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Preface 

The present essay stems from a history of polyhedra from 1750 to 1866 
written several years ago (as part of a more general work, not published). So 
many contradictory statements regarding a Descartes manuscript and Euler, 
by various mathematicians and historians of mathematics, were encountered 
that it was decided to write a separate study of the relevant part of the 
Descartes manuscript on polyhedra. The contemplated short paper grew in 
size, as only a detailed treatment could be of any value. After it was completed 
it became evident that the entire manuscript should be treated and the work 
grew some more. The result presented here is, I hope, a complete, accurate, 
and fair treatment of the entire manuscript. While some views and conclusions 
are expressed, this is only done with the facts before the reader, who may draw 
his or her own conclusions. 

I would like to express my appreciation to Professors H.S. M. Coxeter, 
Branko Griinbaum, Morris Kline, and Dr. Heinz-Jiirgen Hess for reading the 
manuscript and for their encouragement and suggestions. I am especially 
indebted to Dr. Hess, of the Leibniz-Archiv, for his assistance in connection 
with the manuscript. 

I have been greatly helped in preparing the translation ofthe manuscript by 
the collaboration of a Latin scholar, Mr. Alfredo DeBarbieri. 

The aid of librarians is indispensable, and I am indebted to a number of 
them, in this country and abroad, for locating material and supplying copies. 
But the chief source of material has been the conveniently located Library of 
the U.S. Naval Observatory with its remarkable collection of mathematical 
and other scientific periodicals and rare books, extending back to the 17th 
century, which I have been privileged to use. The librarian, Mrs. Brenda 
Corbin, has been extraordinarily helpful and many times came to my rescue in 
locating material and obtaining copies. 

December, 1980 P.J. Federico 
Washington, D.C. 



vi Preface 

My husband had finished this book and it was in the hands ofthe publisher 
when he died January 2, 1982. My family and I wish to thank Mr. Walter 
Kaufmann-Buehler for arranging for its publication, Professor G.J. Toomer 
for his careful editing and criticism and both Professor Toomer and Mrs. 
Janet Sachs for the final preparation of the manuscript. I also wish to thank 
my daughter, Joan Federico Kraft, for her assistance. 

Bianca M. Federico 



Editor's Note 

Since I had read two earlier drafts of this work, it naturally fell to me to 
undertake that final revision which the author's death had prevented him from 
carrying through. I have confined myself to rearranging and presenting the 
material in a more accessible form, revising the references, and correcting any 
typographical errors and slips that came to my attention. The plan of the 
work, the factual content, and the opinions expressed are all those of the 
author. 

I am grateful to Mrs. Federico for her cooperation and help in providing 
access to her husband's materials. I thank Dr. Heinz-Jtirgen Hess and the 
Niedersiichsische Landesbibliothek for permission to reproduce the relevant 
pages of Leibniz's manuscript copy of Descartes' work. I acknowledge 
gratefully the generous permission of Mr. Ioannes Papadatos to reproduce 
Figs. 24 to 36 from his book on the Archimedean solids. I thank O. 
Neugebauer for drawing several of the other figures. I am especially grateful to 
Janet Sachs for her very able editorial assistance. 

G.J. Toomer 
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Part One 
The Man useri pt 



1 Introduction 

This essay presents the text and translation, with comments, of a Latin 
work of Descartes which exists only in a copy, made by Leibniz, but not 
known until 1860. The manuscript treats two subjects and is notable in several 
respects, aside from being a work of Descartes. 

The first part of the manuscript attempts a general treatment of polyhedra, 
a somewhat neglected subject which theretofore had been considered mainly if 
not solely by treatment of specific individual solids, primarily the regular and 
semiregular solids and a few others. As to content, it contains some valid 
general results, including a theorem of intrinsic significance in solid geometry 
which was not known to geometers before the Leibniz copy was published, 
and from which Euler's famous polyhedron theorem can be derived (but by 
the aid of concepts not existing until quite some time later). In fact, the 
manuscript also contains a formula which can be considered an analogue of 
Euler's theorem and from which the latter can be derived as a simple corollary, 
but again only by means of a later notion. However. it does not, as contended 
or asserted by some, disclose Euler's theorem itself, either verbally or by 
formula. nor is there any intimation in the manuscript that Descartes was, or 
could have been, aware of that theorem. These conclusions will be evident 
from the manuscript itself and the discussion. 

While the work of Descartes was apparently the first attempt at a general 
treatment of polyhedra, it was unknown for nearly 200 years and the first 
published general treatment was that of Euler, who was unaware ofthe earlier 
work. in two papers of 1750 and 1751. Comparison of the different studies of 
the two famous mathematicians offers some interest from the standpoint of 
the psychology of mathematical discovery. The basic discovery of Descartes 
was arrived at by analogy with plane figures, whereas that of Euler came about 
by induction from the solids themselves. 

The second part of the manuscript considers figurate numbers correspond­
ing to the regular and semiregular polyhedra and introduces a class offigurate 
numbers unknown to the Greeks. 



4 I. Introduction 

The date the original manuscript was written by Descartes is not known; it 
most likely was before 1637, the date of the Methode, and a date of circa 1630 
is suggested here. It shows the thinking of Descartes on several subjects and 
may very well represent discarded applications of his Methode l in an 
endeavor to develop a suitable mathematical example to include with the 
Methode. 

Part One of the present essay will discuss the manuscript as such. In Part 
Two, Section 5 Will give some geometrical background for Sections 6 and 7, 
which present the translation of the first part and comments. Section 8 reviews 
the Euler papers on polyhedra and Section 9 concludes with a comparison of 
Descartes and Euler, with a note reviewing statements of various authors on 
the same topic. In Part Three, Section 10 gives some Greek number theory 
background for Sections II and 12 which present the translation of the second 
part of the manuscript and comments. 



2 History of the Manuscript 

A few dates and events in the life of Descartes will be noted, before giving 
an account of the history of the manuscript, a description, and a discussion of 
its date. 

Descartes was born March 31, 1596, at La Haye, near Tours, France. When 
he was eight years old he was sent to the Jesuit school at La Flt:che. In 1612 he 
went to Paris to continue his education, which included mathematics, and 
then later to the University of Poitiers, where he received his degree in law in 
1616. Law was the profession of his father and older brother, but he was not 
interested in it and became a soldier instead. In 1618 he went to Holland to 
serve as an officer in the army of the Prince of Orange. There he met Isaac 
Beeckman, a Dutch philosopher, mathematician and physicist, and a 
friendship developed which continued many years. Beeckman brought his 
friend up-to-date with mathematical developments,2 then or later. The next 
year he served in the army of the Duke of Bavaria and was stationed at Ulm 
during the winter of 1619-1620. Here he met Johann Faulhaber, a German 
mathematician. He did not stay in Germany long and after some years of 
travel settled in Paris in 1626. After visiting Holland in 1628, he moved there 
in 1629 and remained until 1649 with only a few visits back to France. The 
Discours de fa Methode, including the Geometrie, was published in 1637. In 
September 1649 he went to Stockholm at the repeated invitation and urging of 
Queen Christina of Sweden. The climate and the conditions there proved too 
much for his health and he died February II, 1650. The belongings of 
Descartes were taken care of by Chanut, the French ambassador at 
Stockholm and a friend of his. An inventory was made of manuscripts which 
were not personal, and this collection was released to Chanut by the heirs. 
Item M of the inventory reads, HM. Environ seize feuillets in octavo soubs ce 
titre [about sixteen leaves in octavo under this title]: Progymnasmata de 
solidorum elementis." In 1653 Chanut sent the manuscripts to Clerselier, his 
brother-in-law and also a friend of Descartes. The box containing the 
manuscripts was transhipped at Rouen to a boat going to Paris. When it 
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reached Paris the boat was wrecked; the box of manuscripts fell into the river 
and was not recovered until three days later, at a distance from the site of the 
wreck. The papers had to be separated and hung to dry on cords in various 
rooms about the house.3 

Clerselier published part of the papers, notably in three volumes of letters 
in 1657, J659 and 1667 and in another work of 1664. Others remained 
unpublished, even though he had indicated in the preface of 1667 that a 
volume of fragments would be published. The unpublished papers were made 
available to others by Clerselier and references to a few of them appear in 
some contemporary works. Clerselier died in 1684. 

Leibniz was in Paris in 1675-1676, and before leaving to enter the service of 
the House of Hanover (he was a lawyer by profession) he made copies of 
various unpublished manuscripts in the hands of Clerselier, including the De 
Solido rum Elementis. in 1676. 

The original Descartes manuscript disappeared without being published, 
and has never been found. The Leibniz copy also disappeared and was 
unknown until it was found nearly 200 years after it had been made. It was 
published in 1860 after it was discovered by Comte Foucher de Careil among a 
collection of uncatalogued Leibniz papers in the Royal Library of Hanover. 
He was then actively seeking unpublished Descartes manuscripts, which he 
published in his Oeuvres inedites de Descartes. 4 An account ofthe manuscripts 
and his work in verifying them is given in the preface to that edition. While he 
translated other papers, he was unable to translate the De Solidorum 
Elementis. 

The significance of the manuscript was immediately pointed out by E. 
Prouhet in a brief note in the Comptes rendus5 (which I will refer to as Prouhet 
I). He followed this with a commentary and a French translation in the Revue 
de {'Instruction pub/ique6 which I will refer to as Prouhet II. C. Mallet, in a 
review of the Foucher de Careil collection,' had severely criticized the edition 
of the Latin text, which on its face was quite corrupt; it obviously contained 
omissions, incorrect readings of words, misplaced punctuation and passages 
with no meaning. Mallet questioned whether the corruptions were due to the 
manuscript itself or to bad printing and hasty proofreading; if the former, 
Foucher de Careil should at least have warned the reader and could even have 
supplied some notes. Several examples of unintelligible passages were given, 
with suggestions for their correction. However, Foucher de Careil was not a 
mathematician and deserves great credit for discovering and publishing the 
manuscript. Prouhet tried to straighten out what he could in his translation 
and commentary and did quite a good job with the inadequate material 
available to him. Some correspondence by Mallet and Prouhet, discussing 
several unintelligible and obscure passages, followed in the same journal.8 

Thirty years later, in 1890, Vice-Admiral Ernest de Jonquieres published a 
memoir containing a reprinting of the Latin text as published by Foucher de 
Careil, together with a "revised and completed" Latin text as he thought it 
ought to read, with a French translation, commentary and notes.9 He knew of 
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Prouhet I but he was unaware of Prouhet II with its translation. While most of 
his readings agree with Prouhet, some do not, but he explained some things 
which Prouhet did not. His translation considerably amplifies the text. 

In preparing to edit the De Solidorum Elementis for the standard edition of 
the collected works of Descartes, one of the editors, Charles Adam, traveled to 
Hanover in 1894 and studied the Leibniz manuscript together with his brother 
Henri. The preliminary text which they then established was later improved 
by further study of the manuscript by A. Meillereux, a pupil of Adam, in 1897, 
and particularly by J. Sire, who worked at Hanover, cataloguing Leibniz's 
papers for several years, thus becoming familiar with his handwriting, and 
revised Adam's text in 1906. The final result was published in 1908 in 
Descartes, Oeuvres. Vol. 10, pages 265-276, with a folding plate. lo However, 
further inspection of the manuscript (which was sent to Nancy for the editors 
of the Oeuvres) revealed a number of errors in that edition: these were 
corrected in Oeuvres, Vol. II, pages 690-692. In the second edition of Vol. 10 
of the Oeuvres, pages 276 and 686-689, P. Costabel has added corrections 
based on his own examination of the manuscript. I I 

An Italian translation of the 1908 version was published in 1920 by A. 
Natucci. I have not seen any French translation of the corrected text, or any 
translation of it into any language other than Italian. 



3 Description of the Leibniz Copy 

The Leibniz copy of the Descartes manuscript is in the Niedersachsische 
Landesbibliothek at Hanover.i2 It is written on a double folio sheet folded in 
two, making four folio pages measuring a little over 20 X 30 cm (8 X 12 in.). 
Page I, which starts with the title, is completely filled with writing, from'very 
close to the top to I cm from the bottom. Page 2 begins an entirely different 
topic without any warning mark or word, with the page not entirely full; it has 
two small figures inserted in the text and a number of closely packed small 
tables. Page 3 continues the subject of page 2 and the writing occupies less 
than 60% of the sheet; it ends with a large closely packed table (which is 
printed on a folding plate in the Oeuvres). Page 4 is blank. The handwriting is 
small and the lines are crowded; in many places it is quite difficult to make out 
letters or words. A photographic copy of the manuscript is reproduced pp. 
I I -2 I. 

In view of the fact that two different subjects are treated Prouhet and the 
Oeuvres divide the paper into two parts, Part I and Part II. 

A note by P. Costabel in the second edition of the Oeuvres l3 states that it is 
not certain that Leibniz had entirely reproduced the original manuscript. 
There is evidence in the manuscript itself of possible omissions of a word or 
phrase here and there, a full sentence, and headings and repeated terms of 
tables, as will be seen in my commentary (Sections 6 and II). 

Nothing is known concerning the original manuscript except its title and 
that there were about sixteen octavo leaves. Since neither the size of these 
leaves is known, nor the size of the handwriting and spacing of the lines, nor 
the spacing of the tables, no comparison can be made with the known copy. 
But an inference that the copy contains practically all of the original is not 
precluded. If a sheet the same size as the folio pages of the Leibniz manuscript 
were folded twice to form octavo pages, their size would be approximately 10 
X 15 cm (about 4 X 6 in.). An octavo of Descartes' time would probably be 
close to this size. 14 These are rather small sheets; with handwriting not as 
small, lines not as close, and tables not as crowded, as in the copy, the text of 
the Leibniz copy could reasonably have occupied most of the original sixteen 
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octavo pages. I am inclined to the view that Leibniz copied nearly all of the 
original manuscript, with only a few incidental or accidental omissions. He 
had a number of manuscripts of Descartes and others and even, at a later date, 
considered the publication of a collection. It seems hardly likely that he would 
have taken liberties with the texts. 

The transcription of the text of the manuscript follows as part of this 
section. 

To sum up briefly what was stated above concerning the standard text in 
the Oeuvres of Descartes, the Latin text published in Vol. 10 in 1908 
represented a great improvement over that of the editio princeps. Foucher de 
Careil's corrupt version of 1860. The editors made a number of corrections to 
the 1908 text in Vol. II, published in 1909, and P. Costa bel added some 
further corrections in his notes to the second edition of Vol. lOin 1966. The 
result of combining the text as printed in Oeuvres, Vol. 10 with these two sets 
of corrections will be referred to as the Oeuvres text. The text given here, 
although it owes much to the latter, has been established on the basis of an 
independent reading of photographs of the manuscript, and adopts several 
readings which are different from the Oeuvres text. The reasons for the 
differences will become clear from the textual notes in this section and the 
commentary in Sections 6 and II (to which discussion of the meaning of the 
text is postponed). 

As in the Oeuvres, the two parts of the manuscript are numbered I and II. 
In addition, the paragraphs have been numbered throughout for convenience 
of reference. There is little or no paragraphing in the manuscript, but the 
paragraphing here follows that of the Oeuvres, with a few changes. Notably, 
the order of Paragraphs 20 to 22 has been reversed from that of the manuscript 
and the Oeuvres, for the reason explained in Section II, n. III, p. 131. Also, 
Paragraphs 23 to 29 are somewhat confused in the manuscript and have been 
rearranged. In our arrangement each numbered paragraph except 28 consists 
of a description and a corresponding table; Paragraph 28 in the manuscript 
lacks the description, but this has been supplied by me, following Prouhet and 
de Jonquieres. The rearrangement is shown by a table of the order in 
manuscript; 23T and 23 D refer to the table and description in Paragraph 23 as 
numbered here, etc. 

Table 

29T 

23T 
24T 
25T 
26T 
27T 
28T 

Description 

blank 
23D written across the page 

written below on the left 
24D written side by side 
25D written side by side 
26D written side by side 
27D written side by side 
29D written side by side 



10 3. The Leibniz Copy 

As can be seen from this list, the first written table has been moved to the end 
and the last written description has been moved down to go with it,leaving the 
penultimate table (28) as the one without the description. The order here 
differs from that in the Oeuvres in that the last two paragraphs are 
interchanged. Thus our order matches that of the entries in the large table at 
the end of the manuscript. 

Some annotations by Leibniz in the lower part of the left margin of BI. I 
verso have been inserted (as Paragraphs 23a and 28a) next to that part of the 
text to which they refer. Paragraphs 33a and 34 are also annotations of his to 
the large table, the first written in the blank space in column 5, with a lead line 
going to the second formula in line 10, column 5 of the table,15 the second 
written below the table. 

In the large table (p. 28) the lines of the table have been numbered for 
convenience of reference. 

In the text, following standard editorial conventions, we denote additions 
to the manuscript by angled brackets, and words to be deleted from the 
manuscript by square brackets. Emendations are indicated by italics. Our 
numbering of the paragraphs and lines of the tables is also done in italics. In 
the apparatus at the foot of the text 'cod.' refers to the Leibniz manuscript, 
'Oeuvres' to the text of Oeuvres de Descarles (including the later corrections, 
as explained above). 

On the following pages (11-21) are reproduced in facsimile those pages of 
the manuscript which have writing on them. First we give a reproduction of 
each of the three pages at about 50% of the size of the original and then again 
of each page (divided in thirds), the same size as the original. 



Facsimile of the Manuscript II 

Manuscript Page I (Folio I recto) 
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Manuscript Page 2 (Folio I verso) 
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Manuscript Page I Middle 
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Manuscript Page 2 Top 
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Manuscript Page 2 Middle 
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Manuscript Page 2 Bottom 
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Progymnasmata de Solidorum Elementis 
excerpta ex Manuscripto Cartesii 

1 Angulus solidus rectus est qui octavam sphaerae partem complectitur, 
etiamsi non constet ex tribus angulis planis rectis. Omnes autem anguli 
planorum, ex quibus circumscribitur, simul sumti, aequales sunt tribus rectis. 

2 Sicut in figura plana omnes anguli externi, simul sumti, aequales sunt 
quatuor rectis: ita in corpore solido omnes anguli solidi externi, simul sumti, 
aequales sunt octo solidis rectis. Per angulum externum intelligo curvaturam 
seu inclinationem planorum ad invicem, quam metiri oportet ex angulis planis 
angulum solidum comprehendentibus. Nam illa pars qua aggregatum ex 
omnibus angulis planis unum angulum solidum facientibus, minus est quam 
quatuor anguli recti planum (facientes), designat angulum externum solidum. 

3 Si quatuor anguli plani recti ducantur per numerum angulorum soli­
dorum et ex producto tollantur 8 anguli recti plani, remanet aggregatum ex 
omnibus angulis planis qui in superficie talis corporis solidi existunt. 

4 In,pyramide sunt semper tot facies quot anguli. In columna media pars 
numeri angulorum solidorum minor est binario quam numerus facierum. In 
pyramide duplicata media pars numeri facierum minor est binario quam 
numerus angulorum. Sunt et alia corpora in quibus licet duo extrema 
imaginari et plures zonas. Sunt ad minimum triplo plures anguli plani quam 
solidi in uno corpore. Si tollatur binarius ex numero angulorum solidorum 
qui in corpore aliquo continentur, et residuum ducatur per binarium, fit 
maximus numerus facierum. Si vero dividatur numerus angulorum per 
binarium, si quidem sit numerus par, sin minus illi prius addenda erat unitas 

Title: Manuscripto: Mso. cod. 
*1 planorum: plani cod., corr. Federico 
*2 seu: & Oeuvres, but seu is clear in cod. facientes add. Prouhet II 
M erat: sic cod. erit Oeuvres que del. Oeuvres 



Transcription ~~3-12 23 

ut dividi possit, ac postea quotienti addatur binarius, erit[que] numerus minor 
facierum. Est maxima reciprocatio inter facies et angulos solidos. 

4a tetraedron 
cubus 
octaedrum 

5 Pyramides omnes aequilaterae in sphaera describuntur. 

6 Coni rectanguli cuius [cui us] scilicet altitudo aequatur semidiametro 
basis, superficies convexa se habet ad basin ut J2 ad unitatem, quemad­
modum lineae simplices. 

7 Sic demonstratur non plura esse quam 5 corpora regula ria: quia si 
ponatur a pro numero angulorum solidorum, et 1;It pro numero facierum, 
debet dividi posse 

2a-4 et 2)L-4 
lie. la 

ita ut nulla occurrat fractio; alioquin enim certum et evidens est corpus 
regulare esse non posse. Hoc autem inveniri tantum potest, si a sit 
4./.6./8./12./20, et pariter I~ sit 4/8/6/20/12: unde generantur 5 corpora 
regularia. 

8 Rhomboeides omnes et pyramides sphaeram circumscribunt. 

9 Ut cognoscamus utrum aliquod corpus solidum possit in sphaera 
describi, primo sciendum est omnes eius facies necessario in circulo describi 
posse. Quo posito, si tres angUli unius faciei aequaliter distent a centro 
sphaerae, certum erit etiam alios omnes eiusdem faciei aequaliter a centro 
sphaerae distare; ac insuper ex consequenti, angulos omnes vicinarum 
facierum, qui simul concurrunt cum illis prioris faciei in iisdem angulis solidis. 

10 Dato aggregato ex omnibus angulis planis qui in superficie alicuius 
corporis solidi existunt, invenire quot in eodem corpore solidi anguli existant. 
Addantur 8 numero dato, et productum dividatur per 4: residuum erit 
numerus quaesitus, ubi si fractio occurrat, certum est nullum tale corpus esse 
posse. 

11 Dato aggregato ex omnibus angulis planis et numero facierum, 
numerum angulorum planorum invenire. Ducatur numerus facierum per4, et 
productum addatur aggregato ex omnibus angulis planis: et tot ius media pars 
erit numerus angulorum planorum. V.g., aggregatum ex omnibus angulis 
planis est 72, numerus facierum 12, cuius quadruplum 48 additum cum 72 
facit 120, cui us media pars est 60: ergo in tali corpore sunt 60 angUli plani. 

12 Sunt semper duplo plures anguli plani in superficie corporis solidi quam 
latera; unum enim latus semper commune est duobus faciebus. 

§6 cui us del. edd. 



24 Transcription §§13-19 

13 Si omnes facies dicantur aequalem numerum (angulorum') planorum 
continere, ergo numerus angulorum dividi poterit per numerum facierum 
sine fractione, et quotiens erit numerus angulorum unius faciei. Hinc facile 
cognoscetur, ex numero angulorum planorum et numero facierum solum 
cognitis, quot anguli in una facie esse debeant. V.g., si sint 5 facies et 18 
anguli plani, ergo ex illis faciebus vel2 erunt triangulares et 3 quadratae, vel3 
triangulares una quadrata etaltera pentagona, vel denique una hexagona et 4 
triangulares. Sed quia in eodem corpore sunt 6 anguli solidi, hinc non potest 
ullum tale corpus existere, nisi cui us sint ... 

14 Triplicem adverto in angulis solid is aequalitatem aut inaequalitatem: 
aequales dicuntur qui aequali numero angulorum planorum comprehendun­
tur; aequales item qui aequalem inclinationem continent, quo casu dicemus 
angulos externos sive incIinationis (aequales esse), et priores dicemus 
aequales arithmetice; ac denique maxime proprie aequales dicuntur, qui 
eandem partem sphaerae comprehendunt, et dicentur capacitate aequales. 

15 Angulorum solidorum inclinatione aequalium ilIe capacitate maior est, 
qui arithmetice exuperat; et omnium capacissimus est angulus coni. 

16 Ponam semper pro numero angulorum solidorum a et pro numero 
facierum ¢. Aggregatum ex omnibus angulis planis est 4a - 8, et numerus ¢ 
est 2a-4, si numerentur tot facies quot possunt esse triangula. Numerus item 
angulorum planorum est 6a - 12, numerando scilicet unum angulum pro 
tertia parte duorum rectorum. Nunc si ponam 3a pro tribus angulis plan is qui 
ad minimum requiruntur ut componant unum angulum angulorum solid or­
urn, supersunt 3a- 12, quae summa addi debet singulis angulis solid is iuxta 
tenorem quaestionis, ita ut aequaliter omni ex parte diffundantur. Numerus 
verorum angulorum planorum est 2¢ + 2a-4, qui non debet esse maior quam 
6 a - 12; sed si minor est, excessus erit + 4a - 8 - 2¢. 

17 Describi possunt Rhomboeides in sphaera cuiuscumque quantitatis, 
sed non aequilatera. 

18 Omnium optime formabuntur solida per gnomones superadd it os uno 
semper angulo vacuo existente, ac deinde totam figuram resolvi posse in 
triangula. Unde facile agnoscitur omnium polygonalium pondera haberi ex 
multiplicatione trigonalium per numeros 2./3./4./5./6, etc., et ex producto si 
tollantur 1./2/3/4 radices, etc. 

19 Ut: Tetragonalium pondus fit ex t.} + t:le per 2: fit ·L} + t~, unde 
sublata l.?e fit I~; item per 3 ex producto tollendo 2<~), fit pondus 
pentagonalium, etc. 

§13 angulorum add. Oeuvres. Cod. has deleted word after planorum 
sint .. . sic cod., indicating a lacuna; sint 2 triangulares facies et 3 quadratae suppl. Prouhet II 
§14 qui (bis): quae cod., corr. Oeuvres aequales esse supp/. Prouhetll, de Jonquieres 
§19 2()t')suppl. Federico 



Transcription §§20-23 25 

20 Ita etiam polygonales regulariter fieri debent: 

R-A, 0 R-A, 0 R-A, 0 R-A, 0 
1-0, I 2-1, I 3-2, I 4-3, I 
2-0, 3 4-1, 4 6-2, 5 8-3, 6 
3-0, 6 6-1, 9 9-2, 12 12-3, 15 
4-0, 10 8-1, 16 12-2, 22 16-3, 28. 

21 Quod SI 1maginaremur figuras istas ut mensurabiles, tunc unitates 
omnes intelligerentur esse eiusdem rationis ac figurae ipsae: nempe in 
triangulis unitates triangulares; pentagona metiuntur per unitatem pen­
tagonam etc. Tunc eadem esset proportio plani ad radicem quae est quadrati 
ad suam radicem; et solidi quae est cubi: ut si radix sit 3, planum erit 9, 
solidum 27, etc., V.g. Quod etiam valet in circulo et sphaera aliisque omnibus. 
Si enim unius circuli circumferentia sit triplo maior altera, eiusdem area(m) 

continebit novies. Unde animadvertis has pro-
.. ,. ~ gressiones nostrae matheseos,~, J- ' C(., etc., 

a ~ non esse alligatas figuris lineae, quadrati, cubi, 
sed generaliter per illas diversas mensurae species 
designari. 

22 Quinque corpora regularia, simpliciter ut per se spectantur, formantur 
per additamentum gnomonis, ut superficies fuerant formatae: 

Tetraedronales Octaedronales Eicosaedron 

F-R+A, 0 F- R+A, 0 F R A, 0 
1-0+0, I 4- 4 +1 I 15-20+6, 
3- 0+0, 4 12- 8 +1, 6 45-40+6, 12 
6- 0+0, 10 24-12 +1 , 19 90-60+6, 48 

10- 0+0, 20 40-16 +1, 44 150-80+6, 124 

Cubici Dodecedron 

F R A, 0 F R A, 0 
3- 3 +1, 9-18+10, I 

12- 6 +1, 8 45-36+10, 20 
27- 9 +1, 27 108-54+10, 84 
48-12 +1 , 64 198-72+10, 220. 

23 Corporis quod constat 4 hexagonis et 4 triangulis, latera sunt 18, anguli 
12, facies 8. Igitur huius gnomon constat 2 hexagonis et tribus triangulis 
faciebus, minus sex radicibus, + 2 angulis: 

§20 Heading, 0: Oeuvres prints this, here and throughout (§§ 22-24) as a capital O. Sense 
demands that it be 'zero', and that is what is in the manuscript. 
§20.21,22 In the manuscript these paragraphs appear in the order §22, §21. §20. Reversed by 
Federico. See Section II n. III, p. 131. 
*21 area(m): area cod .. corr. Federico. 
§22 Dodecedron. sic cod .. Dodecadron Oeuvres 



26 

Gnomon 

Transcription §§23-26 

F+ F- R+A, 0 
3+ 2- 6+2, I 
9+12-12+2, 12 

18+30-18+2, 44 
30+56-24+2, 108 
45+90-30+2, 215. 

23a Horum autem differentias ita definiemus, prioris I, I 

II \ 10 

32\ 21 

64 - 32 

107 \\ 43 

161 - 54. 

24 Corporis quod constat 8 triangulis et 6 quadratis faciebus, latera sunt 
24. anguli 12 et facies 14. Et huius gnomon constat 6 triangulis et 4 quadratis 
faciebus, - 14 radicibus, + 5 angulis: 

Gnomon 
F+ F- R+A, 
6+ 4-14 + 5, 

18+16-28 + 5, 
36+36--42+5, 
60 +64 -56 + 5, 

o 
I 

12 
47 

120 
(245). 

25 Corporis quod constat 8 hexagonis et 6 quadratis faciebus, latera sunt 
36, anguli 24 et facies 14. Huius gnomon habet 6 hexagonas et 5 quadratas 
facies, minus 23 radices, + 13 angulos: 

Gnomon 6 + 5 - 23 + 13, 
36 + 20 - 46 + 13, 24 
90 + 45 - 69 + 13, 103 

168 + 80 - 92 + 13, 272. 

26 Corporis quod constat 8 triangulis et 6 octangulis faciebus, latera 36, 
anguli 24, facies 14. H uius gnomon habet 4 octagonas et 7 triangulares facies, 
minus radices 20, plus angulos 10: 

§24 24: 36 cod.; 12: 24 cod" ('orr. Prouhet II. de Jonquieres 



Transcription §§26-30 27 

7 4 20 10, I 
21 32 40 10, 24 
42 84 60 10, 100 
70 160 80 10, 260. 

27 Corporis quod constat 18 quadratis et 8 triangulis, latera sunt [latera 
sunt] 48 et anguli 24 et facies 26. Huius autem gnomon constat 15 quadratis et 
7 triangulis faciebus, - 37 radicibus, plus 16 angulis: 

7 15 37 
21 60 74 
42 135 III 
70 240 184 

16, I 
16, 24 
16, 106 
16, 284. 

28 (Corporis quod constat 12 pentagonis et 20 hexagonis faciebus, latera 
sunt 90, anguli 60 et facies 32. Huius gnomon habet II pentagonas et 18 
hexagonas facies, minus 76 radices, plus 48 angulos: i 

II 18 
55 108 

132 270 

76 48, 
152 48, 
228 48, 

I 
60 

282. 

28a Qui ad sinistrum latus lineae characteres in Mso elisi et dubii erant. 
(Neque hic gnomon cum numeris convenit ut in prioribus.) 

29 Corpus ex 20 triangulis et 12 pentagonis: latera 60, anguli 30, (facies 32), 
et huius gnomon habet 18 triangula(siet 10 pentagonas facies, minus radices 
48, plus 21 angulis: 

18 + 10 - 48 + 21, I 
54 + 50 - 96 + 21, 30 

108 + 120 - 144 + 21, 135. 

