures
on the left and right faces of a typical slice of air in the tube, as shown in Fig. 6.3. The
pressure on the left face is p 0 + p; on the right face it's

Po + p + ~~ ~x (6.9)

where we have approximated the change in p across the slice to first order using the
derivative, as we approximated the change in ~ to get Eq. 6.1. The net force on the
slice is the difference between the two pressures times the surface area S, which is

-sop ~x (6.10) ax
Notice that we subtracted the pressure on the right face from that on the left face, to
yield net force in the positive x direction. If the pressure is increasing to the right, the

t We're going to leave the thermodynamics at that; for more discussion see [Morse, 1948], or [Lamb, 1925].

§7 Standing waves in a half-open tube

Fig. 6.3 A slice of air in a tube; the difference in pressure on the two faces
results in a force on the mass of enclosed air.

35

force in Eq. 6.10 is negative (to the left), which makes sense because in this case there
is more force on the right face than the left. Substitute p from Eq. 6.8 in Eq. 6.10, to
get the net force

(6.11)

Finally, equate the mass of the slice times its acceleration to this net force. The
mass is (p 0 Sax) and the acceleration is (d2 Vdt2), so we get

()2~ ()2~
PoSax dt 2 = Syp0 dx 2 ax (6.12)

The volume of the slice Sax cancels out, and here we are again with the wave equa­
tion

()2~ 2 ()2~
--=c--
dt2 dx 2

(6.13)

where the velocity of sound in air is

(6.14)

Isn't it amazing that exactly the same equation governs both the vibration of a
string and the vibration of air in a tube! But we are a long way from complete under­
standing. Why do they sound so different? There are many reasons, including the
relative strength of the modes, and the very complicated things that happen to get the
vibrations started in the first place. We'll get to some of those issues later, but next I
want to discuss the most obvious and most easily understandable difference between
standing waves on a string and in a tube.

7 Standing waves in a half-open tube

We saw earlier that the frequencies of the standing waves on a string are determined
by its length. About the only thing we can do to set initial conditions for a string is to
tie it down at two points, establishing its length. The mathematical condition
corresponding to tying the string down at the point x is that its displacement y(x) be
zero. For a tube, this corresponds to the condition ~(x) = 0, meaning that the

36 Chapter 2 Strings, Pipes, the Wave Equation

displacement of air at the point x is forced to be zero. Closing off the tube with a solid
wall means that air can't move there.

The finite tube that corresponds to a stretched finite string is closed at both ends.
This is not a good way to make sound, at least not sound that we can hear. Usually, we
excite the air at the closed end of a tube, with a vibrating reed, or lips, say, and leave
the other end open. So we want to see what the standing waves are in a tube that is
closed at one end and open at the other.

What is the mathematical condition that corresponds to the open end of a tube?
The fact that the air at the open end communicates with the rest of the world means
that it is free to expand or contract without feeling the effects of the tube. To a first
approximation this means that deviations from the quiescent pressure p 0 cannot build
up; in other words, the differential pressure p = 0. Equation 6.8 tells us that the dif­
ferential pressure p is proportional to o~/ox, so the condition at the open end of the
tube is

~I -o ox x=O -
(7.1)

instead of ~ = 0 at the closed end.
Let's see what this implies about the standing waves in a tube that is open at one

end and closed at the other, a common situation. It really doesn't matter which way
we orient the tube, so assume for convenience that the tube is open at x = 0 and
closed at x = L. We know from the wave equation alone that the solution is of the
form

~(x, t) = f(t - x/c) + g(t + x/c) (7.2)

where/(·) is a right-moving wave that is of a completely arbitrary shape, and g(·) is a
corresponding left-moving wave, also completely arbitrary. If we now enforce the
condition in Eq. 7 .I, for the open end of the tube, we get

J'(t) = g'(t) (7.3)

This implies that the functions/(·) and g(·) differ by a constant, but constant differ­
ences in air pressure are immaterial to us and we are free to take/(·) = g(·), which
results in the total expression for the differential displacement

~(x, t) = f(t - x/c) + f(t + x/c) (7.4)

This tells us that the reflection of a wave from the open end of the tube does not invert
the wave, in contrast with reflection from the closed end, which does, being
mathematically the same as reflection from a fixed point on a string. These reflections
correspond to echoes, something we tend to take for granted. Why does sound bounce
off the wall of a room or a canyon? It all follows from the beautifully concise wave
equation.

To get standing waves at a definite frequency of oscillation, we need to impose a
second condition, which is of course that the displacement ~ be zero at the point
x = L. Substituting that condition in Eq. 7.4 yields

f(t- Uc) = -f(t + Uc) (7.5)

§7 Standing waves in a half-open tube 37

This is true for every value of t, so we can add Lie to the argument of both sides,
yielding

f(t) = - f(t + 2L/c) (7.6)

We got almost the same condition in the case of a string tied down to zero at both
ends, except the minus sign was missing. Now the function/(·) is periodic with period
4L/c instead of 2L/c, a significant difference. We therefore now define the fundamen­
tal frequency ro0 to correspond to this period, 27tc/(4L) = 7tc/(2L), and guess at the
total solution

(7.7)

in analogy to Eq. 5.3. Notice that now we are considering the general case when the
time oscillation has frequency kro0 , where k is any integer. When we considered the
finite string we considered only the first mode, corresponding to k = I, and the other
modes were of the same form. Now, with the finite tube open at one end and closed at
the other, it will be important to consider the more general case explicitly. Substituting
in the wave equation Eq. 6.13 yields, again in analogy to the case of a string,

dz:E.(x) = -(k~) 2 :E.(x) (7.8)
dx2 2L

which tells us that the dependence on x is like that in a simple harmonic oscillator, of
the form

_() . (k1tx) .::. x = sm 2L + cp (7.9)

where we have yet to determine the phase angle cp. To do this we again impose the
conditions :E.' (0) = 0 and 'E.(L) = 0, yielding

coscp = 0 and sin(cp + k7t/2) = 0 (7.10)

A very interesting thing happens now. If the integer k is even, it is impossible for
these two conditions to be satisfied simultaneously. To see this, rewrite coscp as
sin (cp + 1t/2), so the conditions become

sin(cp + 1t/2) = 0 and sin(cp + k7t/2) = 0 (7 .11)

When k is even this means we are asking the sine function to be zero at two points that
are an odd multiple of 7t/2 apart, which cannot happen. When k is odd, however, there;
is no problem. Therefore the solutions are all of the form

~() jkw,t (k1tx) xt=e cos--
' 2L '

k = I, 3, 5, ... (7.12)

Figure 7.1 shows the first three modes, corresponding to the values k = I, 3, and 5.
Compare this with Fig. 5.1, which shows what would happen if the tube were closed
at both ends.

This has interesting implications about the way musical instruments work, and
(just) begins to answer the earlier question of why strings sound much different from

38 Chapter 2 Strings, Pipes, the Wave Equation

mooe1~f------------------
.....................

·······································
mooe2

mooe3

Fig. 7.1 The first three modes of a tube that is open at the left end and
closed at the right.

wind instruments. In fact, wind instruments that depend on sound production by excit­
ing a tube of air closed at one end and open at the other tend to be missing their even
harmonics. More about that in the next section.

8 Fourier series

We've now studied two kinds of vibrating systems that are described by the wave
equation, and derived a general mathematical form that describes the way they
vibrate. Return to the vibrating finite string, and Eq. 5.15:

~

y(x, t) = L ckejkro,t sin(kxx/L) (8.1)
k=l

This is the mathematical way of saying the string's vibration can be broken down into
an infinite number of discrete modes, with the kth mode having weight c k· What deter­
mines the set of weights c k for any particular sound? The answer is that they are
determined by the particular way we set the string in motion.

Suppose we begin the string vibrating by holding it in a particular shape at time
t = 0 and letting go. When you pluck a string, for example, you grab it with your
finger, pull and let go. That would mean that the string's initial shape is a triangle.
Let's imagine, though, that we can deform the string initially to any shape at all. At
t = 0 Eq. 8.1 becomes

~

y(x, 0) = L cksin(kxx/L)
k=l

(8.2)

§8 Fourier series 39

So far this may seem like an inconsequential thought-experiment, but the implications
are far-reaching. This equation implies that any initial shape - that is, any function of
x defined in the interval [0, L]- can be expressed by this infinite series of weighted
sine waves, provided we choose the weights c k appropriately. I will leave the determi­
nation of the weights for a later chapter, but I want to emphasize now the intuitive
content of this mathematical fact.

Next, I want to pull a switch that may be a bit startling, but mathematics is
mathematics. We are free to think of Eq. 8.2 as describing an arbitrary function of
tim:.e instead of space, say f(t):

~

f(t) = L c k sin(kxt/T) (8.3)
k=l

I have also replaced the length interval L by a time interval T. This can now represent
any function of time in the interval [0, T]. The period of repetition is actually 2T,
because the sine waves that make up the series are necessarily antisymmetric about
t = 0. That is, f(t) = - f(-t) for all t. This determines f(t) in the range [- T, 0].
When we return to the subject of Fourier series in earnest we will settle some obvious
questions: How do we choose the coefficients c k to get a particular shape? How do
we represent functions that aren't antisymmetric?

The implications of Eq. 8.3 are familiar to musicians. The equation says that any
periodic waveform can be decomposed into afundamental component at afundamen­
tal frequency (the k = I term), also called the first harmonic, and a series of higher
harmonics, which have frequencies that are integer multiples of the first harmonic.
This is illustrated in Fig. 8.1, which shows the measured spectrum of a clarinet note.
To a first approximation, a clarinet produces sound by exciting a column of air in a
tube that is closed at one end and open at the other. We get a bonus in this plot,
because it tests the prediction that such a system does not generate even harmonics. In
fact harmonics I, 3, 5 and 7 are much stronger than harmonics 2, 4, and 6. (Note that
the vertical scale is logarithmic, and is measured in dB.) t For example, the second
harmonic is more than 30 dB weaker than the third. This pattern breaks down at the
eighth harmonic and above. That's the difference between an ideal mathematical tube
and a real live clarinet.

Speaking of deviations from a pattern, the sinusoidal components of sounds pro­
duced by musical instruments sometimes occur at frequencies different from exact
integer harmonics of a fundamental frequency. When this happens the components are
called partials. In some cases -bells, for example -the deviation of the frequencies
of partials from integer multiples of a fundamental frequency can be quite large.

We'll return again and again to the idea that sound can be understood and
analyzed mathematically by breaking it down into sinusoidal components. To a
large extent our ears and brains understand sound this way - without any
mathematics at all.

t Each 20 dB represents a factor of I 0. More about this in the next chapter.

40

Notes

Chapter 2 Strings, Pipes, the Wave Equation

r:o
"C

c'
~
0
0 ,..
0
c:
CD

"' CT

~

130

120

110

100

90

80

70

60

50

40 I I I I I I I I I I I

0 440 880 1320 1760 2200 2640 3080 3520 3960 4400 4840 5280 5720
frequency, Hz

Fig 8.1 The frequency content (spectrum) of a note played on a clarinet.
The pitch is A at 220 Hz, and the frequency axis shows multiples of 440
Hz. The first few even harmonics are very weak. If you're coming back to
this from Chapter 1 0, or are an FFT aficionado, this plot was generated
with a 4096-point FFT using a Hamming window, and the original sound
was digitized at a sampling rate of 22,050 Hz.

I want to mention three famous books on sound, from which I've gotten most of the
material in this chapter. I don't necessarily mean to recommend them as reading for
you- they're old-fashioned and in some places downright stodgy. But each is a clas­
sic in its way.

First, there is the monumental and fascinating book by Lord Rayleigh,

J. W. Strutt, Baron Rayleigh, The Theory of Sound, second edition, two
volumes, reprinted by Dover, New York, N.Y., 1945. (First edition first
published 1877, second edition revised and enlarged 1894.)

This book has the virtue of being written by a great genius who figured out a lot of the
theory of sound for the first time. It's stylishly written and chock full of interesting
detours, direct observations of experiments, and reports of his colleagues' work on
subjects like difference tones, bird calls, and aeolian harps. If you run out of ideas for
projects to work on, open randomly to one of its 984 pages.

Next comes a neat book that consolidates and simplifies much of the basic material
in Lord Rayleigh,

Problems

Problems

[Lamb, 1925] H. Lamb, The Dynamical Theory of Sound, second edition,
reprinted by Dover, New York, N.Y., 1960. (The second edition first pub­
lished 1925.)

This book is a lot easier to read than Lord Rayleigh's.
Finally,

[Morse, 1948] P. M. Morse, Vibration and Sound, second edition,
McGraw-Hill, New York, N.Y., 1948.

41

represents the progress made in the field through World War II. It's heavy reading, but
I like the physical point of view.

1. The period of vibration of a stretched string is predicted to be 2L/c by Eq. 5.2. The
period (reciprocal of the frequency) and the length are relatively easy to measure. This
enables us to determine the wave velocity c on a stretched string. Do this for real
stretched strings of your choosing, say your guitar strings, or piano strings. Compare
the resulting velocities c with the speed of sound in air. Do you expect the velocities
to be greater than or less than the speed of sound in air?

2. When the tension in a string is increased, does the velocity of sound along the string
increase or decrease?

3. The veloCity of sound in air is predicted by Eq. 6.14 to be .Vyp 0/p 0 . The quantity
in this expression most difficult to measure directly is y, the coefficient of elasticity.
The velocity itself, the pressure at sea level, and the density are all known by direct
measurement. Look them up and see what value they yield for y.

4. Describe the form of solutions for vibration of air in a tube that is open at both ends,
the expression analogous to Eq. 7.12.

5. Suppose you blow across one end of a soda straw, leaving the other end open. Then
suppose that you block the other end with a finger. Predict what will happen to the
pitch. Verify experimentally.

6. We've discussed the modes of vibration of strings and columns of air in pipes.
Speculate about the vibration modes of a metal bar. Then verify your guesses by look­
ing in one of the books given as reference.

7. Repeat for circular drum heads.

8. Suppose you pluck a guitar string, then put your finger in the center of the string,
damping the motion of that spot. What do you think will happen to the spectrum of the
sound? Verify experimentally.

1 Sampling a phasor

CHAPTER 3

Sampling
and Quantizing

I've spent a fair amount of time trying to convince you that the world is full of
sinusoids, but up to now I haven't breathed a word about computers. If you want to
use computers to deal with real signals, you need to represent these signals in digital
form. How do we store sound, for example, in a computer? Let's begin with the pro­
cess of digitizing real-world sounds, the process called analog-to-digital (a-to-d)
conversion.

In most of this book I'll use sound waves like music and speech for examples.
We're constantly surrounded by interesting sounds, and these waveforms are ideal for
illustrating the basic ideas of signal processing. What's more, digital storage and digi­
tal processing of sounds have become part of everyday life.

Remember that the sound we hear travels as longitudinal waves of compression
and rarefaction in the air, just like the standing waves in a tube. If we imagine a
microphone diaphragm being pushed back and forth by an impinging wave front, we
can represent the sound by a single real-valued function of time, say x(t}, which
represents the displacement of the microphone's diaphragm from its resting position.
That displacement is transformed into an electrical signal by the microphone. We now
have two problems to deal with to get that signal into the computer - we need to
discretize the real-valued time variable t, which process we call sampling; and we
need to discretize the real-valued pressure variable x(t), which process we call quan­
tizing. An analog-to-digital converter performs both functions, producing a sequence
of numbers representing successive samples of the sound pressure wave.

A digital-to-analog converter performs the reverse process, taking a sequence of
numbers from the computer and producing a continuous waveform that can be con­
verted to sound (pressure waves in the air) by a loudspeaker. As with analog-to-digital
conversion we need to take into account the fact that both time and signal amplitude

44 Chapter 3 Sampling and Quantizing

are discretized. We'll usually call the value of a signal a sample value, or sample,
even if it isn't really a sample of an actual real-valued signal, but just a number we've
come up with on the computer.

So there are two approximations involved in representing sound by a sequence of
numbers in the computer; one due to sampling, the other due to quantizing. These
approximations introduce errors, and if we are not careful, they can affect the quality
of the sound in dramatic and sometimes unexpected ways. Let's begin with sampling
and its effect on the frequency components of a sound.

Suppose we sample a simple sinusoidal signal. Analog-to-digital converters take
samples at regularly spaced time intervals. Audio compact discs, for example, use
samples that occur 44,100 times a second. The terminology is that the sampling fre­
quency, or sampling rate, is 44.1 kHz, even if we're creating a sound signal from
scratch on the computer. We'll reserve the symbol f. for the sampling rate in Hz, ro.
for the sampling rate in radians per sec, and Ts = llfs for the interval between sam­
ples in seconds.

If the sampling rate is high compared to the frequency of the sinusoid, there is no
problem. We get several samples to represent each cycle (period) of the sinusoid.

Next, suppose that we decrease the sampling rate, while keeping the frequency of
the sinusoid constant. We get fewer and fewer samples per cycle. Eventually this
causes a real problem. A concrete example is shown in Fig. l.l, which shows 30 com­
plete cycles of a sinusoid of frequency 330 Hz. Now suppose we sample it at a rate of
300 samples per sec. The resulting samples are shown as dots on the graph. If we had
only the samples, we would think that the original signal is actually a sinusoid with a
much lower frequency. What caused this disaster?

1.0-

., 0.5-

i
iii c
-~ o-

·0.5-

·1.0-.
0 0.02 0.04 0.06 0.08

time, sec

Fig. 1.1 Sampling a 330 Hz sinusoid at the rate of 300 Hz.

Intuitively the cause of the problem is obvious. We are taking samples every
I /300 sec, but the period of the sinusoid is I /330 sec. The sinusoid therefore goes
through more than one complete period between successive samples. What frequency

§ 1 Sampling a phasor 45

do we think we're getting? To see this more easily, we'll return to our view of the
sinusoid as the projection of a complex phasor.

Imagine a complex phasor rotating at a fixed frequency, and suppose that when we
sample it, we paint a dot on the unit circle at the position of the phasor at the sample
time. If we sample fast compared to the frequency of the phasor, the dots will be
closely spaced, starting at the initial position of the phasor, and progressing around the
circle, as shown in Fig. 1.2(a). We have an accurate representation of the phasor's fre­
quency.

(a)

(b)

(c)

Fig. 1.2 Sampling a phasor. In (a) the sampling rate is high compared to
the frequency of the phasor; in (b) the sampling rate is precisely half the
frequency of the phasor; in (c) the sampling rate is slightly less than half
the frequency of the phasor. In the last case the samples appear to move
less than 180° in the clockwise (negative) direction.

Now suppose we gradually decrease the sampling rate. The dots become more and
more widely spaced around the circle, until the situation shown in Fig. 1.2(b) is
reached. Here the first sample is at the point + I in the plane (the imaginary part is
zero), the second sample is at the point -I, the third at+ I, and so on. We know that
the frequency of the sinusoid is now half the sampling rate, because we are taking two
samples per revolution of the phasor. We are stretched to the limit, however.

Let's see what happens if we sample at an even slower rate, so that the frequency
of the phasor is a bit higher than half the sampling rate. The result is shown in Fig.
1.2(c). The problem now is that this result is indistinguishable from the result we

46 Chapter 3 Sampling and Quantizing

would have obtained if the frequency of the phasor were a bit lower than half the sam­
pling rate. Each successive dot can be thought of as rotated a little less than x radians
in the negative direction. As far as projections on the real axis are concerned, it
doesn't matter which way the phasor is rotating. By sampling at less than twice the
frequency of the phasor we have reached an erroneous conclusion about its frequency.

To summarize what we have learned so far, only frequencies below half the sam­
pling rate will be accurately represented after sampling. This special frequency, half
the sampling rate, is called the Nyquist frequency, after the American electrical
engineer Harry Nyquist (1889-1976).

A little algebra will now give us a precise statement of which frequencies will be
confounded with which. Write the original phasor with frequency ro0 before sampling
as

x(t) = ejro.,t (1.1)

The nth sample at the sampling rate corresponding to the sampling interval T5 , which
we'll denote by Xn, is

(1.2)

However, it is immaterial if we add any integer multiple of j2x to the exponent of the
complex exponential. Add jnk2x to the exponent, where k is a completely arbitrary
integer, positive, zero, or negative:

= ejro,nT, + jnk21t
Xn

Rearrange this by factoring out T5 in the exponent, yielding

jnT,(ro., + kh!T,)
Xn = e

(1.3)

(1.4)

Equations 1.2 and 1.4 tell us that after sampling, a sinusoid with frequency ro0 is
equivalent to one with any frequency of the form ro 0 + k2x/T5 • All the samples will
be identical, and the two sampled signals will be indistinguishable from each other.

We now have derived a whole set of frequencies that can masquerade as one
another. We call any one of these frequencies an alias of any other, and when one is
confounded with another, we say aliasing has occurred. It is perhaps a little clearer if
we replace 2x/T5 with ro, the sampling frequency in radians per sec. The aliases of
the frequency ro0 are then simply ro0 + kro 5 , for all integers k.

Figure 1.3(a) shows the set of aliases corresponding to one particular positive fre­
quency ro0 a little below the Nyquist frequency. Aliases of it pop up a little below
every multiple of the Nyquist frequency, being spaced ro 5 apart by the argument
above. This picture represents the algebraic version of our argument based on painting
dots on the circle.

In real life, we sample real-valued sinusoids, not phasors, so we need to consider
component phasors at the frequency - ro0 as well as + ro0 • (This is because
cos(ro0 t) = ihej"'"1 + ihe -jro.,r.) The aliases of -ro0 are shown in Fig. 1.3(b).
Because- ro0 is a little above the negative Nyquist frequency, its aliases pop up a little
above every multiple of the Nyquist frequency. Finally, Fig. 1.3(c) shows the aliases

§1 Sampling a phasor

0
I I I
I I I
I I I

(a) I I I
I roo: I
I I

I I I
(0)

I ;...,o l';- I

I Uo I
I 5;• ~ I
I ::J' I
I l: ~

I
I .-roo I
I "" I

(b)

I I I I (0)
I I -· Q) I
I I .!!!• :§ I
I I ::JO I
I I D"o ~ I
I I ~: I
I I 5I I
I I I I

(c)

I I I I (0)
I I I I
I I

baseband

Fig. 1.3 (a) Aliases of the frequency ro 0 are shown as dots on the frequen­
cy axis; (b) aliases of the frequency -ro0 ; (c) aliases of both +ro0 and -ro 0 •

Also shown are plus and minus the sampling frequency, ro 8 ; multiples of
the Nyquist frequency, ro:/2; and the baseband between minus and plus
the Nyquist frequency. If any of the dots in Part (c) appears in a signal, all
the others are equivalent and can also be considered to be present.

47

of both + ro 0 and - ro 0 • If a signal contains any one of these frequencies, all the others
will be aliases of it.

We usually think of any frequency in a digital signal as lying between minus and
plus the Nyquist frequency, and this range of frequencies is called the baseband. Any
frequency outside this range is perfectly indistinguishable from its alias within this
range. The frequency content of a digital signal in the baseband is sufficient to com­
pletely determine the signal. Of course we could pick any band of width ro 5 radians
per sec, but it's very natural to stick to the range we can hear. As a matter of fact
though, an AM radio signal represents an audio signal in just this way by a band of
width ro 5 centered at the frequency of the radio transmitter.

Now observe a very important fact from Fig. 1.3(c) and the argument above.
Every multiple of the Nyquist frequency acts like a mirror. For example, any fre­
quency a distance tlf above JJ2 will have an alias at a distance tlf below f 5 /2.
Perhaps this is obvious to you from the figures, but the algebra is also very simple. For
every frequency ro0 there is also the frequency -ro0 + ro 5 • The midpoint between
them is the sum divided by two, or roJ2, the Nyquist frequency. Thus, each frequency
has an alias equally far from the Nyquist frequency but on the other side of it - on
the other side of the mirror. For this reason the Nyquist frequency is often called the
folding frequency because we can think of frequencies above Nyquist as being folded
down below Nyquist.

I hope by now this seems simple. To summarize: If we're sampling at the rate ro 5 ,

we can't distinguish the difference between any frequency ro 0 and ro0 plus any multi­
ple of the sampling rate itself. As far as the real signal generated by a rotating phasor,

48 Chapter 3 Sampling and Quantizing

we also can't distinguish between the frequency ro0 and -ro0 . Therefore, all the fol­
lowing frequencies are aliases of each other :

±ro0 + kro., for all integers k (1.5)

2 Aliasing more complicated signals

We've seen the effect of aliasing on a single sinusoid. What happens if we sample a
more complicated waveform- a square wave, for example? Here's where we begin
to see the usefulness of Fourier series and the concept that all waveforms are com­
posed of sinusoids. We introduced that concept in the previous chapter, where we
saw that vibrating strings and columns of air very naturally produce sounds that can be
broken into a fundamental tone and a series of overtones, harmonics at integer multi­
ples of the fundamental frequency. We'll devote an entire subsequent chapter to the
theory behind such periodic waveforms. But for now, just believe what I tell you
about the Fourier series of a square wave.

We'll begin by considering sampling in the time domain. Figure 2.1 shows a
square wave with fundamental frequency 700Hz, sampled at the rate of 40,000 sam­
ples per sec. Mathematically, the waveform is defined by

f(t) = {+I if 0 < t < T/2
-I if T/2 < t < T

(2.1)

which repeats with period T, 11700 sec. Since we're taking 40,000 samples per sec,
there are 40,0001700 = 57117 samples in each period. This means that different
periods of the square wave will have different patterns of samples. In fact, from period
to period, the first sample drifts to the left by 117 of a sample period. Six out of seven
periods contain 57 samples, and every seventh period contains eight samples. This
averages out to the required 57117 samples per period. That's the complete story in the
time domain, but, as you can see, it doesn't shed much light on what sampling has
done to the frequency content of the signal, and therefore tells us very little about
what we can expect to hear. Thinking about this in the time domain is really not the
answer. This is a good example of why it's often much better to look at things in the
frequency rather than in the time domain.

As I warned above, I'm asking you to take the following Fourier series for our
square wave on faith right now:

f(t) = ±[sin(ro0 t) + _!_sin(3ro0 t) + _!_sin(5ro0 t) + · · ·] (2.2)
X 3 5

where ro0 is the fundamental frequency, 2x/T radians per sec (or liT Hz). Although

.,
:::J
a;
>
a;
<:

.!2>
II)

§2 Aliasing more complicated signals

1.0

0.5-

0-

-0.5-

-1.0 -
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

time,msec

Fig. 2.1 A segment of a square wave, with samples shown. The funda­
mental frequency is 700 Hz, and the sampling rate is 40 kHz.

49

we have not yet described how we get the exact value of each coefficient, there are
some important things about this series we can check.

First, the square wave we're using, as defined in Eq. 2.1, is arranged to be an odd
function of 1; that is, the waveform to the left of the point I = 0 is an upside-down
version of the part to the right. Mathematically, f(t) = - f(-t). Now sine waves
have this property, but cosine waves don't. In fact, they're even functions, which
means the part to the left of the point t = 0 is a rightside-up version of the part to the
right. That is,f(t) = f(- t). It is therefore entirely reasonable that the Fourier series
be composed only of sine waves. Intuitively, the evenness of any cosine component
would mess up the oddness of the sum, and it couldn't be fixed up with more sine
waves.

Next, observe that our square wave is odd about the center of each period. That is,
if we shift the signal so that it's centered at the half-period point, I = T/2, the result­
ing signal is also odd. Now sine waves at the odd harmonics have this property, but
the sine waves at even harmonics are even about the midperiod point. Again, this is
consistent with the Fourier series I've given in Eq. 2.2, which contains only the odd­
numbered sine components. This sort of plausibility argument is very useful in check­
ing Fourier series. (See Problem 8 for another example.)

Notice also that the nth harmonic has magnitude proportional to 1/n. The higher
harmonics decay in size to zero, but not very quickly. In general, we'll use the term
spectrum to describe the frequencies in a signal, and we'll say this square wave has a
spectrum that "falls off' as 1/n. Later we'll learn more about the significance of the
spectrum fall-off rate.

The key point is that we've broken down the square wave into sinusoidal com­
ponents, and we can apply what we learned in the previous section about aliasing to
each component separately.

Let's do the arithmetic for this case, in which the sampling frequency is 40 kHz
and the fundamental frequency is 700 Hz. Figure 2.2 shows all the harmonics of the
square wave as round dots. Harmonic numbers I , 3, 5, ... , 27 extend up to the

50 Chapter 3 Sampling and Quantizing

. •·• • •:a
~-···················o:·····················=-····················~····················o:····················-=-············ . : .

• • : • • • . a .
:···················:····················:~···················:···················::····················:············
: : : . : ... : : . . .

:: .·+· :

~ ~ : r···-.,~,···

1.:.&·.&·.~·.,_·_,, 0 ~1. ~~. ~~ 0 ~~. ~~ .~~ .~~ .J~ .~~ .~~ .~~ .~~ .~ .+ .~ .~~ .~~ -~~ -~~ .J -~~ -~~ -~~ -~~ -~~. -~ i~ 0 -~ ~-' ~., ~--
.
I I I I I I

-10 0 10 20 30 40
frequency, kHz

Fig. 2.2 Aliasing for a square wave. The sampling frequency is 40 kHz,
and therefore the Nyquist frequency is 20 kHz. The round dots are the ori­
ginal components of the square wave, odd harmonics of the fundamental
repetition rate of 700 Hz. The triangles and squares are aliases resulting
from sampling. Note the logarithmic scale, which emphasizes the size of
the aliased components.

Nyquist frequency of 20,000 Hz. The 27th harmonic is at 18,900 Hz, only 1100Hz
below the Nyquist. The next harmonic in the square wave, the 29th, occurs at 20,300
Hz, 300 Hz above the Nyquist. These frequencies also have their negative counter­
parts to the left.

From the results in Section I, the harmonic at 20,300 Hz is folded down to 19,700
Hz. Similarly, the 31st harmonic, at 21,700 Hz, is folded down to 18,300 Hz. Also
shown are aliases of more distant harmonics, which are of much lower amplitude.
There are, in fact, an infinite number of harmonics aliased into the baseband. In Prob­
lem 9 I ask you to figure out where they all pile up.

While we're still on the subject of frequency content, and before we go on to
quantizing effects, there's something very significant about the frequencies that are
aliased into the baseband. In general, they are aliased to frequencies that are not
integer multiples of the fundamental frequency of the square wave. (They can be by
accident, if the sampling frequency is just right. See Problem 7 .) Such components are
called inharmonic. And it isn't just that they deviate slightly from true harmonics­
they are utterly unrelated to any pitch we might hear that is determined by the funda­
mental frequency. If I didn't know better, I'd say they sound "bad." But computer
musicians have taught me that there's no sound that isn't useful and interesting in the
right context. You should listen for yourself (see Problem II).

§3 Quantizing 51

3 Quantizing

Computers today have many bits per word, more than enough to represent samples of
sound pressure waves so precisely that we would never hear the effect of the finite
word-length. The conversion processes - sampling with an analog-to-digital con­
verter, or playing a sound with a digital-to-analog converter - cause the problems.
Even high-quality converters usually have no more than 16, or at most 21, bits, and we
must learn to use those bits wisely.

Let's assume that the amplitude values of a signal will be represented with B bits.
There are 28 possible values that can be represented by a B-bit word. For the sake of
simplicity just think of the possible signal values as being equally spaced between
-28 - 1 and +28 - 1, to represent both negative and positive values. (In practice these
numbers are scaled by some constant to represent the actual values.) It's common
today for digital audio equipment to use 16-bit converters, so let's think of the case
B = 16 for concreteness. This means we have at our disposal any of 65,536 possible
values to represent any given sample value. The problem is that sample values can be
any real numbers, like the values of sinusoids, for example. The quantizing process
therefore entails an unavoidable approximation process, and introduces errors. How
large are those errors and what effects might they have on the sound we ultimately
hear? We can get very useful estimates using some pretty simple calculations.

Suppose a particular signal value is y, a real number in the range we've !lgreed to
work in, - 2 8 - 1 and + 2 8 - 1 • Usually, we quantize y by rounding it off to the nearest
integer, or what is called quantizing level. If the actual signal varies all over the place,
typically jumping more than a few quantizing levels from sample to sample, then the
relative position of the actual sample value with respect to the nearest quantizing level
will be random and uncorrelated from sample to sample. Furthermore, the magnitude
of the error will never be more than Yz, so we can reasonably assume that it is uni­
formly distributed between the values 0 and Yz. A close-up of quantizing a part of a
sinusoid is illustrated in Fig. 3.1.

We next want to calculate a measure of the average error. Of course we shouldn't
calculate the average value of the error itself, because it is just as likely to be negative
as positive, and its average value is zero. Usually we deal with this problem by com­
puting the average value of the square of the error, and then taking the square root of
that. We call that the root-mean-square (rms) value of a signal. That way either a
positive or a negative error will add to the total measure. By averaging the square we
also reflect the fact that the ear responds to the power of a signal, rather than to its
amplitude.

So let's calculate the rms value of the quantizing error. We argued above that it's
uniformly distributed between 0 and Yz, so the average value of its square is

...!.. J 'I· x 2dx = 1/12
'l2 0

and its rms value is I/...{f2 = 0.2887.

(3.1)

What really matters is the rms error relative to the level of the signal; that is, we
should normalize the rms quantizing error by the maximum value of the signal, 2 8 - 1,

yielding the ratio

52 Chapter 3 Sampling and Quantizing

33 -:"""!"""!"""~""":"""~"··· OOOO .. OOOOO.ooooooooooo.OOOOO.OOOOOJOOOO ... OOOO .. OOoo0\0

32 -!·····!·····~·····~······~·····~·····
31 -~·····~·····~·····~··· .. ~·····i·····

.

30 _, ; ; ;;. , -
29 -:·····=·····=·····=····-=-····:·····
28 -~·- .. ·~·····~·····~····~·····~·····

CD 27 -~·····~·····?·····?·····~·····~·····

·····=-····

-g 26 -~-----~·····~·····~····~·····~-- ····: .. ···~·····~······~·-···~·-···:·····:·····~·····?····-~····~·-···~·····~·

i ~! : ~:::: :j:::: :j:::: :~:::: ~::::. i·. ::. :·:::: (: ::j ::: ::j:::: :~: ::: t:::: i::::: i:: :: :~: ::: :j: ::: :~:::: :~:::: ~::::: i::: :: i:
23 - ~- ... -~ -~ -~ ~- ... :· ~- ~- .. ··~ -~ -~ ~ ~- ~- ... -~· ... -~ -~ -~ ~-· ... ~- ~-.
22 - !' ... •! .. 0 0 -~ 0 0. 0 ·? 0. 0 0 ~- 0 0 •• ~- •••• !• ... -~ ·? ·? 0 •• 0 ·:· 0 ••• ~- •••• ~- •••• ! ... 0 -~ ••• 0 -~ 0. 0 0 ·? .. 0. ·:·. 0. 0 ~- •••• ~-

~~ : ~:::: :j:::: :~::: ··~ .. :: ~::::: ~: :::: ~:::: :~:: :: :j:::: :j:::: :f ::: :~: :::: ~::::: ~:::: :~:::: :j:::: :~ :::: :f:::: ~::::: ~::::: ~:
19 - =· ; ; , , ; : ; ; ; , , , ; ; ; ; , , ;.
18 - ~- ... -~.. ·: -~ ~- ~- ~- ~- ... -~ ... ··~ -~ ~- ~- ~- ... -~· ... -~ -~ -~ ~- ~- ~-
17 - ~- -~ -~ ~·· .. ·~· ~- ~- ... -~ -~ -~ ~- ~- ~- ... ·~· ... -~ -~ -~ ~- ~- ~-
16 -! 0 0 -~ •••• ·? -~· -~·. 0 ••• ; ••••• ~- •••• ~ •••• -~ •••• -~ •••• -~- 0. 0 0 -~- 0 ••• ~- 0 0 0 0 ~0 0 0 0 0 ~ 0 0 0 0 0 ~ 0 0 0 0 0~ 0 0 0 0 0~0 0 0 0 0 0~00 0 0 0 O~o 0 0 0 0 ~0
15 -~ ; ·~· ... i· i· <· ; ; ; ; ; , , ; ; ; ; <· , <·
14 -~ .. 0 0 oio 0 0 0 oi 0 0 0 0 o; 0 0 0 0;. 0 0 0 0 io 0 0 0 0 io 0 0 0 0 io 0 0 0 oio 00 0 0~ 0 0 0 0 0~ 0 0 0 0 ~ 0 0 0 0 io 0 0 0 0 io 0 0 0 oio 0 0 0 oi 00 0 0 oi 0 0 00 0~ 0 0 0 0 ~ 0 0 0 0 io 0 0 0 0 ~0

175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675

time, t in microsec

Fig. 3.1 Close-up of quantizing a sinusoid. The continuous curve is the
original waveform, and the dots are samples, quantized to the nearest in­
teger. In this particular example the frequency of the sinusoid is 440 Hz,
and the sampling rate is 40 kHz, so that the samples are 25 ~ec apart.

I!..jiT = I
28-1 {328

(3.2)

The reciprocal of this ratio is what is called the signal-to-noise ratio, SNR = {328.
By dividing the rms noise by the maximum signal value we ensure that the signal-to­
noise ratio as a measure of noise is unchanged if we just amplify the signal, which
makes sense.

This is a good time to talk about decibels (dB). It turns out that the ear responds to
ratios of signal amplitude or power, rather than to arithmetic differences. For exam­
ple, suppose we double the amplitude of a signal from I to 2. We perceive a certain
increase in loudness. To get another increase in loudness that is perceived as roughly
equal to the first increase, we need to double again to 4, rather than increase by I to 3.
To convert these increases by ratios to arithmetic increases, it is convenient to use the
logarithm of signal values, so the decibel measure of a ratio R of amplitudes is defined
to be 201og 10 R. An amplitude ratio of 2 is 20Iog 10 (2) = 6.02 dB, and it is quite
common to hear people refer to the effect of doubling the amplitude of a signal as
increasing its level by 6 dB. In general we often describe multiplicative factors by
speaking of adding or subtracting decibels. Because the power varies as the square of
the amplitude, the decibel measure of a ratio R of powers is defined to be IOiog 10 R.
As you might guess, a decibel is a tenth of a bel, and as you might guess further, the
bel is named for Alexander Graham Bell (1847-1922).

§4 Dynamic range 53

We can now express the relative size of quantizing error in decibels:

SNR = 20log 10 (~28) = 4.77 + 6.028 dB (3.3)

With 16 bits we therefore get a signal-to-noise ratio of IOI.l dB.
By the way, the calculation of rms value is simple, but an even simpler estimate is

good enough. We've argued that under reasonable circumstances the quantizing error
is uniformly distributed between 0 and Y2. Its mean-absolute-value is therefore Y4,
compared with its rms value of Il..[f2. The ratio is 2/~, or only 1.25 dB.

Finally, you may notice the figure 96.3 dB instead of !Ol.l dB in some places (like
magazines). This uses the ratio of maximum amplitude (2 15) to maximum quantizing
noise (Y2}, giving 20log 10 (2 16) = 96.3 dB. However, I would argue that we hear
quantizing noise as continuous noise (like tape hiss}, and so respond to its average
power. That's why I use I/..[f2 instead of Y2, and the ratio of Y2 to ll..[f2 is ~.or
precisely the 4.77 dB in Eq. 3.3.

This is all nitpicking, however. Signal-to-noise ratios in the range of 90 dB
represent a very idealized situation compared to reality, as we'll see in the next sec­
tion.

4 Dynamic range

The ear can handle an enormous range of sound pressure levels. Table 4.1 shows the
power levels I in watts per m2 corresponding to sounds from the threshold of audibil­
ity to the threshold of pain. The term dynamic range is used rather loosely to mean
the ratio between the levels of the loudest and softest sounds we expect in a sound
source or a system. So we might say, for example, that the ear has a dynamic range of
120 dB. That's a power range of a trillion to one, or an amplitude range of a million to
one, and dealing with such a large possible range of amplitudes gives us problems.

I, w/m2 level, dB

Threshold of hearing 10-12 0
ppp w-s 40
p w-6 60

f w-4 80

fff w-2 100
threshold of pain I 120

Table 4.1 The range of sound intensity I (in units of power per unit area)
from the threshold of hearing to the threshold of pain (from [Backus,
1977]). The level of 10-12 watts per m2 , which is approximately at the
threshold of hearing at 1 000 Hz, is conventionally defined to be 0 dB
[Morse, 1948, Chapter 2).

Suppose, for example, that we plan to accommodate levels up to fff while record­
ing an orchestra, and therefore represent the corresponding maximum amplitude levels
with the values ±2 15 , using a 16-bit analog-to-digital converter. A passage as loud as

54 Chapter 3 Sampling and Quantizing

JJf is rare, and most of the time the sound level will be much lower. A ppp passage, for
example, will have amplitude levels a thousand times, or 60 dB, smaller. This means
the effective dynamic range throughout the ppp passage is no longer about 100 dB,
but more like 40 dB. Put another way, we reserve 3 decimal digits, or about 10 bits,
for the blast, and that leaves only about 6 bits for the quiet passage. (As a check, Eq.
3.3 shqws that the SNR corresponding to 6 bits is 40.9 dB.) This is the real reason we
need converters with at least 16 bits, not the SNR of 100 dB.

The figures in Table 4.1 are also interesting because they give us some measure of
the absolute power levels involved in sound signals. The total power produced by a
symphony orchestra playing at full volume can be estimated roughly by assuming a
level of jJf at the surface of a quarter-sphere with radius 50 m. That comes to about 80
watts. Backus [1977] cites measurements reported in 1931, putting a large orchestra
at 67 watts, which is quite consistent. Evidently making music is not a very efficient
operation in terms of energy production. Talking is even more feeble in terms of
power: speaking at an ordinary conversational level produces only about 10-5 watt
[Morse, 1948, Chapter 2].

5 Remedies: Companding and prefiltering

In practice, quantizing and aliasing will always cause a certain amount of error. The
ways people ameliorate the effects of these errors illustrate the two most basic signal­
processing techniques, waveshaping and filtering. I'll discuss these next briefly, and
then go on in the next three chapters to discuss digital filtering in much greater detail.

Obviously, we should try to use as many bits as possible when we quantize. If we
get too many bits, we can always throw some away once we get the data inside the
computer. But the more bits, the more expensive and slower the converter, up to the
point where it becomes technologically impossible to do any better. Today it seems
that 16 or 18 bits is a reasonable compromise between quality and expense, and we
certainly want to make the most of those bits. The main problem, as I've emphasized
in the previous section, is that we must allow for a very large dynamic range in sound,
and must therefore deal with relatively low-amplitude signals a large proportion of the
time.

A popular way to deal with this is to boost the low signal amplitudes relative to the
high signal amplitudes before quantizing, and then compensate numerically after
quantizing. To do this we pass the original analog signal through a nonlinear function
shaped like the curve in Fig. 5.1, before the sampling and quantizing process. The idea
is that the output signal, represented by points on the y-axis, is quantized at equally
spaced points, and this corresponds to quantizing levels that are squeezed together at
low input signal levels and spread apart at high input levels. In effect this gains accu­
racy in dealing with low-level signals, in return for a sacrifice in accuracy for high­
level signals.

For example, if the curve in Fig. 5.1 has a slope of 2 at the origin, the input quan­
tizing levels are spaced half as far apart as they would be without this preprocessing.
This gives us the equivalent of another bit for low-level signals, and on the average
the quantizing error in this range is halved. The signal-to-noise ratio is 6 dB higher at

Output

output levels
equally spaced

§5 Companding and prefiltering

IIi~ Input

~ input levels compressed
toward low levels

Fig. 5.1 Companding, or compressing and expanding. Sampling the output
signal at equally spaced quantizing levels is equivalent to sampling the in­
put signal at levels spaced closer together at low levels and farther apart
at high levels.

55

low levels. But we don't get something for nothing; in order to accommodate signals
with the same maximum amplitude as before, the curve must bend over to a slope less
than I, which means the equivalent of fewer bits for high-level signals. Of course we
need to compensate for this intentional distortion when we receive the bits in the com­
puter.

This general approach is called companding, which is short for "compressing and
expanding.'' It is an example of processing a signal by using a nonlinear function of
its value at any particular time. Since the output depends on the input signal value
only at that particular time, we say the process has no memory, and the function in
Fig. 5.1 is called an instantaneous nonlinearity. (See the Notes and Problem 12.)

Filtering, the way of dealing with aliasing error, is a fundamental and widely used
technique in computer music, and in signal processing in general. The image conjured
up by the word ''filter'' is quite appropriate - we will pass our original signal
through the filter to remove some part of it, leaving the other parts unaffected. We
want to remove the components above the Nyquist frequency so they won't be aliased
down to frequencies in the usable range from 0 to the Nyquist. Figure 5.2 illustrates
this idea. The original signal in general will have components above the Nyquist fre­
quency, and, as we have seen, if we don't do anything about them, they will appear in
the usable range below Nyquist after sampling. We therefore pass the signal through
what we call a lowpass filter, one that affects the frequencies in the range
[- f,/2, fJ2) as little as possible, and eliminates all other frequencies as well as pos­
sible.

56 Chapter 3 Sampling and Quantizing

(a)

(b)

(c)

(d)

..

original spectrum
before sampling

aliased spectrum
• • • • after sampling ··~

prefiltered spectrum
before sampling

~­~-
Nyquist frequency _/ frequency

Fig. 5.2 Prefiltering before sampling to avoid aliasing. Parts (a) and (b)
show the signal spectrum before and after sampling with no prefiltering.
Aliasing occurs; frequency components above the Nyquist frequency are
aliased to frequencies below. Part (c) shows the signal spectrum after
sampling if the original signal is prefiltered; the parts of the spectrum that
would be aliased are removed before they can be folded down.

To take a concrete example, suppose we are going to sample a real-world signal,
from a microphone, at the rate of 22,050 samples/sec. The signal may very well have
frequency components above the Nyquist frequency, which is 11,025 Hz. We there­
fore want to pass the original signal through a lowpass filter that blocks all frequencies
above II ,025 Hz but passes all those below that. It isn't possible to build such a filter
perfectly, but we can come very close with careful design. Notice that this prefilter
operates on the continuous signal, before sampling, and is not something we can
implement on the computer. In other words, it is an analog filter, not a digital filter.

We'll return to the picture in Fig. 5.2 in Chapter II, where we take up aliasing
again in more depth. It turns out that aliasing can cause problems with digital-to­
analog conversion as well as with analog-to-digital conversion, and the remedies are
similar. This theory has a direct effect on our everyday life - audio and video com­
pact discs work as well as they do because proper attention is paid to potential aliasing
problems.

§6 Things to come 57

6 The shape of things to come

I hope by now it's natural for you to think of a signal as being composed of a sum of
various frequency components. We concluded Chapter 2 with a mathematical argu­
ment to that effect, based on the fact that the arbitrary initial shape of a vibrating
string can be expanded in a series of sine waves. This led to the Fourier series for any
odd periodic signal with period 2T:

~

f(t) = L c k sin(k1tt/T)
k=l

(6.1)

As you might guess, the Fourier series that corresponds to the general case, when the
periodic signal is not necessarily odd or even, is written in terms of a sum of sines and
cosines. The more general form can also be written very neatly as the following sum
ofphasors:

~

/(t) = L c k eik2nt/T (6.2)
k=-~

This now represents any periodic signalf(t) with period T sec as the sum of phasors
with frequencies that are integer multiples of the frequency of repetition 2 1t/T Hz.
Notice that we use phasors corresponding to both positive and negative frequencies.
The spectrogram of the clarinet note shown in Fig. 8.1 of Chapter 2 is an experimen­
tally measured version of such a Fourier series.

Let's go one step further. If we can represent any periodic signal as the sum of
phasors with only those frequencies that are integer multiples of its frequency of
repetition, how might we represent any signal whatsoever- even a nonperiodic one?
Well, we need to incorporate phasors of all possible frequencies, not just the discrete
set of integer multiples used in Eq. 6.2. To add these up we use an integral in place of
the sum:

J(t) = - 1-J F(jro)eiwtdro
27t --

(6.3)

Think of this as the grand sum of phasors of all possible frequencies, with the phasor
of frequency ro present with weight F(jro). t

The function F(jro) tells us how much of each frequency we need to put in the
integral to representf(t). It's what I've referred to loosely as the spectrum of a signal
j(t). That's how I used the term in the description of Fig. 5.2, for example, which
shows what happens when a general signal is sampled and possibly aliased.

t The factor l/21t in front of the integral is a mathematical bad penny. If you redefine the spectral weighting
function F(jro) to include it, it pops up somewhere else - in the formula for F(jro) in terms of f(t).

Mathematicians sometimes define things so that there's a l/(21t) '1' in both places, for symmetry.

58

Notes

Chapter 3 Sampling and Quantizing

I've jumped ahead here because I wanted to encourage you to think more and
more in terms of a signal's spectrum -the phasors that make it up. The next thing
we'll study is filtering, which makes sense mostly in terms of its effect on a signal's
spectrum.

The following book was written by a professor of physics for musicians and contains
almost no mathematics. It gives some very nice physical intuition behind the operation
of common musical instruments.

[Backus, 1977] J. Backus, The Acoustical Foundations of Music, (second
edition), W. W. Norton, New York, N.Y., 1977.

Backus has a small section at the end on computer music, and in the first edition he
gives us a peek at the way things were at the beginning of time:

One of the present problems in the use of a computer ... is the time lag -
some hours to days - between the composer's instructions to the com­
puter and the realization of the actual musical output as sound. . ..
Another problem with the computer is the expense: to produce a few
minutes of music may require some ten times as much computer time at a
cost of several hundred dollars per hour. [Backus, 1969 edition]

The following book has a similar slant, but is more comprehensive and up-to-date:

A. H. Benade, Fundamentals of Musical Acoustics, Oxford University
Press, New York, N.Y., 1976.

Benade discusses in detail the partials of chime and bell sounds, and emphasizes the
distinction between partials and harmonics that I mentioned at the end of Chapter 2.

In digital-audio work you may run into a companding law called J.L-Iaw compand­
ing, which uses a particular form for the companding curve in Fig. 5.1 that is approxi­
mately linear at low levels, and logarithmic at high levels. For lots of details about
quantizing, the definitive reference is

N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and
Applications to Speech and Video, Prentice-Hall, Englewood Cliffs, N.J.,
1984.

Instantaneous nonlinearities like the ones used for companding introduce new har­
monics (harmonic distortion), and care must taken to reverse this effect by expanding
after compressing. For this reason, unless we are companding, we usually avoid non­
linearities like the plague. But the effect can be exploited for the purposes of musical
synthesis, and the resulting technique is called waveshaping. Curtis Roads attributes
the origin and development of the idea to several people, starting with J.-C. Risset in
1969; R. Schaefer and C. Suen in 1970; and D. Arfib, J. Beauchamp, and M. LeBraun
in 1979. See Roads's tutorial:

Problems

Problems

C. Roads, "A Tutorial on Non-Linear Distortion or Waveshaping Syn­
thesis,'' Computer Music Journal, vol. 3, no. 2, pp. 29-34, 1979.

59

FM synthesis is another example of using instantaneous nonlinearities for musical
synthesis. We'll discuss that technique in the final chapter.

1. What ratio of amplitudes is represented by one bel?

2. Aliasing can be observed in the world around you. Identify the source of the origi­
nal signal and the sampling mechanism in the following situations:

(a) The hubcap of a car coming to a stop in a motion picture;

(b) A TV news anchor squirming while wearing a tweed jacket;

(c) A helicopter blade while the helicopter is starting up on a sunny day.

3. What frequency has been obtained by the sampling process illustrated in Fig. l.l?
The 330 Hz sinusoid is sampled at the rate of 300 Hz.

4. Sketch the first three terms of the Fourier series in Eq. 2.2 with pencil and paper,
and add them up by eye. Check the symmetry properties of the sine waves that make
it reasonable that this Fourier series adds up to the claimed square wave.

5. I claim in Section 2 that when a square wave with the repetition rate of 700 Hz is
sampled at 40 kHz, the sampling pattern drifts to the left from period to period by 117

of a period. To see this effect more clearly, do the case with pencil and paper when
the repetition rate of the square wave is 30 kHz.

6. To what frequency in the baseband is the 79th harmonic of the square wave in Sec­
tion 2 aliased?

7. A continuous periodic waveform with period P sec, and with all harmonics present,
is sampled with sampling period T sec. Is it possible that for some choices of T and P
the only frequencies that appear in the result are the ones in the original waveform
below the Nyquist frequency? If the answer is yes, find conditions on T and P that
ensure this happens; if the answer is no, prove it. Try to interpret your result in simple
terms.

8. Suppose the time origin for the square wave in Fig. 2.1 were shifted to the right by
T/4, a quarter of a period. Would the Fourier series contain sines? Cosines? Even har­
monics? Odd harmonics? Repeat for a shift of T/2.

9. In the example of sampling a square wave in Section 2, the sampled waveform is
periodic. What's the period? How is this periodicity reflected in the spectrum, which
is illustrated in Fig. 2.2. What is the general relationship between the periods of the
sampled and unsampled waveform?

60 Chapter 3 Sampling and Quantizing

10. (This should be easy after answering the previous question.) When does a
waveform that is periodic become not periodic after sampling?

11. (Sound experiment) Generate the sound corresponding to a sampled square wave.
Then generate the sound corresponding to sampling a square wave that has no har­
monics above the Nyquist frequency, so there is no aliasing. Compare the sounds with
and without aliasing. Can you find an interesting use for intentional aliasing?

12. Notice that

cos(2rot) = 2cos2 (rot) - I

So if we let x = cos(rot), the signal

y = 2x2 - I

will be the second harmonic. This means we can get the second harmonic simply by
passing x through an instantaneous nonlinearity.

(a) Work out the next case, cos(3rot) in terms of cos(rot).

(b) Prove the general fact that the result for every integer harmonic is always a poly­
nomial. (The polynomials are called Chebyshev polynomials, after the Russian
mathematician Paftnuty Lvovich Chebyshev [1821-1894].)

(c) Suppose we want to generate a signal with several cosine harmonics, each present
with a predetermined amplitude. Describe a method for this using an appropriately
designed instantaneous nonlinearity. (The method is called waveshaping; see the
Notes.)

CHAPTER 4

Feedfor\Nard
Filters

1 Delaying a phasor

Filters work by combining delayed versions of signals. Guess what signal we'll delay
to begin our study of filters? A phasor, of course.

If we delay the phasor ej"'' by t sec, we get

Fig. 1.1 The effect of delaying a phasor by t sec. The dashed phasor is the
delayed version of the original.

(1.1)

We see from this that a delay oft sec multiplies the phasor by the complex factor
e-j"'', which does not depend on timet, but only on the amount of delay t and the fre­
quency ro. Such a factor can be written in the form lL(-rot), and therefore rotates the
original phasor by the angle -rot, while leaving its magnitude unchanged. This is
illustrated in Fig. 1.1. Filters combine delayed versions of signals, and signals are
made up out of phasors; so understanding the effect of this one operation on this one
signal is the key to understanding everything there is to know about filters.

62 Chapter 4 Feedforward Filters

2 A simple filter

We're now going to build a very simple filter and analyze its effect on phasors of vari­
ous frequencies. In fact, here's the simplest filter possible. Start with a signal x and
add to it some constant a 1 times a delayed version of itself:

y, = x 1 + a 1x 1_, (2.1)

Notice that we're using subscripts to denote the dependence on time. This will be
especially convenient when we deal with digital signals in the computer because the
time variable will just be an integer index in an array. Also, we'll usually try to
reserve the symbols x andy for the input and output signals, respectively.

Sometimes it's helpful to draw a picture that represents the operations used to cal­
culate the output of a filter from its input. Such a picture is shown in Fig. 2.1. The
input signal enters from the left. A delayed version of it is obtained by tapping it at the
junction indicated by the black dot and putting it into the box labeled with the delay t.
The addition of the signal to its delayed version is represented by the conjunction of
arrows at the small circle labeled l: for "summation." Finally, the output signal leaves
on an arrow to the right. Figure 2.1 represents the flow of signals and is called a signal
jlowgraph. By the way, the convention is that signals flow from left to right as they
progress through filters. When a delayed version of a signal is used later in the calcu­
lation, the branch representing the delay term goes from left to right, and can be
thought of as feeding values "forward." For this reason I'll call filters that use only
such branches feedforward filters. We won't get to feedback filters until the next
chapter.

~· f.~'
Gr---dela-y t ~

Fig. 2.1 Signal flowgraph of a simple feedforward filter.

Consider next what happens when x is a phasor at frequency ro, ejmt. The right­
hand side of Eq. 2.1 is then the sum of two phasors of the same frequency, which we
know from Chapter I is also a phasor of that frequency. In other words, the output of
the filter is a phasor of the same frequency as the input. Substituting for x we get

Yt = ejmt + a I ejm(t-t) (2.2)

This addition of two phasors is illustrated in Fig. 2.2; the second phasor is rotated by
-rot radians with respect to the first. In Chapter I we added phasors this way when

§2 A simple filter 63

we looked at beat frequencies, but this time there is the important difference that the
second phasor isn't moving with respect to the first -it's just trailing behind by a
fixed angle.

Fig. 2.2 Filtering: adding a phasor to a delayed version of itself. The angle
between the original phasor and the delayed phasor is - ro't.

Rewrite Eq. 2.2 by factoring out the phasor:

(2.3)

This is a very significant equation. First, it shows that the output signal of the filter is a
phasor at the frequency ro. Second, it says that the effect of the filter on the input pha­
sor is to multiply it by the complex function in brackets on the right-hand side. Let's
call the filter H, and denote that complex function by

(2.4)

which is called the filter's frequency response. Notice that H(ro) depends on the fre­
quency ro and on the fixed parameter 't of the filter, but not on the time t. H (ro) tells us
everything we need to know about what the filter does to the input phasor.

To see exactly how to use the information wrapped up in the frequency response
H(ro), write it in polar form, as a magnitude at an angle:

H(ro) = I H(ro) I eje(m) (2.5)

The magnitude IH(ro)l is called the magnitude response of the filter, and the angle
9(ro) is called its phase response. Since the input phasor is multiplied by H (ro), this
tells us that the filter multiplies the size of the input phasor by the filter's magnitude
response, and shifts its phase by the filter's phase response.

Let's take a closer look at the magnitude response of our filter H. From Eq. 2.4:

(2.6)

64 Chapter 4 Feedforward Filters

To put this in terms of real variables, just rewrite the magnitude as the square root of
the sum of squares of the real and imaginary parts, yielding:

2 112
H(ro) =II + a 1 + 2a 1cos(rot) I (2.7)

We have now achieved what we set out to do. We can plot the magnitude response
of the filter as a function of frequency ro, and this will tell us what effect the filter will
have on a phasor of any particular frequency ro. Remember that we can think of any
signal at all as being composed of a sum of phasors, so this will tell us a great deal
about the effect of the filter on an arbitrary input signal.

For example, Fig. 2.3 shows the magnitude response when we choose the filter
parameter a 1 = 0. 99 and the delay t = 167 fJ.Sec. The first notch in the frequency
response occurs when the cosine in Eq. 2.7 equals -1, which occurs when rot = 7t, or
at the frequency f = l/(2t) Hz (remember that ro = 27tf}. This checks with the
figure, which has a notch at 3 kHz. These notches occur whenever rot is an odd multi­
ple of 7t. For example, the next notch is at three times this frequency, around 9 kHz. It
is easy to see that the peaks occur when rot is an even multiple of 7t, starting with zero.

m ..,
~
8.
~ ·10 ~""''''"'~'"'""'''~''"'" ... ~ .. """"~"""""'~"""""'~"""""~"""""~""" .. ~ ~
CD • • • • • • • • • • •

] -15 ~ ~ ~ -~· ; ; ; (.......... ~ j ~

't ·20 ~ j j j j f + + + i j
-25 ~ ~ ~ ~ ~ ~ 0 ~.......... .

.
-30 ~"""""'~"""""'~""""" ··········~···········~··········~··········~··········~·········· :. :. :. :.:. -35 ~ , ,
-40 ~ ~···········~·""'''''' :············?"""'""?·······"··:· : _. ~ .
-45 -i···········i···········i···········i···········i···········i··········T··········;.··········T··········i···········i

0 1 2 3 4 5 6 7 8 9 10

frequency, kHz

Fig. 2.3 Magnitude response (in dB) of a simple feedforward filter. The ex­
ample shown has the filter parameter a 1 = 0.99, and the delay t = 167
fJ.Sec. Frequency is shown in kHz.

While we're at it, we should check the actual values of the magnitude response at
the peaks and troughs. These are just (I + a 1) and (I - a 1 }, respectively, which
translate into 1.99 and .01, or 5.977 dB and -40 dB.

The kind of filter in Eq. 2.1 is crude, but it does modify the spectrum of a signal in
certain ways that might be useful - depending of course on what frequencies might
be present in the signal to begin with. It reduces the presence of frequenciesf0 , 3f0 ,

5f0 , and so on, for the frequency fo = l/(2t), while leaving much of the remaining

§3 Digital filters 65

spectrum relatively unaffected. We'll see shortly, however, that it's just a toy com­
pared to the really effective filters that are possible. Before we look at more compli­
cated filters, though, we need to look at the limitations imposed by implementing
filters on a computer.

3 Digital filters

We're going to concentrate entirely on filters implemented on a computer, which we'll
call digital filters. The kinds of filters that can be implemented with components like
acoustic delay lines, inductors, capacitors, and resistors, behave in similar ways, and
are described by similar mathematics. But there are certain characteristics, both
advantageous and restrictive, that are specific to digital filters. We'll begin with two
crucial peculiarities.

In the previous section we assumed the kind of filter we studied can be imple­
mented with any delay t whatsoever. But when we use a computer we keep signals in
arrays, and we are allowed to delay signals only an integer number of samples,
because the time variable corresponds to the array index. On a computer, therefore,
the delay t must be an integer multiple of the sampling period T5 • That's one very
important restriction.

There is another important restriction: In the digital world, frequencies above half
the sampling frequency, the Nyquist frequency, don't really exist- we think of them
as aliased to frequencies below the Nyquist frequency. If a phasor jumps more than 1t

radians between sampling instants, we agree to think of it as jumping less than x radi­
ans per sample, thus giving us an unambiguous representation of frequencies less than
the Nyquist, at the expense of not being able to represent any above the Nyquist. This
means that the frequency plots of filter magnitude responses need not extend beyond
the Nyquist frequency. It is usually convenient to normalize the frequency variable in
such plots to the sampling rate, making the Nyquist frequency equal to 0.5. I will label
the abscissas of such frequency-response plots ''frequency, fractions of sampling
rate."

I now will adjust notation slightly to simplify many equations in the rest of this
book. Examine again the first equation in this chapter, which shows that delaying a
phasor one sample, T5 sec, multiplies the phasor bye -jmT,. The frequency variable ro

here has the units radians per sec. Therefore, roTs has the units radians per sample,
and is the number of radians that the phasor turns between samples. We can always
measure time in the digital domain in terms of the sample number, and we can always
convert to actual time by multiplying by T 5 sec. Therefore, in the digital world, we
might as well think of ro as having the units radians per sample to begin with, and not
write T., with it all the time.

So from now on, in the digital domain, we'll measure the frequency ro in radians
per sample. (In the continuous domain, we'll continue to use radians per sec.) The
digital sampling frequency is then ro = 2x radians per sample (a full cycle between
samples), and the Nyquist frequency is ro = x radians per sample (half a cycle
between samples). The normalized frequency axis mentioned above, "frequency,

66 Chapter 4 Feedforward Filters

fractions of sampling rate,'' can be thought of as measured in the units cycles per
sample. To convert from this normalized frequency to actual frequency, multiply by
the sampling rate.

A word about phasors. In the continuous world we write a phasor as x 1 = ej"'1,

where ro has the units radians per sec. In the digital world we'll write it in exactly the
same way, remembering that ro is now measured in radians per sample, and interpret­
ing I as the integer sample number. A delay of one sample in the digital domain there­
fore multiplies a phasor by e-jro.

For a very simple example of a digital filter, suppose we use a delay of one sam­
pling period in the filter equation Eq. 2.1:

(3.1)

where now the signals are indexed by the integer sample number I. When the digital
signal x 1 is the phasor ej"'1 , the output phasor is

(3.2)

and the corresponding magnitude response of this digital filter is, as in Eqs. 2.6 and
2.7,

(3.3)

At the Nyquist frequency, ro is 1t radians per sample, and the cosine in Eq. 3.3 is
equal to - I. When a 1 > 0 this means there is a dip at that point in the magnitude
response. On the other hand, there is a relative peak at zero frequency, so this filter is
/owpass, meaning it tends to pass low frequencies and reject high frequencies. Fig. 3.1
shows the frequency response of this filter for the value a 1 = 0. 99. Because this is a
digital filter, we need concern ourselves only with the frequencies below the Nyquist.

To summarize notation: In the continuous-time world, we'll use the continuous­
time variable 1 sec and the frequency variable ro radians per sec; in the digital world
we'll use the integer time variable 1 samples and the frequency variable ro radians per
sample. The product rot therefore measures radians per sec or per sample, depending
on whether we are in the continuous or discrete domain. We've fussed a fair amount
with notation in this section, but it will make life much simpler later on.

4 A big filter

I don't want to leave you with the impression that digital filters usually have only one
or two terms. There's no reason we can't implement a filter with hundreds of terms;
in fact this is done all the time. How can we possibly know how to select a few hun­
dred coefficients so that the resulting digital filter has some desired, predetermined
effect? This question is called the filter design problem. Fortunately, it's almost com­
pletely solved for feedforward digital filters. The mathematical problems involved
were worked out in the 1960s and 1970s, and design packages are now widely

III
'C

§4 A big filter

10 ~·······················~·······················~·······················~······················~·······················
5 ~00000000000000000000000: 0 0 0 ..

0 0
0 0

0 0 0 0
0 0

~ o ~--·····················~·······················r······················t····
0

~ -5 i••·····················~·······················~······················t······················ ~
.g -10 ~ooOOOOooooooOoooOoooOOO~ooooooooooOoooooooooooo~ooooooooooooooooooooooo~oooooooooooooooooooooojooooooooooo 0000000000

i ~:: r:::::::::::::::::::r::::::::::::::::::::r::::::::::::::::::::r::::::::::::::::::::t:::::::::::::::00 :

00

::

.
-25 ~·······················?·······················?·······················?······················+···················· 0
-30 ~-······················~·······················~·······················~······················~······················
-35 .; ; ; ;,.
-40 ~ 0 ·! 0 ·~ 0 ·~· 0 ·~· 0

.
: : : : : :

45 -i·······················i·······················i······················T······················T······················i
0 0.1 0.2 0.3 0.4 0.5

frequency, frac1ions of sampling rate

Fig. 3.1 Magnitude response (in dB) of a simple feedforward digital filter.
The example shown has the filter parameter a 1 = 0.99 and a delay of one
sampling period.

67

available. The particular filter used as an example in this section was designed using
METEOR, a program based on linear programming [Steiglitz, et al., 1992].

Let's look at an example. Suppose we want to design a digital bandstop filter,
which removes a particular range of frequencies, the stopband, but passes all others_
The stopband is chosen to be the interval [0.22, 0.32] in normalized frequency (frac­
tions of the sampling rate). We require that the magnitude response be no more than
0.01 in the stopband, and within 0.01 of unity in the passbands. Figures 4_1 and 4_2
show the result of using METEOR for this design problem.

An interesting point comes up when we specify the passbands. Of course we'd
like the passbands to extend right up to the very edges of the stopband, so, for exam­
ple, the filter would reject the frequency 0-35999999 and pass the frequency 0.36. But
this is asking too much. It is a great strain on a filter to make such a sharp distinction
between frequencies so close together. The filter needs some slack in frequency to get
from one value to another, so we need to allow what are called transition bands. The
band between the normalized frequency 0.2 and 0.22 in this example is such a band.
The narrower the transition bands, and the more exacting the amplitude specifications,
the more terms we need in the filter to meet the specifications.