30 Termini algebraici aequales istis numeris figuratis inveniuntur ducendo 
exponentem faciei +t~ per t ~+ t, deinde per numerum facierum; hocque 
toties faciendo, quot sunt diversa genera facierum in dato corpore; deinde 
producto [producto] addendo vel tollendo numerum radicum ductum pert a. 
+t;le, et numerum angulorum ductum per lle. 

§28 Suppl. Federico,following Prouhet II; similarly de lonquieres 
132: 152 cod .• Oeuvres; corr. Federico 
§29 facies 32 supp/. Prouhet II 
triangula cod., triangulas Oeuvres 
In the manuscript this table is after §21: transferred here by Prouhet II, de lonquieres 
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Transcription §§31-34 29 

31 Ut si quaerantur termini adaequales numeris figuratis qui repraesentent 
corpus ex 20 triangulis et 12 pentagonis, quoniam gnomon huius corporis 
constat 18 triangularibus faciebus et 10 pentagonis, minus 48 radicibus, +21 
angulis, primo addot Ilnumerot ~ +t)e, qui est exponens faciei triangularis, 
et productum, nempet}- + 1;1t, duco pertll+t: fittC{+i~+i~, quod 
duco per 18 et fit 3 t(.+ 9}+ 61l. 

32 Deinde addo etiam t)enumero +3-- til, qui est exponens faciei 
pentagonalis, et fitt~, quo ducto perfil ++, fit tet +t~; et deinde per 10, 
fit 5et + 5}; quod si iungatur cum numero praecedenti, fit 8 C{ + 14 ~ + 6)t. 
U nde si tollatur numerus radicum 48 ductus per t} + t)e, nempe 24}- + 
24;1e, fit 86(.- 10 3- - 18;2(.; cui si addatur 21~ propter 21 angulos, fit 8«.-
10 j.. + 3;t, numerus algebraicus quaesitus. 

33 Denique pondera omnium 14 solidorum prout imaginamur ilia oriri ex 
progressionibus arithmeticis: 

(Large table: see p. 28) 

33a .J~- 6J2 
nescio cur 

34 (Alio atramento ascriptum erat) Supersunt duo corpora, unum ex (6 
octogonis\ 8 hexagonis et 12 quadratis, aliud ex 30 quadratis, 12 decag. et 
20 hexag. 

031 adaequales: abaequales cod., corr. Oeuvres 
6~: sic cod .. correctly; 'on lit 5 ou 6', Oeuvres X p. 692 
032 pe.+t:t~+ I J-cod., corr. de Jonquieres 
034 6 octogonis suppl. Prouhet II 



4 Date of the Original Descartes Manuscript 

While the date of 1676 for the Leibniz copy is known, the date of the 
manuscript of Descartes is not known. 

Milhaud ascribes the manuscript to the winter of 1619-1620 as a "very 
probable" date on the basis of the contents of Part 11.16 This part is concerned 
with determining the formulas for polyhedral numbers, analogues of the 
figurate numbers in the plane. The large table in Part II of the manuscript 
gives the formulas, and other data, for the polyhedral numbers corresponding 
to fourteen polyhedra, the five regular solids and nine semi regular solids. 
Descartes called the formula the weight (pond us) and the number along one 
side of a face the "radix. "The latter was the base for the powers in the formulas. 

The German mathematician Faulhaber, whom Descartes met at Vim, was 
a devotee of figurate numbers. He had published a work on the subject with 
the title "Numerus figuratus sive Arithmetica analytica arte mirabili inaudita 
nova constans," in 1614. According to Milhaud, Faulhaber had a table with 6 
polyhedral numbers and uses the same terms, "pondus" and "radix," used by 
Descartes. It is clear that Descartes had a high opinion of Faulhaber. 

As has been stated on page 5, Descartes was at Vim during the winter of 
1619-1620. This was an important period in his life; he did a great deal of 
thinking then, the nature of which is recounted in, and forms the basis of, the 
Methode. He met Faulhaber and undoubtedly his own work on polyhedral 
numbers was prompted or suggested to him by Faulhaber or Faulhaber's 
work. Milhaud further states that the resemblance in the terminology used by 
both men is sufficient to fix an approximate date. He asks, "Is it not 
reasonable that, from their first meetings, Faulhaber, full of enthusiasm about 
the subject of his works, would have talked to Descartes about it, and that the 
latter would have concerned himself with the same problems?" But not much 
weight can be given to both using the word "radix," as this term was 
commonly used for the unknown quantity in an algebraic expression. 
Furthermore, Milhaud had a misconception of the content of Faulhaber's 
work. 17 



4. Date of Descartes' Manuscript 31 

But this reasoning only gives an earliest possible date; the manuscript may 
well have been written at a later time. The Oeuvres include the manuscript in a 
group of "Opuscules de 1619-21." No reason is given but presumably the 
editors followed the same line of argument as Milhaud did later. 

A date before which the manuscript was (in all probability) written can be 
derived from the manuscript itself. Three peculiar symbols appear which may 
be seen in our reproduction of the manuscript, p. 17. The printed forms of 
these symbols as given by Clavius l8 are It, ~, ct. Foucher de Careil did not 
know what they were and printed the first one as 4 (and sometimes as a 2), the 
second as 3 and the third one as 4; his transcriptions are close to the cursive 
forms in the manuscript. Prouhet II correctly surmised that they were "cossic" 
characters representing the unknown or the quantity being considered, its 
square, and its cube respectively. De Jonquieres, who had not seen Prouhet II 
and worked only with the Foucher de Careil text, stated that the numbers were 
secret signs utilized by Descartes to conceal the information, comparable to 
the practice of a century earlier of some mathematicians announcing a 
discovery by a cryptic statement or cipher; he himself had fathomed their 
significance. Finally Charles Adam and his collaborators, in their investiga­
tions devoted to establishing the text for the Oeuvres, confirmed that these 
were indeed cossic symbols like those of the 1608 Algebra of Clavius; they 
were also found in other early manuscripts of Descartes. 19 

The first half of the 17th century was a period of transition from literal 
algebra to symbolic algebra. In the former the unknown quantity and its 
powers, and the operations in an equation would be stated in words, or 
abbreviations, or initial letters of the names. Thus the unknown would be 
referred to as "cosa" (the thing) or "coss" (in German and English, hence 
algebra was the "cossic art"), its square as "zenso" or "zensus," and its cube as 
"cubus" (there were variations, and the unknown was also referred to as 
"radix" or "res"). The symbols which have been mentioned appear to have 
evolved from the initial letters of the words. The old system in its advanced 
stage is in the textbook on algebra of 1608 by Clavius. Clavius was a Jesuit 
teacher and his textbooks were popular, particularly in Latin schools; 
Descartes no doubt first learned his algebra from it at the Jesuit school at 
La Fleche. 

Changes were introduced by Frant;ois Viete, notably the use of letters for 
quantities, in his In artem analyticam isagoge of 1591, but this was privately 
printed with limited distribution and not widely known until later; Viete's 
works were reprinted in 1646. Descartes had abandoned the old system by 
1637 and his Geometrie introduced further improvements in notation. Where 
Viete used capital letters, with the vowels for unknowns and consonants for 
known (unspecified) quantities, Descartes used small letters, with the first part 
of the alphabet for known quantities and x, y, z for the unknowns. Notable 
was his introduction of numerical (arabic) exponents to indicate powers. 
Where Viete might write AAA for the cube of A, Descartes would write simply 
aJ, but he would write aa as well as a2•20 



32 4. Date of Descartes' Manuscript 

The above indicates that the manuscript was most probably written before 
1637. Descartes is said to have learned the then "modern" system from his 
friend Beeckman in Holland. 21 If so, this could have been either during his 
brief sojourn in Holland in 1618 or after he had settled there in 1629. If the 
former, which is quite unlikely, the continued use of cos sic symbols after 1618 
would need explanation. 

When the text of the Leibniz copy was being established for the Oeuvres, G. 
Enestrom was consulted in connection with the symbols.22 He established 
their significance from the Algebra of Clavi us, from which, he stated, 
Descartes had learned their meaning, rather than from Faulhaber,23 and 
called attention to two Descartes items which used cossic symbols, taken from 
Isaac Beeckman's Journal: a letter dated March 16, 161924 and a note of 
October 1628.25 The latter is a memorandum written down by Beeckman of 
some algebra communicated to him by Descartes. Cossic symbols are used 
throughout, and since they were used by Beeckman in reporting or copying 
Descartes in 1628 they evidently were also being used by Descartes at that 
time. This indicates that the manuscript could have been written in 1628 or 
later. 

The subject matter of Part I suggests a terminus a quo later than the date 
proposed by Milhaud. The first and basic proposition concerns polar 
(exterior) solid angles, and polar spherical triangles and polygons are also 
utilized. The manner of introducing these and the incompleteness or lack of 
description would indicate that Descartes was referring to things already 
known (see p. 65). But polar solid angles were not clearly described before the 
1627 work of Snel1.26 Also, various propositions relate to or necessitate 
knowledge of the area of spherical triangles and polygons and the measure of 
solid angles. These were introduced by Girard in 1629.27 Both of these authors 
were living in Holland and their works were published in Holland. If 
Descartes derived his knowledge from the work of Snell and Girard, then Part 
I of the manuscript could not have been written before their work, and the 
date would probably be 1629 or later. I suggest circa 1630 as a possible date, 
considering that Descartes may still have been using cossic symbols up to 
that time. z8 



Part Two 
Solid Geometry: The Elements of Solids 



5 Some Geometric Background 

This section supplies the necessary basis for statements made and things 
referred to in the following sections. It introduces and uses some of the terms 
used by Descartes so that their significance may become clear. The use of 
terminology and ideas not in the manuscript and not current at the time of the 
manuscript is avoided as far as possible. Except where otherwise indicated or 
obvious from the context, the discussion is limited to things which, it is 
believed, would have been known generally to mathematicians at the time of 
the manuscript, and to explanations of these things. (In the explanations and 
derivations we do not limit ourselves to seventeenth century terminology). 

( I) Polygons. Descartes does not use the term "polygon" but uses "plane 
figure." Euclid (I def. 19)29 used "rectilinear figures," defined as those 
contained by straight lines, and distinguished as trilateral, quadrilateral and 
multilateral. It is assumed that convex polygons are meant. The elements of 
the plane figure are the sides and the angles, which are equal in number. 
"Angle" is taken to be the complex of indefinite portions from the meeting 
point of the two lines and the portion of the plane between them-the sector of 
the plane in the neighborhood of the point. 

(2) Plane angles. The size of a plane angle is determined by the amount of 
bending (turning) or inclination of the two lines with respect to each other. It is 
measured according to the arc intercepted on a unit circle. In Fig. I, line OB, 
starting from an initial position of coincidence with line OA, is rotated about 
the point 0 to the position OB'; angle AOB' is measured by the arc AB' in 
relation to the full circumference of the circle. If the line OB is further turned 
to position OB", perpendicular to OA, the angle AOB" is a right angle, the 
fourth part of the circle; this is the unit of angle measurement used in 
geometry. Continuing the turning to position OB''', with AOB'" a straight 
line, we have a straight angle, measuring two right angles. Rotation through 
the full circle gives the four right angles of the plane. 

The modern measure is the length of the intercepted arc on a unit circle. 
The angle measures one radian when this length is one unit (equal to the 
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radius). The right angle is 1T/2 radians, the straight angle 1T radians and the 
four right angles of the plane 21T radians, the circumference of the unit circle. 
In trigonometry, however, degrees have been used since ancient times. The 
circumference is divided into 360 equal parts and the angle formed by lines 
from the center to the ends of one of these parts is one degree. 

In what follows the letter 6. will be used in formulas to designate right 
angles. In the different measures: 16. = 1T/2 radians = 90°. 

(3) Polygon interior angle sum. Proposition I, 32 of Euclid states that the 
sum of the three interior angles of a triangle is equal to two right angles. Euclid 
did not extend this; the extension to any convex polygon was given by Proclus 
(A.D. 410-485) in his commentary on Euclid. If the polygon has n sides or 
angles, the sum of the interior angles is 2(n - 2)6.. The proof given by Proclus30 

is evident from Fig. 2. From the point A of one angle lines are drawn to each of 
the points of the other angles with which it is not already connected. This 
divides the figure into triangles and the number of triangles in every case is two 
less than the number of sides of the figure. The sum of all the angles of all the 
triangles is equal to the sum of all the interior angles of the figure. Since the 
sum of the angles of each triangle is equal to two right angles, the sum of the 
interior angles is equal to the number of sides less two, times two right angles. 
This sum can be written as 2(n - 2)6., where n is the number of sides or angles. 

D 

B 

F 

Figure 2 

(4) Exterior plane angles. In Propositions 16 and 32 of Book I. Euclid 
produces (extends) one side of a triangle to form an "exterior" angle (literally 
an "outside" angle). The sum of the two angles on this extended line is two 
right angles: see Fig. 3(a), in which a + f3 = 26.. Two angles whose measures 
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add up to two right angles are supplementary, either angle being the 
supplement of the other, but this terminology was not used by Euclid. 

Figure 3 shows three positions of the supplement of a given angle a. In (b), 
CO is drawn perpendicular to OB at 0 and DO perpendicular to OA, forming 
angle CO D or /3. The sum of the four angles about 0 is the four right angles of 
the plane, 4to; since two of them are right angles the remaining two, a and /3, 
add up to two right angles, 2to. In (c) a point P is taken inside the angle AOB 
and perpendiculars PC and PD drawn to OB and OA, respectively, forming 
angle CPD. The four interior angles of the quadrilateral thus formed add up 
to 4to; two of these are right angles and hence the remaining two, a and /3, add 
up to two right angles. These figures are used later for analogy. [The antiquity 
of forms (b) and (c) has not been ascertained.] 

c 
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Figure 3 

(5) Exterior polygon angle sum. Proclus also gives the sum of the exterior 
angles ofa polygon.J1 His proof is quite simple and is illustrated by Fig. 4(a). 
The sum of one angle and its corresponding exterior angle is equal to two right 
angles, and the sum of all the exterior angles and all the interior angles 
together is equal to the number of sides (angles) of the figure times two right 
angles (2nto). The sum of the interior angles is equal to the number of sides less 
two, times two right angles (2(n - 2)to). Hence the sum of the exterior angles is 
the difference, which is four right angles, 4to. Thus, no matter what the 
number of sides of a convex polygon, the sum of the exterior angles is the 
same, 4to(27T,3600 ), the four right angles of the plane. 

Figure 4(b) shows a different method of illustrating the exterior angles of 
the polygon, corresponding to that shown in Fig. 3(b). Proof of the sum is the 
same as stated above. This form is in P61ya. J2 He indicates that the exterior 
angles can be shifted so as to have the same vertex and fill the plane about this 
point, thus totalling 271'. This can be done because facing sides of adjacent 
exterior angles are parallel to each other and hence one angle can be moved 
without turning so as to have one side in common with another angle. 

In Fig. 4(c) a point P is chosen inside the polygon and perpendiculars 
drawn to each of the sides. As in Fig. 3(c), each of the n angles about P so 
formed corresponds to the exterior angle of one of the respective n angles of 
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the polygon; they cover the whole plane about the point without overlapping 
and hence their sum is 4~. (This form has not yet been found and is introduced 
here for analogy with a statement in the next section, p. 44.) 

(a) 
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\ 

(b) (c) 
Figure 4 

(6) Polyhedra. Descartes does not use the word polyhedron but refers to 
polyhedra as solid bodies, solids, or bodies. Undoubtedly he had in mind only 
convex bodies. Euclid, in defining equal and similar solid figures (XI def. 9, 
10), refers to "solid figures" as being contained by planes. Heath discusses 
these definitions, as well as a variation of Heron,33 and concludes that they are 
correct only if understood as applying to convex polyhedra. 

The elements of the solid bodies of Descartes are the solid angles and the 
faces, the former including its plane angles and angles of inclination (see next 
paragraph) and the latter its plane angles and sides. The faces are "plane 
figures," namely, polygons, which are convex. "Solid angle" is taken as 
referring to the complex formed by indefinite portions of the lines and planes 
meeting at a point and the portion of space between them-the portion of the 
solid in the neighborhood of the point. 

(7) Inclination of planes. The configuration formed by two half-planes 
meeting in a straight line is now called a dihedral angle. Euclid (XI def. 6) 
refers to the inclination of one plane with respect to another; this inclination is 
to be measured by the plane angle formed by a line in each plane perpendicular 
to the common line (the line in which the two planes intersect), at the same 
point, that is the angle formed by the intersections with the two planes of a 
plane perpendicular to the common line. I n discussing solid angles, Descartes 
refers to the inclinations of adjacent planes and to the angle of inclination of 
these planes. 

(8) Solid angles. A solid angle is formed by three or more planes meeting at 
a point. Euclid's second definition (XI def. II) is "A solid angle is that which is 
contained by more than two plane angles which are not in the same plane and 
are constructed to one point." Figure 5 shows a solid angle OABC with three 
plane angles. There are three face angles, AOB, AOC and BOC, which 
Descartes refers to as the plane or face angles of the solid angle; these are 
measured by the great circle arcs intercepted on the unit sphere, AB, AC, and 
BC respectively in the figure, the sides c, b, a of the spherical triangle ABC. 
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There are three angles of inclination of the faces, which are measured as 
indicated in the preceding paragraph; these are also the angles a, /3 and y of 
the spherical triangle ABC. 

o 

A 

B 
Figure 5 

c 

A solid angle is measured according to the area of the spherical polygon 
intercepted on the surface of the unit sphere; in the figure, the area of the 
spherical triangle ABC measures the solid angle OABC. With unit radius, the 
area of a spherical triangle is equal to the sum of its three angles (the 
inclination angles) less two right angles, in the figure, a + /3 + y - 21:::.. This 
formula, the spherical excess formula, was given by Girard.34 A spherical 
polygon with n sides can be divided into n-2 spherical triangles, and its area, 
the measure of the corresponding solid angle, obtained by adding together the 
areas ofthese triangles, in the same manner as Proclus did for the plane.35 The 
result is that the area of the spherical polygon is equal to the sum of its angles 
less 2(n-2) right angles, a + /3 + y + fJ + c·"- 2 (n-2)1:::.. 

If the three planes of Fig. 5 are mutually perpendicular, the result is a solid 
angle, an octant of the sphere. Each face angle is a right angle, as is also each 
inclination angle ofthe planes. The area intercepted on the sphere is the sum of 
the latter three right angles less two right angles, which comes to one right 
angle, I I:::. (1T'/2). This is the eighth part of the area of a unit sphere (which is 
81:::., or 471'), and is the unit for solid angles. As it is the area which is the 
measure, a solid angle need not be trirectangular to measure one unit, one 
solid right angle, but may be any shape and have any number of faces as long 
as the intercepted area is II:::.. 

If the plane (face) angles ofa solid angle are increased in size, the solid angle 
becomes more blunt and the intercepted area on the sphere becomes larger; 
the sum ofthe plane angles has thereby increased. With continuing increase of 
the plane angles, the solid angle becomes flatter, the sum of the plane angles is 
closer to the four right angles of the plane (41:::.), and the measure of the solid 
angle is closer to the area of a hemisphere (41:::.). When the solid angle has 
become completely flat, the sum of the face angles has become 41:::., which is 
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also the measure of the solid angle. Descartes refers to the difference between 
the four right angles of the plane and the sum of the face angles as the 
inclination of the solid angle. It measures, in a sense, the deviation of the solid 
angle from the plane. Euclid's proposition XI 21 states that the sum of the 
plane angles of a solid angle is less than four right angles (which is true only of 
convex solid angles); the difference is the inclination of the solid angle. This is 
also sometimes referred to as the "deficiency" of the solid angle. 

(9) Exterior solid angle. The exterior solid angle of a given angle is the 
polar or supplemental angle. One manner of construction (corresponding to 
Fig. 3(b» can be illustrated by means of Fig. 5. At the point 0, construct a line 
perpendicular to the plane of OAB, and also lines at 0 perpendicular to the 
planes of BOC and COA, respectively. These three lines form a solid angle 
which is the supplement or polar of OABC. In other words, construct planes 
passing through the point 0 and perpendicular to each of the three lines OA, 
OB and OC, respectively. These planes meet in the three lines of the first 
construction and form the same solid angle. 

The properties of the pair of solid angles is more easily seen by considering 
the polygons intercepted on the unit sphere. In Fig. 6, ABC is the spherical 

A~t 
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B 

Figure 6 

triangle intercepted on the sphere with center 0 (not shown, in the interior of 
the sphere) by the solid angle OABC. Letters A, B, C are also used for the 
angles of the triangle, the inclination angles of the planes. The sides of the 
triangle are a, b, c, equal to the face angles of the solid angle. With point A as 
pole construct its polar great circle (equator); that is, a plane is drawn through 
0, the center of the sphere, perpendicular to the line OA, and the intersection 
of this plane with the sphere is a great circle with pole A. Arc b'c' is part of this 
great circle. Similarly, the polar great circle of point B gives arc a 'c' and that of 
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point C gives arc a'b'. Triangle a'b'c' formed by these three arcs is the polar 
triangle of triangle ABC and its solid angle Oa'b'c' the polar (supplement, 
exterior) solid angle of OABC. (If the entire great circles are considered, they 
intersect in a second representation of the polar, but in reverse order, on the 
other side of the sphere, corresponding to the position ofthe polar solid angle 
in the constructions previously described.) It is easy to show by ordinary 
methods of Euclidian proof that sides A', B', C' of the polar are supplements 
of angles A, B, C, respectively, and that angles a', b', c' of the polar are 
supplements of sides a, b, c, respectively. Otherwise expressed, the relation­
ship is that the plane (face) angles of each are supplements respectively of the 
inclination angles of the other, and the inclination angles of each are 
supplements respectively of the face angles of the other. The reciprocal 
relations can be written, referring to Fig. 6: 

A + A' = 26., a + a' = 26., 
B + B' = 26., b + b' = 26., 
C + C' = 26., c + c' = 26., 

The measure M of solid angle OABC, the area of triangle ABC, is 
A+B+C-26. and the measure M' of solid angle Oa'b'c' is a'+b'+c'-26.. By 
using the preceding relations, one may obtain: 

M = 46. - (A'+B'+C') 
and 

M' = 46. - (a+b+c). 
Thus, the measure of the polar, exterior, solid angle of a given angle is equal to 
46., the four right angles of the plane, less the sum of the face angles of the 
given angle (and reciprocally). 

Another way of showing the polar of a solid angle (corresponding to Fig. 
3(c» is illustrated by Fig. 7. In describing the formation of a polar, with 
respect to Fig. 5, we drew perpendiculars from the point 0 to each face. In Fig. 
7 the perpendiculars to each face are drawn from a point P in the interior of 

A 
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Figure 7 
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solid angle OABC. PA' is drawn perpendicular to the plane of face BOC and 
PB' perpendicular to AOC. The plane of A'PB' is perpendicular to the line OC 
and its intersections with the planes AOC a'1d BOC are the lines B'c and A'c, 
respectively; therefore, angle A'cB' is the inclination angle of these two planes. 
The quadrilateral PA'cB' has two right angles, at A' and B', and the 
inclination angle at c; thus angle A'PB' is the supplement of the inclination 
angle. Now consider the perpendicular PC' to the face AOB; the angles C'PB' 
and C'P A' are the supplements of the other two inclination angles, as angle 
A'PB' is the supplement of the inclination angle mentioned above. Thus the 
solid angle formed by perpendiculars from P to each face of the given angle 
OABC is its polar angle. 

The trihedral solid angle and spherical triangle have been used as examples 
for simplicity; the results are the same for any solid angle and the 
corresponding spherical polygon, provided of course that only convex solid 
angles are considered. 



6 Translation and Commentary, Part f6 

Progymnasmata de Solidorum Elementis 
excerpta ex Manuscripto Cartesii 

1 Angulus solidus rectus est qui octavam sphaerae partem complectitur, 
etiamsi non constet ex tribus angulis planis rectis. Omnes autem anguli 
planorum, ex qui bus circumscribitur, simul sumti, aequales sunt tribus rectis. 

Preliminary Exercises on the Elements of Solids 
Taken from a Manuscript of Descartes 

1 A solid right angle is one which embraces the eighth part of the sphere, 
even though it is not formed by three plane right angles. But all the angles of 
the planes by which it is bounded, taken together, equal three right angles. 

Comments. The first sentence defines the unit of measurement of solid 
angles, the solid right angle, which intercepts on a sphere one-eighth of its 
total area. The octant of the sphere, formed by three mutually perpendicular 
planes with each face angle being a plane right angle, is the unit solid angle. 
But a solid angle measuring one unit need not be formed from three plane 
right angles; it may be formed from three plane angles, not necessarily right, or 
from more than three plane angles, as long as the area intercepted on the 
sphere is one-eighth of the total area. See Section 5, paragraph 8 (p. 39). 

In the second sentence the manuscript has "anguli plani," meaning "all the 
plane angles." It is of course false that all the face angles bounding a solid right 
angle add up to three right angles.J7 Therefore "plani" has been emended to 
"planorum," and the phrase translated as "the angles of the planes," which is 
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taken to mean the angles the planes make with each other, the inclination 
angles (dihedral angles). Since the measure of the solid angle is the sum of 
these angles less two right angles, their sum must be equal to three right angles 
if the solid angle is to measure one right angle in the case of a trihedral angle. 
For the general case, the formulas on page 39 shows that this sum is (2n-3)t., 
where n is the number of sides of the solid angle. 

2 Sicut in figura plana omnes anguli externi, simul sumti, aequales sunt 
quatuor rectis: ita in corpore solido omnes anguli solidi externi, simul sumti, 
aequales sunt octo solid is rectis. Per angulum externum intelligo curvaturam 
seu inclinationem planorum ad invicem, quam metiri oportet ex angulis planis 
angulum solidum comprehendentibus. Nam ilia pars qua aggregatum ex 
omnibus angulis planis unum angulum solidum facientibus, minus est quam 
quatuor anguli recti planum facientes, designat angulum externum solidum. 

Prop. I 2 As in a plane figure all the exterior angles, taken together, equal four 
right angles, so in a solid body all the exterior solid angles, taken together, 
equal eight solid right angles. By exterior [solid] angle I mean the mutual 
bending or inclination of the planes, which is to be measured with the help of 
the plane angles which comprise the solid angle. For the part by which the sum 
of all the plane angles forming a solid angle is less than the four right angles 
which form a plane, designates the exterior solid angle. 

Comments. The proposition of the first sentence was new with Descartes. 
It is stated by analogy with plane figures (convex polygons) and no doubt 
Descartes discovered it from reasoning by analogy. For the polygon, the sum 
of the exterior angles is equal to four right angles (4t.), the whole circle; so too 
for the solid body (convex polyhedron) the sum of the exterior angles is equal 
to eight right angles (8t.), the whole sphere. No proof is given in the 
manuscript; several proofs are indicated later in this comment. 

The proposition of this sentence is important since the proposition or 
theorem of Paragraph 3 of the manuscript can be derived from it. Since it is 
not needed or used elsewhere. it can be regarded as a lemma for that 
proposition or theorem. 

This is the first of six propositions in Part I of the manuscript which are 
singled out as the most noteworthy. It will be referred to as Proposition 1. 

The second and third sentences relate to exterior solid angles as such. 
Prouhet translated the Latin "curvaturam" as "courbure"(curvature). but the 
word "bending" is used instead in the English, as being an appropriate 
translation and as avoiding some misconceptions. 

The second sentence is somewhat obscure, but, once one knows what 
exterior solid angles are and their properties, there is little doubt as to what 
was intended (see Section 5, paragraph 9, pages 40-42). The planes referred to 
are the planes of the exterior solid angle. The "mutual bending or inclination 
of the planes" refers to the dihedral angles (of this exterior angle), which are 
the supplements ofthe plane angles of the original solid angle. Thus the latter. 
taken together. form a means of measuring the exterior solid angle. The third 
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sentence, giving the measure of an exterior solid angle, helps to clarify the 
second sentence, but some obscurity in terminology results. 

The exterior solid angle of a given solid angle is actually not defined or 
explained: only some things about it are stated. The incompleteness and 
obscurity strongly suggest that Descartes was dealing with things already 
known. This was already mentioned in Section 4 (p. 32) in connection with the 
dating of the original manuscript. 

Prouhet gave a demonstration of the proposition of the first sentence, but 
before describing that, a proof indicated by P6lya38 will be outlined first. 
Consider the exterior solid angles constructed at each vertex of the 
polyhedron in the manner described first in Section 5, paragraph 9 (p. 40). 
This is analogous to the construction of the exterior angles of a polygon as 
shown in Fig. 4(b) of Section 5 (p. 38) which is similar to P6lya's Fig. 3.7. The 
exterior solid angles are closed by describing a portion of a sphere about each, 
forming each exterior solid angle into a sector of a sphere (as in Fig. 4(b) arcs 
of circles are drawn forming each exterior angle into a sector of a circle). "The 
sectors [of the sphere] so generated at the several vertices of the polyhedron 
form, when shifted together, a full sphere as the circular sectors in the 
analogous plane figure (Fig. 3.7) form, when shifted together, a full circle." 
Hence, "the joint measure of all the exterior solid angles of the polyhedron is, 
in fact, 47T." That the spherical sectors can be shifted to form the full sphere 
follows from the fact that the plane angles facing each other, of two 
neighboring exterior solid angles, are congruent and their sides are parallel, 
hence the two exterior solid angles can be moved without turning to make the 
two facing plane angles coincide. 

Prouhet's proof is based on the construction of an exterior solid angle 
according to the method described on p. 42, in connection with Fig. 7 of 
Section 5. It is analogous to the proof for polygons illustrated by Figure 4(c) 
(p. 38). This analogy is not indicated by Prouhet; our Figs. 3(c) and 4(c) are 
given in Section 5 only to show the analogy. The proof goes as follows. From a 
point P in the interior of the polyhedron, drop perpendiculars to each face of 
the polyhedron. The perpendiculars to the faces of a particular solid angle 
form the exterior solid angle of that solid angle (as in Fig. 7). Each solid angle 
of the polyhedron has its corresponding exterior angle with vertex at the point 
P, and all the exterior solid angles about the point P correspond respectively 
to the solid angles of the polyhedron. The exterior solid angles, with their 
common vertex at the point P, cover the space about P without any overlap 
and hence their sum is equal to the total area of the sphere about this point, 8 
solid right angles (47T). 

Coxeter39 gives a different proof, based upon projecting the polyhedron on 
to the surface of a unit sphere about an interior point as center, but this 
presumably would not have been thought of in the 17th century. 

Descartes may of course have had a proof, but he may not have bothered. 
The analogy with plane figures is so close and direct that he may have thought 
further proof unnecessary. 
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Curiously, the word "analogy" does not appear in the Methode nor in the 
"Regulae ad Directionem Ingenii." In the latter work Descartes admits only 
two "mental operations by which we are able .... to arrive at the knowledge of 
things"; these are "intuition and induction," the former being quite broadly 
defined.40 

3 Si quatuor anguli plani recti ducantur per numerum angulorum sol­
idorum et ex producto tollantur S anguli recti plani, remanet aggregatum ex 
omnibus angulis planis qui in superficie talis corporis solidi existunt. 

Prop. 2 3 If one multiplies four plane right angles by the number of solid angles and 
from the product one removes S plane right angles, the remainder will be the 
sum of all the plane angles which are in the surface of the solid body. 

Comments. The following letters will be used consistently in expressing 
propositions in this section: 

S 
F = 
P 
I 
f::, 

number of Solid angles, 
number of Faces, 
number of Plane angles, 
Sum of the measures of all the plane angles, 
one right angle = TT /2=90° . 

Thus, the proposition of this paragraph can be expressed by the formula 

I = (4S-S)f::,. (I) 

No proof is given by Descartes, but the proposition follows in a simple 
manner from Proposition I and the last sentence of Paragraph 2. This last 
(third) sentence gives the measure of the exterior solid angle of a given solid 
angle. For the exterior angle of one of the solid angles of the polyhedron this is 
four right angles, less the sum of the plane angles of that particular solid angle. 
There is one such expression for each of the solid angles of the polyhedron; 
adding them all together produces the result that the sum of all the exterior 
angles, which by Proposition I is equal to Sf::" is equal to four right angles 
times the number of solid angles, less the sum of all the plane angles in the 
polyhedron. Expressed otherwise, Sf::, = 4Sf::, - I, or I = (4S - S)f::,. 

Note that the above derivation is analogous to the derivation by Proclus of 
the corresponding proposition for polygons (Section 5, paragraph 5, p. 37). 

The proposition of this paragraph is Descartes' basic theorem and will be 
referred to as Proposition 2. It will be discussed in later sections. 

4 In pyramide sunt semper tot facies quot anguli. In columna media pars 
numeri angulorum solidorum minor est binario quam numerus facierum. In 
pyramide duplicata media pars numeri facierum minor est binario quam 
numerus angulorum. Sunt et alia corpora in quibus licet duo extrema 
imaginari et plures zonas. Sunt ad minimum triplo plures anguli plani quam 
solidi in uno corpore. Si tollatur binarius ex numero angulorum solidorum 
qui in corpore aliquo continentur, et residuum ducatur per binarium, fit 
maximus numerus facierum. Si vero dividatur numerus angulorum per 
binarium, si quidem sit numerus par, sin minus illi prius addenda erat unitas 
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ut dividi possit, ac postea quotienti addatur binarius, erit numerus minor 
facierum. Est maxima reciprocatio inter facies et angulos solid os. 

4a tetraedron 
cubus 
octaedrum 

4 [I] In the pyramid there are always as many faces as solid angles. [2] In 
the prism, half the number of solid angles is less by two units than the number 
offaces. [3] In the bipyramid, halfthe number offaces is less by two units than 
the number of [solid] angles. [4] And there are other bodies in which one can 
imagine two extremes and more zones. [5] There are at least three times as 
many plane angles as solid angles in a body. [6] If one takes two away from the Prop. 3 

number of solid angles contained in a body, and mUltiplies the remainder by 
two, one has the maximum number of faces. [7] But if one divides by two the 
number of solid angles if this number is even-if not, one had first to be added 
so that it can be divided-and then adds two to the quotient, one will have the 
minimum number offaces. [8] There is a maximum relation between the faces 
and the solid angles. 

4a tetrahedron 
cube 
octahedron 

Comments. The sentences in the English have been numbered for reference. 
[I] If the base of the pyramid has n angles and sides, the number of solid 

angles, including the apex, is n + I, and the number of faces is n + I, the 
number of lateral faces plus the base. Hence F = S. 

[2] If the two bases of the prism each have n angles and sides, there are 2n 
solid angles, so S = 2n; the number offaces is the sum of the n lateral faces and 
the two bases, so F = n+2. Hence, eliminating n, S /2 = F-2, as indicated by 
the proposition. 

[3] A bipyramid is formed by attaching by their bases two pyramids with 
congruent or similar (congruent by reflection) bases. If the two bases have n 
angles and sides, the number of solid angles is n+2, so S = n+2, and the 
number offaces is 2n, so F= 2n. Hence S= F/2 + 2, or F/2 = S-2, as stated in 
the proposition. 

The three words of the note, which appears in the margin of the manuscript 
and is here referred to as Paragraph 4a, are evidently examples to illustrate 
these sentences. The tetrahedron is an example of a pyramid, the cube of a 
prism, and the octahedron of a bipyramid. 

[4] The preceding three sentences are concerned with types of polyhedra 
which have a specific relation between the number of faces and the number of 
solid angles. This sentence is taken as continuing this thought by referring to 
other types of polyhedra which also have a specific relation between faces and 
solid angles. 

The "two extremes and more zones" can be explained in several ways, as 
follows. The bipyramid can be characterized as having two extremes, the two 
apices, with two zones between them, the two belts of triangular lateral faces. 
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If a prism is interposed between the bases ofthe two pyramids (in other words, 
if a pyramid is placed on each of the opposite bases of a prism), we have a solid 
body with two extremes, as before, and an additional zone, the belt of lateral 
quadrilateral faces. The relation between faces and solid angles in such bodies 
is 2F/3 = S-3. The prism can be characterized as having two extremes, the two 
bases, with a zone between them, the belt of lateral quadrilateral faces. If the 
two pyramids forming a bipyramid are truncated, we have a solid body with 
two extreme faces and two zones of quadrilateral faces between them. Here 
the relation between faces and solid angles is F= 2S/3 + 2. And additional 
zones or belts of quadrilateral faces can be interposed in either of the above 
two types, forming still more types in each of which there is a relation between 
faces and angles. (Note that Kepler4! in 1619 used the term "zona" meaning 
"belt" or "zone," for a belt of congruent faces.) The sentence as it reads does 
not go on to state "in which there is a relation between faces and vertices" or its 
equivalent; this may be implied from the preceding sentences, or possibly a 
phrase may have been omitted. 

[5] Since each solid angle must have three or more plane angles, the 
number of plane angles must be at least three times the number of solid angles, 
so P?;' 3S. At first sight this sentence appears to be irrelevant at this point, but 
it is useful in connection with one of the sentences which follow. 

[6] and [7] The inequalities of these sentences can be written, if one follows 
the wording and ignores the distinction between odd and even S in the 
second, as 

2(S - 2)?;. F (2a) 
and 

S/2 + 2 ~ F. (2b) 

Another form is 

(a) 2S?;' F+ 4, (b) 2F?;' S + 4. 

The first of these inequalities can be derived from the basic theorem, 
equation (I), as follows. Each face must have at least three angles and hence 
the angle sum for a face must be equal to or greater than 2b., the angle sum of a 
triangle. Hence I, the total angle sum for the F faces, must be equal to or 
greater than 2F b. : I?;, 2F b.. By substituting the value for I given by equation 
(I) we have (4S - 8)b.?;' 2Fb., or 2S - 4?;. F. 

Considering the second inequality in the form F?;' (S + 4)/2, it is evident 
that it is immaterial whether S is even or odd, for if S is odd, F, being an 
integer, could only be equal to at least the next integer beyond (S + 4)/2: hence 
it is not necessary to have two equations, one for S even and another for S odd. 

The second inequality can also be derived from equation (I). For 
simplicity, the relation given in Paragraph II of the manuscript is used. This is 
(4F + ~;)/2 = P. Since P ?;. 3S (cf. [5] above), we have 4F + i ?;. 6S. 
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Substitution of equation (I) for! results in 4F+ 4S-8 ~ 6S which reduces to 
4F - 8 ~ 2S or 2F - 4 ~ S. 

These two inequalities will be referred to as Proposition 3. 
[8] This sentence must be considered in the light of the preceding sentences 

of the paragraph. The first three are concerned with types of polyhedra in 
which there is a specific relation between the number of faces and the number 
of solid angles and the fourth sentence suggests other types. Apparently 
Descartes may have been motivated by analogy with polygons, the faces and 
solid angles of the polyhedron being analogues of the sides and angles of the 
polygon. But there was no single general relation between faces and solid 
angles of polyhedra (as there is for sides and angles of polygons), and he could 
only give different relations for some special types. Following this he gave 
inequalities which showed on the one hand the maximum number of faces 
there could be with respect to a given number of solid angles and, on the other 
hand, what can be said to be the maximum number of solid angles with respect 
to a given number offaces. The present sentence then would appear to refer to 
at least the first of the two inequalities.42 

5 Pyramides omnes aequilaterae in sphaera describuntur. 
5 All equilateral pyramids can be inscribed in the sphere. 
Comments. An equilateral pyramid is a regular pyramid-the lateral faces 

are congruent isosceles triangles and the base a regular polygon. This is 
obviously inscribable in a sphere.4 .1 

6 Coni rectanguli cuius scilicet altitudo aequatur semidiametro basis, 
superficies convexa se habet ad basin ut V2 ad unitatem, quemadmodum 
lineae simplices. 

6 Of a rectangular cone, namely [a cone] the altitude of which is equal to 
the semidiameter of the base, the convex surface is to the base as V2 is to 
unity, in the same way as the simple lines. 

Comments. A rectangular cone is a right cone in which a vertical cross 
section through the apex is an isosceles right-angled triangle standing on its 
hypotenuse; the height is equal to the radius of the base r and the slant height is 
V2r; the ratio of these two lines is v2r/ r ~ V2/1. The lateral area is one-half 
the perimeter of the base (2 7rr) times the slant height (v2r) or v2rrr2, and the 
area of the base is 71'r2; the ratio of the two areas is V2/1, the same as the 
above lines. 

7 Sic demonstratur non plura esse quam 5 corpora regularia: quia si 
ponatur a pro numero angulorum solidorum, et 17(, pro numero facierum, 
debet dividi posse 

2a - 4 et 2 k. - 4 
1;Ie I a 

ita ut nulla occurrat fractio; alioquin enim certum et evidens est corpus 
regulare esse non posse. Hoc autem inveniri tantum potest, si a sit 



50 6. Translation and Commentary §7 

4./.6./S./12./20, et pariter lie sit 4/S/6/20/12: unde generantur 5 corpora 
regularia. 

Prop. 4 7 As follows it is proven that there cannot be more than 5 regular bodies: 
since if one takes a for the number of solid angles, and ¢ for the number of 
faces, one must be able to divide 

2a-4 and ~, 
I¢ la 

in a manner that no fraction occurs; otherwise it is certain and evident that a 
regular body is not possible. But this can only be so if a is 4,6,8, 12,20, and 
respectively ¢ is 4, 8, 6, 20, 12, by which are generated the 5 regular bodies. 

Comments. The cossic sign in the manuscript for the number of faces is 
replaced by ¢ in the translation, as this appears later in the manuscript 
(Paragraph 16) for the number of faces. 

The two formulas are written 

2S-4 = a, 2F-4 = b, 
F S 

where a and b are integers. They are derivable from equation (I), page 46, and 
the properties of regular bodies. 

The first one is derivable as follows. All the faces in regular bodies have an 
equal number of angles, say n; the angle sum for each face is 2(n-2)f; (Section 
5, paragraph 3 p. 36), and for all Ffaces the total angle sum is ~ = 2(n-2)Ff;. 
Substitution of this value in equation (I) results in 

2(n - 2)Ff; = (4S - S)f;, 

hence 
2S-4 = n - 2 = a. 

F 
For the second equation, all the solid angles have the same number of plane 

angles, say m. and hence the number of plane angles P is equal to mS. 
Substitution of this value in equation (3) in Paragraph II (below·p. 54) gives 
~/ f; = 2mS - 4F. Substitution of the value for ~ in equation (I) results in 

2mS-4F= 4S-S 
or 

2F-4 = .m-2 = b. 
S 

It can be shown in several ways that neither a nor b can be greater than 3. 
For example, the two equations are linear in Sand F and can be solved for 
their values, in terms of a and b. These values are: 

s=S+4a, 
4 -ab 

F=S+4b. 
4 -ab 

Hence ab must be less than 4. The possible combinations of integers a and b 
which give a product less than 4 are (1,1), (1,2), (2,1), (1,3) and (3,\). When 
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these combinations are substituted in the above expressions, the resl.lts for S 
and F respectively are (4,4), (6,8), (8,6), (12,20) and (20,12). 

The number of angles (sides) in each face (n above) and the number of plane 
angles in each solid angle (m above) can thus be determined readily and the 
five bodies constructed. 

A geometric proof that there cannot be more than the five regular bodies is 
given by the last proposition in Book XIII of Euclid. Descartes' condition is 
essentially algebraic and may very well have been the first algebraic treatment. 

The proposition of this paragraph will be referred to as Proposition 4. 
Note that Descartes used the word "faces" for the faces of a solid body, and 

this is done throughout the manuscript. This usage is unusual and perhaps 
even unique. The word commonly used was "base," in various languages, and 
even Euler in 1750 used the Latinized form of a Greek word meaning base. 
Legendre used "face" in his geometry of 1794. (See Section 8, p. 66.) 

8 Rhomboeides omnes et pyramides sphaeram circumscribunt. 
8 All rhomboids and pyramids can be circumscribed about the sphere. 
Comments. This sentence is too broad as to pyramids, since not all 

pyramids are circumscribable. Evidently equilateral (regular) pyramids were 
intended, as in Paragraph 5, or perhaps the word "aequilaterae" was omitted 
in copying the original manuscript. 

It is not evident what Descartes meant by the term rhomboid. If he was 
acquainted with Kepler's Harmonia Mundi (of 1619), it may refer to the two 
rhomboids there described and illustrated, the rhombic dodecahedron having 
12 rhombic faces and the rhombic triacontahedron having 30 rhombic faces, 
to which the rhombohedron with 6 rhombic faces could be added. (All three 
were described in an earlier work of Kepler, see Section 12, p. 119.) Each of 
these is circumscribable about a sphere. 

Prouhet I I (ignoring Kepler) suggested that the word referred to a "regular 
double pyramid" (regular bipyramid) as an extension of the term as used by 
Archimedes. In his "On the Sphere and Cylinder"44 Prop. 18, Archimedes 
referred to two right cones joined by their congruent circular bases as a solid 
rhombus (rhomboid). The cones did not necessarily need to have equal 
altitudes and his use of the term was actually an extension of an older use. 
According to Heath45 two congruent right cones joined by their bases may 
have been once called rhomboids since the section by every plane through the 
axis is a rhombus, a plane figure defined by Euclid as one having four equal 
sides but not right angles, I def. 22. Prouhet's suggestion, then, is that 
Descartes extended the term to the bipyramid formed by the union of two 
regular pyramids; any of these (not necessarily formed from congruent 
pyramids as Prouhet supposed) would obviously be circumscribable about 
a sphere. 

9 Ut cognoscamus utrum aliquod corpus solidum possit in sphaera 
describi, primo sciendum est omnes eius facies necessario in circulo describi 
posse. Quo posito, si tres anguli unius faciei aequaliter distent a centro 
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sphaerae, certum erit etiam alios omnes eiusdem faciei aequaliter a centro 
sphaerae distare; ac insuper ex consequenti, angulos omnes vicinarum 
facierum, qui simul concurrunt cum illis prioris faciei in iisdem angulis solid is. 

9 To know if any solid body can be inscribed in a sphere, it is first necessary 
to know that all its faces necessarily can be inscribed in a circle. That given, if 
three angles of one face are equally distant from the center of the sphere, it is 
certain that all the others of the same face will also be equally distant from the 
center of the sphere; and moreover, consequently, all the angles of the 
adjacent faces, which meet with those of the first face in the same solid angles. 

Comments. A necessary condition that a polyhedron be inscribable in a 
sphere is, obviously, that all the faces be inscribable in circles. However, this 
condition is not sufficient (it is for pyramids, but not in general). A simple 
counterexample is the bipyramid; each face, being a triangle, is inscribable in a 
circle, but the solid itself is not inscribable in a sphere unless two other 
conditions are also present. 

This paragraph appears to be asserting that the given necessary condition is 
also sufficient and attempts the beginning of a demonstration. It has the 
appearance of something which the author started, but then, realising that it 
was not going right, laid aside to come back to at a later time. The last 
statement in the paragraph, beginning "and moreover, consequently, ... " does 
not follow from and is not a consequence of the preceding statement. 

It is not surprising that Descartes could not give the necessary and 
sufficient conditions for any convex polyhedron to be inscribable in a sphere, 
for these are not known even today.46 Perhaps he generalized from pyramids 
and prisms, and the regular and semiregular polyhedra, in which special cases 
inscribability of each face is sufficient, and assumed that the only thing that 
was necessary, and therefore sufficient, was that each face be inscribable in a 
circle (if so, induction failed again). This is in fact true for trilinear (simple) 
polyhedra, in which each vertex has only three lines and three faces, but it may 
be doubted that he had only these in mind here as he refers to "any solid body" 
and he was aware of inscribable nontrilinear polyhedra (see Section II, 
p. 98ff.). 

The theorem that a trilinear convex polyhedron is inscribable in a sphere if 
and only if each of its faces is inscribable in a circle is implied by Exercise 2 in 
Grtinbaum, Convex Po!ytopes.47 Such a proposition could have been stated 
and proved in Descartes' time or even in the time of Euclid, except that 
apparently no one thought of dealing separately with such a class of polyhedra 
until the 19th century (but Descartes did consider solid bodies with all faces 
triangles, see Paragraph 16 below). A simple proof of this special case, which 
parallels the attempted proof of the general case, follows. 

Figure 8 represents a portion of a convex polyhedron in which only three 
faces meet at each vertex and every face is inscribable in a circle. Consider face 
I and its adjoining faces 2, 3,4, ... , n. A sphere (and only one sphere) can be 
drawn through the four points A, B, C, F, since they are not coplanar. This 
sphere contains the vertices A, B, C of face I and hence contains the 
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circumscribing circle C, offace I (only one circle can be drawn through three 
points), and therefore it contains all the vertices of face I, including vertex D. 
Similarly, this same sphere, containing vertices A, B, F offace 2, contains the 
circumscribing circle of face 2 and all its vertices. This same sphere contains 
vertices B, C, F of face 3 and hence contains all the vertices of face 3, including 
vertex G. Vertices C, D, G offaces I and 3 are on this sphere, but these are also 
vertices offace 4 and hence all the vertices offace4 are on the sphere. The same 
reasoning applies to the consecutive remaining faces adjoining face I. Hence, 
the vertices of any face of the trilinear polyhedron and all the vertices of each 
face adjoining it lie on a single sphere. 

2 

I , 
\ 

\ A 

" 

4 

.... 

6 

Figure 8 

10 Dato aggregato ex omnibus angulis planis qui in superficie alicuius 
corporis solidi existunt, invenire quot in eodem corpore solidi anguli existant. 
Addantur 8 numero dato, et productum dividatur per 4: residuum erit 
numerus quaesitus, ubi si fractio ocurrat, certum est nullum tale corpus esse 
posse. 

10 Given the sum of all the plane angles which are on the surface of a solid 
body, find how many angles there are in that solid body. Add 8 tothe given 
number and divide the result by 4; the result will be the number sought, but if a 
fraction occurs, it is certain that such a body cannot exist. 

Comments. The rule given by the second sentence can be expressed by the 
formula (II t.+8)/4 = S. This is simply Proposition 2 (equation (1), page 46) 
solved for S. 

11 Dato aggregato ex omnibus angulis planis et numero facierum, 
numerum angulorum planorum invenire. Ducatur numerus facierum per 4, et 
productum addatur aggregato ex omnibus angulis planis: et totius media pars 
erit numerus angulorum planorum. V.g., aggregatum ex omnibus angulis 
planis est 72, numerus facierum 12, cuius quadruplum 48 additum cum 72 
facit 120, cuius media pars est 60: ergo in tali corpore sunt 60 anguli plani. 
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11 Given the sum of all the plane angles and the number of faces, find the 
Prop. 5 number of plane angles. Multiply the number of faces by 4, and add the 

product to the sum of all the plane angles: and the half of all will be the number 
of plane angles. For example, if the sum of all the plane angles is 72 [right 
angles], and the number offaces 12, the quadruple of the latter, 48, added to 72 
gives 120, the half of which is 60; hence in such a body there are 60 plane angles. 

Comments. The rule given by the second sentence, as stated, can be 
expressed by the formula 

(4F + i)/2 = P. (3) 

Arranged differently, this gives us a second angle sum formula; 

1: = (2P - 4F)b.. (30) 

This formula can be derived simply by adding together the individual 
formulas for the sum of the interior angles of each polygonal face. If n is the 
number of plane angles (sides) of one face, the interior angle sum is 2(n - 2)b. 
or 2nb. -4b. (Section 5, paragraph 3, p. 36). There are Fsuch expressions, and 
adding them together produces the result that the total sum of all the plane 
angles, 1:, is equal to 2b. times the sum of then's, or 2Pb. (P being the total num­
ber of plane angles), less 4b. times the number offaces F: so 1: = (2P - 4F)b.. 

For the given example, which has 72b. for the sum of all the plane angles, 
equation (I) shows that there are 20 solid angles. Very probably the regular 
dodecahedron, with 12 faces and 20 solid angles, was used to make up the 
example. There are, however, 7595 combinatorially distinct dodecahedra 
which satisfy the given and derived conditions.48 

The proposition of the second sentence, equation (3), will be referred to as 
Proposition 5. 

12 Sunt semper duplo plures anguli plani in superficie corporis solidi 
quam latera; unum enim latus semper commune est duo bus faciebus. 

12 There are always twice as many plane angles as sides on the surface of a 
solid body; for one side is always common to two faces. 

Comments. This statement is not referred to elsewhere nor is it used or 
needed for anything in this part of the manuscript. A side of a face is still the 
side of a face even though two sides coincide where two faces have a side 
in common. 

The statement comes from Pappus and is relevant to Part II of the 
manuscript: see Section II (n.113), where further reference is made to it. 

13 Si omnes facies dicantur aequalem numerum angulorum planorum 
continere, ergo numerus angulorum dividi poterit per numerum facierum sine 
fractione. et quotiens erit numerus angulorum unius faciei. Hinc facile 
cognoscetur. ex numero angulorum plano rum et numero facierum solum 
cognitis. quot anguli in una facie esse debeant. V .g., si sint 5 facies et 18 anguli 
plani. ergo ex illis facie bus vel 2 erunt triangulares et 3 quadratae, vel 3 
triangulares una quadrata et altera pentagona, vel denique una hexagona et 4 
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triangulares. Sed quia in eodem corpore sunt 6 anguli solidi, hinc non potest 
ullum tale corpus existere, nisi cuius sint. ... 

13 If all the faces are said to contain an equal number of plane angles, then 
the number of angles can be divided by the number of faces without fraction, 
and the quotient will be the number of angles of one face. Hence one will know 
easily, from knowing only the number of plane angles and the number of 
faces, how many angles there must be in one face. For example, if there are 5 
faces and 18 plane angles, then, of these faces, either 2 will be triangular and 3 
quadrilateral, or 3 triangular, one quadrilateral and the other pentagonal, or 
finally one hexagonal and 4 triangUlar. But since there must be 6 solid angles 
in this body, no such body can exist unless it has 2 triangular faces and 3 
quadrilateral. 

Comments. The three dots indicating an omission are in the manuscript; 
the supplement in italics in the translation at this point follows a proposal by 
Prouhet and de Jonquieres. 

The example poses a polyhedron with 5 faces and 18 plane angles. Since 
each face must contain at least 3 plane angles, 15 are accounted for, leaving 3 
which must be distributed among the 5 faces. This can be done in only three 
ways: one given to each of 3 faces; 2 given to one face and one to another; and 
all 3 given to one face. This results in the three combinations of types of faces 
given in the text: 

(a) 3, 3, 4, 4, 4, 
(b) 3, 3, 3,4, 5, 
(c) 3, 3, 3, 3, 6. 

The total angle sums for each of these combinations can easily be calculated 
from the formula 2(n-2)fl for a face, and the result is 16fl for each 
combination. But, even simpler, substitution of F=5 and P=18 in equation 
(3a) (p. 54) gives 16fl for the total angle sum. Substitution of this value for I in 
equation (I) (p. 46), gives S=6. Hence any polyhedron satisfying the given 
conditions must have 6 solid angles. 

It must still be shown that such a polyhedron is possible. Combinations (b) 
and (c) are obviously impossible. Combination (a) is satisfied only by the 
prism with a triangular base; hence such a polyhedron exists.49 

14 Triplicem adverto in angulis solidis aequalitatem aut inaequalitatem: 
aequales dicuntur qui aequali numero angulorum planorum comprehendun­
tur; aequales item qui aequalem inclinationem continent, quo casu dicemus 
angulos externos sive inclinationis aequales esse, et priores dicemus aequales 
arithmetice; ac denique maxime proprie aequales dicuntur, qui eandem 
partem sphaerae comprehendunt, et dicentur capacitate aequales. 

l4 I note a triple equality or inequality in solid angles: those comprised 
under an equal number of plane angles are said to be equal; also equal are 
those which have an equal inclination, in which case we will say the exterior 
angles or inclinations are equal, and the first we will say are equal 
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arithmetically; and finally most properly said to be equal are those which 
intercept the same part of the sphere, and we will say that they are equal in 
capacity. 

Comments. The three types of equality may be stated as follows, with 
respect to the spherical polygons intercepted on the sphere: 

I. Equal number of sides, 
2. equal perimeters, 
3. equal areas. 

In the third type of equality, the most proper one, the solid angles have the 
same measure. As to the second type, the text states that the solid angles "have 
an equal inclination." Descartes refers to the sum of the plane angles of a solid 
angle (the perimeter of the spherical polygon) as the inclination of the solid 
angle (see Section 5, paragraph 8, p. 40). If the inclinations of two solid angles 
are equal, the exterior angles are equal in measure, since the measure of an 
exterior solid angle is 4t. less the sum of the plane angles (the inclination) of 
the given solid angle. The next phrase, reading "in which case we will say the 
exterior angles or inclinations are equal" (the last two words supplemented), 
refers to this relation. 

There is, of course, a fourth type of equality, in which the solid angles are 
congruent, directly or by reflection. 

15 Angulorum solidorum inclinatione aequalium ille capacitate maior est, 
qui arithmetice exuperat; et omnium capacissimus est angulus coni. 

15 Of solid angles which have the same inclination, the largest in capacity is 
the one which exceeds arithmetically; and the largest of all in capacity is the 
angle of the cone. 

Comments. In terms of the polygons intercepted on the sphere by the solid 
angles, the first part of this statement would read: Of spherical polygons which 
have equal perimeters, the one with the largest number of sides has the largest 
area. 

The statement in the text is obviously too broad, but the intention is clear. 
Prouhet states that Descartes undoubtedly meant regular solid angles (that is, 
those which have equal face angles and equal angles of inclination of the 
planes) and that the proposition amounts to "Of two regular and isoperimetric 
spherical polygons, the one with the largest number of sides has the largest 
area." He does not comment on the cone, which must be a circular cone which 
intercepts an isoperimetric circle on the sphere. 

The proposition of this paragraph is analogous to the corresponding 
theorem for plane regular polygons and the circle, known to the Greeks and 
developed by Pappus,50 but it is incompletely expressed. 

16 Ponam semper pro numero angulorum solidorum a et pro numero 
facierum ¢. Aggregatum ex omnibus angulis planis est 4a-8, et numerus ¢ est 
2a-4, si numerentur tot facies quot possunt esse triangula. Numerus item 
angulorum planorum est 6a-12, numerando scilicet unum angulum pro tertia 
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parte duorum rectorum. Nunc si ponam 3a pro tribus angulis plan is qui ad 
minimum requiruntur ut componant unum angulum angulorum solidorum, 
supersunt 3a-12, quae summa addi debet singulis angulis solidis iuxta 
tenorem quaestionis, ita ut aequaliter omni ex parte diffundantur. Numerus 
verorum angulorum planorum est 2¢+2a-4, qui non debet esse maior quam 
6a-12; sed si minor est, excess us erit +4a-8-2¢. 

16 I always take a for the number of solid angles and ¢ for the number of 
faces. The sum of all the plane angles is equal to 4a-8, and the number ¢ is 
equal to 2a-4 if one counts as many faces as there could be triangles. The 
number of plane angles is 6a-12, by counting a [plane] angle for a third of two 
right angles. Now if I take 3a for the three plane angles which are the least 
number required to form one of the solid angles, there remains 3a-12, which 
sum must be added to the individual solid angles according to the investiga-
tion, so that they will be distributed equally from every part. The actual Prop. 6 

number of plane angles is 2¢+ 2a-4, which cannot exceed 6a-12, but if it is 
less, the excess will be +4a-8-2¢. 

Comments. In what follows, S is used for the number of solid angles 
instead of a and F instead of ¢ for the number of faces. 

The first part of the second sentence repeats the proposition of equation (I): 

t = (4S-8). ( I ) 

The second part of the second sentence indicates that if all the faces are 
triangles. 

F= 2S-4. 

This can be derived as follows. Since the angle sum for each triangle is 26.. the 
total angle sum is 2F6.. and substitution ofthis value for I: in (I) results in F= 
2S-4. 

The third sentence continues the case of polyhedra with all faces triangular. 
The number of plane angles is 

p= 6S- 12. 

Each triangle. of angle sum 26.. has three plane angles, hence the average of 
the measures of all the plane angles is 26./3. The number of plane angles Pis 
then given by I:, the total angle sum. divided by 26./3. hence P=3I:/26.. I:/6. 
is therefore 2Pj3, and substitution of this value in (l) results in P = 6S - 12. 

The fourth sentence also assumes that all faces are triangles. The total 
number of plane angles is 6S-12. Each solid angle must have at least 3 plane 
angles; this accounts for 3S plane angles, and the balance, 3S-12, must be 
distributed among all the solid angles. But it is only in the case of the regular 
octahedron and the regular icosahedron, which have all faces triangles, that 
the excess of plane angles (above three per solid angle) can be distributed 
equally among the solid angles. 

The last sentence is general and refers to the fact that 6S-12 is the 
maximum number of plane angles (with respect to a given S). This is evident 
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from the preceding paragraphs; the smallest possible value ofthe averages of 
all the plane angles is 21'::./3, hence dividing! by this smallest value gives the 
largest possible value for the number of plane angles with respect to a given S. 

We repeat the last sentence, but using the symbols Fand S in the equations: 
"The actual number of plane angles is 2F + 2S-4, which cannot exceed 6S-l2, 
but if it is less, the excess will be 4S-8-2F." This sentence, which is derived 
simply by combining equations (I) and (3), is true for any convex polyhedron, 
and is formulated as 

p= 2F+ 2S-4. (4) 

Descartes stops here; there is no discussion of this formula nor is anything 
done with it except to derive the expression of the deficiency of the number of 
plane angles from the maximum number possible. 

The proposition ofthe last sentence will be referred to as Proposition 6 and 
will be considered in later sections. 

17 Describi possunt Rhomboeides in sphaera cuiuscumque quantitatis, 
sed non aequilatera. 

17 Rhomboids of any quantity, but not equilateral, can be inscribed in 
the sphere. 

Comments. No satisfactory meaning can be derived from this sentence, 
nor has any suitable revision been suggested.51 Any attempt to make out a 
meaning is frustrated by the expression "but not equilateral." But even if this 
phrase were removed or changed to "but not unless equilateral," difficulties 
would still remain. The Kepler rhomboids referred to under Paragraph 8 are 
not inscribable. nor are the bipyramids mentioned under Paragraph 8 
inscribable, unless there is a special relation between the altitudes of the 
two pyramids. 



7 General Comments 

The preceding section discussed the individual paragraphs of the manu­
script, primarily from the standpoint of explanation and derivation. The 
present section offers some general comments and observations. 

At first reading the manuscript gives the impression of a miscellaneous set 
of disorganized notes; many have no relation to any of the others and for some 
the relation to others is not immediately apparent. But some of the 
paragraphs, if separated from the others, do form a connected, interdependent 
whole in substantially good order. These are Paragraphs 1-4,7, 10, II, 13, 16. 
The remaining paragraphs,S, 6, 8, 9, 12, 14, 15, 17, are those which introduce 
the disorder. None of the statements in this second group is referred to in the 
first group nor are any of them useful for the derivation of any of the 
statements of the first group. And, except that two of them deal with solid 
angles, none of them refers to or utilizes any of the statements ofthe first group. 