In the next section we'll start to develop a simple system for manipulating digital
filters.

68 Chapter 4 Feedforward Filters

!g 0 ~: ----~----~

8.~ 1
' ~ -20 1 ; ~

~ ~ : :
.a ~ : : . .

~ . :
~ :

~ c ~
-40 7·······················i······················+···:: ,

~ ~ ;
.

(: :
(: :

-60 7"""""""""""'~""""'""'""""'~"'":: .
i • • • • • • • • • i • • • • • • • • • i • • • • • • • • I • • • • • • • • I • • • • • • • • • I

0 0.1 0.2 0.3 0.4 0.5
frequency, fractions of sampling rate

Fig. 4.1 Frequency response of a 99-term feedforward digital filter. The
specifications are to pass frequencies in the interval [0, 0.2] and [0.36,
0.5], and to reject frequencies in [0.22, 0.32], all in fractions of the sam­
pling frequency.

0.12 -:·······················~·······················~·······················~······················~·······················~

!
0.08 I

0.04 i ..
!
I

0: -

!
I

-0.04 ~

!

.. j.

.

......................................

-o.oa 4. · ; ;
! : :

-0.12l .•.. ., ... _. .•.•. ~···--··~···..,···'ll······..,······, ... "''•'•'-i-··· .. ··•·•· ... - .•..•.•. i, i
0 0.1 0.2 0.3 0.4 0.5

frequency, fractions of sampling rate

Fig. 4.2 Expanded vertical scale in the passbands of the previous figure.

§5 Delay as an operator 69

5 Delay as an operator

To recapitulate, if the input to the following feedforward filter is the phasor ej"'',

(5.1)

the output is also a phasor,

[-jro] y 1 =x,a0 +a 1e (5.2)

In general, with many delay terms, each term in Eq. 5.1 of the form akxr-k will result
in a term of the form ake-kjro in Eq. 5.2.

Instead of writing ej"' over and over, we introduce the symbol

(5.3)

A delay of a phasor by k sampling intervals is then represented simply by multiplica­
tion by z-k. Multiplication by z means the phasor is advanced one sampling interval,
an operation that will be much less common than delay because it's more difficult or
impossible to achieve in practical situations. (It's much harder to predict the future
than to remember the past.) The simple feedforward filter in Eq. 5.1 is shown in the
form of a flowgraph using this shorthand notation in Fig. 5.1.

input

l 1---·-~ ·., output

~....-_ [£] r
Fig. 5.1 Signal flowgraph of a simple feedforward digital filter.

Notation can have a profound effect on the way we think. Finding the right nota­
tion is often the key to making progress in a field. Just think of how much is wrapped
up so concisely in Euler's formula or the wave equation, for example. A simple thing
like using the symbol z- 1 for delay is such an example. We're going to treat z- 1 in
two fundamentally different ways: as an operator (in this section) and as a complex
variable (in the next). Both interpretations will be fruitful in advancing our under­
standing of digital filters.

An operator is a symbol that represents the application of an action on an object.
For example, we can represent rotating this page + 90° by the operator p. If we
represent the page by the symbol P, then we write pP to represent the result of apply­
ing the operator p to P; that is, pP represents the page actually rotated +90°. The
operator p- 1 is then the inverse operator, in this case rotation by - 90 o. The operator
p2 applied to a page turns it upside down; p4 has no net effect - it's the identity
operator - and so forth.

In the same way, let's use the symbol X to represent a signal with sample values
x 1• Note carefully the distinction between x 1 and X. The former represents the value of
the signal at a particular time, and is a number; the latter represents the entire signal.

70 Chapter 4 Feedforward Filters

The signal delayed by one sampling interval is then represented by z- 1 X. Here z- 1 is
an operator, which operates on the signal X. We can then rewrite the filter equation

(5.4)

as

(5.5)

Notice that I've slipped in another operator here. When I write a 0 X, for example, it
represents the signal I get by multiplying every value of X by the constant a 0 • It
doesn't matter whether we multiply by a constant and then delay a signal, or first
delay a signal and then multiply, so the order in which we write these operators is
immaterial. In other words, the operator "multiply by a constant" commutes with the
delay operator.

The notation of Eq. 5.5 is very suggestive. It tells us to interpret the expression in
brackets as a single operator that represents the entire filter. We'll therefore rewrite
Eq. 5.5 as

Y = !}{(z)X (5.6)

where

(5.7)

The operator !}{(z) will play a central role in helping us think about and manipulate
filters; it's called the filter's transfer function, !H.

As a first example of how we can use transfer functions, consider what happens
when we have two simple filters one after the other. This is called a cascade connec­
tion, and is shown in Fig. 5.2. The first filter produces the output signal W from the
input signal X; the second produces the output Y from input W. Suppose the first filter
has the transfer function

and the second

!}{(z) = bo + b1z- 1

The overall transfer function of the two filters combined can be written

Y = !}{(z) W = !}{(z)[q(z)X]

Fig. 5.2 The cascade connection of two digital filters.

y ..

(5.8)

(5.9)

(5.10)

The suggestive notation we've derived is now presenting us with a great tempta­
tion. Why not multiply the two operators together as if they were polynomials? If we
do, we get

§6 The z-plane 71

!Jl(z) {j(z) = (ao + a 1 z- 1)(bo + b 1 z- 1)

= aobo + (a 0 b 1 + a 1b0)z- 1 + a 1b 1z-2 (5.11)

Can we get away with this? The answer follows quickly from what we know about
ordinary polynomials. We get away with this sort of thing in that case because of the
distributive, associative, and commutative laws of algebra. I won't spell them all out
here, but, for example, we use the distributive law when we write a(j} + y) =
aj} + ay. It's not hard to verify that the same laws hold for combining the operators
in transfer functions: delays, additions, and multiplies-by-constants. For example,
delaying the sum of two signals is completely equivalent to summing after the signals
are delayed. We conclude, then, that yes, we are permitted to treat transfer functions
the way we treat ordinary polynomials.

Multiplying the transfer functions in Eq. 5.11 shows that the cascade connection of
the two filters in Fig. 5.2 is equivalent to the single three-term filter governed by the
equation

(5.12)

This just begins to illustrate how useful transfer functions are. We got to this
equivalent form of the cascade filter with hardly any effort at all.

Here's another example of how useful transfer functions are. Multiplication com­
mutes; therefore filtering commutes. That means we get the same result if we filter
first by Hand then by G, because

(j(z) !Jl(z) = !Jl(z) (j(z) (5.13)

Put yet another way, we can interchange the order of the boxes in Fig. 5.2. Is that
obvious from the filter equations alone?

We now have some idea of how fruitful it is to interpret z- 1 as the delay operator.
It gives us a whole new way to represent the effect of a digital filter: as multiplication
by a polynomial. Now I want to return to the interpretation of z as a complex variable.

6 The z-plane

We can gain some useful insight into how filters work by looking at the features of the
transfer function in the complex z-plane. Let's go back to a simple digital filter like
the one we used as an example earlier in the chapter:

The effect on a phasor is to multiply it by the complex function of ro

I - a 1 e-jw = l - a 1 z- 1

Remember that we introduced z as shorthand:

(6.1)

(6.2)

(6.3)

If we now have any transfer function at all, say !Jl(z), the corresponding frequency
response is therefore

72 Chapter 4 Feedforward Filters

(6.4)

That is, to get the frequency response, we simply interpret the transfer function as a
function of the complex variable z, and evaluate it for values of z on the unit circle.
The range of values we're interested in runs from co = 0 to the Nyquist frequency
co = 7t radians per sample. This is the top half of the unit circle in the z-plane, as
shown in Fig. 6.1.

frequency axis
z-plane

ro=O

Fig. 6.1 The frequency axis in the z-plane. The top half of the unit circle
corresponds to frequencies from 0 to the Nyquist frequency.

Let's take a closer look at the transfer function in our example. It's just

!Jl(z) = 1 - a 1 z- 1

Rewrite this as a ratio of polynomials, so we can see where the roots are:

Z- OJ
!Jl(z) =

z

(6.5)

(6.6)

There is a zero in the numerator at z = a 1 , and a zero in the denominator at z = 0.
That is, the transfer function becomes zero at a 1 and infinite at the origin.

The magnitude response is the magnitude of !Jl(z) for z on the unit circle:

lz- a1 I
I H (co) I = for z = ej"'

lz I
(6.7)

The denominator is one, because z is on the unit circle. In fact, for feedforward filters
the only possible zeros in the denominator occur at the origin, and these don't affect
the magnitude response for the same reason - the magnitude of z on the unit circle is
one. We can therefore rewrite Eq. 6.7 as

IH(ro)l = lz- a1 I for z = ej"' (6.8)

§6 The z-plane

z-plane

ro=O

Fig. 6.2 Evaluating the magnitude response of a simple feedforward filter.
The factor I z - a 1 I is the length of the vector from the zero at a 1 to the
point on the unit circle corresponding to the frequency ro.

73

Figure 6.2 shows a geometric interpretation of this expression: it's the length of the
vector from the zero at z = a 1 to the point on the unit circle representing the fre­
quency ro at which we are evaluating the magnitude response.

This is an enlightening interpretation. Picture walking along the unit circle from 0
to the Nyquist frequency. When we are close to the zero, the length of this vector is
small, and therefore so is the magnitude response at the frequency corresponding to
our position on the unit circle. Conversely, when we are far from the zero, the magni­
tude response will be large. We can tell directly from Fig. 6.2 that a zero near z = I
will result in a filter that passes high frequencies better than low - a highpass filter.
On the other hand, a zero at z = - I results in a lowpass filter.

The same idea works for more complicated feedforward filters. As an example,
let's look at the following three-term filter:

Yr = x, - Xr-l + x,_z (6.9)

I've picked simple coefficients, but what we're going to do will of course work for
any feedforward filter. The transfer function is

(6.10)

I've factored out z- 2, two zeros in the denominator at the origin in the z-plane. We've
just observed above that such factors don't affect the magnitude response. The second
factor in Eq. 6.10 is a binomial, and can be factored further to exhibit its two zeros:

(6.11)

You see now that I've planned ahead; the zeros are precisely on the unit circle, at
angles ±x/3, or fN/3, one-third the Nyquist frequency. The magnitude response is
consequently

74 Chapter 4 Feedforward Filters

IH(ro)l = lz- ein/3 l·lz- e-in/31 for z = ei"' (6.12)

which is the product of the distances from the two zeros to the point on the frequency
axis, z = ei"', as illustrated in Fig. 6.3.

w=O

Fig. 6.3 Evaluating the magnitude response of the three-term, two-zero
filter in Eq. 6.9. It's the product of the lengths of the two vectors from the
complex zeros to the point on the unit circle corresponding to the frequen­
cy ro.

The magnitude response of this filter is plotted in Fig. 6.4. The zero at the point on
the frequency axis corresponding to f N/3 shows up as a sharp dip in this plot, a notch
that theoretically goes down to -oo dB. If we apply any input signal to this filter, the
frequency content of that signal around the frequency f N/3 will be suppressed. Furth­
ermore, if we apply a single, pure phasor precisely at the frequency fN/3, this filter
will not pass any of it, at least in the ideal situation where we have applied the input at
a time infinitely far in the past. In practice, we have to tum the input on at some time,
and this actually introduces frequencies other than one-third the Nyquist. More about
this later.

We can develop some insight into the relationship between the coefficients and the
magnitude response through the zero locations, but in a big filter we have to rely on
high-powered design programs, like Parks-McClellan or METEOR (see the Notes), to
do the proper delicate placement of zeros for a many-term example. Figure 6.5 shows
the zeros of the 99-term filter used as an example in Section 4, with the magnitude
response shown in Figs. 4.1 and 4.2. Notice the cluster of zeros in the stopband, as we
would expect because the magnitude response is close to zero there. In fact there are
some zeros precisely on the unit circle, and these correspond to frequencies where the
magnitude response is precisely zero, as in the simple example of Figs. 6.3 and 6.4.
Also notice all the other zeros; you wouldn't want to have to figure out where to put
them by trial and error.

§6 The z-plane

10 ~ ~ ·······················J'······················-.················ . .
m ,
fA

I

. .

0

~ -10 ~ ~
:::l : :
~ . .
~ : :
~ ~ ~
E -20 .; ,

-30 ~ ~

-40 ~ ~

-50~ ;
0 0.1

.......... :.;:: :. ,::

... :.:.:.:
: : : : . ······-·······················-······················-······················-

.

. .
'''''''I''''''''''''''''''''''T''''''''''''''''''''''T''''''''''''''''''''''I

0.2 0.3 0.4 0.5
frequency, fractions of sampling rate

Fig. 6.4 Magnitude response of the three-term, two-zero filter in Eq. 6.9.

I

-2 -1 0

Fig. 6.5 The 98 zeros of the 99-term feedforward filter of Section 4.

75

76 Chapter 4 Feedforward Filters

7 Phaseresponse
Up to now we've concentrated on the magnitude response of filters because that is
most readily perceived. But filters also affect the phase of input signals. Consider
again the simple kind of feedforward filter used as an example in Section 6:

(7.1)

with the frequency response

(7.2)

Remember that for each frequency co this has a magnitude and an angle; that is, it can
be written

(7.3)

If the input signal is the phasor ej"'t, the output phasor y is the product of that input
phasor and the transfer function:

Yt = IH(ro)lej(rot+&(ro)) (7.4)

which means the output is shifted relative to the input by a phase angle 9(ro), as well
as having its size multiplied by I H (co) 1.

We can evaluate this phase shift in a straightforward way using the arctangent
function, as follows. Write Eq. 7.2 as I + a 1 cosro - ja 1 sinro. Then

9(co) = arctan [l11U1ff H(co)]
!l{ea{ H (co)

= arctan [
-a 1 sinro l

I + a 1 cos co
(7.5)

It's also possible to get a geometric interpretation from a picture like Fig. 6.2. We
won't examine phase response in great detail, except for one important point.

When a 1 = I, the expression for phase response simplifies. We could use tri­
gonometric identities to simplify Eq. 7.5, but the fastest way to see it in this simple
case is to rewrite the transfer function, Eq. 7.3, with a 1 = 1:

H(ro) = I + e-jro = e-jro/2 [ejro/2 + e-jro/2]

(7.6)

The factor 2cos(ro/2) in this last equation is the magnitude response. The complex
exponential factor is the phase response, and represents a phase angle of - ro/2. If the
input is the phasor ej"'t, the output of this filter is the phasor

2cos(ro/2)ej"'(t- l/2) (7.7)

This tells us that the effect of the filter on the phase of a phasor is to delay it precisely
one-half sampling interval, independent of its frequency.

The preceding is a special case of the following important fact: If a feedforward
filter has coefficients that are symmetric about their center (in this case the coefficients

§8 Inverse comb filters 77

are { I, I }), the phase response is proportional to ro, and that results in a fixed time
delay. That is why one frequently hears the term "linear phase" mentioned as a desir­
able property of filters; it ensures that all frequency components of a signal are
delayed an equal amount. In such cases we also say that the filter has no phase distor­
tion. We'll see in the next chapter that it is not possible to achieve this property pre­
cisely with feedback filters.

8 Inverse comb filters

I will end this chapter by examining an important kind of feedforward filter, which I'll
call an inverse comb filter. It is literally the inverse of a comb filter, which pops up in
computer music all the time, and which we'll study in Chapter 6.

The inverse comb is very similar to the first feedforward filter we looked at, in
Section I. It consists of one simple feedforward loop, but instead of an arbitrary delay
't, we use some integer number of samples L. I'm going to choose the constant multi­
plier to be RL, because we're going to take its Lth root very soon. The filter equation
is

(8.1)

and therefore its transfer function is

(8.2)

Let's take a minute to review a little complex algebra. Where are the roots of the
following equation?

(8.3)

We know from the fundamental theorem of algebra that there are L of them. You may
remember that they are equally spaced around the unit circle. That's kind of obvious
when you think about what it means to raise a complex number to the Lth power: you
simply raise its magnitude to the Lth power and multiply its angle by L. Therefore any
point with magnitude I and angle of the form k2x/L, for integer k, will work. Thus the
L roots of unity are

eik2rr.!L, for k = 0, I, ... , L- I

It's now easy to see that the roots of Eq. 8.2,

ZL = RL

(8.4)

(8.5)

are at the same angles, but at radius R instead of I. The zeros for the case L = 8 are
shown in Fig. 8.1.

The magnitude response corresponding to these zeros has dips at the frequency
points near the zeros. The closer R is to I, the deeper the dips. Figure 8.2 shows the
magnitude response for the case R = 0. 999. There are dips at multiples of one-eighth

78 Chapter 4 Feedforward Filters

z-plane

ro=lt ro=O

Fig. 8.1 The eight zeros of an inverse comb filter, equally spaced on a cir­
cle of radius R.

m ,
ai
"' c:
8.
"' ~ .. ,
::>
·E
"' ..
E

-20

-30

...

.. ···········-················

-40 ; ; .. - : : . . .
-50 .; .•.. .,, ; ; "''"'"''; ;. i

0 0.1 0.2 0.3 0.4 0.5
frequency, fractions of sampling rate

Fig. 8.2 The frequency response of the 8-zero inverse comb filter for the
case R = 0.999.

the sampling rate. This magnitude response has the same shape as the one for the
feedforward filter with arbitrary delay t (see Fig. 2.3), except that now we can deal
only with frequencies up to the Nyquist, and the dips are constrained to occur at
integer multiples of an integer fraction of the sampling rate.

Now we're ready to study feedback filters. For an accurate preview of what's
ahead, rotate Fig. 8.2 by 1t radians.

Notes

Problems

Problems

My favorite program for designing feedforward filters is METEOR:

[Steiglitz, et al., 1992] K. Steiglitz, T. W. Parks, and J. F. Kaiser,
"METEOR: A Constraint-Based FIR Filter Design Program," IEEE
Trans. Signal Processing, vol. 40, no. 8, pp. 1901-1909, August 1992.

79

FIR stands for Finite Impulse Response, and for practical purposes is synonymous
with feedforward. METEOR allows the user to specify upper and lower bounds on
the magnitude response of a feedforward filter, and then finds a filter with the fewest
terms that satisfies the constraints. It uses linear programming; we'll describe it in
more detail in Chapter 12.

The Parks-McClellan program is less flexible, but is easier to use and much faster:

T. W. Parks and J. H. McClellan, "A Program for the Design of Linear
Phase Finite Impulse Response Filters," IEEE Trans. Audio Electro­
coust., vol. AU-20, no. 3, Aug. 1972, pp. 195-199.

It's far and away the most widely used program for this purpose.

1. Sketch the first few samples of a sinusoid at zero frequency, at the Nyquist fre­
quency, and at halfthe Nyquist frequency. Is the answer to this question unique?

2. The simple filter used as an example in Section 2 suppresses frequencies at all odd
multiples of 3 kHz. Design one that also uses Eq. 2.1 but that suppresses all even mul­
tiples of 3 kHz.

3. A feedforward digital filter is defined by the equation

Yt = x, + x,_l + x,_2 + · · · + xt-99

Derive a simple algebraic expression for its magnitude response. Find the frequencies
at which its magnitude response has peaks and troughs.

4. Combine the defining equations for the two cascaded filters in Fig. 5.2 to prove
directly the validity of the equivalent form in Eq. 5.12.

5. Write down and verify all the laws of algebra needed to justify the multiplication of
transfer functions of feedforward filters as polynomials.

6. Prove that the transfer functions of feedforward filters with real coefficients can
have complex zeros only in complex-conjugate pairs. What does this imply about the
magnitude response? About phase response?

7. Design a feedforward filter that blocks an input phasor with frequency fN/6, and
also blocks zero frequency (DC bias). You should be able to do this with a four-term
filter and without a lot of arithmetic. Plot its magnitude response. What is its peak
magnitude response between 0 andfN/6? Test it by filtering the signal

80 Chapter 4 Feedforward Filters

x(n) = I + cos(xt/6)

where tis the integer sample number. Does the output ever become exactly zero?

8. Prove that the transfer function of a feedforward filter with coefficients symmetric
about their center has linear phase. What is the resultant delay when the filter has N
terms?

9. Plot the result of filtering the following signals with the linear-phase filter in Section
7,Eq.7.lwitha 1 = 1:

(a) x(t) = t

(b) x(t) = sin(xt/100)

(c)x(t) ={+I if t mod 5 is even
- I if t mod 5 is odd

In what sense does the filter introduce a delay of one-half a sampling interval?

10. Check the factorization of the polynomial z2 - z + I in Eq. 6.11.

11. What is the value of the magnitude response shown in Fig. 8.2, that of an 8-zero
inverse comb filter, at its minima? At its maxima?

1 Poles

CHAPTER 5

Feedback
Filters

We're now going to use feedback to build filters. Feedback makes life more interest­
ing - and more dangerous.

Suppose you were unhappy with the results you were getting with feedforward
filters, and you were shopping around for something new to do. What do you have
available in the filtering process that you haven't used? The only possibility seems to
be past values of the output signal. Let's see what happens if we filter a signal x, by
adding a multiple of a past output value to it, instead of a past input:

y, = x, + a,y,_, (1.1)

This is the simplest example of a feedback filter, one in which we "feed back" past
results in the computation of the next output value. Its signal ftowgraph is shown in
Fig. 1.1.

inp1L._a_1_--t l "'!'ut y

~ 0 ... 4.,_ __ _._

Fig. 1.1 Signal flowgraph of a one-pole feedback filter.

The first thing to notice is that if we tum off (set to zero) the input signal, the out­
put signal can remain nonzero forever. For example, if a 1 = 0. 5, and we put in the

82 Chapter 5 Feedback Filters

simple input signal that has the value one at t = 0 and is zero thereafter, the output
signal takes on the values

y, = I, 0.5, 0.25, 0.125, 0.0625, ... (1.2)

This can never happen with a feedforward filter, because an output depends only on
the inputs delayed by some maximum, finite amount, the greatest delay used in the
filter equation. When the input is set to zero the output will become zero after that
delay.

The next big difference between feedback and feedforward filters is that feedback
filters can be unstable. To see this, suppose the coefficient in the filter of Eq. l.l is
a 1 = 2, and we again supply an input signal that is one at t = 0 and zero thereafter.
The output signal is

y, = I, 2, 4, 8, 16, ... (1.3)

and grows indefinitely. Of course this can never happen with a feedforward filter.
Let's take a look at the magnitude of the frequency response. The filter equation

Eq. l.l can be written symbolically as

(1.4)

There are a couple of ways to derive the transfer function from this. The simplest way
to think about it is to rewrite this equation in a form that gives the input X in terms of
the output Y:

(1.5)

This is precisely the same form as a feedforward filter, but with input Y and output X.
We know from the previous chapter that the transfer function of this feedforward filter
is

(1.6)

This transfer function evaluated for z on the unit circle at angle ro tells us the effect on
the magnitude and phase angle of a phasor of frequency ro. Since this feedforward
filter has an effect on a phasor that is the inverse of that of the feedback filter, the
transfer function of the feedback filter must be

!}{(z) = ------=-~
- a1z

and its magnitude response is therefore

IH(ro)l = II - a 1 e-j .. I

(1.7)

(1.8)

Another approach is to manipulate Eq. 1.4 with blind faith, solving for Yin terms
of X. We have already justified multiplying, factoring, and permuting polynomial
transfer functions as we do ordinary polynomials, but now we are proposing dividing
both sides of the following equation by I - a 1 z- 1:

Y[l - a 1 z- 1] = X (1.9)

2 Stability

§2 Stability 83

The result is identical to the one obtained above. We'll see a mathematically more
rigorous way to justify this sort of operation later on, when we get to Fourier and z­
transforms.

We now have a new kind of transfer function: one with a polynomial in the
denominator. At a value of z where the denominator becomes zero, the transfer func­
tion becomes infinite. We call those points poles of the transfer function or filter. Fig­
ure 1.2 shows how we represent a pole in the z-plane by the symbol x.

z-plane

ro=n ro=O

Fig. 1.2 Pole position in the z-plane for a single-pole feedback filter, Eq.
1.1.

We get the same kind of insight from the pole positions as we do from the zero
positions. This time, however, we divide by the distance from a pole to a frequency
point on the unit circle, as shown in Eq. 1.8. Visualize the magnitude frequency
response as height above the z-plane, given by the function l.?f(z) I, as we travel
around the upper half of the unit circle from angle 0 to angle 1t radians. If we pass
close to a pole, we will have a steep hill to climb and descend as we go by; the closer
the pole the steeper the hill. If a pole is far away we will have to pass only a rolling
foothill. If poles are at the origin, z = 0, they will have no effect on the magnitude
response because we remain equidistant from them as we stay on the circle. This can
also be seen from the fact that I z-k I = I on the unit circle for any k. Figure 1.3
shows the magnitude frequency response of one-pole feedback filters for three dif­
ferent pole positions, illustrating what I just said.

Before we study the one-pole filter in more detail, and look at more complicated and
interesting feedback filters, let's take a closer look at stability. The magnitude
response is determined by the distance to poles, and is not affected by whether the
response to a small input grows without bound, as in Eq. 1.3. But such an unstable
filter would be quite useless in practice. In the case of the single-pole filter in Eq. 1.1,
it's clear stability is ensured when and only when the pole is inside the unit circle; that
is, when I a 1 I < I. But what about filters with many poles?

84 Chapter 5 Feedback Filters

!g 0 '

"'
<i ~ ..
c: <,

§ ~~
~ -::'
G> ·20 ~ ••
~ :~ \,
c: :~ ",,

l :__ "'
·~. ... -40 ~

···········-....... .
.... ····· ·····

··-- ___ _

-- pole at z = 0.9
• • • • • pole at z = 0.99
.......... pole at z = 0.999

···"···························
I • • • • • • • • • I • • • • • 0 • 0 • I 0 • 0 0 • • 0 0 • I • 0 0 • • 0 • • • I • • • • • • • • • I

0 0.1 0.2 0.3 0.4 0.5

frequency, fractions of sampling rate

Fig. 1.3 Magnitude frequency response of single-pole feedback filters, Eq.
1.1, for pole positions a 1 = 0.9, 0.99, and 0.999. The plots are normalized
so that the peak value is unity, or 0 dB.

The critical fact is that any pole outside the unit circle will cause a feedback filter
to be unstable. Again, I want to postpone a proof until we get to z-transforms (Chapter
9}, but will outline the general idea now. A feedback filter can have any number of
feedback terms. Let's consider one with three, for example. It's defining equation
looks like

Yt = Xt - blYt-l - b2Yt-2 - b3Yt-3 (2.1)

The manipulation in the previous section leads to the transfer function

Ji(z) = I
I + b1z- + b2z- 2 + b3 z- 3

(2.2)

By now you see the pattern: The coefficients involving past output terms wind up in
the denominator with their signs reversed. If we anticipate the sign reversal by using
negative signs to begin with, as in Eq. 2.1, the signs in the denominator turn out to be
positive. In this example the third-order denominator implies that there are three poles,
and we can write the transfer function in factored form:

z3
Ji(z) = -----=------

(z- P1)(z- P2Hz- P3)
(2.3)

where the poles are at the denominator roots p 1 , p 2, and p 3• Notice that we multiplied
the numerator and denominator by z3 so that the denominator is in the usual factored
form of a polynomial. The factor of z3 in the numerator means that there are three
zeros at the origin. As we've seen, they won't affect the magnitude response or the

§2 Stability 85

stability. A pole can of course be complex, but because we assume the filter
coefficients are real, if one is complex, its complex-conjugate mate must also be a
root. That is, complex poles occur in complex-conjugate pairs.

Now it turns out that the transfer function in Eq. 2.3 can always be written in the
following form:

:H(z) = + -----,----
(l-p3Z-1)

(2.4)

You'll learn how to get the constants A; in Chapter 9, but if you accept this for now
you can see that it decomposes the original feedback filter into three one-pole feed­
back filters; the input is applied to all of them, and their outputs are added. This is
called a parallel connection of filters, and is illustrated in Fig. 2.1.

input

Fig. 2.1 Parallel connection of three one-pole filters J£1 (z), J£2 (z), and
J£3 (z); this corresponds to the decomposition of a three-term feedback
filter.

Suppose we now test the original filter by applying a simple input signal, say an
input that has the value one at t = 0 and zero otherwise. This particular test signal is
called the unit impulse, and the output of a filter when a unit impulse is applied is
called its impulse response. The output signal will be the sum of the outputs of each
of the three one-pole filters. We know from Section I what each of these individual
contributions is. If the ith one-pole filter has the transfer function A ;I(I - p; z- 1), the
first output sample is A;, the second is A;p;, and each successive output sample is
multiplied by p;. Ignoring the constant factor A;, the output of each one-pole filter is
the signal with samples

I, Pi• PT. pf, ... (2.5)

Don't be bothered by the fact that the pole P; may be complex; the one-pole feedback
filter works the same way whether or not the pole is real, and if the pole is complex,
its complex conjugate will appear in another one-pole filter of the total filter decompo­
sition, and the outputs of the two will add to produce a real-valued total output.

How do we know that the unit impulse is a good signal with which to test stability?
First, if the response to this particular signal is unstable, then certainly the filter can't
be relied on to be stable in general. But what about the other way around? Might it
not happen that when we apply the unit impulse, the filter is stable in the sense that the
output does not grow exponentially, but some other input will cause the filter to be
unstable? The answer is that this can't happen, unless of course we use an input that

86 Chapter 5 Feedback Filters

itself grows without bound. You can see this by the following intuitive argument (also
see Problem I 0). Any input signal can be thought of as a sum of delayed unit
impulses, each weighted with a sample value. To be more precise, if we let ~ 1 denote
the unit impulse signal, a general signal x can be written as

xo~1 + x1~1-1 + x2~1-2 + · · · (2.6)

The term x 0 ~ 1 represents the sample value at t = 0, the term x 1 ~ 1 _ 1 represents the
sample at t = I, and so on. The output when we apply this sum of impulses is what
we would get if we applied each impulse individually, recorded the output, and added
the results. From this we see that if the response to an impulse is stable, the response
to any signal will be stable. We can summarize this argument by stating that a feed­
back filter is stable if and only if its impulse response is stable.

Returning now to the output of a one-pole filter when we apply the unit impulse
signal ~ 1 • Eq. 2.5 shows that the critical issue is whether the magnitude of p; is greater
than one. If it is, the magnitude of the terms in Eq. 2.5 grows exponentially and the
particular one-pole filter corresponding top; is unstable. The outputs of all the com­
ponent one-pole filters are added, so if any one is unstable, the entire original filter is
unstable. On the other hand, if all the component one-pole filters are stable, the origi­
nal filter is stable.

One final detail before we wrap up this section. I've used the term "stability"
loosely, and in particular I haven't spelled out how I want to regard the borderline
case when a pole is precisely on the unit circle. If I p; I = I, the response of a one­
pole filter to a unit impulse doesn't grow without bound. It doesn't decay to zero
either, so in some sense the filter is neither stable nor unstable. I'll choose to be fussy
and insist that a filter's impulse response must actually decay to zero for it to be called
stable.

This line of reasoning works no matter how many poles a feedback filter has. We
therefore have arrived at a very useful and general result: A feedback filter with poles
p; is stable if and only if

I p; I < I for all i. (2.7)

3 Resonance and bandwidth

The bump in the magnitude response when we pass the part of the frequency axis near
a pole is a resonance. It means the sizes of phasors at frequencies near that frequency
are increased relative to the sizes of phasors at other frequencies. We are familiar with
resonance in other areas. For example, soldiers marching across a bridge have to be
careful not to march at a frequency near a resonance of the bridge, or the response to
the repeated steps will grow until the bridge is in danger of collapse.

It's often important to know how sharp a particular resonance is given the position
of the pole that causes it. We're going to derive that now. The measure of sharpness
is illustrated in Fig. 3.1; it's defined to be the width of the magnitude response curve at

§3 Resonance and bandwidth

-·-
half-power
bandwidth

frequency

Fig. 3.1 The definition of bandwidth, the width of the magnitude response
curve at the half-power points, the points where the squared amplitude is
one-half the value at the peak.

87

the points where the curve has decreased to half the power it has at its peak, the so­
called half-power points. Power is proportional to the square of the amplitude, so the
half-power points correspond to amplitude values of ll-{2 times the peak value (the
-3 dB points). This measure is commonly called the bandwidth of the resonance.

z-plane

W=lt

Fig. 3.2 A pole near the unit circle, causing a resonance.

A filter may have many poles, but we're going to assume that we're passing close
to only one of them, and that all the rest are sufficiently far away that their effect on
the magnitude response is very close to constant in the frequency range where the
resonance occurs. Thus, we're going to consider the effect of one nearby pole, and
ignore the effect of all the others. Figure 3.2 shows the situation, with a pole at a dis­
tance R from the origin in the z-plane, at some arbitrary angle.

Furthermore, we will assume that the pole in question is on the real axis,
corresponding to a lowpass filter, with the peak in its magnitude response at zero fre­
quency. This simplifies the algebra. When the pole is actually at some frequency other
than zero, the effect on the magnitude response will be the same, but rotated by that

88 Chapter 5 Feedback Filters

angle. The inverse square of the magnitude response at frequency cp radians per sam­
p)et due to the one pole on the real axis at the point z = R is, using Eq. 1.7 with
z = el• and a 1 = R,

I = le1• - Rl 2

IH(ro)l 2

= (coscp - R) 2 + sin2 cp = I - 2Rcoscp + R2 (3.1)

At the center of the resonance, cp = 0, this is equal to (I - R) 2, just the squared dis­
tance from the pole to the zero-frequency point, z = I. To find the half-power points,
we simply look for the frequencies cp where the reciprocal power is twice this, so we
solve

I - 2Rcoscp + R2 = 2(I - R) 2 (3.2)

for coscp. The result is

I I
coscp = 2 - 2 (R + R) (3.3)

The bandwidth is simply twice the cp obtained here, the span from -cp to +cp.
This solves the problem in theory, but we can also get a handy approximation for

the bandwidth when R is close to unity, which is the most interesting situation -
when the resonance is sharp. In that case, let R = I - E and substitute in Eq. 3.3,
yielding

coscp ::: I - E212 + higher order terms in E (3.4)

We used here the power series I/R = 1/(I - E) = I + E + E2 + · · · . The first
two terms on the right-hand side of Eq. 3.4 coincide with the beginning of the power
series expansion for cosE, so a good approximation for cp is cp ::: E. Thus the bandwidth
B in radians for R close to unity is

B = 2cp ::: 2E = 2(I - R) radians per sample (3.5)

To get the pole radius R corresponding to a given bandwidth B, we rewrite this as

R::: I - B/2 (3.6)

These last two equations tell us the relationship between pole radius and bandwidth
for any resonant frequency, provided there are no other poles nearby.

To get a feeling for just how close R must be to one for a convincingly sharp reso­
nance, let's take the example where the sampling rate is 44, I 00 Hz, and the bandwidth
is 20 Hz. Equation 3.6 yields

R = I - x(20/44100) = 0.998575 (3.7)

Notice that we converted the bandwidth from Hz to radians per sample by dividing by
the sampling rate in Hz and multiplying by 2x radians.

t Recall from Chapter 4, Section 3 that we've agreed to measure frequency in radians per sample. not radi­
ans per sec.

4 Resons

§4 Resons 89

One-pole filters can resonate only at zero frequency or at the Nyquist frequency,
depending on whether the pole is near the point z = + I or z = - I. To get filters that
can resonate at any desired frequency we need to use pairs of complex poles, and
that's just what we're going to do in this section. The resulting filters are called reso­
nators, or resons.

W=lt w=O

Fig. 4.1 Poles of a reson filter in the complex z-plane, at radius R and an­
glee.

Figure 4.1 shows the position of the complex pole pair in the z-plane, at angles ±9
and radius R. This corresponds to the transfer function

!Jl(z) = ----------
(1- Rej9z- 1)(I- Re-j9z- 1)

(4.1)

The two poles at Re±jo appear as the roots of the denominator factors. We've multi­
plied numerator and denominator by z- 2 to keep things in terms of the delay operator
z- 1; we'll always want to do this so that we can write the equation for the filter easily.
All we need to do is multiply the denominator out as

!Jl(z) = I
I - (2Rcos9)z- 1 + R2 z- 2

(4.2)

If we remember that this transfer function yields the output signal when multiplied
by the input signal, interpreting z- 1 as a delay operator (see Section 1), we can see
immediately that this corresponds to the filter equation

y, = x 1 + (2Rcos9)y 1 _ 1 - R2y,_ 2 (4.3)

We've already discussed the relationship between R and the bandwidth of the
resonance. If the pole angle 9 is not too near zero or x radians, the resonance at fre­
quency 9 is not affected much by the pole at -9, and the analysis in the previous sec­
tion is valid. We can decide on the desired bandwidth and then determineR directly
from Eq. 3.6.

90 Chapter 5 Feedback Filters

Fig. 4.2 Magnitude of the transfer function of a two-pole reson filter in the
z-plane.

Figure 4.2 shows a perspective view of the magnitude of the transfer function of a
reson filter above the z-plane; it illustrates how pole locations near the unit circle
affect the magnitude response. Figure 4.3 shows the magnitude response for a family
of three typical resons designed to have the same center frequency but different
bandwidths.

Resons are very useful little building blocks, and we often want to design them to
have particular bandwidths and center frequencies . We' ll consider some details of
their design in the next section.

5 Designing a reson filter

The next important thing to consider is the actual frequency of resonance. Many peo­
ple assume that the peak of the magnitude response of a reson filter occurs precisely at
9, but this is not true. The second pole shifts the peak, and in certain cases the shift is
significant (see Problem 3). The calculation of the true peak involves some messy
algebra, but isn' t difficult. I'm going to outline the derivation briefly here.

Our approach is simple-minded: We' re going to evaluate the magnitude frequency
response as a function of the frequency variable q,, and find a frequency cp at which the
derivative is zero. To simplify matters we' re going to consider not the magnitude of
the frequency response, but its inverse-square. (The original frequency response has a
maximum exactly when the inverse-square of the frequency response has a

ID .,

I
0-

§5 Designing a reson filter

Sampling Rate = 22050 Hz
···• ··. -- bandwidth = 10 Hz

·,... · · · · · • • • • • bandwidth = 50 Hz

............ ········· '' ············· ::: bandwidth= 1000Hz

~" '" '" ""'"''' •' I I '••,,,,

CD 1 '''••·· i ·20.. • ·································
~ : ·.
E~ : \ , . . ·· ' ·-"" -, __ _ ..

-40 -------····· ••• ••• ··-· ------------

•60"" 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0

0 0.1 0.2 0.3 0.4 0.5

frequency, fractions of sampling rate

Fig. 4.3 Magnitude response of three resons, normalized so that the max­
imum gain is unity. The sampling rate is 22,050 Hz, all have the same
center frequency of 4410 Hz, and the bandwidths are 1 0, 50, and 1000 Hz.

91

minimum.) Letting z = ei•, the inverse-square of the magnitude response is, from
Eq. 4.1,

(5.1)

This time it was convenient to multiply by the factor z2 so that each factor is of the
form (z - pole). The magnitude of z2 is I on the unit circle, so we can do this
without affecting the result. If we now use Euler's formula for the complex exponen­
tial, write the magnitude squared as the sum of real and imaginary parts squared, and
simplify a bit, we get

(l - R2) 2 + 4R 2 cos29- 4R(R 2 + l)cos9coscp + 4R 2 cos2 cp (5.2)

Differentiating with respect to cp (or coscp) and setting the result to zero yields the
value of cp where the peak actually occurs, which we'll call 'II:

I + R2
COS'If = 2R cos9 (5.3)

As expected, if R is very close to I, 'II is very close to 9. This is easy to see because as
R approaches I, so does the factor (I + R2)/(2R). Filter coefficients use the cosines
of angles, rather than the angles themselves (as you can see from Eq. 4.3), and Eq. 5.3
is especially convenient because it allows us to find cos9 given cosw. or vice versa.

Finally, consider the scaling: We want to control the overall gain of a reson so that
the amount it amplifies or attenuates a signal doesn't depend on its particular resonant
frequency or bandwidth. One way to do this is to use a gain factor that makes the

92 Chapter 5 Feedback Filters

magnitude response unity at the resonant frequency 'I'· This is easy; just substitute 'II
from Eq. 5.3 into Eq. 5.2, the expression for the inverse-square of the magnitude
response. The result, after some simplification, is

I = (I - R 2) 2 sin2 9
IH('If)l 2

(5.4)

Thus, all we need to do to normalize by the magnitude response at resonance is to use
the gain factor

A 0 = (I - R 2) sin9

To summarize, here's how we usually design a reson:

(a) Choose the bandwidth B and the resonant frequency 'I'·
(b) Calculate the pole radius R from the bandwidth Busing Eq. 3.6:

R:: I - B/2

(c) Calculate the cosine of the pole angle 9 using Eq. 5.3:

2R
cos9 = 2 cos"'

I+R

(d) Calculate the gain factor A 0 using Eq. 5.5:

A 0 =(I - R 2)sin9

(e) Use the filter equation

y 1 = A 0 x 1 + (2Rcos9)y 1 _ 1 - R2y 1 _ 2

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

Notice that the gain factor A 0 replaces unity in the numerator of the transfer function,
Eq. 4.2, and hence appears as a multiplier of x 1 in the filter equation.

6 Other incarnations of reson

The kind of system described mathematically by the two-pole reson filter is every­
where. It is a more realistic version of the harmonic oscillator we started out with in
the first chapter - more realistic because it takes the dissipation of energy into
account. To understand what this means, let's look at the impulse response of reson,
the response to the unit impulse input x 1 = ~ 1 •

The equation governing the generation of the impulse response y 1 is, from Eq. 4.3,

y 1 = ~~ + (2Rcos9)y 1_ 1 - R 2 y 1_z (6.1)

The output values one sample old are multiplied by R, and output values two samples
old are multiplied by R 2 • This suggests that there is a factor R 1 multiplying the solu­
tion, so we make the substitution

y 1 = R 1w1 (6.2)

and try to solve for w 1, which should be easier than solving for y 1• Substituting this in
Eq. 6.1 we get

§6 Other incarnations of reson 93

W 1 = i> 1 + (2cos9)w 1_, - Wr-2 (6.3)

Notice that i> 1, the unit impulse, is zero fort > 0, which allows us to cancel the factor
R 1 fort > 0. When t = 0, R 1 = I, so there's no factor R to cancel. The signals are
all zero for t < 0, so we can therefore cancel R for all t.

Equation 6.3 represents a two-pole resonator with poles exactly on the unit circle,
at e±ja. It's a good guess that the solution w1 is a phasor with frequency 9, but we
don't know the phase angle. So let's postulate the solution

w1 = Asin(9t) + Bcos(9t) (6.4)

where A and B are unknown constants, to be determined by the initial conditions of
the filter.

Next, remember that we assume the filter output is zero for t < 0, so that we can
compute the first couple of outputs by hand. This yields

w 0 =I

w 1 = 2cos9 (6.5)

Substituting these values in Eq. 6.4 results in two conditions in two unknowns. The
first tells us that B = I, and the second tells us that A = cos 9/sin 9. A little rear-
rangement finally gives the impulse response in a neat form:

= Rr[sin(9(t +I)) l Yr . 9 sm
(6.6)

The response of reson has the following interpretation. The filter oscillates at the
frequency 9, just as a harmonic oscillator does. If the pole radius R is one, putting the
poles on the unit circle, that's all the filter does; it is in effect a sinusoid generator. The
factor R 1 means that the sinusoidal output is damped (assuming R < 1), decaying to
zero. The smaller the pole radius R, the faster the output decays to zero. Figure 6.1
illustrates the impulse response for a typical center frequency and bandwidth.

This behavior is exactly analogous to what happens when a vibrating object loses
energy to the surrounding world - and all eventually do. For example, a tuning fork
eventually stops vibrating after being struck because it transmits energy to the air; oth­
erwise we wouldn't hear it. This can be taken into account by adding a term that
represents a restoring frictional force that is proportional to the velocity, so the equa­
tion for harmonic motion in Chapter I becomes

d 2x dx
- = -(klm)x - r- (6.7)
dt 2 dt

Notice the formal similarity between this differential equation and Eq. 4.3, which
describes a two-pole reson. If we set the input to the reson filter to 0 and rearrange the
equation, it takes the form

Yr-2 = -ayr - hYr-1 (6.8)

This equation uses differences instead of derivatives, and it's an example of what is
called a difference equation. In cases like these, with constant coefficients, the
mathematical behavior of the two systems is the same.

94 Chapter 5 Feedback Filters

-2, • • • • • • • • • I • • • • • • • • • I • • • • • • • • • I • • • • • • • • • I • • • • • • • • • I

0 100 200 300 400 500
time, sample number

Fig. 6.1 Impulse response of a typical reson filter; the center frequency is
2205 Hz, the bandwidth 40 Hz, and the sampling rate 22,050 Hz.

Damped resonant systems are also old friends to electrical engineers. The RLC cir­
cuit shown in Fig. 6.2 shows what ham-radio operators would call a tank circuit. It
resonates and can be used to tune receivers and transmitters. The smaller the resis­
tance R, the narrower the bandwidth and the slower the damping. Building very sharp
RLC filters is expensive because it's difficult to keep the resistance down. The analo­
gous friction in digital filters is the roundoff noise that occurs because computer words
store only a fixed number of bits.

Fig. 6.2 A tuned RLC circuit, also known as a tank circuit; the physical
counterpart of a two-pole reson.

7 Dropping in zeros: An improved reson

We can combine feedback and feedforward terms in the same filter without any prob­
lem. The result is a filter with both poles and zeros in its transfer function. The exam­
ple I'll discuss in this section not only illustrates this, but also yields a useful improved
version of reson.

§7 Dropping in zeros 95

The two-pole resonator discussed earlier in this chapter has a problem when the
resonant frequency is close to zero or the Nyquist frequency, because in those cases
the poles come close together and their peaks become partially merged. This is illus­
trated in Fig. 7.1, which shows pole locations corresponding to a low resonant fre­
quency, and in Fig. 7.2, which shows the resulting magnitude response as the solid
curve.

m=O

Fig. 7.1 Pole locations that result in a poor reson. The peaks of the two
poles almost merge, and there is no real resonance at the intended low
frequency.

: : : : :
G) ········J······················J······················J······················J····················••)•••• i : : i i i
~ -10 : '.,~ ; ; ; ;
'2 :··. ~ ----- resonwithzerosat Z=+1 and-1 ~

• "'""... : -- reson with no zeros :

~ -20 1·/·················l···· ~~-~-~-~.7-f"•w:;:;~·:·~·:·~-J~·~·~··············+·····················t····
: . :
. :,• ·.· -~ -~ ----_; ... __ :

----~-
·30 ~: ; : ; ; ,

=· : : : : : =· : : : : :
=· : : : : :. : : : :
:. : : . :

-40 ~ ; ; ;......... .
]I : : :
]I : : :
]I : : :
I : : :
I : : : • :

-50 .: ~ ~ i······················i······················i····
0 100 200 300 400 500

frequency in Hz

Fig. 7.2 Comparison of reson magnitude response with and without zeros.
The case shown corresponds to a pair of poles near the zero-frequency
point, as illustrated in Fig. 7.1. The specified center frequency is 60 Hz, the
specified bandwidth is 20 Hz, and the sampling rate is 44,100 Hz.

96 Chapter 5 Feedback Filters

The magnitude response is down only about 10 dB at zero frequency, and the "peak"
at 60 Hz is hardly a peak at all.

One way to improve the shape of the reson is to put a zero at the point z = I,
which forces the frequency response to be zero at zero frequency. The same problem
occurs at the Nyquist frequency, so we might as well put a zero there as well. This
means multiplying the transfer function by the factor I - z- 2, putting zeros at
z = ± I. The new reson then has the transfer function

(7.1)

We'll call this new filter reson_z, to distinguish it from the original no-zero reson,
which we'll call just reson. Figure 7.2 shows the magnitude response of reson_z
along with the response of reson. The zero at zero frequency clearly introduces a deep
notch there.

There is a price to pay for the improved selectivity of reson_z at low frequencies.
The performance at frequencies much above the peak is not as good as reson. One
way to explain this is to imagine yourself sitting on the unit circle in the z-plane at a
point corresponding to high frequencies. In the case of reson_z, when you look back
at the point z = I you see a cluster of two poles and one zero. One pole and one zero
effectively cancel each other out, and from far away it looks as if there's only one
pole at that point. In the case of reson, however, we see two poles at z = I. The
mountain created by the two poles is steeper than the one created by one pole; hence
the magnitude response falls off that much more quickly for reson than for reson_z. A
glance at Fig. 7.2 verifies this.

The idea of adding zeros to the two-pole reson was suggested by J. 0. Smith and J.
B. Angell [Smith and Angell, 1982], but not mainly to improve the shape of the reso­
nance peak at very low (or very high) frequencies. The problem they were worried
about comes up when we try to sweep the resonant frequency of reson by changing 9
and keeping R constant, with the intent of moving the resonant frequency while keep­
ing the bandwidth constant. It turns out that if you do this, the magnitude response at
the peak can vary quite a lot. The new reson_z is much better behaved in this respect;
I'll leave this for you to work on in the problems at the end of this chapter.

8 A powerful feedback filter

So far we've looked at feedback filters with only a couple of terms. How can we
design more complicated and powerful feedback filters, comparable to the 99-term
feedforward filter we saw in the previous chapter? There are two ways. First, we can
try to adjust the pole and zero positions using iterative optimization methods. This
turns out to be much more difficult than the corresponding problem for feedforward
filters, essentially because the design criterion can no longer be formulated to be a
linear function of the unknowns. The unknown parameters are in the denominator of
the transfer function, and the resulting magnitude response is a much messier function
than in the feedforward case.

§8 A powerful feedback filter 97

The second approach to designing powerful feedback filters deals with only a few
important, standard kinds of specifications, like lowpass, bandpass, and bandstop.
Some very smart people worked on this in the 1930s, and left us remarkably con­
venient and useful "canned" filter designs. The most widely used, and in some ways
the most impressive, of these designs is called the elliptic filter, and I'll show you an
example in this section.

Poles have a lot more punch than zeros. Going to infinity at a point in the complex
plane has a much more profound effect on the shape of the function around the point
than merely taking on the value zero. This is related to the fact I've just mentioned,
that feedback filters are hard to design to meet arbitrary specifications. But at the
same time it means we need many fewer poles than zeros to achieve a desired effect.
We'll see this in the example.

We'll look at a bandpass elliptic filter designed to pass frequencies in the range
[0.22, 0.32] in fractions of the sampling rate and to reject frequencies outside this
range. As usual, we can't hope to begin the bands of rejected frequencies exactly at
the edges of the passband, but must leave a little room for the response to move
between pass and stop, from zero to one or one to zero. The lower edge of the upper
stopband is specified to be 0.36 times the sampling rate. The three numbers specified
so far, giving the two edges of the passband and the lower edge of the upper stopband,
determine the fourth, which is the upper edge of the lower stopband. The design algo­
rithm for elliptic filters automatically determines the fourth frequency from the other
three.

Only four pairs of complex poles and four pairs of complex zeros do the trick.
Each pair of complex zeros and poles corresponds to a transfer function that looks like

(8.1)

The filtering operation is usually broken down into stages like this, and the filtering is
performed by passing the signal through successive stages. This is called a cascade
form of second-order sections. This example, then, requires four such stages.

Figure 8.1 shows the positions of the poles and zeros. Notice that the poles are
grouped around the passband, and the zeros occur exactly on the unit circle in the
stopbands, to produce sharp notches there. Figure 8.2 shows the magnitude response
of the feedback filter. There are many fewer ripples in the magnitude response than in
the 99-term feedforward example given in the previous chapter because there are only
eight zeros and eight poles.

Why would anyone ever use a feedforward filter with, say, 99 terms, when they
could use a feedback filter with only 16 (four stages with four terms each)? One rea­
son is the phase response. Feedforward filters can be designed with precisely linear
phase, which means all frequencies are delayed equally. This amounts to having no
phase distortion. Feedback filters, on the other hand, can have quite a bit of phase dis­
tortion. Another important reason is that feedforward filters are much easier to design
to meet completely arbitrary specifications.

98 Chapter 5 Feedback Filters

1.0

0.5

0

-o.5:

-1.0••.... ;-,. ,,.,.-"""'
-1.o -o.5 o 0.5

z-p18ne
x poles
• zeros

1.0

Fig. 8.1 The pole-zero pattern of the example elliptic passband filter.

m ,
.; ,
:::J

=E
"' ..
E

10

0

-10

-20

-30

• ,~ ,, I

·~ ,• ·. : \ :·
I I ', ,' II

passband response

••••• X100

:D .. .!J f\ .. C
0 0.1 0.2 0.3 0.4 0.5

frequency in fractions of sampling rate

Fig. 8.2 Magnitude frequency response of the example elliptic passband
filter. The passband is specified to be [0.22, 0.32] in fractions of the sam­
pling rate, and the lower edge of the upper stopband is 0.36 in fractions of
the sampling rate. The dashed curve in the passband shows the response
magnified by 100. The specifications call for at most 0.083 dB ripple in the
passband and at least 40 dB rejection in the stopband.

Notes

Problems

Problems 99

What I call feedback digital filters correspond almost always to what are called
Infinite Impulse Response (IIR) filters in the literature. An IIR filter is defined to be a
filter whose impulse response has an infinite number of nonzero terms. A two-pole
reson, then, is an IIR filter as well as a feedback filter. But the terms are not exactly
equivalent. Similarly, what I call feedforward digital filters usually correspond to what
are called Finite Impulse Response (FIR) filters. To explore the subtle differences in
definition, see Problem 9.

Note that the way I use the term, a feedback filter can have some feedforward
terms, like the reson with added zeros in Section 7. What's important is whether or
not there's feedback.

Adding zeros to reson to regulate peak gain was suggested in

[Smith and Angell, 1982] J. 0. Smith and J. B. Angell, "A Constant-Gain
Digital Resonator Tuned by a Single Coefficient,'' Computer Music Jour­
nal, vol. 6, no. 4, pp. 36-40, Winter 1982.

The minutiae that are the subject of Problem 8 come from

K. Steiglitz, "A Note on Constant-Gain Digital Resonators," Computer
Music Journal, vol. 18, no. 4, pp. 8-10, Winter 1994.

1. The following approximation is sometimes given for the pole radius R of a reson in
terms of the bandwidth B in radians:

Show that this is very close to the result we got in Eq. 3.6, and try to explain where
this exponential form comes from.

2. Fill in the steps between Eqs. 5.1 and 5.2 in the derivation of the exact resonance
frequency of a reson filter. Then finish the derivation of Eq. 5.3.

3. (a) For what ranges of values of Rand 9 is the discrepancy greatest between the true
peak frequency 90 and the pole angle 9?

(b) When 9 is small, is 90 shifted to higher or lower frequencies?

(c) Derive an estimate for the discrepancy in terms of 9 and 1-R.

(d) Try to synthesize an example in which the difference is audible.

4. (a) Show that the gain factor to use if we want to normalize by the magnitude
response at the pole angle 9 instead of the peak resonant frequency 90 is

A = (I - R)(I - 2Rcos(29) + R 2) 'h

(b) Show that this gain A approaches the gain A 0 in Eq. 5.5 as R approaches I.

100 Chapter 5 Feedback Filters

5. Show from Eq. 5.3 for a two-pole reson that for any R > 0 there is always a pole
angle 9 that achieves a specified true peak frequency 'I'· Show on the other hand that
for some combinations of values for R and 9 there may be no peak frequencies other
than at 0 or x.

6. Suggest some applications for which it· would be useful to keep the bandwidth of a
reson fixed when we change its center frequency. Then try to think of applications for
which we would want to change the bandwidth when we change center frequency.
What about situations in which we would want to change bandwidth but keep center
frequency fixed?

7. As mentioned in Section 7 and the Notes, Smith and Angell propose reson_z mainly
to keep the peak gain (magnitude response) close to constant as 9 is changed and R is
kept constant. They suggest putting the zeros at ±..,JR as an alternative to± I. Call the
result reson_R, to distinguish it from reson_z.

(a) Write the transfer function !}{(z) of reson_R.

(b) Write the equation giving the output y at timet in terms of past and present inputs
x and past outputs.

(c) Show that the magnitude response at the frequency corresponding to angle 9 does
not depend on the pole angle 9, but only on the radius R.

8. Here are some nitpicking details I point out in the article mentioned in the Notes.
Don't work on this problem unless you have nothing else to do.

The actual peaks in the magnitude response of reson, reson_z, and reson_R do not
occur precisely at the pole angle 9. This means that the peak gain of reson_R isn't
actually constant when 9 is changed and R is kept constant.

(a) Find the true peak frequency 'II of reson_z in terms of 9 and R. Is there always a 'II
given 9? A 9 given 'If?

(b) Find the true peak gain of reson_z. The answer is actually independent of 9!

(c) The answer to (b) means that reson_z is preferable to reson_R if we want to keep
the peak gain constant while changing 9. Why?

9. As mentioned in the Notes, the terms "feedback filter" and "IIR filter" are not
perfectly synonymous. Give a concrete example of a feedback filter that is not an IIR
filter. What about an IIR filter that is not a feedback filter?

10. The argument leading to Eq. 2.7, showing that a feedback filter is stable if and
only if all its poles lie inside the unit circle, is heuristic and not rigorous. Criticize it.
Fix it.

CHAPTER 6

Comb and String
Filters

1 Comb filters

In this chapter we're going to explore some filters that are very useful for generating
and transforming sound. By the end of the chapter we will have built an astonishly
simple and efficient digital plucked-string instrument that is used all the time in com­
puter music. In the process you'll get some practice using feedback filters, and also
build up some intuition relating the behavior of comb filters to the standing waves on
strings and in columns of air that we studied in Chapter 2.

In Chapter 4 we looked at inverse comb filters, but I haven't said yet where that
name comes from. The inverse comb is described by the filter equation

(l.l)

where x, and y, are the input and output signals, as usual. This filter uses only past
inputs- no past outputs- so it's a feedforward filter. Suppose instead we consider
the feedback filter that uses the past outputy,_L in place of -x,_L:

(1.2)

The reason we changed the sign of the delayed output signal will become clear
shortly. To find the transfer function and frequency response, write Eq. 1.2 symboli­
cally:

Y =X+ RLz-Ly

Solving for the transfer function YIX gives

:H(z) = RL -L
I - z

We'll call this feedback filter a comb filter.

(1.3)

(1.4)

102 Chapter 6 Comb and String Filters

Notice that the transfer function of this feedback filter is precisely the reciprocal of
the transfer function of the feedforward filter called an inverse comb in Section 8 of
Chapter 4. From this it follows that the magnitude frequency response of the comb
filter is the reciprocal of that of the inverse comb. This explains the terminology. In
fact, if we follow one filter with the other, the net result is to restore the original input
signal; the two filters cancel each other out. Let's check this for the case of an inverse
comb followed by a comb. As above, call the input to the inverse comb x and its out­
put y. The signal y then becomes the input to the comb; call its output w. The equa­
tions for the two filters then become

Yl = xl - RLxi-L

wl = Yl + RLwi-L

Solve the second equation for y 1 and substitute in the first, yielding

x 1 - RLx1_L = W1 - RLw 1_L

Fig. 1.1 The location of the poles of the comb filter in Eq. 1.2. The plot
shown corresponds to a loop delay of L = 8 samples, and hence shows 8
poles.

(1.5)

(1.6)

Our goal is to show that the signals x and w are identical. Before we rush to con­
clude that this is implied by Eq. 1.6, there's a detail I've glossed over. We have to say
something about how the filters get started, and whether the input x has been going on
for all time. Let's make the simple assumption here that the signal x doesn't get
started until t = 0- in other words, that x 1 is zero for t < 0. (I'll leave the fine point
of what happens otherwise for Problem 1.) If this is so then Eq. 1.6 implies that
x 1 = w1 fort = 0, I, ... , L -I, because the delayed terms x 1_L and w1_L are zero
in that range. This implies, by the same reasoning, that x 1 = w 1 for
t = L, L +I, ... , 2L- I. We can continue the argument to infinity, block of L by
block of L. In fancier terminology, this is a proof by induction on blocks of signal of
length L.

Figure 1.1 shows the poles of the comb filter described by Eq. 1.2. They're
exactly where the zeros of the inverse comb are (see Fig. 8.1 in Chapter 4)- at the
zeros of the denominator I - RLz-L, equally spaced around the circle of radius R.

Ol
'tJ

§ 1 Comb filters

50

40

20

........................... .. .

........

. ; ; ·········-=- ·· ·· ··· ········ .. ·· ·7· ···· ·· ··· ·· ···· ·· ···.;
: : . . :
.

0.1 0.2 0.3 0.4 0.5
frequency, fractions of sampling rate

Fig. 1.2 Frequency response of the comb filter described in the previous
figure. The case shown is for R = 0.999.

Fig. 1.3 Magnitude of the transfer function of the comb of Figs. 1.1 and
1.2, shown as a contour plot above the z-plane.

103

104 Chapter 6 Comb and String Filters

You can view the canceling of the comb and inverse comb filters as simply the poles
of the comb transfer function canceling the zeros of the inverse comb transfer func­
tion. Figure 1.2 shows the magnitude frequency response of the comb for the case of a
loop delay L = 8. It is of course just the reciprocal of the magnitude response of the
inverse comb. In decibels, the reciprocal of a number becomes its negative, so one
magnitude plot can be obtained by turning the other upside down, as hinted at the end
of Chapter 4. It should be clear now why we call these "comb" filters.

Finally, a bird's-eye view of the magnitude response as a contour plot above the
z-plane is shown in Fig. 1.3. It looks just like the pole pairs of three resons, plus
another pair of poles at ±I.

2 Analogy to standing waves

A comb filter works by adding, at each sample time, a delayed and attenuated version
of the past output. You can think of this in physical terms: The delayed and
attenuated output signal can be thought of as a returned traveling wave. This kind of
analogy has been used in interesting ways recently by Julius Smith and Perry Cook to
model musical instruments, and I've given some references to their work in the Notes
at the end of this chapter. I want to introduce just the flavor of the idea here, and I'll
return to this theme later when we discuss reverberation in Chapter 14.

Figure 2.1 shows the signal flowgraph for a comb filter, with some suggestion of a
traveling-wave interpretation. An output wave travels around the feedback loop and
returns after a delay of L samples; the return wave is added to the input, but only after
it is attenuated by the factor RL, which we'll assume is less than one in magnitude.
You can think of the parameter R as the signal attenuation per sample. For example,
the wave may be traveling through air, which absorbs a fraction of the wave's energy
every T. seconds, where T. is the sampling interval. The delay L is the round-trip
time in samples.

inp,ut x ~6:>---L~~~J __ '-... - ·~~~~~~-~ -ou.~put y

-· _:> l
0 ..

de/ayL

Fig. 2.1 The signal flowgraph of a comb filter with a hint of its traveling­
wave interpretation.

In vibrating columns of air, waves are reflected at boundaries in two ways.
Reflection at a closed end of a tube inverts the sign of a wave; reflection at an open
end doesn't. What matters in Fig. 2.1 is the net effect of a round-trip, which we want
to be no change in sign, being that we've chosen the sign of the feedback term to be

§2 Analogy to standing waves 105

positive. Therefore the appropriate analogy to the comb filter is a tube of length L/2
(so the round-trip time is L), either closed at both ends or open at both ends. As for
strings, we can't really imagine a vibrating string that is not tied down at its ends, so
the analogy must be a string fixed at both ends, also of length L/2.

A string tied down at both ends (or a tube open or closed at both ends) has the
natural resonant frequencies k2x/L radians per sec, as shown in Eq. 5.15 in Chapter 2,
where k is any integer. (That equation actually has frequencies kx/L; the factor of two
is explained by the fact that here the string is of length L/2 instead of L.) These are
precisely the angles where the poles of the comb filter occur in the z-plane. This
checks our interpretation and gives us an intuitive way to understand the resonances as
standing waves. The resonant frequencies are the ones that fit in the feedback loop an
integer number of times, just as the standing waves are the waves that fit perfectly on
the string or in the tube.

What happens if the sign of the wave is inverted in the course of a round-trip of
the feedback loop? This corresponds to replacing the plus sign in Eq. 1.2 by a minus:

(2.1)

Physically, this corresponds to the vibration of air in a tube that is closed at one end
and open at the other. Recall from our work with tubes that the fundamental resonant
frequency is now half of what it was with both ends closed or open, and that only odd
harmonics are possible (see Eq. 7.12 in Chapter 2). Algebraically these frequencies
are k2x/(2L) = kx/L, where k is an odd integer. (Again, there is a factor of two
because now the round-trip length is L instead of 2L.) The physical picture has
sinusoids with maxima or minima at one end and zeros at the other (Fig. 7 .I in
Chapter 2).

Let's check the comb filter with a sign inversion against the tube closed at one end
and open at the other. The transfer function corresponding to Eq. 2.1 is

!Jl(z) = (2.2)

and the poles are at roots of the equation

(2.3)

Since

(2.4)

the roots are all shifted by an angle x/L with respect to the case of a comb filter
without sign inversion, as shown in Fig. 2.2. These pole angles are in fact odd har­
monics of the fundamental frequency x/L. I hope by this point you can anticipate the
frequency response, shown in Fig. 2.3, from the pole pattern. Each pole near the unit
circle causes a resonance peak - and the resonant frequencies of the comb are
exactly the same as those of the analogous resonant tube.

106 Chapter 6 Comb and String Filters

(l)=!t ro=O

Fig. 2.2 Pole locations of an 8-pole comb filter with sign inversion around
the feedback loop.

50 ~·······················~·······················:·······················:······················~······················~

.............................

.............................

! ~ . . ~ :
-10 "''"'~'I''"''I'II''•'I''II''''"''W'I'II''"''''W'I'II''''''""''''"''I'I'W''•'•'.;''''"'''"''"'"''''"''oi'I'T'•'•''W'I'W''I'II''W'I'i

0 0.1 0.2 0.3 0.4 0.5
frequency, fractions of sampling rate

Fig. 2.3 Frequency response of the 8-pole comb filter with sign inversion.
The case shown is for R = 0.999.

3 Plucked-string filters

Comb filters are versatile building blocks for making sounds of all sorts. Variations of
them can be used to simulate reverberation, to transform the character of any input
sound, or to construct a very striking and efficient instrument that sounds like a
plucked string.

A comb filter gets you a lot for a little - a simple delay line holding 50 samples
results in a filter with 25 pole-pairs, and therefore 25 resonant frequencies. The filter's
frequency response is complicated, but its implementation entails only one multiplica­
tion and one addition per sample. In a sense the comb's success stems from the fact
that it models a basic physical phenomenon: the return of an echo.

§3 Plucked-string filters 107

Next, I want to show how the physical interpretation of a comb filter can be
exploited to derive the plucked-string filter. Suppose we apply a unit impulse to the
comb filter in Eq. 1.2. What is the resulting impulse response? Well, the unit impulse
returns L samples later, and is multiplied by the coefficient RL. There is no other
input to the delay line, so nothing else happens between time 0 and time L. The pulse
of height RL then enters the delay line and returns L samples later, and so forth. The
impulse response is therefore

{
R'

h, = 0
if t = 0 mod L

elsewhere
(3.1)

That is, h 1 = R' for t = 0, L, 2L, ... , and zero otherwise. This is a periodic
sequence of pulses at the fundamental frequency f 5 /L Hz, an integer fraction of the
sampling rate - except that it decays at a rate determined by the parameter R. The
closer Risto one, the slower it decays (and the closer the poles are to the unit circle).
If you listen to the impulse response of a comb filter, that's exactly what you hear: a
buzzy sound with pitchf,/L that dies away. Not very exciting.

Remember that a string tied down at both ends supports standing waves because
traveling waves are reflected from both those ends. The behavior of a comb filter is
very similar, as noted in the previous section. We might therefore expect the impulse
response of a comb filter to sound like a string that is suddenly set in motion - but it
doesn't. Why not? Because the sound of a string changes in a certain way over the
course of a note. This is an example of a recurrent theme in computer music and in
psychoacoustics in general: sounds are not interesting unless they change their fre­
quency content with time. Perfectly periodic waveforms are boring.