The second group is heterogeneous. Paragraph 5 relates to inscribed 
pyramids, Paragraph 17 to inscribed rhomboids, and Paragraph 9 attempts a 
general statement on inscribability of polyhedra. Paragraph 6 gives the ratio 
of the lateral area of a cone to the area ofthe base. Paragraph 8 refers to certain 
circumscribable polyhedra. Paragraph 12 is simply an isolated observation, 
perhaps relevant to Part II of the manuscript. Paragraph 14 is related to 
Paragraph 15 in that its definitions are needed for understanding 15, which, 
indirectly, draws an analogy between the isoperimetric problem of plane 
polygons and spherical polygons. 

Excluding Paragraph 12 (which will be mentioned later), several things 
should be noted with respect to this second group. First, they are mainly 
geometric in character, with no algebra involved except in calculating the area 
of a cone. Second, they contain most of the incorrect statements of the 
manuscript, some of which can be made correct by suitable amplification or 
modification, but others not; of course, some of these may be due to faulty 
copying rather than to the original manuscript. Third, they do not depart in 
character from the ordinary geometry of the time, and if new do not add 
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anything significant. (The same holds true for Paragraph 9, since the 
attempted geometric proof failed.) 

O'n the other hand, the first group of paragraphs is homogeneous, 
interdependent, and substantially well ordered; there is only one incorrect 
statement (of no consequence), once the statements are understood; after 
Proposition I all propositions and corollaries are derivable by simple algebra; 
and the subject matter represents a considerable departure from contempor­
ary thinking about polyhedra. The last two statements will be amplified. 

Concerning polyhedra, there was very little known in the early 17th century 
beyond what had been transmitted by the ancient Greeks.52 Panofsky states 
that the geometry of three-dimensional bodies or stereometry "was entirely 
disregarded during the Middle Ages."53 Works up to the time of Descartes 
dealt with descriptions, metrical properties, problems of mensuration, and the 
generation of new bodies. In about 1475 the artist Pietro Franceschi wrote 
"De corporibus regularibus, "54 in which he treated the five regular bodies 
from the standpoint of inscribability in and circumscribability about each 
other and the circle, and the calculation of various relations and quantities; a 
typical problem is to find the area of a cube circumscribed about a sphere of 
diameter 7. The last section, on "irregular bodies," has two of the semiregular 
(Archimedean) bodies and a few others. The first section is plane geometry 
and treats regular polygons; a sample problem is to find the area of a regular 
octagon circumscribed by a circle of diameter 7. This is a very dull work, 
consisting mainly of a series of numerical problems and the working out of 
their solutions. In 1497 Luca Pacioli showed perspective drawings of the 
regular solids, several of the Archimedean solids, and some truncated solids 
(that is, with a pyramidal piece cut off each vertex) and augmented solids (with 
pyramidal pieces added to each face), and gave brief descriptions.55 DUrer's 
book on practical geometry, of 1525, which went through a number of 
editions including a Latin edition in 1605, had a section (Book 4) on solid 
bodies.56 He described the regular solids, most ofthe Archimedean solids, and 
several of his own invention. He represented the solids by developing them on 
a plane sheet in such a way that the faces were connected and the sheet could 
be cut in one piece and folded to form a model of the solid, a method now 
commonly used and evidently original with him. The famous engraving 
Melencolia I of 1514 shows a stone block in the shape of a truncated 
rhombohedron (the two corners farthest apart truncated); this may have been 
a departure from previous truncations in that the body to be truncated was not 
a regular one and only two of the eight corners were truncated. In 1568 
Jamitzer published an extraordinary set of 120 perspective drawings of the 
five regular solids and other solids derived from them by truncations, cutting 
notches into sides, making concavities in faces, adding pieces to faces, and 
combinations of these operations, all done in a regular manner.57 Only a few 
of the Archimedean solids are included, and one of the drawings appears to 
anticipate one of Kepler's star polyhedra. Kepler's Harmonice Mundi of 1619 
has a section (Book II) on plane and solid figures, mainly the latter. He 
described and illustrated with perspective drawings all the regular and 
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semiregular bodies, the rhomboids, and two stellated (augmented) or star 
polyhedra, semibodies, as he called them; he was concerned with how various 
solids were derived from others and with inscribability and circumscribability 
and metrical relations. Of works written later than the Descartes manuscript 
mention should be made of those by Ozanam in 1691 and Sharp in 1717.58 
Ozanam's mathematical dictionary (actually a summary arranged by subjects) 
adds little; he does use the word polyhedron (polyedre) but strangely limits it 
to inscribable bodies. Part 2 of Sharp's Geometry Improv'd is entitled "A 
Concise Treatise of Polyhedra or Solid Bodies of Many Bases," but the work 
is devoted to the construction and dimensions of 12 new bodies. His 
expression "Polyhedra or Solid Bodies of Many Bases" indicates the 
etymology of the word and he uses the word "base"throughout for the faces of 
the solid body. He begins his treatment by stating that the discussion of solid 
bodies is a neglected and not common part of Geometry. 

The above indicates the "state ofthe art"at the time of the manuscript. The 
originality and freshness of Descartes' approach are apparent. 

In the analysis in Section 6 various propositions were singled out for 
further mention and numbered. These are listed here: 

Proposition 1. The sum of the exterior solid angles of a solid body is equal 
to eight solid right angles. (§2, p. 44) 

Proposition 2. The sum of the plane angles of the faces of a solid body is 
equal to 4 times the number of solid angles minus S. By formula, I/ t:. = 4S-S. 
(§3, p. 46) 

Proposition 3. Two inequalities relating the number of faces and the 
number of solid angles. By formulas, S~ F/2 + 2 and F~ S/2 + 2. (§4, p. 47) 

Proposition 4. Algebraic treatment of the number of regular solid bodies. 
(§7, p. 50) 

Proposition S. Expression connecting the number of plane angles, faces, 
and the sum of the plane angles. By formula, P=(4F+i-)/2 or I=(2P-4F)t:.. 
(§II, p. 54) 

Proposition 6. Formula connecting the number of plane angles, faces and 
solid angles, P = 2F + 2S - 4. (§16, p. 57) 

Two characteristics in this group of paragraphs should be noted. The first is 
their essentially algebraic nature (after Paragraph 2). Paragraph I is a 
geometric definition, and Paragraph 2 (Prop. I), for which no proof is given, 
seems to be provable only by geometric means. Thereafter the Propositions 
and their stated corollaries and applications are derivable in a simple algebraic 
manner; each follows from other statements in this group, and this can be 
done without going outside the manuscript itself except for a few known 
things (such as the known expressions for the sums ofthe interior angles of a 
polygon, and the definition of regular solids). Of course the derivations given 
here in Section 6 mayor may not have been those used by Descartes; but there 
is no suggestion of geometric proofs. 

The second characteristic of this group of paragraphs is that they are based 
on analogy with plane figures. Proposition I, from which all the other 
propositions and corollaries flow, is presented as an analogy with the 
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corresponding proposition for polygons and was obviously suggested or 
discovered by this analogy. And the derivation of some of the statements 
merely follows a corresponding derivation for plane figures. There are no 
signs of induction (induction in the sense used by P61ya, referred to below, p. 
67) except possibly in Paragraph 4, where the first four sentences may have 
resulted from an attempt to discover by induction a relation between solid 
angles and faces, by analogy with the simple relationship which holds between 
angles and sides in plane figures. 

However, this treatise of Descartes did not, apparently, have any bearing 
or influence on the development of mathematics in the 17th and 18th 
centuries. Descartes himself apparently did not return to this particular 
subject. Leibniz, who had a copy of the manuscript, did not do anything with 
it. Others may have seen the manuscript while it was in the hands of Clerselier, 
but there is no evidence that anyone of those who did see it was influenced by 
it. Nevertheless, there is a good deal of intrinsic interest in the treatise, and it 
belongs to the history of mathematicians if not to the history of mathematics 
as such. It is a work of Descartes which illustrates the development of his 
thinking: it displays considerable originality, and departs from the manner in 
which polyhedra had theretofore been treated. It is in fact the first attempt at a 
general theory of polyhedra. Moreover, it still had something new to offer 
when it came to light (see below, p. 63). 

One can only speculate why Descartes did not return to the preliminary 
notes and develop them into a memoir for publication. De Jonquieres 
suggests that it was "perhaps because, absorbed in questions of a different 
order, he never found the time to return to this mathematical production the 
importance of which, as with that of all other similar ones, was, as he himself 
wrote, but secondary in his eyes." Foucher de Careil, in his lengthy 
introd uction on the Methode, considers the various manuscripts which he had 
discovered to be applications of the Methode. This suggests speculation along 
a different line. When one also takes into account the fact that these notes were 
written down about 1630, one may conjecture that Descartes contemplated 
them as the beginning of a mathematical example to illustrate his Methode, 
and then, realising that the results could not be carried much farther (the 
consequences of Proposition I having been carried out about as far as they 
could be at the time), or not considering them sufficiently important, he 
turned to another path, which led to the Geomerrie with its initiation of 
analytic geometry and important innovations in algebra. The primarily 
algebraic nature of the notes even suggests that they may ha ve been part of the 
beginnings of the thinking which led to the algebraization of geometry. If this 
admittedly speculative suggestion has any truth in it, then the failure of the 
notes on polyhedra led to results which were considerably more important. 

Once the copy of the manuscript was discovered and published in 1860 it 
attracted attention. The first to comment on it was Prouhet in his note 
(Prouhet I) of April 23, 1860. He stated that the manuscript was worthy of 
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attention from the historical point of view, as an illustration of the thinking of 
Descartes on the theory of solids, and from the scientific point of view as 
containing an important new proposition. This is what has here been called 
Proposition I; the sum of the exterior solid angles (the polar or supplementary 
angles) of a solid body (convex polyhedron) is equal to eight solid right angles 
(477). He gave the Latin text and a French translation, and remarked that the 
analogy between polygons and polyhedra had not been noticed before. The 
proposition was new in 1860. Prouhet called it "Descartes'Theorem"(which is 
the name it should retain,59 and showed how it could be derived (his 
demonstration is reviewed above, Section 6, p. 45). Prouhet considered it 
obvious that Descartes was dealing only with convex polygons and convex 
polyhedra. 

In his full treatment, later in the same year (Prouhet II), Prouhet again 
emphasized the importance of the manuscript because of "a very beautiful and 
general theorem which ought to be placed at the head of the theory of 
polyhedra ... ," again referring to Proposition I, Descartes'Theorem. Prouhet 
thus put his finger on what was actually still new in his day and what was even 
then of some importance as a contribution (but his suggestion that it replace 
Euler's Theorem as the foundation of the theory of polyhedra did not come 
about). He does not, however, state that the manuscript discloses Euler's 
Theorem and though he shows how the latter can be derived from Descartes 
formulations, he does not intimate that Descartes was aware of Euler's 
Theorem. 

Prouhet (II) repeated the demonstration of Proposition I which he had 
given in his first note, but added that it was probably not that of Descartes 
"who appeared to have been guided here by considerations very important in 
other respects." From the use of the word "curvaturam" in the manuscript 
(which he translates as "courbure" or curvature), he conjectures that 
Descartes proceeded from considerations of the total curvature of a curved 
surface. But it is not clear how this could have been done. By the curvature of a 
curved surface is meant the Gaussian curvature; the total curvature of any 
closed convex surface is 47T (8t.), the total curvature of a sphere. The 
relationship between the proposition of Descartes and this total curvature had 
been pointed out by J. Bertrand in a note immediately following that of 
Prouhet (I) in the Comples rendus. 60 Prouhet refers to Bertrand, but the latter 
had also said: "While making this comparison, which comes naturally to 
mind, one must add however that the beautiful conception of Gauss could not 
in any manner be considered as a corollary of that of Descartes," and 
discounted the significance. 

Prouhet, following his comment on the first theorem, also states that the 
first traces of topology (then referred to in French as "geometrie de situation ") 
are found in the Descartes manuscript. He referred to a remark made two 
years before by L. Poinsot, 61 that what made the theory of polyhedra very 
difficult was that it bore on a new science, the "geometrie de situation," for it 
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dealt not with the size or proportion of figures but with the order and [relative] 
position of their elements. However, it does not seem that Prouhet either 
stated or believed that Descartes had any notion of topology.62 

Descartes' Theorem is actually a limiting or special case of the Gauss­
Bonnet theorem which in its simplest form is that the integral of the Gaussian 
curvature over a closed surface of genus 0 (one that can be deformed into a 
sphere) is equal to 417'.63 

The first formula for the sum of the plane angles (Proposition 2) was 
known at the time of the publication of the manuscript but the other 
(Proposition 5), which includes the number of plane angles, was not, nor was 
the second formula involving the number of plane angles (Proposition 6) 
known. However, these were not considered significant, and they received 
little attention. Becker used them in 1869 and Lalanne in 1872 to develop other 
relations.64 Other references to them will be noted in Section 9. The algebraic 
treatment of the number of regular polyhedra does not appear to have been 
utilized or developed further. The one commonly given in textbooks appeared 
in 1813 (Lhuilier, see below, p. 70), if not earlier. 

By far the greatest number of references to the Descartes manuscript, direct 
or indirect, occur in connection with its relation to the later work of Euler. We 
will treat the relationship to Euler below in Section 9, after first reviewing 
Euler's work on the topic in Section 8. 



8 Note on the Euler Papers of 1750 and 1751 

We next give a brief review of Euler's work on the general theory of 
polyhedra. Two papers are relevant here: the first, giving some general results 
and stating his theorem, was read on November 25, 1750, and the second, 
giving proofs, was read on September 9, 1751. Both were included in the 
proceedings of the St. Petersburg Academy for the year 1752-1753, which was 
published in 1758.65 The first paper was preceded by a few weeks by a letter to 
Goldbach summarizing some of the results it contained.66 

Euler was the first to have any notion of topology. He gave it a name, 
"geometria situs," which in French was rendered as "geometrie de situation" 
or "geometrie de position" and in German as "Geometrie der Lage." He 
derived the name from a statement of Leibniz which, however, may have been 
misunderstood or garbled in transmission, for it had nothing to do with 
topology and in fact related to its antithesis; Freudenthal refers to Euler's 
"terminological mistake. "67 Despite this, his work on polyhedra is presented 
as a study in solid geometry, stereometry (the measure of solids) as it was then 
called; perhaps this was because solid geometry was an established subject. 
Even so, most ofthe results presented were topological in nature and his proof 
of the polyhedron theorem was also topological. 

The object of the first paper was a general study of polyhedra; one thing 
which needed to be done was to classify them all in some manner and 
introduce some order in the mass of diverse solids. Euler quickly abandoned 
analogy with plane figures, as inadequate. In the case of plane figures 
(polygons) the matter is simple: the number of sides is equal to the number of 
angles, and polygons are classified according to the number of sides. But this 
will not do for solids where, for two different bodies, the number offaces (the 
two-dimensional analogue of the one-dimensional side of a polygon) can be 
the same while the number of solid angles (the three-dimensional analogue of 
the two-dimensional plane angle) is different. Thus a pyramid with a 
quadrilateral base and a triangular prism each have five faces, but the first has 
five solid angles and the other has six. (The above is a summary of Euler's own 
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argument; one can conjecture that he may have reasoned further that neither 
will the solid angles alone do, nor the faces and solid angles taken together.) 

Analogy failing, Euler saw the need for something in addition to the two 
elements corresponding to plane figures, and introduced a concept for which 
there was no counterpart in the plane. This was the "edge," the ridge formed 
by the meeting of two adjacent faces along their common side. Since it was 
new he could find no term in current use, and so selected the Latin word 
"acies," which has the meaning of a sharp edge. (Legendre, in his Elements de 
Geomerrie of 1794 translated this into French as "arete," which has the 
meaning of ridge, the sharp crest of a mountain; English has borrowed the 
French word for this meaning.) P61ya states, "Euler was the first to introduce 
the concept of the 'edge' of a polyhedron and to give a name to it (acies). He 
emphasizes this fact, mentioning it twice. "68 Euler concluded that solid bodies 
had to be studied by considering all their boundary elements, which he 
defined. Several paragraphs are quoted in translation. 

5. The consideration of solid bodies therefore must be directed to their 
boundary; for when the boundary which encloses a solid body on all sides is known, 
that solid is known, in the same manner that the essential nature of a plane figure 
customarily is defined by its perimeter. 

6. But to the boundary of every solid body enclosed by plane figures belong: 
First: the same plane figures which constitute its boundary, which are named 

faces (hedrae); 
Second: the meeting of two faces along their sides, which form the linear bounds 

of the solid: as I do not find any special name in the writers on stereometry I shall 
call them edges (acies); 

Third: the points in which three or more faces meet, which points are called solid 
angles. 

7. Therefore three kinds of bounds are to be considered in any solid body; 
namely I) points, 2) lines, 3) surfaces, or, with the names specially used for this 
purpose: I) solid angles, 2) edges and 3) faces. These three kinds of bounds 
completely determine the solid. But a plane figure has only two kinds of bounds 
which determine it, namely I) points or angles, 2) lines or sides?9 

The edge has already been mentioned. Euler does not use the word "face" 
(Latin facies) but uses "hedra," instead. This is the Latinized form of the Greek 
word f!fJpa, meaning base, which is the root of the word polyhedron, "with 
many bases." Note that Sharp in 1717 referred to polyhedra as solid bodies of 
many bases; Pacioli in 1497 also used "bases" (basi) for faces. As to solid 
angles, Euler retained the term but shifted its significance to the point of the 
solid angle; there was no separate term for the point (tip), as such, though 
"vertex" was used for the apex of a pyramid. (Legendre continued to use "solid 
angle" in 1794, but Cauchy used "sommet" in his "Recherches sur les 
polyedres" of 1813.) 

Lakatos emphasizes Euler's innovations and their topological nature as 
follows: 7o 

The key to Euler's result wasjust the invention of the concepts of vertex and edge: it 
was he who first pointed out that besides the number of faces the number of points 
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and lines on the surface of the polyhedron determines its (topological) character. It 
is interesting that on the one hand he was eager to stress the novelty of his 
conceptual framework, and that he had to invent the term 'acies'(edge) instead of 
the old 'latus' (side), since latus was a polygonal concept while he wanted a 
polyhedral one, on the other hand he still retained the term 'angulus solidus '(solid 
angle) for his point-like vertices. 

Euler's main theorem, his Proposition IV, is stated as follows: 

In every solid body bounded by plane faces the sum of the number of solid angles 
and the number of faces exceeds the number of edges by two. 

Then, taking the number of solid angles as S, the number offaces as H, and the 
number of edges as A, the theorem is expressed by the formula: 

S+ H=A +2. 

Euler then states that he must confess that he was not yet able to give a definite 
proof, but that its truth will be recognized for all types of solids for which it is 
considered. The theorem is then demonstrated as true for: (I) all pyramids; 
(2) wedge-shaped bodies, that is pyramid type bodies having a line instead of a 
point for apex; (3) all prisms; (4) prism type bodies with the two bases having 
different numbers of sides (prismoids); (5), (6) and (7) combinations of two of 
type (4) joined base to base; and (8), the five regular solids treated individ ually. 
The truth of the general proposition is left to be inferred from the individual 
cases. 

Since analogy had proved fruitless, it is very probable that Euler discovered 
his theorem by induction. P61ya repeatedly uses this as a classic example of 
induction in mathematical discovery,?) Euler had come to the conclusion that 
the three particular types of element had to be considered in characterizing 
polyhedra. Their values are considered for a number of different specific 
polyhedra, and a certain type of regularity is then tested for additional cases, 
and for still more cases, until the truth of the proposition seems quite certain. 
This is as far as Euler went in the first paper; the next step, of actual proof, 
came a year later in the second paper. 

Some of the other propositions and their corollaries in the first paper will 
be reviewed briefly. 

I. The number of edges is equal to half of the total number of sides of the 
faces, since two sides meet at each edge; and, since the number of plane angles 
of the faces is equal to the number of sides of the faces, the number of edges is 
also equal to half the number of plane angles. The total number of sides, and 
hence also the total number of plane angles, must be even, since the number of 
edges is not fractional. It follows that the number offaces with an odd number 
of sides, and an odd number of plane angles, must be even. 

II, III. Propositions II and III develop relations which are now written 

2E?;, 3F and 2E?;, 3V. (I) 

As to the first, if every face of a polyhedron is triangular the total number of 
the sides of all the faces would be 3F and the number of edges would be half 
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this number; if some faces have more than three sides the total number of sides 
would be greater than 3F and hence the number of edges would be greater 
than 3F/2. One can argue analogously for the second relation. (The concepts 
of edge and vertex having been expressed, it is now not improper to adopt 
these terms and use the familiar Vfor number of vertices, Ffor the number of 
faces and £ for the number of edges in place of Euler's S, H and A, 
respectively; this will be done from now on.) 

IV. Stated in our terminology, Euler's polyhedron formula is 

V+ F= £+ 2. 

V, VI. The above relations are independent of the theorem of Proposition 
IV. Propositions V and VI combine the relations (I) with it to produce two 
pairs of inequalities now written as 

2 V ~ F + 4, 2F ~ V + 4 (2) 
and 

3V~ £+ 6, 3F~ £+ 6. (3) 

VII. A solid body with each face having six or more sides, or with each 
solid angle formed from six or more plane angles, is not possible. For suppose 
every face has six or more sides: then the total number of sides would be equal 
to or greater than 6F, and hence 2£~ 6F, or £~ 3F; taken with the second of 
the inequalities (3), this would result in the absurdity 3F - 6 ~ £~ 3F. One can 
argue analogously with respect to the solid angles. 

VIII. Propositions VIII and IX are concerned with two different formulas 
for the sum of the plane angles of all the polygonal faces of a polyhedron, 
expressed verbally and in equation form. The first is in terms of edges and 
faces and is written here as (Euler wrote out the words "right angles" which are 
here expressed as L'l) 

R = 4(£ - F)L'l. 

This was proved directly in a simple manner, which was even further 
simplified by Legendre. Legendre's proof as amplified by using formulas is as 
follows. The sum of the plane angles of a face with ni sides is 2(n;- 2)L'l. There 
are Ffaces and Fsuch sums, and adding these sums together results in the sum 
of all the plane angles being equal to 2(Lni- 2F)L'l. The term Lni is the sum of 
the number of sides of all the polygonal faces, which is equal to 2E. Hence R = 
4(£ - F)L'l. 

IX. Proposition IX is the main angle sum formula, in terms of the number 
of solid angles the same as Descartes' formula, and is written here as 

R = 4(V - 2)L'l. 

This is not proven in the first paper; Euler derives it by substitution of the 
previous angle sum formula (VIII) into the polyhedron formula (IV). 

It is not clear how Euler discovered this formula. It could have been 
discovered by induction (P6lya uses this as another example of discovery by 
induction but does not assert that Euler did so) and the easily proven angie 
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sum formula (VIII) then derived to use with the polyhedron formula (IV). 
There was a failure on Euler's part to derive a simple proof of this angle sum 
formula. It could have been done by following analogies with plane figures, as 
has been shown (p. 46), but Euler began by showing that such analogy was 
useless for his objective, and he evidently stayed away from recourse to 
analogy. A year later he did produce independent proofs of the angle sum 
formula and of the polyhedron formula, but these were not of a simple nature. 

Euler realized the importance of the angle sum formula in his first paper, 
for if an independent proof of it were found, then his polyhedron theorem 
could be proved. In the letter to Goldbach which preceded the reading of the 
paper by a few weeks and which gave a summary of his results, he stated that 
he found it surprising that these general results in stereometry had not been 
noticed before by anyone, as far as he knew; then he added that the two 
important results, referring to the polyhedron formula (IV) and the angle sum 
formula (IX), were so difficult that he had not yet been able to obtain a 
satisfactory proof. 

The last part of the paper is devoted to his initial objective, which he 
referred to as Problem I: to enumerate the genera to which every polyhedron 
could be referred and to give them names. The pairs of inequalities written 
above (p. 68), together with the basic theorem (IV), enable the calculation of 
all triplets of values for V, Fand Ethat a polyhedron could possibly have. To 
see this readily, pairs (I) and (3) can be combined into one expression 

2E/3 ~ (V,F):;§; (E + 6)/3. 

For a given E(:;§; 6), integers on or between the outer limits supply all possible 
values for Vand F, which are paired when checked against the main formula. 
(Euler notes, incidentally, that a polyhedron with seven edges is not possible.) 
A genus, in Euler's classification, comprises all polyhedra which have the 
same number of vertices, edges and faces. A table of the genera is presented, 
arranged first by the number of vertices and then by number offaces and edges 
and going up to ten vertices. The classification is topological, as is his 
description of the single species in each of the first four genera. He states that 
the following genera generally include many species but that the other relevant 
properties of solids have not yet been developed sufficiently to permit their 
enumeration. 

The second paper, which provided the proofs lacking in the first, was read 
about a year later. This lapse of time may indicate the difficulty Euler 
experienced in finding proofs. Each of the two formulas is proven separately 
and independently of the other, although the same procedure is involved in 
each. The proofs are quite inelegant and will not be described here. While the 
proof of the polyhedron formula was accepted by later geometers, for 
example by Legendre in his Geometrie, it has been criticized by Lebesgue 72 as 
lacking in rigor. The proof has also been termed invalid because of the breadth 
of the statement" All solid bodies with plane faces ... ," since there are solid 
bodies with plane faces to which the theorem does not apply. This criticism is 
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not justified, since the context ofthe papers shows plainly that he was dealing 
with convex polyhedra; the etymology and the usage of terms in Euler's day 
would also indicate convex polyhedra. 

Legendre gave a simple proof of Euler's polyhedron theorem in his 
Geomerrie of 1794, and developed various consequences of it in an appendix. 
The proof, specifically limited to convex polyhedra, is based on projecting the 
vertices and edges onto the surface of a unit sphere with its center in the 
interior of the polyhedron, from the center of the sphere. The surface is 
divided into spherical polygons corresponding respectively to the faces; for 
each face there is a spherical polygon with the same number of sides and angles 
and they are arranged in the same order. Legendre developed the known 
formula for the area of a spherical polygon by dividing it into triangles and 
adding together the areas (cf. Section 5, p. 39). The result is a = s - 2nb. + 4b., 
where a is the area, s the sum of the angles, and n the number of sides. There 
are Fsuch formulas, one for each polygon on the sphere, and these are added 
together. The sum of the terms on the left is the total area of the sphere, which 
is 8b.. The sum of the first terms on the right is the sum of all of the angles of 
the polygons; these angles surround V points on the sphere without gaps or 
overlapping and, as the sum of the angles about a point on a sphere is 4b., this 
term is equal to 4 V b.. The sum of the n 's is the sum of all the sides of all the 
polygons, which is equal to the sum of the sides of the faces of the polyhedron 
and hence to 2E. The result of the addition is 

8b. = 4 V Ll - 4Eb. + 4Fb., 

which gives V+ F= E + 2. 
Legendre's text became very popular and went through many editions, the 

eighth appearing in 1809 and the twelfth in 1823, and it was translated or 
adapted into other languages. It served to make Euler's theorem and the 
simple proof widely known among mathematicians, so that it was included in 
other texts which covered solid geometry, and would be further considered by 
geometers. 

Of the many geometers who discussed Euler's theorem we will briefly note 
the contributions of some of the earlier ones. In 18 JO Poinsot73 called 
attention to the fact that Legendre's proof went beyond convex polyhedra, as 
it applied without change to polyhedra with re-entrant solid angles, provided 
it were possible to find an interior point to be the center of a sphere onto which 
the faces could be projected without overlapping. In the years 1811 and 1813 
Cauchy, Lhuilier and Gergonne74 came up with about a half dozen new and 
different proofs, starting a flood of proofs. Lhuilier also caJled attention to a 
variety of non-convex solid bodies to which Euler's formula did not apply and 
developed variations of the formula for them. Steiner gave another proof 
(1826); he also revived Euler's problem of enumeration (1828),15 which 
thereafter received the attention of a number of mathematicians. And there 
were many others, notable among which was that of von Staudt (1847).16 He 
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stated a purely topological necessary and sufficient condition for a poly­
hedron to satisfy Euler's theorem and gave a simple and elegant proof of the 
theorem, also purely topological. Among the early topologists who gave 
proofs and extensions may be mentioned Listing (1862), Mobius (1863), and 
Jordan (1866).77 We have already quoted (p. 63) Poinsot's remark of 1858 
about the difficulty of the theory of polyhedra. Lebesgue said, in an 
unpublished notebook, that, "The first important notions in topology were 
acquired in the course of the study of polyhedra. "78 



9 Descartes and Euler 

Our analysis of and comments on the manuscript in Sections 6 and 7 did 
not mention Euler's work, and the summary of Euler's work in Section 8 did 
not mention Descartes; this was done in order that all comparative remarks 
might be considered at the same time. 

There is a good deal of parallelism between Descartes' notes and Euler's 
work. Each is an original attempt at a general theory of polyhedra, and each 
departed from the prior treatment of this subject in a significant manner; the 
comments on the "state of the art" in 1630 made in Section 7 (p. 61) apply with 
equal force to 1750. As to subject matter, Descartes' Proposition 2 is also 
given by Euler (his Proposition IX) and the two inequalities of Proposition 3 
are also stated by Euler (in his Proposition V), who has other pairs of 
inequalities as well. Descartes' Proposition 5, giving the sum of the plane 
angles in terms of the number of faces and plane angles, finds its counterpart 
in Euler's Proposition VIII, which gives this sum in terms of the number of 
faces and edges. And Descartes' Proposition 6, a relation between the number 
of plane angles, the number of faces and the number of solid angles, finds its 
counterpart in Euler's Proposition IV, the relation between the number of 
edges, faces and vertices, the famous Euler formula or theorem. The last two 
mentioned propositions of Euler can be derived from the corresponding 
propositions of Descartes by introducing the notion of edges of a polyhedron 
(which Descartes does not have), and eliminating plane angles from consider­
ation (which Descartes does not intimate); this matter is considered below. 
Euler does not have Descartes' Proposition 4 dealing with regular solids, nor 
Descartes' Proposition I, on the sum of the exterior solid angles, but does 
have a number of propositions not in the Descartes' notes; the absence of any 
reference to exterior solid angles in Euler may be due to the different 
approaches. 

The approaches in the two works are quite different. Descartes' is based 
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upon analogy with plane figures and shows little or no signs of induction, 
whereas Euler's is based upon induction, with analogy cast aside (although an 
analogy is mentioned at one point). The central element in Descartes is the 
plane angle: Propositions 2, 5 and 6 relate to plane angles, and 6 is only used to 
determine the deficiency in the number of plane angles from the maximum 
number possible; Propositions 3 and 4 are derivable from considerations of 
plane angles; and various statements and examples involve plane angles. On 
the other hand, Euler introduced a new element, the edge, which became 
central in his work, even though he gives two angle sum formulas. 

Euler's two papers contain a good deal more than the Descartes notes. This 
is natural, since the Euler papers form a finished memoir whereas the notes 
were only the first steps of a discontinued project. But Euler also had the 
advantage of working 120 years later, when the level of general mathematical 
knowledge was much higher than in 1630 (owing to the work of Descartes and 
others) and furthermore he had a notion oftopology (first expressed by him 15 
years earlier), which notion did not exist in 1630. 