But the behavior of the comb filter does reflect the fact that a plucked string does
not go on vibrating forever. Its energy is gradually dissipated to the rest of the world.
Some energy is radiated in the form of sound to the air, and some is transmitted to the
supports at the ends of the string, where it contributes to the radiation of sound by
other parts of the instrument, like the bridge and sounding board. This decay in energy
is captured by the poles of the comb filter being inside the unit circle at radius R, caus­
ing the waveform amplitude to decay by the factor Revery sample (RL in L samples).

We're still missing something critical: the insight that the different frequency com­
ponents produced by a vibrating string decay at different rates [Karplus and Strong,
1983]. The high frequencies die away much faster than the low frequencies. This is
illustrated in Fig. 3.1, which shows the spectrogram of a real plucked string, an acous­
tic guitar note. Notice how the high-frequency components present at the attack die
away faster than the fundamental components.

Karplus and Strong suggest a very clever modification of the comb filter to take
this effect into account. The idea is to insert a lowpass filter in the feedback loop so
that every time the past output signal returns, its high-frequency components are
diminished relative to its low-frequency components. This works like a charm. In fact
it works so well it seems almost like magic.

What's more, the following very simple lowpass filter works well:

y 1 = ~[x, +x1_ 1) (3.2)

108 Chapter 6 Comb and String Filters

N 12 J:
-"

t- 10 c
CD
::J

I 8

6

4

2

0
0.0 0.25 0.5 0.75

time, sec

Fig. 3.1 Spectrogram of a real acoustic guitar note, the F# in the octave
above middle C's octave, which corresponds to a pitch of 740 Hz. The
abscissa is time in sec, and the ordinate is frequency in kHz. The horizon­
tal bars show the harmonics of the fundamental frequency.

Except for the factor of two, we looked at the same filter in Section 7 of Chapter 4; it
has the transfer function

(3.3)

with a zero at the point in the z-plane that corresponds to the Nyquist frequency,
z = - 1 . Its complex frequency response can be put in the form

H (ro) = cos (ro/2) eiw< 1 - '1>1 (3.4)

The magnitude response I H (ro) I = I cos (ro/2) I starts at unity for zero frequency and
slopes down to zero at the Nyquist frequency, as shown in Fig. 3.2. This is a modest
lowpass filter, but it does the job nicely. The intuition is that the filter operates on the
signal every time it executes a round-trip around the feedback loop of the comb. After
m round-trips, the signal has been processed by the lowpass filter m times, so its fre­
quency content has been multiplied by I H (ro)I m. It is therefore a good thing that the
filter has a gently sloping frequency response; otherwise, the high-frequency com­
ponents of the signal would get wiped out too fast.

Figure 3.3 shows the spectrogram of a note produced by the plucked-string filter
just described. The abscissa shows time in sec, and the ordinate shows the frequency
content for a time segment around that time. The faster decay of the higher frequen­
cies is just what we planned.

We now come to an interesting point about phase response. In many cases, the
phase response of a filter is not critical, but when the filter is in a feedback loop, as it
is now, its effect on phase can be critical. Equation 3.4 shows that the lowpass filter
has linear phase, so its delay is the same for all frequencies. In fact, the complex

§3 Plucked-string filters

10 ~
!g 5 ~ · ·· · ······· · ···· · ··· · · ·· ·· ·· ·· ······ ·· ····· ··~ · ···· ··· ····· · · · · · · · · · •! ••• •···· · · ··· · ·· · · ·· · · <·· ·· · · · · ·· · · · · ·· ·· · ··· · <

:lf 0 : . ······· ·· · · · · ······ · · '· · ··· ·· · ··· ·· · ··· · ··· · +·· · · · ·· · ·· ······ ·· ··· · ~· · · · ···· · ·· ··· ·· · ·· ····~ c
§. -5 ~ - -· ·· · ·· ·· · ······· ·· · ·· ; ; : ·· · · ·· · · · ···· ··· ··-~·-··· ········· · ·· ·· · · · ·-~
! ~ ~ ~ ~ ~ ~
~ -10 ~······ · ··· · ··· · ······· · :-- ··· ···· · ··· ·· ···· · · ··t·· · ·· ··· · · ·· · ··· ·· ·· ·· t · · · · ··· ·· · · ······· · · · ~ ········· ···· ·· ·· ·····t i -15 i···· ·· ··· ······ ········[········ ····· ··········>···· ··· ·············[·················· ····]······ ··· ············]

-20 .; •... ;• .•. .. . ;•• ;;. ,
-25 ~ ···· ·· ········· ·· ·· ····~ ·· · ·· ·· · ·· · ····· · ·· · ···~· · ···· · ·· ·· · ··· ··· · ··· ·~·· ·· · ·· · · · ······· · ··· +· ········ ·· ······ ... ;
-30 i ·· ·· · ··· ······· ··· · ··· ·t · ·· · ··· · ······ ·· ··· · ··t········· ·· ············~······················t···················· ·j

.
-35 ~-······ · ··· · ··· · ·······~····· ··· ·· ~ +··· .. ··· ·· ···· .. · · · ·· · ~· · ·· ·· ·"""'' ' '' " " " " ~ -
-40 ~ ; - ~· -~··· ·~·... :

.
45 ; ;; T· ····· ······ ···· ···· ·· f. ·· ··· ··· ··········· ·· ·

0 0.1 0.2 0.3 0.4 0.5
frequency. fractions of sampling rate

Fig. 3.2 The magnitude response of the simple lowpass feedforward filter
used in the plucked-string filter.

6

~ 5
CD
::J

I 4

0 .0 0 .25 0.5 0.75
time, sec

Fig. 3.3 Spectrogram of a note produced by the plucked-string filter. The
abscissa shows time in sec, and the ordinate shows frequency in kHz.
The parameters are R = 0.9995, L = 75, and fs = 22,050. One hundred
random numbers were used as initial input.

109

exponential factor is precisely equivalent to a delay of one-half sample. The loop
delay is therefore L + ~ samples, not L samples, and the fundamental frequency
generated is fsl(L + ~) . This is not a trivial matter; when L = 50, for example, the
difference in frequency caused by the lowpass filter is about 1 percent - easily dis­
cernible by ear.

110 Chapter 6 Comb and String Filters

The plucked-string filter we have now is so nice to listen to, and so efficient, that it
is one of the most commonly used computer instruments for real-time applications.
Because it is so widely used, there has been a fair amount of work in tuning it up
(literally and figuratively), and extending it to other kinds of sounds. We will discuss
some of these ideas here, and for more information you should see [Karplus and
Strong, 1983] and [Jaffe and Smith, 1983].

The filter we've constructed is a little more intricate than the simple feedforward
or feedback filters we've seen so far: It consists of a feedforward loop within a feed­
back loop. In the next section we'll describe the filter's implementation and then take
a look at its frequency response.

4 Implementing plucked-string filters

Figure 4.1 shows a signal flowgraph of the plucked-string filter, with its feedforward
loop within its feedback loop.

output Y

Fig. 4.1 Signal flowgraph for the plucked-string filter. Note the intermediate
signal w.

To write the update equations for implementing the filter, it's convenient to introduce
the intermediate signal w, which appears immediately after the closing of the feedback
loop. The signal w is determined by the input x and the delayed and weighted output
y, as follows:

WI =XI + RLYI-L (4.1)

The output at time tis determined by the feedforward filter with input w, so

Y1 = 'l2w1 + 'l2w1-1 (4.2)

This is a little different from the situations we've seen up to now. The determination
of the next value of the output is determined by two equations instead of one. But this
presents no new difficulty. At each value of the sample number t, we first find w1

from x 1 and y I-L• using Eq. 4.1; then we find the output value y 1 from w 1 and w 1_ 1,

using Eq. 4.2. Of course, just as in the simple feedforward or feedback filter, we need
to save signal values for future use. In this case we need to save the past output values
back to YI-L• as well as the value of w at the previous sample, w1 _ 1•

§5 Resonances of the plucked-string filter 111

You should be a little worried at this point about the possible side effects of what
we did. We inserted a lowpass filter in the feedback loop of a comb to attenuate the
high frequencies as they circulate around the loop. The magnitude response of the
lowpass filter does have the desired effect, as we've seen from the spectrogram in Fig.
3.3. The phase response of the lowpass filter introduces an additional half-sample
delay, and we argued that this makes the loop delay L + lh samples instead of L. But
how do we know where the resonances of the altered filter really are? Are they at mul­
tiples of the fundamental frequency fsf(L + lh}? The resonances of a filter with
feedback are determined by its poles, and in the case of the simple comb, the poles are
at the Lth roots of unity - equally spaced in frequency. But now the algebraic deter­
mination of the pole locations is very difficult (I don't know if it's even possible), and
we are forced to look directly at the frequency response.

5 Resonances of the plucked-string filter

To look at the frequency response of the plucked-string filter we need to derive its
transfer function. This is not very hard, using the same symbolic approach we used
for simpler filters. Recall that a delay of one sample is represented by the operator
z- 1; a delay of L samples by z-L. In terms of these operators, Eqs. 4.1 and 4.2
become

(5.1)

and

(5.2)

It is now a matter of a little algebra to solve for the ratio Y/X, the transfer function of
the filter from input X to output Y. First substitute the expression for Win Eq. 5.1 into
Eq. 5.2, getting an equation involving only Y and X. Then solve for Yin terms of X,
yielding

~[1 + z- 1]
!l{(z) = Y/X = --=-=----'------"--.,...--

1 - RLz-L~[1 + z- 1]
(5.3)

We're most interested in the magnitude response corresponding to this transfer
function. This is not really hard to compute, but I want to take a little time to explain
some details of the program I wrote to do it. It will be a good review of the previous
two chapters. First, I multiplied the numerator and denominator of Eq. 5.3 by 2zL+ 1,

to get the transfer function in the less confusing and more conventional form of a ratio
of polynomials:

zL+l + ZL
!7{(z) = -----':----'----

2zL+I - RLz - RL
(5.4)

We want to evaluate this for z on the unit circle, so I then replaced z and its powers
using Euler's formula:

z = cosro + jsinro

zL = cos(Lro) + jsin(Lro) (5.5)

zL+l = cos((L+1)ro) + jsin((L+1)ro)

112 Chapter 6 Comb and String Filters

It's then easy to write out explicitly the real and imaginary parts of the numerator and
denominator:

!l{ea{ {numerator} = cos((L +I) ro) + cos(Lro)

I mag {numerator} = sin ((L + I) ro) + sin (Lro)

!l{eaf{denominator} = 2cos((L+l)ro)- RLcosro- RL

/mag {denominator} = 2sin((L+ l)ro) - RLsinro

(5.6)

where ~a{ and /mag denote the real and imaginary parts, respectively. I assigned tem­
porary variables for these four components, the real and imaginary parts of the
numerator and denominator. The magnitude response is the magnitude of this as a
complex function, or

IH(ro)l = [!l{ea{ {numerator}1 2 + [/mag {numerator}f []
~

[~a{ {denominator } 12 + [I mag {denominator } 12
(5.7)

I then just evaluated this for ro on a grid in the range from 0 to 7t radians per sample.
Figure 5.1 shows the result when L = 32 and the coefficient R = 0. 999. Since

the round-trip delay of the feedback loop is 32.5 samples, we expect the resonances to
occur at integer multiples of !.132. 5, and these frequencies are marked by triangles on
the graph.

50 1''''''''''''''''''''''':·······················:·······················;······················~·······················~
.

40 ": ~ ~ ~ ~ ~ .
30 ·······i·······················~······················t······················t······················j

: "' : : : :
20 ·? •'f'• ? ~ ·~· ~

: "': : : :
: :"' : : :

...... : : :t' : ; ;
: : "' : : : 10

_,: !••••-•--•••--•-••••-• .••• ····----• ;· __ ••••...••••.•. :·'---~--·· :····~ '
~ : ~ ~ ~ "'~

-20 "'' ~''fl '1''11''1'"' 'fl'l' 'II''''"''W''I' "''"'I' 'W''I'"''i 'I''W''•'I'~ 'I' 'II''"' I';. 'I'"' 'fl' 1'¥ 01'1° 0fl'l';. 'fl' I''" 'I'"''"' ''W''I'i

0 0.1 0.2 0.3 0.4 0.5

frequency, fractions of sampling rate

Fig. 5.1 Magnitude response of a plucked-string filter, for the case of a
loop length L = 32 and pole radius R = 0.999. The expected resonant fre­
quencies, integer multiples of fs/32.5, are indicated by triangles.

The first interesting thing to notice in Fig. 5.1 is that the resonance peaks increase
in width as frequency increases. This is exactly what we should expect, since the
lowpass filter inserted in the loop causes higher frequencies to decay faster. Wider

§6 First-order allpass filter 113

resonance peaks correspond to poles farther from the unit circle, and to signal com­
ponents that decay faster.

Second, the peaks in the magnitude response line up very closely with the
predicted integer multiples of !.132.5. The peaks are not precisely at the expected
points, and they also are not at exact integer multiples of the frequency of the first
peak. This deviation of the overtone series from a simple harmonic progression is
smaller when the harmonic numbers are lower, and also when the loop delay L is
larger (corresponding to a lower fundamental frequency). But the deviations, espe­
cially at the lower harmonics, are very tiny. Tinier than we usually need to worry
about. For example, in our example with a loop delay of 32 samples, the tenth har­
monic is off by only 0.027 percent. The deviations for lower harmonics and lower­
pitched filters are even smaller.

A third noticeable difference in the magnitude response of the plucked-string filter,
compared to a comb filter, is its generallowpass shape. The peaks decrease in ampli­
tude with increasing frequency, whereas the peaks of the comb filter are all of equal
height. This is not surprising, since we inserted a lowpass filter in the path between
input and output.

The plucked-string filter is so useful for musical purposes that we will want to be
able to tune its pitch very finely. That leads us to the first-order allpass filter, a useful
and interesting filter in its own right.

6 The first-order allpass filter

At this point we have only crude control over the pitch of a plucked-string filter. We
can choose the integer loop length L, yielding a fundamental pitch f.I(L + ~). but
that integer L is all we have to work with. To see just how crude this control of pitch
is, let's see what happens when L = 10. This is a perfectly reasonable example, by
the way; if the sampling rate is 22,050 Hz, a loop length of I 0 corresponds to a
pitch of 22,050/10.5 = 2100 Hz, which is very close to the C three octaves above
middle C. Now suppose we decrease L by one. This increases the pitch to
22,050/9.5 = 2321.05 Hz, which is almost up to the following D, a jump of almost a
full step in the scale. We appear to be in real trouble if we want to produce the C#
between the two. Smooth glissandos seem to be out of the question. Getting better
control over the pitch of the plucked-string filter presents an interesting problem,
which we'll now address.

Intuitively, the fundamental resonant frequency of the plucked-string filter is deter­
mined by the total delay around the feedback loop. If the total delay is D samples, or
DT. sec, the first resonant frequency is 1/(DT.) = f.ID Hz. We haven't said any­
thing about D being an integer number of samples. In fact, in the plucked-string filter
we have so far, D is the sum of the integer buffer length, L, plus one-half sample due
to the lowpass filter, so D is not an integer. What we would like is a way to introduce
additional delays of fractions of a sample period in the feedback loop. That would
enable us to fine-tune the delay D and hence the pitch.

In fact, what we'd like is a filter that introduces, or comes close to introducing, an
arbitrary fractional delay, but has no effect on the magnitude of the frequency

114 Chapter 6 Comb and String Filters

response around the feedback loop. We already have a loop with the Iowpass charac­
teristic we want for the plucked-string sound, and we don't want to tamper with a
good thing. The idea is to try to construct a filter that has no effect on the magnitude
of phasors, no matter what their frequency. Suppose we start with a pole at z = p,
where p is some real number. Maybe we can add a zero to the filter transfer function
so that the effect of the pole on the magnitude response will be canceled. Where
should we put the zero? One answer is: the same place - that will cancel the effect
of the pole perfectly. But, of course, that accomplishes nothing; it gets us back to a
unity transfer function, and has no effect on the phase response.

Putting the zero at -p doesn't do the trick. If pis positive, for example, the pole
will have a Iowpass effect, and a zero at - p will have the same effect. The result will
be to exaggerate rather than cancel the effect of the pole.

There aren't many other places to try. How about putting the zero at z = 1/p?
That does put the zero closer to the lower than the higher frequency points on the unit
circle, so its effect will be highpass - opposite that of the pole. This sounds promis­
ing. Let's look at the magnitude response, using Fig. 6.1. The vector from the pole to
an arbitrary point on the unit circle is labeled with length B, and the corresponding
vector from the zero is labeled with length C. The point on the unit circle is at fre­
quency 9 radians per sample.

z-plane

(I)= It

-----------0>
1/p

Fig. 6.1 Pole-zero diagram and some geometry for the first-order allpass
section.

Recall that the magnitude response at frequency 9 due to a zero is the length of the
vector from the zero to the point on the unit circle at angle 9 (Section 6 of Chapter 4).
Similarly, the magnitude response due to the pole is the reciprocal of the length of the
vector from the pole to the point on the unit circle. Therefore the magnitude response
of the filter with both the zero and pole is the ratio of these lengths, C/B. Let's try to
put this in terms of 9 and the constant p.

We can express Bin terms of p and 9 using the law of cosines:

8 2 = 1 + p2 -2pcos9 (6.1)

Similarly, we can write C in terms of p and 9 using the same law:

§6 First-order allpass filter

C2 = I+ I/p2 - 2(I/p)cos9

Multiplying Eq. 6.2 by p2 yields the right-hand side of Eq. 6.1, so

p2C2 = 8 z

or, forming the square of the magnitude response C/8:

cz/82 = l/p2

II5

(6.2)

(6.3)

(6.4)

This is even better than we could have hoped for: The magnitude of the frequency
response is perfectly independent of frequency! This sounds almost magical, but it is
correct: if you place a zero at the reciprocal of the real pole position, the filter has a
magnitude response that is absolutely constant with respect to frequency. All frequen­
cies are passed with equal weight. We call such filters allpass filters.

Before we go on, remember that it is perfectly acceptable to have a zero outside
the unit circle. A pole outside the unit circle causes instability, as noted in Section 2 of
Chapter 5. But zeros are tamer creatures, and we can put them anywhere in the z­
plane. This makes the allpass construction feasible.

We want to look at the phase response of our single-pole, single-zero allpass filter,
but first let's construct the transfer function corresponding to the pole and zero in Fig.
6.I:

!l{(z) = K z + Ila
z +a

(6.5)

where K is any constant, and we've used the parameter a to avoid minus signs; the
pole is at the point z = -a. We have the freedom to choose the constant factor K any
way we want; it is convenient to choose it to force the transfer function to have the
value one at zero frequency, the point z = I. Setting !7{(I) = I gives us K = a, and
hence the transfer function is

-I
!l{(z) = z + a

I + az- 1

As usual, we've written the transfer function in terms of z- 1, the delay operator.

Fig. 6.2 Signal flowgraph for a first-order allpass filter.

(6.6)

The allpass filter we've just derived is a combination feedforward and feedback
filter. If we choose to implement the feedforward part before the feedback part, we get
the signal flow graph shown in Fig. 6.2, corresponding to the filter equation

116 Chapter 6 Comb and String Filters

y, =ax, + Xr-l - ay,_l (6.7)

See Problem 5 for a more efficient implementation.

7 Allpass phase response

We finally get to the phase response of the allpass filter, the reason we started looking
at it in the first place. When we get its phase response cp, it will tell us how much a
phasor of frequency co applied to the filter will be delayed. To be specific, suppose we
apply the phasor ej.,r as input. The output signal will be the phasor of unit magnitude
with its phase shifted by cp(co):

(7.1)

The right-hand side of Eq. 7 .I shows that the phasor is shifted by cp(co)/co samples.
The phase response cp(ro) is usually negative, so -cp(ro)/ro represents a delay, called
the phase delay. t In general, this phase delay is a function of the frequency co. All this
checks with the discussion in Section 7 of Chapter 4, where we pointed out that
exactly linear phase in a feedforward filter results in a constant delay. What we're
looking for in the allpass filter is a phase response that is at least approximately linear.
Remembering that, let's find cp(co) for the all pass filter.

The way to start calculating either the magnitude or the phase response is to
replace z by ej., in the transfer function, Eq. 6.6, to get the frequency response

-j(J)

H(ro) = e + ~
I + ae_1.,

(7.2)

We could now find the phase response cp(ro) by finding the real and imaginary parts of
the numerator and denominator, and using the arctangent function as follows

cp(ro) = arctan [l11UlJl {numerator}]- arctan [/mag {denominator} l (7_3)
!l(pl{ {numerator} !l(eaf {denominator}

in analogy to the magnitude calculation we did in Section 5. Instead, I'm going to be a
little tricky, in order to get the result in a particularly convenient form.

The idea is to try to introduce some symmetry in Eq. 7.2 by multiplying the
numerator and denominator by ej.,12 :

e-jro/2 + aejro/2
H(ro) = . 12 .(J)/2 (7.4)

e1., + ae-1

A good thing has now happened: We've succeeded in making the denominator very
similar to the numerator. In fact, the only difference between them is that one is the
complex conjugate of the other. If we set the numerator to reN(.,), the denominator is
re-N(.,), and the ratio can be written

reNC.,)
H((l)) = e2NC.,) = . () re-JI¥.,

(7.5)

t The term phase delay is used to distinguish this from group delay. See the Notes at the end of this chapter.

§7 Allpass phase response 117

This shows that the phase response cp(ro) is simply 2 'I'(ro), twice the phase angle of the
numerator in Eq. 7.4. (As a side effect, it also confirms that the magnitude of the
transfer function is unity.) The numerator can be written

(a+ l)cos(ro/2) +j(a-l)sin(ro/2) (7.6)

so the phase response of the allpass, finally, is

cp (ro) = - 2 arctan --tan (ro/2) [1 - a l
1 + a

(7.7)

This form for the phase is compact and pretty, but it's also particularly illuminat­
ing if we focus our attention on low frequencies. When x is small, tanx :: x, and this
gives us the following low-frequency approximation

1 - a cp(ro) :: - --ro:: -~ro (7.8)
I+a

where we've defined

~=~
1 + a

(7.9)

The variable~ is an approximation to the phase delay -cp(ro)/ro. From our discussion
at the beginning of this section, the phase delay of the allpass filter is approximately
equal to~ for low frequencies. We can also solve for a in terms of~:

I - ~
a=---

1 + ~
(7.10)

which is a handy formula if we specify the phase delay.
In practice a must always be less than one (why?), so~ is always positive. Further­

more, there is not much point in trying to approximate delays greater than one sample
with the allpass, because we can always take care of the integer part by absorbing it
into the buffer used to implement the loop delay, the integer L. We can therefore res­
trict ~ to the range between 0 and 1, which is equivalent to restricting a to the same
range.

Figure 7.1 shows plots of the phase response of the all pass filter for the ten values
of a corresponding to~ = 0.1, 0.2, ... , 1.0 samples. As predicted, the phase looks
linear at low frequencies, with slope approximately equal to - ~. The phase delay
-cp(ro)/ro gives us a better idea of the quality of the approximation, and is plotted in
Fig. 7.2 for the same range of~. We see that the allpass delivers close to the desired
delay at low frequencies. The errors are quite small for frequencies below 0.05/.,. At
the frequency 0. 05 f., for example, which is 1102.5 Hz at a sampling rate of 22,050,
the error is only 0.0031 samples for~ = 0.5 samples. At the higher frequency of
0.2J.,, the error is up to 0.0546 samples at the same~.

Notice also from Fig. 7.2 that the all pass filter's approximation to constant delay is
better for values of delay near 0 or 1 sample than it is near 0.5 samples. Think of it
this way: a delay of a fraction of a sampling interval actually interpolates the signal
between sample values. Interpolating midway is most difficult, because that point is

118 Chapter 6 Comb and String Filters

farthest from known sample values. Still, the one-zero, one-pole allpass filter does a
reasonably good job at all delays for low frequencies.

0

. .
·1 ~-······················?········· .
·2 ~·······················; ; ,"""'~""'"~"""'~"''"".''""'"

.
·3 ~-······················; ;,. ;

.
-4 .;•....................... ;; ;. i

0 0.1 0.2 0.3 0.4 0.5

frequency, fractions of sampling rate

Fig. 7.1 Phase response for the first-order allpass filter; from the top, the
prescribed delays i> are 0.1, 0.2, ... , 1.0 samples.

1.0

"' ! 0.9
E
m 0.8
oi
"' c: 0.7 &.
"' ~ 0.6 >-.. a;

0.5 ,
0.4

0.3

0.2

0.1 '---------~--~~~~~~~~:r-~ . + , ,,,,,,,.~ ~ ,,,,,~
.

0 ·······················r·······················r······················.,······················,.······················•
0 0.1 0.2 0.3 0.4 0.5

frequency, fractions of sampling rate

Fig. 7.2 Delay response for the first-order allpass filter; from the bottom,
the prescribed delays i> are 0.1, 0.2, ... , 1.0 samples.

§8 Tuning plucked-string filters 119

All our work on the allpass filter has paid off. We've shown that it provides an
effective and efficient way to tune the delay in a feedback loop. Now let's put the
plucked-string instrument together.

8 Tuning plucked-string filters

Figure 8.1 shows the finished plucked-string filter. We have two main points left to
discuss: the final details of tuning and the selection of the input signal.

The tuning of all the harmonics simultaneously with the allpass filter is not possi­
ble; from the plot of phase delay we see that the upper harmonics will have greater
relative delay than the fundamental. That is, the upper partials will be flat. Jaffe and
Smith [1983] suggest that this is not such a bad thing perceptually, and recommend
tuning the filter so that the fundamental frequency is exactly correct. Let's run through
an example to see how they do this.

output y

Fig. 8.1 Tunable plucked-string filter.

Suppose we want the lowest resonance of the plucked-string filter to occur at pre­
cisely 1000 Hz, using a sampling rate of 22,050 Hz. This corresponds to a loop delay
of 22,050/1000 = 22.05 samples. Remember that the loop delay due to the buffer
and Iowpass filter is L + 'l2 samples, so we should choose L = 21 to keep the i> of our
allpass filter in the range between zero and one sample. We then wind up with a
desired phase delay of i> = 22.05 - 21.5 = 0.55 samples.

At this point we could use the approximate formula for the allpass filter parameter
a in terms of specified phase delay, Eq. 7.10. But it would be best if we could get the
frequency of the fundamental resonance exactly right. To do this, we stipulate that the
negative of the exact phase response at the frequency ro0 (from Eq. 7.7), divided by
the frequency ro0 , be equal to the desired phase delay i>:

i> = -arctan --tan (ro0 /2) 2 [1-a l
roo I + a

(8.1)

By a stroke of luck, we can solve this exactly for the allpass filter parameter a in terms
of i> [Jaffe and Smith, 1983]:

a=
sin((I - i>) ro 0/2)

sin ((I + i>) roo/2)
(8.2)

120

Notes

Chapter 6 Comb and String Filters

Notice that for small ro0 , this reduces to the approximate formula
(I - ~)/(I + ~). as we would expect. Our example, with ro 0 = 2x·l000/22,050
radians and~ = 0.55 samples, results in a = 0.292495. The approximate formula for
a, Eq. 7 .I 0, yields a phase delay of 0.552607 samples instead of the target 0.55 sam­
ples, about 0.5 percent high. Of course, the relative error in terms of the total loop
delay of 22.05 samples is much smaller.

There are quite a few twists on the basic plucked-string filter idea, many men­
tioned in [Karplus and Strong, 1983] and [Jaffe and Smith, 1983]. I'll mention some
of them in the Problems. But we've skipped a basic one, which I'll mention here: The
initial excitation of the filter should be chosen to provide lots of high frequencies.
This lends verisimilitude to the resulting note, ostensibly because the initial vibration
of a real string has a healthy dose of high-frequency energy. The usual way to accom­
plish this is to start with an initial burst of random numbers, which I did to produce
Fig. 3.3.

The output of the plucked-string filter is almost, but not quite, periodic. In some
sense its musical quality depends both on its being close to periodic (so that it has a
pitch), and on its not being periodic (so that it's interesting). In the next chapter we're
going to develop the mathematical tools we need to understand perfectly periodic sig­
nals, paving the way for dealing with completely general signals.

Julius Smith has pioneered work on applying waveguide analogies to computer music.
The following is a useful general article, with lots of references to related work:

J. 0. Smith, "Physical Modeling using Digital Waveguides, Computer
Music Journal, vol. 16, no. 4, pp. 74-91, Winter 1992.

Perry Cook has developed some striking applications based on these ideas. See, for
example:

P. R. Cook, "Tbone: An Interactive WaveGuide Brass Instrument Syn­
thesis Workbench for the NeXT Machine," Proc. International Computer
Music Conf, San Francisco, International Computer Music Association,
pp. 297-300, 1991.

P. R. Cook, "SPASM, a Real-Time Vocal Tract Physical Model Con­
troller; and Singer, the Companion Software Synthesis System," Com­
puter Music Journal, vol. 17, no. I, pp. 3Q-44, Spring 1993.

The following back-to-back articles are a rich source of interesting ideas for
extending and improving the basic plucked-string filter.

[Karplus and Strong, 1983] K. Karplus and A. Strong, "Digital Synthesis
of Plucked-String and Drum Timbres," Computer Music Journal, vol. 7,
no. 2, pp. 43-55, Summer 1983.

Problems

Problems

[Jaffe and Smith, 1983] D. A. Jaffe and J. 0. Smith, "Extensions of the
Karplus-Strong Plucked-String Algorithm," Computer Music Journal,
vol. 7, no. 2, pp. 56-69, Summer 1983.

121

Paul Lansky's pieces "Night Traffic" and "Sound of Two Hands" are intriguing
examples of using comb filters in computer music. His "Now and Then" uses
plucked-string filters. These and other pieces are on his CD HomeBrew, Compact Disc
BCD 9035, Bridge Records, 1992. Lansky uses digital signal processing and algo­
rithmic techniques in much of his music. He comments in the liner notes to this disc
that these pieces '' ... are attempts to view the mundane, everyday noises of daily life
through a personal musical filter."

Add nonlinear distortion and feedback to the plucked-string filter and you get a
versatile digital version of a rock guitar. Charles Sullivan shows how in the following
paper, which makes ingenious use of many of the ideas we've studied up to now:

C. R. Sullivan, "Extending the Karplus-Strong Algorithm to Synthesize
Electric Guitar Timbres with Distortion and Feedback," Computer Music
Journal, vol. 14, no. 3, pp. 26-37, Falll990.

The family of allpass filters mentioned in Problem 9 is derived in

[Fettweis, 1972] A. Fettweis, "A Simple Design of Maximally Flat Delay
Digital Filters," IEEE Trans. on Audio and Electroacoustics, vol. AU-20,
pp. 112-114, June 1972.

That paper actually provides a simple derivation of earlier results of J.-P. Thiran; for
example

J.-P. Thiran, "Recursive Digital Filters with Maximally Flat Group
Delay," IEEE Trans. on Circuit Theory, vol. CT-18, pp. 659-664, Nov.
1971.

The distinction between phase and group delay is discussed in

A. Papoulis, The Fourier Integral and its Applications, McGraw-Hill,
New York, N.Y., 1962.

1. An inverse comb filter is followed by a comb filter with the same parameter, as in
Eq. 1.5. Construct an input signal x for which the output w of the comb filter is dif­
ferent from x. Hint: From the discussion x must be nonzero for arbitrarily negative t.

2. Here's a project for video gamesters. Write an interactive flight simulator whose
landscape is the magnitude response of a feedback filter over the z-plane. Don't try to
go over a pole!

3. [Karplus and Strong, 1983], [Jaffe and Smith, 1983] Is the plucked-string filter
stable if we use the value R = I? (If you want a hint, peek at the next problem.)

122 Chapter 6 Comb and String Filters

4. [Karplus and Strong, 1983], [Jaffe and Smith, 1983] We can estimate the time con­
stant of each harmonic of the plucked-string filter in Section 5 as follows. A phasor at
frequency ro is diminished in amplitude by the factor I cos(roT/2}1 for every trip
around the loop. After k samples, the phasor takes ki(L + 'l2) round-trips. Define the
time constant of a particular resonance to be the time in seconds that it takes for the
amplitude of the resonance response to decrease by a factor lie (about 37 percent).

(a) Continuing the argument above, derive an approximate expression for the time
constant of the nth harmonic of a plucked-string filter with loop delay L samples.

(b) Put the expression from Part (a) in terms of the actual frequency of the harmonic
in Hz and the actual fundamental frequency of the plucked-string filter itself.

5. Rearrange Eq. 6.7 so that it uses only one multiplication per sample. Draw the
corresponding signal flowgraph, analogous to Fig. 6.2.

6. Why is the low-frequency delay ~ of an allpass filter always positive in practical
situations?

7. Derive the formula for tuning the fundamental frequency of the plucked-string
filter, Eq. 8.2, from Eq. 8.1.

8. That the particular one-pole, one-zero filter in Eq. 6.6 has a constant magnitude
response is no miracle. It results from the fact that the order of the numerator
coefficients is the reverse of those in the denominator. That is, the transfer function is
of the form

aoz-n + a1z-(n-l) + +an
!l{(z) = ----.,----------

a0 + a1z-l + + anz-n

Prove that all filters of this form are all pass.

9. [Fettweis, 1972] You might guess from Problem 8 that the one-pole, one-zero
allpass filter is the first in a family of allpass filters that approximate constant delay at
low frequencies. If you did guess that, you'd be right. The paper by Fettweis cited in
the Notes gives an exceedingly elegant derivation of this family, based on a
continued-fraction expansion. The next member has the transfer function:

where

!l{(z) = z- 2 + bz- 1 + a
I + bz- 1 + az-2

b=2 2 -J.l
1 + Jl

a=
(2 - Jl){l - Jl}

(2 + Jl}(l + Jl}

and Jl is the desired delay in samples, playing the role that ~ does in the one-pole,
one-zero case.

(a) Prove that this filter is stable for Jl > 1. (In effect, we now have a built-in delay of
one sample, and we should specify the delay in the range one to two samples.)

Problems 123

(b) Investigate the quality of the approximation to constant delay numerically, com­
paring it to the one-pole, one-zero filter. Decide when, if ever, it is a good idea to use
it in the plucked-string instrument instead of the simpler filter.

10. If a two-pole, two-zero allpass filter has complex poles and zeros at angles ±ro,., it
will approximate linear phase in the range of frequencies corresponding to roc- Prove
that and derive formulas for the phase delay analogous to Eqs. 7.7 and 7.8.

11. Suppose you replaced the lowpass filter in the plucked-string instrument with the
highpass filter with equation

Yr = lfl[x, - Xr-l]

What effect do you think this would have on its sound? Listen to it!

12. Karp ius and Strong [1983] suggest that the following filter equation produces
drumlike sounds:

{ + 112(Yr-L + Yr-L-l) with probability b
Yr =

-lfl(Yr-L + Yr-L-l) with probability 1-b

where y, is the output signal at time t.

(a) For what value of b does this reduce to something very close to the plucked-string
algorithm? In what respect is it different?

(b) When b = 0 and the pitches are fairly high, Karplus and Strong describe the
instrument as a "plucked bottle." Explain why this might be expected. (Hint: Recall
Section 2.)

(c) Show that when b = 1;2 it is approximately true that the mean-square value of the
impulse response decays exponentially, and find the time constant.

13. Jaffe and Smith [1983] state

An effective means of simulating pick position is to introduce zeros uni­
formly distributed over the spectrum of the noise burst.

By "noise burst" they mean the initial input to the plucked-string filter. They go on to
suggest filtering the initial noise input with an inverse comb filter of the form

W 1 = X 1 - Xr-yL

where x, is completely random (white noise), w, is the newly prepared input signal,
and y is a number between zero and one representing the point on the string where it is
plucked. Try to explain this, using what we learned about strings in Chapter 2. (Hint:
A string plucked at a certain point will have certain harmonics missing.)

CHAPTER 7

Periodic Sounds

1 Coordinate systems

In one sense the simplest kinds of sounds are those that are periodic. Such signals can
be represented by sums of phasors with frequencies that are integer multiples of the
frequency of repetition, I IT, where T is the period. t The frequency of repetition is
often called the fundamental frequency, and the multiples are called harmonics.

As we mentioned when we discussed the development of the plucked-string filter,
just one periodic signal, played for a few seconds, will sound pretty boring, no matter
what its fixed spectrum is. We don't get any really interesting sounds without some
motion of the frequency content. But the study of the mathematics of periodic sounds,
Fourier series, is a good place to start if we want insight into more complicated
sounds. What's more, we'll find some ways to generate periodic sounds that can be
used in more general situations.

We've seen several situations so far where we can think of signals as being com­
posed of sums of sinusoids, or equivalently, phasors. When a signal is represented as
such a sum, it's called a frequency domain representation of the signal. Actually,
there are four different commonly used variants of frequency domain representations:
Fourier series, the Discrete Fourier Transform (DFT), the z-transform, and the classi­
cal Fourier transform. But the intuition behind all of them is the same, and once you
become familiar with one or two the others become easy. It's like picking up new
computer languages once you learn your first.

The basic idea behind a frequency domain representation is really simple if you
keep a geometric picture in mind: a vector v in ordinary three-dimensional space, as
shown in Fig. 1.1. The vector v is written as a combination of the three unit vectors in
each of the three coordinate directions:

t Don't confuse the period Tof a continuous signal with the sampling interval T ,.

126 Chapter 7 Periodic Sounds

Fig. 1.1 A vector v in three-dimensional space.

(1.1)

This equation means that any vector v in our three-dimensional space can be obtained
by adding three parts together, a vector in the x-direction of length v x• a vector in the
y-direction of length v Y, and a vector in the z-direction of length v z. The component in
the x-direction is thought of as a vector in the x-direction of length one, called x, times
the number v x• and similarly for the y- and z-components. The three unit-length vec­
tors in the coordinate directions, x, y, and z, are called a basis for the three­
dimensional space. I'll use the little arrows only for these unit-length basis vectors,
just to emphasize their special meaning.

The numbers v x, v y, and v z are called the projections of the vector v onto the
respective basis elements. We'll denote the projection of one vector (say v) onto
another (say w), by (v, w). Thus

vx=(v,x)

vy=(v,y)

vz=(v,z)

(1.2)

In intuitive terms, v x• the projection of the vector v in the x-direction, is the "amount"
of v in that direction. If, for example, v is at right angles (orthogonal) to the x-axis,
v X = (v' X) = 0.

When we get to Fourier transforms we're going to define several other examples
of projection operators, but we're going to want them all to obey the same fundamen­
tal laws. For example, when we project the sum of two vectors onto a third, we want
the result to be the sum of the individual projections. That is, suppose u, v, and ware
any three vectors. Then we always want

(u + v, w) = (u, w) + (v, w) (1.3)

This is a distributive law: projection distributes over addition. The projection (u, v) is
also called the inner product of u and v. We'll use the terms interchangeably.

§1 Coordinate systems 127

Also, when dealing with real-valued vectors we'll always want the projection
operator to be symmetric; that is,

(u, v) = (v, u) (1.4)

for all vectors u and v. (Later we'll be dealing with complex-valued vectors, and
we'll have to modify this a bit.) Applying the symmetry law it's easy to see that the
distributive law also works when the second vector is a sum:

(u, v + w) = (u, v) + (u, w) (1.5)

Because the three basis vectors we're using, x, y, and z, are orthogonal to each
other, they satisfy

<x. "Y> = o
<x. z> = o
<1. t> = o

(1.6)

When the basis vectors are mutually orthogonal like this, we'll say the basis is an
orthogonal basis.

We can now get a general idea of how the projection operator works by consider­
ing the projection (v, w) of any vector von any other vector w. First, write v and win
terms of the their coordinates:

(1.7)

and

W = WxX + WyY + WzZ

If we then form the inner product and use the distributive law in Eq. 1.3, the only
terms that survive are the ones with like coordinates. The result is

(1.8)

This is a very important hint for getting the projection operator in other situations.
Remember that it is the sum of products of like coordinates, the sum being over all the
coordinates.

There's one wrinkle I need to point out before we can go on. The inner product of
a vector with itself is, from the previous equation,

(v ,v) = v; + v; + v~ (1.9)

which is just the square of the length of the vector. However, this assumes the vector
has real components. If a vector can have coordinate values that are complex
numbers, which will often be the case in what follows, we still want an analogous
statement to be true. For this reason we change the definition of inner product in Eq.
1.8 to

(1.1 0)

where as usual the () * denotes complex conjugate. This makes the inner product of a
vector with itself

128 Chapter 7 Periodic Sounds

(I. II)

which is always real and non-negative. With this revision the fonnula for constructing
an inner product is: sum of products of like coordinates, the second complex­
conjugated, the sum being over all the coordinates.

These, then, are the two essential ingredients of what we call an orthogonal coor­
dinate system:

projection operator
orthogonal basis

With these simple geometric ideas we're going to derive all the mathematics we need
for Fourier series, the Discrete Fourier Transfonn, and the z-transform. In each case it
is just a matter of finding the appropriate basis and projection operator. Let's start with
Fourier series.

2 Fourier series

We are now going to leap from three-dimensional space, in which geometric intuition
operates comfortably, to a space that will at first appear strange: It will have an infinite
number of dimensions. But the ideas in the" previous section will work effortlessly. It's
just a matter of being bold.

We want to represent periodic signals that are functions of a continuous time vari­
able t, say fort in the range 0 =::;; t =::;; T. In this chapter we'll always think of signals as
repeating with period T outside this range. What inner product should we use? To
answer this we need to decide what the coordinates of our space are; the rest will fol­
low automatically. In fact, we have no choice. There is only one independent vari­
able: t. As I just mentioned, this may seem strange, but there is really no reason we
can't think of each particular value oft in the range 0 to T as a coordinate. The sum
must then be an integral -the "sum" over the range of a continuous variable. The
integral must be over the product of one function and the conjugate of the other, by
the formula in the previous section, and this suggests the following definition for the
inner product between periodic functionsf(t) and g(t):

<f. g) = _!_ r f(t)g.(t)dt
T Jo (2.1)

in analogy to Eq. 1.10. Notice that we've remembered to take the complex conjugate
of the second "vector" (really a function now). We've divided by T, the length of the
interval, just so that the length of basis elements will tum out to be one; that's really
just a matter of convenience. This inner product satisfies the distributive law, which
you can verify easily because the integral of a sum is the sum of integrals.

What basis should we use? Well, the basis elements should be defined over this
same range of continuous timet and should also be periodic. It wouldn't make sense

§2 Fourier series 129

to use any other kinds of elements to express such signals. The natural candidates for
basis elements are the phasors with period T,

ikro.,r k I 0 I 2 e ' = ... '- ' ' ' ' ... (2.2)

where ro0 = 21t/T, the repetition rate in radians per sec. Notice that we've included
the negative as well as the positive frequencies, which we always do when using pha­
sors, so we can represent real functions like 2cosro0 t = ei"'"' + e -jro.,r.

Before continuing, I want to point out something very important. The basis we're
proposing is indexed by the integers. The functions we're going to represent with it
are functions of the continuous variable t. In other words, the functions have coordi­
nates that are indexed by the continuous index t. Therefore, when we arrive at the
representation of f(t) in terms of the basis in Eq. 2.2, we will have changed the coor­
dinate system drastically- from one with a continuously indexed coordinate (time)
to one with a discretely indexed coordinate (the phasor basis). At first this may seem
impossible, but it works, although I'm sweeping some mathematical restrictions under
the rug.

The next step in our routine is to check the orthogonality of the proposed basis.
This is really very simple. Suppose we first consider two different basis elements, say
ejkro.,t and ejmro.,r, where k ::F. m. The inner product in Eq. 2.1 yields an integrand we
can evaluate immediately:

I J T "(k-) ej2n(k-m) - I
- e1 m "'" 1dt = ------
T 0 27t(k-m)

(2.3)

where we have used the facts that ro 0 T = 21t, and k :t:. m. The complex exponential on
the right is equal to one, because the exponent is an integral multiple of 27t, so the
inner product is zero, as we wanted to demonstrate.

When k = m the inner product in Eq. 2.3 becomes just the average value of unity,
and the result is unity. Thus the proposed basis is not only orthogonal, but the length
of each element is one.

We can now write any periodic function in terms of the basis:

~

f(t) = L c k ejkro.,t (2.4)
k=-~

in analogy to Eq. 1.7. Think of this as the periodic signal f(t) expressed in a new
coordinate system, with component c k in the "direction" of the phasor ejkro.,r. That
is,f(t) is decomposed into a sum of phasors, and contains an amount c k of the fre­
quency kro0 . Equation 2.4 is called the Fourier series of f(t}, and we refer to the
sequence ck as the spectrum of the periodic signalf(t).

How do we find the Fourier coefficient c k? It is simply the projection of f(t) on
the kth basis element:

(2.5)

130 Chapter 7 Periodic Sounds

the minus sign resulting from the complex conjugate operation for the second function
in the inner product.

Notice one last thing. In the very common situation whenf(t) is real, there is the
very simple relationship between ck and c_k:

(2.6)

This follows because k appears only in the expression jk on the right-hand side of Eq.
2.5. Replacing k by -k is therefore equivalent to replacingj by -j, which is the same
thing as taking the complex conjugate. Thus, whenf(t) is real, the negative-k terms in
the Fourier series are the complex-conjugates of the positive-k terms. Using this fact,
and using Euler's formula for the phasor, we can rewrite the Fourier series in Eq. 2.4
as

~

f(t) =Co + 2L 'l{ea[{ckejkro,r }
k=l

~ ~

=Co + 2L Creal. kcos(kro0 t) - 2L c;mag. ksin(kro0 t) (2.7)
k= I k= I

where we have broken the Fourier coefficient c k into its real and imaginary parts,

C k = Creal. k + jc imag. k (2.8)

This is a convenient form when we want the Fourier series of a real signal in terms of
sine and cosines instead of complex phasors.

We've just written down a fair amount of general material, so it's time for an
example.

3 Fourier series of a square wave
The square wave shown in Fig. 3.1 is the time-honored first example of a Fourier
series, and is interesting from both an aural and a mathematical point of view. We'll
consider the simple case when the square wave alternates between the values + I and
- I, and remains at each value for T/2 sec, half the period. Equation 2.5 gives us the
Fourier coefficient c n in terms of the time function:

Cn = ~ [1m e -jnro,tdt - 1~ e -jnro,tdt l
Some straightforward algebra (good practice, see Problem 3) yields

c = { -2j/(mt) n = 1, 3, 5, ...
n 0 else

from which we see that, for n odd,

Creal, n = 0

C;mag, n = -2/(n1t)

(3.1)

(3.2)

(3.3)

§3 Square wave 131

The final Fourier series can then be written using Eq. 2.7:

~ 4
f(t) = L -sin(nro0 t)

n = 1.3.5,... xn
(3.4)

f(t)

+1

T/2 T time,t

-1 -
Fig. 3.1 Square wave of period T, taking on values ±1 for half the period.

The first thing we might notice about this Fourier series is that it has only sine
terms, no cosine terms. It's easy to see why: the original square wave is an odd func­
tion oft, and so is the sine function. That is, the function satisfies/(-t) = - f(t); at
any given negative value of t the function is the negative of what it is at the
corresponding positive value oft. Any cosine terms would ruin this property. On the
other hand, an even function of time, satisfyingf(t) = f(-t), can have only cosine
terms in its Fourier series.

A second thing to notice is that the series has only odd harmonics. Again, this can
be explained by considering symmetry. The original square wave satisfies
f(t) = - f(t + T/2). This is true of the odd harmonics of the sine, but not the even
harmonics.

Having broken apart the square wave into its Fourier components, it's a good idea
to verify that we can put the pieces back together. Figure 3.2 shows the sum of har­
monics I, 3, 5, 7, and 9. The result is recognizable as an approximation to a square
wave, but there's only so much that five sine waves can do. The sum of the first
twenty nonzero harmonics, shown in Fig. 3.3, is much more convincing. Notice that
the approximation is worst at the sudden jumps, as you might expect.

The magnitude of the nth Fourier coefficient of the square wave is, from Eq. 3.2,

n = I, 3, 5, ...

else
(3.5)

which is plotted in Fig. 3.4. This is the spectrum of the square wave: the amount of
the phasor at the frequency nro0 • A quick look at this plot shows that the spectral con­
tent decreases rather slowly with the frequency. More precisely, the amount of the nth
harmonic decreases as lin (skipping the absent even harmonics, of course). For
example, I c 101 I is only about 2 percent smaller than I c 99 1. This slow decay rate is
closely associated both with how the square wave looks and how it sounds. A spec­
trum that falls off only as fast as lin is always associated with a signal that jumps

132 Chapter 7 Periodic Sounds

1.5

$?- 1.0 .- -.
0.5

0

-0.5

-1.0

-1.5 • • • • • • • 0 • I • • • • • • • 0 • I • • 0 • • • • 0 • I • • • • 0 • 0 • • I • • • • • • • • • I

0 100 200 300 400 500
time, sec

Fig_ 3.2 The Fourier series for a square wave; terms up to the ninth har­
monic are included. The ideal square wave is shown as a dashed line. The
period T = 225.

1.5

g 1.0 ...

0.5

0

-0.5

-1.0 ...
·1.5 " " " • " " • " " I 0 0 0 0 " 0 " • " I • " " 0 " • " 0 " I 0 " " " " " " " " I " • " " " " " " " I

0 100 200 300 400 500
time, sec

Fig_ 3_3 The Fourier series for a square wave; terms up to the 39th har­
monic are included.

c
·~
;e .,
0
u
Q;
·c
::>
0
u.

1.5-

1.0-

0.5-

0 ..
0

§4 Spectral decay

.1.1.1.1.1. I. I. I, I . I . I . I. I I I. I. I. I. I I I. I • I • I • I I

10 20 30 40 50

harmonic number

Fig. 3.4 The spectrum of a square wave; the magnitude 1 Cn 1 of the
coefficients.

133

suddenly, and, when it's periodic, sounds like a buzz saw. I'll elaborate on these
important points in the next section.

Incidentally, the slow spectral decay that results from a discontinuity accounts for
the fact that clicks plague computer music, and digital audio in general. t Segue care­
lessly from one stretch of sound to another, or do anything else without taking care to
avoid a discontinuity, and you're sure to hear the click. Its lin spectrum is resplendent
with high-frequency energy.

As we'll see shortly, a sharp pulse- which is just a discontinuity in one direction
followed quickly by another in the opposite direction - has even more high­
frequency energy than a single discontinuity, which is why the pops and scratches in
phonograph records (remember them?) are so noticeable.

4 Spectral decay

The Fourier series for a function is the sum of an infinite number of terms, and it's not
surprising that the rate at which the size of the terms falls to zero is critical. As we've
just seen, the Fourier coefficients for the square wave in Fig. 3.4 converge to zero as
I ln. What would be the general effect if the coefficients went to zero faster? Intui­
tively, we might suspect that the higher frequencies allow the signal to change Jaster,
so we might guess that in general the faster the coefficients go to zero the smoother

t A phenomenon noted by F. R. Moore; see his book, referenced in the Notes to Chapter I.

134 Chapter 7 Periodic Sounds

the function. Certainly it's true that the Fourier series is very smooth if only one or
two harmonics are present.

An easy way to see the connection between the coefficient decay rate and smooth­
ness is to remember that integration is a smoothing operation. Let's integrate the
Fourier series in Eq. 3.4 term by term. The integral of the square wave itself is the tri­
angle wave shown in Fig. 4.1. It is convenient to deal with a function that has average
value zero, and this is easy enough to arrange by integrating from T/4 tot. That way
the integral goes up to half the area of a half-period of the square wave, then down to
minus that, and so on. I've used the word "smooth" loosely, but I can state quite pre­
cisely the sense in which the triangle wave is smoother than the square wave: the tri­
angle wave is a continuous function of time, whereas the square wave is not. The
square wave jumps between the values ±I in zero time.

f(t)

T/4

-T/4

Fig. 4.1 A triangle wave; the result of integrating the square wave in Fig.
3.1.

The corresponding Fourier series of the triangle wave then becomes:

f' f(t)dt = - t ;T2 cos(nro0 t)
JT/4 n = 1,3,5,... 7t n

(4.1)

where we have substituted ro0 = 27t/T. The integration of the sinusoids sin(nro0 t)
has had the effect of multiplying the coefficients by a factor of ll(nro0), making the
Fourier coefficients go to zero as lin 2 :

n = I, 3, 5, ...

else
(4.2)

As anticipated, the triangle wave, smoother than the square wave, has coefficients that
go to zero much faster.

Figure 4.2 shows the result of putting together the Fourier series in Eq. 4.1 using
only terms up to the ninth harmonic, in analogy to Fig. 3.2 for the square wave. We
now do a much better job of approximation with these few terms than we did with the
square wave, which makes sense because the omitted remaining terms in the series are
smaller in magnitude.

5 Pulses

§5 Pulses

60

f; 40

20

0

-20

-40

-60 0 " 0 0 • • 0 • 0 I" 0 0 0 0 • • • • I • • • • • 0 • • • I • • • • • • • • • I • • • • • • • • • I

0 100 200 300 400 500
time, sec

Fig. 4.2 The Fourier series for a triangle wave; terms up to the ninth har­
monic are included.

135

Differentiating a signal has an effect opposite to that of integrating, accentuating its
fluctuations and multiplying its nth Fourier coefficient by n. Now let's tum the tables
and differentiate the square wave in Fig. 3.1, instead of integrating it.

To be mathematically precise, the square wave's derivative is zero everywhere
except at integer multiples of T/2, where it is undefined. It looks as if we can't deal
with the derivative of a square wave at all. But things are not as bad as they seem,
because we can think of the square wave as a limiting case of a smoother function,
one that moves between -1 and+ I in a very short (but positive) time E, rather than
instantaneously; see Fig. 5.1 (a). The derivative of this approximating function, shown
in Fig. 5.l(b), is well defined: it is zero except for brief intervals of length E, during
which it is ±2/e, the amount the function must change divided by the time it has to
make that change.

Think of E as very small compared to the period T of the signal; so small, in fact,
that we can't hear any difference between the approximate version and a true square
wave. For all practical purposes we can deal with the approximate square wave and
its derivative instead of the corresponding ideal functions. The approximations are
actually a better reflection of what exists in nature anyway, because signals can't jump
from one value to another instantaneously in the real world.

To get the Fourier series of a signal like the one in Fig. 5.1 (b), differentiate the
Fourier series for a square wave, Eq. 3.4, yielding

8 ..
j(t) = - L cos(nro0 t)

T n=l,3,5, ...
(5.1)

136 Chapter 7 Periodic Sounds

f(t)

(a)

(b)
f'(t) ~ ---- 2/E

--- E ---
T/2

I

T
I

time,t

Fig. 5.1 (a) A function that approximates a square wave but is better
behaved; (b) its derivative.

As usual, we used the fact that ro0 = 27t/T. We now have a very interesting situation.
The differentiation multiplied the Fourier coefficients by n, resulting in a Fourier
series where the odd-numbered coefficients don't decrease in magnitude with nat all.
I've emphasized this by writing the coefficient 8/T outside the summation. This is not
unreasonable: if we want to use a Fourier series to represent the sequence of pulses in
Fig. 5.l(b)- a signal with sharp spikes- we might well expect the series to contain
very high-frequency sinusoids with undiminished amplitudes. Figure 5.2 shows the
result of using terms in Eq. 5.1 up to the 39th harmonic. We are trying to approximate
a very wild function, so we can't expect to do nearly as well as when we tried to
approximate the much tamer triangle wave in the previous section, which is two
integrations smoother.

We can think of the derivative of a square wave, which is shown approximated in
Fig. 5.l(b), as approaching a limiting function as e approaches zero. The pulses
become infinitely narrow, and their height becomes infinitely high, but in a controlled
way: the area of each pulse stays fixed, in this case at Ex(2/E) = 2. These pulses are
called ~functions, and are very convenient things to have around for mathematical
manipulations, even though they aren't really functions in the ordinary sense of the
word (see the Notes). The ideal derivative of the square wave is shown in Fig. 5.3.
The only thing that matters about each pulse is its area and position, and we'll
represent the ideal pulse of unit area positioned at t = 0 as ~(1). Thus the pulse train
p(t) in Fig. 5.3 can be written as

~

p(t) = L (-I)k2~(t - kT/2) (5.2)
k=-~

§5 Pulses

0.6

g
0.4

0.2

0

-0.2

-0.4

-0.6

• • • • • • • • • I • • • • • • • • • I • • • • • • • • • I • • • • • • • • • I • • • • • • • • • I

0 100 200 300 400 500
time, sec

Fig. 5.2 The Fourier series for the derivative of the square wave, using
terms up to the 39th harmonic.

f(t)

2-

•••

-2 -

T/2

0

•••
3T/2

T 2T time,t

Fig. 5.3 The derivative of the square wave shown in Fig. 3.1. The arrows
on the spikes indicate these are i> functions, and the time axis is continu­
ous. The ordinate is the pulse area.

137

Each term 2i>(t - kT/2) represents a pulse at t = kT/2 with area 2. We also need to
multiply by (-I)k to take into account the fact that the pulses are alternately positive
and negative.

You should keep two pictures of pulses in your head, for use in different contexts:
first the realistic rectangular pulse approximations shown in Fig. 5.1 (b); and second
the i> functions shown in Fig. 5.3. The first kind are closer to signals that exist in the
real world; the second allow us to do some slick mathematical manipulations.

138 Chapter 7 Periodic Sounds

To illustrate how useful the concept of a ~ function is, suppose we started with the
ideal pulse train p(t) in Eq. 5.2, and wanted to get its Fourier series, reversing the line
of derivation in this section. Apply Eq. 2.5 to get the kth Fourier coefficient c k:

1 J T (f) -jkm.,tdt ck = - p e
T o

(5.3)

The integration extends over one period of the periodic train of pulses p(t), so the
only contributions we get to the integral are the ones due to the ~ functions at t = 0
and T/2.t The~ functions are zero everywhere except over two infinitesimal intervals.
The first interval, which we'll denote by/, includes values oft near t = 0; the second
interval, which we'll denote by J, includes values oft near t = T/2. The two integrals
in Eq. 5.3 can then be written

To proceed we need to evaluate the integrals. Concentrate on the second; the first will
be evaluated in the same way. This is a lot easier than you might think at first. The~
function in the second integral is zero everywhere except over an infinitely narrow
interval around t = T/2, so the only value of the phasor that could possibly matter is
its value at that point. In fact, over that infinitesimal interval the phasor can be con­
sidered constant, equal to its value at t = T/2. Therefore, the second integral in Eq.
5.4 can be rewritten

e -jkm.,T/2 i ~(t - T/2) dt = (-1)k i ~(t - T/2) dt (5.5)

where we have used the fact (once more) that ro0 = 2x/T. The rest is easy; the
integral of the ~ function is just its area, 1, so the entire second integral is equal to
2(- 1) k. In the same way the first integral is equal to 2, so Eq. 5.4 becomes

(5.6)

The bracketed expression is zero when k is even, and 2 when k is odd, so we finally
get that c k is zero when k is even, and 4/T when k is odd. Substituting these
coefficients in the Fourier series Eq. 2. 7 gets us right back to Eq. 5.1.

This may seem like a lot of work to get us back where we started, but the point is
that we could have started with the ideal pulse train in Fig. 5.3 and obtained its Fourier
series directly. This is just one example of how useful~ functions are. The important
fact to remember about ~ functions is that when we integrate over them, they
''punch'' out the value of the integrand:

t We're assuming the period begins immediately before t = 0 and ends immediately before t = T. This
convention is arbitrary, but we should be consistent about it, always including two pulses in a single period.
Perhaps a better way to write the formula for the Fourier coefficient is as an integral over one period.

§6 Continuous-time buzz 139

I~ ~(t-t)\jl(t)dt = \jl(t) (5.7)

assuming of course that w(t), the rest of the integrand, has a well defined value and is
reasonably smooth at the value oft where the ~ function spikes.

6 Continuous-time buzz

The signal we studied in the previous section, the derivative of a square wave, is com­
posed of pulses that alternate in sign, and its Fourier series is missing even harmonics.
The derivation that concluded with Eq. 5.6 shows that these two properties are closely
related. A more standard sequence of pulses doesn't alternate in sign, and has every
harmonic present. Intuitively, this is the harmonically richest signal we can generate
with a given period T. Let's use our newly acquired~ functions to derive its Fourier
series.

b(t)

T-

••• • ••

T 2T 3T 4T time,t

Fig. 6.1 Buzz, a sequence b(t) of positive pulses of area Tspaced Tsec
apart. The arrows on the spikes indicate these are ~ functions, and that the
time axis is continuous.

The signal we're interested in, which we'll call "buzz" and denote by b(t), is
shown in Fig. 6.1, a simple sequence of positive pulses. We haven't decided what the
area of each pulse is, but it really doesn't matter, as long as it's the same from pulse to
pulse. Take the area to be equal to the period T, which will make the Fourier
coefficients one. We can then write the buzz signal in the form of a sum of~ func­
tions, as in Eq. 5.2:

~

b(t) = L TO(t - kT) (6.1)
k=-~

where we have included a factor representing the area, T, of each pulse. Its nth
Fourier coefficient is I IT times the integral over one period of the single ~ function in
that period, which is T. That is, every Fourier coefficient is one. Thus we have the
Fourier series for b(t):

~

b(t) = L ejnw,t (6.2)
n=-oo

140 Chapter 7 Periodic Sounds

where as usual ro 0 = 27tiT, the frequency in radians per sec. We can also write this
as the following cosine series using Eq. 2.7:

~

b(t) = 1 + 2 L cos(nro0 t) (6.3)
n=l

These last two forms of the Fourier series for the buzz signal reflect some funda­
mental facts about periodic waveforms and their spectra, and have a nice intuitive
interpretation. They say:

If we add up phasors at all the harmonics of a given fundamental fre­
quency liT Hz, all with the same amplitude, they cancel out to zero
almost everywhere, except at pulses spaced every T sec, where they rein­
force one another to produce [)junctions.

Perhaps it's easiest to understand the way this works from the cosine series in Eq. 6.3.
Imagine the sum of an infinite number of cosine waves, at all harmonics of the funda­
mental frequency, and all with the same amplitude. At any time that is not an integer
multiple of the period T, any particular harmonic is as likely to be negative as positive.
It's not hard to believe that in some limiting sense the sum will be zero. On the other
hand, at integer multiples of T the cosines all have a positive value, and therefore add
up to infinity. That accounts for the[) functions at integer multiples ofT.

Here's another important thing to notice. The spectrum of buzz has harmonics
spaced every liT Hz apart, as shown in Fig. 6.2. The liT is important: the larger the
period T is, the closer together the harmonics are spaced. This is a simple manifesta­
tion of a pervasive duality between time and frequency. The more closely things are
spaced in one domain, the more widely they are separated in the other.

B(co)

1-

••• •••

0 1/T 2fT 3fT 4fT frequency, Hz

Fig. 6.2 The spectrum of the buzz signal.

7 Digital buzz

So far in this chapter we've assumed the time axis is continuous. The periodic signals
we've expanded in Fourier series are functions of a continuous variable t. This implies
that the harmonics can extend to infinity: we need an infinite number of harmonics to

§7 Digital buzz 141

put together a train of ideal o functions. But what about digital signals? We appear to
be in something of a bind, because it doesn't make sense to sample the sequence of o
functions shown in Fig. 6.1. At any particular sampling time the ideal spikes have the
value 0 or infinity! What we want is the discrete-time signal analogous to this
sequence. This underscores the fact that continuous time, which implies the possibility
of infinite frequency, is a mathematical idealization. Thinking of infinite Fourier series
helps us understand nature, but in the last analysis, digital signals, which are nothing
more than sequences of numbers, are more concrete and certainly closer to the
representations in a computer. In digital audio, there aren't any frequencies above the
Nyquist frequency.

The proper discrete-time counterpart of the continuous-time buzz shown in Fig.
6.1 is intuitively clear: It's the digital signal that takes on a positive value every P
samples and is zero at other samples. In the frequency domain we expect it to be com­
posed of all the harmonics up to the Nyquist frequency. This is true, but we need to
fill in some details.

The starting point for understanding the discrete-time buzz signal is the finite sum
of phasors:

N L ejnrol (7.1)
n=-N

This looks like part of the Fourier series in Eq. 2.4 with equal-strength harmonics, but
be careful! First, we want this to represent a discrete-time signal, so the time variable
t is restricted to integer values. Second, ro is not defined as above in terms of the
repetition period T of a continuous-time signal. We're going to choose ro to get the
digital version of a buzz signal.

The sum in Eq. 7.1 is a geometric series, and we can derive the following closed
form for it (see Problem 7):

N . { sin((2N + 1) rot/2) L eJnrol = sin(rot/2)
n=-N 2N+ 1

if rot =1= m27t
(7.2)

if rot = m27t

where m is any integer. To use this for our purpose, we set the frequency ro to an
integer fraction of the sampling rate; that is, set ro = 27t/P radians per sample, where
Pis an integer. We also choose the number of harmonics N so that the sum goes up to,
but not past, the Nyquist frequency. This means that we choose Nro = 27tNIP, the
highest frequency in the sum, to be as close to 1t as possible without exceeding it.
There are really two cases here: when P is even we choose N = P/2 and actually
reach the Nyquist frequency in the sum; when Pis odd, we choose N = (P- 1)/2 and
don't. I'll work out the latter case and leave the former case for Problem 8.

Proceeding then with the case when P is odd, we have 2N + 1 = P, and the
right-hand side of Eq. 7.2 simplifies considerably, because with the choices ro = 27t/P
and N = (P- 1)/2, the sine on the top, sin ((2N + 1) rot/2) = sin (1tt), becomes zero.
(Remember that tis an integer.) Equation 7.2 can therefore be written

1 + 2 L cos(n27tt/P) =
<P-I)/2 { 0 if t =1= 0 mod P

n = 1 p if t = 0 mod p
(7.3)

142 Chapter 7 Periodic Sounds

This is exactly what we wanted: The sum of sinusoids using frequencies that are
integer multiples of the sampling rate divided by P is precisely the digital buzz signal,
with a nonzero value every P samples.

When P is even, things are slightly complicated by the fact that the sum goes up to
and actually includes the Nyquist frequency. The result corresponding to Eq. 7.3 is

I + 2L cos(n27tt/P) + (-I) 1 = 0
P/2-l {

n=l P

if t ::1-0 mod P

if t = 0 mod P
(7.4)

We can interpret the difference as follows: To make things work out to a buzz signal
of the same form, we need to weight the term corresponding to the Nyquist frequency
itself by one instead of two, just as we do for the zero frequency. The term (-I } 1 is
that term, a phasor at the Nyquist frequency.

b(t)

P-

•••

0 p

• ••

2P 3P sample number, t

Fig. 7.1 Digital buzz. This shows samples of a discrete-time signal, not i>
functions.

Figure 7 .I shows what the digital version of buzz looks like. It is certainly very
easy to generate, since it's just a constant every P samples, with zeros in between. We
now know that this represents exactly what we hoped it would: a combination of all
possible harmonics of the fundamental frequency J.,IP (where fs = liT., is the sam­
pling frequency in Hz) up to the Nyquist frequency, equally weighted. Be sure you
understand the distinction between the digital buzz signal illustrated in Fig. 7 .I and its
analog counterpart in Fig. 6.1.

8 Synthesis by spectrum shaping

We're finally in a position to do something useful with our frequency representation.
Suppose we want to produce a periodic sound with a given spectrum. The simplest
and most obvious way is to add up the required sinusoids, each with the desired ampli­
tude. This is called additive synthesis. Evaluating all those sinusoids and weighting
them properly can be quite expensive computationally, as you can see by doing a little
bookkeeping. Suppose the Nyquist frequency is 22 kHz, and the fundamental fre­
quency of a desired periodic tone is 110 Hz. We then need to do the following for
each sample: find the values of 200 different sinusoids, multiply them by the required

§8 Spectrum shaping 143

weights, and then add them up. Usually, if we're worried about efficiency, we don't
compute the values of sinusoids from scratch, but rather look them up in tables. Still,
ignoring any possible table interpolation, we need to do 200 table lookups, 200 multi­
plications, and 199 additions for every output sample.

buzz

Fig. 8.1 Shaping the spectrum of buzz with a reson filter.