With respect to the relation of the Descartes' manuscript to Euler's 
formula, two statements can be made: 

I. The manuscript does not disclose Euler's formula directly. By Euler's 
formula is meant his relation that the sum of the number of faces and the 
number of vertices is equal to the number of edges plus two(F+ V= £+ 2). 

2. The manuscript does disclose several statements from which Euler's 
formula can be derived (Descartes' Proposition 6 can even be called an 
analogue of Euler's formula); this follows from the manuscript with the 
addition of present-day knowledge of Euler's formula. 

The simplest ways of deriving Euler's theorem from the manuscript are 
mentioned here (some others will be noted later). First, the union of the two 
meeting sides of adjacent faces of the polyhedron is taken as the element of the 
polyhedron to be considered and given a name, "edge," and a symbol, £. Then 
the statement of Paragraph 12 of the manuscript can be expressed as: the 
number of plane angles is equal to twice the number of edges, or P = 2£. P = 
2£ can be substituted into Proposition 5, forming i- = 4£ - 4F (which is 
Euler's Proposition VIII) and this combined with Proposition 2(i- = 4S - 8) 
gives Euler's formula (after dividing by 4). Alternatively, P= 2£ can simply be 
substituted into Proposition 6, giving 2£ = 2F + 2S - 4, which results in 
Euler's formula after dividing by 2. 

The above is so simple that some authors have asserted as a fact that 
Descartes knew or was aware of Euler's theorem. Since we do not actually 
know what was in his mind other than what is stated in the manuscript, such a 
conclusion could only properly be stated in terms of probability rather than 
fact. The question, "Did Descartes know Euler's theorem?" or, alternatively 
stated, "Was Descartes aware of Euler's theorem?" can be answered only: 
"Yes, probably" or "No, probably," with or without further qualification. 

The least extravagant type of reasoning leading to the unqualified factual 
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affirmation made by some authors can be expressed by the following 
propositions: 

I. X knew A. 
2. B is a logical (simple, direct, immediate) consequence of A. 
3. Therefore, X knew B. 

But the third term does not necessarily follow from the first two; other 
considerations must come into play before even a plausible inference could be 
drawn. 79 

But even if a plausible inference could properly be made, it does not 
necessarily follow that the inference was in fact made. Hadamard, in his 
discussion of this matter ,80 refers to "the failure of a research scholar to 
perceive an important immediate consequence of his own conclusions" as a 
"paradoxical" failure. This psychological failure he attributes to concentra­
tion or too narrowly a focusing on the problem or subject at hand. He recites 
four personal instances, the second of which we quote: 

My next work was my thesis. Two theorems, important to the subject, were such 
obvious and immediate consequences of the ideas contained therein that, years 
later, other authors imputed them to me, and I was obliged to confess that, evident 
as they were, I had not perceived them. 

Hadamard gives instances of similar experiences by others, and concludes 
with the remark, followed by an instance involving Pascal. "It is probable that 
many scholars, if not all of them, can remember similar experiences. It is a 
comforting thing to think that the same may happen to the greatest ones." 

But Hadamard was referring to contemporaneous or substantially con­
temporaneous events and knowledge. With respect to the present question we 
have the situation (referring to the above schema) that X knew A in 1630 and B 
became known in 1750, and the fact that B could be derived from A became 
known in 1860. 

Quite a number of books and articles contain such statements as that 
Descartes anticipated Euler's theorem, that the Descartes manuscript discloses 
Euler's theorem, that Descartes knew, or was aware of, Euler's theorem, etc., 
referring to Euler's theorem relating the edges, faces, and vertices of 
polyhedra, without more. I have noticed such statements in half a dozen 
English language general histories of mathematics and in a like number of 
mathematical books which make historical remarks relating to their subject. 
There are undoubtedly many others, but no effort has been made to seek them 
out. Instead, a dozen of the pronouncements on this matter are gathered in the 
following addendum. These are not intended as "authorities" (since the only 
authority is the manuscript itself). They range from the respectable to the 
ridiculous. The list, which is not intended to be complete, is arranged in 
chronological order. 
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Addendum to Section 9 

I. Prouhet, 1860. Prouhet (I) was the first to comment on the relation of 
the Descartes manuscript to Euler's theorem. One of the reasons he gave for 
the importance of Descartes' theorem (Proposition I) was that Euler's 
theorem could be derived from it. After showing how Descartes' theorem 
could be demonstrated and how the angle sum formula (Proposition 2) could 
be derived from it, he showed how Euler's formula could be found. His 
method consisted in deriving Euler's Proposition VIII (in substantially the 
same way that Euler did) and combining it with Proposition 2. He concluded 
the first note with the statement that Descartes did not express Euler's 
theorem but "the exact rules he gave on the number of elements of certain 
solids, show that he had carried the consequences of the equality [Proposition 
I] very far." He considered it obvious that Descartes was dealing only with 
convex polygons and convex polyhedra. 

In his full treatment which came later in the year (Prouhet II), Prouhet 
again emphasized the importance of the manuscript because of "a very 
beautiful and general theorem which ought to be placed henceforth at the 
head of the theory of polyhedra and of which Euler's theorem, regarded up to 
the present as fundamental, is no more than a simple corollary." This referred 
again to Proposition I, as stated in the next column of the paper. 

2. Baltzer, 1861, 1862. The first Baltzer referenceS) is a short note on two 
topics, the first of which is the Descartes manuscript. He refers to Foucher de 
Careil and Prouhet I only. He first quotes the paragraph of the manuscript on 
the exterior angle sum (Proposition I) and then the plane angle sum theorem 
(Proposition 2). The latter is called the fundamental theorem (Grundgesetz) of 
polyhedrometry and corresponds with Euler's second theorem (Euler's 
Proposition IX) which the latter discovered more than 100 years later and 
which Euler regarded as the basis for another. He quotes the sentence from 
Euler in which Euler stated that it (his Proposition IX) was related to his main 
theorem (his Proposition IV), since if one were demonstrated the other would 
be demonstrated. Baltzer sets up the angle sum formula, Descartes' Proposi­
tion 2 and Euler's Proposition IX, as the fundamental theorem of polyhedra. 
In his concluding paragraph Baltzer states: 

Therefore it is undoubted that the discovery of the fundamental theorem 
(Grundgesetz) of polyhedrometry also belongs to the brilliant achievements which 
glorify the name of Descartes, and that Euler must henceforth share the honor of 
that discovery with his great predecessor (the founder) of modern analysis. 

When quoted out of context, or without stating what theorem is meant, this 
obviously gives a false impression of what Baltzer said. 

Baltzer also quotes the paragraph with the second angle sum theorem 
(Paragraph II, Proposition 5) and derives Euler's theorem. This is done by 
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combining the two angle sum formulas and then replacing the number of 
plane angles by the corresponding number of edges; the result, he states, 
corresponds with the first Euler theorem on the number of faces, vertices and 
edges. He does not assert that this derivation is in the manuscript or that 
Descartes was aware of it. 

Baltzer's book of 186282 gives Euler's theorem (the formula connecting the 
number of vertices, edges and faces) in the text, with the following footnote: 

This basic theorem of polyhedrometry (which perhaps was known in antiquity, as 
Archimedes was able to enumerate the complete series of semiregular polyhedra), 
first appears in a fragment of Descartes published in 1860, Oeuvres in/Mites de 
Descartes by Foucher de Careil, II, p. 214. Compare the note of the present author 
in Monatsbericht der Berl. Acad. 1861, p. 1043. The theorem was first made known 
by its rediscoverer, Euler, in 1752, Nov. Comm. Petrop. 4 p. 109, and proven p. 156. 

3. Becker, 1869. Becker8) is concerned with extensions of Euler's formula 
beyond convex polyhedra and also develops formulas involving plane angle 
sums. He notes Descartes' theorem on the angle sum (Proposition 2), and 
misunderstanding Prouhet, states, "Mr. Prouhet concluded from it that 
Descartes must have already known Euler's theorem, but stopped short of 
proof of that theorem." Becker does not agree, stating, "This conclusion seems 
to me in fact patriotic, but not very well founded (gerechtfertigt)." Several 
reasons are given; he points out that neither theorem is a logical consequence 
of the other, as each is independent of the other (that is, can be derived 
independently). 

4. De Jonquieres, 1890. The principal contender that Descartes was aware 
of Euler's theorem and expressed it is de Jonquieres. In his first note84 he states 
that two theorems are found in the notes, from which the remarkable relation 
between the number of faces, vertices and edges of a polyhedron flows 
intuitively. These are the two angle sum formulas (Propositions 2 and 5), 
which he gives. By substituting twice the number of edges for the number of 
plane angles in the second formula, and combining the two, Euler's relation is 
produced. "It cannot be denied then that he knew it, since it is a deduction so 
direct and so simple, we say so intuitive, from the two theorems that he had 
just stated." He concludes with the peroration, "One must then, without 
lessening the merit of Euler, who independently found it later, add this new 
jewel to the crown of our great compatriot." 

In the second noteSl de Jonquieres asserts in the opening paragraph that 
Descartes not only knew and applied Euler's formula, (as he had previously 
remarked), but had also stated it explicitly. He refers to the formula for the 
number of plane angles in terms of the number of faces and solid angles 
(Proposition 6). By substituting twice the number of edges for the number of 
plane angles, Euler's formula is obtained "explicitly expressed. "The logic can 
be stated as: (I) X expressed A; (2) B is an immediate consequence of A; 
(3) therefore X expressed B. 
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De Jonquieres' first note states generally that Descartes applied Euler's 
theorem to numerical examples. His second note gives two so-called 
applications of Euler's theorem. The first is the problem posed in Paragraph 
13 of the manuscript (see Section 6, p. 55). The derivation of the number of 
solid angles in the problem as 6 is a "necessary consequence" of Euler's 
theorem, since, given that F = 5 and that the number of plane angles is 18 
(from which the number of edges is 9), it follows by substitution in Euler's 
formula that S = 6. The second application is the pair of formulas used for 
determining the number ofregular polyhedra (see Section 6, Paragraph 7, p. 
50), which can be derived from Euler's formula by using the definition of the 
regular bodies and the notion of edges. These applications are given as 
confirmations of de Jonquieres' thesis. The note ends with the statement that 
since Descartes was prior in fact, though not in publication, it is equitable 
henceforth to associate his name with that of Euler and to call the formula the 
Euler-Descartes relation. 

The third note86 is a description of the memoir presented to the Academie 
the same day. The memoir repeats or restates the various assertions previously 
made, with some amplifications, which we need not consider here. De 
Jonquieres quotes the last paragraph of Baltzer's note, of which he had not 
been previously aware, as supporting his conclusion. 

5. Killing and Hovestadt, 1913. This book on the teaching of mathematics 
has a section on Euler's theorem, the opening historical paragraphs of which 
are quoted in full: 87 

The noteworthy theorem which now bears Euler's name was. indeed. not clearly 
expressed by the Greek mathematicians, but according to Baltzer's conjecture. 
supported by important grounds, did not remain unknown. He finds its clear 
expression in the posthumous paper of Descartes, which was first printed in the 
year 1860. Without having knowledge of it, Euler discovered the theorem anew and 
provided a proof. Here, in his discovery published in the writings of the Petersburg 
Academy, he brought the theorem to general knowledge and it was soon accepted in 
textbooks. 

The theorem consists of several relations, of which two are particularly 
important. [n order to express them in formulas, we designate the number of 
vertices bye. the edges by k. and the faces of a polyhedron by.f. and designate the 
smallest number of triangles into which the surface can be divided equal to D. Then 
the theorem is affirmed, that is, 

(I) e+/=k+2 
(2) D = 2(e - 2). 

The first equation becomes associated with Euler's name in the narrowest sense. 
when one speaks of Euler's theorem of solid geometry, so that one thinks only of 
equation (I). On the other hand, Descartes places equation (2) in the first place and 
derives equation (I) from it. 

It is needless to comment on this performance. 
6. Lebesgue. 1924. Lebesgue's paper88 is on the first two demonstrations 

(by Euler and Legendre) of Euler's theorem. He regards Legendre's demonstra-
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tion as the first rigorous proof. Euler's and Legendre's proofs, as well as the 
Descartes' manuscript, are discussed with suggestions as to how they arrived 
at their respective results. Descartes' approach was metric while Euler's was 
topological. Lebesgue's paper takes an additional view, based on P6lya's 
analysis of the role of induction and analogy in the discovery of mathematical 
theorems. 

As to Descartes' knowledge of Euler's theorem, Lebesgue states emphati­
cally, " ... I am not at all in agreement with those who claim that one can 
attribute to Descartes the theorem of Euler. Descartes did not enunciate the 
theorem; he did not see it" (p. 319). Again he indicates (p. 320), "That 
Descartes came so close to the theorem without seeing it" could be due to the 
fact that he was young at the time, "but Leibniz, who found Descartes' 
notebook sufficiently interesting to copy it. .. did not perceive, in Descartes' 
notebook, the theorem of Euler so fundamental in analysis situs." 

In one of Lebesgue's unpublished notebooks (quoted by Pont89 ) appears 
the statement: "The first important notions in topology were acquired in the 
course of the study of polyhedra ... In 1890, de J onquieres, in a series of notes 
in C.R., created the legend that this theorem was due to Descartes. Descartes 
did not express Euler's theorem; as for topology, he by no means surmised 
it; . .. " 

7. Cajori, 1929. Cajori first states, of Euler's relation between the edges, 
vertices and faces of a convex polyhedron, that, "The theorem was first 
enunciated by Descartes, but his treatment of it was not published until 1859 
and 1860."90 Then, in the same paragraph, he gives Descartes' relation 
between the number of plane (polygonal) angles, faces and solid angles and 
states, "As the sum of the polygonal angles is twice as great as the number of 
edges, it is evident that Descartes' phrasing is equivalent to Euler's statement." 

8. Steinitz and Rademacher, 1934. The authors of this book on polyhedra 
state91 : 

Euler's desire [to find a proof of the angle sum formula, his Proposition IX and 
Descartes' Proposition 2] was actually fulfilled by Descartes about a hundred years 
before he [Euler] formulated it. I n fact he [Descartes] found and proved formula (9) 
[the angle sum formula] and, starting from it, also Euler's theorem (I) [Euler's 
theorem]. 

9. Frechet and Fan, 1946. Pont89 criticizes two French books92 for falsely 
asserting that Hilbert and Cohn-Vossen have shown that Euler's Theorem 
(connecting the number of vertices, faces and edges of a convex polyhedron) 
was due to Descartes. In fact the later author, A. Delachet, derived his 
misinformation from the earlier book, Initiation to Combinatorial Topology 
by Maurice Frechet and Ky Fan.93 This beautiful gem of exposition is marred 
by the treatment of Euler's theorem. Section II is headed "Descartes' 
theorem," and the opening paragraph states: 

"Well known is the famous Descartes 'formula (mentioned by Poincare in 
the quotation on page vi), often attributed to Euler l : 
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(I) nv-ne+nr=2." 

The footnote attached to this sentence reads: "IOn the matter of priority to 
Descartes, see: W. Killing and H. Hovestadt [16], page 268; D. Hilbert and S. 
Cohn-Vossen [II], page 254." 

Page 254 is the beginning of section 44, "Polyhedra", of Hilbert and 
Cohn-Vossen.94 After describing polyhedra, the authors state: 

Die anzahlen der Ecken, Kanten und Flachen eines simplen Polyeders stehen 
zueinander immer in einer wichtigen Beziehung, die nach ihren Entdecker der 
EULERsche Polyedersatz genannt wird. 

In the English edition: 

There is an important relation between the number of vertices, edges, and 
faces of a simple polyhedron. It is called Euler's Formula/or Polyhedra, after its 
discoverer. 

Thereafter the work consistently refers only to Euler; Descartes is never 
mentioned. Incidentally, the quotation from Poincare referred to does not 
mention Descartes. The Killing and Hovestadt reference has been cited above 
(p. 77). 

The false reference to Hilbert and Cohn-Vossen in Frechet and Fan is 
undoubtedly due to a slip on the part of the authors. Thence it was uncritically 
accepted by Delachet, and unfortunately also by the English translator of 
Frechet and Fan (whose copious notes are otherwise up to the high standard 
of the original). 

10. P61ya, 1954, 1965. Perhaps the person who has studied the papers of 
Euler and the notes of Descartes more intensively than anyone else is George 
P6lya. He frequently refers to them, particularly Euler, in two books9s and 
various papers dealing with the role of guessing, analogy, and induction in 
mathematical discovery, in the solving of problems, and in teaching. He uses 
various propositions of Euler, and also Descartes, as illustrative examples, 
and sets the proof of some as problems; a few of these have already been 
referred to (pp. 37,45). As to the Descartes notes he states, "These notes treat 
of subjects closely related to Euler's theorem: although the notes do not state 
the theorem explicitly, they contain results from which it immediately 
follows. "96 He is definitely of the opinion that the notes do not state Euler's 
theorem (in a letter in response to an inquiry he stated that he had read the 
Descartes manuscript many times and hasiust read it again and still does not 
find it). P6lya does not discuss whether Descartes was aware of Euler's 
theorem (he does not indulge in historiographic vices), but he evidently would 
not think so for he pointed out that it was Euler who invented the concept of 
the edges of a polyhedron and gave them a name. 

II. Pont, 1973. Pont devotes an early section of his history of algebraic 
topology97 to the Descartes manuscript. Referring to the manuscript, he says: 
"Its principal interest resides in the fact that it contains a proposition from 
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which Euler's theorem on polyhedra is an almost immediate consequence. 
Two radically opposed interpretations are accordingly possible: one attributes 
Euler's theorem to Descartes, the other affirms that he did not see it. The 
object of the present section is the study of these two appreciations." After 
consideration of various formulas in the manuscript and their derivations, 
and the arguments of de Jonquieres, he comes to the same conclusion as 
Lebesgue. 

12. Lakatos, 1976. This book on the logic of mathematical discovery 
utilizes the theme of proofs of Euler's theorem throughout. The discussion 
begins with a "proof" based on Cauchy's proof of 1813, but so modified that 
defects can be found. The first mention of the formula V - E+ F= 2 carries a 
long footnote, the first paragraph of which reads: "First noticed by Euler 
[1758a]. His original problem was the classification of polyhedra, the 
difficulty of which was pointed out in the editorial summary: 'While in plane 
geometry polygons (figurae rectilineae) could be classified very easily 
according to the number of their sides, which of course is always equal to the 
number of their angles, in stereometry the classification of polyhedra (corpora 
hedris planis inc/usa) represents a much more difficult problem, since the 
number of faces alone is insufficient for the purpose." The second paragraph 
begins with the sentence quoted above p. 66, and then refers to the Descartes 
manuscript and the view, stated as recently generally accepted, that Descartes 
anticipated Euler. The footnote ends: 

It is true that Descartes states that the number of plane angles equals 21/J + 2a - 4 
where by I/J he means the number offaces and by a the number of solid angles. It is 
also true that he states that there are twice as many plane angles as edges (latera). 
The conjunction of these two statements of course yields the Euler formula. But 
Descartes did not see the point of doing so, since he still thought in terms of angles 
(plane and solid) and faces, and did not make a conscious revolutionary change to 
the concepts of O-dimensional vertices, I-dimensional edges and 2-dimensional 
faces as a necessary and sufficient basis for the full topological c.haracterisation of 
polyhedra. 

The translating of "latera" as "edges" instead of "sides" is anachronistic; 
Lakatos himself states that Euler invented the concept of edge. But even with 
this addition to the manuscript he does not believe that Descartes joined the 
two statements to produce Euler's formula. 



Part Three 
Number Theory: Polyhedral Numbers 



10 The Figurate Numbers of the Greeks 

The figurate numbers of the Greeks go back to the time of Pythagoras and 
are frequently referred to by Greek authors. The natural way to represent 
numbers was by a set of units, shown by dots in sand or by pebbles, and these 
were arranged in patterns of geometrical figures. In writing, a dot or the letter 
a would be used for each unit. The figurate numbers and various relations and 
problems concerning them form a substantial part of Greek number theory 
(arithmetic). Surviving works which treat figurate numbers are by Nicomachus 
of Gerasa (c. 100 A.D.), Theon of Smyrna (c. 130 A.D.),99 Diophantus of 
Alexandria (c. 250 A.D.),IOO and lamblichus (c. 283-330 A.D.).lol Summaries 
are given by Heath and Dickson, and some relevant extracts by Cohen and 
Drabkin.lo2 This section will review some of this material, with some added 
matter, before presenting the text of the second part of the manuscript, which 
deals with figurate numbers. 

Nicomachus divides numbers into linear or one-dimensional, plane or 
two-dimensional, and solid or three-dimensional. Plane numbers are repre­
sented by two-dimensional figures and are divided into two classes; (I) polyg­
onal numbers, in which the units (dots) are arranged in the form of equilateral 
polygons (see below), and (2) oblong numbers, the product of two factors 
(presumably not including one as a factor), which would be shown as 
rectangular arrays of units according to the two factors as sides. Solid 
numbers are likewise divided into two classes; (I) pyramidal numbers (see 
below p. 89)-he also considered truncated pyramids-and (2) numbers 
which are the product of three factors (if the three factors are equal the 
numbers are cubic, if two are equal and the third smaller they are bricks, and if 
the third is larger they are beams; if all three factors are different the numbers 
are scalene, with unequal sides). All the above are treated in chapters 6 to 17 of 
Book 1\ of Nicomachus; numerous special terms are used for particular types. 

(I) Polygonal numbers. Figures 9-12 show the beginnings of the series of 
triangular, square, pentagonal and hexagonal numbers, respectively. Note 
that for every polygon the first number in its series is simply one. The first line 
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under each figure gives the number of dots along a side of the polygon; this 
number will be referred to in the general case as n. and is the radix or base of 
various formulas. It is represented in the Descartes manuscript by the cossic 
symbol for the radix, '-t. 

0 

0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

n = 1 2 3 4 
p(3,n) 1 3 6 10 

d, 1 2 3 4 
cia 1 1 1 

Figure 9 
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0 0 0 

0 0 0 

n = 1 2 3 4 
p(4,n) 1 4 9 16 

d, 1 3 5 7 
cia 2 2 2 

Figure 10 

o 
o 

0 
0 0 0 

0 
0 

0 
0 0 

0 
0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

n = 1 2 3 4 
p(5,n) 1 5 12 22 

d, 1 4 7 10 
da 3 3 3 

Figure II 
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The second line under each figure gives the numerical value of the 
corresponding polygonal number. These numbers will be represented here by 
the notation p(a,n), where a is the number of sides of the polygon and n is the 
number of dots along a side, so p(3,n), p(4,n), p(5,n) and p(6,n) are written at 
the beginning of each respective second line. 103 The third and fourth lines will 
be referred to later. 
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For certain purposes, which follow later, the triangular numbers are 
represented by an elongated isosceles triangle as in Fig. 13(a) or by a form 
elongated and sheared, Fig. 13(b). Figure 13( c), showing another form, 
illustrates the formation of a square number from two triangular numbers; in 
general, p(4,n) = p(3,n) + p(3,n - I). 

0 0 

0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

(a) (b) (c) 
Figure I3 

Hypsicles (C. 150 B.C.) as quoted by Diophantus,I04 gave the following 
definition of polygonal numbers: 

If there are as many numbers as we please beginning with one and increasing by the 
same common difference, then when the common difference is I, the sum of all the 
terms is a triangular number; when 2, a square; when 3, a pentagonal number. And 
the number of angles is called after the number exceeding the common difference by 
2, and the side after the number of terms including 1. 

Thus if you start with a simple arithmetical series (which we call a "series of the 
first order," in which the first differences of the terms are constant) beginning 
with I, the sum of the first n terms is a polygonal number with the number of 
dots on a side equal to n. If the number of sides (angles) of the polygon is a, the 
common difference is a - 2. These relations are illustrated in Figs. 9-12. In 
each case the third line under the figure is the arithmetical series and the fourth 
line the common differences. If, instead, we start with the polygonal numbers 
(line 2), the first differences dl are given in line 3 (a zero is imagined as 
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preceding the in line 2), and the fourth line gives the common second 
difference. Each series of polygonal numbers is an arithmetical "series of the 
second order" (in which the second differences are common). 

Since each series of polygonal numbers is formed by the successive 
summation of the terms of a simple arithmetical series, the general term for 
each series can be readily found from the elementary properties of arithmeti­
cal series. Given the first term and the common difference, the nth term is (n­
I) times the common difference added to the first term, and the sum of the first 
n terms is n times the sum of the first and last terms divided by two. The 
general terms for the four series illustrated in Figs. 9-12 and the three 
following are 

p(3,n) (n2 + n)/2, 
p(4,n) n2, 
p(5,n) (3n2 - n)/2, 

p(6,n) = 2n2 - n, 
p(8,n) 3n2 - 2n, 

p( lO,n) 4n2 - 3n, 
p(l2,n) = 5n2 - 4n. 

These formulas are used by Descartes in arriving at results stated in the 
manuscript. Only some are written down by him; the n. of course, is written as 
the cossic symbol for the radix or base,)(, and the n2 as the cos sic symbol for 
zenzus, the radix squared. He called the formulas the "exponents" of the 
corresponding general polygonal number. His method of deriving them is 
given later (p. 94). 

Formulas of the kind given above for the general term of individual series 
of polygonal numbers were known before Descartes' work. Faulhaber gives 
cossic equations for the series oftriangular, square, pentagonal and hexagonal 
numbers (see Section 12, p. 117). A completely general formula for a 
polygonal number corresponding to a polygon with any number of sides and 
any base would not have been written at the time, rather, a verbal description 
would have been used. 

To obtain a completely general formula, we follow Hypsic\es in taking a - 2 
as the common difference where a is the number of sides of the polygon: then 
the nth term of the arithmetical series is I + (n - I) (a - 2), and the sum of the 
first n terms (n times the sum of the first and last terms divided by two) 
reduces to 

p(a.n) = (a - 2)n2 /2 - (a - 4)n/2. (I) 

If d is taken as the common difference the formula can be written in the 
simpler form 

peed + 2),n) = n + n(n - l)d/2 = dn2 /2 - (d + 2)n/2. 

Diophantus (tr. Heath, pp. 249-254) gave essentially the same two 
formulas in verbal form, with complicated geometrical proofs. He also gave 



10. Gnomons 87 

an expression for n in terms of the other quantities. The fragment "On 
Polygonal Numbers" breaks off after the first steps of a solution of the 
problem: "Given a number, to find in how many ways it can be polygonal." 

Nicomachus presented a table of the polygonal numbers up to the 
heptagons and extending to the tenth member of each series. This table is 
repeated here with added headings and side notations. He called attention to a 
particular relation, by examples and in general terms. Note that the ninth 
hexagonal number, 153, is equal to the ninth pentagonal number immediately 
above it, 117, plus the eighth triangular number, 36. This is true in general: the 
nth a-gonal number (a > 3) is equal to the nth (a -I)-gonal number plus the (n 
- I)th triangular number. (For the first column, n = I, a zero is assumed to 
precede the first triangular number.) This relation is expressed in the notation 
used here as the recursive formula p(a.n) = pea - I,n) + p(3,n - I). Each 
column ofthe Nicomachus table is an arithmetical series ofthe first order, and 
the common difference is the first number in the preceding column. 

n= 3 4 5 6 7 9 10 

p(3.n) Triangles 6 10 15 21 28 36 45 55 

p(4.n) Squares 4 9 16 25 36 49 64 64 81 

p(5.n) Pentagonals 5 12 22 35 51 70 92 117 145 

p(6.n) Hexagonals 6 15 28 45 66 91 120 153 190 

p(7.n) Heptagonals 18 34 55 81 112 148 189 235 

From this the general term is readily seen to be 

p(a.n) = p(3,n) + (a - 3)p(3,n - I), 

which reduces to the formula (I). Nicomachus considered the triangular 
numbers basic for polygonal numbers, since anyone can be formed by adding 
triangular numbers, at least arithmetically if not geometrically as shown in 
Fig. 13(c).105 

Numerous relations among the polygonal numbers and problems concern­
ing them were studied by the Greeks and later writers. Dickson in Chapter I of 
Volume II of his History oJthe Theory oj Numbers lists 200 names. But only a 
few of these are of any concern here. Two related geometrical aspects need to 
be considered, gnomons and division into triangles. 

(2) Gnomons and division into triangles. Figures 9-12 illustrate the fact 
that each polygonal number after the first two is a nest of linear polygons of 
the same number of sides having one angle in common. Thus each polygonal 
number can be obtained from the preceding one of the same number of sides 
by adding a partial new border. These additions are called gnomons and are 
illustrated in Figs. 14-17. Consider first Fig. 15, the square numbers: each 
square is formed from the preceding one by adding a row of n dots along two 
adjacent sides. I n these additions the dots have been connected by lines. 
showing their shape, which is somewhat similar to a carpenter's square 
(particularly when the square number is shown as a square array of unit 
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o\~ 
Figure 14 Figure 15 

Figure 16 Figure 17 

squares with a dot in the center of each and two outer sides shaded, as is 
sometimes done). The carpenter's square was called a "gnomon" in Greek and 
is believed to be the origin of the name for these figures. The gnomons in the 
other three figures are also connected by lines; in the case of the triangles they 
are simple lines, for the pentagons they have 3 sides and 2 corners, and for the 
hexagons 4 sides and 3 corners. The successive gnomons are numbered in the 
figures; number I, the single dot, is included as a gnomon to complete the 
series; it is added to zero to form the first polygonal number. 

Several features common to all gnomons (excluding the I) should be noted. 
In each case the gnomon is a polygon with one angle (including its two sides) 
removed (Descartes called it a vacant angle); the number of sides is two less 
than the number of sides of the polygon,I06 and the number of corners is three 
less than the number of angles of the polygons. If 0 is the number of sides of the 
polygon the gnomon has (0 - 2) sides and (0 - 3) corners. (The word corner is 
used rather than angle for a reason which will appear in the next section.) 

The number of dots in a general gnomon is readily seen to be (0 - 2) n -
(0 - 3). Each of the (0 - 2) sides, considered separately, has n dots, therefore 
(a - 2)n, but the dots at the corners have thereby been counted twice and hence 
(0 - 3) dots must be subtracted for the (0 - 3) corners. This is the recursive 
method used by Descartes in his tables of polygonal numbers. 

The gnomons are obviously the first differences of the terms of a series of 
polygonal numbers with the same number of sides, the simple arithmetical 
series from which the polygonal series is derived. This is shown by the line 
labelled dl in each of Figs. 9-12. 

Lines drawn from the common corner of the nested set of polygons whicl) 
form a polygonal number, to each of the other corners, divide the figure into 
triangles as shown in Fig. 18(a) for the pentagon and Fig. 19(a) for the 
hexagon. These are related to the gnomons: there are as many triangles as 
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(a) (b) 

Figure 18 

(a) (b) 

Figure 19 

sides in the gnomon, (a - 2), and as many sides common to two triangles as the 
gnomon has corners, (a - 3). 

The number of dots can be counted from the triangles considered 
individually. Figures 18(b) and J9(b) show the triangles of the two divisions 
separated into individual triangles; each of these represents a triangular 
number with the same radix or base (n) as the polygonal number itself. The 
total number of dots is 

p(a.n) (a - 2)(n1 + n)/2 - (a - 3)n. 

The term (nl + n)/2 is the number of dots in one triangle, which is multiplied 
by (a - 2), the number of triangles; this counts the (a - 3) sides twice and hence 
(a - 3)n dots must be subtracted. This formula represents a theorem given by 
Descartes; it will be recognized as a rearrangement of the terms of the general 
formula (I). 

Figure 20 represents a combination of gnomons and triangles using the 
pentagon as an example, suggested by lamblichus' statement. Starting with 
five points or dots, arranged in the form of a regular pentagon, rays are drawn 
from one point through each of the other four, rays a, b, c, d in Fig. 20. To 
form the next pentagonal number a dot is added to each ray, the three dots on 
each ray being equally spaced on the ray. A gnomon is formed by adding 
another dot centrally between each adjacent pair of added dots. The next 
pentagonal number is formed as shown in the figure, and so on. Figure 20 is in 
effect a combination of Figs. 16 and 18(a).lo7 

(3) Pyramidal numbers. The Greeks also recognized that if the terms of a 
series of polygonal numbers were summed, the successive sums formed a 
series of pyramidal numbers. They were treated by several of the Greek 
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c 

Figure 20 

mathematicians who have been mentioned (Nicomachus, Theon, lamblichus), 
and others. 

Pyramidal numbers are formed by piling up the planes of successive 
polygonal numbers (see Figs. 9-12), equally spaced and arranged so that the 
dots form a pyramid (this is essentially the way Nicomachus described them). 
The lateral faces of the pyramids are congruent triangles with the number of 
dots along each side equal to the number along each side of the base. Except in 
the case of the triangular, square or pentagonal base, these lateral triangles 
cannot be linear equilateral triangles, but are isosceles. For certain purposes, 
as will appear in the next section, the pyramids can be stretched, or stretched 
and sheared, while retaining various properties, analogous to the treatment of 
triangles shown in Fig. 13.108 

The individual terms of a series of pyramidal numbers can be readily 
obtained by summing the terms of the corresponding series of polygonal 
numbers, and the formula for the general term can be derived from the first 
four. In the following tabulation the third line gives the first four general 
polygonal numbers and the second line the successive sums of these. 

n= 2 3 4 
P(a,n) a+1 4a -2 lOa - 10 

dl = p (a,n) a 3a - 3 6a -8 
d2 a-I 2a - 3 3a - 5 
dJ a-2 a-2 a-2 

The second and third differences, which are the first and second differences of 
the polygonal numbers, are also listed. The pyramidal numbers are represented 
here by P(a,n), where a is the number of sides of the base and n is the radix, the 
number of dots along each side of the base and the lateral faces. 

The pyramidal series is an arithmetical series with constant third differ­
ences, which we call a "series of the third order," and the formula for the 
general term is a cubic polynomial in n. Assuming a cubic with unknown 
coefficients, four linear equations are formed by substituting the first four 
values of P(a,n) and the values of the coefficients thus determined. 109 The 
general formula is 
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P(a,n) = [(a - 2)n3 + 3n2 + (5 -a)n]/6. (2) 

Formulas for individual series of pyramidal numbers were known before 
Descartes; Faulhaber gives the "cubicossic"equations of pyramids with bases 
of 3, 4, 5, 6, 13, 50, 154 sides. 

The terms of equation (2) can be rearranged to the following form: 

P(a,n) = (p(a,n) + n/2Hn + 1)/3. 

This equation was given by Descartes, in verbal form, who used it in his 
calculations, as will be shown in the next section. 

Except for the series of pyramidal numbers (which include the tetrahedral 
numbers) and the parallelopipedal numbers of various names (including the 
cube), the Greeks do not appear to have had polyhedral numbers nor any 
general concept of polyhedral numbers. 
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18 Omnium optime formabuntur solida per gnomones superadditos uno 
semper angulo vacuo existente, ac deinde totam figuram resolvi posse in 
triangula. U nde facile agnoscitur omnium polygonalium pondera haberi ex 
multiplicatione trigonalium per numeros 2./3./4./5./6 etc., et ex producto si 
tollantur 1./2/3/4 radices, etc. 

19 Ut: Tetragonalium pond us fit ex t} + t~per 2: fit f ~ + f;l{, unde 
sublata 1;It. fit I}; item per 3 ex producto tollendo 2Jl fit pond us 
pentagonalium, etc. 

20 Ita etiam polygonales regulariter fieri debent: 

18 Solids are best of all formed by superimposing gnomons having always 
one angle vacant, and from which the whole figure can be resolved into 
triangles. From which it is easily recognized that the weights of all the 
polygonals are obtained by multiplying the triangulars by the numbers 2, 3,4, 
5,6, etc., and subtracting from the product 1,2,3,4 radices, etc. 

19 So to form the tetragonal weight,tn2 +tn [mUltiplied] by 2 givesfn2 + 
fn, from which subtracting n gives n2; in the same manner by 3, and 
subtracting 2n from the product, gives the pentagonal weight, etc. 

20 In this manner the polygonals can be regularly formed: 

Triangular Cubic Pentagonal Hexagonal 

R-A, 0 R-A, 0 R-A, 0 R-A, 0 
1-0, I 2-1, I 3-2, I 4-3 , I 
2-0, 3 4-1, 4 6-2, 5 8-3, 6 
3-0, 6 6-1, 9 9-2, 12 12-3, 15 
4-0, 10 8-1, 16 12-2, 22 16-3, 28 

Comments. The first sentence of the first paragraph is obscure: the notes in 
the Oeuvres call it "very elliptical." Foucher de Careil omitted some words he 
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could not make out, while Prouhet ignored it completely. De Jonquieres' 
reconstruction added thirty words and his translation further expanded it to 
over eighty words; this was in an attempt to explain a transition from the 
solids of the opening phrase to the plane figures of the rest of the sentence and 
paragraph. 

The sentence is correctly rendered according to the manuscript but presents 
a difficulty in meaning. This is due to the presence of the words "solida" 
(solids) which makes the opening phrase inconsistent with the rest of the 
sentence and paragraph, which concern triangles and polygons. The difficulty 
disappears if it is assumed that "solida" is a copying error for "plana" (planes) 
in the original manuscript, and this position is taken here for the purpose of 
simplifying the explanation. The use of the word "plane," for plane figure or 
polygon (as "solid" was used for solid figure or polyhedron) was not 
uncommon, particularly when the interior of the polygon was also contem­
plated. Thus Kepler,like Pappus, uses "plane" to denote the polygonal face of 
a polyhedron. Descartes uses "plane" in Paragraph 21 and "surface" in 
Paragraph 22 for "plane figure." 

The three paragraphs considered here, dealing with polygonal numbers, 
serve as an introduction for the extension of the concepts to space figures, 
polyhedra. They are noted under two heads: (a) gnomons and (b) division 
into triangles. 

(a) Gnomons. Consider the first part of the first sentence of Paragraph 18, 
and the sentence of Paragraph 20, which are rewritten as: 

(18) Plane figures (polygons) are formed by superimposing gnomons each 
of which has one angle vacant. 

(20) In this manner the polygonal numbers can be regularly formed. 
The first sentence is taken as referring to the polygons as such, from which, 

particularly the square, the concept of a gnomon presumably originated and 
was extended to the corresponding polygonal numbers. This has been 
explained above in Section 10 (p. 87) under the heading "Gnomons and 
division into triangles." Figure 16 (p. 88) shows the successive gnomons for the 
pentagonal numbers, and is referred to again here. 

The four tables in Paragraph 20 show the formation by gnomons of 
successive triangular, square, pentagonal and hexagonal numbers, respec­
tively. The third one is repeated here with added material: 

Pentagonals 

n R - A, 0 
3 - 2, I 
6 - 2, 5 
9 - 2, 12 

4 12 - 2, 22 

n 3n - 2, p(5,n) 
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Descartes lists, in three columns, the number of sides of the gnomon (the 
'radices', denoted by 'R '), the number of corners of the gnomon (the 'anguli,' 
denoted by' A'), and the number of dots in the corresponding figurate number 
(see below for the explanation of why this column is headed by a zero). To this 
we have prefixed a column giving n, the number of dots along a side, or the 
order of the number. 

As can be seen from the figure, the gnomon for the pentagonal numbers has 
three sides and two corners (angles). The number of dots to be added to the 
(n - l)th number to give the nth number is calculated by first considering the 
three sides of the gnomon separately, giving 3n dots, and then subtracting 2 
for the two corners, whose dots have been counted twice. The last column of 
the table gives the pentagonal numbers themselves. Look at the line for n = 4: 
the gnomon has 3 times 4, minus 2 dots: the resulting number, 10, is added to 
the preceding (third) pentagonal number, 12, giving the fourth one, 22. The 
calculation of the gnomons is carried back to n = I (or rather it starts with n = 
I), where the formula 3n - 2 gives I for the gnomon, which, added to the zero 
of the preceding line, gives I for the first pentagonal number. 

The other three tables follow the same routine. In general the recursion 
formula can be written 

[(a - 2)n - (a - 3)] + p(a,n - I) = p(a,n), 

where a is the number of sides of the polygon and p(a,n) stands for the nth 
a-gonal number. 

(b) Division into triangles. The second part of the first sentence of 
Paragraph 18 indicates that polygons can be divided into triangles from the 
gnomons. The relation of gnomons to this division into triangles has been 
indicated in Section 10, p. 89 (see particularly Fig. 20). The next sentence and 
Paragraph 19 deal with the division into triangles. 

Descartes gives a general method and two examples for finding the 
"weight" (general formula) for polygonal numbers. The following explana­
tion uses the second example, the pentagon, and refers to Fig. 18 (p. 89). 
Lines drawn from one angle of the pentagon divide it into three triangles as 
shown in Fig. 18(a); this is as many triangles as there are sides in the gnomon. 
Pairs of these triangles have a common side; there are as many common sides, 
2, as there are corners in the gnomon. The three triangles are separated in Fig. 
18(b), which repeats the two common sides. The number of dots in the 
particular figure is calculated by multiplying the number of dots in one 
triangle by 3, and then subtracting twice the number of dots along a side, to 
allow for the 2 sides which have been counted twice. Stated generally for 
pentagons, this is three times the nth triangular number minus 2n. 

Descartes' general formula is thus seen to be 

p(a,n) = (a - 2) , p(3,n) - (a - 3)n, 

where a is the number of sides of the polygon, p(3,n) is the nth triangular 
number and p(a,n) is the nth a-gonal number. 
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The weights, or general formulas, for various series of polygonal numbers 
are used by Descartes in deriving the weights of various polyhedral numbers. 
These are listed here (with the last one added) in the form in which he would 
have derived them in accordance with his method. Cf. p. 86. 

p(3,n) = 
p(4,n) 
p(5,n) 
p(6,n) 
p(8,n) = 

p(IO,n) 
p( l2,n) 

p(3,n) 
2p(3,n) - n 
3p(3,n) - 2n 
4p(3,n) - 3n 
6p(3,n) - 5n 
8p(3,n) -7n 

IOp(3,n) - 9n 

(n2 + n)/2 
n2 

(3n2 - n)/2 
2n2 -n 
3n2 - 2n 
4n2 - 3n 
5n2 - 4n. 

21 Quod si imaginaremur figuras istas ut mensurabiles, tunc unitates 
omnes intelligerentur esse eiusdem rationis ac figurae ipsae: nempe in 
triangulis unitates triangulares; pentagona metiuntur per unitatem pentag­
onam etc. Tunc eadem esset proportio plani ad radicem quae est quadrati ad 
suam radicem; et solidi quae est cubi: ut si radix sit 3, planum erit 9, solidum 
27, etc., v.g. Quod etiam valet in circulo et sphaera aliisque omnibus. Si enim 
unius circuli circumferentia sit triplo maior aJtera, eiusdem aream continebit 
novies. U nde animadvertis has progressiones nostrae matheseos,.7e, ~ , ct, 
etc., non esse alligatas figuris lineae, quadrati, cubi, sed generaliter per illas 
diversas mensurae species designari. 

21 If one considers these figures as measurable, then all the units are 
understood as being of the same kind as the figures themselves: that is for 
triangles a triangular unit; pentagons are measured by a pentagonal unit, etc. 
Then the proportion between a plane and its radix is the same as the square to 
its radix; and a solid as a cube: so if the radix is 3, the plane will be 9, the solid 
27, etc., for example. This holds also for the circle and the sphere, and all other 
figures. For if the circumference of a circle is three times larger than another, 
the area of the first will be nine times larger. From which it is observed that our 
mathematical progression, n, n2, n3, etc., is not attached to linear, square, 
cubic, figures, but is designated generally by the diverse species of measure. 

Comments. This paragraph, dealing with units and measures, seems 
unrelated to the rest of the manuscript, or, at best, the relationship is rather 
tenuous. It will not be discussed here as this would lead too far afield. llo 

A note in the Oeuvres (X, p. 688) states that the two figures reproduced 
above "correspond to triangular and pentagonal numbers." But this is 
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evidently not the case in view of their location and form. The figure on the left 
appears to be an illustration of the use of triangular units; it is taken as 
representing a triangle with 3 linear units on each side (the radix), and divided 
into triangular units, of which there are 9, as there should be in accordance 
with the first two sentences of the paragraph. The pentagon on the right, 
however, shows that this cannot be conveniently done in the case of 
pentagonal units. Perhaps these figures were not in the original manuscript 
but were added by Leibniz in a hurried attempt to illustrate what he had just 
copied. 

22 Quinque corpora regula ria, simpliciter ut per se spectantur, formantur 
per additament urn gnomonis, ut superficies fuerant formatae: 

22 The five regular bodies, considered simply per se, are formed by adding 
gnomons, as the surfaces were formed. 

Tetrahedrons Octahedrons Icosahedrons 

F-R+A, 0 F- R+A, 0 F- R+A, 0 
1-0 + 0, I 4- 4 + I, I 15-20 + 6, I 
3-0 + 0, 4 12- 8 + I, 6 45-40 + 6, 12 
6-0 + 0, 10 24-12 + I, 19 90-60 + 6, 48 

10-0 + 0, 20 40-16 + I, 44 150-80 + 6, 124 

Cubes Dodecahedrons 

F- R+A, 0 F- R+ A, 0 
3- 3 + I, I 9-18 + 10, I 

12- 6 + I, 8 45-36+ 10, 20 
27- 9 + I, 27 108-54 + 10, 84 
48-12 + I, 64 198-72 + 10, 220. 

Comments. This paragraph!!! and its tables are concerned with the five 
regular solids. The phrase "considered simply per se" may have been added to 
exclude the semiregular solids, which come later and involve some additional 
considerations. 

The characteristics of the regular polyhedra which are utilized are (1) the 
faces are congruent regular polygons, and (2) all the solid angles are identical. 

Gnomons. The five series of polyhedral numbers are formed from 
gnomons in a manner analogous to that in which the polygonal numbers were 
formed (see the comment on Paragraphs 18, 19, 20 under the heading 
Gnomons, p. 93). No explanation is given by Descartes, so we elaborate the 
method here, using the dodecahedron as an example. In so doing, we 
anticipate some terminology which will be explained later. 

In a way analogous to the treatment of polygonal numbers, a polyhedral 
number is considered as a nested sequence of polyhedral surfaces having one 
corner in common. The outermost surface, say the nth, excluding the common 
corner and its incident lines and faces, is the gnomon which is added to the 
next lowest, (n - I )th, polyhedral number to produce the nth one. Figure 21 is 
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a representation of the surface of the regular dodecahedron. It has 12 
pentagonal faces, 20 corners (triple points, points serving as the vertices of 3 
plane angles), and 30 sides (double sides, lines serving as the sides of two 
faces). If one corner and its incident lines and faces are removed, the surface 
loses 3 faces, 12 double sides (3 are removed entirely and 9 are reduced to 
single sides), and 10 triple points (one is removed entirely, 6 are reduced to 
double points and 3 are reduced to single points). The result, the surface with 
one vacant angle, is the gnomon for the dodecahedral numbers; it has 9 
pentahedral faces, 18 double sides, and 10 corners (triple points); only these 
elements are to be considered. 

Figure 21 

The utilization of the gnomons to form the dodecahedral numbers is 
illustrated by the fifth table, which is repeated here with some added 
material. 112 

n 

2 
3 
4 

Dodecahedron 

Fs - R + A, 0 
9-18+10, I 

45 - 36 + 10, 20 
108 - 54 + 10, 84 
198 -72 + 10, 220 

n 9p(5,n) - 18n + 10, 

First, the faces of the nth gnomon are considered separately; each one is a 
pentagonal number, and hence the number of dots is 9 times the nth 
pentagonal number. But the faces have 18 common sides and the number of 
dots in these double sides (which in each is n) have been counted twice, hence 
18n must be subtracted. Since 3 double sides meet at a corner (triple point), of 
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which there are 10, there have been 3 subtractions of each of these points 
(eliminating the dots at the corners), and hence 10 must be added to 
compensate for the over-subtraction. The result is the value of the nth 
gnomon, which is added to the preceding, (n - I )th, dodecahedral number to 
form the nth one. 

For a specific example consider the line of the table for n = 4. The 4th 
pentagonal number is 22, hence we get 198 for the 9 pentagons; 4 times 18 is 
subtracted and 10 then added. The result, 136, is the value of the 4th gnomon 
which, when added to third dodecahedral number, 84, gives the fourth one, 
220. 

The same procedure is applied separately to each of the other four regular 
polyhedra to obtain the other tables. In the case of the icosahedron (see Fig. 
22), which has 20 triangular faces, 30 double sides, and 12 corners, the 
gnomon has 15 triangular faces, 20 double sides and 6 corners, giving the' 
formula 15p(3,n) - 20n + 6 for the nth gnomon. For the octahedron (see Fig. 
23), which has 8 triangular faces, 12 double sides and 6 corners, the gnomon 
has 4 triangular faces, 4 double sides and only one corner. The gnomon for the 
cube has 3 square faces, 3 double sides and one corner, while for the 
tetrahedron the gnomon is only a single triangular face. 

Figure 22 

Division into pyramids, weights. The summary table at the end of the 
manuscript gives the general formula, called the weight, for each of these five 
series of polyhedral numbers. The method for obtaining them is not described, 
but the method for obtaining the formulas for polyhedral numbers corre­
sponding to Archimedean solids is described in Paragraphs 30, 31 and 32, 
generally and with a specific example. This method, as applied to the regular 
solids, will be used here. 
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Figure 23 

The polyhedron is divided into pyramids, as the polygons are divided into 
triangles, to obtain their weights. It is hence necessary to have the formulas 
(weights) for each series of pyramidal numbers. Descartes' method of 
obtaining these weights, as described in Paragraphs 30, 31 and 32, is done in 
two steps: 

(I) add n /2 to the formula for the polygon of the base; 
(2) mUltiply the result by (n + 1)/3. 

Stated as a formula, this is 

P(a.n) = (p(a.n) + n/2)· (n + 1)/3, 

where a is the number of sides of the base. How Descartes arrived at this 
expression for the general formula for a pyramidal number is not evident. 

The pyramidal formulas which would be needed in connection with the 14 
polyhedra mentioned in the manuscript are listed in the foHowing table. 

P(3,n) (n2 + 2n) (n + 1)/6 = (n3 + 3n2 + 2n)/6 
P(4,n) (2n2 + n) (n + 1)/6 (2n3 + 3n2 + n)/6 
p(5,n) (3n2) (n + 1)/6 (3n3 + 3n2)/6 
P(6,n) = (4n2 - n) (n + 1)/6 = (4n3 + 3n2 - n)/6 
P(8,n) (6n2 - 3n) (n + 1)/6 = (6n3 + 3n2 - 3n)/6 
P(IO,n) (8n2 - 5n) (n + 1)/6 (8n3 + 3n2 - 5n)/6 
P(l2,n) (IOn2 - 7n) (n + 1)/6 (IOn3 + 3n2 - 7n)/6 

Only the first and third ofthese formulas are stated explicitly in the manuscript. 
N ow for the polyhedron. Lines are drawn from the common corner of the 

nested set of polyhedral surfaces to each of the corners with which it is not 
already connected by a line; pairs of these lines will stand joined by a line on 
the surface joining their extremities, and a triangular plane surface is imagined 
to be connecting each of these triplets. The result is a set of pyramids having a 
common apex, pairs of which have a common lateral triangular face. The base 
of each pyramid is a face of the gnomon. 
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N ow consider the dodecahedron and the derivation of its gnomon as given 
above. When divided into pyramids, there will be as many pyramids as there 
are faces in the gnomon, each of these faces being the base of one of the 
pyramids. Since the gnomon has 9 pentagonal faces there will be 9 pentagonal 
pyramids. Each of the double lines of the gnomon marks a common face of 
two pyramids; hence there are 18 common triangular faces corresponding to 
the 18 double sides of the gnomon. Each of the corners (triple points) of the 
gnomon, of which there are 10, marks the end of a line which is common to 
three faces. 

The derivation of the formula (weight) follows. Consider the pyramids 
separately: the total number of dots in these is 9 times the number in each 
pyramid (which we denote by P(5,n», or 9P(5,n). But the dots in 18 triangular 
faces have been counted twice, so 18 p(3,n) dots are subtracted. But the dots in 
10 lines have been subtracted three times (reducing them to zero), so the 
number of dots in 10 lines, IOn, must be restored. This is expressed as 

Dodec. 9P(5,n) - 18p(3,n) + IOn, 

and substitution of the formulas for P(5,n) and p(3,n) results in 

Dodec. (9n3 - 9n2 + 2n)j2. 

The same procedure is followed for the other regular polyhedra, but for the 
tetrahedron there is only one pyramid, itself, and in the table for the cubic 
numbers it is obviously included merely to show the generality of the 
procedure. 

Another method of deriving the formulas would be to assume a cubic 
polynomial with undetermined coefficients and then determine the coefficients 
from the first three or four of numbers in the tables. 

23 Corporis quod constat 4 hexagonis et 4 triangulis, latera sunt 18, anguli 
12, facies 8. Igitur huius gnomon constat 2 hexagonis et tribus triangulis 
faciebus, minus sex radicibus, + 2 angulis: 

23a Horum autem differentias ita definiemus, prioris I, 
23 The body which is composed of 4 hexagons and 4 triangles has 18 sides, 

12 angles, 8 faces. Hence its gnomon is composed of 2 hexagonal and 3 
triangular faces, minus 6 radices, plus 2 angles: 

F + F- R + A, 0 
Gnomon 3+ 2 - 6 + 2, 

9 + 12 - 12 + 2, 12 
18 + 30 - 18 + 2, 44 
30 + 56 - 24 + 2, 108 
45 + 90 - 30 + 2, 215 

23a Of these now the differences are thus defined, first I, 
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I 

II 
S 

10 

32 21 

64 ~ 32 

107 \ 43 

161 \ 54. 

Comments. The present paragraph begins the consideration of the 
Archimedean or semiregular solids, which occupies the rest ofthe manuscript. 
These differ from the regular solids in that the faces are not all of the same 
type, but there may be two or three different types of faces, all regular 
polygons, in the same solid. They are similar to the regular solids in that all the 
solid angles are identical and each is identically related to the others. They 
were discovered by Archimedes but in extant literature are first described by 
Pappus. l13 The names used by Keplerl14 are still generally accepted, although 
alternative names for a few are also found. 

The solid of the paragraph is the truncated tetrahedron. See Fig. 24. As 
stated in the text, it has 4 hexagonal and 4 triangular faces, 18 sides, and 12 
angles. The word sides refers to the sides of the faces and each one serves two 

Figure 24 

faces; since they are split into two and counted twice in the procedure, they are 
referred to as "double sides" in our discussion. The unmodified word "angles" 
is used throughout the descriptions; the Latin word "angulus" in general 
means "corner, "115 and this word is used in our discussion instead of "solid 
angle." 

If one corner and its attendant 3 faces are removed, we are left with a 
surface having 3 triangular and 2 hexagonal faces for the gnomon. Three 
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double sides are removed, and 9 double sides reduced to single sides, leaving 6 
double sides for the gnomon. One corner is removed and 9 reduced, leaving 2 
for the gnomon. The calculation of the polyhedral numbers from the gnomons 
is shown by the table, which is repeated here with some additions. 

n F3 + F6- R + A, 0 dl d2 d3 

I 3+ 2 - 6 + 2, I 

2 9+ 12-12 + 2, 12 II i 10 
3 18 + 30 - 18 + 2, 44 32 \ 21 II 
4 30 + 56-24 + 2, 108 64 -- 32 II 
5 45 + 90 - 30 + 2, 215 107 ~ 43 II 
6 63 + 132 - 36 + 2, 376 161 54 II 

F3 refers to the triangular faces and F6 to the hexagonal faces. Note that the 
first line of numbers gives the elements of the gnomon. If we consider the faces 
separately, we get 3p(3,n) dots from the 3 triangles and 2p(6,n) from the 2 
hexagons; these are added together. The excess dots from the 6 sides which 
have been counted twice, 6n, are subtracted, and 2 dots for the over­
subtraction at the 2 corners are then added. Hence the formula for the nth 
gnomon is 

3p(3,n) + 2p(6,n) - 6n + 2. 

The procedure and the significance of the table are the same as those described 
for the dodecahedron at Paragraph 22 (p. 100), except that there are two kinds 
of faces in the gnomon. 

If the truncated tetrahedron is divided into pyramids, there are 3 triangular 
and 2 hexagonal pyramids, 6 common triangular faces, and 21ines common to 
three pyramids. The formula then is 

Trun. Tetra. = 3P(3,n) + 2p(6,n) - 6p(3,n) + 2n 
= (lin) - 3n2 - 2n)/6. 

24 Corporis quod constat 8 triangulis et 6 quadratis faciebus, latera sunt 
24, anguli 12 et facies 14. Et huius gnomon constat 6 triangulis et 4 quadratis 
faciebus, - 14 radicibus, + 5 angulis: 

24 The body which is composed of 8 triangular and 6 square faces, has 24 
sides, 12 angles and 14 faces. Its gnomon is composed of 6 triangular and 4 
square faces, minus 14 radices, plus 5 angles: 

F+ F- R + A, 0 
Gnomon 6+ 4-14+ 5, I 

18 + 16-28 + 5, 12 
36 + 36 - 42 + 5, 47 
60 + 64 - 56 + 5, 120 

(245). 
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Comments. The polyhedron of this paragraph is the cuboctahedron (see 
Fig. 25). The formula for the nth gnomon is seen at once to be 

6p(3,n) + 4p(4,n) - 14n + 5. 

Figure 25 

And the formula (weight) of the polyhedral number can also be written down 
in the form 

6P(3,n) + 4P(4,n) - 14p(3,n) + 5n, 

which gives 

Cuboct. = (7n3 - 6n2 + 2n)/3. 

25 Corporis quod constat 8 hexagonis et 6 quadratis faciebus, latera sunt 
36, anguli 24 et facies 14. Huius gnomon habet 6 hexagonas et 5 quadratas 
facies, minus 23 radices, + 13 angulos: 

25 The body which is composed of 8 hexagonal and 6 square faces, has 36 
sides, 24 angles and 14 faces. Its gnomon has 6 hexagonal and 5 square faces, 
minus 23 radices, plus 13 angles: 

Gnomon 
F+F-R+A, 0 
6 + 5 - 23 + 13, 

36 + 20 - 46 + 13, 24 
90+45-69+13,103 

168 + 80 - 92 + 13, 272. 

Comments. The polyhedron of this paragraph is the truncated octahedron 
(see Fig. 26). The formula for its gnomon is 

6p(6,n) + 5p(4,n) - 23n + 13, 

and for the polyhedral number 
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Figure 26 

Trunc. Oct. = 6P(6,n) + 5P(4,n) - 23p(3,n) + 13n 
= (I7nJ - 18n2 + 4n)/3. 

26 Corporis quod constat 8 triangulis et 6 octangulis faciebus, latera 36, 
anguli 24, facies 14. Huius gnomon habet 4 octagonas et 7 triangulares facies, 
minus radices 20, plus angulos 10: 

26 The body which is composed of8 triangular and 6 octagonal faces, [has] 
sides 36, angles 24, faces 14. Its gnomon has 4 octagonal and 7 triangular faces, 
minus 20 radices, plus 10 angles: 

F+ F- R+ A, 0 
Gnomon 7+ 4 - 20 + 10, 

21 + 32 - 40 + 10, 24 
42 + 84 - 60 + 10, 100 
70 + 160 - 80 + 10, 260. 

Comments. This polyhedron is the truncated cube (see Fig. 27). The 
formula for the gnomon is 

7p(3,n) + 4p(8,n) - 20n + 10, 

and for the polyhedral number 

Trunc. Cube = 7 p(3,n) + 4P(8,n) - 20p(3,n) + IOn 
= (31n3 - 27n2 + 2n)/6. 

27 Corporis quod constat 18 quadratis et 8 triangulis, latera sunt 48 et 
anguli 24 et facies 26. Huius autem gnomon constat 15 quadratis et 7 triangulis 
faciebus, - 37 radicibus, plus 16 angulis: 

27 The body which is composed of 18 squares and 8 triangles, has 48 sidcs 
and 24 angles and 26 faces. Its gnomon is composed of 15 square and 7 
triangular faces, minus 37 radices, plus 16 angles: 
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Figure 27 

F+ F- R + A. 0 
7+ 15- 37+16, I 

21+ 60- 74+16, 24 
42+135-111+16,106 
70 + 240 - 184 + 16, 284. 

105 

Comments. This polyhedron is the rhombicuboctahedron (see Fig. 28). 
The formula for its gnomon is 

7p(3,n) + l5p(4,n) - 37n + 16, 

and for the figurate polyhedral number 

7 P(3,n) + 15P(4,n) - 37p(3,n) + 16n 
or 

(37n 3 - 45nz + 14n)/6. 

28 Corporis quod constat 12 pentagonis et 20 hexagonis faciebus, latera 
sunt 90, anguli 60 et facies 32. Huius gnomon habet II pentagonas et 18 
hexagonas facies, minus 76 radices, plus 48 angulos: 

28a Qui ad sinistrum latus lineae characteres in Mso elisi et dubii erant. 
(Neque hic gnomon cum numeris convenit ut in prioribus.) 

28 The body which is composed of J 2 pentagonal and 20 hexagonalfaces. 
has 90 sides. 60 angles and 32 faces. Its gnomon has J J pentagonal and 18 
hexagonal faces. minus 76 radices. plus 48 angles. 

F+ F- R+A, 0 
Gnomon 11+ 18- 76+48, I 

55+ 108 - 152+48, 60 
132+270 - 228 +48, 282 
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Figure 28 

28a The characters on the left side of the line in the manuscript were 
washed out and doubtful. (Nor does the gnomon agree with the numbers as in 
the preceding). 

Comments. This polyhedron is the truncated icosahedron (see Fig. 29). The 
formula for its gnomon is 

IIp(5,n) + 18p(6,n) -76n + 48, 

and for the figurate number 

or 
II P(5,n) + 18P(6,n) -76p(3,n) + 48n 

(35n3 - 47n2 + 14n)/2. 

As stated in Section 3 (p. 9) the manuscript contains no descriptive section 
corresponding to this table. Such a description has accordingly been supplied, 
on the model of the preceding and following paragraphs. Paragraph 28a is a 
marginal note, obviously by Leibniz. It indicates that there was some 
difficulty and confusion in the original manuscript. 