Filtering gives us a much faster way to get periodic signals with shaped spectra.
The idea is very simple. Just pass a buzz signal through a filter, as shown in Fig. 8.1.
Because we want to generate a digital signal, we'll use a digital buzz and a digital
filter. Each harmonic in the buzz signal will be modified by the filter in a ·way
specified by the filter's frequency response. As an example, suppose we use a two­
pole resonator, the reson filter discussed in Chapter 5. The magnitude response I H(ro) I
peaks at some center frequency and has the general shape illustrated in Fig. 8.2. Let's
denote by ro0 the periodic repetition frequency of the digital buzz signal in radians per
sample. The nth harmonic of the buzz signal occurs at the frequency nro 0 radians per
sample, and will have its magnitude multiplied by IH(nro0)1, the value of IH(ro) I at
the frequency nro0 in radians per sample. The overall result, therefore, is a periodic
waveform with an overall spectrum shape determined by the filter frequency response .

H(ro) • • •
I •

I •
I

,
'

1/T frequency, Hz

Fig. 8.2 Spectrum illustrating the shaping of digital buzz with a reson. The
harmonics of the buzz signal are spaced 1/THz apart.

Let's look next at the amount of computation it takes to generate a signal this way.
The buzz itself, as mentioned above, is trivial to generate by just using a nonzero
value every P samples, as indicated in Eqs. 7.3 and 7 .4. The filtering operation using a
two-pole reson (see Eq. 4.3 in Chapter 5) requires only two additions and two or three
multiplications (depending on whether there's a scale factor) per sample. So in the
example considered at the beginning of this section, the filtering method requires only
about one-hundredth as much computation per sample as the additive synthesis
method.

144 Chapter 7 Periodic Sounds

There's another important reason why it's a good idea to shape the spectrum of
buzz with a filter instead of adding together all the required harmonics. It's a reason
that goes beyond issues of efficiency and begins to get at the real problems of generat­
ing sound on a computer. Return to the example above with a fundamental frequency
of II 0 Hz. How can we think about choosing 200 weights for each of the 200 har­
monics? We don't have any tools to lean on for intuition.

We'd like something to tum over in our minds and manipulate. The picture of
equally weighted harmonics being shaped by a filter, Fig. 8.2, gives us just such a
structure. We can think about sliding the filter center frequency or adjusting its
bandwidth on the fly - that is, while a particular stretch of sound is being generated
(see Fig. 8.3).

H(ro)

1/T frequency, Hz

Fig. 8.3 Sliding the center frequency of a reson while shaping the spec­
trum of buzz.

As mentioned at the beginning of this chapter, perfectly periodic signals are not
very interesting. The technique of spectrum shaping by filtering suggests interesting
ways to change signals while keeping control of meaningful parameters like the
bandwidth and center frequency of the overall spectrum shape. It's analogous to the
way we deal with physical musical instruments, where we change sound quality by
controlling a few easily grasped parameters, like string length, thickness, and tension.

We might also think of sliding the fundamental frequency of the buzz input. That's
conceptually simple, but leads to an interesting technical problem, which I'll discuss
in the next section.

9 Generating variable-frequency buzz

Suppose you want to change the frequency of buzz continuously, as it's generating
samples. The problem that comes up is similar (but not identical) to the problem of
tuning a plucked-string filter, which we discussed in Chapter 6. For example, suppose
you are working at a sampling rate of 22,050 Hz and a period of P = 20 samples. To
raise the frequency, you need to decrease the period. The smallest possible increase in
frequency corresponds to a decrease in period from 20 to 19, and hence to a frequency
increase of more than 5 percent. This hardly allows us to "slide" the frequency.
After all, the interval of a semitone in the well-tempered scale corresponds to a ratio

Notes

Notes 145

of 2 1112 , or about 6 percent. What we hear if we restrict ourselves to integer periods is
a strange scale rather than a glissando! But how can we create a pulse train with a
period that is not an integer number of samples? In the world of digital signals, we
specify signals only at sampling instants. If we wanted a period of 19.3 samples, how
could we possibly place a pulse every 19.3 samples?

The solution is to return to Eq. 7.2, which we'll rewrite in terms of cosines as

N { sin((2N+ l)rot/2)
I + 2L cos(nrot) = sin(rot/2)

n=l 2N+ I

if rot *- m21t
(9.1)

if rot = m2rt

When we last looked at this, we chose the frequency ro to be 2rt!P radians per sample,
an integer fraction of the sampling frequency. As we've just noticed, this severely
restricts the range we can use when we want to move the frequency around.

Here's the point: There is no reason we can't use Eq. 9.1 when ro is any frequency
whatsoever. This simple observation allows us to slide the frequency continuously,
possibly changing it by some small amount every sample. Don't forget that since Sec­
tion 7 we've been assuming tis the sample number, an integer.

Equation 9.1 is even more flexible: There is now no reason to choose the number
of harmonics N so that all frequencies up to the Nyquist are included. We are perfectly
free to choose any number of harmonics we want. Bear in mind, though, that if N is
large enough to include frequencies above Nyquist, they will be aliased to frequencies
below.

Implementing Eq. 9.1 is not trivial. For arbitrary ro there will inevitably be sample
numbers t where rot is close to, but not exactly equal to, an integer multiple of 2rt. At
those points the top expression will divide one very small number by another. If we
don't take the proper precautions, that will lead to unacceptable numerical errors. I'll
let you worry about that in Problem 9.

In the next chapter, we'll see how to translate the frequency domain ideas in this
chapter to a numerical algorithm that can be applied directly to digital signals.

It is a curious fact that if you add up more and more terms of a Fourier series, as illus­
trated in Figs. 3.2 and 3.3, the overshoot precisely at a discontinuity never completely
goes away. As the number of terms goes to infinity, the sum overshoots in the limit by
about 8.95 percent times the size of the discontinuity. This is called the Gibbs
phenomenon, after J. Willard Gibbs, who described it in Nature Magazine at the
surprisingly late date of 1899. But Carslaw points out that ''Wilbraham had noticed its
occurrence ... " in 1848. See the classic

H. S. Carslaw,lntroduction to the Theory of Fourier Series and Integrals,
(third revised edition), Dover, New York, N.Y., 1930.

The mathematically ideal pulse called the o function was introduced by the British
Physicist Paul Adrien Maurice Dirac (1902-1984), who used it in quantum

146

Problems

Chapter 7 Periodic Sounds

mechanics. In fact, it is sometimes called the ''Dirac ~ function.'' However, the
choice of the letter "~" for a function that is nonzero only under special cir­
cumstances appears to come not from Dirac's name, but from the Kronecker ~. which
predates Dirac. The Kronecker~ is the integer-valued function ~ij on integers i andj
that is defined to be one if i = j and zero otherwise.

It took many years for the ~ function to gain mathematical respectability. For
example, a standard midcentury applied mathematics book (The Mathematics of Phy­
sics and Chemistry, by H. Margenau and G. M. Murphy, Van Nostrand, New York,
N. Y., 1943) states, "From a mathematical point of view such a function is a mon­
strosity '' Monstrosity or not, the ~ function has been given a firm mathematical
foundation and is now indispensable. For more, see

A. Papoulis, The Fourier Integral and its Applications, McGraw-Hill,
New York, N.Y., 1962.

In computer-music circles, generating sound by filtering a harmonically rich sig­
nal, as we discussed in Section 8, is called subtractive or formant synthesis - as
opposed to additive synthesis, where we add up each sinusoidal component.

The use of Eq. 9.1 for generating a buzz signal with continuously variable fre-
quency was suggested in

G. C. Winham and K. Steiglitz, "Input Generators for Digital Sound Syn­
thesis," (Letter to the Editor), J. Acoust. Soc. Amer., vol. 47, no. 2, (Part
2),pp.665-666,Feb. 1970.

As described there, the fast way to implement Eq. 9.1 is to look up sinusoid values in
a sufficiently finely sampled, precomputed table. This is an example of the general
technique called wavetable synthesis.

1. Show that for the usual geometric coordinate system in two-dimensional space (the
Euclidean plane), the inner product (v, w) in Eq. 1.8 is

(v, w) = lvl·lwl cos9vw

where 9vw is the angle between the vectors v and w.

2. Repeat for three dimensions.

3. Verify Eq. 3.2, the formula for the kth Fourier coefficient of a symmetrical square
wave.

4. Generalize the observations in Section 3 about the relationships between a
waveform's symmetry on the one hand and the presence or absence in its Fourier
series of sines or cosines, or even or odd harmonics.

5. Find the Fourier series for the following continuous-time function, periodic with
period T sec:

f(t) = { ~ if 0 < t < a

if a < t < T

Problems 147

where 0 < a < T. This is a pulse of width a. Check your result against what we
know about the symmetrical square wave for the case a = T/2.

6. Study the magnitude of the Fourier coefficients of the signal in Problem 5 as a
varies from 0 to T. Plot out several cases and draw some conclusions.

7. Derive the closed form for the finite sum of equally weighted harmonics, Eq. 7.2.

8. Check the derivation of Eq. 7 .4, the discrete-time buzz signal for even period P.

9. Implement a buzz generator based on Eq. 9.1, and test it by generating glissandos
followed by bandpass filters. Use wavetable synthesis for speed, as suggested in the
Notes. The main problem here is that numerical problems occur when rot is close to
an integer multiple of 27t. It's your job to decide how close is "close," and to do the
right thing in those cases.

10. Extend Eq. 1.4, which expresses the symmetry of the inner product, to the case
when the vectors have coordinate values that are complex numbers.

1 Circular domains

CHAPTER 8
The Discrete

Fourier Transform
and FFT

We're now in a position to enjoy one of the great triumphs of signal processing: the
direct numerical calculation of the frequency content of real digital signals, at light­
ning speed. The algorithm we develop, the Fast Fourier Transform (FFf) is one of
the most widely used in all of science. I've already used it without telling you - for
example, to compute the spectrograms of real and synthetic plucked-string notes in
Chapter6.

Here's the plan for this chapter. First, we'll derive the mathematical transforma­
tion that the FFf computes, called the Discrete Fourier Transform (DFf). We'll use
the same geometric approach that we used in Chapter 7 to derive Fourier series. The
DFf will have its own special basis and projection operator, just like the Fourier
series representation. Then we'll see how it can be computed efficiently.

Be careful to distinguish between the DFf, which is an abstract mathematical
transformation independent of any questions of efficiency, and the FFf, which is an
efficient algorithm for computing it. The FFf is in such common use that this distinc­
tion is often blurred.

The starting point for the DFf is very close to reality: it's just a file of numbers,
representing a finite sequence of N samples of a digital signal. This is not the case
when we use a Fourier series representation, where we begin with a time function
defined for all real values oft in the interval [0, T].t No file is large enough to hold
all that information.

Now I want to emphasize a point that may appear paradoxical, but is actually per­
fectly logical. It doesn't matter whether we think of a signal as defined only on a finite

t Just a reminder: We continue to denote the period of a continuous signal by T, and the sampling interval
by T_,.

150 Chapter 8 Discrete Fourier Transform and FFT

interval or as periodic. For example, when dealing with Fourier series in the previous
chapter, we always thought of a periodic signal as repeating its basic period forever,
from the infinite past to the infinite future. However, once a periodic signal is deter­
mined for all the values of time t within any basic interval of length T, it is determined
at all other values oft. Mathematically we can think of the domain as either the finite
line segment or the infinite line composed of repeated segments. If the signal is
represented by a Fourier series in the base interval, it will also be represented that way
in repeated segments outside that interval, because the sinusoids in the Fourier series
are all periodic with period T.

Notice that there is an important difference between a signal that is defined only on
a finite interval and is thought of as repeating outside that interval, and one that is
defined for all time but is zero outside the interval. It certainly makes a big difference
when you listen to sound. A signal defined for all time that is chopped off so that it is
zero outside the interval [0, T] sounds quite different from the version that repeats
periodically. We'll see in Chapter 10 that the chopped signal has a very different
spectrum.

A good way to visualize a periodic signal is to wrap it around a circle - that is, to
make its domain circular. In fact, this is how we've been viewing the frequency
response of digital filters. You can think of the frequency response as being defined
only in the strip of frequencies between -/,/2 and+ f,f2. Or, equivalently, you can
think of it as repeating forever with period f. because it's defined on the unit circle in
the z-plane. What's important is the fact that the entire frequency response is deter­
mined by its values in one basic strip of length f •. In the rest of this chapter we'll be
using circular domains for both the time domain of discrete-time signals, and the fre­
quency domain of their frequency content defined at discrete points. For example,
Fig. 1.1 shows the two ways of thinking of an eight-point segment of a digital signal x.

Fig. 1.1 A finite (eight-point) segment of a digital signal x, shown defined
on a linear domain (top) and, equivalently, a circular domain (bottom).

§2 OFT representation 151

Notice that we number the points starting from zero, so the signal points are x 0

through x 7 • This is convenient when we think of the signal as periodic, because
· · · x;_ 8 = x; = x;+s = x;+ 16 ···.Using modular notation,

X; =X; modN (1.1)

for any i, where N is the period.

2 Discrete Fourier Transform (OFT) representation

We start with a finite, length-N segment of a digital signal, x 0 , x 1 , ••• , x N _ 1 ; some­
thing quite tangible that we typically capture on a computer and store in a file. The
machinery for developing its frequency-domain representation is already in place. All
we need to do is tum the key.

As before, we begin by choosing the inner product between two signals, say x and
y, both defined for the integer time variable t. In the case of Fourier series, where the
time variable is continuous, we use the integral of the product between the x and the
complex conjugate y •; now, when the time variable is discrete, we use the sum:

N-1

(x, y) = I, x,y; (2.1)
t=O

You might expect that we divide by N, in analogy to the case of Fourier series, where
we divided by the length of the time interval. The consequence of not dividing by N is
that our natural basis elements will not have unit length, but that isn't critical. What's
important is that they be orthogonal, which is unaffected. Actually, it comes down to
whether the forward or the inverse transform has a factor in front, which is just a
matter of convention.

The next step is to choose a basis. For a frequency-domain representation, we want
a set of phasors that can represent any Iength-N segment of a digital signal. Before
going further we need to execute a small maneuver to ensure that we end up with the
universally accepted standard form of the DFT. Up to this point we've taken the basic
frequency interval of a digital signal to be [-ro./2, +ro./2]. Now we're going to
switch to the frequency interval [0, ro.,J. You realize, of course, from the discussion
in Section I of this chapter as well as in Chapter 3, that this change makes no differ­
ence whatsoever. Frequencies of discrete-time signals are equivalent modulo the sam­
pling frequency. So, for example, the frequency 0.7ros is equivalent to -0.3ro.,. Just
imagine a phasor jumping each sample by 0. 7><21t radians in the positive direction
instead of by 0.3><21t radians in the negative direction.

Return now to the problem of choosing a basis. We're dealing with sampled sig­
nals, so when we expand them in terms of phasors, we need to consider phasor fre­
quencies only in the range [0, ro.]. The first temptation might be to choose as a basis
all the phasors with frequencies in this range:

{ ejtw} for 0 ::; ro < ro., (2.2)

Notice that we don't go all the way up to the right end of the interval of possible fre­
quencies, because for a digital signal, the frequency ro_, is the same as zero frequency.

152 Chapter 8 Discrete Fourier Transform and FFT

This basis has a lot of elements in it- one for every real point between zero and 005 •

It turns out that this is overkill. We can get away with only N distinct frequencies in
this range.

We choose theN frequency points equally spaced in the desired range from zero to
the sampling frequency, namely 0, 2xiN, 2(2xiN), ... , (N -I)(2xiN) radians per
sample. The corresponding basis is

{ ei1k2niN} for 0 ~ k ~ N- I (2.3)

Think of the kth phasor in the basis as having the discrete time variable t and fre­
quency k2xiN radians per sample.

Checking the orthogonality of the basis elements is a calculation that may look
familiar, a finite geometric series (see Problem 7, Chapter 7). vie need to find the
inner products

N-l
(ejlm2n/N' ejln2n/N) = L ejl(m- n)2n/N (2.4)

1=0

When m = n the right-hand side is N, just the sum of Nones. I ask you to check that
the inner product is zero when m * n in Problem I.

We have an inner product and a basis, so we are done. The frequency domain
representation of the signal x is simply a sum of phasor basis elements, each weighted
by the frequency content of the signal at the phasor' s frequency:

N-l

x 1 = _!_ L X k eilk2n!N (2.5)
N k=O

We use the uppercase X to represent the frequency content of the signal x, represented
by a lowercase letter, a common convention. The factor I IN is introduced here to
avoid a factor in the forward transform, as mentioned above. The frequency content,
or spectrum of x at frequency k2xiN is obtained by the projection of x onto the kth
basis element:

N-l

xk = (x, ejlk2n/N> = L xle-jlk2n/N

1=0

(2.6)

The minus sign comes from the complex conjugate in the inner product, Eq. 2.1. Since
this tells us how to get the frequency content from the signal, we call Eq. 2.6 the for­
ward DFf. The representation Eq. 2.5 tells us how to get the signal values from the
frequency content, so therefore it is the inverse DFf.

In Problem 2 I ask you to check that using the factor I IN in the inverse DFf is
consistent with using no factor in the forward DFf.

We can also view the DFf rather abstractly as a way to convert one sequence of N
complex numbers to another. The transformation is particularly well expressed in
matrix-vector notation. Define x and X to be N-dimensional vectors with components
x 1 and X b respectively, and the N:xN matrix F by

[F] kl = e-j2nki!N (2.7)

The notation indicates that the right-hand side is the element in row k and column t of
the matrix F. The DFf in Eq. 2.6 can then be written very compactly as

§3 Discrete frequency domain 153

X= Fx (2.8)

The inverse DFf results from inverting this matrix transformation by multiplying by
the inverse of the matrix F:

(2.9)

That is, multiplication by the matrix F transforms the signal into its spectrum, or fre­
quency content. Multiplication by F- 1 reverses the transformation, transforming the
spectrum back to the signal. By the way, the inverse of the matrix F always exists;
otherwise, the inverse DFf wouldn't exist (see Problem 3). This matrix-vector point
of view, where the DFf is equivalent to matrix multiplication, is sometimes very use­
ful in thinking about the DFf and its inverse.

3 The discrete frequency domain

When the DFfs of signals are computed, the result appears as a sequence of N com­
plex numbers, representing the frequency content, or spectrum, of the original length­
N signal segment. Let's make doubly sure you understand exactly how to interpret the
result.

When we derived the DFf, it was mathematically convenient to take the frequency
range to be [0, ro s] instead of [- ro 5 /2, + ro 5 /2]. I made a point of the fact that these
two ranges are completely equivalent; the latter interpretation simply means subtract­
ing the sampling rate from all frequencies above the Nyquist frequency. Let's use
N = 8 for illustration. (N = 1024 or 2048 is more representative of practical applica­
tions.) The DFf uses discrete frequency points numbered

0, 1, 2, 3, 4, 5, 6, 7 (3.1)

so this means interpreting the result by subtracting N = 8 from all indices above
N/2 = 4, which yields

0, 1, 2, 3, 4, -3, -2,-1 (3.2)

A good way to visualize this is to draw the frequency points on a circle, as shown in
Fig. 3.1.

Since N corresponds to the sampling rate, we need to divide by N to get the fre­
quencies in terms of fractions of the sampling rate. Thus, the points in Eq. 3.2
correspond to

1 2 3 4 3 2
O, 8' 8' 8' 8' -8· -8·

1
8

fractions of sampling rate (3.3)

To take a realistic example, suppose we compute the 1 024-point DFf of a signal sam­
pled at 22,050 Hz. Points 0 to 512 correspond to consecutive multiples of the fre­
quency 22,050/1024, starting with 0. Point 513 corresponds to minus the frequency of
point 511; point 514 to minus the frequency of point 510, and so forth, down to point
1023, which corresponds to minus the frequency of point 1. This is illustrated in
Table 3.1.

154 Chapter 8 Discrete Fourier Transform and FFT

0 1 2 3 4 4 4 ~

Nyquist_/

f
2

4 0

-2

Fig. 3.1 The frequency domain of an eight-point DFT, shown defined on a
linear domain (top), and, equivalently, a circular domain (bottom).

Point no. Frequency, Hz

0 0.0
21.5

2 43.1

510 10,981.9
511 11,003.5
512 11,025.0
513 -11,003.5
514 -10,981.9

1022 -43.1
1023 -21.5

Table 3.1 The frequencies corresponding to the output points of a 1024-
point DFT when the sampling rate is 22,050 Hz.

Next let's look at the very common case when the signal x 1 is real-valued. In that
case there's a very simple relationship between the frequency content at frequencies co
and -co. Remember that, from the discussion above, frequency indices are equivalent
modulo N; if the frequency co corresponds to point k in the DFf, frequency -co
corresponds to point N- k. Therefore, to look at the transform at frequency -co,
examine point N -k of the DFf of a length-N signal x 1, using the formula for the
DFf, Eq. 2.6:

N-1 N-1

XN-k = L xle-ji(N-kJ2n/N = L xle+jlkh!N (3.4)
1=0 1=0

§4 Measuring algorithm speed 155

Since we've assumed the signal values x 1 are real-valued, this last expression is sim­
ply the OFf at point k, but with j replaced by - j. In other words, when x 1 is a real­
valued signal,

(3.5)

Thus, the values of the transform of a real signal at points from (N/2 + I) to (N- I)
are very simply related to the values at points from I to (N/2- I): the value of the
transform at point (N -k) has the same magnitude as the value at point k, and the
negative of its phase angle. For this reason, we plot the OFf of a real-valued signal
only for points in the range 0 to N/2, corresponding to the range of frequencies from 0
to the Nyquist frequency.

Here's a very simple example of the transform of a real-valued signal. Suppose x 1

is a 128-point segment of a cosine wave at the frequency 22 x/128 radians per sample:

x 1 = 2cos(22xt/128), t = 0, I, ... , 127

The signal can be rewritten using Euler's formula as

x 1 = ei1221t/128 + e-j1221t/128

(3.6)

(3.7)

The frequency can be written II 'X(2x/N), since N = 128, so this is just the sum of
two basis elements, one at point II, and the other at point -II, which is the same as
point 128 - II = 117. Knowing the signal is real-valued, we plot the OFf only up to
the Nyquist frequency, point 64, and the signal's frequency shows up as a single unit
spike at point 11 of the frequency plot, or Ill 128 in fractions of the sampling rate.

In one sense, N samples of a real-valued signal contain only half the information
contained inN samples of a complex-value signal. We've just shown that the OFf of
a real-valued signal has (almost exactly) half the information as the OFf of a
complex-valued signal, since the points above point N/2 are completely determined
by the points below. This makes sense, and is evidence that, intuitively, the OFf
preserves information. The important thing to note for future work is that the magni­
tude of the transform of a real-valued signal is an even function of frequency, and
needs to be plotted only for positive frequencies, from zero to the Nyquist frequency.

4 Measuring algorithm speed

The great significance of the OFf is that it is a frequency transform that can be com­
puted directly, with no approximations. It is a rare example of a mathematical tool that
can be translated into action perfectly. What's more, it can be computed with surpris­
ing efficiency. The principle that makes this possible, divide-and-conquer, is interest­
ing in its own right, and useful in other fields. Before we describe it, we need to dis­
cuss how we are going to estimate the time taken by an algorithm. That way, we will
be in a position to compare different approaches to the same problem. Computer sci­
ence students know all this; they have my permission to skip this and the next section.

Suppose we consider as an example the computation of the OFf in the most naive,
straightforward way. The definition, Eq. 2.6, is a sum of N products for each of N fre­
quency points. It appears that it requires two nested loops, each with limits zero to

156 Chapter 8 Discrete Fourier Transform and FFT

N- I, and therefore a total of N 2 multiplications, and about the same number of addi­
tions. If we want to estimate the amount of time that would be taken by the algorithm,
we could add the time for all the multiplications and additions. Thus, the transform of
a I 024-point signal would seem to require about a million multiplications and about a
million additions. We might even want to take into account the time required to com­
pute the complex exponentials used as the basis elements, the array accesses (assum­
ing the signal and the basis are stored in arrays), and maybe even the time required to
read the data in and out.

Even this simple example shows that keeping precise track of all the time­
consuming steps in an algorithm entails a lot of bookkeeping. Not only is this tedious,
it tends to obscure the important trends. What we really want to know is that, roughly,
the literal evaluation of the sums in Eq. 2.6 requires a number of operations roughly
proportional to N 2 • The reason for this is simple: Nothing is done more than N 2 times.

It turns out that we do not go far astray if we simply count multiplications and
ignore everything else. That will give us the trend, which will be a good guide to algo­
rithms that are efficient in practice. As you'll see shortly, we will achieve savings in
algorithm speed of factors of thousands.

I've been intentionally vague here, because I don't want to get bogged down in a
full-blown discussion of algorithm efficiency. But it's good to know that the notion of
"trend" can be put on a solid mathematical basis. The terminology is that our naive
algorithm takes O(N2) steps, read "order N2 " steps. We also say that the asymptotic
time required for the algorithm is O(N2). The idea is that as N gets arbitrarily large,
the number of steps is bounded by some constant times N 2 • We will get by with the
simple strategy of counting the number of times a representative operation is done.

To consider another example, how much time does it take to read in the data for an
N-point DFf? We can answer this in "big-oh" notation without knowing exactly
what happens during data input. Whatever it is that does happen, it happens once per
data point. The time for input must be proportional to N, and we say that input takes
O(N) time.

A very simple argument supports this seemingly sloppy approach. Suppose we
have two competing algorithms for the same task, the first taking O(N) and the second
O(N2). It's easy to see that if N is sufficiently large, the first will always win, regard­
less of the constants of proportionality we have ignored in such a cavalier manner. If,
for example, the first algorithm takes exactly IOOON steps, and the second takes
exactly N 2 steps, there is a break-even point determined by setting these two quanti­
ties equal to each other:

IOOON = N 2 (4.1)

The break-even point is therefore N = I 000, as shown in Fig. 4.1. Beyond that value
of N the O(N) algorithm is faster, even though it has a constant of proportionality a
thousand times larger than the O(N2) algorithm. For 2000 points, for example, the
linear-time algorithm is twice as fast.

in the case of the DFf, we win on all counts. Not only is there an algorithm that is
asymptotically faster, the break-even value of N is quite small.

§5 Divide-and-conquer

4 ·····························~···························· ····························~···························;;~

: ,' :
,' :

,' :
3 , --linear-time:. ~~~]

: • • • • • quadratic-time ~ • , • ~
: ,' :
: ,' :
~#' :

,': :
2 ·····························~····························-r··················~-;~-,f ... 1

~ ~ ,,,'' ~
~ ~ , , ,
: : ,,

1 ;,. ,
: __ ,,-~ : :
: ,.. . : :
. ,.---·· ~ .

0 "' ... ~-~-~-~-~-~-~-~-~.r. ~ ;. i
0 500 1000 1500 2000

number of points, N

Fig. 4.1 A linear-time algorithm eventually beats any quadratic-time algo­
rithm, regardless of the constants of proportionalities.

5 Divide-and-conquer

157

Divide-and-conquer, the principle we use to construct a fast algorithm for the DFT, is
a basic tool of computer science. The simplest way to explain it is to show how it is
used to find a good algorithm for sorting numbers.

Suppose we are given a list of N numbers, in arbitrary order, and we need to put
them in a final array, sorted from smallest to largest. The naive approach, analogous
to the naive way of computing the DFT, is to search for the smallest item, put it in the
first location of the final array, search the remaining list for the next smallest, put that
in the second location of the final array, and so on, as shown in Fig. 5.1. Each search
takes a number of steps no more than the length of the list, which is no more than N,
and we need to do the searches N times to fill up the final array. The naive sorting
algorithm takes O(N2) time.

Fig. 5.1 Sorting the hard way, one at a time.

158 Chapter 8 Discrete Fourier Transform and FFT

If we used the naive algorithm to sort a list of a million items, we would be in trou­
ble. A million is not a lot of instructions for a computer to execute, but a million mil­
lion is. At the rate of a million operations a second, a million million operations takes
more than eleven days.

The basic problem with the O(N2) sorting algorithm is that it handles one number
at a time. Each time we search the list for the next smallest, we are starting from
scratch and not using the results of previous comparisons between numbers. A better
idea is to process the numbers in batches. We can do this as follows: Sort the first two
numbers on the list, say the numbers in positions 0 and I. That is, put the smaller of
the first two numbers in position 0, and the larger in position I. Then sort the numbers
in positions 2 and 3, and so forth, up to the numbers in positions N- 2 and N- I,
assuming for convenience that N is even. We can think of the result of this first pass as
N 12 sorted lists containing two numbers each.

The next stage is to combine the N/2 pairs of two-element lists into sorted four­
element lists. We then proceed by combining the N/4 four-element lists into N/8
eight-element lists, and so on, until we get to one sorted list of N elements. It's con­
venient in all this to assume that N is a power of two, but if it's not, we can easily pad
the array to the next power of two with very large numbers and ignore the end of the
list when we are done sorting. Figure 5.2 shows the sublists generated in the three
stages when sorting eight numbers. This method of sorting is called, naturally
enough, merge sort.

[?] 0 IT) ~ @] [I] IT] IT]
L ... J '---...---' LJ L

'W'
.)

[ill] ~ rTiill ITII1
L ... _) LJ

1314171201 1216191121
l.. _, ..

1 21 31 416 1 719112!2ol
Fig. 5.2 Merge sort illustrated for eight elements. The top row contains
eight lists of one element each. Each successive row contains half as
many lists, each with double the number of elements.

A key point here is that it is very easy to merge a pair of sublists that are already
sorted into a longer list that is also sorted. The basic idea is illustrated in Fig. 5.3.
Start by comparing the smallest in each original sublist, say x and y. Suppose the
smaller is x. Promote x to the first position in the new list, and move over to the next
element in x's sublist. Next compare the current heads of the sublists. Promote the
winner, move over in its sub list, and repeat, until you run out of elements in one of the
sub lists. Then just tack the end of the remaining sub list onto the final list.

How much work is required to merge two sublists? Estimate the work by counting
the number of comparisons - certainly the number of operations is no worse than

§5 Divide-and-conquer 159

compare

Fig. 5.3 Merging two sorted lists to obtain a longer sorted list.

proportional to that count. Now, each comparison results in another element being
promoted to the new list. We may get a bonus at the end, if one of the sublists runs out
of elements early, but in any event the number of comparisons cannot exceed the
length of the final list, the total length of the two original sublists. In big-oh parlance,
merging sorted lists is a linear-time operation, O(N), where N is the total length of the
lists involved.

Finally, let's estimate how many comparisons are involved in a merge sort. It's
not hard to see that each merging stage, in which the size of the lists is doubled, takes
no more than N comparison operations - because the total lengths of the lists gen­
erated is N and, by the argument in the previous paragraph, merging is linear-time.
How many stages are there? That's easy. It's the number of times we have to double
the size of lists from one to get past N, which is about log 2 N. The total number of
comparisons is therefore about Nlog 2N, and the remaining work is no worse than pro­
portional to that. Merge sort, our new batch-processing sorting algorithm, therefore
takes O(Nlog 2 N) time. Since logarithms to different bases differ only by constant
factors, we'll drop the base-2 and write O(NlogN) when we use big-oh notation,
where constant factors don't matter.

The speedup in going from O(N2) to O(NlogN) may seem unimpressive at first,
but it is a breakthrough. It often allows us to do things that are otherwise impossible.
Consider the simple example of sorting a million numbers. The logarithm (base-2) of
a million is about 20, so merge sort takes no more than about twenty-million com­
parisons. As we mentioned, computers today can do a million things very fast, in less
than a second. The factor of twenty means waiting twenty seconds, which is tolerable.
But N2 = 10 12 , a million million- eleven days instead of twenty seconds!

The logarithm grows so slowly, in fact, that we can think of O(NlogN) as being
more like O(N) than O(N2), as shown in Fig. 5.4. Doubling N just increases log 2 N
by one, and the percent change in Nlog 2N when N doubles becomes more and more
like 100 percent (double) as N gets larger and larger.

The way we've described merge sort is nonrecursive; we start with the smallest
tasks, pairwise merging N lists of length one, and work our way up to the final stage,
where we merge two lists of length N/2. This is a perfectly reasonable way to think
about how the algorithm works, and when translated to code leads to an efficient

160 Chapter 8 Discrete Fourier Transform and FFT

[
~
0
a;

.J:>
E
::>
c:

1e+05
8&+04 . . .

- - - - - quadratic
--NiogN
""""" linear

6e+04
4e+04 2e+04

0
..

0 200 400 600 800 1000

N

Fig. 5.4 Comparison of N 2 , N log 2 N, and N, for N up to 1000. A function
that grows at the rate O(Niog N) is much closer to linear than to quadrat­
ic.

program. But there's another way to think about merge sort, called recursive, or top­
down, which is elegant and useful. It lets us lean on the compiler to fill in details,
allowing us to concentrate on the central principle. The program that results from the
recursive coding can use more storage and time than the nonrecursive approach, but
the savings we get from having an O(NlogN) algorithm are so dramatic that the
inefficiency of the implementation is often irrelevant.

Here's how to think of merge sort from the top down: To sort N numbers, divide
the list into two lists, each of size N/2; sort each, and then merge. How do we sort
each of the half-sized sublists? The same way: divide each in two, sort, and merge.
We can express this idea very succinctly with the following code:t

merge_sort(list)
{

divide list into two half-size lists;
merge_sort(first half);
merge_sort(second half);
merge the two sorted half-lists;

}

t I'll use an informal version of the most common procedural languages, closer to C than to Pascal. I hope
it's self-explanatory.

§5 Divide-and-conquer 161

The procedure merge_sort calls itself- and this top-down, recursive expression
of the algorithm will be compiled automatically into the final code. Figure 5.5 shows
the recursive idea diagrammatically.

N-point merge sort

Fig. 5.5 Recursive expression of merge sort: a procedure that calls itself.

We ought to fill in one more detail; otherwise we would encounter disaster when
we tried to run such a recursive program. The original procedure call to sort an eight­
element list, for example, would generate two calls to sort four-element lists; these
would generate four calls to sort two-element lists; these would generate eight calls to
sort one-element lists, . . . but how would this process of generating smaller and
smaller sublists terminate? We had better notice that sorting a one-element sublist is
trivial: we just leave the element as it is and return from the procedure. Thus we
should alter the pseudo-code above to include an escape clause when we get down to
lists of length one:

merge_sort(list)
{

if (length of list equals one)
return;

divide list into two half-size lists;
merge_sort(first half);
merge_sort(second half);
merge the two sorted half-lists;

}

This bare skeleton leaves out all the programming details, but captures the main idea.
You should be able to flesh it out to produce a working program (Problem 8).

We're now ready to apply divide-and-conquer to the DFT.

162 Chapter 8 Discrete Fourier Transform and FFT

6 Decimation-in-time FFT

To apply divide-and-conquer to the OFf we need to split it into two OFfs, each half
the size of the original. Here's the OFf, Eq. 2.6, rewritten for convenience:

N-1

xk = L x,e-jtk2rt/N

1=0

(6.1)

Since we're going to develop a recursive procedure based on successive halving of
sequence lengths, it is convenient to assume, as in merge sort, that N is a power of
two. You might guess that we are going to split this into two parts in the same way
we did for sorting: first half and second half. But to derive an FFT algorithm that is
easy to understand, we're going to be a bit tricky, and divide the summation into its
even-numbered and odd-numbered terms. By indulging in that complication now, we
will get a wonderfully simple merge operation.

So we're going to write Eq. 6.1 as

(6.2)

where Ek stands for the sum of the even-numbered points in the OFf, every other
term in Eq. 6.1; and 0 k for the odd-numbered terms. The even-numbered terms
correspond to the index values counting by twos, t = 0, 2, 4, ... , N- 2. To count by
ones again, replace t by 2m, and let m = 0, I, 2, ... , N/2-l:

N/2-1

Ek = L Xzme-j2mk2rt!N

m=O

(6.3)

This is a thinly disguised half-length OFf. Just divide numerator and denominator of
the exponent of the complex exponential by two:

N/2-1

Ek = L Xzme-jmk2rt!(NI2)

m=O

To make it even more obvious, replace N/2 by M:

M-1

Ek = L Xzme-jmk2rt!M

m=O

(6.4)

(6.5)

This is precisely the OFf of theM-point signal {x0 , x 2 , x 4 , ••• ,xN_2 }, the even­
numbered points of the signal x.

Next, rewrite the odd-numbered terms in the OFf Eq. 6.1 by letting t = 2m +
for the same range of m:

N/2-1

ok = L Xzm+le-j(2m+l)k2rt!N

m=O

(6.6)

The manipulation works as before, except we first need to factor out the term
corresponding to the extra I in the 2m + I in the exponent of the complex exponential.
We can do this because that factor is independent of the index m:

N/2-1 N/2-1

ok = L Xzm+le-j2mk2rt/Ne-jk2rt!N = e-jk2rt!N L e-j2mk2rt!N (6.7)
m=O m=O

§6 Decimation-in-time FFT

Finally, replace N/2 with M, as above:

M-1

0 k = e-jkrt/M L Xzm+ I e-jmk2!t/M

m=O

163

(6.8)

Once again, this is precisely an M-point DFf, this time of the odd-numbered points of
the signal x, namely { x 1 , x 3 , x 5 , •.• , x N _ 1 } - except there is a complex exponen­
tial factor in front that depends on k, the frequency index of the transform.

We now have all the ingredients we need for a divide-and-conquer algorithm like
merge sort: We have expressed the N-point transform in terms of two N/2-point
transforms; and once we have the half-sized transforms, we have a simple way to
combine the results. The final N-point transform is just the point-by-point sum of
Equations 6.5 and 6.8:

X~ven + e-jk!!IMX'fd' k = 0, I, 2, ... ,N-l (6.9)

where x~ven and Xtfd are, respectively, the (N/2-point) DFfs of the even- and odd­
numbered original input points.

There is one small point that needs some attention, though, before our algorithm is
complete. When we compute the half-sized transforms X~ven and Xtfd, we get values
at the frequency points corresponding to k = 0, I, ... , N/2-l. But when we come
to combine the two smaller transforms to obtain theN-point transform in Eq. 6.9, we
need the results for the full range of k, up to N- I. This presents no real problem,
however, because the summations X~ven and Otfd are periodic ink, with period N/2.
All we need to do to get the values in the range k = N/2 to N- I is to replace k by
k - N/2. The structure of the final FFf algorithm is represented diagrammatically in
Fig. 6.1.

N-pointfft

Fig. 6.1 Recursive expression of the FFT; a divide-and-conquer algorithm
like merge sort.

Finally, here's the pseudo-code for a recursive FFf function, very much like that
for merge sort:

164 Chapter 8 Discrete Fourier Transform and FFT

fft(signal)
{

if (length of signal equals one)
return;

divide signal into two half-length signals,
using the even- and odd-numbered points;

fft(even-numbered signal);
fft(odd-numbered signal);
merge the two half-length transforms,

using Eq. 6.9;

Notice that we stop the recursion in the divide-and-conquer process when the signal
length gets down to one; the length-one transform is trivial: X 0 = x 0 , which can be
checked easily in Eq. 6.1 for N = 1.

7 Programming considerations

The recursive algorithm just described can be coded directly in a language like C, and
it will produce a fine program, achieving gains in efficiency like those illustrated in
Fig. 5.4. It takes O(NlogN) steps, and is nothing to be ashamed of. However, the
decimation-in-time FFf is so widely used in practice that its coding has been highly
optimized. It is almost always programmed in a nonrecursive manner, merging groups
of two, then four, then eight, and so on, without explicit use of recursion. This
approach eliminates the many function calls that the compiler supplies to make the
recursion happen, and these function calls are relatively time-consuming because of
the bookkeeping. (See Problem 10.) The nonrecursive implementation also eliminates
a great deal of data movement. Instead of rearranging the data into even and odd parts
each time we descend a level in the recursive tree, the data is rearranged once and for
all at the beginning of the algorithm.

I programmed the FFf recursively and compared its speed with a standard nonre­
cursive implementation on transforms of signals of lengths 512 to 4096. t The results
are listed in Table 7.1, and show that the nonrecursive program is faster by a factor of
3 to4.

I won't go into great detail about the nonrecursive program, but I do want to men­
tion the main idea involved in getting it to work. Recall that when we first described
merge sort in Section 5 we sorted the array in place - the elements were rearranged
in the same array they originally occupied. It wasn't until we expressed the algorithm
recursively that we let the compiler take care of where the elements were stored at the
different stages. Now we will go back and see how to implement the FFf in place.

t To be more precise. I translated a classic nonrecursive FORTRAN program written by Cooley, Lewis, and
Welch into C. See the Notes at the end of this chapter.

§7 Programming considerations

signal length, n recursive time nonrecursive time ratio

5I2 2.1 0.7 3.0
1024 4.7 1.5 3.I
2048 9.9 2.8 3.5
4096 22.3 6.4 4.1

Table 7.1 Comparison between the running times of two FFT algorithms,
one recursive and the other nonrecursive. The times shown are reported
user CPU times in seconds for 100 repeated FFTs.

I65

In analogy to the in-place version of merge sort, we want to be able to merge two
half-size transforms into one full-size transform, and we want the two half-size
transforms to sit side by side in the signal array. The merge operation itself simply
involves repeatedly forming terms according to Eq. 6.9. There's a difficulty here,
however, that isn't present in sorting. Consider the final stage, where we would like to
merge two transforms of size N/2, one in the first half of the array, and the other in the
second half. We need to ensure that the first half contains the transform of the even­
numbered signals points, and the second half contains the transform of the odd­
numbered signal points. Otherwise, the merging formula doesn't work. To do this,
we should first split up the signal so the even-numbered points sit in the first half of
the array and the odd-numbered points in the second half. Therefore, to make the final
merge work, we should rearrange the data as shown in the second line of Fig. 7 .I,
using a I6-point FFT as an example.

The next-to-the-last stage involves merging the first and second quarters of the
array, then the third and fourth quarters. But the same problem presents itself, for the
same reason: These merges require that we first move the even-numbered points in the
first half to the first quarter, and the odd-numbered points in the first half to the second
quarter, and similarly in the second half of the array. This rearrangement is shown in
the third line of Fig. 7 .1.

It should be clear by now that we need to rearrange the data by even/odd splits all
the way down to groups of two, to prepare the array for the very first merge stage. The
final rearrangement necessary for a 16-point FFT is shown on the bottom line of Fig.
7.1. From this we see that we should rearrange the array by leaving element 0 alone;
moving element 8 to position I; moving element 4 to position 2; and so on. This may
seem at first like a ridiculously complicated pattern. How could we possibly figure out
how to rearrange 2 10 points so that all the merges will work with adjacent subarrays?
Can you see the pattern relating the first and last rows of Fig. 7 .I?

The pattern is actually not that complicated - once you see it, of course. The key
to the rearrangement pattern lies in the binary numbers that represent the array
indices. For example, consider element 5 (base-l 0), which has the binary index 0 I 0 I.
The least-significant bit, a I, means that the element is in an odd-numbered position,
so it needs to be put in the second half of the array. The second least significant bit is a
0, which means that among the odd-numbered elements, it occupies an even­
numbered position - it is, in fact, in position 2 (counting from 0) among the odd-

166 Chapter 8 Discrete Fourier Transform and FFT

Start:

Stage 1:

Stage 2:

Stage 3:

0 1 2

0 2 4

0 4 8

o 8 II 4

3 4

6 8

12,,2
12 2

5 6

10 12

6 10

10 II 6

7

14

14

14

8 9 10

1 3 5

1 5 9

1 9 II 5

11 12

7 9

~~ II ~

13 14

11 13

7 11

11 II 7

Fig. 7.1 Successive stages in rearranging the data for a 16-point FFT. The
first line shows the original indices; the second shows the indices after the
first even/odd split; and so on. The last line shows the final, bit-reversed
reordering.

15

15

15

15

numbered elements. This means that it will be in the first half of the second half of the
array. The next bit is a 1, which means that it will be in the second half of the first half
of the second half of the array. Thus, the least-significant bit of the original position
determines the most-significant bit of its final position; the second-least-significant bit
determines the second-most-significant bit, and so on.

The end result of this argument is that the final position in binary is simply the ori­
ginal position in binary, but with the bits in reverse order. Thus, the element in posi­
tion 5 (base 10), 0101 in binary, winds up in position 10 (base 10), 1010 in binary. An
element with an index that in binary is the same reversed, like 9 (base 10), I 00 I in
binary, stays put, as you can verify in Fig. 7.1.

A nonrecursive FFT program therefore begins with the rearrangement just
described, called bit-reversal, or shuffling. The rest of the program then proceeds by
merging adjacent sublists, just as in merge sort, and every sublist will represent the
half-size transform of the appropriate even or odd part of corresponding full-size
transform. The final nonrecursive program is shown diagrammatically for the eight­
point case in Fig. 7.2. The initial bit-reversal rearrangement prepares the data so we
can then follow the nonrecursive merge sort program (compare with Fig. 5.2).

Finally, I want to mention one more practical matter in writing an FFT program.
The merge steps, in accordance with Eq. 6.9, will consist of a loop of the following
form, containing a multiplication by the complex exponential W k:

for (k=O; k<M; k=k+l)
{

(first-half element) + wk *(second-half element);
}

This loop is, in fact, the inside loop, and contains all the arithmetic in the entire algo­
rithm. It is therefore important that we pay close attention to its efficiency, and notice
that it would be silly to recompute the power of W from scratch every time we needed
it. It is much more efficient to generate each successive power by multiplying the pre­
vious one by W, as in the following:

§8 Inverse OFT

Fig. 7.2 Outline of the nonrecursive eight-point FFT program. The merge
steps follow Eq. 6.9.

u = 1;
for (k=O; k<M; k=k+l)
{

(first-half element) + U*(second-half element);
U = U*W;
}

8 The inverse OFT

167

We'll want to compute the inverse OFf as well as forward OFf, but we don't need a
separate program to do it. The two are almost identical, as you can see by comparing
Eqs. 2.5 and 2.6. The inverse transform has an extra factor of liN- just a constant
scale factor- and the exponent of the complex exponential is the negative of the one
in the forward transform.

We can see how to use the forward OFf to compute the inverse OFf by a simple
manipulation of the inverse transform, Eq. 2.5:

I N-l
x r = - 1: X k ejrk2111N

N k=O

Take the complex conjugate of both sides of this equation and multiply by N:

N-l
N • _ ~ x· -jrk2rt/N x, - ~ ke

1=0

(8.1)

(8.2)

The right-hand side is just the forward OFf of x;. This tells us that the forward OFf
of the conjugate of the transform gets us back to something quite close to the original

168 Chapter 8 Discrete Fourier Transform and FFT

signal; namely, Nx;. To get back to x 1, all we need to do is divide by Nand take the
complex conjugate.

To summarize, to calculate the inverse OFf a signal:

(a) take its conjugate;
(b) take its forward transform;
(c) take the conjugate of the result and divide by N.

The extra operations take a number of steps proportional to N. I ask you to derive
another efficient method in Problem 15.

9 A serious problem

You might think that we are now in a great position to use the FFf. Let's say we want
to determine the frequency content of a signal. We take a sample of, say, 1024 (a
power of 2) consecutive points, apply our O(NiogN) FFf algorithm, and look at the
magnitude of the OFf it computes as a function of frequency. It turns out that there is
more to it than that, and the difficulties are interesting and instructive. They arise
because we are taking a slice of a signal that almost always extends before and after
our sample. To do things right we need to study the frequency transform of signals
that extend to the infinite past and infinite future. This we'll do in the next chapter,
after which we'll return to the practical application of the FFf, armed with a better
understanding of what the frequency content determined by the OFf really means.

Before we delve into the case of infinite-extent signals, however, I want to illus­
trate the problems that come up when we take the OFf of a piece of a sinusoid. To
make things simple, suppose we take a sample of N = I 024 consecutive points of a
particular basis element, the complex phasor with frequency (133/N) times the sam­
pling frequency:

x, = ejt(l33)h!N (9.1)

We know from our previous work that its OFf is zero everywhere except at point 133,
where it is N = 1024 (recall Eq. 2.4 and see Problem 1). That's the theory- but
when we compute the OFf with the FFf, there will be small computational errors
introduced by roundoff, as we'll see presently.

The output of the FFf consists of 1024 points, the frequency content at the sam­
pling frequency times i/1024, i = 0, 1, ... , 1023. It's therefore convenient to use
i/1024 as the abscissa, labeled "fractions of the sampling frequency," as shown in
Fig. 9.1. That figure shows the OFf as computed with the FFf algorithm, plotted as
magnitude in dB. Instead of true zero at the points excluding the true phasor fre­
quency, we get numbers below 1 o-Il = -220 dB. But this is what we would expect;
floating-point arithmetic isn't perfect, and, after all, we're getting a range of maximum
to minimum amplitude of about 280 dB, or 14 decimal places.

Suppose, though, that the phasor we analyze happens to be at a frequency
133.5/1024 times the sampling frequency. In other words, suppose its frequency falls
in the "crack" between two OFf points. The result is shown in Fig. 9.2, with a drasti­
cally different ordinate scale. The OFf now does a very poor job of resolving the

§9 A serious problem

100 :·······················:·······················~·······················~······················:·······················: .
: : : : .

0 ~·······················~·······················~·······················~······················~·······················~ .
: : : : :
: : :

-100 ~·······················~·······················~······················~······················~·······················~
: : : . : :
: : : : .