29 Corpus ex 20 triangulis et 12 pentagonis: latera 60, anguli 30, facies 32, 
et huius gnomon habet 18 triangulas et 10 pentagonas facies, minus radices 48, 
plus 21 angulis: 

29 The body formed of 20 triangles and 12 pentagons [has] 60 sides, 30 
angles, 32 faces, and its gnomon has 18 triangular and 10 pentagonal faces, 
minus 48 radices, plus 21 angles: 

F+ F- R + A, 0 
Gnomon 18 + 10 - 48 + 21, 1 

54 + 50 - 96 + 21, 30 
108 + 120 - 144 + 21, 135. 
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Figure 29 

Comments. This polyhedron is the icosidodecahedron (see Fig. 30). The 
formula for its gnomon is 

ISp(3,n)+ IOp(5,n)-4Sn+21 

and for the figurate number, 

18P(3,n) + IOP(5,n) - 4Sp(3,n) + 21n 
or 

(SnJ - IOn2 + 3n). 

The table of this paragraph has been misplaced in the manuscript, where it 
precedes Paragraph 23. It was restored to its proper place by Prouh'et II and de 
Jonquieres. 

The formula (weight) for this polyhedron is worked out in detail by 
Descartes in Paragraphs 31 and 32, as an example of his method of deriving 
the weights. 

30 Termini algebraici aequales istis numeris figuratis inveniuntur ducendo 
exponentem faciei +t-'epert'L+t, deinde per numerum facierum; hocque 
toties faciendo, quot sunt diversa genera facierum in dato corpore; deinde 
producto addendo vel tollendo numerum radicum ductum pert .j + t;1!, et 
numerum angulorum ductum per 1Je. 

31 Vt si quaerantur termini adaequales numeris figuratis qui repraesentent 
corpus ex 20 triangulis et 12 pentagonis, quoniam gnomon huius corporis 
constat IS triangularibus facie bus et to pentagonis, minus 4S radicibus, + 21 
angulis, primo addot ~ numero t $- +t;lt, qui est ex ponens faciei triangularis, 
et productum, nempet 3- + l~, duco pert)e+t fitt«. +t 3-+t;l(; quod duco 
per IS et fit 3et + 9} + 6)(. 
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Figure 30 

32 Deinde addo etiam t)l. numero t ~ - tit, qui est exponens faciei 
pentagonaJis, et fitt~, quo ducto pert~+t, fitt tt+t~; et deinde per 10, fit 
S ~+ S}; quod si iungatur cum numero praecedenti, fit 8 et + 14 ~ + 6~. 
Unde si tollatur numerus radicum 48 ductus per t ~ + t~ nempe 24} + 
24'Jt, fit 8 t.<. - 10.~ - 18~; cui si addatur 21;:1e propter 21 angulos, fit 8et.­
lOa- + 3~, numerus algebraicus quaesitus. 

30 The algebraic expressions for these figurate numbers are found by 
mUltiplying the exponent of the face plus-m by-tn +t, then by the number of 
faces, which is done as many times as there are different types of faces in the 
given body; then add to or subtract from the result the number of radices 
mUltiplied bytn2 +tn, and the number of angles multiplied by n. 

31 So if the expression for the figurate numbers which represent the body 
[consisting] of 20 triangles and 12 pentagons is sought, since the gnomon of 
this body is composed of 18 triangular and 10 pentagonal faces, less 48 radices, 
plus 21 angles, I first addtn to the numbertn2 +tn, which is the exponent of a 
triangular face, and multiply the result, namelytn2 + n, bYTn ++: this givesinJ 

+ in2 + tn, which I multiply by 18, which gives 3nJ + 9n2 + 6n. 

32 Then I also add tn to the numbertn2 -tn, which is the exponent of the 
pentagonal face, givingtn2, which multiplied bytn +hivestnJ +tn2; and then 
by 10, giving SnJ + Sn2, which isjoined to the preceding number, giving 8nJ + 
14n2 + 6n. From which is subtracted the number of radices, 48, multiplied by 

tn2 +-m, that is, 24n2 + 24n, giving Sn J - IOn2 - ISn, to which is added 21n for 
the 21 angles, giving SnJ - IOn2 + 3n, the algebraic number sought. 

Comments. These paragraphs give Descartes' method of deriving the 
formulas (weights) for the polyhedral figurate numbers. Paragraph 30 states 
the method generally and the next two paragraphs work out an example. Note 
that the term "exponent" is used for the formula of polygonal numbers. The 
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method has been described and applied in preceding paragraphs and is 
summarized here to show the source. 

On the basis of all three paragraphs, the method may be outlined as follows. 
I. Determine the pyramidal number corresponding to one type of face in 

the gnomon. The pyramidal number is found by adding n/2 to the formula 
(exponent) of the polygonal number corresponding to the face, and the result 
then multiplied by (n + 1)/3. See under Paragraph 22, p. 99. 

2. Multiply the result of step I by the number of such faces in the gnomon. 
3. Perform steps I and 2 for each other type of face in the gnomon. 
4. Add together the results of the preceding steps. 
5. Subtract from the result of step 4 the product of the number of radices 

(double sides) in the gnomon by (n2 + n)/2 (the formula for a triangular 
number). This is to remove double counts of adjoining triangular faces of the 
pyramids. 

6. Add, to the result of step 5, as many radices as there are corners (angles) 
in the gnomon. This is to compensate for the over-subtraction in step 5. 

The example stated in the text, which is the polyhedron of Paragraph 29, 
can readily be followed from the above outline. 

33 Denique pondera omnium 14 solidorum prout imaginamur ilia oriri ex 
progressionibus arithmeticis: 

(Large table) 

33a vlf- 6y'2 
nescio cur 

34 (Alio atramento ascriptum erat) 
Supersunt duo corpora, unum ex 6 octogonis, 8 hexagonis et 12 quadratis, 
aliud ex 30 quadratis, 12 decag. et 20 hexag. 

33 Finally here are the weights of all the 14 solids, as we imagine them to 
result from arithmetical progressions: 

(Large table; see pp. 110-111) 

33a vlf- 6y'2 
I know not why 

34 (Inserted in another [color of] ink). There remain two bodies, one 
composed of 6 octagons, 8 hexagons and 12 squares, the other of 30 squares, 
12 decagons and 20 hexagons. 

Comments. The table presented here is a little more than a translation of 
the table of the manuscript. The lines have been numbered, headings changed, 
the identifications of the polyhedra in column I amplified, and blanks filled in. 
Some of the arithmetical expressions in columns 3-5 have been simplified, 
thus V 128 is written 8V2, y'3;4 is written V3/2, etc., and some of the more 
complicated expressions also have been simplified. The few arithmetical 
corrections to the manuscript have been noted on p. 28. 
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112 11. Comments, Large Table 

The second column of the table gives the formulas or weights ofthe series of 
polyhedral numbers corresponding to the identified polyhedra. Lines 1-5 
relate to the regular polyhedra but are not listed in the same order as their 
tables in Paragraph 22. Lines 6-12 correspond to the polyhedra of Paragraphs 
23 to 29, respectively. Lines 13 and 14 relate to polyhedra not previously 
mentioned in the manuscript; the formulas for these are not in the table in the 
manuscript; they were worked out by Prouhet and de Jonquieres and added to 
the table in the Oeuvres. These two are the truncated dodecahedron and the 
rhombicosidodecahedron (see Figs. 31 and 32). 

Figure 31 

The table in the manuscript thus lists the five regular solids and nine of the 
semiregular ones. Since the sentence introducing the table refers to "all the 14 
solids," it may be that descriptions and tables for 13 and 14 were in the original 
manuscript but were omitted by Leibniz in copying. 

Two more Archimedean solids are referred to in the sentence below the 
table (Paragraph 34), making a total of eleven. These are the truncated 
cuboctahedron and the truncated icosidodecahedron (see Figs. 33 and 34). 

Unaccountably, two of the thirteen Archimedean solids are not mentioned. 
They are the snub cube (32 triangles, 6 squares) and the snub dodecahedron 
(80 triangles, 12 pentagons); see Figs. 35 and 36. Perhaps Descartes thought he 
had put down enough for his preliminary notes. But it is worth remarking that 
the two he omitted are the only ones which cannot be formed by simple 
truncations of the regular solids. 

The formulas for the polyhedral series corresponding to each of the four 
solids last mentioned can be derived readily from the data given. 

The third column of the table, headed "geometrical weight" in the 
manuscript and "Volume" here, gives the volume of each polyhedron listed, as 
a solid, in terms of the radix (side) cubed. 116 
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Figure 32 

Figure 33 

The fourth column, headed "major axes" in the manuscript, gives the 
diameters of the circumscribing spheres, in terms of the radix (side) of the 
polyhedron,'17 

The Archimedean solids listed can be derived from the regular solids by 
appropriate truncations (cutting off of corners), The fifth (last) column of the 
table gives the side of the original solid in terms of the side of one unit (radix) 
in its derived solid,IIM 

The formula and comment of Paragraph 33a are an addition by Leibniz, 
with an indication (by a line drawn in the manuscript) that they refer to the 
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Figure 34 

Figure 35 



II. Comments, Large Table 115 

Figure 36 

second formula in line 10 of the last column. [For an explanation ofthis see n. 
15. G.J.1] 

The last three columns of the table do not relate to polyhedral numbers or 
to Part I of the manuscript and introduce no new matters of principal. They 
are concerned with the same sort of things dealt with before Descartes'time, 
measurements and numerical expressions. Perhaps some of the numerical 
expressions given by Descartes were new, but no effort has been made to 
determine this. 



12 General Comments 

The first question to be considered is the indebtedness, if any, of Descartes 
to Faulhaber. 

Prouhet refers to Faulhaber's Numerusfiguratus of 1614 (which was not 
available to him), as reported by Kastner. 119 He states that (according to 
Kastner) Faulhaber considered polyhedral numbers and gave a table of nine 
columns of figurate numbers, of which six were polyhedral, with the cossic 
expression for each at the head of its column. Prouhet adds, "It is evident that 
Descartes borrowed the fundamental idea of his work from Faulhaber." 
Milhaud ("L'oeuvre de Descartes") followed Prouhet without having seen 
either Kastner or Faulhaber. From this account it would appear that all that 
Descartes did was to add eight more polyhedral numbers to the six shown by 
Faulhaber. Prouhet gives the wrong impression. Kastner's account of 
Faulhaber's work mentions only pyramidal numbers. In one place the 
pyramidal numbers are referred to as "corporales numeri "; Prouhet translates 
"corporales" as "polyedres," although it would be more appropriately 
translated as "corporeal," and, without paying attention to the context, 
indicates that Faulhaber showed six polyhedral numbers, thus giving a 
completely false impression of Descartes' work. 

Since Faulhaber's work preceded Descartes, and Descartes was acquainted 
with him and undoubtedly with his work (see above p. 30), some account will 
be given of it, derives in the first place from Kastner. In his section of 'Toss 
and algebra," Kastner reviews a number of works of Faulhaber. 

Johann Faulhaber (1580-1635) was a "rechenmeister und modist," a 
teacher of mathematics in Vim. Besides what might be called regular works he 
wrote a number of tracts on figurate numbers-"tracts," because they are 
short and of a cabalistic nature. Some of the titles (abbreviated) are: "Neuer 
mathematischer Kunstspiegel, darinnen fUrnehmlich dreyerley Stiick zu 
Sehen," Vim, 1612,28 pages; "Andeutung einer unerhorten neuen Wunder­
kunst," Vim, 1613; "Numerus figuratus," 1614, 24 pages; "Gemein offen 
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Ausschreiben ... an aile Philosophos, Mathematicos, sonderlich Arithmeticos 
und Ktinstler," Augsburg, 1615,4 pages; "Miracula Arithmetica," Augsburg, 
1622, 93 pages; "Verntinftiger Creaturen Weissagungen," Augsburg, 1632. 

Faulhaber treated polygonal and pyramidal numbers from the standpoint 
of arithmetical series, and gave some individual formulas for the numbers of 
sides. His main concern was to find arithmetical series which produced special 
numbers mentioned in the Bible or having some religious significance. An 
example: after referring to the 120 years of Genesis 6:3, he states: "The 
triangular number 120 is also a certain pyramidal number, which I investi­
gated through a completely new invention." 

Then he asks for the cubicossic equation (cubic polynomial) which such 
number must have from "my new invention." (Apparently Faulhaber's new 
invention was the method offinding pyramidal numbers.) In answer he gives 
the formula for the pyramidal number with base of 13 sides, 

(lln3 + 3n2 - 8n}/6, 

which gives 120 when n = 4. The number 120 isthe 15th triangular number. 
Another miraculous number (Wunderzahl) is 490, the 70 weeks (490 days) 

of Daniel 9:24-27, a pyramidal number which was divinely inspired. The 
formula of the pyramidal number with base of 50 sides is given by 

(l6n3 + n2 - 15n}/2. 

This gives 490 when n = 4. 
Another formula given is the pyramidal number with base of 154 sides, 

(l52n 3 + 3n2 - 149n}/6. 

When n = 4, this gives 1530, the date of the Augsburg Confession. 
Some polygonal numbers mentioned by Kastner as being treated by 

Faulhaber are: 666, the number of the beast in Rev. 13: 18, which is the 36th 
triangular number; 1335, the number of days in Daniel 12: 12, which is the 30th 
pentagonal number; 2300, the number of days in Daniel 8: 14, which is the 20th 
tetradecagonal number. 

But Faulhaber may have had something new; what might now be called 
hyperpyramidal numbers. These are described briefly by Kastner. The 
pyramidal numbers are called corporeal numbers of the first kind; the 
successive summations of these give the corporeal numbers of the second 
kind, whose general term would be a polynomial ofthe fourth degree; these in 
turn are summed to form the corporeal numbers ofthe third kind, represented 
by a quintic equation; and so on, up to the sixth kind. Thus Faulhaber 
considered arithmetical series or progressions of orders higher than the 2 of 
triangular numbers and the 3 of pyramidal numbers. 

The Numerus !iguratus of Faulhaberl20 confirms Kastner's account, as 
summarized above. In addition, we note that it gives the cossic equations for 
the triangular, square, pentagonal and hexagonal, polygonal and pyramidal 
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numbers. The triangular pyramidal numbers are summed to form the next 
higher stage of pyramids, etc., as has been stated. The results are shown by 
cubicossic equations and by a table. 121 

One cannot imagine Descartes being impressed by Faulhaber's cabalistic 
lore, nor is it likely that Descartes first learned about figurate numbers from 
him, as these were in the common stock of mathematical knowledge of the 
time. 122 However, he would no doubt have been interested in the algebra 
involved, and it is reasonable to infer that Faulhaber's enthusiasm may have 
inspired him to begin to think about the subject and to evolve some new ideas. 
Furthermore, Faulhaber's equations of pyramidal numbers may well have 
been the starting point for Descartes' treatment of pyramids. Descartes' 
polyhedral numbers were new and involved a new concept, although it was 
analogous to concepts of the Greeks. 

The Greeks, as has been stated, only considered pyramidal numbers and 
the obvious cube; there was no concept of polyhedral numbers in general as 
there was of polygonal numbers. 

However, it cannot be said that Descartes' results were entirely new at the 
time the manuscript was published in 1860. A book by Marpurg of 1774 gives 
the same formulas for the polyhedral numbers corresponding to the regular 
solids as did Descartes, and they were included in Kliigel's mathematical 
dictionary in 1808.123 Pollock in his 1850 paper referred to them generally. The 
numbers corresponding to the semi regular solids were evidently new in 1860, 
but apparently no one has paid any attention to them. 

Comments on the second part of the manuscript were made by Foucher de 
Careil in his publication, then the same year by Prouhet I, later by de 
Jonquieres and later still by Milhaud. Foucher de Careil refers to the 
manuscript in his introduction, considering it as one of the applications of the 
Methode, with extravagant remarks. He does not specifically mention or 
discuss the first part of the manuscript, but as to the second part he refers to 
the new application of arithmetic to geometry, whereby all solids are 
represented as emerging from arithmetical progressions and submitted to 
calculation. Milhaud (1918) briefly discusses the manuscript but is mainly 
concerned with Part II in its relation to the problem of dating. He states that it 
appears that the geometrical first part was but a preface to the calculations 
which fill the second part. 

I have found no other discussions of Part II, except for a few references to 
the fact that the second part of the manuscript relates to polyhedral numbers. 
Strangely enough, Dickson does not mention the manuscript, though he does 
refer to the letters to Mersenne of 1638 and to a small Descartes note relating 
to polygonal numbers. 

Descartes' system of forming polyhedral numbers could not be carried 
much beyond the regular and semiregular solids. It could be applied to the 
series of prisms and antiprisms having the same properties as the Archimedean 
solids, but not to the third class of solids with all faces regular polygons (see n. 
116) as in these the corners are not the same. 
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Except in Part II of the manuscript, which evidently was not carried 
further, Descartes does not appear to have done much with number theory. A 
theorem of Fermat is mentioned in two places. Fermat had sent a theorem to 
Mersenne, stating that he had a proof, but not revealing it. The theorem was 
that every number is either triangular or the sum of 2 or 3 triangular numbers; 
every number is either a square or the sum of up to 4 squares; pentagonal or 
the sum of up to 5 pentagonal numbers; and so on ad infinitum. Descartes 
mentions the theorem and says a few words about it in a letter to Mersenne of 
July 27, 1638 (Oeuvres. Vol. 2, pp. 253-280). After comments on a special case 
he says: 

But as for the theorem, which undoubtedly is one of the finest which can be found 
concerning numbers, I do not know the proof, and I believe it so difficult that I dare 
not undertake to seek it. 

The same letter treats several problems involving polygonal numbers, as does 
an earlier letter to Mersenne of June 1638 (Oeuvres. Vol. 2, pp. 154-168). 
Proofs of Fermat's theorem were eventually found, by Cauchy in 1813 and 
Legendre in 1816. 124 

A brief scrap of II lines (Oeuvres. Vol. 10, pp. 297-298) merely gives a 
statement of Fermat's theorem and is obviously datable to 1638. A following 
scrap of8 lines gives the proof of a theorem known to the Greeks, that 8 times 
a triangular number plus I is a square number. This is done in cossic 
characters, and hence the date of the piece must be much earlier than 1638. 
Rule 14 of the Regulae. on the use of illustrative figures, gives the drawing of a 
triangular number as one of the examples. The letter to Stampioen of 1633 
containing the formula for pentagonal numbers has been mentioned already, 
n. 20. This letter has a bearing on the numerical data in the large table in Part 
II of the present manuscript. It discusses a problem involving four of the 
semiregular solids inscribed in four spheres tangent to each other, with each 
sphere tangent to a circumscribing fifth sphere. 

Figurate numbers are now of only passing interest, and are mentioned 
merely to state that the Greeks had such things and give a few examples. 
Nevertheless the subject was quite popular in the past; Dickson's chapter on 
the subject cites over 200 names, including famous ones such as Pascal, 
Fermat, Euler, Legendre, and Cauchy. Various propositions in number 
theory appeared originally in a context of figurate numbers. Pyramidal 
numbers remain in problems relating to the number of shot in pyramidal piles, 
with triangular or square base, found in some textbooks on algebra. 

Coxeter in 1974125 used the term "polyhedral numbers" for the numbers of 
spheres close packed in the shape offive of the regular and semiregular solids. 
He refers to the lighthearted small work of Kepler, "The Six-Cornered 
Snowflake." Kepler treated the packing of spheres in triangular or square 
arrangements, and in space in pyramids with triangular or square base. In the 
latter two cases the spheres form the closest possible packing; each internal 
sphere is surrounded by and touches twelve others (this can be seen for the 
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square-based pyramid by setting it on one of its triangular lateral faces). He 
also referred to rhomboids formed of close-packed spheres. This was in 
connection with speculations on the reason why snowflakes have six corners. 
Coxeter considered the tetrahedron, octahedron, truncated octahedron, and 
the cuboctahedron, composed of close-packed spheres, and developed general 
formulas for each. His formulas for the tetrahedron (obviously) and the 
octahedron (which can be formed from two square-based pyramids, one of 
side n and the other of side n - I) are equivalent to those given by Descartes; 
Coxeter uses the length of a side minus one for his base in the formulas. The 
other three are different, as neither the Greek concept of polygonal numbers 
nor Descartes' concept of polyhedral numbers involved packing, but only 
arrangement, and only in a few special cases would there be close packing if 
the dots were spheres. Coxeter's type appears to be inapplicable to the other 
regular and semiregular bodies. 



Notes 

I. The full title of the Methode as it appears on the title page is: 
Discours/ de la Methode/ Pour bien conduite sa raison, & chercher/la verite 
dans les sciences./ Plus/ La Dioptrique./ Les Meteores./ et/ La Geometrie./ Qui 
sont des essais de cete Methode. It was published in Leyden in 1637 by Jan 
Maire and has 414 pages. See the Bibliography for a modern edition of the 
Methode and one of the many English translations. 

2. This statement is from the biography of Rene Descartes by Leslie J. Beck 
in The New Encyclopaedia Britannica, 15th ed., p. 599. 

3. The account of the manuscripts is given by Baillet in La Vie de Monsieur 
Des-Cartes, Vol. 2, page 428. Details are recited, with quotations, in various 
places in the Oeuvres de Descartes, particularly Vol. I, pp. xvi-xix, Vol. 10, 
pp. 1-14, 173-177, 207-212. The inventory, the contents of which had been 
published as early as 1656 by Borel (Vitae Cartesii Compendium, pp. 16-19), 
is given in Oeuvres Vol. 10, pp. 5-12. 

4. Foucher de Careil, Oeuvres inedites de Descartes, Vol. 2, pp. 214-34. 
Some description of Foucher de Careil's collection may be useful. His find 

was not an accident but a reward for persistent search. The account of the lost 
papers, and also the inventory were known and from several of Leibniz's 
letters it was known that he had had some Descartes manuscripts. Foucher de 
Careil's first search through the Leibniz papers in the library at Hanover was 
not successful, but on a second search he located a bundle of uninventoried 
Leibniz papers covered with the dust of ages (la poussiere seculaire) in a 
neglected cupboard. Among these were a number of Leibniz copies of 
Descartes manuscripts; others were found among Leibniz papers in another 
compartment. 

The first volume of Foucher de Careil's work starts with a 16-page Preface 
giving the history of the manuscripts and details of his search. Next comes an 
Introduction of 128 pages, which is an essay on the Methode. The first 
manuscript in the book has the heading "Pensees de Descartes, annotees par 
Leibniz"and has 26 printed pages of Latin text with an equal number offacing 
pages of French translation. The manuscript carries the mention that the 
pages were commenced in January 1619, but the fourth page of the printed 
text refers in the past tense to an event which had occurred in 1620. The first 7 
pages contain miscellaneous statements of a philosophical nature. Then 
follow comments on various topics in physics, algebra and geometry. A 
marginal note by Leibniz states that he discovered the manuscript and made a 
copy on June I, 1676, and a note to one section indicates that it was copied 
June 3, 1676. 
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The second manuscript has the heading "Remarques de Descartes sur ses 
principes de philosophie"; it occupies 10 printed pages of Latin text and 10 
pages of French translation. The third is "Observations Meteorologiques et 
questions, tire d'un manuscrit inedit de Descartes, in-4 "; 14 and 14 pages. The 
date February 5, 1635 is on the fifth printed page, heading a shift in topic, and 
there is a note by Leibniz at the end. The fourth manuscript, concluding the 
first volume, is headed "Physiologie, d'apres un manuscrit inedit de Descartes, 
que I'on conserve a Hanovre, copie de la main de Leibniz"; 28 and 28 pages. It 
has the appearance of seven short pieces, several having their own subhead­
ings, joined together; the second part has the date November 1637, the third 
December 1637 and the fourth February 1648 (perhaps a misreading of 1638). 

The second volume contains 24 letters of Descartes which Foucher de 
Careil had collected from various sources, and five additional manuscripts. 
The fifth (10 + 10 pages), sixth (24 + 24 pages) and seventh (38 + 38 pages) are 
under a general heading" Manuscrits Anatomiq ues." The fifth is dated 1631 
and has notes by Leibniz, one of which states, "c'etait un ecrit de lajeunesse de 
Descartes," to which Foucher de Careil adds "Tout ce morceau en est la 
preuve." The eighth manuscript (4 pages) is medical and not translated. The 
ninth and last manuscript is the De Solidorum Efementis, which is not 
tra nsla ted. 

5. C.R. Acad. Sci., April 23, 1860 (see Bibliography). Prouhet was at that 
time editor of the Bulletin de fa Societe Mathematique de France. 

6. Revue de !'Instruction pub/ique of Nov. I, 1860 (see Bibliography). 
7. C. Mallet, [Review of Vol. 2 of Oeuvres inedites de Descartes], Revue de 

!'Instruction publique of Sept. 27, 1860 (see Bibliography). 
8. Mallet, comments on Prouhet II, ibid., Nov. 22, 1860, page 539; 

Prouhet, comments on preceding, ibid. Dec. 6, 1860, pages 571-572; Mallet, 
comments on preceding, ihid. Dec. 6, 1860, page 572. 

9. Ernest de Jonyuieres, "Ecrit posthume de Descartes", in Mem. Acad. 
Sci. for 1890 (see Bibliography). The translation and notes had already been 
printed in Bibliotheca Mathematica, 3F., 4 (1890) 43-55. This memoir was 
preceded by three notes in Compte.l· rendus (see Bibliography). 

10. See Adam's account of the manuscript and history of the text, Oeuvres 
Vol. 10, pp. 257-263. See the Bibliography for a full description of this edition 
of the collected works. 

II. Costa bel appears to have no knowledge of the corrections made by the 
editors in Vol. II, since his corrections include some (but by no means all) of 
theirs. He also adds some new considerations. 

12. The identification marks on the two sheets of the manuscript are LH 
IV, I, 4b BI I on one and LH IV, I, 4b BI 15 on the other. 

13. Oeuvres Vol. X (nouvelle edition), p. 687, n. on p. 265. 
14. Three specimens of Descartes' handwriting which I happen to have on 

hand are on quarto sheets averaging 17 X 23 cm in size (with slight variations); 
these, iffolded, would result in 11.5 X 17 em octavo pages. Books of the period 
show that, in genera!, an octavo page would be about the same size. 
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15. [Evidently Leibniz was unable to read Descartes' manuscript clearly at 
this point. In the body of the table he wrote v' ~+tJ2 , in his annotation 
v'Jf+ 6J2 remarking'! know not why.'The Oeuvres text substitutes I +W2 
which is mathematically correct but far from the text. We must surely read 
v'~+%J2 , equivalent to the latter, but paleographically close to both 
expressions given by Leibniz. G.J.T.] 

16. G. Milhaud, "L'oeuvre de Descartes," 86-89. 
17. Milhaud obtained his information from Prouhet, who obtained his 

information from a 1799 history of mathematics by Kastner which contained 
a summary of Faulhaber's work. But Prouhet misinterpreted Kastner, and he 
and Milhaud give the impression that Descartes merely added some more 
polyhedra to the six given by Faulhaber, which is not the case. This matter is 
treated fully in Section 12, pp. 116-118, where the references are cited. Despite 
this mistake, it remains probably that Descartes listened to Faulhaber 
discoursing on his hobby. 

18. Clavius, Algebra. passim. 
19. See p. 7 above and Adam's account in Oeuvres Vol. X, pp. 259-262. 
20. This period is well treated in general histories of mathematics. Those 

used most frequently in preparing this work are Kline, Mathematical Thought 
from Ancient to Modern Times. and Smith, History of Mathematics. Cajori 
in his History of Mathematical Notations gives numerous details throughout. 

Viete's innovation of using letters for quantities was more than a shift in 
symbols. The consonants represented general classes of numbers and enabled 
equations to be written with general coefficients, whereas previously equa­
tions with specific numerical coefficients only were mainly if not solely 
considered. With Descartes' use of small letters, with x. y. z. for unknowns, 
and the indication of powers by arabic numeral exponents, we are almost at 
modern algebra; almost, as he did not use the modern equals sign. 

It is evident from some of his writings that Descartes may not have shifted 
at first entirely from the old system to that of the Geometrie; the Regulae ad 
Directionem Ingenii show the use of capital letters to denote quantities in 
identities while at about the same time, according to the report by Beeckman, 
he was solving a quadratic equation in cossic symbols. Even in the case of 
Viete there was some development after his initial work of 1591, the In artem 
analyticam isagoge. ! n his Ad Logisticen speciosam (published posthumously 
in 1646), he was concerned with describing a new "species logistics," in 
contrast with number logistics which is calculation by numbers. For his new 
algebra he used capital letters to denote magnitudes, quantities, and 
developed the operations of addition, subtraction, multiplication and divi­
sion, and ratios, proportions and identities, using letters. For example in the 
Ad Logisticen speciosam he gives the identity: "A squared, + A by B two 
times, + B squared, is equal to A + B squared." And in the geometrical 
examples he gives the sides and hypotenuse of a right-angled triangle as "Aq­
Bq," "A by B two times," "Aq + Bq." (He used + for "plus," but = for 
"minus"). However, he still used the Latin word for "squared," or its 
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abbreviation q, to denote the second power, etc. Equations with literal 
coefficients are not yet treated. 

The date of Descartes' Regulae ad Directionem Ingenii is conjecturally 
placed in 1628 by the editors of the Oeuvres (Vol. 10, pp. 486-488), on the 
grounds that it could not have been written until Descartes abandoned the 
high life of Paris in 1628. But he did not leave Paris until December, when he 
went to a retreat somewhere in France, and he left France for Holland in 
March 1629. Thus a more plausible date for its composition is 1629. This date 
may well mark the beginning of the shift by Descartes to his new system. Rule 
16 concerns the use of "highly abbreviated symbols." He states: 

Everything, therefore. which is to be looked upon as single from the point of view 
of the solution of our problem, will be represented bya single symbol which can be 
constructed in any way we please. But to make things easier we shall employ the 
characters a, b, c, etc. for expressing magnitudes already known, and A, B, C, etc. 
for symbolising those that are unknown. To these we shall often prefix the 
numerical symbols, 1,2,3,4, etc., for the purpose of making clear their number, ... 

A power, 2a\ is represented, and the hypotenuse of a right-angled triangle 
with sides a and b is given as -J a2 + b2 • As is evident from the Geometrie, 
changes and additions came later. Perhaps these occurred by 1633. A letter to 
one Stampioen, dated by the editors of the Oeuvres as at the end of 1633, is 
published in Vol. I, pp. 275-280. The original, which itself is a defective copy, 
has a marginal sentence which includes the general formula for pentagonal 
numbers (see Sec. 12 p. 119) in the form (3xx - Ix)j2. In this the cossic 
characters appear to have been abandoned, but the evidence is rather dubious. 

21. Beck, "Descartes", p. 599. 
22. Cf. Enestrom's note on Descartes and cossic symbols in Bibliotheca 

Mathematica of 1905. This note presumably was the result ofthe consultation. 
23. This remark was no doubt directed at Moritz Cantor, Geschichte der 

Mathematik, Vol. 2, p. 684, who states categorically that Descartes learned 
the cossic symbols from Faulhaber. Furthermore, while Faulhaber used the 
cossic symbols for the radix and the radix squared, for the cube he used ·Cub.' 

24. Letter from Descartes to Beeckman, March 26, 1619, printed in 
Oeuvres, Vol. 10, pp. 154-160 (the relevant passage is on pp. 155-156). 

25. Isaac Beeckman, "Algebrae Des Cartes specimen quoddam," printed in 
Oeuvres Vol. 10, pp. 333-335. This brief note by Beeckman of some of 
Descartes' ideas merits some study in its own right. In the Geometrie 
Descartes departed from the ancient and then current practice of considering 
a2 as the surface ofa square of side a and b3 as the volume of a cube ofsideb; he 
said, "Here it must be observed that by a2, b3, and similar expressions, I 
ordinarily mean only the simple lines, which, however, I name squares, cubes, 
etc., so that I may make use of the terms employed in algebra." All powers 
were to be considered equally as lines, in effect as algebraic rather than 
geometric quantities. The note of 1628 expresses this idea in general terms 
with an illustration using 3 as the radix. There is a figure with five lines. The 
first is one unit in length. The second is 3 units in length and is marked with the 
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cos sic symbol X for the radix or quantity. The third is 9 units in length and is 
marked with the cossic symbol} for the quantity squared. The fourth line is 
27 units in length and is marked with the cossic symbol tC. for the quantity 
cubed. The fifth line is 81 units long, drawn zigzag, and is marked with the 
cossic symbol for the fourth power, which is } }. A preceding figure shows 
what appears to be an intermediate stage for explanation. The note closes with 
the solution of a quadratic equation worked out in cossic symbols. See also 
Sec. II, p. 95. 

26. Snell, Doctrinae triangulorum canonicae. libri III, prop. VIII, pp. 
120-122. Frajesi, "La teo ria dell'uguaglianza dei triedri," pp. 224-227, states 
that the polar spherical triangle was described by the Persian Naser-Eddin 
(1201-1274) and that Viete in 1593 gave an obscure and confused description 
of a special case, as did several others. 

27. Albert Girard, Invention Nouvelle en I'Algebre. This is a collection of 
three essays on arithmetic, algebra, and spherical trigonometry. The third, 
entitled "De la mesure de la superfice des triangles & polygones sphericques, 
nouvellement inventee, " occupies the last 15 pages of the work (G I verso to 
H4 verso, inclusive). It gives the areas of spherical triangles and polygons as 
well as the measure of solid angles. (See below p. 126, n.34). 

A history of the topic is given by Vacca, "N otizie storiche sulla misura degli 
angoli solidi." He states that the area of spherical triangles was previously 
discovered by T. Harriot, as is shown by unpublished manuscripts. 

28. The preceding discussion presupposes that the two parts of the 
manuscript were written at about the same time or, if written at different 
times, that the first part was done before the second. It is the order that is 
significant: if the first was written some time after the second, then some of the 
statements made would need modification. However, there is no evidence to 
indicate that the order of composition of the two parts was different from that 
in which they appear. 

29. All references to Euclid, given by Book and proposition or definition 
number, are to Heath's translation. 

30. tr. Morrow, pp. 300-30 I (commentary on I 32). Heath repeats the 
proof of Proclus in his notes to Euclid I 32. 

31. Proclus, tr. Morrow, pp. 301-302. Heath also gives Proclus'proof, and 
remarks that this property was not new with Proclus, since it was stated by 
Aristotle. 

32. G. P6lya, Induction and Analogy in Mathematics. pp. 58,226. 
33. Notes to Euclid XI Defs. IO and II, Vol. 3 pp. 265-268. Heron's 

definition (De! 22, Opera IV pp. 28-30) is "A solid angle is in general the 
bringing together of a surface which has its concavity in one and the same 
direction to one point." 

34. Girard, Invention Nouvelle. last essay (cf. n.27 above). In 1629 Girard 
gave the area of a spherical polygon as equal to the sum of its interior angles 
less the sum of the interior angles of a plane polygon having the same number 
of sides. Hence the term "spherical excess formula." He proved it for the 
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spherical triangle and then indicated that it could be proved for a general 
spherical polygon by dividing it into triangles. He also gave a corresponding 
expression for the measure of a solid angle; he uses the expression "inclination 
of the planes" for the dihedral angles. While he does indicate that the right 
angle unit of measure for angles can be used, he used degrees (since he used 
trigonometric functions), and gave numerical examples; he also introduced 
the concept of"degrez superficiels" (surface or areal degrees) for the spherical 
polygons and solid angles, the degrees for plane angles presumably being 
thought of as linear degrees. There is an interesting discussion of the units for 
angles. 

35. See above, p. 36. 
36. The text printed here (which is given, paragraph by paragraph, for 

ready comparison with the translation), is the one that I think should be read. 
Additions, deletions and changes from the reading of the manuscript are not 
noted as such in the text (for these the reader is referred to the critical edition 
above, pp. 22-29), but, where necessary, are explained in the comments. 

The translation is intended to be a substantially literal rendering of the 
Latin text (rather than a literary one), as close to the original and as intelligible 
as possible. It was compared, when in first rough draft, with the French 
translation of Prouhet, allowing for the deficiencies in the text he had on 
hand, and with the Italian translation of Natucci, which were used to assist in 
revising the draft. It differs from these in various respects: for example, it is 
closer to the original in places, and avoids anachronistic terms. Furthermore, 
it is based on a more complete and more correct transcription of the 
handwritten Latin text. Explanatory additions are enclosed within square 
brackets. Supplements are in italics. 

The comments vary in length and content. Most are explanatory elabora­
tions. Proofs and derivations are given for various propositions; these are not 
necessarily those used by Descartes, who gave none, but are intended to show 
the truth of the propositions and are based on material in the manuscript itself 
with only a few exceptions. Most of the comments by Prouhet and Mallet 
were directed towards corrupt parts of Foucher de Careil's text and are not 
applicable to the correct text, but some which are still relevant are noted. 

37. Prouhet and de Jonquieres both keep this text and render it "plane 
angles," which they take as referring to the face angles. They attempt to 
remove the mathematical error by saying that Descartes is referring to the 
plane angles of the exterior solid angle. 

38. G. P6lya, Induction and Analogy in Mathematics. He poses the proof 
of the proposition (given by a translation of Descartes' statement) on p. 57, 
and indicates his solution on p. 226. 

39. Coxeter, Regular Po(vtopes. p. 24. 
40. Descartes, Regulae ad Directionem Ingenii in Oeuvres. Vol. 10, p. 368. 

In Haldane and Ross's translation, p. 7. 
41. Kepler, Harmonice Mundi. Book II at pp. 78 and 83. 
42. This sentence and the following one (Paragraph 5) were joined as a 

single sentence in the Foucher de Careil printing, which also contained other 
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errors. Prouhet stated that it was unintelligible. Mallet separated the two and 
gave a significance which, except for statements based on incorrect words, is 
the same as that given here; Prouhet said that he doubted Mallet's 
interpretation but that he could not offer anything better. 

43. The copying of such a trivially obvious proposition by Leibniz would 
suggest that he did not omit anything of substance. 

44. Archimedes, ed. Heiberg, I p. 76; tr. Heath p. 24. Archimedes gives the 
definition of a 'solid rhombus,' ibid. Def. 6 (p. 6 Heiberg, p. 3 Heath). 

45. Heath, Euclid. I def. 22, pp. 189-190, discusses the various meanings of 
rhombus and rhomboid. 

46. Branko GrUnbaum, personal communication. 
47. Branko GrUnbaum, Convex Polytopes. p. 287. 
48. These are the polyhedra with 12 faces and in which all solid angles are 

trihedral, of which there are 7595; see Duijvestijn and Federico, "The number 
of polyhedral graphs." 

49. De Jonquieres states that a polyhedron is determined absolutely by the 
number of faces and their respective kinds. This is the case with the example, 
which is very simple, but is not true in general. For instance, if 7 faces and 24 
plane angles are given, the number of solid angles will be 7 and the conditions 
are fulfilled by 7 topologically distinct polyhedra, including 5 different ones 
which have the identical combination of types of faces. These latter are Nos. 
38 to 42 in the illustrated catalogue given in Federico, "Polyhedra with 4 
to 8 faces." 

50. Pappus, Synagoge V, 33ff. (ed. Hultsch, Vol. I p. 350ff; cf. ibid. Vol. \II 
pp. 1138-1164). On the topic of 'isoperimetry' among the ancient Greeks, 
which goes back to Zenodorus (early 2nd century B.C.), see Heath, A History 
of Greek Mathematics, Vol. 2, pp. 206-213. 

51. Prouhet stated that he could not give any sense to this sentence. Mallet 
could not either, and suggested that perhaps there was some omission or 
transposition and further remarked that the sentence appeared to be out of 
place. This last may very well be the case as it is at the very bottom of the sheet 
and may have been first omitted in the copying and then picked up when it was 
seen that there was still room at the bottom for another sentence. 

52. This consisted, essentially, of the theorems concerning the five regular 
polyhedra found in Euclid XIII, and the description of the thirteen 
semiregular bodies, discovered by Archimedes, but known only from the 
account by Pappus in Bk. V of his Synagoge (see p. \0 I). 

53. Panofsky, "DUrer as a Mathematician," p. 618. 
54. This work existed only in manuscript until it was printed in 1916 by 

Mancini, "L 'opera De corporibus regularibus di Pietro Franceschi." 
Mancini's thesis is that Pacioli copied from Franceschi. 

55. Luca Pacioli, Diuina Proportione. This work was written in 1497. Less 
than a third of it is concerned with the Divine Proportion; the rest is devoted 
to solid bodies. Pacioli is said to have taken material freely from others: See 
Smith, History of Mathematics, pp. 252-254, who states with respect to the 
regular bodies, "Pacioli here takes his material freely from Franceschi's 
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work, .... " Mancini (n. 54) is concerned with Pacioli's copying from Franceschi 
in the Diuina Proportione. Franceschi does not have perspective drawings but 
only various sections and while Pacioli does show perspective drawings of the 
same seven polyhedra discussed by Franceschi, he shows and discusses 
numerous solids not even mentioned by Franceschi. 

A contemporary portrait of Pacioli shows him holding a solid dodeca­
hedron in one hand. Evidently models were made during this period; the 
numerous perspective drawings in his work would have been extremely 
difficult if not impossible to make without models. 

56. Albrecht Durer, "Underweysung der messung mit dem zirckel und 
richtscheyt." This work is summarized by Panofsky, "Durer as a Mathe­
matician." 

57. Wentzeln Jamitzer, Perspectiva Corporum regularium. Our Figs. 21, 
22 and 23 are taken from this work. 

58. Jacques Ozanam, Dictionaire mathematique, and Abraham Sharp, 
Geometry Improv'd, Part 2, "A Concise Treatise of Polyhedra or Solid Bodies 
of Many Bases." 

59. To give just two modern examples, Coxeter, Regular Polytopes, p. 23, 
refers to it as "Descartes' Formula," and Buckminster Fuller, Synergetics, p. 
54, also refers to Descartes in connection with it. 

60. Bertrand, "Remarque a I'occasion de la Note precedente." 
61. Poinsot, "N ote sur la theorie des polyedres." 
62. That Descartes had any notion of topology is scouted by Milhaud, 

"L 'oeuvre de Descartes," and by Lebesgue (see p. 78). 
63. See e.g. Kreyszig, Introduction to Differential Geometry and Rie­

mannian Geometry, pp. 209-214. 
64. J.K. Becker, "Ober Polyeder,~' and L. Lalanne, "Relations entre les 

quantites angulaires des polyedres convexes." 
65. L. Euler, Elementa doc/rinae solidorum and Demonstratio nonnul­

farum insignium proprietatum quibus solida hedris pfanis inc/usa sunt 
praedita. 

66. Leonhard Euler, Letter of Nov. 3/14,1750, to Christian Goldbach, 
Ju~kevic and Winter, Leonhard Euler und Christian Goldbach, Briefwechsef 
1729-1764, pp. 332-333. 

67. H. Freudenthal, "Leibniz und die Analysis situs," p. 616. 
68. George P6lya, "Guessing and proving." 
69. L. Euler, Elementa doctrinae solidorum, Opera 26, p. 73. 
70. Imre Lakatos, Proofs and Refutations, p. 6. 
71. E.g., P6lya, Induction and Analogy in Mathematics, pp. 35-43, 52-53, 

223-224. 
72. H. Lebesgue, "Remarques sur les deux premieres demonstrations du 

theoreme d'Euler relatif aux polyedres." See also p. 71. 
73. L. Poinsot, "Memoire sur les polygones et les polyedres." 
74. A.L. Cauchy, "Recherches sur les polyedres"; L'Huilier (Lhuilier), 

"Demonstration immedeate d'un theoreme fondamental d'Euler sur les poly-
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edres"; and Lhuilier, "Memoire sur la polyedrometrie." These three papers 
are listed in the probably order in which they appeared, all in 1813. The third 
one (which refers to the first) is a summary and review of the earlier Lhuilier 
paper, by Gergonne, who added proofs and other material of his own. 

75. Steiner, "Leichter Beweis eines stereometrischen Satzes von Euler" and 
"Anmerkungen zu den Aufsatze No. 18." 

76. von Staudt, Geometrie der Lage. The proof of von Staudt is used by 
Coxeter, Regular Polytopes, p. 24. 

77. J.B. Listing, "Der Census raumlicher Complexe"; A.F. Mobius, 
"Theorie der elementaren Verwandschaften"; C. Jordan, "Recherches sur les 
polyedres. " 

78. Quoted by Pont (see p. 78). 
79. May, "Historiographic vices," discusses "the fallacious attribution of 

results that are logical antecedents or consequences of established knowledge." 
He indicates that plausible inferences can be drawn "from directly documented 
knowledge, but valid argument for such inferences cannot rest on logical 
connections alone. It requires historical analysis of the knowledge, thinking, 
and environment of the persons involved." 

80. Jacques Hadamard, The Psychology of Invention in the Mathematical 
Field. pp. 48-54. 

81. Richard Baltzer, "Geschichte der Eulerschen Satzes von den Polyedern 
und der regularen Sternpolyeder." 

82. Richard Baltzer, Die Elemente der Mathematik, Vol. 2, p. 207. 
83. J.K. Becker, "Uber Polyeder," p. 338. 
84. De J onq uieres [I]. 
85. De Jonquieres [2]. 
86. De Jonquieres [3]. 
87. W. Killing and H. Hovestadt, Handbuch des Mathematischen Un­

terrichts. pp. 267-272. 
88. H. Lebesgue, "Remarques sur les deux premieres demonstrations du 

theoreme d'Euler relatif aux polyectres." 
89. Jean-Claude Pont, La Topologie Algebrique. p. 13. 
90. Cajori, A History of Mathematical Notations. Vol. 2, pp. 316-317. 
91. E. Steinitz and H. Rademacher, Vorlesungen iiber der Theorie der 

Polyeder. p. 9. 
92. Delachet, La geometrie contemporaine, p. 99. Frechet and Fan (see n. 

93). 
93. Frechet and Fan, Introduction a la topologie combinatoire, p. 25; 

English translation, p. 21. 
94. D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie. pp. 254-

280; English translation, pp. 290-295. 
95. G. P6lya, Induction and Analogy in Mathematics, and G. P6lya, 

Mathematical discovery, Vol. II. 
96. P6lya, Induction and Analogy in Mathematics. p. 56. 
97. Jean-Claude Pont, La Topologie Algebrique, pp. 8-13. 
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98. Imre Lakatos, Proofs and Refutations, p. 6. 
99. Nicomachus of Gerasa, Introduction to Arithmetic. (tr. D'Ooge) pp. 

241-249; Theon de Smyrne, Exposition des Connaissances Mathematiques 
Vtiles pour la Lecture de Platon. pp. 50-71. 

100. Diophantus On Polygonal Numbers. in Diophantus of Alexandria, 
tr. T.L. Heath, pp. 247-259. 

Descartes was familiar with Diophantus, as he states in the Regulae ad 
Directionem Ingenii. There were two Latin translations, the first by Xylander 
(Wilhelm Holtzman) published in 1575 in Basel, and the second by Bachet de 
Meziriac published in Paris in 1621 (the book whose margins were too small 
for Fermat). Tannery states that Descartes did not know Bachet's translation 
and had studied that of Xylander (Oeuvres. Vol. 10, p. 298). The context 
indicates that Tannery dated the manuscript to 1620 and hence concluded that 
Descartes did not know Bachet. 

10 I. lamblichus, In Nicomachi Arithmeticam Introductionem. pp. 58ff. 
102. Heath, A History of Greek Mathematics. Vol. 2, pp. 213, 514-517; 

Dickson, History of the Theory of Numbers. Vol. 2, chap. I, (Polygonal, 
Pyramidal and Figurate Numbers), pp. 1-3; Cohen and Drabkin, A Source 
Book in Greek Science. pp. 7-9. 

103. The triangular numbers are commonly illustrated as balls, spherical 
shot or billiard balls, arranged in a triangular tray; thus, the group of 15 
billiard balls racked up in the triangular rack isp(3,4), 3 sides and 4 balls along 
each side. The balls are arranged in hexagonal packing; each interior ball 
touches each of its six neighbors, the closest horizontal packing possible. In 
the case of square numbers the dots are in a square lattice array and when 
represented by balls in a square tray each interior ball touches four others, a 
different kind of packing. But in the case of pentagonal and higher polygonal 
numbers as shown, there is neither of these types of packing. Packing is 
irrelevant to polygonal numbers. 

104. Diophantus, tr. Heath, p. 252. 
105. His figures illustrate this fact geometrically. In his series of pentagonal 

numbers each is shown by a square array with a triangle of side one less placed 
on its upper side. This is done by Theon as well, who also illustrates the series 
of hexagonal numbers by the series of pentagonal numbers with another 
triangle added to the opposite side of the square. This form could not very well 
have been used with higher polygons, but these do not appear to have been 
illustrated. The regular polygonal forms, as illustrated in Figs. II and 12, are 
required here, as they will be used as faces of polyhedra. 

106. The description by lamblichus of the formation of polygonal numbers 
(as translated in Cohen and Drabkin, p. 9) is as follows: 

In the representation of polygonal numbers two sides in all cases remain the same, 
and are produced; but the additional sides are included by the application of the 
gnomon and always change. There is one such additional side in the case of the 
triangle, two in the case of the sq uare, three in the case of the pentagon, and so on 
indefinitely, the difference between the number of sides of the polygon and the 
number of sides which change being 2. 
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107. It is a modification of the figures given in Nicomachus (tr. D'Ooge), p. 
244, and Cohen and Drabkin, p. 8. 

108. The most common representations of pyramidal numbers are pyram­
idal piles of balls (shot, billiard balls, cannon balls) with a triangular or square 
base. These are packed in the closest form of packing, each interior ball 
touching twelve others. This is not the case with higher ones: the successive 
layers of polygons with the radix diminishing by one must be held in position 
to form a geometric pyramid as can be seen from Figs. II and 12. Thus pack­
ing is irrelevant to pyramidal numbers. (The reason for mentioning packing 
and its irrelevance will appear in Section 12 in connection with a work of 
Kepler of 1611 and a paper of Coxeter of 1974 which will be discussed there, 
pp. 119-120. 

109. See Fine, A College Algebra. Chapter 23, "Arithmetical Progressions 
of Higher Orders," pp. 364-370, for a general treatment. 

110. There appears to be room for a study and coordination of Descartes' 
views on units and measure. The subject appears in the Geomerrie and is 
treated under Rules 15 and 18 of the Regulae ad Directionem lngenii: the 
report by Beeckman of some of Descartes' algebra (referred to in Section 4, p. 
32) is related to the statements on the subject in the Geometrie. 

III. The paragraphs numbered here as 22 and 20 have been interchanged 
from their location in the manuscript, to avoid discussing the regular 
polyhedral numbers before the conclusion of the treatment of the polygonal 
numbers. Perhaps this is an instance of the shuffling of the original sheets after 
they were spread out to dry out from their immersion in the Seine. If the 
paragraphs here numbered 20, 21,22 were each on a separate sheet, as could 
very well have been the case from their size, an interchange could have been 
possible. 

112. As before (see p. 94), Descartes uses 'R' for 'radices' (the sides of the 
gnomon) and' A' for 'anguli' (the vertices). In these tables he also uses 'F' for 
'faCies' (the faces). We have again prefixed a column giving n. the order of the 
number. 

113. Pappus, ed. Hultsch V 33-36, II, pp. 350-358; tr. Commandino, pp. 
83-84; tr. ver Eeckc, pp. 272-277. 

Descartes was familiar with Pappus, as he states in the Regulae ad 
Directionem lngenii (Oeuvres X, p. 376), and parts of the Geomhrie are taken 
up with the Problem of Pappus. It is evident that he derived his information 
concerning the Archimedean solids from Pappus and would have used the 
Commandino Latin text of 1588 or the 1589 (Venice) or the 1602 (Pesaro) 
reprint. We give here a summary of Pappus' account. 

Pappus begins by referring to the perfect nature of the sphere and the fact 
that philosophers had stated that the sphere had the greatest volume of all the 
figures having the same surface area. But this had not been demonstrated. As 
in the preceding he had shown that the circle had the greatest area of all 
polygons having the same perimeter, he will now attempt to demonstrate that 
the sphere has the greatest volume of all the figures having the same surface 
area. It is possible to imagine a large number of solids with surfaces of various 
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kinds but those which appear regular should rather be considered. These are 
not only the five figures of the divine Plato, but also "those which were 
discovered by Archimedes, thirteen in number, and are bounded by polygons 
which are equilateral and equiangular but not congruent." 

Then follows a description of the thirteen solids: this is done simply by 
stating the total number offaces and the number of each type offace present in 
each solid. 

The remaining (and largest) part of the passage is taken up with calculating 
the number of solid angles and the number of sides in each body. First, some 
general statements are made. 

As to solid angles: if, for polyhedra whose solid angles are surrounded by 
three plane angles, one determines simply the number of plane angles of the 
faces of the polyhedron, the number of solid angles is the third of the number 
obtained; while for polyhedra whose solid angles are surrounded by four 
plane angles, the number of solid angles is one fourth of the number of plane 
angles. Likewise for polyhedra whose solid angles are surrounded by five 
plane angles, the number of solid angles is one-fifth the number of plane 
angles. 

As to the number of sides: the "number [of sides of all the faces] is evidently 
equal to the number of plane angles; but since each side is common to two 
faces, it is evident that the number of sides of the polyhedron is the half of this 
number." 

We give Pappus' first calculation verhatim: 

Conseljuently. since the first of the thirteen non-homogeneous polyhedra [the 
truncated tetrahedron. dealt with in this paragraph of Descartes] is bounded by 4 
triangles and 4 hexagons. it has 12 solid angles and 18 sides; for the angles of the 
four triangles are 12 in number and the sides are 12 in number. while the angles of 
thc four hexagons are 24 in number and the sides 24 in number; thus. the total 
number obtained being 36. the number of solid angles is necessarily the third of the 
number just given. since each solid angle of the polygon is surrounded by three 
plane angles. and the number of sides is half this number. that is to say 36; so that 
there arc 18 sides. 

The calculation is carried out for each of the thirteen polyhedra, although 
more briefly than the above for some. and only the results given for others. 

After the above treatment of the thirteen solids. Pappus drops them "for 
the moment." because they are less regular and it is convenient to compare the 
sphere with the five regular figures, since these have all faces congruent and all 
solid angles composed of equal plane angles and hence are more regular than 
the others. The rest of Book V is concerned with isoperimetric problems 
relating to these. with no further mention of the Archimedean solids. 

Pappus does not give names to the Archimedean solids. The term he 
employs for the face of a polyhedron is usually "base" (l6pa), but occasionally 
he uses "plane" (i:7TI7TE6ov). 

Several statements and ideas in Part I of the manuscript are obviously 
derived from Pappus. In Part II, too, the descriptions of Archimedean solids 
in the manuscript follow the order in Pappus. giving the number of faces and 
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the number of each type, as well as the number of solid angles and sides, which 
were calculated by Pappus. 

114. Kepler, Harmonice Mundi, Book II. Cf. pp. 60-61. As there stated, he 
discussed the regular and Archimedean solids, as well as others. He gave to the 
Archimedean solids the names which are still used today (and used by us). 
Some of them now have alternative names: the Rhombicuboctahedron is also 
known as the Small Rhombicuboctahedron, while the Truncated Cubocta­
hedron is known as the Great Rhombicuboctahedron, and the Rhombicosi­
dodecahedron and Truncated Icosidodecahedron are also known as the Small 
and Great Rhombicosidodecahedron, respectively. 

There is no evidence in the manuscript that Descartes was aware of Kepler's 
work, published in 1619. 

liS. It is so translated by Hardie in his version of Kepler's "De nive 
sexangula. " 

116. Numerical values to six decimal places of the volumes of the regular 
and semiregular solids, with unit edge, are given by Berman, "Regular-faced 
Convex Polyhedra." These have been used to verify the expressions in this 
column; in the manuscript there are 3 errors, which have been noted and 
corrected on p. 28. 

The title of Berman's paper refers to the general class of polyhedra in which 
all faces are regular polygons-regular-faced. These are divided into three 
classes. (I) The five regular solids, in which the faces are congruent regular 
polygons and the corners are congruent solid angles. (2a) The thirteen 
Archimedean solids, in which the faces are not all congruent but the corners 
are; and (2b) the two infinite series of prisms (excluding the cube which is 
included in( I» and antiprisms (excluding the octahedron which is included in 
(I»; these, which have the same properties as the Archimedean solids, were 
first pointed out by Kepler. (3) The remaining solids, in which the corners are 
not congruent. 

The third class has precisely 92 members; in all but two the faces as well as 
the corners are not congruent; two, the triangular and pentagonal bipyramids, 
have congruent equilateral triangles for faces. The complete set was first given 
(but not proven to be complete, which was done later by V.A. Zalgaller, see 
Bibliography) by Norman W. Johnson, "Convex polyhedra with regular 
faces." both Johnson and Berman present tables of the complete set of all 
three classes of regular-faced polyhedra with a variety of data relating to each, 
the two series being given in general terms. Berman gives the planar 
developments, and photographs of models, of each of them, 110 in number, 
plus a representative of each of the two series. 

117. It was known to the ancient Greeks that each of the regular and 
Archimedean solids could be inscribed in a sphere. The radii of the 
circumscribing spheres of each are given by Robert Williams, The Geometrical 
Foundation of Natural Structure, pp. 63-67, 72-97 (a book which contains 
perspective drawings and a great deal of numerical information about each of 
the 18 solids). In 12 instances expressions similar to those in this column are 
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given and in the others only their numerical values, to four decimal places. The 
algebraic expressions for the radii of the circumscribing spheres for all 13 
Archimedean solids are given by Papadatos, Archimedes (who also gives the 
expressions for the volumes). Only one error was found in the manuscript 
(corrected on p. 28). 

118. It was known before Descartes that various of the Archimedean solids 
could be produced from the regular ones by truncating the corners in a 
uniform manner. A regular pyramidal piece is cut off each corner. If each cut 
goes less than half of the way (by an appropriate amount) into the edges 
incident to a corner, the results are the five Archimedean solids known as the 
truncated tetrahedron, cube, octahedron, dodecahedron and icosahedron. If 
the cut goes exactly halfway into each edge only two others are formed: the 
tetrahedron yields simply another tetrahedron; the cube results in the 
cuboctahedron as does the octahedron, hence the name; the dodecahedron 
results in the icosidodecahedron as does the icosahedron, hence the name. The 
cut can go more than halfway down each edge, thus overlapping, but this only 
produces four already obtained. All the above are produced from single 
truncations of the five regular solids. Four others are produced in other ways. 
Two of the thirteen, those not mentioned in the manuscript, are not 
producible by truncations. 

Alan Holden, Shapes, Space, and Symmetry, pp. 40-41, has photographs 
of models showing the progressive truncations of the cube, octahedron, 
dodecahedron and icosahedron. 

The first entry in the last column refers. not to the regular truncations, but 
to the fact that the tetrahedron can be produced from the cube by cutting off 
four corners in such a way that one always cuts along diagonals ofthe faces of 
the generating cube. The second line probably refers to the fact (noted by de 
Jonquieres, "Ecrit posthume de Descartes," p. 375) that by joining the 
midpoints of the sides of each triangular face of the tetrahedron (of side two 
units) and cutting off the four vertices along the lines so formed, one produces 
the octahedron (of side one unit). Note. however, that it can also be taken as 
referring to the first item in the table, since each of the pieces cut off in the 
above procedure is itself a tetrahedron (of side one unit). Perhaps the 
relationships of the other four regular bodies were in the original manuscript 
and omitted by Leibniz. 

The ratio of the edge of the derived solid to the edge of the solid from which 
it can be derived is given for each of the eleven Archimedean solids by Cundy 
and Roilett, Mathematical Models, pp. 94-109. The ratios given by Descartes 
agree with those given in that book. However. the manuscript omits some 
derivations: the truncated octahedron (line 8) can also be derived from the 
cube; the truncated cube (line 9) can also be derived from the octahedron; the 
truncated icosahedron (line II) can also be derived from the dodecahedron; 
and the truncated dodecahedron (line 13) can also be derived from the 
icosahedron. 
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119. Prouhet I. Kastner, Geschichte der Mathematik. Vol. 3, pp. 111-152. 
120. I have examined (in photocopy) the copy of this work in the 

Niedersachsische Landesbibliothek at Hanover. It has written notes which 
may be in the hand of Leibniz on some of the pages: 

121. The table (on a folding sheet) is headed "Inexaustae Scientiae Tabula 
secretissima Arithmetices Arcana pandens." The table is inexhaustible 
because it can be extended to infinity to the right and downward. It is in fact 
the Pascal triangle in the position in which Pascal showed it, that is, the 
ordinary form rotated 45° counterclockwise. A first row of ones is only 
indicated. The table contains 8 columns, the first being the natural numbers in 
order. The second column gives the successive summations of the numbers in 
the first column, that is, the triangular numbers. The third column gives the 
successive summations of the numbers in the second column, which are the 
triangular pyramidal numbers. The next column proceeds in the same way, 
forming the "corporeal" bodies of the second kind, corresponding to 
"hyperpyramids" with triangular base, and so on to the last column. Each 
number in the table is the sum of the number to its left and the number 
immediately above it. Reading from southwest to northeast you get the 
binomial coefficients (except the initial I, as a left hand column of ones is not 
present). 

Descartes may have been referring to Faulhaber's table when he refers to 
the possibility of placing the results of some formulas in infinitely extending 
tables "imitating the German cabala" (Oeuvres. Vol. 10, p. 297). 

The series in the table all have an ultimate common difference of I. The text 
gives cossic equations of the fourth degree (the symbol for the fourth power of 
the radix is a double second power symbol) for series with an ultimate 
common difference of 2, 3 and 4, corresponding to square, pentagonal and 
hexagonal based pyramids. 

Cantor refers to Faulhaber's work on arithmetical series, Vorlesungen Vol. 
2, pp. 683-684. Papers concerning arithmetical series of higher orders (neither 
of which refers to Faulhaber or any other source) are Pollock's "On the 
Extension of Fermat's Theorem of the Polygonal Numbers" and Funken­
busch's "Hyperspacial figurate progressions." 

122. Dickson, History of the Theory of Numbers. Vol. 2, p. 5, lists a dozen 
arithmetic texts of the 16th century which include polygonal numbers. 

123. Dickson, Vol. 2, p. 16. I have not seen the book to which Dickson 
refer~, F.W. Marpurg, Anfangsgriinde des progressionalcalculs. p. 307; G.S. 
Kltigel, Mathematisches Worterbuch. Vol. 3, pp. 827-828. 

124. Dickson, History of the Theory of Numbers. Vol. 2, p. 18. 
125. Coxeter, "Polyhedral Numbers." 
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