-200 ~·······················~·······················~·······················~······················; ~
: : : : : :
: A : ~ • : ·~ ; : • • : '· • ,.:

~~~~~~~.,~-~~~~~ 
: ~ •• •• .·.·: • • • : •• :. • ·:·.. • 0 ••• ? 0 ••• : 

·300 ~ ....... : ............. :.~ ................ : ...... ~ ...................... ~ ...................... ~---···················i 
0 U OA Q6 QS 1~ 

frequency, in fractions of sampling rate 

Fig. 9.1 The 1 024-point FFT of a basis element, the phasor with frequency 
precisely 133/1024 = 0.12988 times the sampling frequency_ Don't forget 
to notice the lonely point 133 with ordinate 1024, or 60.2 dB. 

60 :···········:···········:···········:···········:···········~···········~···········:···········:···········:···········: 

55 ~···········~··.-········~···········~··········+···········[···········[···········:···········{···········{···········j 
50 ~···········~···········~···········~··········+··········+··········+··········+··········j···········j···········j 
45 4···········?·-~·-······?···········?···········~···········~··········+··········+···········~···········~···········~ 
40 ~···········~··~·······~···········~···········~···········f···········f··········t··········]···········]···········j 
35 ~--·········~--~~·······~···········?···········?···········;·-··········?···········;············~············~············; 

~ jJr;••···············,··········~··········~··········;··········~··········l··········t·•••······i ....... :. ........... :. ........... :. .......... .:. .......... .: ........... .: .. . . . . . . . . 

0 ~-··········~···········~···········~···········~···········~· ······=············=···········-= 
: : : : : : : . : : : 

-5 -i···········i···········i···········i···········i···········i··········-i-··········-i-··········-i-··········i···········i 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

frequency, in fractions of sampling rate 

Fig. 9.2 The 1 024-point FFT of a phasor with frequency 133.5/1024 = 
0.13037 times the sampling frequency. 

169 



170 

Notes 

Problems 

Chapter 8 Discrete Fourier Transform and FFT 

frequency of this particular input signal. In fact, the range of maximum to minimum 
amplitude is 58 dB, or about three decimal places. You can think of this as a "smear­
ing" effect: If the input frequency doesn't line up with a basis element, its energy 
shows up in significant amounts at all the DFf frequencies. 

When we analyze arbitrary signals, this smearing effect seriously degrades the 
effectiveness of the DFf in measuring frequency content. It turns out that we can't 
completely eliminate the smearing effect, but we can alleviate it significantly. To 
understand how, we'll look next at the transform mentioned at the beginning of this 
section, one that handles more than just finite pieces of a signal. 

Fast Fourier Transform algorithms have a long and interesting history. The basic idea 
has been rediscovered several times in the past two centuries. The following paper: 

M. T. Heideman, D. H. Johnson, and C. S. Burrus, "Gauss and the His­
tory of the Fast Fourier Transform," IEEE ASSP Magazine, pp. 14-21, 
Oct. 1984. 

traces that history back to the German mathematician Carl Friedrich Gauss 
(1775-1855) who described it in a Latin treatise, Theoria lnterpolationis Methodo 
Nova Tractata, most likely written in 1805, but not published until 1866. The explo­
sion in its use for signal processing was detonated by the following paper, which 
describes a version applicable to any sequences with nonprime lengths: 

J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calcula­
tion of Complex Fourier Series," Mathematics of Computation, vol. 19, 
no. 2, pp. 297-301, Aprill965. 

The FORTRAN program translated into C for the timing tests in Section 7 is attri­
buted to Cooley, Lewis, and Welch in 

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Pro­
cessing, Prentice-Hall, Englewood Cliffs, N.J., 1975, 

where it is reproduced on p. 367. It is remarkably concise (32 lines) and violates all 
present-day standards of programming style and documentation. Deciphering and 
translating it into Cis an amusing exercise (see Problem 12). 

1. Complete the check of the orthogonality of the DFf basis by showing the inner pro­
duct in Eq. 2.4 is zero if m ::1- n. 

2. Check that taking the inverse DFf of the forward DFf gets back to the original sig­
nal by substituting Eq. 2.6 in Eq. 2.5. This shows that using the factor liN in the 
inverse transform is consistent with using no factor in the forward transform. 



Problems 171 

3. Show that the matrix of the OFf transformation, Fin Eq. 2.7, is nonsingular. What 
is its determinant? What is its inverse? 

4. Assume you are given a continuous-time signal x(t) that is periodic with period T. 
That is, x(t) = x(t +iT) for all integers i. Assume further that you sample every T_, 
sec, and that the signal x(t) has no frequency components beyond the Nyquist fre­
quency, l/(2T5 ) Hz. (When that is true, we say x(t) is bandlimited.) Finally, assume 
that the sampling interval Ts is a divisor of the repetition period T, and let N = TIT., 
the number of samples in a basic period. 

(a) Derive the OFf and inverse OFf of the digital signal consisting of the first N sam­
ples in terms of the Fourier series of x(t). 

(b) Explain how the result is changed when the original signal is not bandlimited. 

5. In the analysis of the running time of merge sort, I point out that the number of 
times we have to double the sizes of lists from one to get past N is about log 2 N. Give 
the precise number of stages in the algorithm. 

6. Write a program in your favorite language that computes the OFf using the 
decimation-in-time FFf algorithm described in Section 6. 

7. Write another program that computes the OFf in O(N2 ) time, using a naive imple­
mentation of the nested loops in Eq. 2.6. Then compare the fast and slow algorithms 
on data lengths ranging from N = 2 to N = 2048. For what values of N is the FFf 
faster? 

8. Write a program for merge sort using the recursive outline in Section 5. Run timing 
tests to verify that the running time becomes proportional to NlogN for large N. 

9. Write a program for merge sort that is expressed nonrecursively instead of recur­
sively. How does its running time compare with the recursive implementation in the 
previous problem? 

10. How many function calls are required by a recursive implementation of the 
decimation-in-time FFf? Express your answer in terms of the signal length N. 

11. Write and test an explicitly recursive FFf in C or Pascal. 

12. Read, disentangle, and translate into C the Cooley-Lewis-Welch FORTRAN FFf 
referred to in the Notes. Compare its running times with those of the recursive pro­
gram in Problem II. Do you get the same results I did? 

13. FORTRAN has a complex data type, so the complex multiplication at the end of 
Section 7 looks like this in the Cooley-Lewis-Welch program mentioned in the previ­
ous problem: 



172 Chapter 8 Discrete Fourier Transform and FFT 

U = U*W 

When I translated this to C, I used Ur and Ui to represent the real and imaginary parts 
of U, respectively, and similarly for w. I then translated the line above into Cas 

Ur Ur*Wr - Ui*Wi; 
Ui Ur*Wi + Ui*Wr; 

Find the bug. 

14. If we reuse an FFf program many times, which we commonly do, we may want to 
precompute and store all the sine and cosine values required by the algorithm. This 
trades space for time. How many values do we really need to store for an N-point 
FFf, taking into account the symmetries of the sinusoids? 

15. The OFT of a vector is represented by multiplication by the matrix Fin Eq. 2.7. 
Consider the effect of taking the OFT twice in succession. This is represented by mul­
tiplication by the matrix R = F 2 • 

(a) Find an explicit formula for the ijth element of R. 

(b) Show that R 2 = I, the identity matrix. What does this imply about R- 1? About F? 

(c) Find an expression for F- 1 in terms ofF and R, thus suggesting an efficient way 
to compute the inverse OFT using the forward FFT algorithm - an alternative to the 
method described at the end of Section 8. 

16. The sample FFf plot of a basis element in Fig. 9.1 was obtained using double­
precision arithmetic. If you have written or can get an FFf program, compare the 
results on the same example using single- and double-precision arithmetic. Also try 
transforming different basis elements, including the ones at points 128 and 256. The 
results may surprise you. 

17. Take a look at the FFf in Fig. 9.2 of a phasor at a frequency lying exactly half­
way between two OFT points. Notice that its minimum value is almost precisely 0 
dB, or one. Explain this. 



1 Domains 

CHAPTER 9 

The z-transform 
and Convolution 

We've already seen two frequency transforms, both of them for finite-extent (or 
periodic) signals - Fourier series, for continuous-time signals, and the OFf, for 
discrete-time signals. In the case of Fourier series, illustrated diagrammatically in Fig. 
l.l, the time domain is continuous and finite, and as we discussed in the previous 
chapter, a finite time domain can be thought of as a circle. On the other hand, the 
Fourier series spectrum consists of an infinite sequence of complex numbers, indicated 
in the figure by a dotted straight line. 

infinite extent 
discrete 

••••••••••• spectrum 
k 

frequency 
domain 

series 

finite extent 
continuous 

signal 

time 
domain 

Fig. 1.1 Fourier series as a frequency transform. 

In the case of the Discrete Fourier Transform, both the time and frequency 
domains are finite and discrete. This is illustrated in Fig. 1.2, where both domains are 
represented by dotted circles. 



174 Chapter 9 The z-transform and Convolution 

.······ 

••• --.. finite extent 
( k ) discrete 
•••••• • spectrum 

frequency 
domain 

: t •• 
:. .! 

finite extent 
discrete 
signal 

time 
domain · ..... · 

Fig. 1.2 The DFT. 

If you think about it for a second, there are just two more possible time domains to 
consider: the cases where the time axis is infinite in extent and either discrete or con­
tinuous. The first of these remaining cases, the z-transform, is the one we'll consider 
next and is illustrated in Fig. 1.3. This is the important situation where the signal is 
digital and extends indefinitely in one or both directions. It turns out that the fre­
quency domain of the z-transform is finite and continuous. In fact, the mathematics is 
really the same as that for the Fourier series, except the time and frequency domains 
are interchanged. You can think of the z-transform as the inverse of the Fourier series 
operation - it starts with an infinite sequence and yields a periodic function of a con­
tinuous variable, in this case the frequency content for frequencies up to the Nyquist 
frequency. We could make use of the work we did for the Fourier series to derive the 
z-transform, but it's so important and so easy that we'll do it from scratch, in the next 
section. 

G 
finite extent frequency 
continuous domain 
spectrum 

infinite extent time 
discrete domain 

•••••••••••• signal 

Fig. 1.3 The z-transform. 

The final case, the Fourier transform, is illustrated in Fig. 1.4. We already alluded 
to this situation at the end of Chapter 3 - the signal is not sampled and extends 
indefinitely in time. In this case the frequencies required to represent signals must also 
be continuous and extend indefinitely. Both the time and frequency domains are 



§2 z-transform 175 

continuous lines of infinite extent. We'll return to the Fourier transform after we dis­
cuss the z-transform. 

The continuous-time cases, the Fourier transform and Fourier series, are the classi­
cal, nineteenth-century frequency transforms -they're tools developed by physicists. 
Sampling is a mid-twentieth-century idea, and the OFf and z-transforms are relatively 
recent inventions. But, as you can see from the way the pieces fit together, the four 
frequency transforms outlined here are really just different incarnations of the same 
basic idea: Signals can be decomposed into sums of phasors. The intuition you 
develop in any of the domains will almost always apply in the others. 

infinite extent frequency 
continuous domain 

1---- spectrum 

infinite extent 
continuous 

signal 

Fourier transform 

time 
domain 

Fig. 1.4 The Fourier transform. 

2 The z-transform 

We're ready to look at the z-transform, used for discrete-time signals that are defined 
for a time axis of infinite extent. We'll rely on the same geometric picture we used 
before: A signal will be thought of as a point in a space with coordinates that 
correspond to its different frequency components. 

Let's start with the basis, the coordinate axes. These must be discrete-time pha­
sors, signals of the form 

(2.1) 

where k is the (discrete) time variable, and ro is the frequency variable in radians per 
sample. t Since we now want to represent signals defined for the infinite time axis, we 
allow the integer k to vary from - oo to + oo. 

We now come to a key point. The signals represented by the z-transform are sam­
pled, so the basis needs to contain only frequencies up to the Nyquist- but no higher. 
Therefore, we restrict ro to lie between -7t and + 1t radians per sample. There are a lot 
of basis elements - one for each real frequency ro between -7t and 1t. The representa­
tion of the signal h is therefore a summation of the phasors in the basis over this 

t At the risk of being repetitious, let me remind you that we could use roT, in the exponent, where T, is the 
sampling interval, in which case the units of ro would have to be radians per sec. It's easier to use normalized 
frequency in radians per sample; the Nyquist frequency is It radians per sample. 



176 Chapter 9 The z-transform and Convolution 

range of frequencies, weighted by the amount of the signal at each particular fre­
quency. This summation over a continuum like this is represented by the integral 

fk = - 1-J n F(ro)ejkw dro 
2x -n 

(2.2) 

The function F(ro) is the frequency content, or, loosely speaking, the spectrum of the 
signal ft. In general F(ro) is complex; it tells us not only the magnitude but also the 
phase angle of the phasor at frequency ro present in the signal. The factor l/(2x) is 
introduced here to avoid a factor later, in the forward transform - Eq. 2.2 is actually 
an inverse transform, telling us how to get from the spectrum back to the signal. This 
is exactly analogous to the factor liN in the inverse OFf, Eq. 2.5 of Chapter 8. 

One small point here, concerning the end points of the band of allowed frequen­
cies. We want the range of allowed frequencies to repeat periodically, every 2x, for­
ever. We therefore cannot include both -x and 1t in the allowed band, because these 
endpoints would then be missing from the periodically shifted versions. To resolve 
this issue, we can let one end be in the interval, and the other end outside- it doesn't 
matter which. Actually, what is really important is that no two frequencies in the fun­
damental range between -x and 1t differ by as much as 2x. 

The next step is to find the appropriate inner product, which in our work is always 
a summation of products over the time variable. Since the time variable is discrete and 
infinite in extent, we have little choice; the inner product between two discrete signals 
fk and g k must be 

~ 

(fk, gk) = L fkgZ (2.3) 
k=-~ 

Once more, we use the complex conjugate of the second signal so the inner product of 
a signal with itself is real, the sum of the squares of absolute values. Notice that in 
general we allow signals to extend to negative time, although we will often consider 
signals that are zero for k < 0, so-called one-sided signals. 

We've followed the same program twice before, so it should be familiar. As men­
tioned above, the signal representation in terms of frequency content, Eq. 2.2, is the 
inverse transform. It goes from the frequency domain, the frequency content F(ro), to 
the time-domain signal fk· The forward transform should express the coordinate 
values F( ro) in terms of the signal, using the inner product. To find the content of the 
signal fk at frequency ro, take the inner product of fk with the basis signal at that fre­
quency: 

~ 

F(ro) = (ft. ejkw) = L fke-jkw (2.4) 
k=-~ 

The frequency ro will range from -x to x, so the complex exponential ejw ranges 
exactly once over the unit circle. 



§3 Orthogonality 177 

We now come to the definition of the z-transform. Although we've been consider­
ing values of z on the unit circle (z = ei"'), we're going to get a lot of mileage out of 
considering z to be a full-fledged complex variable. We'll therefore make the substi­
tution 

(2.5) 

in the forward transform in Eq. 2.4, which then becomes the following simple-looking 
power series: 

(2.6) 
k=-~ 

This is the z-transform. We'll see shortly that this z has precisely the same meaning as 
the z introduced in Chapter 4 to analyze the frequency response of digital filters. 

Notice that I've gone out of my way to use different symbols for the functions 
F(ro) and !f(z). Actually, they're related by 

F( ro) = !!( ei"') (2. 7) 

The z-transform of a signal evaluated on the unit circle tells us its frequency content. 
We used the same notation in Chapters 4 and 5 for digital filter transfer functions, and, 
as we'll see soon, the two situations are very closely related. The z-transform on the 
unit circle, Eq. 2.4, is sometimes referred to as the Discrete-Time Fourier Transform 
(DTFT), but we won't bother using the extra terminology. 

Before we move ahead, we should fill in a missing piece of the mathematics: the 
verification that the basis is orthogonal. The next section deals with that issue. You 
can skip it without losing continuity, but the way the o functions from Chapter 7 come 
into play here is elegant, and a good example of time-frequency symmetry. 

3 Orthogonality 

We skipped checking the orthogonality of the basis we used in the z-transform, so 
we're going to check it now. The geometric intuition behind orthogonality of basis 
elements is that the two vectors representing two different elements are at right angles 
to each other. Remember that the basis elements are signals indexed by their fre­
quency ro - there is one basis element for each frequency in the range -7t to 1t. So 
let's consider the inner product between two basis elements that correspond to fre­
quencies ro 1 and ro 2• Substituting these from Eq. 2.1 into the inner product formula 
Eq. 2.3 gives us 

~ 

( jkro, jkro,) ~ ejk(ro, - .,, ) 
e ,e - ="'-' (3.1) 

k=-~ 

Ordinarily, the right-hand side of this equation would stop us in our tracks. There 
seem to be real problems here. When ro 1 = ro 2, for example, the right-hand side of 
Eq. 3.1 is infinite, the sum of an infinite number of ones. When ro 1 -:t- ro 2, we have an 
equally unsatisfactory situation: The terms are complex, all of unit magnitude (by 
Euler's formula), and each term is equal to the one before, except rotated by 



178 Chapter 9 The z-transform and Convolution 

( ro 1 - ro 2 ). It would be hard to make sense of this, were it not for the fact that we've 
already seen this kind of expression in Chapter 7, when we were looking at buzz and 
the Fourier series for a square wave and its derivative. With a little work we can con­
vert that result into just what we need now. 

Equation 6.2 of Chapter 7 tells us that 
~ ~ 

L eik2" 11T = L H5(t - kT) (3.2) 
k=-~ k=-~ 

where we have replaced the ro0 in Chapter 7 by 2x/T. As a function oft, this is a train 
of Dirac~ functions, each with area T, spaced Tsec apart. We want the left-hand side 
of Eq. 3.2 to be exactly like the right-hand side of Eq. 3.1, so we next choose T = 2x, 
to match the constants in the complex exponent. (Since Eq. 3.2 is true for all T, we're 
free to choose T to be anything we want.) Furthermore, the sum in Eq. 3.2 is con­
sidered a function of t, but we want to regard Eq. 3.1 as a function of ro. Therefore, 
replace tin Eq. 3.2 by ro, yielding t 

~ ~ 

L eikm = 2x L ~(ro - k2x) (3.3) 
k=-- k=--

This is, actually, just what we're looking for, except that the ro on the left-hand side 
will be set equal to ( ro 1 - ro2 ) in order to match Eq. 3.1. However, because ro 1 and 
ro 2 are both restricted to the range between -x and x we can put the right-hand side in 
a simpler form. 

The ~ function ~( ro) has its spike of infinite height when ro = 0. The spikes on the 
right-hand side of Eq. 3.3 therefore occur when ro 1 and ro 2 differ by an integer multi­
ple of 2x. Now recall our observation in Section 2 that we should exclude one of the 
endpoints of the interval between -x and x - which implies that ro 1 and ro 2 always 
differ by less than 2x. Therefore, only one spike occurs on the right-hand side of Eq. 
3.3, when ro 1 = ro 2 and k = 0. 

Combining Eq. 3.1, the original inner-product calculation, with the simplified Eq. 
3.3 yields: 

(3.4) 

This is the orthogonality result we need. 
We can now make sense of the problems we observed above. It is true that the 

inner product between two basis signals with the same frequency is infinite. It also 
turns out that the inner product when the frequencies differ is zero. What we get, in 
fact, as a function of the difference in frequencies, is a spike with an area of 2x. And 
this is exactly what we need to derive the forward transform, Eq. 2.4, from the inverse 
transform, Eq. 2.2, our signal representation and starting point. 

To see this, let's start with what we claim is the frequency content of our original 
signal -its inner product with a basis signal at frequency ro': 

(3.5) 

t This is neither the first nor the last time we're going to interchange time and frequency variables. Time­
frequency symmetry will become one of our Leitmotifs. 



§4 z-transform of impulse and step 

Next, recall the inverse transform, Eq. 2.2, for fk: 

and use this in Eq. 3.5: 

h = _l_J lt F(ro)ejkro dro 
2x -lt 

(fk, ejkro') = _21 J lt F(ro)(ejkro, ejkro') dro 
1t -lt 

179 

(3.6) 

(3.7) 

Notice that, with our usual mathematical abandon, we've slid the inner product inside 
the integral. In other words, we've interchanged the order of the integration and the 
summation represented by the inner product. A felicitous collapse now ensues. The 
inner product becomes the o function we worked to get in Eq. 3.4, which then punches 
out the integrand at the frequency ro = ro', at the same time canceling the l/(2x) fac­
tor in front of the integral. The net result is simply 

F( ro') = (h, eikro') (3.8) 

which is precisely Eq. 2.4, the forward transform we wrote down from geometric 
intuition. 

I hope you didn't mind the excursion in this section. It shows that the pieces we've 
been using fit together the way they should, and it gave us a bit more practice using o 
functions. 

4 z-transform of the impulse and step 

It's time to get down to specifics and look at some important examples of z­
transforms. This will sharpen your intuition and give you a drawerful of useful stan­
dard parts to use later. Our "simplest" signal up to now has been the phasor; but 
now, for a change, let's start with another very simple signal, called the unit sample, 
or unit impulse digital signal, which is illustrated in Fig. 4.1. In fact, nothing could be 
simpler- it's one at the zeroth sample, and zero everywhere else: 

if k = 0 

if k * 0 
(4.1) 

The z-transform of this signal is the power series Eq. 2.6, and only the zeroth term 
contributes anything. But the zeroth term is multiplied by z0 = I, so the z-transform 
of the unit sample signal is just I. That is, all frequencies are present in equal 
amounts. We should now try to make sense out of this possibly puzzling fact. 

First, let's go back to our other frequency representations to see if their results jibe 
with this one. The periodic continuous-time signal analogous to a single unit sample is 
a train of repeating o functions. But we've already seen that in Chapter 7. What's 
more, we used it just recently, in Eq. 3.2, which we rewrite here as 

i o(t - kT) = _!_ i eik2~tt!T 
k=-~ Tk=-~ 

(4.2) 



180 Chapter 9 The z-transform and Convolution 

1 ------· 
I 

-3 -2 -1 0 2 3 4 k 

Fig. 4.1 The unit sample digital signal. 

All the Fourier coefficients are the same, liT. Check! 
To find the analogy in the OFT case, we should look at the signal 

if k = 0 
ifk =I, 2, 3, ... ,N-l 

The summation defining the OFT, Eq. 2.6 in Chapter 8, becomes simply 

F k = I , for k = 0, I , 2, 3, ... , N- I 

Again, check! 

(4.3) 

(4.4) 

You can get some intuition for these transforms by going back to our work on 
Fourier series in Chapter 7. We observed then that the more abrupt the changes in a 
time function, the more high frequencies are required to represent it. Thus, the iso­
lated pulse, being an extremely abrupt change, requires all frequencies in equal 
amounts. 

Recall from Section 3 of Chapter 7 that representing a square wave requires fre­
quencies in amounts inversely proportional to their frequency. In other words, the nth 
harmonic is represented with the factor lin (see Eq. 3.5 in Chapter 7). Now let's try 
to verify that result for the z-transform. Figure 4.2 shows the discrete-time, infinite­
extent unit step signal, 

The z-transform is the series 

if k ;::: 0 

if k < 0 

~ 

'll(z) = L z-k 
k=O 

(4.5) 

(4.6) 

This is a geometric series, one we've already met in Chapter 7 (see Problem 7 of that 
chapter). The sum is 

'll(z) = -1 
I - z 

(4.7) 

The frequency content of the unit step signal is the magnitude of its z-transform on 
the unit circle in the z-plane, shown plotted in Fig. 4.3. The plot shows that the fre­
quency content peaks at zero frequency (DC}, and decreases as the frequency 
increases, which is consistent with our expectation that it vary as the inverse of 



§4 z-transform of impulse and step 181 

1 ------~ • • • • 

-3 -2 -1 0 2 3 4 
k 

Fig. 4.2 The unit step digital signal. 

frequency. In fact, there appears to be an infinite amount of DC present, which makes 
sense for the following reason. Zero frequency corresponds to the value z = e0 = I. 
Setting z = I in the definition of the z-transform tells us that 

~ ~ 

'll(l) = L uk = L I = oo (4.8) 
k=-~ k=O 

This is a divergent series, and the zero-frequency content is infinite. Put more simply, 
the function 'll(z) has a pole at z = I. 

40 ·······················~·······················~·······················~······················~·······················~ 

. . . . . . . 
30 ~ ······················~·······················~·······················~······················~·······················~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
20 ~-- ···················~·······················~·-····················+·······················~·······················~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ···········=·······················:-·······················:-······················-:·······················-: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... :; ....................... :, ...................... ,: ....................... ,:: . . . 0 ~ ....................... ~ ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

-10 -i·······················i·······················i······················T······················T······················i 
0 0.1 0.2 0.3 0.4 0.5 

frequency, in fractions of sampling rate 

Fig. 4.3 Frequency content of the unit step digital signal. 

To check the shape of the frequency content curve more closely, set z = ej"' in 
'll(z), yielding 

IU(ro)l 2 = 
(I - cosro)2 + sin2 ro 

(4.9) 
- COS(I) 

When ro is small, cos ro :::: I - ro2/2, so for small ro 

I U(ro) I :::: 1/ro (4.10) 



182 Chapter 9 The z-transform and Convolution 

Notice that the inverse-frequency shape checks the Fourier series result for small ro, 
but not for frequencies near Nyquist. I'll ask you to think about that in Problem I. 

5 A few more z-transforms 

It's very easy to derive additional useful z-transforms from the unit step transform, 
which you'll recall from the previous section is the geometric series 

- I 
'll(z) = L z-k = ---

k=O I - z-I 
(5.1) 

Suppose we consider the same signal, but with each sample value weighted by an 
exponential factor Rk: 

if k ~ 0 

if k < 0 
(5.2) 

This has an exponentially decaying shape, as shown in Fig. 5.1. The closer R is to 
one, the slower the decay. 

1.0-

0.9- • 
0.8- • ., • :::J 0.7-

~ • 
iii 0.6- • c: 
.2' • II> 

0.5- • • 0.4- • • 
0.3- • • • • 0.2- • • • • • • • 0.1 - • • • • 

0 . . . . . . . . . . . . . . . . . . . . . . . . . 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

time, sample number 

Fig. 5.1 Exponentially damped step signal, R = 0.9. 

The z-transform is 

- -
1(z) = L Rk z-k = L (R-l z) -k (5.3) 

k=O k=O 



§5 A few more z-transforms 183 

This is a geometric series, but with z replaced by R- 1 z. Therefore its z-transform is 
just Eq. 5.1 with that change of variable: 

.1{z) = 
R -l - z 

Note that this moves the pole from z = I to z = R. 

(5.4) 

There is nothing to prevent us from using an exponential weighting factor that is 
complex. Consider the signal 

if k ~ 0 
if k < 0 

(5.5) 

where we are now free to choose two parameters, R and 9, which, as you might 
expect, determine the radius and angle of a pole in the z-plane. The same procedure 
as above leads to the z-transform 

(5.6) 

And there's the pole: at z = Rej9 • 

The complex exponential signal in Eq. 5.5 can be thought of as the sum of two sig­
nals by taking the real and imaginary parts: 

fork~ 0 (5.7) 

and 

!mag {fk} = Rk sin(k9), fork~ 0 (5.8) 

Figure 5.2 shows an example of the damped cosine wave. 
We can get the z-transforms of each of these by breaking down the transform in 

Eq. 5.6 the same way. To do this, multiply the numerator and denominator of Eq. 5.6 
by the denominator with j replaced by - j. t The result is 

!J(z) (5.9) 

The first and second parts of this equation are the z-transforms of the damped cosine 
signal and damped sine signal, Eqs. 5.7 and 5.8, respectively. The z-transforms we 
derived in this section are collected in Table 5.1. 

t Don't be confused by the fact that z is a complex variable. In this context we can treat it simply as a place 
marker in the power series that defines the z-transform. We're just breaking the power series into two parts, 
one with a j in front. 



184 Chapter 9 The z-transform and Convolution 

1.0-
0.9-
0.8-
0.7-
0.6-

Cl) 0.5- • :::J 
iij 0.4-> • • 
iij 0.3-c: 
·a' 0.2-

0.1 -
• • • • • • • 

0 
-0.1 -
-o.2 -
-0.3-
-0.4-

• • • 
• • • • • 

• 
-0.5- • -0.6-
-0.7- • 
-0.8- I I I I I I I I I I I I I I I I I I I I I I I I 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

time, sample number 

Fig. 5.2 Exponentially damped cosine signal, R = 0.9, 9 = 0.3x. 

Digital signal 

unit impulse 

unit step uk 

damped cosine-wave Rkcos(k9) 

damped sine-wave Rk sin(k9) 

z-transform 

(I- Rz- 1 ) 

- (Rcos9) z- 1 

I - (2Rcos9) z- 1 + R2 z-2 

(Rsin9) z- 1 

Table 5.1 Some useful z-transforms. The last two entries have poles at 
z = e±ia. 



§6 z-transforms and transfer functions 185 

6 z-transforms and transfer functions 

I hope you're not disturbed at this point by a feeling of deja vu. Of course we've used 
z-transforrns before, without calling them that, when we looked at the transfer func­
tions of digital filters. We've also seen the transforms in Table 5.1 before as transfer 
functions of feedback digital filters. The connection should be clear by now: 

• The value of the z-transforrn on the unit circle at the frequency ro 
represents the amount of the signal present at that frequency; 

• The value of the transfer function at the same point represents the 
effect of the filter on that frequency. 

Thus, if the frequency content of a signal is X(ro), and the frequency response of a 
digital filter is H( ro ), the output of the filter should have the frequency content 
Y(ro) = H(ro) ·X(ro). It does not take a great leap of imagination to guess that the z­
transform of the output signal of the digital filter is 

~z) = :H(z) ·X(z) (6.1) 

This is so important I've drawn a picture of it, Fig. 6.1, even though it's exceedingly 
simple. 

X{z) filter, 'Y{z) = :H{z)X{z) 
------!~ transfer function 1------! ... 

:H{z) 

Fig. 6.1 The output z-transform is the input z-transform multiplied by the 
transfer function. 

To see why this is true, recall how we derived the transfer function in Section 5 of 
Chapter 4. We assumed there that the input signal was a phasor with fixed frequency 
ro, and interpreted z- 1 as a delay operator. Exactly the same technique works for gen­
eral input signals: multiplying a signal's z-transforrn by z- 1 is equivalent to delaying 
the signal by one sample period. To see this, just observe what happens when we mul­
tiply the z-transform X(z) of x k by z- 1: 

~ ~ ~ 

z- 1X(z) =z- 1I, XmZ-m =L XmZ-(m+l) =I,xk-IZ-k (6.2) 
m=-oo m=-oo k=-oo 

where we got the last equality by replacing (m +I) by k. This means exactly what we 
want it to mean: the z-transforrn of the delayed signal, xk-l, is z- 1 X(z). The deriva­
tions of the transfer functions of both feedforward and feedback filters go through just 
as they did in Chapters 5 and 6, except now the results are true for arbitrary input sig­
nals, not just phasors. 



186 Chapter 9 The z-transform and Convolution 

This is a very fundamental fact. Filtering in the time domain is represented by 
multiplication by the transfer function in the frequency domain. This is true not only 
for the frequency content of a signal, determined by the z-transform on the unit circle, 
but for its entire transform as a function of z. 

We now have a new interpretation of the transfer function !l{(z) of a digital filter. 
If the input signal xis a unit impulse, then X(z) = I, and therefore the z-transform of 
the output signal is 1(z) = !l{(z). Thus the transfer function can be viewed as the z­
transform of the filter's impulse response. 

7 Convolution 

The output of the filtering process is determined by two discrete signals: the input sig­
nal and the impulse response of the filter. Let's look at exactly how this takes place. 
The output signal y 1 at time t is actually the result of the filter being hit with input 
samples at all times. For example, the contribution at timet due to the input sample x 0 

is 

(7.1) 

The contribution at time t due to x 1 is 

(7.2) 

The typical contribution due to xk is xkhl-k· Adding all these up, we see that the total 
output signal at time t is 

~ 

Yl = L xkhl-k (7.3) 
k=-~ 

You can think of this in fairly abstract terms. It is a recipe for taking two digital sig­
nals, x and h, and producing a third. When viewed this way, as a binary operator, the 
operation is called convolution, and is represented by the special symbol *, as in: 

y =X* h (7.4) 

The limits on the convolution sum, Eq. 7.3, go from -co to oo, but that's just a con­
venient way to write the convolution mathematically without worrying about special 
cases. In practical situations the actual number of terms computed in the sum is finite. 
First, the input signal must start at some definite time, say m. Second, even if we have 
the future input signal available for the indefinite future, the filter can respond to 
values only some fixed number of samples, say p, beyond the present time. The con­
volution sum then becomes 

p 

Y1 = L xkh1-k (7.5) 
k=m 

In many cases it's convenient to say that the input signal begins at k = 0. And in 
many cases the filter does not respond to any input values beyond the present time, so 
h 1 _k = 0 when t -k < 0. The convolution is then simply 

I 

Yl = L xkhl-k 
k=O 

(7.6) 



§8 Inverse z-transform 187 

which is the way it's often written. Note that it is entirely possible that a digital filter 
respond to values of input in the "future" -we may just happen to know the entire 
input before we start filtering. Even simpler is the situation where we can tolerate a 
delay, waiting until timet+ 10, say, to produce the output for timet. In this case we 
can use the input at times t + I through t + 10 at time t, 10 samples in the "future." 
Delaying the output this way is used in filters all the time. 

Figure 7.1 shows a graphical way to think of convolution. Fix the time t and con­
sider the two functions contributing to the convolution sum, xk and h,_k, as functions 
of k. The function h,_k is a time-reversed version of the filter impulse response, with 
its origin at k = t. All we need to do to get the terms for the convolution sum is to lay 
this time-reversed impulse response on top of the input signal, multiply the values of x 
and h at each k, and add them up. The intuition that is stimulated by this picture is that 
the impulse response weights the past: the value h k tells us how much weight to put 
on the value of the input k samples in the past. 

1.0-

~ 0.5-

~ 
iii 
c: 
·fl 

0 

-0.5-

-1.0-. 
-200 

--signalx 
backward filter impulse response 

. . . . 
-150 -100 -50 0 

!\ . . .. 

.. 
\; 

. 
50 

!I .. . . .. 

.. .. 
'lr .. 

;r 

. 
100 

time, sample number 

. . 
150 200 

Fig. 7.1 One way to think of convolution: the time-reversed impulse 
response of the filter (shown dotted) weights the past of the input signal x 
(shown solid). The output at sample number t = 150 is determined by the 
sum of products of the overlapping signals. 

8 Inverse z-transform 

Let's run through the example of a reson filter being hit by a unit step digital signal. 
Choose the filter transfer function according to Eq. 4.2 of Chapter 5: 

(8.1) 



I88 Chapter 9 The z-transform and Convolution 

with poles at z = Re±jo. In fact, let's be specific and choose R2 = 0.97 and 
2Rcos9 = I. 9, so the transfer function is 

I 
:H(z) = 

I - 1.9z- 1 + 0.97z- 2 
(8.2) 

The z-transform of the unit step signal is just I/( I - z- 1 ), so the z-transform of the 
output signal y 1 is 

9\z) = (l - 1.9z- 1 + 0.97z- 2 )(l - z- 1) 
(8.3) 

We can find the output signal easily enough by simply simulating it, using the 
update equation, Eq. 4.3 of Chapter 5, 

Y1 = x, + 1.9y,_ 1 - 0.97y,_2 (8.4) 

with x 1 = 0 for t < 0 and x 1 = I for t 2: 0. The result is shown in Fig. 8.I. This is 
the sort of picture you're likely to find in books on control systems. It shows what 
happens when we try to move something with inertia from one position to another 
suddenly: The actual position responds by overshooting the desired final displacement, 
then returning below that value, and continuing to oscillate with decreasing amplitude 
until it finally converges. Sometimes people take a great deal of trouble to control the 
overshoot and the delay in converging to the final position- that's one of the jobs of 
the control system designer. 

30-

Cl) 
::> 
iii 20-> •• -t 
iii c: . ·. .. . .... 
0> ·;;; ...... ~ 

•••• :A.. 1\ .-:::vv· 
;; 

10- .. . 
·. 

o ....... ~~ ...................................... , ......... , .........• 
·100 0 100 200 300 400 500 

time, sample number 

Fig. 8.1 Step response of the reson filter in the example. 

Suppose we are faced with the z-transform of the output signal, Eq. 8.3. Is there a 
way we can find the corresponding output signal directly? This amounts to asking for 



§8 Inverse z-transform 189 

the inverse z-transform of a given ratio of polynomials in z- 1• The answer is yes; 
there are at least three ways to do it. 

Method 1: First multiply out the numerator and denominator, getting in our example 

1'(z) - 1 (8.5) 
- I - 2.9z- 1 + 2.87z- 2 - 0.97z- 3 

In general, if we start with a signal that is the sum of signals like the ones shown in 
Table 5.1, and apply it to a feedback or feedforward filter, we will always get a ratio 
of polynomials in z- 1 • Now think of the signal y 1 in our example as the impulse 
response of a digital filter with the transfer function given by Eq. 8.5. We can imple­
ment the filter starting at t = 0, with input equal to the unit impulse signal, with the 
result: 

Yo = 1.0 

Y1 = 2.9 

Y2 = 5.54 (8.6) 

Y3 = 8.713 ... etc. 

This checks the result plotted in Fig. 8.1, which we obtained by filtering a unit step 
signal. 

Method 2: We can also simply divide the bottom of the ratio in Eq. 8.5 into the top, 
using the usual long-division algorithm. If you do this example, and think about it for 
a while, you'll see that this method is actually equivalent to the filtering procedure in 
Method I (see Problem 6). 

Method 3: We can also proceed by guessing the general fact that the answer has one 
term for each pole in the z-transform. In our case, for example, there is a term 
corresponding to the step (a pole at z = I), and terms corresponding to the poles at 
the complex pair of points z = Re ±je, where R and 9 are determined by R 2 = 0. 97 
and 2Rcos9 = 1.9. This means guessing that the z-transform for 1'(z) can be written 

A B C 
1'(z) = I + . I + . I 

I - z- I - Re19 z- I - Re-19 z-
(8.7) 

Thus, the step response shown in Fig. 8.1 has three components - one a step func­
tion, and the other two complex exponentials - which add to an oscillatory damped 
waveform with the same R and 9 as the original filter transfer function. 

Given that the form in Eq. 8.7 is valid, we can find the inverse transform y, by 
finding the inverse transform of each term; but that's easy, because the one-pole 
transforms are listed in Table 5.1. At this point we can simplify things by noting that 
the complex pole pairs must always result in real signal values. Therefore, the com­
ponents of the inverse transform corresponding to the second and third terms must be 
complex conjugates of each other, so the imaginary parts cancel out. Thus, the 
coefficient C must be the complex conjugate of B. Equation 8.7 can therefore be 
rewritten as 



190 Chapter 9 The z-transform and Convolution 

A B B* 
9\z) = I - z- 1 + I - Rej9 z- 1 + I - Re-j9 z- 1 

(8.8) 

At this point it's convenient to replace 9\z) by its pole-zero form, and write the origi­
nal and desired forms together as 

(I - Rej9 z- 1 )(I - Re-j9 z- 1 )(I 

A B 
= I - z- 1 + 1 - Rej9 z- 1 

(8.9) 

Note that we want this to be true for all values of z; that is, this is an identity. Thus, we 
can let z take on any value whatsoever, and this equation must still hold. We are, in 
fact, just about to choose some interesting values for z. 

We need to find the constants A and B. This isn't hard if you do the following. Let 
z approach one of the poles very closely - say the pole at z = I. The right-hand side 
of Eq. 8.9 then becomes dominated by the term corresponding to that term, and the 
other two terms become negligible in comparison. At the same time, the left-hand side 
can be thought of as two factors: 1/( I - z- 1 }, and the denominator of the original 
feedback filter, 1/(1 - (2Rcos9}z- 1 + R2 z- 2 ). As z approaches I, nothing much 
happens to this latter term; it just approaches its value at the point z = I, 
1/( I - 2Rcos9 + R 2 ) = 1/0.07. To summarize, the right-hand side approaches 
A/(1- z- 1), and the left-hand side approaches (110.07)/(1- z- 1). Therefore, 
A = I /0.07. You can check this against the plot in Fig. 8.1. The damped exponential 
component corresponding to the complex pole pair almost completely dies out after a 
few hundred samples, and what remains is the component due to the step, with a mag­
nitude of precisely 1/0.07 = 14.2857 .... 

The value of B can be found by the same procedure, and I'll leave that for Problem 
7. In general, we just let z approach each of the poles in tum, and equate the dominant 
terms on each side of the equation. The form in Eq. 8.8, so useful for understanding 
the inverse z-transform, is called a partial fraction expansion. 

I've skipped some complications that can arise in the partial fraction method. For 
example, we need to worry about double poles - two poles at the same point in the 
z-plane. In the completely general case we need to consider the case of poles repeated 
any finite number of times. We also need to worry about the situation when the ratio 
of polynomials has numerator degree equal to or greater than the denominator. (In our 
example the numerator degree was less than the denominator.) See Problems II to 13 
for some discussion and work for you to do on these points. 

9 Stability revisited 

Let's return for a moment to the question of stability, which we first discussed in Sec­
tion 2 of Chapter 5 in connection with feedback filters. The issue is whether the out­
put of a filter grows indefinitely large with time. It's now easy to see from the partial 
fraction expansion (Eq. 8. 7) of the z-transform that the output signal consists of a sum 
of terms, each corresponding to a pole in either the filter transfer function or the 
transform of the input signal. For the output signal to be stable, every pole in its 



§9 Stability revisited 191 

transform must lie inside the unit circle in the z-plane. It doesn't matter whether the 
pole appears in the transfer function or the transform of the input signal. 

In fact, we can interchange the role of input signal and filter impulse response, and 
get precisely the same output. Taking the example in the previous section to illustrate 
the point, we would get the same output if we applied the signal with z-transform !}{(z) 
(a damped sinusoid) to the filter with transfer function X(z) = 1/( I - z- 1 ). Such a 
filter is a feedback filter with the defining update equation 

Yt = x, + Yt-1 (9.1) 

This keeps a running total of all inputs so far, and can be called an "accumulator" or 
"digital integrator." Thus, the output signal plotted in Fig. 8.1 could just as well be 
called an "integrated damped sinusoid," instead of "the step response of a reson." 
This is not at all obvious intuitively, at least to me, but follows from the very simple 
observation that 91:z) = !}{(z)X(z) = X(z)!}{(z). Ordinary multiplication commutes; 
therefore, convolution commutes. 

The borderline situation between stability and instability is reached when a pole 
occurs exactly on the unit circle. When a single pole occurs at z = I, the signal stays 
at a constant value, neither decaying to zero nor growing indefinitely. When the pole 
occurs at z = - I we have the situation when R = I and 9 = 7t in Eq. 5.6. The signal 
is real, and Eq. 5.7 tells us it's just cos(k7t) = ( -1 )k. That is, the signal value alter­
nates between - I and + I. You can think of this as a digital sinusoid exactly at the 
Nyquist frequency, the highest possible frequency. Intermediate cases occur when 
poles appear at points on the unit circle at angles other than 0 or 7t, in which cases we 
get sinusoids that remain at constant amplitudes forever (see Problem 5). As we see 
next, we can flirt with instability even more without actually going over the edge. 

The observation above about interchanging input signal and filter impulse response 
allows us to derive an interesting z-transform. Suppose we apply a unit step signal to 
the digital integrator filter described by Eq. 9.1. The output signal at time tis the sum 
of all the input values up to and including that time, so the output is 

{ 
k + I if k ~ 0 

Yk = O if k < 0 
(9.2) 

On the other hand, the z-transform of the output is the product of input z-transform 
and filter transfer function, just 

91:z) = -----,-....,.... 
(l - z-1)2 

(9.3) 

It's a little more standard to delay this signal by one sample, multiplying the z­
transform by z- 1, and say that the z-transform of the signal 

is 

if k ~ 0 

if k < 0 
(9.4) 

(9.5) 



192 Chapter 9 The z-transform and Convolution 

Thus, a double pole on the unit circle corresponds to a signal that grows linearly with 
time - it's just about unstable, but not as catastrophic as the exponential growth 
resulting from a pole strictly outside the unit circle. 

You'd be right if you guessed that the z-transform of a signal that grows as a poly­
nomial to the nth power has a pole on the unit circle of degree n + 1 (see Problems 8 
and 9). 

To complete the picture, moving multiple poles off the unit circle in the z-plane to 
a radius R corresponds to multiplying the corresponding signal components by the fac­
tor Rk. We saw this in Section 5 (see Problem 10). 

If you think about it, we've now covered all the cases that can arise when digital 
signals have z-transforms that are ratios of polynomials in z- 1• The signals with such 
transforms are always composed of sums of terms like those in Table 5.1: damped, 
undamped, or exploding sinusoids, possibly multiplied by polynomials in the time 
variable when the poles are repeated. We'll call these signals rational-transform sig­
nals, because a ratio of polynomials is called a rational function. This is precisely the 
class of signals that arise when impulses are applied to feedback and feedforward 
filters. They comprise a kind of closed universe of signals in the sense that filtering 
one of them results in another in the same class. 

As we've seen from partial fraction expansions, the poles of a signal with a 
rational z-transform determine its qualitative behavior. Loosely speaking, the zeros 
just determine how much weight is given to each pole. Figure 9.1 shows what sort of 
behavior is associated with poles in different regions of the z-plane. Go over the vari­
ous cases in your mind. 

Nyquist frequency 

F 
Fig. 9.1 Signal behavior associated with poles in different parts of the z­
plane. 

In this chapter we tied together the z used in digital filter transfer functions with 
the frequency content of signals. The complex symbol z- 1 can be thought of both as a 
delay operator and as a frequency variable. It's now time to put our work to practical 
use- we're going to combine the FFT algorithm with our frequency-domain ideas to 
do some practical spectrum measurement. That is, we're going to see how to plot the 



Notes 

Problems 

Problems 193 

frequency content of real signals like speech and music, This may seem relatively 
straightforward, but we'll need almost everything we've learned up to this point. 

I avoided the nitty-gritty of partial fraction expansion, simply because we won't use it 
much in what follows. Similarly, I haven't developed a big table of transforms and 
inverse transforms. More advanced texts, like Oppenheim and Schafer's (see the 
Notes to Chapter I), will fill in the details. What's important at this point is to under­
stand the basic idea: feedback and feedforward digital filters generate the universe of 
rational-transform digital signals: sums of exponentially weighted sinusoids (including 
the special cases of polynomials and polynomial weightings). The pole locations tell 
the story. 

In probability theory and algorithm analysis, z-transforms are called generating 
functions because the power series expansion of the z-transform "generates" the sam­
ple values. Problem 15 illustrates the application of z-transforms to a classic counting 
problem. 

In Problem 16 I ask you to prove the very important Parseval's theorem. It shows 
that the z-transform preserves inner product - which underscores the fact that this 
frequency transform is nothing more than a change of coordinate system. As you 
might guess, a corresponding result holds for the DFf and other frequency transforms. 

1. Why does the shape of the frequency content of the unit step signal match that of 
the square wave for low frequencies, but not for frequencies approaching the Nyquist? 

2. Suppose we start with the digital signal fk and define a new digital signal by inter­
leaving zeros between its samples. That is, 

k even 

k odd 

Find the z-transform y( z) of g k in terms of the z-transform !!( z) of h. This operation 
of interleaving zeros is used in oversampling, as we'll see in Chapter 14. 

3. Find the z-transform of the signal 

Recall that 0 ! = I. 

if k ~ 0 
if k < 0 



194 Chapter 9 The z-transform and Convolution 

4. Equation 6.6 in Chapter 5 gave the following as the impulse response of a feedback 
digital filter: 

What is the z-transform of y 1? 

Yr = R'[sin(9~t+l))l 
sm9 

5. When R = I, the impulse response of the reson given above becomes a pure sine 
wave, except for a constant factor. Thus, we can generate a sine wave by implement­
ing the reson feedback filter with a unit impulse input. Is this a practical way to gen­
erate sine waves? What might go wrong? Try it. 

6. Prove that the long-division method of inverting a z-transform, Method 2 in Section 
8, is equivalent to the impulse-response method, Method I. 

7. Find the value of Bin the partial fraction expansion of Eq. 8.8. Then find the output 
signal y 1 in the form of a step function plus a damped sinusoid. 

8. Derive the z-transform of the linearly increasing signal in Eq. 9.4 by differentiating 
the z-transform of a unit step signal term by term. What results can you get by repeat­
ing this procedure? 

9. Use what you learned from Problem 8 to find the z-transform of the signal 
Yk = k2 , k ~0. 

10. In Section 5, we derived new z-transforms by weighting the signal at time t by the 
factor R'. Apply this idea to find the z-transform of the signal y k = k Rk sinkS, k ~ 0. 

11. When a ratio of polynomials in z- 1 has a double pole at z = p, the partial fraction 
expansion must include the terms 

A B ----+ 
I- pz-' (l- pz-1)2 

Devise a procedure for finding the coefficients A and B. 

12. Suppose we want to expand a ratio of polynomials in z- 1 in which the degree of 
the numerator is not smaller than that of the denominator. For example, 

ao + a,z- 1 + a2z- 2 + a 3 z- 3 + a4 z- 4 

(l- p 1z- 1)(l- pzz- 1 ) 

Explain how we can get a partial fraction expansion with the usual terms correspond­
ing to the poles, namely 

A B 

- p,z -1 + 
- PzZ -I 

13. You might think of the following mathematical trick to handle cases like a 
repeated pole. Start with two distinct poles, say p 1 and p 2 , use the simple partial 



Problems 195 

fraction expansion for distinct poles, and then take the limit as p 1 --"'p 2• Can you 
derive the result of Problem II this way? 

14. The digital signal in Problem 3 is not a rational-transform signal. Find other exam­
ples of signals with non-rational transforms .. 

15. Here's a classic mathematical problem that goes back to Leonardo Fibonacci (?­
ca 1250). To get a neat formulation we're going to make the extreme assumptions that 
every pair of rabbits matures in one month, and produces a pair of baby rabbits the 
month after reaching maturity and every month thereafter. Start with one pair of baby 
rabbits at the beginning of Month 0. At the beginning of Month 1 this pair matures, 
but there will still be only one pair of rabbits. By the beginning of Month 2, however, 
there will be two pairs: the original pair, plus one new baby pair born to that original 
pair. By the beginning of Month 3, there will be only one more pair, for a total of 
three pairs, because the baby pair is not yet able to reproduce. By the beginning of 
Month 4, however, there will be a total of five pairs, three from the preceding month, 
plus two more born to the pairs that were mature that preceding month. 

Denote the number of pairs of rabbits at the beginning of Month t by r 1• 

(a) Derive an expression for r1 in terms of r 1_ 1 and r 1_ 2 • (We already know that 
r0 = l,r 1 = l,r2 = 2,r3 = 3,andr4 = 5.) 

(b) Interpret r 1 as the output signal of an appropriate digital filter with appropriate ini­
tial conditions, the values of the input and output signals at the beginning of its opera­
tion. Is the filter feedback or feedforward? Is it stable? 

(c) Find ~z), the z-transform of r 1• 

(d) Find the poles and the corresponding partial fraction expansion of ~z). 

(e) Find an explicit expression for r 1 by taking the inverse z-transform of the partial 
fraction expansion. 

(f) How many pairs of rabbits will there be after one year? 

16. Let X(ro) and Y(ro) be the z-transforms evaluated on the unit circle of digital sig­
nals x andy, respectively. Define the inner product of X and Y by 

(X, Y) = -1 J 11 
X(ro) Y*(ro) dro 

2x _11 

Prove Parseva/'s theorem: 

(X, Y) = (x, y) 

where the inner product between signals x andy is defined as in Eq. 2.3. Choose some 
particular signals x andy for which this theorem is easy to verify, and then verify it. 
What does the result mean when x = y? 





CHAPTER 10 

Using the FFT 

1 Switching signals on 

The wonderful FFf algorithm for computing the Discrete Fourier Transform (DFT) 
revolutionized signal processing. It is a very efficient way to get information about the 
frequency content of signals- both real-world and artificially generated. If it's used 
with proper understanding it can be a friendly, helpful companion. But it's important 
to be aware of its limitations. There are snares for the unwary. 

We saw an example of the kind of problem to expect at the end of Chapter 8, 
where we computed the DFT of a single phasor. The DFT worked fine when the fre­
quency of the phasor coincided with one of the sample points on the unit circle, say 
point 133 out of 1024 points. But when we looked at the DFT of a phasor with fre­
quency corresponding to 133.5/1024 times the sampling frequency, a frequency in the 
"crack" between the DFT points, we got rather disappointing results. The computed 
spectrum couldn't tell us there was precisely one frequency component present; 
instead, it showed a wide distribution of many DFT frequencies near points 133 and 
134. (See Figs. 9.1 and 9.2 in Chapter 8 again.) 

Before we look more closely at the FFf, I want to clear up a possible source of 
confusion. We often use complex phasors instead of sines and cosines because the 
algebra is simpler. In practice, though, we usually use the FFf on real-valued signals. 
As pointed out in Chapter 8, the frequency content of real-valued signals is an even 
function of frequency. In the case of real-valued signals the frequency points above 
the Nyquist frequency are redundant, and there's no reason to plot them. However, 
I'll continue to use examples with complex phasors for algebraic simplicity, plotting 
the entire range of frequencies from zero to the sampling frequency, or sometimes, 
when it's more convenient, from minus the Nyquist frequency to plus the Nyquist. 

Let's reexamine the example at the end of Chapter 8 in the light of what we've 
learned about the z-transform. In particular, let's take another look at the z-transform 



198 Chapter 1 0 Using the FFT 

of a phasor. In the previous chapter, we always considered signals that start at t = 0. 
But what happens when a signal doesn't start at a particular time, but has been present 
forever (is two-sided)? The z-transform of the two-sided phasor with frequency 9 radi­
ans per sample, 

x, = ejet' -oo :5 t :5 oo ( 1.1) 

is 
~ 

X(z) = I, ejet z-' (1.2) 
t=-oo 

This is a slightly disguised form of a sum we've seen before. To put it in a more fami­
liar form, evaluate it on the unit circle, yielding the frequency content of the two-sided 
phasor x,. Setting z = ej"', Eq. 1.2 becomes 

~ 

X(ro) = L ej(9-ro)t (1.3) 
1=-oo 

This is exactly the same as the left-hand side of Eq. 3.3 in Chapter 9, which we used 
to establish the orthogonality of the basis for z-transforms. It's just a sequence of i> 
functions, spaced at intervals of 2x, with the independent variable 9-ro. The periodi­
city of 2x is irrelevant here, since the function is defined on the circle in the z-plane. 
The frequency content therefore has a single i> function on the unit circle at ro = 9, as 
shown on the left in Fig. 1.1. This makes perfect sense - there is only one frequency 
present, 9, and the frequency content must be zero everywhere else. Put another way, 
the complex phasor is an element of the basis used to develop the z-transform in Sec­
tion 2 of Chapter 9. 

Fig. 1.1 On the left, the frequency content of a complex phasor at a single 
frequency, a i> function on the unit circle; on the right, the frequency con­
tent when the phasor is turned on abruptly at time 0. 



§1 Switching signals on 199 

Now return to the one-sided case. We've already derived the z-transforrn of the 
one-sided phasor ejor u,. Just set R = I in Eq. 5.6 of Chapter 9: 

(1.4) 

As usual, we evaluate the magnitude of this on the unit circle in the z-plane to get the 
frequency content of the one-sided phasor, plotted in Fig. 1.2. A contour plot above 
the z-plane is also shown on the right in Fig. l.l, to contrast with the o function when 
the phasor is present for all time. The abrupt switch of the signal from perfectly zero 
to the sinusoid has introduced some contributions from all frequencies. The frequency 
content still has an infinite value precisely at the frequency 9, but it also rises up to 
infinity in the neighborhood of 9. Suddenly turning on the signal makes the spectrum 
less definitely localized at one particular frequency. 

60 ~-··········~···········~········ -~···········:···········:···········:··········-:··········-:··········~···········~ . . . . . . . . . . . . . . . . . . . . . . 
: : : : : : : : : : : 
: : : : : : : : : : . . . . . . . . . . 

50~"""""'~"""""'~'''""' -~"""'''''~"""""'~"''''""'~""''''''~""""''~'''""""~''''"""'~ . . . . . . . . . . . . . 
. . 

40 ~-··········?···········?········ .; ........... ; ........... ; ........... ; .......... .; .......... -:···········~···········'!: . . . . . . . . . . . . . . . . . . 
30 ~ ........... ~ ........... ~ ...... .. 

. . . . . . . . . 

. . . . . . . . 
'1'''''''''''"''''''''''''"''''''''''''"''''''''''' ... ' ''''''''' .. ' '''''''''' .. '''''''''''" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

20 .; ........... ; ........... ; ........ ···········=···········=···········=··········-=-·········-; ........... ; ........... ; . . . . . . . . . . 
: : : : : : : : : : 

; ~ ~; ~ ~ ~ ~; ~ ~ 
10 ~--····· .... !········ .. -? ......... ~ ......... ? ........... ? ........... ?··"'"""~""'''''''~"""'''''~''"'''''''~ . . . . . . . . . 

: : : : : : : : 
: : : : : : : : : . . . . . . . . . . 

0 ~ ........... : ........ ~ ........... ~ ........... ~... ""~"""''''+""""''+'''"""'+''''''""~"'''''""~ . . . . . . . . . . . . . . . . . . . . . . . 
: : : . . : : . . . . . . . . . . . 

-10 -i···········i···········i···········•···········•···········; .......... ;. .......... ;. .......... ;. .......... i-··········i 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

frequency, in fractions of sampling rate 

Fig. 1.2 Frequency content of a one-sided digital phasor with frequency 
6 = 9/32 = 0.28125 times the sampling rate. The peak at this point 
theoretically goes to infinity. 

The frequency spreading of the chopped phasor is consistent with what we've 
learned already about spectra in general. Any kind of abrupt jump in a signal gen­
erates a broad range of frequencies. This accounts for the clicks and pops in care­
lessly edited digital audio - recall the slow decay of the spectrum of a square wave, 
Fig. 3.4 in Chapter 7; and the broad frequency content of the unit step signal, Fig. 4.3 
in Chapter 9. 



200 Chapter 1 0 Using the FFT 

2 Switching signals on and off 

What happens if we now switch the phasor back off after a given number of samples, 
say n? The z-transform of the resulting finite stretch of a phasor is 

(2.1) 

This is a finite geometric series, each term being the previous multiplied by ei9 z- 1• It 
isn't hard to show that the closed form is: 

I - eina z-n 

I - ei9 z- 1 
(2.2) 

(see Problem 1). The numerator is just one minus the term that would be next. It's 
worth looking at this result in some detail. 

Notice first that this z-transform is, after all, the sum of a finite number of terms. It 
therefore cannot take on an infinite value when z is finite and 9 is a real angle. The 
apparent pole at z = ei9 is bogus; it's canceled by a zero at the same point. The value 
there is easy enough to see from the original series, Eq. 2.1. The factor multiplying 
each term becomes unity, and ~he sum is just one added up n times, and thus equals n 
(see Problem 2 for another way to see this). 

Next, we'll put the magnitude of Eq. 2.2, the frequency content, in a very 
illuminating form by playing around a little with complex factors. The trick is the 
same one we used in Eq. 7.6 of Chapter 4, when studying feedforward filters. The 
idea is to rewrite the numerator and denominator of Eq. 2.2 by factoring out complex 
exponentials with half the exponent of the second terms. The numerator, with z 
replaced by eiw, becomes 

1 _ ein<&-wl = ein<a-wll2 [e-in<a-wll2 _ ein<a-wll2] (2.3) 

The magnitude of this becomes the magnitude of the factor in brackets, which is just 
21 sin ( n ( 9- ro )/2) 1. In the same way, the magnitude of the denominator is 
21 sin (( 9- ro )/2) I , so the magnitude of the ratio, which is the frequency content of the 
finite stretch of phasor, is 

I sin(n(9-ro}/2) I 
sin(( 9- ro )/2) 

(2.4) 

Figure 2.1 shows a plot of this for n = 32 samples of a phasor of frequency 
9 = 9/32 times the sampling rate, together with the frequency content of the one­
sided phasor at the same frequency. This looks like a mess, but it's not just any mess. 
It tells us, after all, exactly how much of each frequency we need to get a sinusoid that 
starts abruptly at t = 0 and ends abruptly at t = n- I. If you look at it that way, it's a 
miracle we can figure this out at all. The peak does occur at the expected frequency 
ro = 9 (see Problem 3), and the general shape does follow the frequency content for 
the one-sided case. We've gone from a single, ideal~ function for a two-sided phasor, 
to a smooth curve with an infinite peak for a one-sided phasor, to this oscillatory, 
finite-valued curve for then-sample phasor. 



40 ..................... . 

30 ..................... . 

20 ..................... . 

10 ..................... . 

..................... 
• • .. .. .. . .. . . . . . . . . 

.. i• .. 

.. r· ............. . 

0.2 0.4 

§3 Resolution 

-- finite segment 
· · · · · - - - - - one-sided 

······················~······················ 

0.6 0.8 1.0 

frequency, in fractions of sampling rate 

Fig. 2.1 The frequency content of a finite segment of a digital phasor at fre­
quency 9 = 9/32 = 0.28125 times the sampling rate. The segment is 32 
samples long. For comparison, the dashed line shows the frequency con­
tent of the one-sided phasor at the same frequency, from Fig. 1.2. 

201 

The oscillations in frequency content are actually easy to predict from the z­
transform, Eq. 2.2. The numerator has n zeros equally spaced on the frequency axis, 
and all but the one canceled at the peak frequency contribute nulls to this curve. 

Now that we are turning the signal off as well as on, we get even more spreading 
of the spectrum. 

3 Resolution 

The phenomenon we've just seen comes up in many fields of science. In astronomy, 
the issue is usually couched in terms of the resolving power of a telescope, its ability 
to separate the image of two stars close together. Everyone who uses telescopes 
knows that as the aperture of a telescope widens, its resolving power increases. 
Exactly the same principle applies to measuring the spectrum of signals with the DFf. 
The ability to distinguish between two audio tones that are close in frequency 
improves as the record length increases. 

The astronomical and the audio examples are closer than you might think. 
Mathematically they are identical except that the optical case is continuous and two­
dimensional, while the audio case is discrete and one-dimensional. The DFf terminol­
ogy reflects the analogy. We say that we are looking at the phasor through a window 
that is n samples wide. In this section I want to demonstrate directly that wider win­
dows mean finer frequency resolution. 



202 Chapter 1 0 Using the FFT 

Selecting n consecutive samples of a signal amounts to using a rectangular win­
dow w,. That is, if we start with the infinite-extent signal x,, the windowed version of 
x, is 

y, = w,x, (3.1) 

for all t, where the window function w, is a constant inside some finite range of time 
values, and is zero outside that range. As we'll see shortly, there are good reasons to 
use windows other than the simple rectangular one, so let's think of the window func­
tion as having some general shape given by w,. 

Return to the example of the spectrum measurement of a phasor and substitute the 
phasor at frequency 9 for x, in Eq. 3.1 to get 

Yr = w,ejor (3.2) 

We encountered this relationship between two signals before, in Chapter 9. We saw 
there from the defining summation of the z-transform that these signals' z-transforms 
are related by a simple change of variable. That is, the z-transform of y 1 is the z­
transform of w 1 with z replaced by ze-jo: 

(3.3) 

In terms of the frequency variable ro, z is ej"', and therefore this tells us that the fre­
quency content of y 1 is just the frequency content of w 1 shifted by 9 : 

Y(ro) = W(ro-9) (3.4) 

To study the effect of a window on a phasor, then, we might as well take 9 = 0. The 
spectrum shaping caused by windowing a phasor of any other frequency will be the 
same, but shifted by 9. 

One final point before we look at the effect of window length on the frequency 
content of a windowed phasor. The value W(O) is the measured value of frequency 
content precisely at ro = 0. In terms of a telescope, this is the brightness of the image 
at the true star position. If we want to compare two windows, it's reasonable to adjust 
the multiplicative scale so that the values of W(O) for the two windows are equal. This 
is especially easy to arrange because W(O) is simply 

n-1 

W(O) = 'W(I) = L w, (3.5) 
t=O 

using the defining z-transform summation. Thus, we'll normalize windows by choos­
ing 

n-1 

L w, =I 
t=O 

Then-point rectangular window normalized to make W(O) = 1 is then given by 

w, = {~In if 0 ~ t < n 

else 

(3.6) 

(3.7) 



§3 Resolution 203 

We'll bother to normalize windows this way only when we're comparing them. When 
we actually use them, it's usually simpler not to. 

Fig. 3.1 shows a comparison of the frequency content of two rectangular windows, 
for lengths n = 8 and 64 samples. Bear in mind that this shows the spreading of a 
single-frequency signal caused by looking at only a finite stretch of it. Given the sim­
plicity of this operation, the result is a rather spectacular splatter. The improved reso­
lution of the 64-point window is quite clear. Not only does its frequency content have 
a narrower peak than the 8-point window at co = 9, but its values at other frequencies, 
called its side lobes, fall off faster. These side lobes play a critical role in determining 
how good a window is, because they show the extent to which the observed central 
frequency "leaks" to neighboring frequencies. Reciprocally, they show the extent to 
which the components at neighboring frequencies leak to the region near the central 
frequency. 

0-

·10-

·20-

·30-

rectangular window 
-- length n = 8 
----- lengthn=64 

frequency, in fractions of sampling rate 

Fig. 3.1 Comparison of the frequency content of two rectangular windows, 
with lengths n = 8 and 64 samples. 

One measure of resolution quality is the width of the central lobe. In practical opti­
cal situations, for example, two stars close together can be distinguished only if the 
central lobes of their images do not overlap much. The width of the central lobe, 
zero-crossing to zero-crossing, is determined by the fact that the central peak is strad­
dled by two zeros in the numerator of the window z-transform, Eq. 2.2. The zeros of 
an n-point rectangular window are equally spaced around the circle, so they're 
separated by 27t/n radians, or, in terms of the sampling rate,fJn Hz. The width of the 
central lobe is therefore 2f5 /n Hz. Notice the important fact that as n increases, the 
spacing between two resolvable frequencies decreases as 1/n. 



204 Chapter 1 0 Using the FFT 

In summary, two features of a window's frequency content affect the spreading of 
the energy of the original signal: the width of the central lobe, and the height of the 
side lobes. 

Before we go ahead to the DFf, I'd like to go back and savor Eq. 3.4. It applies 
generally and says that multiplying a signal by a phasor of frequency 9 shifts the 
signal's frequency content by 9. The principle is used constantly in radio and televi­
sion receivers, where it's called heterodyning. For example, most household AM radio 
receivers heterodyne all incoming-station center frequencies to a standard 455 kHz, 
called the intermediate frequency, or IF. 

4 The OFT of a finite stretch of phasor 

We're finally in a position to understand what happens when we take the DFf of a 
stretch of phasor at a frequency that lies in the crack between the DFf points. This is 
where we left off at the end of Chapter 8. We needed all the work in Chapter 9 and at 
the beginning of this chapter to get a clear picture- there's a lot going on. As I've 
warned, taking an FFf program off the shelf and applying it blindly to a piece of sig­
nal can lead to grief. 

m , 
E" 
J!! 
8 

50 

0 

-50 

f -100 

l -150 

-200 

-250 

-300 ~ 

,..,.,,,....,..,., "r,.., ~ ",.," "'vv"'"""'"~'"·"'"""'"''"'"'' 

······································································································ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

frequency, in fractions of sampling rate 

Fig. 4.1 The 32-point FFT of a finite stretch of phasor at frequency 9/32 
times the sampling frequency, superimposed on the frequency content be­
fore sampling in the frequency domain. The points down around -300 dB 
are not zero because of roundoff error in the FFT computation. 

In fact, the DFf is nothing more than the z-transform of n consecutive samples of 
a signal, evaluated at n equally spaced frequency points. Thus, the DFf of the n sam­
ples of the phasor we've been considering is obtained by evaluating the expression in 
Eq. 2.2 at the DFf points; the resulting magnitude values are shown by the 



§4 OFT of a finite stretch of phasor 205 

exaggeratedly large dots in Fig. 4.1. The value of the OFT at the point corresponding 
to the frequency of the phasor, 9 = 9/32 times the sampling rate, is n = 32, or about 
31 dB. The vertical scale in that graph has been expanded down to -300 dB so we can 
see then -1 points that are not at the frequency 9. These values are theoretically zero, 
but because of the numerical roundoff noise in the FFT computation, they tum out to 
be zero to within about 15 decimal places. (I used double-precision floating-point 
arithmetic, 64 bits.) This situation, where the frequency of the phasor is precisely 
equal to a OFT point, is analogous to the example shown in Fig. 9.1 of Chapter 8 for 
I 024 points. 

The situation shown in Fig. 4.1 is a fluke; it's extremely unlikely that a measured 
signal will have a frequency that is so nicely related to the sampling frequency and the 
size of the OFT. Besides, signals usually are not single phasors at all, but some 
conglomeration of many frequencies, often moving around. Figure 4.2 shows an 
example of a more common situation; in this case the phasor frequency is 
9 = 9.333/32 times the sampling rate. We saw this kind of phenomenon back in Fig. 
9.2 of Chapter 8. The OFT points are not lined up with the nulls in the spectrum, and 
we get a much more accurate picture of just how dispersed the frequency content is 
around the true frequency of the phasor. This example also reminds us that a true sig­
nal frequency will almost always fall in the cracks between the OFT points, and will 
almost never be precisely equal to the OFT point with the highest measured value. 

30 : 
ID : ., 
'i : 
~ 

20: 8 
(';' : 
c: : CD 
:::1 
CT : 
~ 10: 

: 
: 

0: 
: 
: 

·10 ;., .. . ' ..... , .............. rum. 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

frequency, in fractions of sampling rate 

Fig. 4.2 The 32-point FFT of a finite stretch of phasor at frequency 
9.333/32 times the sampling frequency, superimposed on the frequency 
content before sampling in the frequency domain. 

To summarize, taking the OFT of a finite stretch of a digital phasor introduces 
uncertainty about its true frequency 9 in the following three ways, the first two result­
ing from the windowing process, and the third resulting from the process of sampling 



206 Chapter 1 0 Using the FFT 

in the frequency domain: 

(a) energy is spread around frequencies close to 9 within the main lobe of 
the window's transform; 
(b) energy is spread to frequencies far from 9 because of the side lobes of 
the window's transform; 
(c) uncertainty is introduced in actual frequency location because the fre­
quency content of the windowed signal is computed only at the n DFf 
points. 

If we go back to some original analog signal that has been sampled, we should add 
another source of problems: 

(d) false frequencies are introduced by aliasing in the original sampling 
process. 

Given all these difficulties, you can understand my earlier expression of caution. 
On the positive side, it turns out that we can lower the side lobes significantly by 

using nonrectangular windows -but as we'll see next, not without a certain price. 

5 The Hamming window 

If turning a signal on and off abruptly causes problems, then it should improve things 
to use more gradual transitions. This simple observation is actually a great idea, and a 
large repertoire of elegant and useful windows have been invented over the years. Fig­
ure 5.1 shows the Hamming window, a very popular compromise between simplicity 
and effectiveness. It's named after Richard W. Hamming, a pioneer in the application 
of computers to practical computation. Mathematically, it consists of a single cycle of 
a cosine, raised and weighted so that it drops to 0.08 at the end-points and has a peak 
value of one: 

h 1 = 0.54- 0.46cos(27tt/(n-l)), 0 :5; t <n (5.1) 

We use h 1 for the Hamming window, reserving w 1 for the rectangular window. The 
fact that this particular window uses the cosine has no magical significance. Other 
windows use straight lines, or more complicated functions. But its presence here, in 
this very widely used window, is particularly felicitous, because it makes the analysis 
especially easy. After all, sinusoids have been our friends since Page I. 

I hope your reflex by now is to write the cosine in terms of phasors. Remember 
that there is an implicit rectangular window in the definition of Eq. 5.1, because 
h 1 = 0 outside the indicated range. We can therefore rewrite Eq. 5.1 as 

h1 = [ 0.54 - 0.23ei2" 1/(n-l) - 0.23e-i2" 1/(n-l)] W 1 (5.2) 

where w 1 is the rectangular window. The first term is just a copy of the rectangular 
window, and the last two are just heterodyned versions. (Remember Eqs. 3.2 and 3.4: 



§5 Hamming window 207 

1.0-
Hamming window 

0.9-

., 
::> 

0.8-... 
> 0.7-3: 
0 , 
c: 0.6-"i 

0.5-

0.4-

0.3-

0.2-

0.1 -

0-. I I I I I I I I I I I I 

0 5 10 15 20 25 30 35 40 45 50 55 60 

sample number 

Fig. 5.1 The 64-point Hamming window. 

multiplying a time function by a phasor shifts its frequency content.) The frequency 
content of the Hamming window, which we'll denote by H(ro), is therefore 

2x ) 2x ) H(ro) = 0.54W(ro) - 0.23W(ro--- - 0.23W(ro+--
n-l n-l 

(5.3) 

So the transform of the Hamming window is a sum of shifted and weighted versions 
of the transform of the rectangular window. Intuitively, the idea is to arrange the 
shifts and weights to cancel adjacent side lobes. 

Now let's get to work on the transform of the rectangular window, W(ro). We 
found its magnitude in Eq. 2.4, but now it's important to preserve the phase informa­
tion, precisely because we're counting on canceling pieces of W(ro) when we shift and 
add. Go back to Eq. 2.2, set 9 = 0 (since it doesn't matter what phasor we're analyz­
ing), and set z = ej"' (as usual), to get 

W(ro) = (5.4) 

The next operation should also be familiar by now. As shown in Eq. 2.3, factor out a 
complex exponential in both the numerator and denominator with half the angle of the 
complex exponential already there, yielding 

W(ro) = e-j(n-1)0112 sin(nro/2) 
sin( ro/2) 

(5.5) 

This form has a simple interpretation. The complex exponential in front represents a 
shift of the window (n -I )/2 samples to the right, which moves it so it extends from 0 



208 Chapter 1 0 Using the FFT 

to n - I, instead of being centered at 0. The remaining factor is the frequency content 
of the centered window (the "zero-phase" version). Of course its magnitude is the 
same as the window that extends from t = 0 to n - I. 

Substituting Eq. 5.5 into Eq. 5.3 gives us what we're after, an explicit expression 
for the frequency content of the Hamming window. First, it's convenient to use the 
following shorthand for the ratio of sines in Eq. 5.5: 

S(ro) = sin(nro/2) (5.6) 
sin(ro/2) 

Equation 5.3 then becomes 

H(ro) = e-j(n-l)w/2[0.54S(ro) + 0.23S(ro-~) + 0.23S(ro+~)J (5.7) 
n-l n-l 

The plus signs in front of the second two terms are not misprints; substituting the 
shifted values of ro in the complex exponential results in angle rotations by x. 

Figure 5.2 shows a plot of this frequency content, together with the corresponding 
transform of the rectangular window, for a window of length 64. As promised, the 
side lobes of the Hamming window are much lower than those of the rectangular win­
dow - about 17 dB lower for these 64-point windows, which is a factor of about 
seven. 

0-

--Hamming window 
·10- • • • • • • · · · · rec1angular window 

·20-

·30-

-60 

·70 

·80 
·0.5 ·0.4 ·0.3 ·0.2 .(), 1 0 0.1 0.2 0.3 0.4 0.5 

frequency, in frac1ions of sampling rate 

Fig. 5.2 Comparison of frequency content of 64-point Hamming and rec­
tangular windows. 

The price for lower side lobes is a broadened central lobe. This seems unavoidable 
if we tamper with the shape of the transform by shifting and adding. It seems inevit­
able that trying to cancel adjacent side lobes causes reenforcement at the central lobe. 
Figure 5.3 confirms this, showing a close-up of the frequency content of the Hamming 



§6 Windowing in general 209 

and rectangular windows at frequencies near zero. The rectangular window has its 
first null, caused by a zero directly on the unit circle, at ro = x/64 = 0.015625x, 
while the Hamming window has its first, and rather more shallow, null at 
ro = 0.0322x. The central lobe is thus about twice as wide. (The effect is not nearly 
so bad for the Hamming window as it might seem at first, because the second lobe of 
the rectangular window comes back up, to almost -13 dB, very quickly.) This trade­
off between resolution at the central frequency and leakage from components at 
neighboring frequencies is an unavoidable law of nature. The art of window design is 
to get the lowest side lobes for a given resolution, or vice versa. 

0;---.....,...__ 
················· ... 

-10 

·20 ······· .. , 

·30 

-40 

-50 

-60 

-70 

-80 

~ 
~ 

§ 

I 
~ ... 

-- Hamming window 
• • • • • • • • · • rectangular window 

.. ····················· ... 
/ .. ·· ····· •.. __ _ 

-90"" • "• "• • •" "I"" • ""~ 0 • 0 I • • "• 0 •"" "I:=. •"" """"I"""""' 
0 0.01 0.02 0.03 0.04 

frequency, in fractions of sampling rate 

0.05 

Fig. 5.3 Close-up of the previous figure, comparing the resolution of the 
64-point Hamming and rectangular windows. 

6 Windowing in general 

Up to now, we've considered the effect of windowing only on a single phasor. But 
we know that any signal can be broken down into phasors, and that means we can find 
the effect of a window on completely arbitrary signals with very little additional work. 

Suppose then that we start with an arbitrary digital signal x 1, which is written in 
terms of its frequency content X ( 9) as 

x 1 = - 1-J lt X(O)ejer dO 
2x -lt 

(6.1) 

This is the inverse z-transform, Eq. 2.2 in Chapter 9. We know that windowing each 
phasor component ejer converts the phasor to a signal with frequency content 
W(ro-9), a shifted version of the window transform (recall Eq. 3.4). Therefore, 



210 Chapter 10 Using the FFT 

replacing the phasor in the integrand by W(ro-9) yields the transform Y(ro) of the 
windowed version of the original signal x,: 

Y(ro) = _I J 11 
X(9) W(ro-9) d9 

27t -It 

(6.2) 

Equation 6.2 is a remarkable result in itself and goes far beyond the context of 
windowing for spectrum measurement. Think about its significance. The integral 
combines X(ro) and W(ro) to obtain Y(ro). Where have you seen an operation like this 
before? 

The integral in Eq. 6.2 is the convolution of the two frequency functions X(ro) and 
W(ro). The convolution is with respect to the frequency rather than the time variable, 
the summation in the case of filtering in the time domain is replaced by integration, 
and the independent variable 9 ranges over the circle - but those differences are all 
details. What matters is that one of the functions is being slid past the other and the 
result tallied as a function of the displacement between them. We can write Eq. 6.2 as 

(6.3) 

It's worth comparing these two examples of convolution side-by-side. Here's the 
convolution that embodies the digital filtering of signal u, by the filter with impulse 
response h, to produce v,, Eq. 7.3 in Chapter 9: 

~ 

v, = Ur* h, = L ukhr-k (6.4) 
k=-~ 

The independent variable can be frequency (as in Eq. 6.2) or time (as in Eq. 6.4), 
continuous (6.2) or discrete (6.4), and its range can be finite (6.2) or infinite (6.4). 
The result will always have the meaning of a convolution, and the counterpart in the 
opposite domain (time for a frequency variable and vice versa) will be point-by­
point multiplication. Thus, Eq. 6.4 corresponds to the frequency-domain relation 
V(ro) = H(ro) U(ro), point-by-point multiplication in the opposite domain. 

The interpretation of windowing in the time domain as filtering in the frequency 
domain is a good way to see what the OFf does when applied to a windowed segment 
of a signal. The frequency content of the signal (not the signal itself) is convolved 
with the frequency transform of the window shape. The closer the window transform 
is to an ideal pulse - the narrower the first lobe and the lower the side lobes - the 
closer the result will be to the original signal spectrum. 

That point-by-point multiplication in one domain corresponds to convolution in the 
other is a striking example of symmetry between the time and frequency domains. In a 
way it cuts in half the things you need to remember, and at least doubles your intui­
tion. 

7 Spectrograms 

As we've seen, the more points in a segment of a sinusoid, the better the frequency 
resolution. You might think that in general, the longer the segment used for the OFf 



§7 Spectrograms 211 

of a signal, the better off we are in all respects. Life is not so simple, however, and 
there is a price to pay in using very long windows. The problem has to do with resolu­
tion in the time domain. Interesting signals are never sums of sinusoids that continue 
for long periods of time. They change, often rapidly and in complicated ways, and 
that's what makes them interesting. Trying to break such signals down into periodic 
basis elements with the OFf can result in gross misrepresentations of what's actually 
happening. The OFf and its fast FFf algorithm are handy tools, but they color the 
way we see signals and are easy to misuse. 

To illustrate the trade-off between time and frequency resolution, we'lllook at the 
analysis of a real signal, a typical phrase from the call of the northern cardinal. Sounds 
we're used to hearing, like bird calls, music, or speech, often have reasonably stable 
frequency content over time intervals of the order of 1/120 sec. That corresponds to 
about 184 samples at a sampling rate of 22.05 kHz, or 368 samples at 44.1 kHz, two 
standard sampling rates used for digital sound. The FFfs usually used for sound are 
therefore powers of two in this ballpark, usually not shorter than 128 samples or 
longer than I 024 samples. What we ordinarily do, then, is compute a sequence of n­
point FFfs, starting with a window at the first n samples of the signal, and then slide 
over some amount for each successive FFf. Figure 7.1 shows the scheme with a win­
dow length of I 024 samples and a sliding increment of 200 samples. With these 
numbers, each second of sound at 22.05 kHz samples per sec yields Ill FFfs, the first 
using points 0 through 1023 and the last using points 22,000 through 23,023 (and thus 
extending past the one-second mark). 

time 

! 1024 points 

200 
points 

Fig. 7.1 Computing the FFT of a signal at sliding windows. Each window 
in this example has length 1024 samples, and the slide increment is 200 
samples. 

We can visualize all the data we get from the sequence of sliding FFfs in the spec­
trogram, which we've shown before without much of an explanation. The frequency 
content is now actually a function of two variables: frequency, which we use as the 
ordinate, and time, which we use as the abscissa. The magnitude of the frequency con­
tent is then indicated by gray level - the greater the magnitude, the darker the ink. 

Figure 7.2 shows the cardinal call displayed this way, with an FFf window size of 
I 024 samples, and a time increment from each window to the next of 33 samples. This 
spectrogram suggests a qualitative description of the sound that jibes well with the 
actual perception, a slurred whistle with a break of some sort in the middle: 



212 Chapter 1 0 Using the FFT 

N 5 
::t: 

""' ,.::. 
u c: 
~ 

4 

I 
3 

2 

0.5 
time, sec 

Fig. 7.2 Spectrogram of a call of a male northern cardinal. The abscissa is 
time in sec, and the ordinate is frequency in kHz. The FFT used a Ham­
ming window with length 1024 samples, the time increment from slice to 
slice was 33 samples, and the sampling rate was 22.05 kHz. 

Fig. 7.3 Waterfall version of the spectrogram in the preceding figure, also 
using 1024-point Hamming windows. 

(a) A note with well-defined pitch bends up and then down. The note has a clear 
second harmonic. 

(b) At about 0.2 sec, virtually all the energy is transferred to the second har­
monic, and the pitch trajectory continues down and then up. 
(c) A component at a higher pitch begins at about 0.36 sec and descends to meet 
the note at the end, which occurs at about 0.46 sec. 

The jump at about 0.2 sec is a phenomenon we might want to study in detail, but the 
event appears to be quite blurry. There's an interval from about 0.19 to 0.24 sec where 
a broad band of energy extends between the first and second harmonics, and then only 
the second harmonic emerges. 



§7 Spectrograms 213 

Figure 7.3 shows an alternative visualization of the same data, called a waterfall 
plot. The attempt here is to give the illusion of a three-dimensional plot, with distance 
from the time-frequency plane representing frequency content. If you have trouble 
perceiving it that way, rotate the picture +90°; for some reason the human eye likes to 
see mountains. 

0 .0 0 .25 0.5 

time, sec 

Fig. 7.4 Same as Fig. 7.2, except the window length was 128 samples. 

6000-

5000-

4000-

3000-
., 2000-:::> 
Oj 
> 1000-Oj 
c: 
.2> 0 
"' 

·1000-

·2000-

·3000-

·4000-

·5000-

·6000 .. I I I I I I I I I I I 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 

time, sample number 

Fig. 7.5 Time waveform of the same cardinal call. 

Figure 7.4 shows the spectrogram corresponding to the same sample of sound, also 
with a Hamming window, but with a window length of only 128 samples. The transi­
tion is now revealed as a definite jump, with much clearer starting and ending points. 
There ' s even a trace of the jump in the second harmonic. It ' s fair to say that the time 
resolution is improved over the 1024-point analysis. That's easily understandable, 



214 Chapter 1 0 Using the FFT 

because each FFf now reflects the events in the span of only 128 points, so there's 
less averaging of the signal characteristics at each abscissa. On the other hand, the 
bands indicating the pitch are broader, which means we have a less accurate measure­
ment of the pitch at any given time. We already expect this from our discussion of 
resolution in Section 3. 

6000 

4000 

CD 2000 :::J 

~ 
Oi 
c: 
·i 0 

-2000 

-4000 

-6000 • • • • I • • • • • • • • • I • • • • • • • • • I • • • • • • • • • I • • • • • • • • • I • • • • 

5300 5400 5500 5600 5700 

time, sample number 

Fig. 7.6 Close-up of the previous waveform, showing the time region 
where the pitch jumps. 

The frequency content displayed in a spectrogram is usually normalized so that the 
effects of signal amplitude fluctuations are suppressed. To illustrate this point, Fig. 7.5 
shows the actual waveform of the cardinal call we've been analyzing. You can see 
from this plot that the signal amplitude diminishes gradually up to the point where the 
sudden frequency-doubling takes place, and then increases sharply at that point. This 
is not readable from the spectrograms. To verify that the sudden increase in amplitude 
is associated with the shift in energy to the second harmonic, Fig. 7.6 shows a close­
up of this time region. Notice how suddenly the shape of the waveform changes - the 
transition occurs in about 40 samples, or 2 msec. 

Finally, Fig. 7.7 shows the effect of using a 128-point rectangular window, instead 
of the 128-point Hamming window, in the spectrogram of Fig. 7 .4. The leakage of 
energy outside the central lobe smears the spectral information appallingly. Our work 
on windows was well worth the effort. (See Problem I 0 for a question about this pic­
ture.) 

In this chapter we've looked at some practical problems in using the FFT, one of 
the most commonly used signal-processing algorithms. If you consider everything that 
happens when you just take a piece of a sine wave and plug it into an FFT program, I 



Notes 

Notes 215 

think you'll agree that the subject has its subtle side. To understand exactly what 
comes out of the FFT, we used two frequency transforms - the z-transform and OFT 
- and the idea of windowing. 

time. sec 

Fig. 7.7 Same as Fig. 7.4 (128-point Hamming windows), except a rec­
tangular window was used. 

The analogies between Fourier analysis and imaging in telescopes are so accurate and 
striking that I couldn't resist mentioning some of them in Section 3. Windowing in 
optical systems is called apodization, from the Greek meaning "without feet" -
because the side lobes of a star image look like little feet. Apodization is widely used 
in optics for exactly the same reasons we've found it useful here. For more, see the 
following review article (note the British spelling): 

P. Jacquinot and B. Roizen-Dorrier, "Apodisation," in Progress in 
Optics, vol. III, E. Wolf (ed.), North Holland Publishing, Amsterdam, 
1964. 

I've also seen the term aperture shading, which is nicely descriptive. 
Some common alternatives to the Hamming window are defined in Problems 6 to 

8. There are also fancier windows, such as the Kaiser and Dolph-Chebyshev windows, 
which allow the user to trade off the width of the central lobe with the height of the 
side lobes. For example, see 

T. Saramaki, "Finite Impulse Response Filter Design," in Handbook for 
Digital Signal Processing, S. K. Mitra and J. F. Kaiser (eds.), John Wiley, 
New York, N.Y., 1993. 

The Cardinal call analyzed in Section 7 is from the audio cassette 

L. Elliot, Know Your Bird Sounds: Eastern and Central North America, 
NatureSound Studio, Ithaca, N.Y., 1991. 



216 

Problems 

Chapter 1 0 Using the FFT 

For a readable, not-too-technical introduction to the mechanisms of sound production 
in birds, with plenty of spectrograms similar to the ones in this chapter, see 

G. A. Thielcke, Bird Sounds, University of Michigan Press, Ann Arbor, 
Mich., 1976. 

1. Prove that Eq. 2.2, the closed form for a finite geometric series, is correct. (Hint: 
Use induction.) 

2. As pointed out in Section 2, it's obvious that the geometric series in Eq. 2.1 
approaches the value n when the ratio between terms approaches one. Prove this 
another way by applying L'Hopital's rule to the closed form in Eq. 2.2. If you've 
never studied the rule, look it up in a first-year calculus book; it's very useful in situa­
tions like this, where a zero cancels a pole and we get what looks like 0/0. It was 
named after the French mathematician Guillaume Francois Antoine Marquis de 
L'Hopital (1661-1704). 

3. Verify that the frequency content of a finite stretch of a phasor at frequency 9 peaks 
at precisely ro = 9. 

4. Find an expression for the z-transform of a finite stretch of a cosine wave, say 
cos ( t9) , t = 0, ... , n - I. Does the frequency content peak at precisely ro = 9? 

5. Show that the Hamming window is normalized to satisfy Eq. 3.6 by dividing by 
0.54n -0.46. 

6. If the 0.54 and 0.46 in the Hamming window are both replaced by 0.5, we get the 
Hann window: 

h, = 0.5(1- cos(27tt/(n-l)), 0:5 t <n 

Find a closed form for its frequency content and write a program to compute it. Com­
pare the frequency content of the Hann window with that of the Hamming window. 
Which has the narrower central lobe? What is the relative size of the side lobes? 

7. Repeat Problem 6 for the Blackman window: 

h, = 0.42- 0.5cos(27tt(n-l)) + 0.08cos(47tt/(n-l)), 

8. Repeat Problem 6 for the Bartlett (triangular) window: 

{ 

2t 

h, = (n -I) 

2 - 2t 
(n -I) 

.f o < < (n -I) 
I - t- 2 

n-l 
< t :5 n-1 

2 

0 :5 t <n 

9. What is the effect on the frequency content of a signal if every other sample is mul­
tiplied by - I? Can you think of some practical use for this simple operation? 



Problems 217 

10. Offer an explanation for the widening and narrowing of the spectrogram in Fig. 
7.7 as time progresses. (This spectrogram used a rectangular window.) Suggest a 
way to verify your explanation, and try it. 

11. Estimate the pitch of the cardinal call before and after the sudden frequency dou­
bling by measuring the periods from Fig. 7.6. Do these check with the spectrograms? 





1 Taking stock 

CHAPTER 11 
Aliasing 

and Imaging 

Moving back and forth between the digital and analog worlds is the trickiest part of 
signal processing, and the associated effects on signals can be subtle. In this chapter 
we're going to take a more careful look at aliasing, using the transform methods 
we've developed since we first introduced the subject in Chapter 3. We're also going 
to look at digital-to-analog conversion, the process that is the reverse of sampling -
and the way in which computers make sound we can hear and pictures we can see. 

First, however, I want to step back and take a moment to put all our work in per­
spective. We've accumulated quite a collection of techniques, and the various 
domains and transforms might be a little hard for you to keep straight at this point. 
The fact is, we've constructed the entire foundation of practical signal processing, and 
this is therefore a good time to review and consolidate. I want you to grasp the main 
ideas in signal processing as a coherent whole with different incarnations of just a few 
basic principles. The symmetries and analogies we've been pointing out along the 
way are a big help. 

To a large extent, the art of signal processing is knowing how to move freely and 
bravely (and correctly) from one domain to another - from continuous to discrete 
and back, from time to frequency and back. Consider the steps involved in analyzing 
the cardinal's call in the previous chapter. I started with an analog tape recording, 
sampled it to obtain a computer file, and then used the FFT for analysis. Figure 1.1 
shows all the domains involved in this process, with the time domains in the left 
column and the frequency domains in the right. The analysis process started at the 
upper left (the analog time domain), sampled to go down (to the digital time domain}, 
used the z-transform to go right (to the digital frequency domain), and finally went 
down to get samples of the frequency content (to the DFT frequency domain). As 



220 Chapter 11 Aliasing and Imaging 

before, circles in this diagram indicate domains that are finite in extent, or 
equivalently, periodic. 

Fourier transform 
~ 

• 
t (I) 

inverse Four. trans. ii it ~ iii 

z-transform 
~ 8 t 

Fourier series 

i~ i! Cl) 

iii 

.•·····• DFT 
~ .······• i t i : k ; 

• ...... · 
inverse DFT 

........ ·· 
Fig. 1.1 The six domains of signal processing; the time domains are on the 
left, and the frequency domains on the right. Analog and digital filtering 
take place at the spots indicated. 

This picture includes all the time and frequency domains we're ever likely to need, 
and suggests the unification I'm after. In every case the forward transform expresses 
the frequency content of the signal as the projection of the signal onto a basis of pha­
sors. In every case the inverse transform expresses the signal as a sum or integral of 
the phasors in the basis, weighted by the frequency content. 

Throughout this book we've been concentrating on digital processing, and giving 
the analog domain short shrift. But you needn't feel cheated, because the ideas are 
interchangeable between domains. For example, up to now, I've alluded only 
obliquely to the Fourier transform. But you know everything you need to know about 
it already. The basis signals for the Fourier transform are phasors, of course. Because 
frequency is a continuous variable, the representation of a signal in terms of the basis 
of phasors must be an integral and not a sum; because analog frequencies are infinite 
in extent (there is no sampling and hence no Nyquist frequency) the integral must 
extend from - oo to + oo. The representation of an analog signal via the inverse Fourier 
transform must therefore be 

I J . x(t) = - X(ro)e1.,1dro 
27t -~ 

(1.1) 

It couldn't be anything else. The factor l/27t is just a normalizing constant that crops 
up in inverse transforms. We called it a "mathematical bad penny" at the end of 
Chapter 3, when we peeked ahead at frequency representations. Similarly, the forward 



§ 1 Taking stock 221 

Fourier transform is the projection onto a basis of phasors: 

X(ro) = I~ x(t)e-j"''dt (1.2) 

Table 1.1 shows the mathematical form of every transform in Fig. 1.1. As you can see, 
the formulas are essentially the same, except we need to use sums instead of integrals 
when we add up discrete items, and opposite signs in the forward and inverse 
transform phasors. 

Transform Forward Inverse 

Fourier transform X(ro) = I~ x(t)e-j"''dt x(t) 1 J . = - X(ro)e1"''dro 
27t --

~ 

z-transform X(ro) = L xke-jkro 
k=-~ 

xk = -1-J 11 
X(ro)ejkro dro 

21t -It 

DFT 
N-1 

Xk = .r, Xne-jkn2n/N 
n=O 

Table 1.1 The mathematical forms of all the transforms in Fig. 1.1. Allow­
ing for whether the domain is discrete or continuous, finite or infinite, and 
whether the transform is forward or inverse, these six equations all have 
the same form. As mentioned in Chapter 9, the z-transform evaluated on 
the unit circle, shown in the middle row, is sometimes called the Discrete­
Time Fourier Transform (DTFT). 

There are wonderful symmetries and correspondences between the time and fre­
quency domains, as I've emphasized at several points in preceding chapters. In Fig. 
1.1 this means the following: 

Any rule stating that an operation in one column corresponds to some 
operation in the other column, works with left (time) and right (fre­
quency) reversed. 

For example, if convolution on the left corresponds to point-by-point multiplication on 
the right, then convolution on the right will correspond to point-by-point multiplica­
tion on the left. We summarize that correspondence thus 

convolution ~ point-by-point multiplication (1.3) 

Of course, when convolution is in the time domain, the multiplying function in the fre­
quency domain is called a transfer function, and when convolution is in the frequency 



222 Chapter 11 Aliasing and Imaging 

domain, the multiplying function in the time domain is called a window - but the 
operations are mathematically the same. 

Furthermore, the rows are analogous in this way: 

Any rule that works in any of the three rows also works in the other two. 

So, for example, the correspondence in Eq. 1.3 works in all three rows. You can 
count on these principles every time. Practice using them, and you'll develop intuition 
that will never let you down. 

Thus, we can convolve in any of the six domains, and the convolution is reflected 
by multiplication of transforms (or inverse transforms) in the opposite domain- the 
frequency domain if we convolve in the time domain, and the time domain if we con­
volve in the frequency domain. The term "filtering" is usually reserved for convolu­
tion in only two places - the analog or digital time domain, and these operations are 
called analog or digital filtering, as indicated in Fig. I. I. We've already studied these 
two situations. But we've also seen another example of convolution in the previous 
chapter: windowing. In particular, we saw that windowing (multiplication) in the 
discrete time domain corresponds to an appropriate version of convolution in the 
corresponding frequency domain (see Eq. 6.2 in Chapter 10). I ask you to think about 
all six kinds of convolution in Problem 3. 

2 Time-frequency correspondences 

Now I want to be a little philosophical and dig deeper into the real reason why convo­
lution in one domain always does correspond to multiplication in the other. The 
answer will bring us straight back to Chapter I and the properties of phasors. 

The way to get more insight into convolution is to consider the effect of a simple 
time shift. To be concrete, take the case of a digital signal xk and write it as a "sum" 
(actually an integral) of phasors, each weighted by the frequency content of the signal 
at each particular frequency. Mathematically, this is the inverse z-transform, and it 
appears in Table 1.1: 

xk = - 1-J n X(ro)ejkm dro 
21t -It 

(2.1) 

Now suppose we shift the time variable k by one. The phasor is changed as follows: 

(2.2) 

Shift in time becomes multiplication by a factor that depends on the frequency ro. 
When the arbitrary signal x k is shifted, each component in Eq. 2.1 is shifted, and Eq. 
2.1 tells us that 

(2.3) 

We've seen this many times before: shifting a signal multiplies the transform by a 



§2 Time-frequency correspondences 223 

complex exponential. This relation is at the heart of all the important properties of 
frequency transforms. 

Consider convolution again. It is really nothing more than a sum of weighted, 
shifted versions of a given signal. Therefore, from the relation we've just seen, the 
result of convolution on the transform is multiplication by a sum of weighted complex 
exponentials. And that's just the transfer function. 

The same thing happens with time and frequency interchanged, because the fre­
quency function can also be expressed as a sum of phasors. In particular, the forward 
transform analogous to Eq. 2.1 is 

~ 

X(ro) = L xke-jk., (2.4) 
k=-~ 

which of course is our old friend the z-transform. Shifting the frequency has the effect 
of multiplying the time function by a complex exponential, and we can just rerun the 
discussion we've just finished, mutatis mutandis. 

We have exposed the core of frequency-domain methods. Signals and their 
transforms can be expressed as sums (or integrals) of phasors, and phasors obey the 
law 

shift ~ multiplication by a complex exponential (2.5) 

All the machinery of signal processing that we need in this book relies on this princi­
ple. The correspondence between convolution and point-by-point multiplication 
expressed in Eq. 1.3 is just an elaboration of this more fundamental fact. 

Another correspondence that will come in very handy involves even-odd sym­
metry. Suppose we pick any of the forward or inverse transforms in Table 1.1, and 
assume that the signal x involved is real-valued, and even about the origin. That is, for 
every k, xk = x_ko or for every t, x(t) = x( -t). To be concrete, consider the z­
transform, 

~ 

X(ro) = L xke-jk., (2.6) 
k=-~ 

Then the positive and negative terms in the summation can be grouped in pairs, yield­
ing 

~ ~ 

X(ro) = x 0 + L xk(e-jk., + e+jk.,) = x 0 + L 2xkcoskro (2.7) 
k= I k=l 

which is real-valued. We've just proved that if the signal xk is an even function of 
time, its transform X( ro) is real-valued. 

The reverse direction is just as simple. Assume that X ( ro) is real-valued, and con­
sider the equation for the inverse transform, 

xk = -1-J n X(ro)ejk., dro 
21t -It 

(2.8) 



224 Chapter 11 Aliasing and Imaging 

Replacing k by - k, we get 

x_k = +-J n X(ro)e-jkw dro 
1t -It 

(2.9) 

We're assuming throughout that the signal xk is real-valued, so taking the complex 
conjugate of this equation doesn't change the left-hand side. Hence, we're free to take 
the complex conjugate of the right-hand side, which means simply replacing j by -j. 
That gets us right back to the original right-hand side of Eq. 2.8, so xk = x_ko which 
means the signal is even. To summarize this argument, a real-valued signal is even if 
and only if its transform is real-valued. 

The preceding proof works for any of the six cases in Table 1.1, and we can 
express this by another rule: 

even ~ real-valued (2.10) 

We'll be using both this property and the shift-multiply property throughout the rest of 
the book. 

3 Frequency aliasing revisited 

Aliasing is an unavoidable issue in digital signal processing, and it can cause problems 
in unexpected ways. We took a look at the basic idea back in Chapter 3, where we 
pointed out that sampling means we cannot possibly distinguish between frequencies 
that differ by multiples of the sampling rate. This simple observation gets at the heart 
of the matter and explains the need for prefiltering before analog-to-digital conver­
sion. However, we now have the tools to go back and reexamine aliasing from a much 
more sophisticated perspective. That's definitely worth doing -especially because 
we also need to understand the process of converting signals from digital back to ana­
log form, where aliasing effects can also cause trouble. 

The shift-multiply property provides the key to understanding aliasing in a general 
setting. The process of sampling an analog signal can be represented as multiplication 
by a train of ideal pulses, for which we already have a Fourier series, the following 
sum of phasors (Eq. 6.2 in Chapter 7) : 

~ 

b(t) = L ejkw,t 
T k=-~ 

(3.1) 

where ros = 2x/T is the sampling rate in radians/sec, and the 1/T factor normalizes 
the area of the pulses to unity (the area was T in Chapter 7). Figure 3.1 shows the 
sampling process from this point of view, multiplication by a pulse train. 

When we sample by multiplying in the time domain by the pulse train in Eq. 3.1, 
each of the component complex exponentials shifts the signal transform. The result in 
the frequency domain is therefore an infinite sum of shifted versions of the signal's 
transform. Mathematically, this means that after sampling a signal x(t) its transform 
becomes 



§3 Frequency aliasing revisited 225 

••• ••• 

0 T 2T 3T 4T time, t 

Fig. 3.1 Sampling as multiplication by a pulse train. 

(3.2) 

where X(ro) is the transfonn of x(t). This fonnula succinctly and elegantly describes 
the effect of aliasing. To find the new frequency content at a given frequency ro we 
pile up the frequency content at all frequency points that are displaced from ro by 
integer multiples of the sampling rate. 

Figure 3.2 illustrates aliasing in the frequency domain. It's just like the picture we 
saw in Chapter 3, of course, but there we reasoned in tenns of isolated phasors, and 
now we can understand the meaning of frequency content in a much more general 
context. 

.... ,\, 
·. ··· ... .. 

..... 
/ 
: : : 

...... . . .. 

frequency. in multiples of sampling rate 

Fig. 3.2 The effects of aliasing in the frequency domain. Versions of the 
signal spectrum are shifted by integer multiples of the sampling frequency. 
The versions shifted up and down by the sampling frequency are shown 
together with the original baseband spectrum. As indicated, frequency 
components that end up in the baseband from shifted copies of the original 
spectrum constitute aliasing. 



226 Chapter 11 Aliasing and Imaging 

4 Digital-to-analog conversion 

If we're ever going to hear digitally produced sound, or, for that matter, see digitally 
produced images, we need to get back from the numbers to an analog signal. In our 
picture of six domains, we need to go up from the digital signal domain to the analog 
signal domain, the uppermost domain in the left column of Fig. 1.1. In the physical 
world we use an electronic device called a digital-to-analog (d-to-a) converter that 
converts numbers to voltages. As we mentioned in Chapter 3, converters work with a 
fixed number of bits, and the discrepancy between the theoretically exact signal value 
and the value represented by that number of bits accounts for a certain amount of 
quantizing noise. At this point we are more concerned with the ideal operation of 
conversion and its effect on frequency content. 

An interesting question arises immediately: If the digital-to-analog converter pro­
duces a voltage at each sampling instant, what voltage should be produced between 
sampling instants? The most common answer is illustrated in Fig. 4.1. The voltage 
between sampling points is held constant at its most recent value. The circuit that does 
this is called a zero-order hold (because we are interpolating between samples with 
constants, which are zero-order polynomials). You may also occasionally run into the 
terms sample-and-hold or boxcar hold. 

40 

time, sampling intervals 

Fig. 4.1 A typical waveform at the output of a digital-to-analog converter, 
assuming a zero-order hold is used. 

A glance at Fig. 4.1 should raise a red flag. It's a very choppy signal, full of 
discontinuities, and we've learned that jumps produce lots of high frequencies. More 
precisely, any instantaneous jump in a signal produces components in the spectrum 
that decay as the reciprocal of the frequency. We might guess, therefore, that the raw 
output of the digital-to-analog converter sounds bad. It does, and it needs to be pro­
cessed further. Fortunately, we now understand enough theory to know exactly what 
to do. 



§4 Digital-to-analog conversion 227 

The first step in the analysis of the digital-to-analog converter output is to think of 
it as the result of applying ideal impulses to an analog filter that has the appropriate 
impulse response. That impulse response, say h(t), must be the waveform shown in 
Fig. 4.2 - a constant value for one interval following the impulse, and then zero: 

h(t) = { liT for 0 ::;; t ::;; T 
0 otherwise 

(4.1) 

It will be convenient to normalize this impulse response so that its area is one, and 
since its base is T sec wide, we choose its height to be liT, as shown. Figure 4.3 then 
shows how we think of the operation of the zero-order hold: a digital signal 
represented by a pulse train, driving a filter that responds to each pulse with a rectan­
gle whose height is proportional to the signal value and whose width is T sec. 

1-----,---- 1ff 

0 T time, t 

Fig. 4.2 Impulse response of the zero-order hold. The output in response 
to a unit pulse holds that pulse for exactly one sampling interval of length 
T. Its height is normalized so that its area is one. 

input pulse train 

zero-order 
hold 

output signal 

Fig. 4.3 Representing the operation of a digital-to-analog converter with 
zero-order hold as a digital signal driving the hold circuit. 

The rest is easy. We're going to multiply the frequency content of the signal by the 
frequency response of the zero-order hold. First, we know the spectrum of the digital 
signal. As we discussed in Section 2 of Chapter 9, the spectrum of the digital signal x 
at the frequency ro is the inner product of the signal with the basis phasor at that fre­
quency, which gives 

-
X(ro) = (x, eikm) = L xke-jkm (4.2) 

k=--



228 Chapter 11 Aliasing and Imaging 

This, of course, is our old friend the z-transform, evaluated on the unit circle. The fre­
quency content X(ro) is a periodic function of frequency, again as we discussed in 
Chapter 9. Its values in the range of frequencies between minus and plus the Nyquist 
are repeated at all multiples of the sampling frequency, as illustrated in Fig. 4.4. 

1.00 

I 
g 0.75 

! 
0.50 

0.25 ................... . 

o+-----~~-----r------~------~-----+---0 0.5 1.0 1.5 2.0 2.5 

frequency. in mubiples of sampling rate 

Fig. 4.4 Typical spectrum of a digital signal, the input to the zero-order 
hold. This spectrum is always periodic, with period equal to the sampling 
frequency. 

The next step is to find the frequency response of the zero-order hold. But that's 
just the Fourier transform of its impulse response. Using Eq. 4.1, we get 

J- JT . I . 
H(ro) = h(t)e-J<"' dt = -e-1.,' dt 

-- o T 
(4.3) 

The integral of e-jwt is just the same thing divided by-jro; after some simplification 
this becomes 

H(ro) = e-jwT/2 sin(roT/2) 
roT/2 

(4.4) 

It's worth inspecting this result carefully, because it comes up all the time in signal 
processing, in various forms. First, the factor e-jwT/2 in front represents a delay of 
one-half a sampling interval. This delay is a consequence of the fact that the impulse 
response is centered at the point halfway between t = 0 and t = T. The remaining 
factor, sin( roT/2)/( roT/2), is a real-valued function of ro, and our discussion at the end 
of Section 2 showed it must correspond to a signal that is an even function of time. In 
fact, it corresponds to a rectangular pulse centered at the origin. Finally, Fig. 4.5 
shows a plot of the magnitude transfer function of the zero-order hold versus fre-
quency. 



5 Imaging 

1.00 

1: 
!! 
c: 
8 ,.. 
" 0.75 c: 
!I 
! 

0.50 

0.25 

0 
0 

§51maging 

. . . . . . . . . . 
········•·····················:·····················:·····················~·····················.:.········ . : : : : . : : : : . : : : : . : : : : . : : : : . : : : : 

................... ~ ..................... ~ ............. ::-::":" :,~~~~~rslon .......... ( ...... . 

. . . : : : . ·····················•··· ................................................................................... .;. ....... . 
I : ; ; . . : : : 
I : ; ; . : : : . : : : 
I : : : 
I : ; ; . : : : . .....................•........... ········:·····················:·····················";'''''''''''''''''''''':''''''''' 
I : : ; . : : : . : : : 
I : ; . . . 

0.5 1.0 1.5 2.0 2.5 

frequency, In munlples of sampling rate 

Fig. 4.5 The magnitude transfer function of the zero-order hold. The 
dashed line shows the ideal post-conversion frequency response. 

229 

In an ideal world, we would choose the frequency response shown as a dashed line in 
Fig. 4.5, which blocks perfectly all frequencies above the Nyquist and passes perfectly 
all frequencies below. In contrast, the zero-order hold makes a feeble attempt to 
remove frequencies above Nyquist, and its magnitude frequency response doesn't 
actually get down to zero until twice the Nyquist, the sampling frequency. It then 
bounces back up, and keeps bouncing indefinitely. 

The spectrum of the output signal of the zero-order hold, the signal illustrated in 
Fig. 4.1, is the product of the periodic spectrum of the pulse train, shown in Fig. 4.4, 
and the transfer function we've just found. The resultant product is shown in Fig. 5.1. 
This plot verifies what we predicted from the choppy nature of the signal: lots of high 
frequencies are present, especially in the region just beyond the Nyquist frequency. 
These components don't belong there - they're called images because they are 
reflections and translations of frequencies in the original signal. 

Do we hear imaging? If the sampling frequency is as high as 44.1 kHz, the rate for 
compact discs, images appear in the region above 22.05 kHz, and probably don't get 
through most audio systems. In any event, those frequencies are at the very high end 
of human hearing, and of young humans at that. On the other hand, telephone speech 
has a much lower bandwidth than CO-quality music, and is sometimes sampled at 
rates as low as 16kHz. Imaging just above 8kHz can be quite objectionable. 

If imaging is a problem it can be eliminated with a post-conversion analog filter. 
However, it is often easier to increase the effective sampling rate digitally, and then 
simply convert at the higher rate. We'll see how to increase the sampling rate of a 
digital signal in the final chapter. 



230 Chapter 11 Aliasing and Imaging 

1.00 

1:' 0.75 .. 
1:' 
8 
~ 
r:: .. 
::0 

! 0.50 

imaging---+ 

0.25 

0 
0 0.5 1.0 1.5 2.0 2.5 3.0 

frequency, in muHiples of sampling rate 

Fig. 5.1 Effect of digital-to-analog conversion on the spectrum. The signal 
spectrum in Fig. 4.4 is used as an example; the result shown is that spec­
trum multiplied by the magnitude transfer function in Fig. 4.5. Everything 
beyond the Nyquist frequency, 0.5 on the abscissa, is imaging. 

6 Nyquist's theorem 

We now have within easy reach one of the most amazing facts about signals and the 
way they carry information. It was discovered by Harry Nyquist in 1928, and is why 
we call the Nyquist frequency the Nyquist frequency. 

Aliasing caused by sampling destroys information. The frequencies that are con­
founded pile up on top of one another, and can never be unraveled. We can't hope to 
reverse this effect when we go back to the analog domain. The best we can hope for 
is to do a very good job prefiltering so that we preserve the limited band of frequen­
cies up to the Nyquist - but nothing more. When a signal is perfectly bandlimited, so 
that it has no frequency components beyond the Nyquist frequency, there is nothing to 
get confounded, and no information is lost by the sampling process. In that ideal case 
it is theoretically possible to recover the original signal with absolute perfection. 
That's the amazing fact, and we're now going to prove it. 

Consider the following thought-experiment, illustrated step-by-step in Fig. 6.1. 
First, imagine that we start with a signal that is perfectly bandlimited, so that it has 
frequency components only in the range from -roJ2 to +roJ2, where ros is the sam­
pling frequency in radians per sec, as usual. The resultant digital signal has a periodic 
spectrum, as we've seen many times before. Next, pass it through the ideal lowpass 
filter with the response shown as a dashed line in Fig. 4.5. This filter gets us back to 
the original spectrum, and hence back to the original signal. As we mentioned above, 
there is no aliasing caused by the sampling, and the restoration is perfect. That's the 
main point of Nyquist's result. 

To express this thought-experiment mathematically, we need to derive the impulse 
response of the ideal lowpass filter. Its frequency response is a constant in the 



§6 Nyquist's theorem 

(a) 

frequency 

(b) 

.. ···· .. ! . . . •j 
frequency 

(c) 

frequency 

{d) 

frequency 

Fig. 6.1 Illustrating the thought-experiment: (a) spectrum of a bandlimited 
signal; (b) spectrum after sampling; (c) ideallowpass filtering; (d) back to 
the original signal. 

passband and zero elsewhere: 

{ 
T for -wsf2 ~ w ~ wsf2 

H(ro) = 0 otherwise 

231 

(6.1) 

This time it's convenient to make the height T, so the area is T :x W 5 = 21t. The 
impulse response h(t) is the inverse Fourier transform of this, which is 

J ~ J7t/T I · T · 
h(t) = - H(w)e1"'1dw = - e1"''dw 

21t -~ 21t -1!/T 
(6.2) 

We encountered this integral in Section 4. It's one of the first you do in first-year cal­
culus, Jeax dx = eax Ia, where in this case the constant a = jt, since we're integrat­
ing with respect to ro. Evaluating that between the limits of integration gives 

h(t) = sin(7tt/T) 
1tt!T 

(6.3) 



232 Chapter 11 Aliasing and Imaging 

The output of the ideal Iowpass filter is the convolution of this, its impulse response, 
with its input signal. 

The input to the ideallowpass filter is the digital signal consisting of a sequence of 
pulses, as shown in Fig. 4.3, each pulse being weighted by the signal value xk. So, 
finally, we can write the output, which we argued must be identical to the original sig­
nal x(t), as the following convolution sum: 

( ) i'- sin(7t(t-k)/T) 
X t = ~ X k ...:.....;;.'-'-'-'-'-'---'-<.:..--<-

k=-- 1t(t-k)IT 
(6.4) 

This formula is truly remarkable: the left-hand side is the signal for any value of t 
whatsoever, but the right-hand side uses only the values of the signal at the discrete 
sampling instants. We can summarize the result in terms of the sampling rate fs Hz 
and the sampling interval T= llfs sec as follows: 

A signal that contains no frequencies beyond f.f2 Hz is completely 
determined by samples spaced no farther apart than I I fs sec. 

Let's take a closer look at the impulse response of the ideal lowpass filter and the 
role it plays in Eq. 6.4. Figure 6.2 shows this impulse response plotted versus time t, 
where the sampling interval is conveniently chosen to be unity, so the sampling 
instants are the integers. First, we need to settle the question of its value at t = 0, 
when both the numerator and denominator are zero. The answer is one, and it's 
another application of first-year calculus, using L'Hopital's rule again (see Problem 
9). At sampling instants other than t = 0, the sin(7tt/T) factor is zero because the 
argument of the sine is an integer multiple of 1t and the denominator is not zero. To 
summarize, the impulse response at the sampling instants kT is 

h(kT) = { ~ if k = 0 

if k * 0 
(6.5) 

This is a very desirable property for any filter used to reconstruct a continuous signal 
from samples - at sampling instants it weights the present sample of the signal by 
one and all other samples by zero. This implies that the output signal will coincide 
exactly with the original signal at sampling instants. 

The astounding part is that the output signal coincides exactly with the original 
signal at every time t, even the times between sampling instants. The convolution sum 
in Eq. 6.4 tells us exactly how much each of the infinite set of samples xk must be 
weighted to determine the value x(t) with absolute precision. This restoration is pos­
sible only because the original signal is perfectly bandlimited. 

Look at it another way: all the information in a bandlimited signal can be captured 
by sampling at a frequency equal to twice the highest frequency present in the signal. 
A bandlimited signal can carry information at that rate, but no higher. 



§7 The Uncertainty Principle 

I I I I I I I I I I I I I I I I I I I I I 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 

time, sampling intervals 

Fig. 6.2 Impulse response of the ideal post-conversion lowpass filter. For 
this plot the sampling interval is one. 

233 

But remember that the ideal lowpass reconstruction filter in Eq. 6.1 is just that: 
ideal. The frequency response of a real filter can't jump discontinuously, as the 
response of our ideal filter does, because that would mean passing one frequency and 
perfectly rejecting another that is infinitesimally close. In practice, as mentioned in 
the previous section, when imaging is a problem the zero-order hold can be followed 
by an analog lowpass filter that is an approximation to this ideal. 

7 The Uncertainty Principle 

In this section we'll indulge in a short digression to examine a particularly pretty 
example of time-frequency symmetry, and an important aspect of this symmetry. 
We've seen that the impulse response of the zero-order hold is a rectangular time 
pulse of width T, and its spectrum is sin(roT/2)/(roT/2). We've also seen that the fre­
quency response of the ideal Iowpass reconstruction filter is a rectangular frequency 
pulse of width 2x/T, and its impulse response is sin(xt/T}/(xt/T). As far as the 
shapes of the functions are concerned, time and frequency can be interchanged. In 
both cases, we have a perfect rectangular pulse in one domain, and what we can think 
of as an imperfect pulse in the other domain. 

What's even more interesting than the symmetry itself is the relation between the 
widths of these pulses. Let's think of the width of the sinxlx pulse as the width of 
its main lobe, which is determined by the value of the first zero-crossing of the sine 
factor. 



234 Chapter 11 Aliasing and Imaging 

In the case of the zero-order hold frequency response, that zero-crossing is the fre­
quency ro at which roT/2 = 1t, and the width of the frequency response pulse is twice 
this, 47t/T radian per sec, or 2/T Hz. The shorter the time pulse, the smaller T, and the 
wider the frequency response. More precisely, the product of the widths of the time 
and frequency pulses is the constant 2. 

In the case of the ideal lowpass filter, the width of the main lobe of its impulse 
response is 2 T sec, and the width of the frequency response is 27t/T radian per sec, or 
1/THz. Again, the product is simply 2. These relationships are illustrated in Fig. 7.1. 

time frequency 

~ _r---t_ 

~ _jl_ 

_r---t_ ~ 
_jl_ ~ 

Fig. 7.1 Time-frequency symmetry and the Uncertainty Principle - illus­
trated by the rectangular pulse and its transform. The narrower the pulse 
in one domain, the wider in the other. A rectangular pulse in one domain 
corresponds to a sin(x)/x shape in the other. The first two rows correspond 
to ideal lowpass filtering, the last two to the impulse response and frequen­
cy response of a zero-order hold. 

This is an instance of a principle that permeates many areas of science, and is 
often referred to as the Uncertainty Principle. In signal processing, it means that the 
narrower a time pulse, the wider its frequency content, and vice versa. In quantum 
mechanics, where the principle was first enunciated by the German physicist Werner 
Heisenberg (1901-1976), it means, for one thing, that the more precisely we measure 
the position of a particle, the less certain we can be about its momentum, and vice 
versa. The mathematics behind both results is the same. 

We saw another example of the Uncertainty Principle when we discussed window­
ing for the FFT. The wider the window in the time domain, the narrower the averaging 
in the frequency domain, and hence the better the frequency resolution. That's why 
the 200-inch telescope at Mount Palomar has better resolution than your 6-inch tele­
scope. 



§8 Oversampling 235 

Yet another example of the Uncertainty Principle is the two-pole reson filter dis­
cussed in Chapter 5. The narrower its bandwidth, the more slowly its impulse 
response decays. 

8 Oversampling 

You might think the only way to avoid harmful aliasing when doing analog-to-digital 
conversion is to build a very good analog lowpass prefilter. That's usually an expen­
sive and troublesome proposition, and fortunately there's a profitable way to trade off 
analog filtering before sampling with digital filtering after sampling. The method is 
usually referred to as oversampling, and gives us a good opportunity to learn more 
about aliasing. It will also make you want to read the next two chapters so that you 
can design good digital filters. 

To take a particular example, suppose we want to convert an analog signal to digi­
tal form with the ultimate sampling rate of 40kHz. We already know that frequency 
content above the Nyquist frequency of 20 kHz will be folded down into the 
baseband, as illustrated once more in Fig. 8.1 (a). The new idea is to convert at a 
higher rate to avoid aliasing, and then use digital processing to get a cleaner digital 
signal at the final desired sampling rate. The extra digital filtering will almost invari­
ably be less expensive than the good analog prefiltering required at the original rate. 
This whole scheme is cost-effective if the faster analog-to-digital converter is not too 
expensive, which is usually true, at least at audio frequencies. 

Figure 8.1 (b) shows the spectrum if we sample at 80 kHz, twice the final desired 
rate. The Nyquist frequency at this rate is 40kHz, and it's usually trivial to knock out 
any frequency components above that. In fact, most audio systems will do that without 
your worrying about it. So far, we have avoided aliasing. 

The next step is to trim the spectrum of the resultant signal with a digital filter. We 
want to eliminate any frequency content above the final Nyquist frequency of 20 kHz. 
The desired digital filter response is indicated in Fig. 8.1 (c) by shaded area. 

We now have an interesting situation. The signal fills only half its allotted 
bandwidth. It is redundant in the sense that it is represented by twice as many samples 
as required by Nyquist's theorem. The next step is surprisingly easy: We simply throw 
away every other sample. To see what effect this has on the signal's frequency con­
tent, look at the spectrum X## that results when a signal with spectrum X is sampled at 
frequency 2ros: 

X##(ro) = ~ [ · · · + X(ro-2ro5 ) + X(ro) + X(ro+2ro5 ) + · · ·] (8.1) 

(I'll use this weird notation only in this section.) This is just the aliasing formula, Eq. 
3.2, with sampling frequency 2ros and sampling interval T/2. Compare this with the 
spectrum that results from sampling at rate ro s: 

X#(ro) = ~ [ · · · + X(ro-ro5 ) + X(ro) + X(ro+ro5 ) + · · · J (8.2) 



236 Chapter 11 Aliasing and Imaging 

-3ro5 /2 --ro.s -O>s/2 0 O>s /2 O>s 3ro5 /2 20>s 

(a) 

(l) 

(b) 

(l) 

(c) 

(l) 

(d) 

(l) 

(e) 

(l) 

Fig. 8.1 Signal spectra illustrating oversampling to avoid aliasing, and the 
digital processing after sampling to reduce the sampling rate: (a) sampling 
at the rate ro 5 results in aliasing; (b) sampling at 2ro5 doesn't; (c) the 
desired digital filter frequency response to prepare for sampling rate reduc­
tion; (d) the signal spectrum after digital filtering; (e) the final spectrum 
after discarding alternate samples, showing that aliasing has been avoid­
ed. 

Discarding alternate samples converts the signal's spectrum from X## to X#. This is 
because throwing away every other sample gets us to exactly the same signal as sam­
pling at half the rate to begin with. 

The relationship between the spectra in Eqs. 8.1 and 8.2 is actually very simple. 
Except for a factor of 2, the spectrum X## consists of every other term of the spectrum 
of X#. We can therefore get X# by adding X## to a version of X## shifted by O>s, to fill 
in every other image. This interleaves copies of the spectrum at the correct spacing of 
ro s. Therefore, 

X# ( ro) = ~ [ X## ( ro) + X## ( ro- ro s ) ) (8.3) 

You can think of this formula as expressing an operation of subaliasing. Striking out 
every other sample is a very mild version of the sampling that gets us from analog to 
digital signals. Instead of producing an infinite number of images of the spectrum, it 
produces only two. The effect of this process of weeding out alternate samples is 
illustrated in Fig. 8.2, and occurs in the transition from Fig. 8.1 (d), which shows X##, 
to Fig. 8.l(e), which shows X#. 



Notes 

Notes 

-ro5 /2 0 

(JJ 

(JJ 

Fig. 8.2 The effect of throwing away every other sample. This is the picture 
corresponding to Eq. 8.3, and explains how we get from Fig. 8.1 (d) to Fig. 
8.1 (e). The first two spectra are added to produce the third, an effect we 
can call subaliasing. 

237 

What we need to make oversampling work is the digital filter with the frequency 
response shown shaded in Fig. 8.l(c). At that point the sampling frequency is 2ro5 , 

the Nyquist frequency is therefore ro 5 , and the lowpass digital filter is designed to pass 
frequencies up to only half this Nyquist frequency. Designing filters like this is the 
subject of the next two chapters. 

Nyquist saw through to the fundamental connection between the rate at which we can 
send information and the bandwidth of the channel in the famous paper 

H. Nyquist, "Certain Topics in Telegraph Transmission Theory," Trans. 
Amer.lnst. of Elect. Eng., vol. 47, pp. 617-644, Aprill928. 

He puts things in terms of telegraph waves and bases his main argument on Fourier 
series instead of on the more general Fourier transform, but the main point is unmis­
takable. Nyquist puts it this way: 

''The minimum band width required for unambiguous interpretation is 
substantially equal, numerically, to the speed of signaling .... " 

In our terms, the "band width" stretches from - ro .12 to ro 512, and is therefore equal 
to ro 5 , the sampling rate, and his "speed of signaling." It's important to realize that 
this band of width ro. doesn't need to be centered around zero frequency. In radio 
transmission, for example, it's centered around the carrier frequency of the station. 
But the rate at which information is transmitted is still determined by the bandwidth of 
the signal. 



238 

Problems 

Chapter 11 Aliasing and Imaging 

What we called Nyquist's theorem in this chapter is sometimes called the Shannon 
sampling theorem, after Claude Shannon (1916-), because of the equally famous 
paper 

C. E. Shannon, "Communication in the Presence of Noise," Proc. lnst. 
Radio Engineers, vol. 37, pp. 10-21, 1949. 

But Shannon himself gives Nyquist credit for "pointing out the fundamental impor­
tance of the time interval I/( 2 W) seconds in connection with telegraphy .... " Shan­
non puts the result in a form we recognize more easily: 

"If a functionf(t) contains no frequencies higher than W cps [Hz], it is 
completely determined by giving its ordinates at a series of points spaced 
1 /2 W seconds apart.'' 

1. Prove that it doesn't matter whether we window a continuous-time signal and then 
sample, or sample and then window. 

2. Figure 1.1, which shows the six usual domains of signal processing, really omits 
two, as you will see if you refer to the beginning of Chapter 9. What two domains 
have we omitted, and why are they less important than the other two for the usual 
kinds of signals processing? 

3. Write out the mathematical expression for convolution in each of the six domains 
shown in Fig. 1.1. Then write explicitly the equivalent operation in the corresponding 
transform domain, the horizontal partner in that figure. 

4. The key property for basis functions for frequency transforms, as argued in Section 
2, is the following. Let U ( k) = ej"'k, thinking of ro as a constant for this problem, and 
let k be the discrete time variable, as usual. Then the key property in Eq. 2.2 takes the 
form 

U(k- I) = U(- I) U(k) 

Prove that the only function that satisfies this relation for all k is the exponential func­
tion of the form 

U(k) = ck 

where c is some constant. 

5. The opposite of an even function is an odd function, by which we mean that 
xk = -x-k. The opposite of real-valued is imaginary-valued. Demonstrate that the 
following time/frequency correspondence rule is valid: 

odd ¢::::=:> imaginary-valued 



Problems 239 

6. Go back to the picture of the six domains in Fig. 1.1, and notice that the sampling 
of the spectrum implied by the OFf calculation is reflected by an aliasing operation in 
the time domain, in keeping with our correspondence principles. 

It works this way: sampling in the frequency domain means we consider only the 
set of frequencies that are integer multiples of some fixed fo Hz. The resulting time 
waveform is a Fourier series, and is periodic with period 1//0 sec. We have therefore 
confounded signal values that are spaced 1//0 sec apart in time. The effect is perfectly 
analogous to sampling in the time domain and confounding frequencies. 

Derive a mathematical expression for this time aliasing. 

7. Explain why there is no time aliasing in the usual applications of the OFf calcula­
tion. 

8. In some mathematical contexts the aliasing operation on the transform represented 
by Eq. 3.2 is called the cylinder operation. Why? 

9. Use L'Hopital's rule to check that the impulse response of the ideal post-conversion 
filter is one at t = 0. 

10. Rather than keep the output of a digital-to-analog converter constant between sam­
ples, we might connect adjacent sample values with a straight line between them. 

(a) Show that the impulse response of such a post-conversion "hold circuit" is an 
isosceles triangle with base extending from time instants - T to + T. 

(b) Show that the convolution of a rectangular pulse with itself is also an isosceles tri­
angle. 

(c) Combine the results of Parts (a) and (b) to find the frequency response of this par­
ticular hold circuit. 

11. You can think of aliasing as the confounding of frequencies. The process of 
analog-to-digital conversion confounds a given frequency with every frequency that 
differs from it by an integer multiple of the sampling frequency. What frequencies are 
confounded with a given frequency when alternate samples are thrown away? 

12. Eq. 8.3 tells us the effect of subsampling by using every second sample value. 
Generalize it to the scheme that uses only every kth sample, where k is an integer that 
can be larger than 2. What is the cutoff frequency of the lowpass digital filter we need 
in the corresponding oversampling scheme? 





1 Taxonomy 

CHAPTER 12 
Designing 

Feedforvvard Filters 

Practical filter design is a highly refined and continually evolving combination of sci­
ence and art. Its roots go back to the development of analog filters for radio and tele­
phone applications in the 1920s. Thousands of papers and dozens of books have been 
devoted to the subject, and effective programs are available that implement the impor­
tant algorithms. The subject has its own fascination, and connoisseurs spend rainy 
Saturday afternoons playing with exotic filter design algorithms. But if you stick to 
the common applications of digital signal processing, 99 percent of the filters you'll 
ever need can be designed beautifully using just two basic approaches, one for feed­
forward filters and one for feedback filters. 

Just a word about what I mean by "design." In a sense we've already designed 
some digital filters - two-pole resonators, plucked-string filters, and allpass filters, 
for example. But the term "digital filter design" has come to mean a certain general 
approach to the design process. Most digital signal processing practitioners take it to 
mean design from stipulated specifications using a well-defined optimization criterion. 
Most often, the specification is in terms of the magnitude frequency response, and the 
optimization criterion is to find the filter whose response deviates least from the 
desired specification. By contrast, our previous designs can be considered only ad hoc. 

We've just seen one example of how we might specify a digital filter by its desired 
frequency response: the ideallowpass filter in Fig. 8.l(c) in Chapter II, which was 
used as a prefilter before reducing the sampling rate. That ideal response cannot be 
attained with an actual filter, because it jumps discontinuously, so it must be approxi­
mated. And this approximation process is the interesting part of the filter design prob­
lem. 

A filter of any kind has a certain cost associated with its implementation. Usually, 
the main cost of using a digital filter can be measured by the time it takes to find each 



242 Chapter 12 Designing Feedforward Filters 

of its output samples, and this is reflected well in the number and type of arithmetic 
operations required. But there are other costs. Some filters require more precision in 
the arithmetic operations themselves, for example, and sometimes that is an important 
determining factor - especially if we plan to use special hardware for the filter imple­
mentation. 

The filter problem then comes down to balancing the accuracy of the approxima­
tion against the cost of actually using the filter. It's a classic example of what is called 
an optimization problem. 

I now want to make a distinction between two ways of solving this problem. The 
first is to be clever and find the solution in some compact, convenient form. For exam­
ple, for some particular design problem we might be able to find out exactly where to 
put the zeros of a feedforward filter so that the resulting frequency response is abso­
lutely the best possible, according to some given criterion of closeness to the 
specifications. We'll have to prove mathematically that this is so, of course. I'll call 
this a closed-form solution to a filter design problem. 

The other possible way of solving the problem is to use some kind of iterative 
technique that keeps improving some initial solution, which may not be very good, 
until it can't be improved any more. I'll call that an iterative solution. Usually, we 
resort to an iterative solution only when we're convinced that finding a closed-form 
solution is hopeless. This is the normal scenario in many areas where design problems 
come up: we try to figure out the answer, and then resort to iterative numerical 
methods when we give up. 

digital filter design 

~ 
feedforward feedback 

Fig. 1.1 Breaking down digital filter design into four cases. The two ap­
proaches shown enclosed in boxes, iterative feedforward design and 
closed-form feedback design, are enough to cover most common situa­
tions- for beginners, anyway. 

We can now categorize filter design problems in two ways, depending on whether 
we want feedforward or feedback filters, and on whether we use an iterative numerical 
method or seek a closed-form solution. That makes four possibilities, which are illus­
trated in Fig. 1.1. As mentioned above, it turns out that two of the four cases are big 
successes, and the two resulting methods provide enough horsepower to cover your 
basic needs for quite a while: they are iterative design for feedforward filters and 
closed-form design for feedback filters. I gave examples of the fruits of these design 
algorithms back in Section 4 of Chapter 4 and Section 8 of Chapter 5, respectively, 



§2 Form of feedforward filters 243 

just to make sure you realized that it's possible to design large and powerful filters of 
both the feedforward and feedback types. In this chapter we're going to go more dee­
ply into the methodology of designing feedforward filters. 

2 The form of feedforward filters 

Design problems like the ones we're considering break down into two stages. First, 
we need to choose the type of filter, and second, we need to choose particular values 
for its coefficients. In this section, we'll discuss the form we'll be using for feedfor­
ward filters. We'll discuss their design in the next section. 

Remember that a feedforward digital filter is specified by an update equation of the 
form 

giving the output sample y, at timet in terms of the input samples x,. The filter has n 
coefficients, and we'll call n the filter length. Terminology varies in this regard; it's a 
matter of taste. Just remember that we're counting from 0, so the ·last coefficient of a 
length-n filter is an_ 1. The transfer function is 

We're now going to make an assumption that will greatly simplify the design job. 
The idea is based on the property of transforms derived in Section 2 of Chapter II: 

even ¢:::::::> real-valued (2.3) 

(I told you it would come in handy.) We can't quite make the coefficients even, 
because that means a; = a_;, and the indices start from 0. But we can do something 
just as good: we'll make the coefficients symmetric about their center. As we'll see 
shortly, that will make the frequency response real except for a linear-phase factor that 
represents a delay. We can then forget about the delay factor and concentrate on the 
rest of the transfer function, which will be real-valued. 

To make it easy to see what's going on, let's consider the specific case of a 
length-S filter, when the transfer function is 

(2.4) 

We've been in similar situations before, and the standard trick is to factor out a power 
of z corresponding to the average of the first and last exponents, the average delay, in 
this case z- 2 • (This should be second nature by now. We've already seen this 
maneuver in Section 7 of Chapter 4, Sections 2 and 5 of Chapter I 0, and Section 4 of 
Chapter 11.) The resulting rearrangement is the following completely equivalent 
transfer function: 

(2.5) 



244 Chapter 12 Designing Feedforward Filters 

The corresponding frequency response is obtained, as usual, by setting z = ei"': 

If we assume symmetry of the coefficients, a 1 = a 3, so the second and fourth terms 
combine to form 2a 1 cosro; and a 0 = a 4 , so the first and fifth terms combine to form 
2a 0 cos(2ro). This yields 

H(ro) = e- 2i"'[a 2 + 2a 1cosro + 2a 0 cos(2ro) J (2.7) 

The important point is that the factor inside the parentheses is real-valued, and the fac­
tor in front is a complex exponential that represents nothing more than a delay of two 
samples. 

The process of factoring out the delay of two samples has a simple interpretation 
in terms of the transfer function. Figure 2.1 shows the flow graph for the original filter, 
Eq. 2.4. The delayed versions of the input signal are fed forward, true to the name 
"feedforward." Figure 2.2 shows (to the right of the dashed line) the flowgraph 
corresponding to z2 !li(z), the transfer function inside the parentheses in Eq. 2.5. The 
filter has a "future" term for each past term, and that makes the coefficients even and 
the transfer function real-valued. Of course the input is delayed two samples to begin 
with, so the filter does not need to be clairvoyant. The future terms are just in the 
future with respect to the center term. 

input x 
past 

original filter 

Fig. 2.1 Flowgraph for a length-5 feedforward filter. The delay elements 
store past values of the input. 

As far as the magnitude of the frequency response in Eq. 2.7 is concerned, the 
complex factor representing the delay is immaterial - it has magnitude one. The only 
thing that matters is the cosine series inside the parentheses. To simplify the notation 
still further, we'll use coefficients c; that run in reverse order, so we can rewrite Eq. 
2.7 as 

(2.8) 



§2 Form of feedforward filters 

filter advanced 
two samples 

Fig. 2.2 Filter equivalent to the one in the previous figure. A delay of two 
samples has been inserted at the input, and the filter to the right of the 
dashed line can be regarded as using future inputs. When the coefficients 
are symmetric about the center, the frequency response of the advanced 
filter is real-valued. 

245 

where c 0 = a 2, c 1 = 2a 1o and c 2 = 2a 0 , and we've moved the pure delay factor to 
the left-hand side of the equation (w~ere it actually represents an advance, not a 
delay). The new fr~quency response H(ro) incorporates this time shift, and is real­
valued. We'll use H when we put constraints on the frequency response in the next 
section. 

To make life even simpler, we're going to assume that the filter length n is always 
an odd integer. The case for n even is very similar, and adds no new ideas. With that, 
it's easy to see that the general form of Eq. 2.8 for a filter of odd length n is 

H(ro) = eimroH(ro) = c 0 + c 1cosro + c 2 cos(2ro) + · · · + cmcos(mro) (2.9) 

where m = 1!2 (n- I), the number of terms to one side of the center term. Since we 
count from 0, there are m +I = 'l'2 (n +I) coefficients c i· Because we assume sym­
metry, that's how many coefficients we are free to adjust to achieve a given desired 
frequency response. 

One final point. When we consider the frequency response H(ro), we should really 
use the magnitude. But we'll usually use the part without delay, the right-hand side of 
Eq. 2.9, which is real-valued, and can be negative as well as positive. When it's nega­
tive, we have a perfect right to consider it a positive magnitude with a phase angle of 1t 

radians, but we won't do that. What's important is that it's real. 
To summarize: we're assuming that the feedforward filters have an odd number of 

terms (n), and have coefficients that are symmetric about their central term. The fre­
quency response is then determined by the real-valued cosine series in Eq. 2.9, with 
m = 'l'2 ( n + I ) unknown coefficients c i. The design problem then boils down to 
choosing those coefficients to satisfy given specifications - which is next on the 
agenda. 



246 Chapter 12 Designing Feedforward Filters 

3 Specifications 

We're now going to think about designing a digital filter we have some use for- the 
one that is used after oversampling in Section 8 of Chapter II. The purpose of this 
filter is to eliminate the frequency components in the range of frequencies from one­
half the Nyquist frequency to the Nyquist frequency, in order to avoid subaliasing 
when we drop every other sample to halve the sampling rate. We'll call this a half­
band filter. The filter's ideal frequency response is just one in the first half of the 
baseband, and zero in the second half. You know very well, however, that it isn't pos­
sible to achieve this ideal with an actual filter. The problem we're considering here is 
how to select a filter length and a set of coefficients for a feedforward filter to do the 
job well enough. 

No matter how we implement the filter, the more coefficients there are, the more 
multiplications we're going to need to get each output sample. So the problem comes 
down to this: 

Given a precise statement of what frequency response we consider 
acceptable, find the filter with the fewest coefficients that meets those 
requirements. 

Specifying what we consider acceptable couldn't be simpler. We just decide on bands 
of frequency - like passbands and stopbands, and stipulate that the frequency 
response lie within certain limits in those bands. For example, Fig. 3.1 shows the 
specifications for the half-band filter we're thinking about desigping. The limits are 
represented by barriers, shown shaded in the figure. We'll use H to denote the real­
valued frequency respo11se of the cent~red filter, as in Eq. 2.8. The two barriers in the 
pass~and stipulate t~at H::;; 1.05 and H ~ 0.95. Similarly, the stopband requirements 
are H ::;; 0.05 and H ~ -0.05. This specification in the stopband, by the way, is a 
good example of how the frequency response is allowed to be negative or positive. 

The next step in our example is actually finding the shortest-length filter that 
satisfies the constraints in Fig. 3.1. Before I describe how that's done, I want you to 
stop and think about the consequences of choosing specifications. 

Consider the choice of passbands and stopbands. In Fig. 3.1, the passband extends 
to only 0.23 times the sampling frequency, and the stopband picks up from 0.27 times 
the sampling frequency, after a gap called a transition band. Why be so timid? Why 
not jam the stopband right up against the passband? The answer lies in the fact that the 
frequency response is only the beginning of a Fourier series, as you can see from Eq. 
2.9. We've already seen in Chapter 7 what happens when we add up a finite number 
of terms in a Fourier series. Recall the approximations to a square wave. The jumps 
between zero and one become steeper and steeper as the number of terms increases, 
but can never be perfectly discontinuous. The closer the upper edge of the passband is 
to the lower edge of the stopband, the steeper the jump, and the more terms we need in 
the filter. This makes economic sense: the better the performance in distinguishing 
between frequencies that are close together, the more expensive the filter. 

The same reasoning applies to the ripples. The closer we want the frequency 
response to the ideal flat response, the more terms we are going to need in the filter. 



§4 A design algorithm: METEOR 

---------------------· I 

passband 
1 transition band 

' I ' 

r---+--1 
' I ' 

I 

stopband 

1------------1---- -- ------------ ----~ 
0.0 0.25 0.5 

frequency, in fractions of sampling rate 

Fig. 3.1 Specification of a half-band lowpass filter, illustrating the use of 
barriers. The dashed lines show the ideal response, and we want to find 
the filter that stays inside the barriers and has the fewest coefficients. The 
passband in this case is [0.0, 0.23] and the stopband is [0.27, 0.5); the bar­
riers are positioned in those bands at distances ±0.05 from the ideal 
response. 

247 

When we see the results of an actual design algorithm, we'll be able to get a feeling 
for the cost of good performance. 

4 A design algorithm: METEOR 

As I stated at the beginning of the chapter, the general design problem for feedforward 
filters is solved, at least for the situations you're likely to encounter in day-to-day sig­
nal processing. The approach I'm going to describe uses a mathematical formulation 
called linear programming, and in particular the program METEOR, as mentioned in 
Chapter 4. Other iterative numerical methods are faster, but linear programming is the 
most flexible method available, and is perfectly suited to our formulation of the design 
problem. 

The key to the solution method is the fact that the frequency response, the cosine 
series in Eq. 2.9, is a linear function of the unknown coefficients. Let's take a very 
simple example, just to illustrate the idea. Suppose we want to design a filter of length 
3, which will have only two coefficients for us to choose. The constraint that the fre­
quency response be less than 1.05 in the passband is 

H(ro) = c 0 + c 1 cosro ::;; 1.05 (4.1) 

For any particular fixed value of frequency ro, this is a linear function of the unknown 
coefficients c0 and c 1• Lower bounds are of the same form; for example, in the 
passband we'll have constraints like 

A 

H(ro) = c 0 + c 1cosro ~ 0.95 (4.2) 



248 Chapter 12 Designing Feedforward Filters 

We throw together lots of inequality constraints like these, for lots of values of co in 
both the passband and stopband, and then ask for values of the coefficients c; that 
satisfy all of them simultaneously. In practice we may want to use a grid of frequency 
points that is quite fine - say 500 grid points equally spaced in the passband and 
stopband of our half-band filter. There are two constraints for each frequency point, 
which makes a total of 1000 constraints. 

Finding a feasible solution to all these inequalities may sound like an incredibly 
difficult problem, but, fortunately, it turns out to be an example of the classical linear 
programming problem, and people have been working on it since the 1940s. Today 
there are algorithms that will solve problems with thousands of constraints and hun­
dreds of variables in seconds or minutes. (See the Notes at the end of the chapter for a 
little history and some references.) 

Not only is it easy to find feasible solutions to the set of inequalities that comes up 
in the feedforward filter design problem, but it's also easy to find, from among all the 
feasible solutions, the one that is best in the sense that the closest distance from any of 
the constraint boundaries is maximized. Figure 4.1 illustrates the idea. A collection of 
inequalities is shown in two dimensions, corresponding to a filter with two 
coefficients. Any point in the region interior to all the constraints represents a feasible 
filter design. A point whose closest constraint is as far as possible is also shown -
that choice of filter coefficients has a frequency response that stays the farthest away 
from the boundaries chosen for this problem. The figure is drawn in two dimensions to 
be easy to grasp. In practice, a typical filter might have, say, a length of 31, and there­
fore 16 coefficients, so the feasible region would be a polytope in 16-dimensional 
space. Such a problem is impossible to visualize, of course, but linear programming 
algorithms have no problem dealing with it. 

Before we look at an example, I need to be a little more precise about what I mean 
by "distance" from a constraint. We're not really interested directly in ordinary, 
Euclidean distance in the space of coefficients, distance in the plane shown in Fig. 4.1, 
for example. What we're really concerned about is the difference between the filter 
frequency response and the specification, the difference between the left- and right­
hand sides in Eqs. 4.1 and 4.2. We can put the problem in precise mathematical form 
by inserting a ''squeezing'' parameter o in those inequalities as follows: 

H(ro) = c 0 + c 1cosro::;; 1.05- o 
A 

H(ro) = c 0 + c 1cosro ~ 0.95 + o 
(4.3) 

(4.4) 

Remember that we have a pair of inequalities like this for every frequency point on 
some grid, in both the passband and the stopband. The variable o represents the true 
distance between each of those constraints and the frequency response at that point. 
We therefore try to maximize o subject to all these constraints. 

This now is the precise form of linear programming optimization problem we're 
interested in: 

Find, from among all the feasible sets of coefficients, one that maximizes 
the minimum distance from the frequency response to any of the con­
straints. 



§5 Half-band example 

coefficient co 

Fig. 4.1 This is what the feedforward filter design problem looks like in the 
coefficient plane, for two coefficients c0 and c 1 • There is one constraint 
for each frequency point on a grid of frequency points. The set of feasible 
coefficients is the region interior to the constraints. The solid dot is a feasi­
ble solution, and the open dot is the best feasible solution in the sense that 
its closest distance to a constraint is maximum. 

249 

As promised, there are good algorithms for solving this problem with hundreds of 
coefficients and thousands of constraints generated by a frequency grid in all the 
passbands and stopbands. Sometimes this form of optimization problem is called a 
minimax - or, in this case, a maximin - problem, because we want to maximize the 
minimum distance to a constraint. 

5 Half-band example 

METEOR tries different filter lengths to determine the shortest one that satisfies the 
constraints. The program gives us a choice between odd and even lengths, and in this 
case I asked for an odd length. Figure 5.1 shows the frequency response of the answer, 
given the design specifications shown in Fig. 3.1. The smallest odd-length filter that 
meets the specifications turns out to be of length 31, which means there are 16 free 
coefficients. 

You will often see the frequency response of filters drawn with a dB scale, and 
I've redrawn Fig. 5.1 that way in Fig 5.2. It looks different, but it's precisely the same 
response. The compressed scale makes the passband ripples look smaller than the 
stopband ripples, even though they are the same size arithmetically. The dB scale also 
takes the magnitude of the response, so the distinction between the positive and 



250 Chapter 12 Designing Feedforward Filters 

1.2 .., ....................... , ....................... , ....................... , ...................... , ...................... . . . . . . . . . . 

o.ai··········· .. pa.ss'fiand ............. t·····;·· ·······~·····t······················t······················ 

~ ~ ~ : : tfansition ~ o.s1 ....................... ~ ...................... t .... ·.· ..... ,. .... ~anC/ .............. 1" ................... .. 
: : : I I : : 

0.4 ~ ....................... ~ ....................... ~ ..... ! ......... • ...... ~ ...................... ~ ..................... .. . . . . . . . . . . 

o.2 ~ ....................... j ....................... j ............. ........ l ....... ~~~P~C!:r!~ .................... . 
. . . . . . . . . . . . . . . . 

0 ~ ....................... ! ....................... ! ................... :'" ..... ..... .<... .. ........... ~ 
. . . . . 

-o.2 1·······················i·······················i·······················~······················~·······················i 
0 0.1 0.2 0.3 0.4 0.5 

frequency, in fractions of the sampling rate 

Fig. 5.1 Frequency response of a half-band feedforward filter. The 
passband is [ 0.0, 0.23 ], the stopband [ 0.27, 0.5 ], and the required max­
imum deviations are ±0.05 in both bands. The minimum number of 
coefficients that meets the specification is length n = 31. 

10 1·······················[·······················[······················-;······················I······················l 
0 : : : ............... .,. ...................... + ...................... ~ 

: passpand , ' t~ansition ~ ~ 
-1o ~-······················~······················-r······:····· ···:····t?and··············t······················j 

~ ~ ~ ~ stopband ~ 
-20 -:·······················?·······················?·············· ...... ~ ...................... , ....................... , . . . . . . . . . . . . . . . 
-30 ~-······················~·······················~··············· . . . . . . . . . . . . . . 
-40 .; ....................... : ....................... : .......................... . ..... ..... .... . 

. . . . . 
-50.; ....................... ; ....................... ; ..................... ; ......... . ...... ........ ..... . 

: : : : . . . . . . . . . . . 
-60 .; ....................... ; ....................... ; ....................... , ......... . ...... .. -·········· . . . . . . . . . . . . . . . . . . . . . . . . . 
-70 -i·······················i·······················i······················;. ...................... ;. ......... . ........... 

0 0.1 0.2 0.3 0.4 0.5 
frequency, in fractions of the sampling rate 

Fig. 5.2 Exactly the same frequency response as the previous figure, ex­
cept the ordinate is in dB. 



§5 Half-band example 251 

negative ripples in the stopband is lost. Sometimes passband ripple is specified in dB, 
although I find that a bit obfuscating. In particular design examples here I'll stick to 
arithmetic specification in passbands, like I ± 0. 05 in this example. 

While we're on the subject of dB scales, I should mention that stopband ripple 
measured in dB is often referred to as stopband rejection. For example, if the ripple in 
a stopband is specified to be at most ±0.01, we say we require at least 40 dB rejection 
in that band. 

It's worth scrutinizing the optimal response closely, because it is typical of filters 
that are actually used in practice. 

The most striking feature is that the response ripples regularly between upper and 
lower bounds. In fact, the distances between the tops and bottoms of the ripples and to 
the constraint boundaries are all equal. This property is called equiripple. The follow­
ing heuristic argument explains why optimal solutions are equiripple. 

Suppose the ripples are not equally distant from the constraints, but that one of 
them, say the ith, is closer than all the rest (see Fig. 5.3). We should then be able to 
adjust the coefficients so that this ith ripple moves away from the boundary. (Just jig­
gle the coefficients. If it moves closer, jiggle them the other way.) We can keep doing 
that until the ith ripple becomes tied with some other ripple for being closest to a 
boundary. 

push here 

Fig. 5.3 Illustrating the argument that the optimal solution is equiripple. 
Push on the worst ripple and it becomes better at the expense of the oth­
ers. 

We can repeat the process, but when we jiggle the coefficients, we need to do it in 
such a way that the two ripples now tied for minimum distance to a boundary stay 
tied. This will be possible if there are enough coefficients. Eventually, there will be so 
many ripples tied for closeness to a boundary that we can no longer jiggle the 
coefficients, and that's when we've reached optimality. (The same kind of argument 
can be made by looking at the geometry in Fig. 4.1. See Problem 5.) 

I want to make it clear that this is more of a plausibility argument than an actual 
proof, but it offers some insight into why the solutions look the way they do. For one 
thing, it suggests that the number of ripples tied for closeness to a constraint in an 



252 Chapter 12 Designing Feedforward Filters 

optimal solution is very closely related to the total number of coefficients we have to 
play with in the filter, the number of terms in the cosine series Eq. 2.9, m = ~ (n +I). 
In fact, the number of ripples is always one or two more than m (see Problem 7 and 
the Notes). 

6 Trade-offs 

The kind of filter we've just designed - with a single transition between two bands 
- is very useful, and this simple design situation comes up all the time. The principal 
measure of how much it costs to use a particular feedforward filter is the number of 
terms, so it's nice to have a rough idea of the filter length that will be required to meet 
some given specifications. Such estimates will also help us understand the extent to 
which narrow transition widths and small specified ripples in passbands and stopbands 
require filters with long lengths. 

There's no way known to predict the optimal filter length exactly, without actually 
doing the design, but there are very good approximations based on empirical experi­
mentation. For example, let's see how the filter length varies with the transition width, 
when all the other specifications are kept the same as the ones in the lowpass example 
in Section 5. That is, we'll keep the passband and stopband ripples fixed at ±0.05, the 
upper end of the passband fixed at 0.23 times the sampling frequency, and vary the 
lower end of the stopband. We'll then run METEOR for a sequence of transition 
widths, finding the shortest filter length for each case. 

What do we expect to happen to the required filter length as the transition width 
decreases? Well, certainly it should increase, but at what rate? Let's plot the points 
and look at them- maybe we'll get an idea from the picture. Since we expect the 
filter length to vary in the direction opposite that of the transition width, we'll plot the 
length as a function of the reciprocal of the transition width, as shown in Fig. 6.1. (By 
the way, since we measure the transition width in fractions of the sampling rate, its 
inverse, the abscissa in Fig. 6.1, is measured in units of multiples of the sampling 
period.) 

A glance at this figure shows that the empirical relationship is quite close to a 
straight line through the origin. In other words, the required filter length is inversely 
proportional to the transition width, a very useful and intuitively appealing rule of 
thumb. 

We can relate this result to our earlier discussion of resolution. The transition 
width is the gap between the frequencies that are passed by the filter and those that are 
rejected. This gap can be thought of as the resolution of the filter in the sense that the 
filter is able to separate frequencies this close, but no closer. Thus, our empirical result 
is that the resolving power of a feedforward filter is inversely proportional to its length 
- just as the resolving power of a telescope mirror is inversely proportional to its 
diameter (see Section 3 of Chapter I 0 and the Notes for that chapter). 

The constant of proportionality in Fig. 6.1 is about 109/100 = 1.09, but depends 
on the size of the specified ripples in the passband and stopband. To get a useful result 
we need to find out how this slope depends on the ripples. 



§6 Trade-offs 

120 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 OJ 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ~· 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 OJ' 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
110 

.s:: 100 
;;, 
1: 90 .91 
Q; 80 ! , 

70 I!! ·s 
~ 60 

50 

40 

30 

• 0 ••••••• -~ ••••••••• + .. 0. 0 •••• + ...... 0 0. ~-. 0 •••••• 0 ;- 0 0 0 0 ••••• ;- 0 0 0 0 0 0 0. -; ••• 0. 0 0 0 0 -~ •••••• 0 0 0 -~ •••••• ~ -~ •••••• 0 0 0 

I I I Ill ;;;c; .. ET .. F 
::::::::::,::::::::::j:::::::::r:::::::::r:::::::~r:~;4~~::::::,::::::::::,::::::::::,:::::::::r::::::::: 

1 L]~:·r:·T II E E E 
20 

10 ::::~~~~:~f:::::::t:::::::::l::::::::::!::::::::::l::::::::::l::::::::::l::::::::::l:::::::::r::::::::: 
. . . . . . . . . . . . . . . . . . . . 

0 
. . . . . . . . . . 

0 10 20 30 40 50 60 70 80 90 100 110 

reciprocal of transition width, in multiples of sampling period 

Fig. 6.1 Some empirical data: required feedforward filter length as a func­
tion of the reciprocal of transition width. The lower edge of the stopband in 
the example of Section 5 is varied, and all the other specifications are kept 
the same. 

253 

Well, the same sort of experiment can be carried out by varying the passband rip­
ple and keeping everything else fixed, then varying the stopband ripple and keeping 
everything else fixed. It turns out that when the transition width is kept fixed, the filter 
length is roughly proportional to the logarithm of the ripple specification in either the 
passband or stopband. 

James Kaiser found a particularly elegant way to estimate the required filter length 
(see the Notes for the reference). To write it very succinctly, we need to talk about a 
good way to express transition width and ripple. Let llF be the transition width in 
fractions of the sampling rate - that's simple. Expressing the ripple is a bit more 
complicated. 

Suppose we denote the ripples in the passband and stopband by~ 1 and ~ 2 • respec­
tively. (In our example, ~ 1 = ~ 2 = 0.05.) Then the geometric mean of the two rip­
ples is ( ~ 1 ~ 2 ) v,. (In our case the geometric mean is just 0.05, of course.) We said 
the required filter length is roughly proportional to the logarithm of the ripple, so it's 
convenient to express the ripple in dB. Ripple is normally less than 1, corresponding 
to negative dBs, so it's even more convenient to use the negative of the dB measure. 
So, finally, we'll define the ripple in dB to be 

R = -20logiO (~1~2)'1' 

In our example, R = 26.02 dB. (Check this on your calculator.) 
With these definitions of llF and R, Kaiser's formula is 

n::: R- 13 +I 
( 14.36)llF 

(6.1) 

(6.2) 



254 Chapter 12 Designing Feedforward Filters 

Very compact. But let me warn you that this is meant to serve only as a rough guide 
for a very wide range of design parameters. It's more accurate for ripple specifications 
that are tighter than the ±0.05 in our example. The values in that example, R = 26.02 
and tlF = 0.04, yield n :::: 23. 7, which is not very close to the actual minimum filter 
length n = 31. But this ripple specification of ±0.05 is actually quite large as ripples 
go. In fact, I chose it that large just so you could see the ripple clearly in the graphs. 
When the specified ripple is ±0.001 (R = 60 dB) in both bands, for example, with the 
same transition width, the formula gives an estimate of n :::: 81.4, and the true value is 
n = 83. 

At this point in your study of filtering, knowing that Eq. 6.2 exists is probably 
more important than any particular application to design problems. After all, you can 
always experiment with programs like METEOR. But it adds to your general educa­
tion to know that required feedforward filter length is close to being proportional to 
ripple in dB, and, at the same time, inversely proportional to transition width. 

7 Example: Notch filter with a smoothness constraint 

Linear programming can do much more than find the maximin approximation to a 
given frequency response. For one thing, we don't have to push the frequency 
response away from every constraint. To allow the frequency response to hug a con­
straint, all we need to do is omit the ~ in Eqs. 4.3 and 4.4. 

We can also put constraints on the derivatives of the frequency response. For 
example, it's often nice to be able to stipulate that the response be convex up or down 
in some band. To see this, just notice that if we differentiate the cosine terms like 
c ;cos(iro) in the frequency response, we get terms of the form-ic ;sin(iro). If we dif­
ferentiate again, we get terms of the form -i2 c;cos(iro), and so on. For each fixed 
value of ro on the frequency grid, a specification on a derivative will simply yield 
another constraint on the unknown coefficients. What's crucial is that these constraints 
are linear in the coefficients, just as the original constraints are. 

There are even more general things we can do with linear programming, such as 
putting direct constraints on the coefficients, which after all represent the impulse 
response. It's important to realize just how general the approach really is, so let's 
look at two more examples. 

Figure 7.1 shows the result when we ask for an odd-length filter with a lower and 
upper passband and a linear notch between them. By this I mean a portion of the fre­
quency response that descends from unity in a straight line to 0, and then returns, also 
linearly. We gild the lily by requiring that the response in the first half of the lower 
passband be convex down, which will make it quite smooth at low frequencies. The 
specification to METEOR actually has the following nine constraint specifications: 

• upper and lower bounds in lower passband; 
• upper and lower bounds in upper passband; 
• upper and lower bounds in descending part of notch; 
• upper and lower bounds in ascending part of notch; 
• convexity constraint in first half of lower passband. 



§8 Example: Window design 

1.1 "! •.••.•..•.•....... ·: .•..•.....•...•.•. ·: .•••....••........ ·: ...••.......•••••• ·~ ...••.•••••...•••• ~· ....••••...••••••• ~ 
: : : : : : : . . . . . . 

1.0 : 
. . . . . 

. . . . . 
0.9 ~-··················?···················? ·················?················ +··················~···················~ . . . . . . . . . . . . . . . . . . . . . 
0.8 ~···················!···················?··· ···············?·············· ···~···················~···················~ . . . . . . . . . . . . . . . . . . . . . 
0.7 .; ................... ; ................... ; ................. ; ................. ; .................. .,. .................. , 

. . . . . . . . . . . . . . . . . . . . . 
0.6 ~ .................. -~ .................. -~ ................. -~.......... . ..... ·~· .................. ~- .................. ~ 

: : : : : : : . . 

0.4 ~···················~···················~·········· ·······~······ ··········+··················~···················~ . . . . . . . . . . . . . . . . . . . . . 
0.3 ~···················?···················?············ ·····?···· ·············?··················~···················i . . . . . . . . . . . . . . . . . . . 
0.2 .; ................... ; ................... ; ................. ; ................ .,. .................. .,. .................. , 

: : : : : : : . . . . . . . 
0.1 ~···················~···················~················· ·~ ·················~····················~···················~ . . . . . . . . . . . . . . . . . . . 

0 -i···················i···················i··················· .................. ;. .................. ;. ..................• 
0 0.083333 0.166666 0.249999 0.333332 0.416665 0.499998 

frequency, in fractions of sampling rate 

Fig. 7.1 Illustrating the flexibility of METEOR. This filter is specified as hav­
ing passbands for the first and last third of the baseband, and a linear 
notch in the second third. Also, the frequency response in the first half of 
the lower passband is constrained to be convex down. With tolerances of 
±0.01, we need a length-111 feedforward filter. Note the linear vertical 
scale to show the linearity of the notch. 

255 

The order in which the constraints are given is immaterial. The linear programming 
algorithm doesn't mind if they're scrambled, as long as they're all there. 

Figure 7.2 shows a close-up of the lower passband, showing the effect of the con­
vexity constraint. This is an easy way to ensure flatness in particular bands. Don't be 
alarmed by the wild variations in frequency response; the scale is blown up and 
represents a deviation of only± I percent. By the way, a convexity constraint like this 
one need not cost much in terms of filter length. The minimum length meeting these 
nine constraint specifications is Ill coefficients, but removing the convexity con­
straint reduces the required length only to 109. 

8 Example: Window design 

The second example shows how METEOR can be used to design a window for spec­
trum measurement. Recall from Chapter I 0 that the measured spectrum of a signal is 
smoothed by convolution with the transform of the window. Designing a particular 
window frequency content for this smoothing is exactly the same problem as design­
ing a feedforward filter; the coefficients are the window sample values. What we 
want is a frequency content that is unity at zero frequency and that descends to small 
values as quickly as possible. In the terminology of window design, we want a narrow 
central lobe and low side lobes. 



256 Chapter 12 Designing Feedforward Filters 

.!! 
~ 1.01 "!M"""'""o..:.;.;.:~ 

J 
sf 

I 
f I 1.00 ~ ...................................................................................................... . 

0.99 ~ ........................................................... ; .................. ··························· ....... . 
0 0.083333 0.166667 

frequency, in fractions of sampling rate 

Fig. 7.2 Close-up of the first passband in the previous figure, with greatly 
expanded vertical scale. 

How do we choose specifications to achieve this result? The first thing to notice is 
that the length of the window is fixed by the length of the FFT we're using. That 
means that the linear programming algorithm will be used with a fixed number of 
coefficients, and no search is required to find the minimum length that satisfies our 
constraints. (I know I said we would restrict our attention to odd-length filters, but 
we'll choose a length of 64 in this example because we're designing an FFT window, 
and FFTs most often use lengths that are powers of 2.) 

The next thing to realize is that, with the length fixed, we are left with two design 
parameters: the depth of the side lobes and the width of the central lobe. We can fix 
either one and optimize the other. Both strategies are in the repertoire of METEOR, 
and for this example we'll fix the depth of the side lobes (at 60 dB rejection, or 
±0. 00 I), and minimize the width of the central lobe. METEOR does this by pushing 
the left edge of the stopband as far to the left as possible while keeping the stopband 
response down at the minimum specified rejection. 

The final obstacle to overcome is fixing the response at zero frequency to unity. 
But we've already mentioned this option above - all we need to do is omit the 
"squeezing" parameter ~. and let the response hug the following constraints at zero 
frequency: 

H(O) :5 I and H(O) ~ I (8.1) 

which are, of course, equivalent to H(O) = I. This particular "band" of frequencies 
consists of only one point. By omitting the parameter being optimized, we are thus 
able to pin down the response at a particular frequency to a specific value. 



§8 Example: Window design 257 

So the complete problem statement is to find a length-64 filter, with 60 dB rejec­
tion in the stopband and the narrowest possible central lobe. There are actually the 
following four band specifications to METEOR: 

A 

• the two constraints in Eq. 8.1, setting H(O) = I; 
• the upper and lower bounds in the stopband (±0.001 ). 

I started with a stopband edge for which 60 dB rejection is achievable. I found such an 
edge by trial and error, using METEOR to maximize rejection for a few fixed band 
edges. It turns out that 0.04 times the sampling frequency does the trick, yielding 62.9 
dB rejection. I therefore have an extra 2.9 dB rejection to play with, which makes it 
possible to slide the band edge a little to the left. METEOR tells me just how far, and 
gives me a final design with almost precisely 60 dB rejection and a final band edge 
that is 0.03831 times the sampling frequency. 

The resulting frequency response - or what in this case should be called window 
frequency content - is shown in Fig. 8.1. The corresponding frequency content for 
the Hamming window, Fig. 5.2 of Chapter 10, doesn't have such nice uniform rejec­
tion in the stopband. Howard Helms (see the Notes) puts it perfectly: this window has 
''the best possible resolution for a given maximum leakage.'' 

10 ~·······················~·······················~·······················~······················~·······················~ . . . . . . . . . . . . . . . . 
0 : ······················~·······················~·······················~······················~······················~ . . . . . . . . . . . . . . . 

length-64 window, 60 dB rejection, stopband pushed left 
. . . . . 

-20 ~····· ················?·······················?·······················?······················~·······················~ . . . . . . . . . . . . . . . . . . 
-30 ~······· ···············~·······················~·······················?······················~·······················~ . . . . . . . . . . . . . . . . . . . . . . . . 
-40 ~······· .............. , ....................... , ....................... ; ...................... .,. ...................... ; 

. . . . . . . . . . . . . . . . . . . . . 
-50.; ...................... ; ....................... ; ....................... ; ...................... .;. ...................... , . . . . . . . . . . . . . . . . . . . . . . . . 
-60 ~········ ··············?·······················?·······················?·······················~·······················~ . . . . . . . 
-70 ~········ . 

-60 ~-··········· 
. . . . 

...... ,, '"'f""' ""'""' "' 'T''""' -90 ~······················ ; .............. . 
0 0.1 0.2 0.3 0.4 0.5 

frequency, in fractions of sampling rate 

Fig. 8.1 Frequency content of a length-64 window, designed with 60 dB re­
jection in the stopband, and the lower end of the stopband pushed left as 
far as possible. The resulting stopband starts at 0.03831 times the sam­
pling frequency. 

Brawn can sometimes substitute for brains (but not often). It turns out that the 
problem of designing windows satisfying this particular criterion of optimality has 
been solved by sheer intellectual power. It was done back in 1946 by C. L. Dolph, 



258 Chapter 12 Designing Feedforward Filters 

building on ideas of Chebyshev - and they're called Dolph-Chebyshev windows. 
The result in Fig. 8.1 is exactly what you get if you use Dolph's formula. And algo­
rithms for solving linear programming problems hadn't even been invented in 1946. 
But having a design program as general as METEOR puts us ahead of the game, and 
today we can design windows with different rejection in different parts of the stop­
band, with arbitrary shapes to the central lobe, and practically any other weird require­
ment we can dream up. 

9 A programming consideration 

We ought to take a look at how feedforward filters are actually implemented on a 
computer. There's a smart way to do it and a not-so-smart way, and explaining both 
gives me a chance to illustrate a general and useful idea from computer science. 

Suppose for the purposes of discussion we agree to implement a length-S filter. To 
compute the output at time t, we need to have available the input samples x 1, x, _ h ... 

down to x,_ 7 • It's very hard to think of doing anything else but storing them in an 
array, a sequence of consecutive storage locations. The required weighted summation, 

Yt = ao + alxt-l + azx,_z + · · · + an-lXt-(n-ll (9.1) 

can then be computed conveniently in a simple loop. 
The interesting question is what happens when we want to move ahead and find 

the output at time t + I. Figure 9.1 shows the most obvious thing to do. Just move 
everything down one slot, making room for the newly arrived input sample, and 
throwing away the oldest stored sample, which will never be needed again. The prob­
lem with this solution is that we move every piece of data every time we compute a 
new output sample. This might not seem so bad for our example of length eight, but 
filter lengths ten times that are more common. 

new sample 

Fig. 9.1 Updating our array of present and past input samples for feedfor­
ward filtering by moving everything one place. Not so smart. 

Moving all the data every time a new point arrives is obviously a bad idea, and the 
way around the problem is to change what we regard as the beginning of the array 



§9 A programming consideration 259 

instead of moving everything. In computer science terms, we use a pointer to tell us 
the location of the present sample, x 1• The past samples are below that point in the 
array, and use up all of the remaining space, wrapping around when we get to the end 
of the array. (Recall that the time and frequency domains of the OFf are circular 
arrays. This idea should be very familiar by now; if you're at all unsure of it, reread 
the beginning of Chapter 8.) 

For example, suppose we are in the situation where we regard the beginning of the 
array as being in position 2. Then the present sample, x 1, is in position 2; x 1 _ 1 is in 
position I; and x 1 _ 2 is in position 0. To get x 1 _ 3 , we need to wrap around to position 
7, and work our way down from there, finally getting to x 1 _ 1 in position 3. 

Figure 9.2 shows the same array as Fig. 9.1 but in circular form. On the left we 
see what happens when a new sample arrives, after we've computed the tth output 
value. The place marked now holds the most recent input sample. The value x 1_ 7 

will never be needed again, so its place is the natural place - in fact, the only place 
- to put the new sample value. If we next just add one to now, so that it points to the 
newly arrived sample, we're all set to compute the next output value, as shown on the 
right. What was x 1 is now x1 _~o and so on. We've had to change only one element in 
the array. 

new sample 

Fig. 9.2 Updating our array of input samples by changing where we start. 
The circular array makes it unnecessary to move the data. The array posi­
tions are numbered so that they increase in the clockwise direction. 

The steps I've just described are very easy to translate into code. Suppose the filter 
length is L and the present and past input samples are stored in array [ i], where i 
ranges from 0 to L -1. Then the following piece of code does the trick: 

now = now + 1; 
if ( now > L-1 ) now = now - L; 
array[now] = new_sample; 

At a given time t, the filtering operation indexes through every element of the array, 
wrapping around as it did above for the example of a length-S filter. 



260 

Notes 

Chapter 12 Designing Feedforward Filters 

So the circular array gives us an efficient way to program the filters that linear pro­
gramming produces from a design program like METEOR. You now know how to go 
from specifications in the frequency domain to a set of coefficients for a feedforward 
filter to a computer program that actually implements the filter. This is what I meant 
when I claimed at the beginning of the chapter that the feedforward design problem is 
essentially solved, at least as far as our everyday needs are concerned. In the next 
chapter we'll take a look at the analogous process for feedback filters. 

The write-up of METEOR has already been referenced at the end of Chapter 4. 
There's no magic to the way it finds the shortest-length filter that satisfies given 
specifications. It simply uses binary search, and repeatedly looks for solutions to linear 
programs. For example, it may start with a given range of filter lengths from I to 127. 
METEOR first tries the midpoint, or, more precisely, an odd length closest to the mid­
point, say 63. If there is a filter of length 63 that satisfies the constraints, it restricts 
the range between I and 63; if not, it restricts the range between 65 and 127. It then 
repeats the process until it finds two successive odd lengths, with the filter feasible for 
the higher of the two and infeasible for the lower. For example, if those two lengths 
tum out to be 29 and 31, 31 is the shortest length that satisfies the constraints. 

Binary search is also used to find the best band edge, as in the window design 
example in Section 8, where we pushed a band edge to the left as far as possible. 
Binary search takes a number of trials proportional to the logarithm of the initial 
range, and is just like the divide-and-conquer strategy described in Chapter 8 for the 
FFT and sorting. A good idea like successive binary subdivision goes a long way. 
Keep it in mind as you go through life. 

Counting ripples and worrying about when there are m + I and when there are 
m + 2 may seem pointless. Actually, it turns out that knowing the number of ripples in 
an optimal design response is the key to finding the very efficient design algorithm of 
Parks and McClellan (also mentioned in the Notes to Chapter 4). 

The closed-form windows called Dolph-Chebyshev were described in 

H. D. Helms, "Nonrecursive Digital Filters: Design Methods for Achiev­
ing Specifications on Frequency Response," IEEE Trans. Audio & Elec­
troacoustics, vol. AU-16, no. 3, pp. 336-342, Sept. 1968. 

and Dolph's paper is 

C. L. Dolph, "A Current Distribution for Broadside Arrays which Optim­
izes the Relationship Between Beam Width and Side-Lobe Level," Proc. 
IRE, vol. 35, pp. 335-348, June 1946. 

The simplex algorithm for solving linear programming, which is used by 
METEOR, was actually invented by George Dantzig in 1947, the year after Dolph's 
paper appeared. Computers that were fast enough to solve linear programming prob­
lems like the ones in this chapter were not commonly available for another 30 years 
or so. 



Problems 

Problems 261 

Kaiser gave his formula for estimating the required length of feedforward filters in 

J. F. Kaiser, "Nonrecursive Digital Filter Design using the I 0 -SINH Win-
dow Function," Proc. I974 IEEE Int. Symp. on Circuits and Systems, pp. 
20-23, April 1974. (Reprinted in Selected Papers in Digital Signal Pro­
cessing II, Digital Signal Processing Committee of the IEEE ASSP 
Society (eds.), IEEE Press, New York, N.Y., 1975. 

The title of the paper refers to a method for designing feedforward filters using a win­
dowed version of the Fourier series for the frequency response. After all, as Eq. 2.9 
shows, the frequency response of a feedforward filter is a partial Fourier series. Since 
a finite number of terms is used, the actual response ripples a lot, so the coefficients 
should be windowed. This approach doesn't give answers that are optimal - in the 
sense that iterative methods like METEOR do - but the algorithm is easy to under­
stand, and fast to code and run. The "I0 -SINH" refers to a particularly useful class of 
windows, now called Kaiser windows. 

Notice that what I call feedforward filters were then called "nonrecursive." 
Today, they're usually called "FIR" filters, as mentioned in the Notes to Chapters 4 
and5. 

Good sources for more information about digital filter design in general are the 
handbook 

and 

S. K. Mitra and J. F. Kaiser (eds.), Handbook for Digital Signal Process­
ing, John Wiley, New York, N.Y., 1993, 

T. W. Parks and C. S. Burrus, Digital Filter Design, John Wiley & Sons, 
New York, N.Y., 1987, 

as well as the following two standard texts: 

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, 
Prentice-Hall, Englewood Cliffs, N.J., 1975. 

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Pro­
cessing, Prentice-Hall, Englewood Cliffs, N.J., 1975. 

1. For some problems it's possible to prove that iterative techniques are absolutely 
necessary. Finding the roots of polynomials is one such example. For what degree 
polynomials is there no closed-form solution? If you don't happen to know the 
answer, look it up. Proving this was one of the great achievements of humankind. 

2. Work out the form of the frequency response analogous to Eq. 2.9 when the feed­
forward filter length is even. 



262 Chapter 12 Designing Feedforward Filters 

3. When is the frequency response of a feedforward filter a sine instead of a cosine 
series? 

4. What does the symmetry in the frequency response for the example in Fig. 5.1 
imply about the filter coefficients? 

5. Formulate a heuristic argument that shows that the optimal feedforward filter design 
is equiripple, using geometry like that shown in Fig. 4.1. 

6. For the purposes of the length-estimation formula in Eq. 6.2, the passband ripple in 
dB is 201og 10 o, where o is the deviation from nominal specification. Sometimes the 
passband ripple is expressed in dB by 201og 10 [(I +o)/(1-o)]. Why? 

7. Count the number of points at which the frequency response ties for distance from 
the constraints in the half-band example in Fig. 5.1. These are all counted as ripples. 
Don't forget to count the edges of the bands- the frequency response does just hit 
the maximum deviation at both edges of both the passband and stopband. I stated at 
the end of Section 5 that the number of ripples is always one or two more than the 
number of free coefficients, m. Does this example satisfy my claim? Which is it in this 
case, m + 1 or m +2? 

8. Why are the bottom edges of the dB plots like Fig. 5.2 often ragged? What would 
you do to make them uniform? 

9. Suppose we've decided on a set of specifications for a feedforward filter design. For 
each odd filter length n, there either is or isn't a set of coefficients that result in a feasi­
ble design. We can think of this as defining, for the particular specifications, a func­
tion F(n) that takes on the value "feasible" or "infeasible" for each odd integer 
value of the variable n. What property of the function F(n) ensures that binary search 
always successfully finds the smallest odd value of n for which there is a feasible 
filter? 

10. Write code that actually does feedforward filtering using the circular array dis­
cussed in Section 9. How should it be initialized? 

11. The coefficients of the feedforward filters discussed in this chapter are symmetri­
cal about their center. Explain how to take advantage of this to almost halve the 
number of multiplications needed to do the filtering. Rewrite the code in the previous 
problem to achieve this. 



CHAPTER 13 
Designing 

Feedback Filters 

1 Why the general problem is difficult 

Simplex for linear programming is an iterative optimization algorithm, and as we saw 
in the previous chapter, it works very well for designing quite arbitrary feedforward 
filters. Why doesn't the same approach work for feedback filters? The answer is sim­
ple: the corresponding design problems for feedback filters are not linear. In fact 
they're very nonlinear, which means trouble for iterative numerical methods. That's 
why we'll be content with closed-form designs for the commonly used feedback filters 
-lowpass, highpass, and bandpass. Fortunately, these cover most important applica­
tions. 

To get a little more insight into what the difficulty is, consider first the real-valued 
frequency response of a centered linear-phase feedforward filter like the ones we 
designed in Chapter 12: 

H(ro) = c 0 + c 1cosro + c 2 cos(2ro) + · · · + cmcos(mro) (1.1) 

(Remember that we're using symmetric-coefficient filters, so that the frequency 
response without the linear-phase factor is always a real number.) METEOR deter­
mines the best choices for the coefficients by adjusting them so that this response best 
approximates a desired response. It's important that the response changes in a reason­
ableA way when the coefficients are varied. If changing a coefficient has a weird effect 
on H(ro), it's going to be hard to find optimal filters. 

The important point is that if ~y one coefficient, say c ;. is varied, and all the oth­
ers are held fixed, the change in H ( ro) is proportional to c;. In other words, the fre­
quency response of a feedforward filter is a linear function of each coefficient. 



264 Chapter 13 Designing Feedback Filters 

By way of contrast, the transfer function of a feedback filter is of the form 

ao 
:H(z) = 1 + b1 z- 1 + b2z-2 + · · · + bkz-k 

(1.2) 

and the magnitude of the frequency response is the magnitude of this when z = ej"'. 

We see immediately that we're in for trouble when we start moving around the 
denominator coefficients to achieve an optimal design. The frequency response 
depends on the coefficients b; in a much more complicated way than in the feedfor­
ward case. For example, there are sets of coefficients that cause the frequency 
response to be infinite at some points, which is never the case for feedforward filters. 
Even worse, if the coefficients are such that there's a pole outside the unit circle, the 
filter will be unstable and useless. 

So optimization algorithms for feedforward filters see gently rolling plains. But the 
landscape for feedback filters is terrifying, riddled with spires and crannies. It's easy 
to believe that the general feedback filter design problem, with twenty or thirty 
coefficients to optimize simultaneously, can be very nasty. 

2 The Butterworth frequency response 

Having given up on the idea of a general design program (but see the Notes), I'm now 
going to derive a very useful class of closed-form feedback filters from the ground up. 
These will tum out to be the Butterworth filters, the simplest kind of closed-form 
filters. Other, more complicated filters are designed using exactly the same ideas. 

Let's start with the problem of designing a lowpass digital filter. What we're after 
is a transfer function that has both zeros and poles, a ratio of polynomials in the fre­
quency variable z. At zero frequency, where z = 1, we want the transfer function to 
be, say, one; and at the Nyquist frequency, where z = -1, we want the transfer func­
tion to be zero. Furthermore, we want the transition from one (in the passband) to zero 
(in the stopband) to be as abrupt as possible, for a given number of terms in the 
numerator and denominator. 

If we play around with the very simplest ratios of polynomials, we find that the 
function 

:H(z) 
z-1 +--
z+1 

(2.1) 

seems to satisfy the requirements. Just check: When z = I, the second term in the 
denominator is zero, so :H( 1 ) = I. When z = - I, that term is infinite and is in the 
denominator, so :H(- 1) = 0. This is not a totally crazy Iowpass filter. In fact, it actu­
ally turns out to be a feedforward filter, and we've seen it before (see Problem 2). 
There's a problem though, because the (z -I )/(z +I) term in the denominator takes 
on complex values as z travels around the frequency circle. This makes it difficult to 
control the magnitude of the frequency response, which is our ultimate aim. But 
we've only just begun, and we can do a lot better. 



§2 The Butterworth frequency response 265 

As I've just mentioned, we're really interested in controlling the magnitude of 
:H(z) when z is on the unit circle, I H(ro) 1. To do this, we'll use a trick that is useful in 
other contexts as well. Suppose you start with any real function of the complex fre­
quency variable z, say F(z). By a "real function" I mean that there are nojs explicitly 
in F's definition, so that when z is real, F(z) is also real. Consider the product 
F(z) F(z- 1 ). This new function has some very interesting properties. First, it's sym­
metric in z and z- 1, meaning that replacing z by z- 1 has no effect at all. Thus, if it has 
a pole or zero at some point z = p 0 , it must also have a corresponding pole or zero at 
the reciprocal point p0 1 • This implies that every pole or zero inside the unit circle has 
a corresponding image outside the unit circle. 

Next, consider the values of F(z) F(z- 1 ) when z is on the frequency circle, 
z = eiw. The values of F(e-i.,) are the complex conjugates of the values of F(ei.,), 
simply because j is everywhere replaced by - j. (Remember that F is a real function.) 
Therefore, on the frequency circle, F(z) F(z- 1) is equal to the squared magnitude of 
F(z), and is real and non-negative. 

This property is just what we need to control the behavior of the frequency 
response :H(z) in Eq. 2.1. Let our function F(z) be the term (z- I )/(z +I) in the 
denominator of that equation, and rewrite :H(z) as 

!Hi( ) - I 
z - I + F(z) 

(2.2) 

If we now replace F(z) by F(z) F(z- 1 ), which is real and non-negative for all fre­
quencies, the new denominator will be real and will go smoothly from one to infinity 
as the frequency increases from zero to the Nyquist frequency. I'm therefore propos­
ing that we use the function 

I + F(z) F(z- 1 ) 
(2.3) 

An even better idea is to make the transition from one to infinity faster by raising 
the real product F(z) F(z- 1) to a power, resulting in the function 

(2.4) 

This does have precisely the effect of making the transition of the denominator from 
one to infinity more abrupt, because raising something to the Nth power makes it 
smaller when it's smaller than one, and larger when it's larger than one. We'll see 
below that our final result will be a feedback filter with N poles. The larger N is, the 
sharper the cutoff. 

Except for one detail, this, finally, is the transfer function of a Butterworth filter. 
The problem that remains is that the transfer function has poles outside the unit circle, 
and is therefore unstable. As it stands, the corresponding filter is unusable. To see 
why, observe that Eq. 2.4 is symmetric in z and z- 1• By the same reasoning as above, 
each pole inside the unit circle has a corresponding pole outside. The solution to this 



266 Chapter 13 Designing Feedback Filters 

problem is to use only the poles inside the unit circle. We'll also use only the zeros 
inside the unit circle, for reasons you don't have to worry about right now (see Prob­
lem 3). 

To get the final, stable transfer function, collect all the factors associated with 
poles and zeros of the function in Eq. 2.4 that are inside the unit circle, multiply them 
together, and call the result !B(z). By symmetry, the rest of the transfer function must 
be !B(z- 1 ), and we can rewrite Eq. 2.4 as 

!B(z) !B(z- 1 ) = ----=-----
1 + [F(z)F(z- 1 )]N 

(2.5) 

The function !B(z) is then the desired transfer function, and is stable because all of its 
poles are inside the unit circle. 

We can now, at last, enjoy the fruits of our work, and take a look at the frequency 
response of these famous and useful filters. Notice that evaluating Eq. 2.5 on the 
frequency circle actually results in the squared magnitude of the frequency response 
of !B(z), as we discussed above when we formed F(z) F(z- 1 ). The second term in 
the denominator can be evaluated easily enough if we remember that 
F(z) = (z-1)/(z+l)andletz = ei"': 

This should be a familiar situation. Multiply the top and bottom by e-illll2, getting 

Substituting this in Eq. 2.5 then yields the squared magnitude 

IB(ro)l 2 = ---::1--
1 + tan2N (ro/2) 

(2.6) 

(2.7) 

(2.8) 

This has just the properties we've been aiming for. When ro = 0, tan(ro/2) is zero, 
and the frequency response is one. When ro = 1t radians per sample (the Nyquist fre­
quency), tan(ro/2) is infinity, and the frequency response is zero. Figure 2.1 shows the 
entire frequency response for N = 4, 8, and 16, and as you can see, these are quite 
respectable half-band filters. In Problem 5 you'll see that it's easy to determine how 
high a value of N is required to meet certain specifications. 

The frequency at which the cutoff occurs is exactly the frequency at which the 
tangent in the denominator of Eq. 2.8 is one; for lower frequencies that term becomes 
smaller, and for larger frequencies it becomes larger. That frequency is, of course, 
ro = x/2 radians per sample, half the Nyquist frequency, so in fact these Butterworth 
filters are all approximations to half-band filters. Later in this chapter we'll see how to 
shift the cutoff frequency. 



§3 The Butterworth poles and zeros 

. . . . 
0 .;.:-----;-----.;...,~.,,.·:·············~······················7······················~ .. : :::::- ~~: ~ 

\\ ·········· N=16 : ' . : . . 
: . : . . . 
: ' : 

-20 .; ....................... ; ....................... ; ................ \ .... • .. ; ....... ·············-=·······················-= 
' : : : '! : : 

; = = \ r·.... . . 
:: . 
:: " :: . 

-40 i·······················;······················+····················\}······\·:············ ······················j 
' ' ' ' ' ' 

. : : ... . . : . 
-60 .,j • .,,,.,,,,"''"'"''"'''W''i'•'"''''"''"'"'¥'1'"''i'I'W''"'"''W'I'W''"'"'.;'•''•••••••..,••·~·"''';.'"'"''"'' "''"'"''W'I'i 

0 0.1 0.2 0.3 0.4 0.5 

frequency, in fractions of sampling rate 

Fig. 2.1 The frequency response of the Butterworth filters of order 4, 8, 
and 16. Note the dB scale. 

3 The Butterworth poles and zeros 

267 

We now have the Butterworth filter frequency response. In this section we're going to 
determine where its poles and zeros are; then we'll know its transfer function com­
pletely and be able to implement it. 

Go back to Eq. 2.5: 

!B(z) !B(z- 1) = 
I + [F(z)F(z- 1 )]N 

(3.1) 

and recall that F(z) = (z- I )/(z +I). It's easy to see that F(z- 1) = - F(z}, so we 
can rewrite this as 

!B(z) !B(z-1) = I 2 N 
I + ( -F ) 

(3.2) 

We can now find the poles in terms of the function F; the rest will be easy. The poles 
occur where the denominator is zero, and so are determined by the equation 

(3.3) 

Multiplying by (-I )Nand rearranging puts this in a more familiar form: 

(3.4) 



268 Chapter 13 Designing Feedback Filters 

Thus, the poles occur in the complex F-plane at the (2N)th roots of (-I )N+ 1, which 
are equally spaced around the unit circle, at angular increments of 27t/(2N) radians. 
Note that the point on the unit circle at 12 o'clock, the point F = j, can never be a 
solution of this equation, because the left-hand side would be (j)2N = (-I )N, while 
the right-hand side is the negative of that. It turns out that the poles are placed sym­
metrically with respect to the imaginary axis in the F-plane, and the poles closest to 
the imaginary axis make angles of ±27t/( 4N) radians from it. We'll number the poles 
counterclockwise, starting with the northernmost one in the left-hand F-plane (at II 
o'clock), so that the 2Npoles can be written explicitly as 

9. = ~ + ( 2 i +I )21t ~ . 0 I 2N I ' 2 4N , or ' = , , ... , -

(See Fig. 3.1 and Problem 6.) 

2 
,............x 

"'3 X 

I 

I F-plane 

Fig. 3.1 The eight poles in the F-plane when developing the four-pole 
half-band Butterworth filter. The northernmost poles lie at angles ±27t/(4N) 
radians = 22.5° from the imaginary axis. The poles are numbered in ·accor­
dance with Eq. 3.5. 

(3.5) 

Next, we're going to find the location of the poles in the z-plane. This is no prob­
lem, because we know F in terms of z : 

F = z- I 
z + I 

and we can solve this for z in terms ofF: 

I + F z= ---
1-F 

(3.6) 

(3.7) 

We've just seen that the poles of F are on the unit circle in the F-plane, so let 
F = ejo;. Then we have almost the same situation as we did in Eq. 2.6; the result this 
time is that 



z = 

§3 The Butterworth poles and zeros 

j = jpi 
tan(Oi/2) 

269 

(3.8) 

So we see that the poles in the z-plane lie on the imaginary axis. This makes perfect 
sense because we're dealing with a half-band filter- the cutoff frequency is exactly 
halfway between zero and the Nyquist frequency, so the poles lie on the axis of sym­
metry separating the points z = 0 and z = 1t radians per sample. From now on we'll 
use the shorthand notation Pi = 1/tan(0/2) for the pole locations on the imaginary 
z-axis. 

Take a moment to observe the very convenient properties of the transformation 
represented by the function F(z). In the previous section we evaluated the frequency 
response of the Butterworth filters, and saw in Eq. 2.7 that when z = ejw, F(z) was 
purely imaginary. Now we see that the opposite is also true: when F is on the unit cir­
cle in the F-plane, z is purely imaginary. That is, the unit circle in each plane is the 
image of the imaginary axis in the other. 

As explained in the previous section, we're going to use only those poles of 
!B(z) !B(z- 1) that lie inside the unit circle in the z-plane, the "stable" poles. We now 
know exactly where those poles occur, so it's a simple matter to select the stable ones. 
Equation 3.8 tells us that for each pole in the F-plane at the point Oi on the unit circle, 
there is a pole in the z-plane at the point Pi = 1/tan(0/2) on the imaginary axis. 
Therefore the stable poles in the z-plane are precisely those for which the tangent is 
greater than one in magnitude, and these correspond to the angles x/2 < Oi < 3x/2. 
Thus, the poles in the left-half F-plane are the ones that show up inside the unit circle 
in the z-plane, the first N of them by the numbering scheme in Eq. 3.5. 

We now know everything we need to know to write the complete, stable transfer 
function of the half-band Butterworth filter with N poles in terms of its poles and 
zeros. Replacing F(z) explicitly by (z- I )/(z +I), Eq. 3.1 becomes 

[-<:::>'f 
!B(z) !B(z- 1 ) = (3.9) 

1 + 

Multiplying the top and bottom by (z +I )2N shows that there are 2N zeros at the point 
z = - I, half of which will show up in !B(z). 

The stable poles are in the left-half F-plane, and are therefore indexed in Eq. 3.5 
by i = 0, 1, ... , N -1. It's now convenient to assume that N is even (I'll leave the 
case when N is odd for Problem 7). In the N-even case there is no single, leftover pole 
at z = - I, and the N poles occur in complex pairs, so that we need to worry only 
about the first N/2. Each pole atjpi has a complex conjugate partner, and those two 
poles combine to form a factor z2 + pf. The transfer function is therefore 

!B(z) = A(z+1)N 
(z 2 + pfi) ... (z 2 + P~l2-l) 

(3.10) 

The constant factor A is there just to control the overall level of the output, and is 
usually called the gain constant. It's arbitrary, but it's often convenient to set the gain 



270 Chapter 13 Designing Feedback Filters 

to unity at zero frequency, in which case we can compute A from the condition 
1J( 1) = I (see Problem 4). 

We have the transfer function of the half-band Butterworth filter with N poles, and 
furthermore, we have factored it in terms of known poles and zeros. We choose the 
number of poles N large enough to get the desired passband flatness, sharpness of cut­
off, and stopband rejection. This is easy because we have a simple formula for the 
magnitude of the frequency response (see Eq. 2.8 and Problem 5). 

But what if we want the cutoff frequency at some other point? What if we want a 
highpass filter? We'll see in the next two sections that these questions have simple 
answers, now that we've derived the basic prototype transfer function. 

4 More general specifications 

Suppose now that we want the cutoff frequency of a Butterworth filter to be roc radi­
ans per sample instead of Tt/2 radians per sample. We can make this happen by going 
back to the squared-magnitude frequency response in Eq. 2.8: 

(4.1) 

At the cutoff frequency ro = Tt/2 radians per sample, the second term in the denomi­
nator has the value one, and the squared-magnitude frequency response always has the 
value l/2 at that point, no matter what the value of N is. All we need to do to shift the 
cutoff frequency to roc is to make that term have the value one at ro = roc instead of at 
ro = Tt/2. That's easy: just replace tan(ro/2) by tan(ro/2)/tan(roc/2): 

I 
IB(ro) 12 = ---------=-2-:-:-N 

I + [tan( ro/2 )/tan( roc/2)] 
(4.2) 

To make the derivation go through in exactly the same way as before, simply 
change the definition of F(z) in Eq. 2.5 to 

1 .z-1 
F(z) = 

tan( roc/2) z + 1 
(4.3) 

Equation 3.2 remains exactly the same: 

(4.4) 

and the poles 9; in the F-plane are unchanged. 
We can now find the poles in the z-plane as before, solving Eq. 4.3 for z in terms 

ofF: 

z = 
+ F·tan(roJ2) 

1 - F·tan(roc/2) 
(4.5) 

Just to check, when roc = Tt/2 everything we've just done reduces to the half-band 



§4 More general specifications 271 

case, as it should. We know the values ofF at the poles- they're on the unit circle at 
the angles 9; in Eq. 3.5, so the poles in the z-plane now occur at the 2N points 

Z; = for i = 0, I, ... , 2N -I (4.6) 

Figure 4.1 shows the poles in the z-plane when the cutoff frequency is 2x/IO radi­
ans per sample, one-tenth the sampling rate. The corresponding frequency response is 
shown in Fig. 4.2. The poles have now moved off the imaginary axis, where they 
were for the half-band case, and have become squeezed toward the zero-frequency 
point, z = l. As we might expect, the lower the cutoff frequency, the more the poles 
will move toward the zero-frequency point. 

Fig. 4.1 The poles and zeros in the z-plane for a 16-pole lowpass Butter­
worth filter with cutoff frequency at one-tenth the sampling rate. The circle 
is, of course, the unit circle. The zero shown at z = -1 actually represents 
16 zeros at the same spot, as indicated in Eq. 4.7. 

The zeros, on the other hand, stay in the same place, z = - I, for the same reason 
as before: The factor (z +I )2N shows up in the numerator of 1J(z) 1J(z- 1) when it is 
cleared of fractions, as in Eqs. 3.9 and 3.10. Half of those zeros belong to 1J(z), and 
the other half to 1J(z- 1 ). 

The poles in the z-plane are now no longer necessarily on the imaginary axis, so 
we write the transfer function in the general form 

1J(z) = A(z+I)N 
(z- zo) ··· (z- ZN-1> 

(4.7) 

As before, the gain factor A is usually chosen to make the gain unity at zero fre­
quency. 



272 Chapter 13 Designing Feedback Filters 

ID , 

I 
g .. 
I .. , 
:e 
c:: 

f 

0 -:-;----..:'······················t······················t······················j·······················j 
! . ~ ~ 
.. : : . . 
c - . • : : 

-20 ~·······················~·· ····················~·······················~······················~·······················~ 
( : : : : 
i ~ ~ ~ ~ 
~ . : : : : 

-40 ~--·····················?······ ················~·······················?·······················~·······················~ 
~ ~ ~ ~ ~ ~ . : : : : . 
c : : : : 

-60 .i ....................... ; ...................... ; ....................... ; ...................... i ....................... i 
( : : : : : 
i ~ : ~ ~ ~ . . . . . " : : : : 

-80 1 ....................... ~ ..................... ; ....................... ~ ...................... ~ ...................... ~ 
- . . : 

! - . 
-100 ~ ...... , . ..,.,., .. , .•. ..,.~ ........ ~., .•. ._..., ••r•••w•••••-.•••"''"''"''f'''"''"'"'"''"'"''"'''T'''"' .. '''"''"'"'..,'''I 

0 0.1 0.2 0.3 0.4 0.5 

frequency, in fractions of sampling rate 

Fig. 4.2 The frequency response of the 16-pole Butterworth filter whose 
poles and zeros are shown in Fig. 4.1. The cutoff frequency is now one­
tenth the sampling frequency. 

5 A lowpass/highpass flip 

We just derived the Butterworth Iowpass filter in two steps. First, we found a very 
special prototype - the half-band filter in Eq. 3. 10. Then we transformed it to get an 
arbitrary cutoff frequency. The transformation step was simple: to move the cutoff 
frequency from half the Nyquist to roc, we just divided the function F by the constant 
factor tan(roJ2), as in Eq. 4.3. 

This two-step process is an example of the strategy commonly used for designing 
closed-form feedback filters. We start with special prototypes and transform them to 
more generally useful forms. I'll illustrate the idea again with a very useful trick. 

Return to the question of designing a highpass Butterworth filter. Think for a 
moment about what we need to do to convert a lowpass filter into a highpass filter. 
Somehow, we ought to interchange the high and low frequencies. We'd like to make 
zero frequency correspond to the highest possible frequency, the Nyquist, and vice 
versa. We'd also like the frequencies between the two to be in reverse order, so that 
lower frequencies correspond to higher. 

What does this mean in terms of the frequency variable z? Well, the zero and 
Nyquist frequencies correspond to the points z = l and z = -I, respectively. The 
simplest thing in the world would be to replace z by - z in the transfer function -
which would at least ensure that the lowest and highest frequencies are interchanged. 
That sounds too simple to work, but it does the job beautifully. Figure 5.1 shows why. 
Geometrically, if z is on the unit circle, -z is at the point opposite it, 180° around the 
circle (because both the real and imaginary parts are negated). As z rotates counter­
clockwise around the circle from 0 to 1t radians, - z rotates in the same direction, from 



§5 A lowpass/highpass flip 273 

1t to 27t radians. But those points also represent the negative frequencies from -7t to 0, 
which for real signals are equivalent to the frequencies from 1t down to 0. 

z-plane 

z 

-z 

Fig. 5.1 Replacing z by -z interchanges low and high frequencies. 

We can also look at the transformation algebraically. Multiplying z by- I is the 
same as multiplying by ej", so if we multiply a value of z on the unit circle at fre­
quency co by - I, we get 

(5.I) 

which is just another way of showing that 1t is added to each frequency. In a nutshell, 
we're just rotating the frequency circle I80°. 

It's obvious, but worth emphasizing, that the transformation also multiplies the 
pole and zero locations by - I. Thus, the highpass version of the N-pole Butterworth 
filter has N zeros at z = I instead of at z = - I. Figure 5.2 illustrates the fact that the 
transformation shifts the Butterworth frequency response by the Nyquist frequency. 

-sampling -Nyquist 0 Nyquist sampling 

(I) 

(I) 

Fig. 5.2 Replacing z by -z in a transfer function shifts the frequency 
response by the Nyquist frequency, and thereby converts a lowpass filter, 
shown at the top, to a highpass filter, on the bottom. 

We see that we can get highpass filters from a prototype lowpass filter. What about 
bandpass or bandstop designs? The same kind of trick works, except that the transfor­
mations are more complicated. You can learn more about it in more advanced books. 



274 Chapter 13 Designing Feedback Filters 

See, for example, the handbook edited by Mitra and Kaiser, or the book by Parks and 
Burrus, both cited in the Notes. 

6 Connection with analog filters 

The way I've just derived the Butterworth filter reverses history. It's as if I claimed 
that vacuum tubes were developed because people first had transistors, and then 
wanted gigantic versions that glowed in the dark. 

The truth is that Butterworth filters were well known long before anyone dreamed 
of filtering with a digital computer. They were derived for analog filters. When peo­
ple started thinking about digital filters, it was a natural idea to make use of the work 
already done, and to use the analog transfer functions to derive ones for digital filters. 

Historically, it went like this. For analog filters, the lowest frequency is zero, as in 
the digital case; but there is no finite highest frequency. In other words, the range of 
frequencies is zero to infinity. We've seen that many times in connection with the 
Fourier transform (see Section I of Chapter 9, for example). To avoid confusion, from 
now on we'll use the symbol Q for the analog frequency variable. (Up to his point 
we've been using the same ro for both analog and digital frequency, because there was 
no chance of confusing the two.) 

We can now use the same reasoning as before to guess a good magnitude-squared 
frequency response for a lowpass filter. We want the frequency response to be one 
when Q = 0, and zero when Q = oo. The form is even simpler than in the digital case; 
just try 

+ g2N 
(6.1) 

This has exactly the kind of Iowpass behavior we want as Q goes from zero to infinity. 
It has a cutoff frequency at Q = 1. 

I now need to go back and reveal something I kept hidden from you in earlier dis­
cussions of the Fourier transform. If you review Table 1.1 in Chapter II, for example, 
you'll see that I referred freely to the frequency variable in the analog case (which we 
now call Q), but I never introduced the complex variable in the analog situation that is 
analogous to z. The frequency domain in the discrete-time case corresponds to the unit 
circle, and that (I)-circle lives in the complex z-plane. Well, the corresponding axis in 
the analog case is the Q-axis, and that lives as the imaginary axis in the complex plane 
called the s-plane. The point s = jQ corresponds to the frequency of a continuous­
time phasor, ejnr. The transform that corresponds to the z-transform is therefore the 
Fourier transform 

X(Q) = f_~ x(t)e-jntdt (6.2) 

withjQ replaced by the complex variables: 

X(s) = f_~ x(t)e- 51dt (6.3) 



§6 Connection with analog filters 275 

Thus, the usual frequency content X(il) is equal to X(s) when s = jn, which is why 
we distinguish between X and X If you've taken electrical engineering courses, Eq. 
6.3 should be very familiar- it's called the Laplace transform.t 

As I've stressed all along, especially in Chapters 9 and II, the mechanics of the 
Fourier (and hence Laplace) transform are beautifully analogous to those of the z­
transform (although historians might say it is the other way around). As always, we 
can take advantage of the analogies to gain intuition. Most important to understand 
right now is that designers of analog filters can realize transfer functions that are ratios 
of polynomials in s, just as designers of feedback digital filters can realize transfer 
functions that are ratios of polynomials in z. Both kinds of filters are characterized by 
their poles and zeros. The only essential mathematical difference is in the frequency 
axes, the imaginary axis in the s-plane versus the unit circle in the z-plane. And this 
difference is reflected in the rest of those complex planes. The result is that analog 
filter poles must be in the left-half s-plane to correspond to the stable behavior of 
exponentially decaying time functions. 

Returning to the connection between analog and digital filter design, compare Eq. 
6.1 with Eq. 3.2: 

(6.4) 

The form is the same, and our function - F 2 corresponds to n2 , so F corresponds to 
jil. In other words, if we think of F as a complex variable - and we did when we 
found the poles of the Butterworth digital filter- then F corresponds perfectly to the 
Laplace variables. 

The real history, then, is that analog Butterworth filters were designed in 1930 (see 
the Notes) starting with the function 

(6.5) 

(which becomes Eq. 6.1 when s = jil) and the digital version was obtained about 30 
years later by substituting 

s = 
z+l 
z-1 

(6.6) 

(which is just our function F as in Eq. 3.6). 
The transformation in Eq. 6.6 is exactly what is needed to translate transfer func­

tions for analog filters to transfer functions for digital filters. To begin with, the unit 
circle in the z-plane corresponds to the imaginary axis in the s-plane. Furthermore, 

t There is a technical difference between the Laplace transform evaluated on the n-axis and the Fourier 
transform. The distinction is important in more advanced work. See A. Papoulis, The Fourier Integral and 
its Applications, McGraw-Hill, New York, N.Y., 1962. 



276 Chapter 13 Designing Feedback Filters 

the inside of the unit circle in the z-plane corresponds to the left-half s-plane. Digital 
filters with poles only inside the unit z-circle correspond under this transformation to 
analog filters with poles only in the left-half s-plane, so stable digital filters correspond 
to stable analog filters (see Fig. 6.1). The transformation that warps the Q-axis so that 
Q = I in the analog world corresponds tow = we in the digital world is easy enough 
to guess by analogy from Eqs. 4.3 and 4.5: 

s = ----·~ 
tan(roJ2) z+l 

and the inverse 
I + s ·tan( ro<./2) 

z = 
1-s·tan(wc/2) 

Fig. 6.1 Illustrating the transform s = (z-1)/(z+1) and its inverse z = 
(1+s)/(1-s). The key properties are the matching of unit w-circle in the z­
plane with the imaginary Q-axis in the s-plane, and the inside of the unit z­
circle with the left-half s-plane. The matching zero-frequency points are in­
dicated by black dots, and occur at z = 1 and s = 0. 

(6.7) 

This transformation is called a bilinear transformation, and allows us to convert 
any analog filter transfer function to a digital one and vice versa. Intuitively, it 
compresses the infinitely long Q-axis nonlinearly, and then very neatly wraps it once 
around thew-circle. The infinitely high analog frequency, which can be thought of as a 
point at infinity in the s-plane, is mapped to the point z = - I in the z-plane, the point 
corresponding to the Nyquist frequency. (Lets ~oo in Eq. 6.7.) The zero analog fre­
quency, at the origin s = 0 in the s-plane, is mapped to the point z = I. (Let s = 0 in 
Eq. 6.7.) The frequency response of the filter is squeezed or expanded like an accor­
dion, but the approximation to an ideallowpass or highpass shape is preserved. To see 
exactly how the two frequency axes are related, let s = jQ and z = ejw in Eq. 6.7, 
and repeat the standard maneuver used to get from Eq. 2.6 to 2.7, yielding: 

0 = tan(ro/2) 
tan( roJ2) 

(6.8) 

This is the mathematical expression of wrapping the w-circle to the 0-axis, with the 
point w = we corresponding to Q = I, the cutoff frequency of the filter response we 
started with in Eq. 6.1. 



§6 Connection with analog filters 277 

To summarize the properties of the bilinear transformation, 

s ~ z 
analog ~ digital 

imaginary axis ~ unit circle 
left-half plane ~ inside unit circle 

Q = OHz ~ ro = 0 radians per sample 
Q = oo Hz ~ ro = x radians per sample 

Here's a warning: The bilinear transformation relates the analog and digital 
worlds. But don't make the mistake of thinking that it corresponds in some way to the 
sampling process. It definitely doesn't (see Problem 12). 

The 1930s was the golden age of analog filter design, spurred on by the needs of 
the telephone company (note the singular). The 1960s was similarly the golden age of 
digital filter design (and other things), but the hard work was already done- because 
the transformation in Eq. 6.7 was figured out. The other important analog filters used 
as prototypes for digital filters are the Chebyshev and elliptic filters, which achieve 
optimal approximations to a desired frequency response in the same mini-max sense 
that METEOR does for feedforward filters. We saw an example of an elliptic filter in 
Section 8 of Chapter 5. The frequency response of another is shown in Fig. 6.2. 

: J>< ::::. ;~~ __ :;;,;·= I I ... -.•.•... 1 
: : : : : 

-20 .: ....................... : ...................... : ....................... : ...................... ;,. ...................... i 

! ~ ~ ~ ~ ~ 
-40 ~ ....................... ~ ...................... ~ ....................... ? ...................... ; ....................... ; 

! ~ ~ ~ ~ . 
-60 ~ ....................... ~ ..................... ~ ....................... ~ ...................... ~ ....................... ~ 

l ~ ~ ~ ~ ~ 
-80 ~ ....................... ~ .................... ) ....................... ~ ...................... ~ ...................... ; 

i ~ : ~ : 
-100 ~ ....................... =···· 00 ......... = ...................... ~..... ........ ····~·······················~ 

I ~ = ~ ~ 
-120 l"""""""""""'~""' ................................................ """""j"""""""""""'j 

i : : : 
-140 ~ ............ , .•. ~ ....... ~ .•. 'W' .......... ., •••••••• _.. ................... ., ..................... ;. ....................... . 

0 0.1 0.2 0.3 0.4 0.5 

frequency, in fractions of sampling rate 

Fig. 6.2 Frequency response of a typical elliptic lowpass filter, illustrating 
the minimax character of its approximation to the ideal response, in con­
trast to the flat character of the Butterworth filter. The design specifications 
were to achieve at least 80 dB rejection in a stopband from 0.12 to 0.5 
times the sampling rate, and rise no more than 0.2 dB above unity (which 
is 0 dB) in a passband from 0 to 0.1 times the sampling rate. The result is 
achieved with 10 poles and zeros. 



278 Chapter 13 Designing Feedback Filters 

Chebyshev and elliptic filters are designed the same way as Butterworth filters, 
except the expression ( -s2 ) 2N in the denominator of Eq. 6.5, the squared magnitude 
of the frequency response, is replaced by more complicated polynomials that have 
special properties. This is a subject for more advanced books. 

To summarize: We've derived the transfer function of the very useful Butterworth 
lowpass digital filter, seen how to move its cutoff frequency anywhere we want, and 
seen how to convert it to a highpass filter. We did it from scratch, but historically it 
was done by building on the earlier development of analog filters. 

7 Implementation 

The final step in designing any digital filter is deciding how it will be implemented -
actually put into action. Let's implement the Butterworth transfer function in Eq. 4.7, 
which is in terms of the poles z;, which in tum are given by Eq. 4.6. 

First we need to straighten out a small complication. The poles are complex 
numbers, and we want our digital filter update equations to use only real numbers. We 
really don't want to store and process digital signals as complex numbers in the inter­
mediate steps of filtering, because it would entail a lot of extra bookkeeping and 
require two memory locations for every sample. Fortunately, there's a simple way to 
put the transfer function in terms of real numbers. Complex poles occur in complex­
conjugate pairs; therefore, all we need to do is form a quadratic factor from each such 
pair. Just replace the factors representing the poles at z; and its conjugate z: by the 
factor 

(7.1) 

It's convenient to pair the real poles into quadratic factors as well, just so we can 
think of the whole transfer function as the product of such second-order factors, as 
follows: 

1J(z) = 
A(z + I )N 

(7.2) 

Remember that we're assuming N is even, just to make the notation simple. The 
assumption means that we have N/2 quadratic factors, and don't have to deal with the 
case when there is a single (real) pole left over. 

Having 1J(z) in factored form makes it easy to come up with a simple and effective 
way to implement the filter. First, rewrite the transfer function in Eq. 7.2 by multiply­
ing top and bottom by z-N, in order to put the zero and pole factors in terms of the 
delay operator z- 1 : 



§7 Implementation 279 

The real numbers c; and d; are easy to get in terms of the poles z;, as indicated in Eq. 
7 .I. By comparing coefficients, 

c; = - 2!l{eaf{z;} (7.4) 

and 

(7.5) 

Finally, write the transfer function as a chain of subfilters, each having two poles 
and two zeros (remember that we're assuming N is even) : 

(7.6) 

This form can be interpreted as a row of N/2 filters, the output of each filter feeding 
the next in line - in standard terminology a cascade of second-order sections. (See 
Fig. 7.1.) 

·1 -2 
1 + coz + d0z -1 -2 

1 + CN/2-1 Z + dN/2-1 Z 

Fig. 7.1 Cascade implementation of the half-band Butterworth filter. This 
is the case when the number of poles is even, so there are N/2 subfilters. 

We already know how to implement each second-order section. We could imple­
ment the numerator as two successive feedforward filters, each with transfer function 
I + z- 1, but instead we'll expand the numerator as follows: 

(7.7) 

That way each stage (say stage i) can be described by the one simple update equation: 

Yr = x, + 2xr-l + Xr-2 - C;Yr-l - d;Yr-2 (7.8) 

where x 1 and y 1 are the input and output signals of the ith stage. 
The cascade form using second-order sections works for any feedback filter, not 

just Butterworth filters, and is widely used and very practical. Just factor the numera­
tor and denominator of whatever transfer function you have, and assign pairs of poles 
and zeros to the sections. Each complex-conjugate pair of complex poles contributes a 
denominator of a section; and similarly for zeros in numerators. The real poles and 
zeros can be paired any way we want, although there is a subtle reason why some 
pairings and orderings of sections are better than others (see Problem II). 



280 

8 A trap 

Chapter 13 Designing Feedback Filters 

At some point in your life, you may be tempted to implement a feedback filter by 
using the coefficients of the denominator directly, instead of using the poles two at a 
time, as I just recommended. If you're given the transfer function 

ao + a,z- 1 + · · · + am-IZ-(m-ll 

I + b,z- 1 + · · · + bnz-n 
(8.1) 

why not implement it in the most straightforward way, using the following update 
equation 

Yr = aox, + a,x,_, + · · · + am-lXr-(m-1) 

- blYt-l - · · · - bnYt-n (8.2) 

where, as usual, x 1 and y 1 are the input and output signals? The answer may surprise 
you: Doing this can often lead to complete catastrophe; the filter may not work at all. 
The explanation was originally given by James Kaiser in 1965, and it was a key obser­
vation in the early stages of making digital filters work (see the Notes). 

I won't go through the mathematical details, but I'll sketch the basic idea. The 
main problem stems from the fact that when the bandwidth of a digital filter gets very 
narrow, the poles tend to cluster tightly in the z-plane. Look at Fig. 4.1, for example. 
There the cutoff frequency is one-tenth the sampling rate, and the poles have already 
moved off the imaginary axis (where they were when the cutoff was one-quarter the 
sampling rate) and are headed for the point z = I. As the bandwidth gets narrower 
and narrower the poles will collect very tightly around that point. Intuitively, if the 
frequency response has a very narrow passband near some frequency, the poles must 
be placed close to the spot on the frequency circle where all the action is. 

Now it's well known in numerical analysis that when the roots of a polynomial 
equation are clustered around a point, the positions of the roots themselves are 
extremely sensitive to tiny errors in the coefficients of the polynomial. Even in reason­
able digital filter designs, the pole positions can be so sensitive to perturbations in the 
denominator coefficients that the usual 32 or 64 bits used to store them are not enough 
to fix the poles where we want them with sufficient accuracy. In fact, they can easily 
go shooting off outside the unit circle, and the resulting digital filter will be unstable 
and worthless. 

9 Feedback versus feedforward 

Which should you use for a given filtering job, feedback or feedforward filters? I 
raised this question at the end of Chapter 5, and had a bit to say about it then. I'll add 
more now, but the general issue is complicated. 

Soon after design methods were developed for both kinds of filters, Rabiner et al. 
(see the Notes) carried out a detailed study using lowpass filtering as the representa­
tive task, and elliptic filters as the representative feedback design. The general 



Notes 

Notes 281 

conclusion was that if you count the number of arithmetic operations, elliptic filters 
are in many cases much more efficient than feedforward filters, in terms of operation 
count. Generally speaking, feedback filters give you more "bang for the buck" than 
feedforward filters. As we've seen, poles are a lot more influential in the complex 
plane than zeros. 

But there's more to the story than simply counting computer instructions. You 
may not be very concerned about how long it takes to carry out the filtering operation, 
within reason - it all depends on how much filtering you're planning to do. If raw 
efficiency is not important, feedforward filters have some real advantages. We learned 
in Chapter 5 that feedforward filters are easy to design with exactly linear phase, 
which amounts to having no phase distortion. And we saw in Chapter 12 that it's 
much easier to design feedforward filters with completely arbitrary magnitude 
response. 

A third important advantage of feedforward filters has to do with what are usually 
called finite wordlength effects - deviations from theoretical operation caused by the 
fact that arithmetic is carried out with a finite number of bits. These effects include 
roundoff error, as well as the problem of representing the filter coefficients themselves 
in finite computer words, which we encountered in Section 8. Generally speaking, 
feedforward filters are much better behaved in this department, because their transfer 
functions are linear in their coefficients and because they have no feedback. 

In this chapter we've just had time to touch on the basic ideas of designing 
closed-form feedback filters. Together with the feedforward filters you can design 
with programs like METEOR, they provide all you will need in many practical situa­
tions. 

We've now introduced the main ideas and tools of digital signal processing. You 
should be able to use the commonly available programs, like those for the FFf, filter 
design, and filtering, with good sense and understanding; and you should also be well 
equipped for more advanced study. We'll finish this book with a sampling of some 
applications that further illustrate these ideas, and that are also important in audio and 
computer music. 

The general design problem for feedback filters is difficult, but not impossible. Practi­
cal design packages today use iterative optimization algorithms, still similar in 
approach to the early, influential paper: 

A. G. Deczky, "Synthesis of Recursive Digital Filters Using the 
Minimum p-Error criterion," IEEE Trans. Audio and Electroacoustics, 
vol. AU-20, no. 4, pp. 257-263, October 1972. 

Butterworth achieved immortality with the following elegant six-page paper: 

S. Butterworth, "On the Theory of Filter Amplifiers," Wireless Engineer, 
vol. 7, pp. 536-541, 1930. 



282 Chapter 13 Designing Feedback Filters 

Not only did he think of putting the poles equally spaced on a circle in the s-plane (Eq. 
6.5), but he knew how to get them there with a soldering iron: 

''The writer has constructed filter units in which the resistances and 
inductances are wound round a cylinder of length 3 in. and diameter 
11f4 in., while the necessary condensers are contained within the core of 
the cylinder." 

The wonderful properties of the bilinear transformation have been well known to 
mathematicians and scientists for at least a couple hundred years. I used it to design 
digital filters and to relate the analog and digital worlds in my thesis, which of course I 
can't resist referencing: 

K. Steiglitz, ''The General Theory of Digital Filters with Applications to 
Spectral Analysis," Eng. Sc.D. Dissertation, New York University, New 
York, N.Y., May 1963. 

Around the same time, independently, just across the Hudson River, James Kaiser was 
having similar thoughts, and he describes and applies the idea in 

J. F. Kaiser, "Design Methods for Sampled Data Filters," Proc. First All­
erton Conf. on Circuit and System Theory, Urbana, Ill., pp. 221-236, 
Nov. 1963. 

The paper mentioned in Section 9 comparing feedforward (FIR) and feedback 
(IIR) filters is 

L. R. Rabiner, J. F. Kaiser, 0. Herrmann, and M. T. Dolan, "Some Com­
parisons Between FIR and IIR Digital Filters," Bell System Technical 
Journal, vol. 53, pp. 305-331, Feb. 1974. 

If you want a good snapshot of the way things looked at the beginning of the 
1970s, when theory and technology were coming together with explosive force, see 
the following collection of papers: 

L. R. Rabiner and C. M. Rader (eds.), Digital Signal Processing, IEEE 
Press, New York, N.Y., 1972. 

As in the case of feedforward filters, the following are rich sources for more infor-
mation and references about digital filter design: 

S. K. Mitra and J. F. Kaiser (eds.), Handbook for Digital Signal Process­
ing, John Wiley, New York, N.Y., 1993. 

T. W. Parks and C. S. Burrus, Digital Filter Design, John Wiley & Sons, 
New York, N.Y., 1987. 

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, 
Prentice-Hall, Englewood Cliffs, N.J., 1975. 

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Pro­
cessing, Prentice-Hall, Englewood Cliffs, N.J., 1975. 



Problems 

Problems 283 

1. Suppose we vary any one coefficient of a feedforward filter while keeping all the 
others constant, and we plot the maximum value of the magnitude frequency response. 
In general, what will the curve look like? Suppose we plot instead the maximum value 
of the error between the actual frequency response and some fixed, prespecified fre­
quency response. What will the general shape of the curve be then? 

2. Put the transfer function in Eq. 2.1 in a more familiar form, showing it really 
represents a feedforward filter. 

3. I said that when we split the function 1J(z) 1J(z- 1) in Eq. 2.5, we would choose the 
zeros and poles inside the unit circle to form 1J(z). Suppose that instead we choose 
some zeros outside the circle. What effect will that have on the resulting filter transfer 
function? 

4. Find explicit expressions for the gain constants A in Eqs. 3.10 and 4.7 in terms of 
the poles of those transfer functions. 

5. Suppose we want to design a half-band Butterworth filter with prespecified fre­
quency response value at a given right edge of the passband, say at ro = ro 1 ; and also 
a prespecified response value at a given left edge of the stopband, say at ro = ro 2 • 

Assume, of course, that ro 1 < ro 2• Derive the design equations that determine the 
choice of the order N. Hint: Use Eq. 2.8. 

6. Verify that the 2N poles in the F-plane when developing theN-pole Butterworth 
filter are as shown in Fig. 3.1 and Eq. 3.5. 

7. Revise the relevant equations in Sections 3 and 7, as well as Fig. 7 .I, for the case 
when N is odd. Where is the real pole in the half-band case? Where is it when the cut­
off frequency is roc? 

8. What changes should you make to the coefficients c; and d; in the transfer function 
in Eq. 7.6 to convert a lowpass Butterworth filter to highpass? 

9. We mentioned two ways to implement a feedback filter: the cascade form in Fig. 
7.1, and the expanded form in Eq. 8.2, called the direct form. Determine how many 
additions and multiplications are required for each. Which is more efficient in this 
respect? 

10. Butterworth filters are sometime called "maximally flat." Explain qualitatively, 
then verify mathematically. 

11. As mentioned in Section 7, some pairings and orderings of the sections in a cas­
cade implementation of a feedback filter may be better than others. Why? 

12. The bilinear transform can be used to relate the frequency transforms of digital 
and analog signals, by using X((z -I )/(z +I)) in place of the Laplace transform X(s), 
for example. As noted in Section 6, however, this transformation does not correspond 
to the sampling process. Find a specific counterexample to the notion, using the unit 
step signal. (Use the definition in Eq. 6.3 to find the Laplace transform X(s) of the unit 



284 Chapter 13 Designing Feedback Filters 

step signal.) How are the transforms of an analog signal and its sampled version actu­
ally related? 

13. Prove that the poles of the lowpass Butterworth filter with general cutoff fre­
quency, like the one used as an example in Figs. 4.1 and 4.2, lie on a circle in the z­
plane. 

14. Can you tell from the frequency response shown in Fig. 6.2 how many poles and 
zeros the corresponding elliptic filter has? Explain. 

15. What transformation in the s-plane corresponds to the lowpass-to-highpass 
transformation z = -z? Here's a hint from Butterworth, who writes in his 1930 paper 
referenced in the Notes: "In the low pass system let the inductances be replaced by 
capacities and the capacities by inductances.'' 



1 The CD player 

CHAPTER 14 
Audio and Musical 

Applications 

We'll begin our small tour of audio applications with the compact disc (CD) digital 
audio system, a wonder of our age. The CD is conceptually a very simple storage sys­
tem: the audio signal is sampled and converted from analog to digital form, and the 
bits are stored on the surface of a small platter. When we want to listen to them, we 
just spin the disc, read off the bits, and convert the digital signal back to analog form. 
This should seem like a simple and natural idea by now - but its practical realization 
has changed the world forever. As I mentioned at the very beginning of this book, 
digital audio makes it possible, for the first time, to grasp music securely in our hands. 

The technology of the CD audio system we use today was developed in the mid- to 
late 1970s and depends critically on the very dense storage of bits on an optically 
scanned disc. t The spiral track on the standard 12 em disc is about three miles long, 
and the tracks are 1.6 11m apart. (Recall that a 11m. also called a micron, is a millionth 
of a meter, or about l/25,000th of an inch.) The track itself is 0.611m wide, and the 
spot of laser light used to scan it is I 11m in diameter. The bits are actually stored in the 
form of depressed regions along the track ("pits") and nondepressed regions at sur­
face level ("lands"). A great advantage of this arrangement is that nothing but light 
ever touches the storage area of the disc. In theory it can last forever. 

The CD audio system is conceptually simple, but engineers have developed some 
clever twists and turns, either to improve performance without raising cost, or to lower 
cost. The basic digital signal uses 16 bits per sample at a sampling rate of 44.1 kHz, so 
the two tracks for stereo require a basic bit rate of 2 x 16 x 44,100 = 1.41 Mbit/sec. 
It may come as a surprise that the actual data rate onto and off the disc is about three 

t The Philips and Sony companies played central roles in the development. See the Notes for reference to a 
write-up by Philips staff. 



286 Chapter 14 Audio and Musical Applications 

times as fast. The extra bits are used for several purposes, including redundancy for 
detecting and muting errors, synchronization, and the embedding of handy tidbits like 
the name of the piece, its duration, and its track number. The interweaving of the 
extra, nondata bits is Byzantine in its complexity, and its description belongs more 
properly in a course on coding theory. 

In this section I'll focus on the process of retrieving the bits from the disc and con­
verting them to the analog signal we hear. This is digital signal processing at its best, 
and we're now well equipped to understand it. 

Recall that in Section 8 of Chapter II we described what we called oversampling, 
where we sampled an analog signal at a higher rate than necessary, so that we could 
make the anti-aliasing analog prefiltering easy. This had the effect of transferring the 
hard part of the filtering to the digital domain, where, as it turns out, we can do a much 
better job, much more easily. A reduction in sampling rate (sometimes called down­
conversion) takes place after analog-to-digital (a-to-d) conversion. 

We can use the same general idea for digital-to-analog (d-to-a) conversion. If we 
did the d-to-a conversion in the CD system at the true data rate of 44.1 kHz, we would 
generate images above the Nyquist frequency of 22.05 kHz, and we'd need an analog 
filter with a sharp cutoff to suppress them. The desired audio band in this case extends 
up to 20 kHz, so the frequency response of the analog filter would have to make the 
transition from passband to stopband in the band of frequencies between 20 kHz and 
22.05 kHz - not a lot of room. An analog filter with such a narrow transition band, 
in this range of frequencies, would be expensive. The alternative is to do the a-to-d 
conversion at a higher frequency, and do most of the filtering work in the digital 
domain. 

We have a terminology problem here. People use the term "oversampling" in 
both the a-to-d and d-to-a cases - but, while the basic trick is similar, the methods are 
quite distinct. I'll distinguish the two with the terms "oversampled a-to-d conver­
sion" and "oversampled d-to-a conversion." It's the latter we're discussing here. 

The Philips system increases the sampling rate by a factor of four before d-to-a 
conversion. This process, called "up-conversion," can be thought of as interpolating 
reasonable values between the actual signal samples. There is a beautiful way to do 
this with digital filters that is the opposite of the down-conversion we did after over­
sampled a-to-d conversion in Section 8 of Chapter II. 

We start the interpolation process by doing the seemingly silly thing of inserting 
zeros where the missing, interpolated samples should go. What is the spectrum of the 
new signal? Well, the z-transform is just a power series, and the only nonzero terms 
occur now at points where the sample number is a multiple of four. That is, the origi­
nal samples occur at new sample points 0, 4, 8, and so on. If the original z-transform is 
X(z), the new transform is therefore just X(z 4 ); z is replaced everywhere by z4 . (I 
asked you to derive this in Problem 2 of Chapter 9.) 

If we now trace the frequency variable ro from 0 to 1t, the new complex frequency 
argument of X, z4 , will move on the unit circle from the angle 0 to 47t, which means 
that the segment of the original spectrum between 0 and 1t will be traced out four 
times. This is illustrated in Fig. 1.1 (a) and (b). The net effect is to move the Nyquist 
and sampling frequencies up by a factor of four. 



§1 CD player 

(a) : original Nyquist freq. 

0 fnequency 

Fig. 1.1 Oversampled d-to-a conversion avoids expensive analog 
postfiltering. The figure shows signal spectra during the digital processing 
used to increase the sampling rate before conversion: (a) original digital 
signal; (b) interleaving three zero-valued samples between successive sig­
nal samples moves the Nyquist frequency up by a factor of four; (c) the 
desired quarter-band digital filter frequency response to prepare for d-to-a 
conversion at the higher rate; (d) the signal spectrum after digital filtering. 
At this point the signal is ready for d-to-a conversion at four times the origi­
nal rate. 

287 

If we just convert at four times the original rate ( 176.4 kHz) we gain nothing; there 
will be images above the original Nyquist frequency, where they would have been 
anyway. The point is that now we can remove them digitally. Figure l.l(c) shows the 
desired digital filter frequency response, which is quarter-band lowpass, and Fig. 
l.l(d) shows the final spectrum of the digital signal after the filtering operation. The 
d-to-a conversion is actually followed by a zero-order hold, and some of the image 
shown centered at four times the original sampling rate will get through (see Problem 
3). 

That image is centered at 176.4 kHz, way beyond the range of hearing, and it 
doesn't take much of an analog filter to do a good job removing it (but see Problem 4). 
The transition band available to the analog postfilter is now enormous compared to 
what it was without the up-conversion and digital filtering process. To put it simply, 
we have bludgeoned the problem with blindingly fast digital processing and made the 
work remaining in the analog domain simple and cheap. 



288 Chapter 14 Audio and Musical Applications 

Looking at the time waveforms makes it obvious why the process of oversampled 
d-to-a conversion makes life easier in the analog, post-conversion world. Figure 1.2 
shows the stages, starting with the original samples. Removing the images above the 
original Nyquist frequency is done by the quarter-band digital filter, and amounts to 
interpolating smoothly between the original samples. It's not hard to believe that the 
converted signal in Part (d) of the figure is a lot easier to clean up with a post­
conversion analog smoothing filter than the much choppier signal in Part (a). 

(a) r 
time 

• 
(b) • • 

• 
• 

• • • a a a • a o a a • a a • 
• 

• • • • • • • (C) • • • • • 
• • • 

• • • 
• 

• • • 

Fig. 1.2 Up-sampling in the time domain, where it's easy to interpret as in­
terpolation. (a) the original signal samples and what a zero-order hold 
would do to them; (b) interleaving zeros; (c) the smoothed result after 
quarter-band digital filtering; (d) the final output of a zero-order hold when 
d-to-a conversion takes place at four times the original rate. 

The quarter-band filter used in the Philips system is a feedforward filter with 96 
coefficients. An important advantage of a feedforward over a feedback filter is its 
linear phase. Another is the short word-length possible. The filter used in the Philips 
system uses only 12-bit coefficients, and the multiplications by the 16-bit samples pro­
duce 28-bit outputs, which are of course rounded off for conversion. A third advan­
tage results from the fact that of the 96 multiplications apparently required for each 



§1 CD player 289 

output sample, three-quarters are multiplications by zero, so only 24 nontrivial multi­
plications per output sample are actually needed. 

Still another advantage of feedforward filters stems from our being able to design 
them to satisfy quite arbitrary frequency domain specifications. In fact, the 
specifications for the quarter-band filter are unusual in a couple of respects. For one 
thing, the stopband rejection is chosen so that the trench is deeper in the region 
immediately following the original Nyquist frequency than the rest of the stopband. 
(Why? See Problem 5.) For another, the passband is shaped to compensate for the 
"droop" caused by the zero-order hold, as well as for the ripple caused by the simple 
analog postfilter (which has three poles). The paper by Goedhart et al. referenced in 
the Notes shows the frequency response of the actual filter used in the Philips CD 
player, and I mimicked the design using the METEOR program discussed in Chapter 
12. Figure 1.3 shows my resulting frequency response. I chose constraints that 
increased linearly on a dB scale, with ±3 dB ripple in the passband, and rejection in 
the stopband going from -50 dB at 24 kHz to - 30 dB at the Nyquist frequency of 
88.2 kHz. I don't know what design method Goedhart et al. used, but my filter 
response is quite similar, although they show the result after rounding the coefficients 
to 12 bits. 

m 0 "0 
.!: o-
CD ·10 ~ "' c: i 0 ·20-c. ::) 

"' o-
! ·30- ~ 
iS ::s! c: 

·40- 0 CD 
:::J 
tr 

~ ·50-

-60-

·70-

·80-
passband stopband 

20 40 eo eo 

frequency in kHz 

Fig. 1.3 Frequency specifications of a 96-coefficient quarter-band feedfor­
ward digital filter used to prepare for oversampled d-to-a conversion in the 
Philips system. I used METEOR (see Chapter 12) and chose the 
specifications to approximate the frequency response shown in the paper 
by Goedhart et al. in the Notes. The upward slope in the passband com­
pensates for the zero-order hold and the analog postfilter. 

We see now that designing feedforward filters to meet arbitrary specifications is 
more than a rainy-afternoon amusement (although it is that too). The resulting little 
pieces of technology find their way into one of the most common artifacts of the late 
twentieth century. 



290 Chapter 14 Audio and Musical Applications 

2 Reverb 

Reverb, as it's always called by rock guitarists and other professional sound makers, is 
another important application of digital signal processing, and of digital filtering in 
particular. Bare computer music, for example, has a tendency to sound dry, simply 
because it is created in what amounts to an anechoic chamber. Composers often use 
reverb to liven it up. And without reverb the drive-time news wouldn't sound as if the 
radio studio is a vast crypt. 

Reverberation is the general term for what happens to a sound when it makes its 
way from the source, be it mechanical or electronic, to our ears. It bounces off the 
walls and other parts of rooms and concert halls and gets mixed up with its echoes, as 
shown in Fig. 2.1. 

source 
~------~ .. ·} -:~~········;;;;;;; .. 

... ··············· 

listener 

Fig. 2.1 Room reverberation is caused by the superposition of many 
echoes. Only one echo is shown completely. 

Think about an echo - the kind of echo you hear in a canyon, where the sound 
keeps bouncing between the canyon walls. To get a crude mathematical approxima­
tion, we can pretend that the echo consists of repeated versions of the original sound, 
and that each version arrives some fixed time after the previous version, reduced in 
amplitude by some fixed fraction R. This is only a simple starting point, but, after all, 
we're not trying to reproduce the exact sound of any particular environment. All we 
want is a transformation that gives us the general effect of an echo. If the original 
sound is represented by the digital signal x ,, the echoed version y 1 is 

(2.1) 

Ideally this goes on forever, but we know that real echoes diminish in amplitude until 
they merge with the background noise. 

Taking the z-transform of both sides of Eq. 2.1 gives us the following relationship 
between the transforms of x and y : 

~z) = X(z) [z-L + Rz-ZL + R2 z-3L + · · ·] (2.2) 

Factor out a delay z-L, and what is left is just a geometric series with the ratio Rz-L 



§2 Reverb 291 

between successive terms. The ratio of transforms is therefore the familiar-looking 
closed form: 

91:z) = 
X(z) R -L - z 

(2.3) 

Except for the initial delay of L samples, this is the transfer function of a comb filter, 
which we studied in Chapter 6. The corresponding signal ftowgraph is shown in Fig. 
2.2. The only difference is that now we're thinking about round-trip delays that 
correspond to the distances between walls in a room or concert hall, whereas in 
Chapter 6 we were thinking about waves bouncing around a tube or string the size of a 
musical instrument. 

y 

I 
• 

Fig. 2.2 A simple comb filter. The integer L is the loop delay in samples, R 
is a constant loop multiplier, and X and Yare the input and output signals, 
respectively. 

Let's take a look at the resonant frequencies that result when we choose the delay 
in the comb filter to correspond to a hall of moderate size, say with a round-trip echo 
distance of 20m. The speed of sound is about 345 m/sec. (This easily remembered 
number corresponds to a nice warm room; see Benade's book referenced in the Notes 
to Chapter 3.) A typical round-trip time is therefore about 60 msec. By way of con­
trast, a column of air in a flute that is l/3 m long, operating as a pipe open at both 
ends, will have a round-trip time l/60th of this, or about one msec. (The mouth hole 
and first open tone hole approximate a tube open at both ends.) The corresponding 
lowest resonant frequency of an open pipe (recall Chapter 6) is the reciprocal of the 
round-trip time, or about 17 Hz for the hall, and 1 kHz for the flute. 

Of course, one simple comb filter will not do the job we want. A typical room has 
many reflecting surfaces, and it's necessary to combine many filters to get anything 
like a realistic-sounding reverb. The best reverb filters have evolved through trial and 
error, guided by physical measurements of concert halls and by inspired intuition. I'll 
describe one of the best results, from a well-known article by James Moorer (see the 
Notes). 

Tailoring a reverb filter to duplicate the sound of a particular room or concert hall 
is still more an art than a science. (The same may be said of designing concert halls 
themselves.) But the guiding principle is to avoid regularity. The usual recommenda­
tion is to make the round-trip delays in the combs, when expressed in number of sam­
ples, mutually prime. This tends to encourage the echoes to blend nicely. As Moorer 
puts it, it ''reduces the effect of many peaks piling up on the same sample, thus lead­
ing to a more dense and uniform decay." 

Moorer suggests the configuration shown in Fig. 2.3, consisting of six different 
comb filters in parallel (their outputs added), followed by an allpass filter. This allpass 



292 Chapter 14 Audio and Musical Applications 

filter has the effect of further mixing up the phase of the signal without changing the 
magnitude of the frequency content. The path at the bottom with constant gain K 
represents the direct wave, the transmission of sound to the listener without 
reflections. Moorer also proposes refining each comb by putting a lowpass filter in the 
delay loop, as shown in Fig 2.4. The purpose of this is to take into account the fact 
that the absorption of sound depends on frequency, with high frequencies being 
absorbed more. He uses single-pole lowpass filters, as indicated in Fig. 2.4, as an 
approximation that captures the main effect without introducing too much complexity 
in the overall reverb filter. 

X y 

K 

Fig. 2.3 A popular reverb filter structure, proposed by J. A. Moorer. 

Suppose we've decided to use the lowpass-comb/allpass structure shown in Fig. 
2.3. We still have many choices to make: the loop delays L, gain constants R, and pole 
positions g of the six Iowpass combs; the direct-wave factor K; and the allpass param­
eters. Moorer discusses these choices on physical grounds, and gives the results of 
choosing the six g parameters to fit physical measurements of room acoustics in a 
least-square sense. Before I give some specific numbers in case you want to imple­
ment the reverb filter recommended by Moorer, I need to clear up a couple of details. 

First, the lowpass comb filter shown in Fig. 2.4 may be unstable if the parameters 
g and R are chosen injudiciously. To get some intuition about how this can happen, 
we'lllook at the transfer function of the lowpass comb. This is just the original comb 
transfer function, Eq. 2.3, with the Iowpass filter transfer function inserted along with 
the R term: 

~z) = 
X(z) 

I - R[ I J z-L 
I - gz- 1 

(2.4) 

The term subtracted from one in the denominator, the so-called loop gain, represents 
the effect on a signal traveling once around the feedback loop. 

Now the signal traveling around the loop - representing a bouncing sound wave 
- can be thought of as a sum of various frequency components. That's one of the 
main points of all our work on frequency transforms. Consider for the moment the 
zero-frequency component. The loop gain at zero frequency is the loop gain evaluated 



1 - gz -t 

lowpass 

§2 Reverb 

y 

Fig. 2.4 A lowpass comb, a version of the comb component that takes into 
account frequency-dependent sound absorption. 

293 

at z = 1, the point corresponding to zero frequency on the unit circle in the z-plane. 
That loop gain turns out to be Rl( 1 - g). If this is greater than one, the zero­
frequency component would be amplified each time it traveled around the loop, and 
the accumulating signal would grow larger and larger without bound. In other words, 
the filter would be unstable, and we'd get nothing useful out. This couldn't happen in 
a real room, of course, unless the walls amplified echos - a frightening thought. 

An analogous argument can be made at other frequencies, but then things are more 
complicated because the signals bounced back are complex, which is another way of 
saying there is generally phase shift. A better way to understand what's happening is 
to look at the poles of the overall lowpass comb as we vary the lowpass filter parame­
ter g. Multiplying the top and bottom of the transfer function in Eq. 2.4 by 
(l - gz- 1 ) and then by zL, we get 

1{z) = 
X(z) 

z- g (2.5) 

which shows how to find the poles. Except for the pole at z = 0, they're roots of the 
polynomial equation 

(2.6) 

We all have a program that factors polynomials, and it's perfectly feasible to factor 
this for lots of values of g.t Figure 2.5 shows a plot of the pole migration as g is 
increased from 0 to 10 in a lowpass comb with a loop delay of 20 samples and a loop 
multipler R = 0.5. As we know, the poles start out, when g = 0, 'at the 20 roots of 
0.5, which is just the case of the ordinary comb filter. As g increases, some of the 
poles stray outside the unit circle. It turns out that the first one to leave in this situa­
tion is the pole on the positive real axis. 

We can determine exactly when the pole on the positive real axis crosses the unit 
circle by examining the transfer function of the lowpass comb. The pole on the posi­
tive real axis must cross the unit circle at the point z = 1, and at that value of z the 

t This is an example of a root locus plot, a very useful way to study the stability of a filter when a parameter 
is varied. 



294 Chapter 14 Audio and Musical Applications 

1.0. 

z-plane 

0.5. 
i'!:' 
Ill 
c: 
-~ 

.5 

.05· 

·1.0 .. 
·1.0 .0.5 0.5 1.0 15 20 

real 

Fig. 2.5 The poles of the lowpass comb move when the pole-parameter g 
increases from zero. The case of a lowpass comb with a loop delay of 20 
samples is shown here. When g exceeds 0.5, the pole on the positive real 
axis moves outside the unit circle, causing instability. 

denominator is 1 - Rl( 1 -g). Therefore the filter just reaches the point of instability 
when the loop gain at zero frequency, Rl( 1-g), becomes unity. To keep the filter 
safely stable, we should choose this ratio to be less than one. 

The second detail concerns the allpass filter that follows the parallel combs. The 
all pass filters we used in Section 6 of Chapter 6 to tune plucked-string filters had delay 
loops of only one sample, because we were interested in introducing delays on the 
order of a fraction of a sample. Now we want delays on the order of a few msec, to 
scramble echos. We can use the same transfer function, but with each unit delay 
replaced by a delay of m samples: 

:H(z) (2.7) 

Problem 7 asks you to verify that this is still all pass, for any value of m. 
If you want to try to implement a reverb, I'll tell you what Moorer recommends; it 

should give you a good starting point for experimentation. For the allpass filter in the 
lowpass-comb/allpass structure, Moorer recommends using a value of a = 0. 7 and a 
delay of 6 msec. Convert the delay in seconds to a number of samples by multiplying 
by the sampling rate. He suggests the following set of delay values for the six 
lowpass-comb filters: 50, 56, 61, 68, 72, and 78 msec. The lowpass filter parameters g 
depend on the sampling rate, delay loop length, humidity, temperature, and pressure. 
Moorer provides tables showing the results of fitting the lowpass frequency response 
to published data describing high-frequency attenuation in air. The one-pole lowpass 
filter is so crude that these values should be taken only as guidelines. As an example, 
he suggests the values for the lowpass parameter g of 0.24, 0.26, 0.28, 0.29, 0.30, and 
0.32, for the sampling rate of 25kHz. He determines the gain constant R for each 
comb by setting the zero-frequency loop gain Rl( 1-g) to 0.83 for all the comb filters, 



§3 AM and tunable filters 295 

which he says results in a reverberation time of about 2 sec. I've used all these 
parameters and a ratio of direct wave to allpass output of 9 to I. The result provides 
the feeling of a very lively room. 

Figure 2.6 shows the impulse response of the resulting reverb filter. After an ini­
tial dead space, there is a dense, complicated pattern of reflections, eventually decay­
ing to zero- just what we want. 

0.10 

., ., 
<: 0.05 
&. ., 
I! ., 

.!!l 
a. 
-~ 

0 

·0.05-

. . . . . 
0 5000 10000 15000 20000 

time, samples 

Fig. 2.6 Impulse response of a reverb filter put together along lines sug­
gested by Moorer. The sampling rate is 22.05 kHz. The initial sample, 
representing the direct wave, is off-scale at 0.9. 

3 AM and tunable filters 

A remarkable thing about the frequency domain ideas we've developed is that we can 
use them in so many situations: for sound waves, radio waves, or light waves - not to 
mention electrical signals from the brain, heart, or even vibrational waves from the 
earth. The frequencies may be measured in cycles per century - for sunspots, say -
or billions of cycles per second, for microwaves. We can take any idea that works in 
one area and apply it in another. 

We'll now see that the principle behind AM (amplitude modulation) radio pro­
vides a very useful example of such technology transfer. AM radio is most familiar in 
the medium-wave broadcast band, which operates around 1 MHz, but the idea works 
perfectly well at audio frequencies. The mathematical principle is the heterodyne pro­
perty of the Fourier transform, which we discussed in Chapter 10. I'll now explain 
briefly how AM radio works, and then show how heterodyning can be used to build 
bandpass digital filters that can be tuned very conveniently. 



296 Chapter 14 Audio and Musical Applications 

Radio waves can travel enormous distances, of course. Sounds waves cannot. The 
basic trick of radio communication is to allow audio waves to hitch a ride on radio 
waves. The process is called modulating the radio wave (the carrier) with the audio 
signal. The simplest way to do this is to multiply the audio signal by a radio signal at a 
single frequency -a phasor. Letting x(t) stand for the real-valued audio signal, and 
using a radio signal of frequency ro 0 , the product is the broadcast signal 

y(t) = x(t) ej.,.,t (3.1) 

Figure 3.1 shows the carrier before and after multiplication by the signal. As we 
know, multiplication by a phasor of frequency ro0 shifts the spectrum of the original 
baseband audio signal up by ro 0 . The new spectrum of the signal y(t) is therefore 

Y(ro) = X(ro - roo) 

as we learned when we covered heterodyning in Chapter I 0. 

(a) frequency content 

carrier 

(b) 

frequency 

Fig. 3.1 AM modulation of a carrier by a baseband signal. Think of the 
modulation process as spreading the spectrum of the carrier. 

(3.2) 

It's very useful to interpret Eq. 3.2 and Fig. 3.1 as meaning that the baseband sig­
nal - the information-bearing signal - spreads the spectrum of the carrier. In fact, in 
AM it spreads the carrier spectrum to a width precisely equal to the bandwidth of the 
modulating signal, measured from negative to positive frequencies. That bandwidth is 
a precious commodity, and, as we've discussed before (Section 6 of Chapter ll), is 
directly related to the amount of information we can transmit. We'll have more to say 
about modulation when we discuss frequency modulation in the next section. 

In practice, we multiply by a real-valued cosine or sine wave, which is the sum or 
difference of phasors at ±ro0 . The result would be two translated versions of the 
baseband spectrum, one at ro0 and another at -ro0 • That tends to clutter up the formu­
las, and in this chapter I'll stick to complex phasors and use complex signals. It's nice 
to be able to deal with just one frequency instead of with the positive and negative 
pair. The notation will be simpler and the ideas clearer. It turns out that when we're 



§3 AM and tunable filters 297 

all done, though, we could have achieved the same overall effect with real arithmetic, 
multiplying by sines and cosines and combining the results (see Problem 10). 

Suppose now that we want to build a bandpass digital filter with a center frequency 
that is very easy to vary. We might want to use such a tunable filter in a spectrum 
analyzer, for example, where we are interested in how much energy there is in many 
different bands. Think of this as a filter with a tuning knob on it - exactly what we 
would need for a receiver dealing with radio frequencies. We could just build many 
filters, each with a different center frequency, but that would be inconvenient, since 
we'd need to store a different set of coefficients for each center frequency of interest. 

But here's a way to do the job with only one filter: move the signal frequencies 
instead of the frequency response of the filter. We just saw how to move the signal 
frequencies with heterodyning. If we shift the signal frequencies down by w0 and 
then apply a lowpass filter, as shown in Fig. 3.2, the frequencies selected by the filter 
will actually correspond to the vicinity of w0 in the original signal spectrum. We can 
then shift the frequencies selected by the lowpass filter back to their original position 
by heterodyning up by w0 • This process produces the answer for positive frequencies 
and is illustrated in the top branch of Fig. 3.3. The analogous process produces the 
negative frequency part - shift up, lowpass filter, then shift back down. The two 
parts are added, as shown in Fig. 3.3. 

frequency content 
(a) .--+--.. 

(b) 
shift right w0 -

(c) 

0 frequency 

Fig. 3.2 Bandpass filtering by shifting the signal spectrum, lowpass filter­
ing, and then shifting back. Part (a) shows the original signal spectrum, (b) 
shows the shifted version, and (c) shows the final result. 

This trick is enormously useful, and, as I mentioned, allows us to use one fixed, 
carefully designed lowpass filter in a spectrum analyzer, for example, where we want 
to sweep over a wide range of frequencies. We'll return to this technique when we 
discuss vocoders, but first we'll visit the FM band. 



298 Chapter 14 Audio and Musical Applications 

input output 

Fig. 3.3 Tunable bandpass filtering by heterodyning. The upper branch 
produces the positive-frequency part of the answer by shifting left, lowpass 
filtering, and shifting back. The lower branch makes the negative­
frequency part in the analogous way. 

4 FM synthesis 

I'm going to take a moment to describe FM (frequency modulation) - not only 
because it's the natural companion to AM on your radio dial, but also because it's a 
very popular way to synthesize sound on electronic keyboard instruments. 

The idea of FM is to vary the frequency of the carrier instead of its amplitude. If 
we take the carrier wave to be the complex phasor ei"'"1, a modulating signal x(t) is 
inserted in the exponent as follows: 

(4.1) 

where D, called the modulation index, is a measure of how much we are modulating. t 
Compare Eqs. 3.1 and 4.1, and you'll see that the difference between AM and FM 

can be stated very simply: In AM the carrier is multiplied by the signal x(t) itself, 
while in FM it is multiplied by the complex exponentiation of the signal: 

(4.2) 

To go further in understanding FM, we need to know the frequency components of 
this complex exponential form. Once we know that we're practically done, because 
the final modulated carrier will be just those components shifted up by the carrier fre­
quency ro0 . With this in mind, we can forget about the carrier frequency; what matters 
is the spectrum of the signal in Eq. 4.2. 

Begin with the simple case when the signal x(t) - the information that will be 
impressed on the carrier- is a simple sine wave, say sin( rot). Notice that this x(t) is 
periodic, with frequency ro radians per sec, and hence so is its complex exponentiation 
in Eq. 4.2. We can therefore expand it in a Fourier series, which will tell us exactly 

t Strictly speaking, this equation shows the modulation of the phase angle, not the frequency, of the carrier. 
The difference needn't bother us here. 



§4 FM Synthesis 299 

what frequency components are there, and in exactly what proportion. The fundamen­
tal frequency being ro, the Fourier series looks like this: 

-
ejDsin(rot) = L J n (D) ejnrot (4.3) 

n=-oo 

The nth Fourier coefficient depends on the modulation index D, and I've called it 
Jn(D). You may wonder why I've chosen the unusual letter J for the Fourier 
coefficients; you'll see why in a moment. 

The next logical step would be to evaluate the Fourier coefficients by taking the 
projections of the left-hand side on the basis phasors (as we did in Section 2 of 
Chapter 7). When you do that you get definite integrals that are frustrating: no matter 
how hard you try, you won't be able to carry out the integration using any of the tricks 
you learned in first-year calculus. I say this with some confidence, because the 
answers are special functions in their own right (always denoted by J n) that can't in 
general be expressed using a finite number of any of the functions we've used up to 
this point, like sines, cosines, or exponentials. The function J n is called the Bessel 
function of the first kind of order n, and is named after the German astronomer 
Friedrich Withem Bessel ( 1784-1846). 

Fortunately, Bessel functions arise in many areas of mathematical physics, and a 
lot is known about them. Most mathematical libraries have subroutines for calculating 
them, and it was therefore easy for me to generate plots of a few of them, which are 
shown in Fig. 4.1. The next thing we're going to do is use this picture to explain how 
the spectrum of a carrier is affected when it is frequency-modulated by a sine wave. 
This will help us understand why FM has been so widely used in music synthesis. 
After that, I'll return briefly to the question of where Bessel functions come from, and 
why they pop up so often in many areas of musical acoustics. 

Think of Fig. 4.1 as follows. The D-axis represents the amplitude of the modulat­
ing signal x. The curve J 0 then shows, by Eq. 4.3, the amount of the zero-frequency 
phasor in ejDsinrot, and since the carrier is multiplied by this, it represents the amount 
of the carrier itself at its frequency ro0 • 

Imagine now that D, the size of the modulating sine wave, slowly grows in ampli­
tude, starting from zero.t The size of the carrier is determined by J 0 (D), and it will 
therefore fade, become zero at some point, grow to a peak considerably smaller than 
its initial value, fade again, and then alternately become zero and reach peaks of 
diminishing sizes, as D gets larger and larger. 

Consider next the first harmonic. The Bessel function J 1 starts at zero, and so ini­
tially there is no first harmonic in ejDsinrot. This means that initially there is no com­
ponent in the modulated signal at the frequencies ro0 ± ro. As the amplitude of x 
grows, however, a similar pattern of growing and shrinking occurs in those com­
ponents, except the peaks and troughs are not aligned with the peaks and troughs of 
the carrier we just observed. 

t If we increaseD too fast, it is no longer legitimate to think of x as a sine wave with amplitude D. "Slow­
ly'' in this case therefore means slowly compared to the modulating frequency w. 



300 Chapter 14 Audio and Musical Applications 

-0.5 ' ' ' ' ' 0 5 10 15 20 25 

modulation index, D 

Fig. 4.1 Bessel functions of order 0, 1, 5, and 10. The higher the order, 
the later the first peak. 

The same thing happens with the higher harmonics. For example, J 10 has its first 
peak at around D = 12, and when the amplitude of x reaches that point the amplitude 
of the I Oth harmonic will peak, producing spectral components in the modulated sig­
nal at frequencies ro0 ± I Oro. 

The first conclusion we can draw is that the spectrum of the frequency-modulated 
signal is very complicated, even when the frequency modulation is a single-frequency 
sinusoid. But we can draw a second general conclusion based on the fact that the 
higher-order Bessel functions peak at increasingly larger values of D, and this is the 
hallmark characteristic of FM: 

The spectrum of the modulated signal spreads out as the amplitude of the 
modulating signal increases. 

Frequency modulation by a single sinusoid at frequency co entails multiplying the 
carrier phasor at frequency ro0 by a Fourier series with components at integer multi­
ples of co. Therefore, the only frequencies present in such an FM signal are of the form 
ro 0 ± kco, for all integers k. In FM radio, the modulating audio signal contains fre­
quencies certainly no higher than 20 kHz, and the carrier frequency ro 0 is typically 
around 100 MHz, 5000 times higher. The frequency content of the carrier wave is 
spread out by the process, but it's still accurate to think of the resulting spectrum as 
being contained in a narrow band around the carrier. (How narrow? See Problem 8.) 
In sound-synthesis applications, there are no particular constraints on the choice of co 
and ro0 • For example, we are perfectly free to choose co = ro 0 , in which case the FM 
spectrum consists of components at integer multiples of the carrier, and the FM signal 



§4 FM Synthesis 301 

can be thought of as periodic with fundamental frequency ro 0 . I ask you to explore 
other possibilities in Problem 9. Real musical applications in synthesizers or computer 
programs often involve complicated interconnections of FM signals modulating other 
FM signals, and designing artificial instruments this way is a highly developed art. 

Chowning (see the Notes) gives some recipes for synthesizing a few families of 
instrumental timbres. To get a brasslike sound, for example, he recommends using 
equal modulating and carrier frequencies, so that all integer harmonics of the funda­
mental frequency are present, and then increasing the modulation index linearly dur­
ing the attack. Figure 4.2 shows the spectrogram of a sound I produced this way. I 
made the attack longer than recommended so it would be easier to see (and hear) the 
spectral changes. The spectrum opens up dramatically and the harmonics have 
momentary dead spots as the modulation index passes through values that make the 
corresponding coefficients of the Bessel functions zero. 

3 

2 

~--------------- -----
0;-----~----~~----~-----r------~----~ 
0.0 0.25 0.5 0.75 1.0 1.25 1.5 

time, sec 

Fig. 4.2 The spectrogram of a synthesized FM sound with fundamental fre­
quency 400 Hz. The modulation index D increases linearly from 1 to 15 
over the time period shown. Nulls appear at staggered frequencies in the 
harmonics. Do you see a pattern? 

I'll now return for a moment to Bessel functions. Recall that we began this book 
by asking where sinusoids come from. We found the answer in the many simple phy­
sical systems, like stretched strings and air in pipes, that vibrate in sinusoidal patterns. 
Bessel functions come up in exactly the same way, except that the vibrating systems 
are different. The classic example is a planar, circular, flexible membrane constrained 
only at its perimeter, and otherwise free to vibrate - like a drum head. The wave 
equation governs the motion of this system, but the geometry leads to Bessel functions 
instead of sine waves. In fact, it's generally true that any circularly symmetric system 
obeying the wave equation will lead to Bessel functions. In some sense they are, after 
real and complex exponentials, the next most natural waveshapes in the universe. 



302 Chapter 14 Audio and Musical Applications 

5 The phase vocoder 

We now finish with something of a tour de force, a practical development from tele­
phone researchers that has also become an interesting tool for computer musicians. It 
uses many of the ideas we've been studying, including filtering and the FFT, and illus­
trates the strong connection between the bandwidth of a signal and the amount of 
information it carries. 

The motivation for developing the phase vocoder and similar techniques was 
largely economic. Telephone companies push many voices through wires, and the 
more efficiently they can do it, the better the service, the lower the price, and the 
higher the profits (at least in principle). Today that economic pressure translates to the 
need for reducing the bit rate - the number of bits per second - required to encode 
speech so that it can be reconstructed at the receiving end with good quality. Thus, 
the telephone industry sustains intense research into the nature of speech signals and 
their efficient representation. 

We know we must sample signals like speech at a rate at least twice the highest 
frequency present, and we must quantize finely enough to keep the quantization noise 
acceptably low. How can we hope to reduce the number of bits we get when we fol­
low these guidelines? The hope is based on the following intuitive reasoning: speech 
is produced by moving the lips, tongue, and jaw, and forcing air from the lungs 
through the mouth and nose. The general shape of the mouth determines, roughly, the 
overall frequency content of the sound, and that shape is not changing at anywhere 
near the rate corresponding to the maximum speech bandwidth. To go from one vowel 
to another, for example, can't take less than, roughly, l/50th sec, and therefore we 
should be able to capture the spectral shape with only 100 samples/sec. Put another 
way, the bandwidth of the signal consisting of the overall shape of the vocal tract has 
a lower bandwidth than the speech signal itself. We'll call this overall spectral shape 
the spectral envelope. 

Besides the spectral envelope of a speech signal, there is also a rapidly varying 
component: the pitched signal coming from the vibrating larynx for sounds like 
vowels and broadband noise for consonants. This signal is called the excitation. 
Again, for physical reasons, the excitation can't change its characteristics too fast. The 
picture developed is that, to a first approximation, speech is produced when a slowly 
varying excitation signal has its spectrum shaped by a filter representing a slowly 
varying spectral envelope. 

The picture we just developed for a speech signal suggests that if we can extract 
the spectral envelope and the excitation, we ought to be able to do a good job in 
transmitting those two signals with fewer total bits than are in the original raw signal. 
We should then be able to put the two pieces back together at the receiving end to get 
a convincing restoration of the original speech. This general plan has dominated 
research in speech representation and compression for at least the past half-century. 
The phase vocoder developed by Flanagan and Golden is one of the best ways to carry 
out this program. Let's see how it works. 

By now you should (I hope) think of signals as being composed of sums of 
sinusoids. So it should be natural to break apart a speech signal into narrow-band 
pieces by using a bank of bandpass filters (see Fig. 5.1 ). This process should remind 



input 
signal 

§5 Phase vocoder 

Fig. 5.1 A filter bank. Each channel contains a narrow-band slice of the in­
put signal. These pieces can be reassembled to restore the original. 

303 

you of Fourier analysis, and I'll return to that idea soon. A phase vocoder uses such a 
filter bank, where, typically, each filter has a bandwidth of about 100Hz. A telephone 
signal, with a total bandwidth of only about 3 kHz, would therefore be broken down 
into 30 channels, each with a bandwidth of I 00 Hz. If we add those signals up, we get 
back to the original. 

Now the narrower the bandwidth of a signal, the closer it is to a pure phasor. The 
difference is that the magnitude and phase of a narrowband signal change slowly, 
whereas the magnitude and phase of a phasor are perfectly constant. Intuitively, a nar­
rowband signal can be thought of as the result of amplitude-modulating a pure phasor, 
as illustrated in Fig. 3.1. The narrower the bandwidth of the original signal, the nar­
rower the bandwidth of the resulting modulated signal. A narrowband signal centered 
at the frequency ro0 can therefore be written in the form 

f(t) = M(t)ejw,t + j.U) (5.1) 

where M(t) and cp(t) are narrowband signals representing the (slowly) time-varying 
amplitude and frequency of the phasor. It is precisely these two signals, M(t) and cp(t), 
that we want to capture the spectral envelope and the excitation of a speech signal 
within the passband of each channel filter. 

The next question is how to extract M(t) and cp(t) from the outputs of the bandpass 
filters in the filter bank. A good way to see how this is done is to go back to the imple­
mentation of bandpass filtering by heterodyning, shown in Fig. 3.3. Figure 5.2 shows 
the filter bank in Fig. 5.1 with the bandpass filters implemented this way. We'll con­
centrate attention on a typical channel with center frequency ro0, but of course you 
should not forget that there is one branch for each of many channels. This picture has 
an interpretation we discussed earlier: the multiplication by the phasor e -jw,r moves 
the frequency region of interest down to the baseband, the Iowpass filter removes 
everything else, and the multiplication by ej.,,r restores that piece of the frequency 
content to its correct position along the frequency axis. 

The terminology of AM radio is now especially appropriate. The first multiplica­
tion by a complex phasor can be thought of as removing the carrier of an AM signal at 



304 Chapter 14 Audio and Musical Applications 

input 
signal 

Fig. 5.2 This shows the filter bank with each bandpass filter implemented 
by heterodyning, as in Fig. 3.3. 

the frequency ro0 , and the second can be thought of as restoring it. In between, we 
detect the modulation, the information-bearing part of the signal. That signal appears 
as a complex-valued waveform at the output of the lowpass filter.t We have in effect 
built an AM radio receiver, or rather a bank of them, and tuned each channel to a nar­
rowband slice of the original input signal. 

All that is left to extract the spectral envelope M(t) and phase cp(t) is to compute 
the magnitude and phase of the complex-valued signal appearing at the outputs of the 
Iowpass filters, as shown in Fig. 5.3. If we are interested in bandwidth compression, 
we can down-sample and transmit the resulting slowly varying envelope and phase 
signals at a slow rate. Just how low a rate we can get away with depends on how well 
the signal can in fact be modeled by our spectral envelope/phase picture. We now 
have a complete phase vocoder. 

I should mention that the phase is a very awkward signal to transmit, because it 
tends to wander off above or below 2x, and in so doing appears to jump suddenly to 
stay within the usual range between ±2x. It doesn't really jump, of course, but it's 
difficult to keep track of just what multiple of 2x is included in its true value. In fact, 
without the jumps it's unbounded, and with the jumps it's not narrowband. (Why not?) 
The practical solution is to transmit the derivative of the phase, instead of the phase, 
and then to restore the phase by integrating at the receiving end. 

Another important practical point is that the array of signals at the outputs of the 
lowpass filters can be computed en masse using the FFT. If you want to know more 
about the actual performance of the phase vocoder for data compression, see the origi­
nal description by Flanagan and Golden referenced in the Notes. 

Now I want to describe how the phase vocoder can be used to manipulate sounds 
in exceedingly interesting ways. 

t We use complex phasors for the heterodyning, but in practice, equivalent real arithmetic with sines and 
cosines is used, as suggested by Problem 10. 



input 
signal 

• • 

I l ~ 
~ 

§6 Audio microscope/macroscope 

N 

E 

L 

Fig. 5.3 The phase vocoder extracts estimates of the spectral envelope 
and excitation for each narrowband channel. These are then transmitted at 
a reduced bit rate. (Actually, the derivative of the phase is transmitted.) 
The bit rate is reduced by lowpass filtering and decimating, a process we 
label down-sampling. 

6 An audio microscope/macroscope 

305 

As mentioned, the main motivation for developing the phase vocoder was economic. 
But science has a way of producing unexpected dividends, and the ability to disassem­
ble and reassemble speech signals makes new things possible. Composers of computer 
music, of course, were quick to explore the phase vocoder as a way to manipulate all 
kinds of sounds in artistically useful ways. 

Here's a difficult, long-standing problem that the phase vocoder solves, to a practi­
cal degree at least. Suppose you have a recording of someone reading a book and it's 
just taking too long. You'd like to speed it up by a factor of two, say, but you know 
very well that if you simply play the samples twice as fast, the person reading will be 
transformed into a chipmunk. 

The reason for the chipmunk effect is not hard to find: when speech is played back 
at faster than normal speed, not only do the words go by faster, but the frequencies of 
all the sounds are increased. At twice normal playback speed, the frequencies are all 
doubled, which has a drastic effect on how we perceive the sound itself. 

The phase vocoder offers an elegant way around this problem, because it decou­
ples the frequencies and the events that make up speech. The idea is to put the pieces 
of the speech back together so that the frequencies are all half of what they should be. 
This can be done by simply using half of the phase and half of the original heterodyn­
ing frequency ro0 in each channel. That results in speech in which all the frequencies 
are half of what they should be, but in which the words go by at the proper rate. If we 
now play back this new signal at double speed, the proper frequencies will be 
restored, but now - and this is the point - the words will go by at double speed. 



306 

Notes 

Chapter 14 Audio and Musical Applications 

Nothing's perfect, of course, and this method works only as well as the original 
phase vocoder is successful in separating the slowly varying spectral envelope (which 
determines the events) from the excitation (which determines the actual frequencies of 
the sounds). Getting the idea to work in practice usually involves hand-tuning the 
details of the implementation. In particular, you need to be very careful in choosing 
the number of channels, and, if the FFf is used to generate the baseband signals, the 
FFf length and window. 

The same idea can be used to slow things down. Just restore the signal with fre­
quencies and phase higher than the original, and then play it back slower. This makes 
it possible to stretch the sounds in a piano note, say, by a factor of ten, or even a hun­
dred, and new sonic worlds open up. A lot goes on when you play a note on the piano, 
and this slows things for our aural inspection- a sound microscope. The piece "Still 
Life with Piano," by Frances White, uses this technique (see the Notes). 

It's a good feeling to end with such a happy blend of science and art. In my best 
of worlds they are hardly different. 

The following gives a wonderfully detailed, first-hand description of the CD digital 
audio system: 

"Compact Disc Digital Audio," Philips Technical Review, vol. 40, no. 6, 
1982. 

This journal number consists of four articles by Philips staff members, the last of 
which is devoted to the digital-to-analog conversion process: 

D. Goedhart, R. J. van de Plassche, and E. F. Stikvoort, "Digital-to­
Analog Conversion in Playing a Compact Disc," /oc. cit., pp. 174-179. 

The reverb described in Section 2 is based on the article 

J. A. Moorer, "About this Reverberation Business," Computer Music 
Journal, vol. 3, no .. 2, pp. 13-28, 1979. 

Moorer puts the problem in some historical perspective, singling out in particular the 
pioneering work of Manfried Schroeder in the 1960s. He also gives some good physi­
cal motivation for the evolution of his recommended structure, shown in Fig. 2.3. 

John Chowning had the wonderful idea of producing sounds using frequency 
modulation at audio frequencies. His classic paper gives some concrete suggestions 
for getting started: 

J. M. Chowning, "The Synthesis of Complex Audio Spectra by Means of 
Frequency Modulation," Journal of the Audio Engineering Society, vol. 
2I,no. 7,pp.526-534, 1973. 

The phase vocoder was first described in the following concise and lucid paper: 



Problems 

Problems 

J. L. Flanagan and R. M. Golden, "Phase Vocoder," Bell System Techni­
cal Journal, vol. 45, no. 9, pp. 1493-1509, Nov. 1966. 

307 

James Moorer was the first to apply the phase vocoder to musical sounds. The fol­
lowing paper was actually presented at the Audio Engineering Society's conference in 
1976: 

J. A. Moorer, "The Use of the Phase Vocoder in Computer Music Appli­
cations," J. Audio Engineer. Soc., vol. 26, no. 1/2, pp. 42-45, Jan./Feb. 
1978. 

Details about the practical implementation of a phase vocoder, including a program, 
are given in F. R. Moore's book, referenced in the Notes to Chapter l. 

For the example of the musical use of the phase vocoder, hear F. White's "Still 
Life with Piano,'' Compact Disc CRC 2076, Centaur Records, 1990. 

Signal processing systems with more than one sampling rate are called multirate 
systems. The subject is of great practical importance and has a large literature. The 
following is a comprehensive book on the subject by prime contributors to the field: 

R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, 
Prentice-Hall, Englewood Cliffs, N.J., 1983. 

The two central problems in multirate processing are raising and lowering the sam­
pling rate of a signal. We've seen examples of both in connection with oversampling. 
Decreasing the sampling rate, as we do after oversampled a-to-d conversion, is usually 
called decimation. Increasing the sampling rate, as we do before oversampled d-to-a 
conversion, is usually called interpolation. 

1. The 96-coefficient quarter-band digital filter used before oversampled d-to-a 
conversion in the CD player is applied to a signal in which three out of every four 
samples are zero. Work out the programming details for implementing this filter so 
that it makes efficient use of both time and storage. 

2. Use a program of your choice to design a quarter-band filter to meet the 
specifications shown in Fig. 1.3. When you're done, round off the coefficients to 12 
bits and plot the frequency response of the filter with the 12-bit coefficients. How 
badly does the frequency response deteriorate? 

3. Sketch what Fig. l.l(e) would look like if it were added to illustrate the effect of 
the zero-order hold. 

4. The first substantial image of the baseband signal in a CD player after oversampled 
d-to-a conversion is well beyond the range of human hearing. Why is it still important 
to filter it out? (Hint: It helps to know something about electronics here.) 

5. Why is the specified rejection for the quarter-band CD player filter chosen to slope 
up as shown in Fig. 1.3? 



308 Chapter 14 Audio and Musical Applications 

6. The fonn of the lowpass comb used in Moorer's reverb filter, shown in Fig. 2.4, is 
exactly like the plucked-string filter, except the lowpass filter in the loop is feedback 
instead of feedforward. Is it an accident that these two sound-processing filters have 
identical structure? Explain if it isn't. Speculate about why a feedback filter is used in 
the reverb but a feedforward filter is used in the plucked string. 

7. Prove that the transfer function in Eq. 2.7, the allpass from Chapter 6 with unit 
delays replaced by delays of m samples, is also all pass, for all values of m. 

8. Commercial AM radio stations in the medium-wave band (around I MHz) are usu­
ally spaced 10 kHz apart, whereas commercial FM stations (around 100 MHz) are 
usually spaced 200 kHz apart. Explain how such minimum spacing is determined and 
why FM stations are so much farther apart. 

9. Suppose, as in Section 4, that we use a sinusoid of frequency ro to frequency­
modulate a carrier of frequency ro0 • Let the ratio ro0/ro be N 1 IN 2 , where N 1 and 
N 2 are relatively prime integers; that is, all common factors have been divided out. 
Detennine what frequencies are present in the FM spectrum for the cases 
N 2 = I, 2, and 3. What happens when the ratio ro0/ro is irrational? 

10. Figure 3.3 shows how to use heterodyning with complex phasors to implement a 
bandpass filter with variable center frequency. Show that the system in the figure 
below, which uses only real arithmetic, produces the same result, except for a factor 
of 1/2. The input signal is assumed to be real-valued. 

cosro0 t cosro0 t 

input output 

sinro 0 t sinro 0 t 

11. I gave the basic reason we might expect to be able to compress a speech signal. 
Give a similar argument for video signals. 

12. Estimate the number of bits stored on an audio CD, using the data in Section I. 



A 
Acoustic guitar, note of, 107 

Additive synthesis, 142, 146 
Aliasing, 44-50, 224-25 

of phasor, 44-48 
of square wave, 48-50 
sub-, 235, 236 

Allpass filter, 113-19, 294 
design of, 116-19 

AM. See Amplitude modulation 
Amplitude modulation (AM), 295-97 
Analog filter, 56 

relation to digital, 274-78 
Analog-to-digital (a-to-d) conversion, 43 

oversampled, 286 
Angell, J. B., 96,99 
Angle of complex number, I 0 
Apodization, 215 
Arfib, D., 58 
ARG of complex number, I 0 
Argument of complex number, I 0 

Asymptotic speed, 156 
ofDFT, 156 
ofFFT, 164 
of merge sort, 159 

A-to-d conversion. See Analog-to-digital conversion 

Audio microscope, 305-306 

B 
Backus, J ., 58 
Bandstop filter, 67 
Bandwidth, 87-88 
Bartlett window, 216 
Baseband, 47 

Basis, 126 
forDFT, 152 
for Fourier series, 129 
forz-transform, 175 
orthogonal, 127 

Beat frequency, 14-17 
Beauchamp, J., 58 
Bell, A. G., 52 
Benade, A. H., 58 
Bessel, F. W., 299 
Bessel function, 299 
"Big-oh" notation, 156 
Bilinear transformation, 275-78, 282 
Bird call, 211, 215 
Bit-reversal, for FFT, 166 
Bit-reversed ordering, 165 
Blackman window, 216 
Burrus, C. S., 170, 261, 282 
Butterworth, S., 281 
Butterworth filter, 264-71 
Buzz signal 

c 

continuous-time, 139-40 
digital, 140-42 
variable-frequency, 144-45 

Capacity of CD, 285 
Carslaw, H. S., 145 

Index 

Cascade connection of filters, 70, 97, 279 
CD. See Compact disc 

Central lobe, of window, 203 
Chebyshev, P. L., 60, 258 
Chebyshev filter, 277 
Chowning, J., 306 



310 Index 

Circular array, 258-60 
Circular domain, 149-51, 153-55,220 
Clang tone, 18 
Closed-form design of filters, 242 
Comb filter, 101-104,291 
Compact disc (CD), 285-89 

capacity of, 285 
sampling frequency of, 285 

Companding, 54-56 
Complex number, 8- II 

angle of, 10 
ARGof, 10 
argument of, 10 
conjugate, 12 
magnitude of, 10 

Conjugate of complex number, 12 
Convolution, 186-87,221-24 

in frequency domain, 210 
Cook, P. R., I 04, 120 
Cooley, J. W., 164, 170, 171 
Cps (cycles per sec), 27 
Crochiere, R. E., 307 

D 
Dantzig, G. B., 260 
dB. See Decibel 
DC (direct current), as zero frequency, 8, 79, 180, 181 
Decibel (dB), 39, 52 
Decimation, 307 
Deczky, A. G., 281 
Delay 

as operator, 69-71 
of a phasor, 61 
phase, 116 

Delta function, 136, 145 
Derivative 

of a rotating vector, 8 

partial, 21 
Design of filters, 241-43 

allpass, 116-19 
closed-form, 242 
equiripple, 251 
feedback, 263-84 
feedforward, 241-62 
iterative, 242 
length estimate for feedforward, 253 
notch, 254-55 
plucked-string, 119-20 
reson, 90-92 
reverb, 290-95 
specification of, 246-47 

DFT. See Discrete Fourier Transform 

Difference equation, 93 
Digital filter, 56, 65-66 
Digital-to-analog (d-to-a) conversion, 226-28 

in CD player, 286 
oversampled, 286 

Dirac, P. A.M., 145 
Discrete Fourier Transform (DFf), 149-55 

asymptotic speed of, 156 
basis for, 152 
domain, 153-55 
forward, 152 
inverse, 152, 167-68 
matrix, 152 

Discrete-Time Fourier Transform (DTFf), 177, 221 
Distortion 

nonlinear, 121 
phase, 77 

Distributive law, 126 
Divide-and-conquer algorithm, 157-61 
Dolan, M. T., 282 
Dolph, C. L., 257,260 
Dolph-Chebyshev window, 215,258,260 
Down-conversion, 286 
DTFT. See Discrete-Time Fourier Transform 

D-to-a conversion. See Digital-to-analog conversion 
Dynamic range, 53-54 

E 
Elliot, L., 215 
Elliptic filter, 277 
Envelope, 17 
Equiripple design of filters, 251 
Euler, L., 12 
Euler's formula, 11-13 

F 
Fast Fourier Transform (FFf), 149, 162-67 

asymptotic speed of, 164 
decimation-in-time algorithm for, 162-64 
programming, 164-67 
use of, 197-217 

Feedback, in rock guitar, 121 
Feedback filter, 81-100 

design of, 263-84 
implementation of, 278-79 

Feedforward filter, 61-80, 241-62 
design of, 241-62 
form of, 243-45 
implementation of, 258-60 
length estimate for, 253 



prognunnring,258-60 
resolution of, 252 

Fettweis, A., 121, 122 
FFf. See Fast Fourier Transform 
Fibonacci, L., 195 
Filter, 55 

allpass, 113-19, 294 
analog, 56 
bandstop, 67 
bank of, 302-304 
Butterwonh, 264-71 
Chebyshev, 277 
choice of, 280-81 
comb, 101-104,291 
design. See Design of filters 
digital, 56, 65-66 
elliptic, 96-97, 277 
feedback,81-100,263-84 
feedforward, 61-80, 241-62 
FIR, 79, 99, 261 
half-band, 246 
IIR, 99, 100,282 
inverse comb, 77-78 
lowpass comb, 292 
notch, 254-55 
plucked-string, I 06-23 
poles of, 83 
quarter-band, 287 
reson, 89-96 
reverb, 290-95 
stability of, 82, 83-86 
transfer function, 70 
tunable, 295-97 
zeros of, 72 

Filter bank, 302-304 
Finite impulse response (FIR) filter, 79, 99,261 
FIR. See Finite impulse response filter 
Flanagan,J.L.,307 
Flowgraph, signal, 62 
FM. See Frequency modulation 
Formant synthesis, 146 
Fourier, J. B. J., 31 
Fourier series, 31, 38-39, 57, 128-39 

basis for, 129 
of square wave, 48, 130-33 
of triangle wave, 133-34 

Fouriertransform,l25,126,173-75,219-22,274-75 
Frequency, 4, 27 

beat, 14-17 
fundamental, 125 
instantaneous, 17 
Nyquist, 46 

radian, 27 
sampling,44 
units in digital case, 65-66 

Frequency content 
via OFT, 152 
via z-transform, 176 

Index 

Frequency modulation (FM), 298-301 
synthesis, 298-301 

Frequency response, 63 
Fundamental frequency, 125 

G 
Gauss, C. F., 170 
Gibbs, J. W., 145 
Gibbs phenomenon, 145 
Goedhart, D., 306 
Gold, B., 170,261,282 
Golden, R. M., 307 
Guitar 

H 

note of acoustic, 107 
rock, 121 

Half-band filter, 246 
design of, 247-49 

Hamming, R. W., 206 
Hamming window, 206-209 
Hann window, 216 
Harmonic motion, 4 
Harmonics of waveform, 38-39, 125 
Heideman, M. T., 170 
Heisenberg, W., 234 
Helmholtz, H. L. F., 18 
Helms, H. D., 260 
Herrmann, 0., 282 
Hertz, H. R., 27 
Hertz (unit of frequency), 27 
Heterodyning, 204, 295-97, 303-304, 308 
HomeBrew (by Paul Lansky), 121 

IIR filter. See Infinite impulse response filter 
Imaging, 229 
Implementation 

of feedback filter, 278-79 
of feedforward filter, 258-60 
of FFf, 164-67 

Infinite impulse response (IIR) filter, 99, 100, 282 
Inner product, 126 
In-place algorithm, for FFf, 164 
Instantaneous envelope, 17 

311 



312 Index 

Instantaneous frequency, 17 
Instantaneous nonlinearity, 55 
Interpolation, 307 
Inverse comb filter, 77-78 
Inverse DFf, 152, 167-68 
Inverse z-transform, 187-90 
Iterative design, 242 

of feedback filters, 263-64 
of feedforward filters, 241-62 

J 
Jacquinot, P., 215 
Jaffe, D. A., 119, 121, 122, 123 
Jayant, N. S., 58 
Johnson, D. H., 170 

K 
Kaiser, J. F., 79, 215,253, 261,280,282 
Kaiser window, 215, 261 
Karplus, K., 107, 120, 121, 122, 123 

L 
Lamb, H.,41 
Lansky, P., I, 121 
Laplace transform, 275, 283 
LeBraun, M., 58 
Length estimate, for feedforward filter, 253 
Lewis, P. A. W., 164, 170, 171 
L'Hopital, Marquis de, 216 
L'Hopital's rule, 216,232,239 
Linear phase, 77 
Linear programming, 67,247-49 
Lissajous, J. A., 14 
Lissajous figures, 14 
Lowpass comb filter, 292 
Lowpass/highpass transformation, 272-74 
Lucas, G., 14 

M 
Magnitude of complex number, 10 
Magnitude response, 63 
Margenau, H., 146 
McClellan, J. H., 79 
Merge son, 157-61 

asymptotic speed of, 159 
METEOR program, 67, 74, 79,247-49 
Mitra, S. K., 215, 261, 282 
Mode (of vibration), 29 
Moore, F. R., 17, 133 
Moorer, J. A., 292, 306, 307 
Morse, P.M., 41,54 

Mu-law companding, 58 
Murphy, G. M., 146 

N 
"Night Traffic" (by Paul Lansky), 121 
Node, of vibrating string, 29 
Noll, P., 58 
Nonlinear distonion, 121 
Nonlinearity 

in rock guitar, 121 
instantaneous, 55 

Nonhem cardinal, 211,215 
Notch filter, 254-55 
"Now and Then" (by Paul Lansky), 121 
Nyquist, H., 46, 230, 237 
Nyquist frequency, 46 
Nyquist theorem, 230-33 

0 
Oppenheim, A. V., 17, 193,261,282 
Onhogonal basis, 126, 127 

for DFf, 152 
for Fourier series, 129 
for z-transform, 175, 177-79 

Oversampling, 235-37, 285-89 

p 
Papoulis, A., 121, 146, 275 
Parallel connection of filters, 85 
Parks, T. W., 79, 261,282 
Parks-McClellan program, 74,79 
Parseval's theorem, 193, 195 
Panial derivative, 21 
Panial fraction expansion, 189-90 
Panials of note, 39 
Passband, 67 
Phase, linear, 77 
Phase delay, 116 
Phase distonion, 77 
Phase response, 63, 76-77 

of allpass filter, 116-19 
Phase shift, 76 
Phase vocoder, 302-304 
Phasor, 13-14 
Philips company, role in CD development, 285, 306 
Plucked-string filter, I 06-23 

design of, 119-20 
Poles, 83 

of Butterwonh filter, 267-70 
Power 

of signal, 51 
of speech signal, 54 



Prefiltering, 54-56 
Projection, 126 
Pulse train, 135-39 

Q 

Quantization, 43 
Quantizing, 51-53 
Quarter-band filter, 287 

R 
Rabiner, L. R., 170,261,282,307 
Rader, C. M., 282 
Rayleigh, Lord, 40 
Rectangular window, 201-204 
Recursion, 160 

forfFf, 162-64 
for merge sort, 160 

Reflection 
from end of string, 26 
from end of tube, 36 
in comb filter, 104 

Rejection, in stopband, 251 
Resolution 

of feedforward filter, 252 
of rectangular window, 201-204 
of telescope, 20 I 

Reson. See Resonator 
Resonance, 86-88 

in comb filter, I 04-1 OS 
of plucked-string filter, 111-13 

Resonator (reson), 89-96 
design of, 90-92 
electrical, 94 
filter equation, 89 
improved, 94-96 
transfer function, 89 

Response 
frequency, 63 
magnitude, 63 
phase, 63, 76-77 

Reverb. See Reverberation filter 
Reverberation filter (reverb), 290-95 

design of, 290-95 
Risset, J.-C., 58 
Rms. See Root-mean-square 
Roads, C., 58 
Rock guitar, 121 
Roizen-Dorrier, B., 215 
Root locus plot, 293 
Root-mean-square (rms), 51 

s 
Sampling, 43 

of phasor, 43-48 
of square wave, 48-50 

Sampling frequency, 44 
of CD, 285 

Saramiiki, T., 215 
Schaefer, R., 58 
Schafer, R. W., 17, 193, 261,282 
Schroeder, M., 306 
Second-order sections, 97 
Shannon, C. E., 238 
Shannon sampling theorem, 238 
Shuffling, for fFf, 166 

Index 

Side lobe, of window, 203,255-58 
Signal flowgraph, 62 

of allpass filter, liS 
of comb filter, 104, 291 
of feedback filter, 81 
of feedforward filter, 62, 69 
of lowpass comb, 292 
of plucked-string filter, 110 
of reverb filter, 292 

Signal-to-noise ratio (SNR), 52 
Simple harmonic motion, 4 
Simplex algorithm, 260 
Sinusoid, 3 
Smith, J. 0., 96, 99, 104, 119, 120, 121, 122, 123 
SNR. See Signal-to-noise ratio 
SONY company, role in CD development, 285 
"Sound of Two Hands" (by Paul Lansky), 121 
Specification, of feedfoward filter, 246-47 
Spectrogram, 210-15 
Spectrum, 49, 57 

of periodic signal, 129 
of square wave, 131 
shaping of, 142-44 
via OFf, 152 
via z-transform, 176 

Stability, 190-93 
of filter, 82, 83-86 

Standing wave 
incombfilter, 104-105 
in half-open tube, 35-38 
on string, 29-31 

Steiglitz, K., 79, 99, 146, 282 
Stikvoort, E. F., 306 
"Still Life with Piano" (by F. White), 306, 307 
Stopband, 67 
Strong, A., 107, 120, 121, 122, 123 
Subaliasing, 235, 236 
Subtractive synthesis, 146 

313 



314 Index 

Suen, C., 58 V 
Sullivan, C. R., 121 van de Plassche, R. J., 306 
Symmetry 

of filter coefficients, 76, 80, 243-45, 262, 263 
of inner product, 127, 14 7 
time-frequency, 177-78, 210, 219-24, 233-35 

Synthesis 

T 

additive, 142, 146 
FM, 298-301 
formant, 146 
subtractive, 146 
wavetable, 146 

Thielcke, G. A., 216 
Thiran, J.-P., 121 
THX 1138,14 
Time-frequency symmetry, 177-78,210, 219-24, 233-35 
Top-down algorithm, 160 

for FFf, 162-64 
for merge sort, 160 

Transferfunction, 70, 185-86 
of all pass filter, 115 
of comb filter, 101 
of feedback filter, 82 
of feedforward filter, 70 
of inverse comb filter, 77 
of plucked-string filter, Ill 
ofreson, 89 
of second-order section, 97 

Transformation 
bilinear, 275-78, 282 
lowpasslhighpass, 272-74 

Transition band, 67 
Triangular window, 216 
Tukey,J. W., 170 
Tunable filter, 295-97 
Tuning, of plucked-string filter, 119-20 

u 
Uncertainty Principle, 233-35 
Unit impulse signal, 179 
Unit step signal, 180 
Up-conversion, 286 

Vibrating column of air, 31-38 
Vibrating string, 24-31 
Vocoder, phase, 302-304 

w 
Waterfall plot, 213 
Wave equation, 22-24 
Waveshaping, 54, 58 
Wavetable synthesis, 146 
Welch, P. D., 164, 170, 171 
White, F., 306, 307 
Wilbraham, 145 
Window, 209-10 

Bartlett, 216 
Blackman, 216 
central lobe of, 203 
Dolph-Chebyshev, 215,258, 260 
Hamming, 206-209 
Hann, 216 
iterative design of, 255-58 
Kaiser, 215, 261 
rectangular, 201-204 
side lobe of, 203,255-58 
sliding, 211 
triangular, 216 

Winham, G. C., 146 

z 
Zero-order hold, 226 
Zeros, 72 

of Butterworth filter, 267-70 
z-plane, 71-74 
z-transform, 173-95 

basis for, 175 
forward, 177 
inverse, 176, 187-90 
of damped cosine, 183 
of damped sine, 183 
of damped step, 183 
of unit impulse, 179 
of unit step, 180 
table, 184 


	Cover
	Copyright
	Contents
	Preface
	1 Tuning Forks, Phasors
	2 Strings, Pipes, the Wave Equation
	3 Sampling and Quantizing
	4 Feedforward Filters
	5 Feedback Filters
	6 Comb and String Filters
	7 Periodic Sounds
	8 The Discrete Fourier Transform and FFT
	9 The z-Transform and Convolution
	10 Using the FFT
	11 Aliasing and Imaging
	12 Designing Feedforward Filters
	13 Designing Feedback Filters
	14 Audio and Musical Applications
	Index



